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ABSTRACT. Uncertainty in the hydrologic and soil erosion predictions of the WEPP watershed model due to errors in
model parameter estimation is identified through a sensitivity analysis based on the Monte Carlo method. Hillslope
component model sensitivities to model inputs for rangeland conditions are presented. Model sensitivities provide
guidance in the collection of input data where the model is intended to simulate soil erosion. The results show that
hydrologic and erosion predictions are very sensitive to attributes that define a storm event (amount, duration, and time
to peak and intensity) and to the saturated hydraulic conductivity parameter. Sensitivity to critical shear stress in soil
erosion predictions indicates that interrill flow is the dominant factor of sediment transport under consolidated, nontill
managed soils. Keywords. Soil erosion, Rangeland, Modeling, Sensitivity analysis, WEPP.

he United States Department of Agriculture-

Agricultural Research Service (USDA-ARS)

Water Erosion Prediction Project (WEPP)

watershed model is a process-based, distributed
parameter model, designed to simulate the effects of
management practices on erosion and sediment yield of
cropland and rangeland watersheds. The WEPP represents
a new erosion prediction technology based on concepts of
stochastic weather generation, fundamental hydrology, soil
physics, plant science, hydraulics, and erosion mechanics
(Lane and Nearing, 1989).

The advantages of the WEPP watershed model over
empirical soil erosion models are that erosion and
hydrologic parameters can be directly calculated from soil
characteristics. In addition, the model has the ability to:

- Estimate the spatial and temporal distributions of soil
loss and sediment yield at any point on a hillslope
within a watershed.

» Be used to explore the internal operation of sediment
production systems as the model parameters are
physically based.

« Be applied beyond the range of conditions for which
they were validated (Stone et al., 1990).

The WEPP watershed model simulates all the major
processes affecting erosion and sediment yield
(i.e., rainfall, runoff, plant growth, tillage operations,
grazing effects). It is made up of three major components:
hillstope, channel, and impoundment. The hillslope
component calculates erosion and deposition on rill and
interrill flow areas. The channel component calculates
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erosion and deposition within concentrated flow areas
which can be represented as permanent channels or
ephemeral gullies. The impoundment component calculates
deposition of sediment within terrace impoundments and
stock tanks.

The WEPP simulates many watershed processes to
improve the accuracy of model predictions; however,
uncertainty exists in each of the model components. Under
field applications, the model complexity and the natural
variability of hydrologic parameters frequently induce
uncertainties due to errors in parameter estimation.
Sensitivity analysis is a common technique used to assess
model uncertainty in relation to errors in parameter
estimation.

Unfortunately, deterministic sensitivity analysis does
not represent an adequate approach to deal with model
uncertainty of complex, nonlinear models like WEPP
which are subjected to large variances in hydrologic
systems. Sensitivity analysis based on the Monte Carlo
method provides a criterion by which to judge uncertainties
in model predictions due to errors in parameter estimation
when the system variability is represented in probabilistic
terms (Zimmerman et al., 1990).

During the process of model development the sensitivity
of the WEPP hillslope component was analyzed by
Nearing et al. (1989) and Flanagan and Nearing (1991).
However, no efforts have been made to evaluate the
sensitivity of the entire watershed model that comprises
multiple hillslopes and channels. So, it is necessary to
identify the model uncertainty due to errors in parameter
estimation for watershed applications.

This article presents the results of a sensitivity analysis
of the WEPP watershed model for rangeland applications
in predicting hydrologic and soil erosion variables on
hillslopes.

SENSITIVITY OF COoMPLEX HYDROLOGIC MODELS
Sensitivity analysis ranks model parameters based on

their contribution to overall error in model predictions. It is

a measure of model uncertainty because it indicates the
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expected errors in model prediction due to errors in model
parameters. Because of the nature of the data and the
stochastic effects of random measurements in most
hydrologic applications, large variances in measurements
are the rule, and deterministic sensitivity analysis may be
less useful. Sensitivity analysis of time-varying and
nonlinear models is difficult because of the complex or
nonexistent analytical solutions of the model equations
(Whitehead and Young, 1979; Gardner et al., 1981).

Deterministic models use a single value for each
parameter to produce a single prediction. These models
ignore the effect of imprecise parameter estimation and the
system’s natural variability. For any assessment situation,
model parameters are best represented by a range (or
frequency distribution) of values. This range translates into
a range (or frequency distribution) of model predictions.
To explicitly account for uncertainty in parameter
estimation requires modeling approaches that are stochastic
(i.e., probabilistic) rather than deterministic (Hoffman and
Gardner, 1983).

Any real system contains natural variability, and,
therefore, system behavior is most realistically represented
as a frequency distribution of potential behavior. The
distribution of variables describing system behavior is a
result of the mathematical characteristics of the model and
the distributions of the model parameters. The purpose of a
stochastic sensitivity analysis is to assess the effect that a
parameter has on an output variable over the range of
parameter values that are likely to be exhibited (Gardner
and O’Neill, 1983).

Garen and Burges (1981) stated that the utility of the
output from watershed models can be greatly enhanced if it
is accompanied by measurements of its accuracy. This is
very important in model selection, decision-making,
engineering design, data collection, and model refinement.
However, trade-offs exist between model complexity and
accuracy of parameters and input data. As models become
more complex, data and parameter estimation requirements
usually become greater. Adding complexity to a model
may improve its ability to represent the behavior of a
natural system, but the added complexity may increase
uncertainty in model predictions. Eventually, adding
complexity to a model is likely to increase uncertainty in
model predictions to unacceptable levels (Kirchner, 1991).

Several uncertainty-error analysis techniques are
commonly used to verify error propagation in hydrologic
models such as first-order uncertainty analysis (Clifford,
1973) and the two-point estimate method (Rosenblueth,
1975). For complex nonlinear models that involve the use
of time-dependent driving variables, the Monte Carlo
simulation method gives the best responses in parameter
uncertainty analysis (Whitehead and Young, 1979;
Rubinstein, 1981: Scavia et al., 1981; Gardner, 1984;
Kirchner, 1991).

Beven and Jakeman (1988) discussed the advantages of
the Monte Carlo approach, in which a number of model
runs are made using random selections of parameter values
or initial boundary conditions. The Monte Carlo technique
is not limited by the degree of nonlinearity of the model or
by the degree of uncertainty or any assumptions about the
form of the distributions from which the random selections
are made. Any cross-correlations between the selected
random variables can be preserved. The main disadvantage
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of this approach is the expense for computation in complex
models since a large number of runs may be necessary
before convergence of the predictive uncertainty estimates
is achieved. The Monte Carlo method has been used to
check the accuracy of approximations of first-order
variance propagation in lake eutrophication (Scavia et al.,
1981), ecology (Gardner et al., 1981), stream water quality
(Burges and Lettenmaier, 1975), and watershed models
(Garen and Burges, 1981).

THE WEPP HiLLSLOPE COMPONENT
HYDROLOGY

In WEPP, the characteristics of runoff occurring on
hillslopes as a result of rainfall events provide the basic
information to model erosion by flowing water. During a
rainfall event, water infiltrates the soil through a process
regulated by soil characteristics. Infiltration is computed
using the Green and Ampt equation (Green and Ampt,
1911) as modified by Chu (1978) for unsteady rainfall
events, in which the soil surface can alternate between
unponded and ponded conditions.

The WEPP model updates the infiliration parameters on
a daily basis to account for temporal variations of soil
moisture content, surface crusting, and vegetation cover by
applying equations derived by Rawls et al. (1989). The
accuracy of the infiltration parameters is fundamental to
compute rainfall excess. During stages in which the rainfall
intensity exceeds the infiltration rate, the portion of rainfall
that does not infiltrate or becomes depression storage flows
down slope. This overland flow is routed using the
kinematic wave equations (Liggett and Woolhiser, 1967).

In general, the development of runoff calculations for
the WEPP model is constrained by its compatibility with
the erosion and deposition calculations. The erosion and
deposition equations are solved for steady-state conditions.
Therefore only the steady-state discharge, duration of
runoff, and flow shear stress are needed. Thus, the
hydrologic and hydraulic processes which affect erosion
and deposition within a watershed are represented at a level
of complexity compatible with those calculations which
represent the erosion and deposition processes.

HiLLSLOPE EROSION

The processes of detachment and deposition, shear
stress, flow in rills and on interrill areas, and sediment
transport capacity by flowing water, as described by Foster
and Meyer (1972), serve as a prototype for the WEPP
erosion prediction technology. The steady-state continuity
equation for sediment is:

dG _ D, + D, ¢y
dx
with:
D, = CKISG, (%} @
D,- CK (- rcr)(l - TQ} 3)
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where G is the sediment Ioad (F L1 T-1), x is the distance
along the slope (L), D, is delivery rate of sediment from
interrill areas (F L-2 T-1), D, is the rill detachment rate
(F L-2 T-1), C; is the interrill canopy cover parameter
(dimensionless), K; is interrill soil erodibility parameter
(F L4 T-1), 1 is the rainfall intensity (L T~1), S¢ is the
interrill slope adjustment factor (dimensionless), G, is the
effective ground cover on interrill erosion (dimensionless),
R, is the spacing of the rills (L), w is the rill width (L), C,
is rill cover parameter (dimensionless), K, is the rill soil
erodibility parameter (T L-1), 1 is the average shear stress
in the cross section (F L-2), 1., is the critical shear stress
required for detachment to occur (F L-2), and T, is the
transport capacity of the flow (F L-! T-1). (Note:
L represents length, T time, and F force for all variables).

Equation 2 describes delivery of soil particles detached
by raindrop impact from interrill areas and transported in
shallow flow to rills. Equation 3 describes the rate of soil
particle detachment in rill flow areas due to shear stress by
concentrated flow. Substituting from equations 2 and 3,
when the transport capacity is greater than the sediment
load, the sediment continuity equation is:

4G - cxr'sgG, (R ) +CK, (t- 'ccr)( ~ %) 4

s
dx W

in which the term (1 - G/T,) is considered a feedback term
for rill detachment that reflects the fact that soil
detachment rates in rills are a function of the sediment load
in the flow relative to the capacity of the flow to transport
sediment. When the sediment load of the flow is greater
than its transport capacity, net deposition is included in the
continuity equation as follows:

dG _ cx IS G, (Rs) + (B_V-f\ (T.-G) )
dx w q/

where B is a dimensionless deposition parameter equal to
0.5, V; is the effective particle fall velocity (LT-1,and q is
the flow discharge per unit width (L2 T~1). Four hydrologic
variables are required to drive the erosion model equations
previously described: peak runoff, effective runoff
duration, effective rainfall intensity, and effective rainfall
excess duration. The linkage between these hydrologic
variables and the erosion component was described by
Foster et al. (1989) and Flanagan (1990).

SENSITIVITY ANALYSIS
OVERVIEW OF APPROACH

A sensitivity analysis based on the Monte Carlo method
was performed to identify the relative importance of model
parameters and error propagation of the WEPP single
storm watershed model Version 91.2 when applied to
rangeland conditions. This analysis constitutes a major step
within the established procedures by the USDA-ARS to
evaluate its developmental computer models with the
purpose of identifying the sources of model uncertainty for
field applications.

The importance of model parameters was determined as
follows:

VoL, 36(61:1659-1672 — NOVEMBER-DECEMBER 1993

« Ten thousand model simulations with fixed rainfall
parameters and 1,200 model simulations using
observed rainfall events were performed by using the
single event simulation mode of the WEPP
watershed model.

= A multiple linear regression analysis was performed
using the model inputs generated by the Monte Carlo
method and model outputs.

+ Model parameter uncertainty was assessed from the
regression coefficients of the multiple linear
equation. The major statistical assumptions
considered for this analysis were:

- Parameter sensitivity indices and the
propagation of error can be approximated by
the B of a normalized multiple linear equation
containing the model parameters.

The model parameters included in a linear
relationship are uncorrelated and can be
generated randomly from appropriate
probability distributions.

The linear model is able to assess unbiased
estimates of sensitivity indices of model
parameters of a complex nonlinear model when
a large number of model simulations are
performed.

SCOPE OF THE ANALYSIS

The WEPP watershed model sensitivity for rangeland
applications was based on climate, soils, and vegetation
characteristics of Lucky Hills 103 (LH-103) watershed
located at the Walnut Gulch Experimental Watershed
operated by the USDA-ARS Southwest Watershed
Research Center, in Tombstone, Arizona (fig. 1a). This
watershed of 3.7 ha is assumed to be representative of
millions of hectares of brush and grass rangelands found
throughout the semiarid Southwest and is considered a
transition zone between the Chihuahuan and Sonoran
deserts (Simanton et al., 1985).

Rainfall is bimodally distributed, with average annual
rainfall about 300 mm. Nearly 99% of the annual runoff
occurs during the summer thunderstorm season of July to
mid-September. LH-103 has well-drained calcareous soils
with large percentages of rock and gravel on the surface.
The vegetation is predominantly brushland type with a very
low density of perennial grasses. The watershed
representation and the hillslope configuration for the lateral
areas, planes 2 and 3, of LH-103 utilized in WEPP for this
analysis are illustrated in figures 1b and lc, respectively. In
addition, the average hillslope steepness and initial random
roughness used in the simulations were taken as 11.3% and
0.25 m, respectively.

PARAMETER EQUATIONS

Probability distributions of model inputs represented by
the model parameters and variables listed in table 1 were
determined using the sample statistics of the watershed
characteristics shown in table 2. These model inputs were
utilized to determine the overall model error by varying
them randomly and independently based on probability
distributions according to the Monte Carlo method as
illustrated in figure 2. Model predictors (dependent
variables) that served as indicators of model sensitivity to
random changes in model inputs included hydrologic
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Figure 1-Geographic location, representation in WEPP, and hillslope
configuration of lateral areas (2 and 3) of LH-103.

variables (runoff volume and peak runoff) and soil erosion
variables (sediment detachment and sediment delivery).

The use of regression models to estimate probability
distributions is justified since a few samples of K;, K, T,
K, model parameters were available to estimate reliable
distributions. The distributions of these model parameters
were estimated by inputting random variates of the
watershed characteristics into regression equations.
Regression equations of erosion parameters for rangeland
conditions were developed by Alberts et al. (1989) based
on readily available soil characteristics. The interrill
erodibility parameter is estimated as:

Table 1. Model parameters and input variables used for sensitivity analysis

Cuategory Description Units

Rainfall Depth (R) (mm)
Duration (D) (min)
Time to peak — storm duration ratio ty —
Maximum intensity — average intensity ratiot, ~ —

Soil Interrill erosion parameter (K;) (kg om*
Rill erosion parameter (K,) (s/m)
Critical shear stress parameter (7)) (Pa)
Saturated hydraulic conductivity parameter (K} (mm/h)
Sand (Sa) (%)
Silt(Si) (%)
Clay (CH (%)
Organic matter (Om) (%)
Cuation exchange capacity (CEC) (meq)
Bulk density (BD) (g/em)
Rocks fragments (%)
Rock-gravel surface cover (%)
Initial saturation (Sat) (mm/mm)

Vegetation  Litter biomass kg/ml
Standing btomass kg/m:
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Table 2. Characteristics of soil and vegetation at Lucky Hills 103,
Walnut Gulch Experimental Watershed near Tombstone, AZ

Sd.  C.V.

Characteristic Units Mean Dev. (%)

Soil Sand (%) 55.12  5.059 9.1
Silt (%) 23.90  5.807 146

Clay (%) 21.00 2928 139

Organic matter (%) 132 0526 397

Bulk density (gem) 139 0191 136

CEC (meq) 34.90 5500 157

Rock fragments (%) 15.59 1.25 8.0

Rock-gravel cover (%) 10.75 1.34 12.5

Initial saturation (mm/mm) 0.53 0.150 283

Vegetation  Litter biomass (kg/m®)  0.0067 0.0164 244.0
Standing biomass ~ (kg/m?)  0.2276 0.3276 118.0

K, = (1709 — 1765 Sa - 645 Si

4557 Om - 9026, )10° ©6)

with R? as 0.94 and SE as 70.00

where
Sa  =sand content (0 1)
Si =silt (0-1)

Om = organic matter in soil (0~ 1)

6¢, = volumetric water content of the soil at
0.033 MPa (m3/m?3)

R2? = coefficient of determination

SE = standard error of estimate

The units of K; and other model parameters are listed in
table 1.
The rill erodibility parameter is calculated as:

1. ESTIMATE DISTRIBUTIONS OF VALUES
FOR PARAMETERS x, y, AND z

1) /\ i) /\ @ [—ﬂ——‘
X y ’ z

\\ 1 -

2. INPUT DISTRIBUTIONS INTO MODEL

T s

| SOIL LOSSES = g{xy.2) |

3. PRODUCE DISTRIBUTIONS OF MODEL PREDICTIONS

HSOIL LOSS)

VALUES OF SOIL LOSSES e

Figure 2-The concept of parameter uncertainty analysis based on the
Monte Carlo method.
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K, = 0.0017 + 0.0024 CI

~0.0088 Om — o.oooss(it) ~0.00048 R, (7)
1000

with R2 = 0.60 and SE = 0.00028

where Cl is the clay content (0 — 1), py, is the soil bulk
density (kg/m?), and R; is the total root biomass (kg/m?).
The critical shear stress erodibility parameter is calculated
as:

T_=3.23-56Sa-2440M + 0.9(_pb_) ®)
1000

with R?2 =0.62 and SE = 0.79

A frequency distribution for the baseline saturated
hydraulic conductivity was obtained by applying equation
9 as proposed by Rawls et al. (1989):

3
K, =00002C* e (0’001 pb) ©)
(1.0-np\ 8

r

where K is the saturated hydraulic conductivity of the soil
(m/s), m is the soil porosity, 1, is the effective soil porosity
after correcting m) for entrapped air at soil saturation, and 6,
is the residual volumetric water content (m/m). The
parameter C is predicted from:

C=-0.17 + 18.1 Cl - 69.08a’ CI>~ 41.0Sa’ Si*

+1.18 Sa’ (_pL)z+ 6.9 CI (_‘i)z
1000 1000

+49.0Sa° Cl - 85.0 SiCl’ (10)

where all variables were previously defined. Factors that
play a significant role in soil-water infiltration such as soil
crusting, coarse fragments, frozen soil, macroporosity, and
soil cover are used to adjust the baseline saturated
hydraulic conductivity to an effective saturated hydraulic
conductivity, K..

SENSITIVITY INDEX

Traditional sensitivity indices based on parameter
variation around baseline values allow the determination of
model response to one parameter at a time. For complex
models such as WEPP in which there are interactions
among parameters, it is necessary to perform a global
sensitivity analysis to quantify the effects of each
parameter on overall model uncertainty.

Regression methods show that the slope, by, of the
regression of Y, the model prediction of interest, on a
particular parameter x;, is the least-squares estimate of the
classic sensitivity index (Tomovic, 1963). If several
parameters are simultaneously and independently varied,
then the multiple regression of Y (runoff volume, sediment
yield, etc) on all x (the selected model inputs), is:

Y = Dby + DX, +byXy + .+ 4D X

(an
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where b represents regression coefficients. Normalized
sensitivity indices (standardized coefficients), can be
obtained for each variable in equation 11 by subtracting its
mean and dividing by its estimated standard deviation. The
normalized regression model is as follows:

m_ B 57 Km g X T Xom
Sy Sx} Sx2

(12)

The standardized coefficients bear a close relationship to
the estimated coefficients of the original unnormalized
multiple regression model. It is not difficult to show that:

iz

X

Bj= bj (13)

kg

Y

where Bj is the normalized sensitivity index of parameter
X, j=1.2,1. ..n The standardized coefficient, B, adjusts
the estimated slope parameter, b, by the ratio of the
standard deviation of the model parameter (independent
variable) to the standard deviation of the model output
(dependent variable). A normalized sensitivity index of 0.7
means that one standard deviation change in the model
parameter will lead to a 0.7 standard deviation change in
the model prediction (Pindyck and Runbinfeld, 1991).

Because the proposed multiple linear regression model
requires the variables to be independent for proper
sensitivity coefficients, the Chezy-C and matric potential
(N,) parameters were not included in this sensitivity
analysis since they are derived from parameters previously
calculated by the model. Sensitivity coefficients for the
effects of hillslope length and steepness are not presented
herein. An analysis for the effects of shape, length, and
steepness of the hillslopes on hydrologic and soil erosion
variables computed by WEPP when applied to rangelands
was presented by Parker (1991).

The selection and ranking of model parameters based on
model sensitivity were obtained by performing a stepwise
regression analysis of variable selection at the p < 0.1 level
of statistical significance. Model sensitivities for the single
storm mode of WEPP were obtained for variable rainfall
conditions using the observed rainfall events, and for fixed
rainfall conditions in which the rainfall properties were
maintained constant during 10,000 simulations.

RESULTS
MODEL INPUTS

Model input random variates were generated by the
WEPP watershed model modified for sensitivity analysis
purposes. Statistics of the random variates as well as the
best distribution fitted after 10,000 simulations are shown
in table 3. Relative frequency distributions of rainfall
events at LH-103 are shown in figure 3. Rainfall depth,
rainfall duration, ratio of the time to peak over storm

1663




Table 3. Statistics and fitted distribution for the random variates of model inputs

Statistics
Parameter or Variable Units D.T.* Mean S.D.+ Range of Test (min - max)
Rainfall
Depth (mm) L 14.64 8.56 5.080 - 56.90
Duration (h) L 3.24 3.16 0.167 - 22.20
t — L 0.32 0.27 0.003 - 0.97
ip — L 9.37 8.32 1.175 - 58.73
Soil
Interrill erosion (K,) (kg &‘m4) N 285,368.0 98,892.0 90,341.0 - 5024910
Rill erosion (K,) (s/m) N 0.0008 0.0002 0.00003 0.00178
Critical shear stress {t.;) (Pa) N 1.084 0.34 0.330 - 1.820
Sat. hydraulic cond. (K (mnvh)y L 4311 4.87 0.301 - 34.441
Sand (%) N 55.12 5.06 37.510 - 85.240
Silt (%) N 23.90 5.80 0.000 - 47.180
Clay (%) N 21.00 2.93 10.000 - 31.350
Organic matter (%) N 1.32 0.52 0.440 - 2.170
CEC (meq) N 35.00 5.50 11.700 - 59.270
Bulk density (g/em’) N 1.39 0.19 1.060 1.680
Rock fragments (%) N 15.56 1.20 10.500 - 20.160
Initial saturation (mny'mm) L 0.55 0.15 0.200 - 0.950
Rock & gravel cover (%) L 10.75 1.20 6.440 - 15.210
Vegetation
Litter biomass (kg/mz) L 0.0067 0.016 0.0003 - 0.024
Standing biomass (kg/mz) L 0.2276 0.327 0.0381 0.300

*  Distribution type: N = normal, L = log-normal.
7 Standard deviation.

duration (tp), and the ratio of the maximum intensity over
the average storm intensity (i,) are the four rainfall
characteristics required for the Wé)PP model. These rainfall
characteristics fitted the log-normal distribution.

When the Monte Carlo method was applied the high
variability of the soil characteristics and inaccuracy of the
regression equations to calculate model parameters
(Alberts et al., 1989) produced unrealistic random variates.
To avoid this problem, parameter values were selected for
the 90% interval of the distribution by rejecting values in
the 5% tail areas. Because random variates of soil
characteristics were generated assuming a normal
distribution, the hillslope soil erosion parameters computed
by equations 6, 7, and 8 using these characteristics are also
normally distributed.

Infiltration of the soil matrix is described in the model
by two major linked parameters from the Green-Ampt
equation: the saturated hydraulic conductivity (K) and the
average matric potential (Ng). The saturated hydraulic
conductivity was adjusted to the effective hydraulic
conductivity. K. by correcting the initial K value for soil
macroporosity and surface cover factors. The best fit of
these infiltration parameters (K, K., and Ny) and the initial
soil water content variable was obtained using the log-
normal distribution (fig. 4).

VODEL SENSITIVITY TO HYDROLOGIC YARIABLES ON
HILLSLOPE AREAS

Model variables which control the hillslope erosion
process are rainfall characteristics, runoff volume, and
peak discharge. In this section we quantify the significance
of these variables to the erosion computations considering;
a) variable rainfall and b) fixed rainfall conditions.

Variable Rainfall. This analysis evaluated the effects
of parameters that define a storm event on runoff volume
and peak runoff predictions. Observed rainfall data were
used tor the analysis. Figures 5a and 5S¢ show the
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magnitude of the events in relative frequency distributions
for the simulated runoff volume and peak runcoff. Both
variables resembled the relative frequency distribution of
rainfall (fig. 3). Large rainfall events produced large runoff
amounts and high runoff peaks. Table 4 lists the
normalized sensitivity indices of predicted runoff volume
and peak runoff for the selected variables at p < 0.1
significance level.

Because the indices were obtained by regression
procedures, a positive index means that an increase in the
input variable increases the predicted model variable in
proportion to the sensitivity index, and a negative index
means that an increase in the input variable decreases the
model prediction in proportion to the index.

Rainfall depth and duration, K, saturation, standing
biomass, and litter had the greatest.effects on runoff
volume and peak runoff calculations. Rainfall depth had
the strongest effect on runoff volume and peak runoff
prediction. For every standard deviation error on the input
rainfall depth, there is a corresponding error of 1.061 and
1.029 standard deviations in the predicted runoff volume
and peak runoff, respectively.

Rainfall duration appeared with a negative sign,
meaning that the longer the duration the less the runoff
volume and lower the peak runoff. However, such an effect
may have been related to the climatic conditions at Lucky
Hills 103, since observed rainfall was utilized. Previous
studies at this location have shown that most runoff is
caused by short-duration, high-intensity storm events,
whereas runoff volume from long duration events is
significantly reduced by infiltration. Saturated hydraulic
conductivity, standing biomass, litter, and bulk density had
negative effects on both runoff volume and peak runoff,
indicating that any increase in these variables reduces the
predicted runoff volume and peak runott on hillslopes.

Fixed Rainfall. To quantify the effects of hillslope
characteristics on model sensitivity in high intensity—short

TRANSACTIONS OF THE ASAE




0.25F
0.20F
0.15}

0.10f

Relative Frequency

0.05+

0.0F

(a)

Relative Frequency

0.0}

Time to peak / total duration (tp)

(e)

0.30F T T
> b
2 [
o 024 ]
@ y
o r 1
L o018 .
LL. <
03]
Z 012 1
«© [ ]
& 0.06 ]
|
O-O V"H ] i "
0 5 10 15 20 25 30
Storm Duration (hr)
(b)
0.30f
> 0.25F
2
o 0.20f
8_ .
® 0.15}
L E
o 0.10r
=
T 0.05f
m b
T 0.0}

Max. intensity / avg. intensity (ip)

(d)

Figure 3-Relative frequency distributions of rainfall characteristics at Lucky Hills 103, Walnut Gulch Experimental Watershed near

Tombstone, AZ.

duration storms, rainfall parameters were fixed at 50-mm
depth, 1-h duration, with t = 0.5, and 1, = to 1.37 for about
10,000 model simulations. Hillslope parameters and
variables were varied randomly and independently from
one model simulation to another according to random
variate generation. Each simulation thus represents a
unique scenario (a combination of parameters) of the site
characteristics. The relative high fixed-rainfall depth was
chosen to ensure that all WEPP model internal components
would be activated during the fixed rainfall simulations.
Figures 5b and 5d show the relative frequency
distributions of simulated runoff volume and peak for the
fixed rainfall simulations. Except for a few scenarios, most
simulations produced high runoff volumes and peaks
compared to the varying rainfall simulations. The relative
distribution of both the runoff volume and peaks are almost
a mirror image of the variable rainfall runoff volume and
peak relative distributions. There was a shift from the right
skewed relative distribution under varying rainfall to the
left skewed relative distributions under fixed rainfall.
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Figures 5a through 5d represent relative distributions of
extreme cases of rainfall input. If intermediate rainfall
depths (i.e., 10 to 50 mm) were used, there would probably
be a progression from right to left of the skew of the
relative distribution curves; with a normal distribution
being found somewhere within the range of depths used.
Table 5 shows the model sensitivity to predict volume
and the peak runoff with fixed rainfall characteristics. All
hillsiope variables selected by the stepwise regression
procedure for the variable rainfall analysis were also
selected when using fixed rainfall. However, rock cover
appeared in the regression equation as a result of
eliminating the rainfall characteristics from the analysis.
When rainfall characteristics were excluded from the
regression equations the coefficient of determination
decreased considerably. Runoff volume and peak discharge
are very sensitive to saturated hydraulic conductivity. Only
68% of the total variation in runoff volume and peak runoff
could be explained by the variables included in the
regression model. The lower R2 indicates that the Bs of the
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Figure 4-Frequency distributions of infiltration parameters at Lucky Hills 103, Walnut Guich near Tombstone, AZ.

linear relationship are no longer accurate indicators of the
classical sensitivity values, although they are unbiased
predictors of the response function to larger uncertainties in
the parameters (Gardner, 1984). However, the low R2 is a
good indication that precipitation parameters are the most
important input variables for the model. This result
supports the findings of Osborn and Lane (1982), who
pointed out that rainfall characteristics are fundamental
inputs on watershed computer models to simulate runoff
characteristics.

MODEL SENSITIVITY TO EROSION VARIABLES ON
HILLSLOPE AREAS

The model sensitivity to soil erosion variables was
evaluated for average total sediment detachment and
delivery from hillslopes. Sediment detachment results
include both rill and interrill detachment processes. The
sediment delivery variable comprises the net effect of
detachment and deposition processes occurring on a
hillsiope.

Variable Rainfall. Figures 6a and 6¢ show the relative
frequency histograms and the fitted distribution for
simulated sediment detachment and delivery with varied
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rainfall characteristics. Table 6 shows the model sensitivity
indices for both variables. Hillslope sediment detachment
predictions are sensitive to changes in rainfall
characteristics (depth, duration, and ip), but are not
sensitive to t, at p < 0.1 significance level. Increases in
rainfall depth and I, ratio resulted in increases in sediment
detachment. Reduction in sediment detachment was
predicted for larger storm durations. Again, it is important
to remember that the more erosive storms in the
southwestern United States are high-intensity, short-
duration events.

Sediment detachment predictions are more sensitive to
the critical shear stress parameter, T, than the interrill, X,
and rill erodibility, K, parameters. This can be explained
by observing that T, is a threshold value that has to be
overcome before rill erosion occurs. When 1., is larger, as
on rangelands with highly consolidated soils, 1, represents
a major parameter that controls rill erosion calculations in
the model (eq. 3).

Other model sensitivities to sediment detachment
predictions are shown for K, litter, biomass, and initial
soil water saturation. This set of model inputs drives the
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Figure 5-Relative frequency distributions of predicted runoff volume and peak runoff for variable rainfall and fixed rainfall characteristics.

Table 4. Sensitivity of hydrologic variables for storm-based WEPP
simulation with variable rainfall characteristics

Parameter i‘;"é“m‘g’f Parameter Sg‘f‘slg‘;‘;]‘(‘y Table 5. Sensitivity of hydrologic variables for stm.'m.-bised WEPP
or Volume or Runoff simulation with fixed rainfall characteristics

Variable () F*¥  Variable (3] F Sensitivity Sensitivity
Deptht 1.061 6862 Depth 1.029 3774 Parameter of Runoff Parameter of Peak
Duration} -0297 462  Duration -0.444 606 or Volume ~  or Runoff

K, 0255 483 K, 0244 957 Variable (B F+*t  Variable 3] F

i 0.133 108 i 0.217 168 K, -0.750 6687 K, -0.716 6187
Satration 0.123 118 Sawration 0.109 54 Saturation 0.239 680  Biomass -0.310 1151
5 0.053 21 Biomass -0.094 40 Biomass ~0.150 265  Sawration 0.207 518
Litter ~-0.043 15 4 0.080 28 Clay 0.090 96  Litter 0.102 127
Clay 0.037 10 Litter ~0.041 8 Litter -0.085 86  Clay 0.083 83
Biomass -0.035 9 Clay 0.036 6 Bulk Density —0.068 55 Bulk Density  -0.055 39
Bulk Density ~0.029 6 Bulk Density  —0.027 3 Rock Cover -0.016 3 Rock Cover -0.014 7
r-square 0.902 0.832 r-square 0.650 0.681

Tot, Var.§ 14 14 Tot. Var.§ 9 9

*  Fstatistic. *  Rainfall: 50 mm, 1 h, = 0.50, ip = 1.37. -
T p<0.1 significance level for staying in the model. T Fstatistic.

* Rainfall. ) ) i p<0.1 significance level for staying in the model.

§ Variables included in the stepwise regression procedure. § Variables included in the stepwise regression procedure.
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Figure 6—Relative frequency distributions of predicted soil erosion variables for variable rainfall and fixed rainfall characteristics.

processes of infiltration. Any decrease in K or increase in
soil water content increases the potential for soil particles
detachment by flowing water. Any increase in litter and
biomass protects the soil particles from detachment.

Fixed Rainfall. Model sensitivity to sediment
detachment and delivery was evaluated for the effects of a
large rainfall event because most of the soil erosion is
caused by large events. Figures 6b and 6d show the relative
frequency histograms and fitted distributions for both
sediment detachment and sediment delivery that resulted
from 10,000 model simulations using the same fixed
rainfall values used in the hydrology sensitivity analysis.
Both output variables followed a log-normal distribution
that is represented by the solid line of theoretical fit.
Table 7 presents the sensitivity indices for the two erosion
variables with constant rainfall characteristics.

When rainfall characteristics were fixed, both sediment
detachment and delivery were more sensitive to changes in
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Table 6. Sensitivity of soil erosion variables for storm-based WEPP
simulation with variable rainfall characteristics

Sensitivity Sensitivity

Parameter of Runoff Parameter of Peak
or Volume or Runoff
Variable B F*t Variable (b) F
Depthz 0.841 1188 Depth 0911 1539
Durationi -0.352 179 Duration -0.382 235
Ter -0.229 110 K ~0.194 85
i 0.136 31 iy 0.157 46
K, -0.144 41 Ter -0.148 52
Litter -0.141 42 Litter —0.111 29
Biomass -0.106 23 Biomass —0.099 23

i 0.068 9 Saturation 0.066 10
K, 0.062 8 t 0.055 7
Saturation 0.043 3 K; 0.049 5

K, 0.036 3

r-square 0.636 0.681
Tot. Var.§ 17 17
*  Fstatistic. -
T p<0.1 significance level for staying in the model.
i Rainfall.
§ Variables included in the stepwise regression procedure.
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Table 7. Sensitivity of soil erosion variables for storm-based WEPP
simulation with fixed rainfall characteristics*

Sensitivity Sensitivity

Parameter of Runoff Parameter of Peak
or Volume or Runoff
Variable B Fy Variable [€3)) F
Litter -0.547 7804 Litter -0.564 9856
Ter -0.483 6070 Ter -0.466 64381

; 0.415 4481 ; 0.412 5085
Biomass ~0.327 2778 Biomass -0.332 3297
K, 0.173 782 K, 0.171 876
K, -0.096 241 K -0.126 473
Rock Cover -0.087 198 Rock Cover -0.085 220
Saturation 0.030 23 Saturation 0.037 4?2

Clay 0.011 4

r-square 0.887 0.870
Tot. Var.§ 12 12

* Rainfall: 50 mm, 1 h, 1, =0.50, iy = 1.37.

F statistic.

p < 0.1 significance level for staying in the model.
Variables included in the stepwise regression procedure.

27 E 0N

soil erodibility parameters. The critical shear stress
parameter had the highest sensitivity index, followed by
interrill erosion. Both types of output variables are
intensified by any increase in soil water saturation.

Under large rainfall events WEPP is quite sensitive to
litter and biomass because they affect both runoff and
erosion calculations significantly. Litter is the most
important variable affecting sediment detachment and
delivery predictions. For the case of sediment delivery, for
every standard deviation increase in litter, there is a
decrease of 0.564 standard deviations in predicted sediment
delivery.

VALIDITY OF THE APPROACH

The validity of this approach to assess model parameter
uncertainty was analyzed by reviewing the:

= Adequacy of the sensitivity indices.

» Assumption of parameter independence.

= Validity of the regression model to evaluate a

nonlinear model.

- Number of model simulations necessary to reach

convergence.

Adequacy of the Sensitivity Index. The justification
for using the B of a linear model for sensitivity indices is
based on regression analysis. Regression methods show
that slope, b;, of the regression of Y, the model prediction
of interest, on a particular parameter x;, is the least-squares
estimate of the classic sensitivity index (Tomovic, 1963). If
several parameters are varied simultaneously, the
sensitivity of the dependent variable Y to variations in the
independent variables, x;, is approximated by dY/dx; = b;,
the partial derivative of the equation with respect to each
independent variable, x;. Because the linear model
comprises thousands of model simulations, 3 represents an
averaged sensitivity for the explored range of parameter
values (independent variables on the regression equation).

Parameter Independence. The parameters included in
the multiple linear equations to obtain § were considered
independent. Tables 8 and 9 present the correlation
coefficients for the rainfall and soil parameters,
respectively. Highly correlated parameters were not
included in the same regression model. Because sand, silt
and clay are highly correlated, only clay was used. Major
concerns on parameter dependence involved the inclusion
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Table 8. Correlation matrix of variable rainfall
parameters for LH-103

Depth Duration ip t
Depth 1.00 0.380 -0.127 0.093
Duration 1.00 0.015 0.438
i 1.00 -0.138
[N 1.00

Table 9. Correlation matrix of soil parameters for LH-103

Rock

Organic Frag- Buik

Matter  CEC  ments  Sand Silt Clay  Density
Organic Matter 1.0 0.881 -0.074 -0.021 -0.018 0.110 -0.158
CEC 1.0 -0.231 -0.165 0236 0.148  0.373
Rock Fragments 1.0 -0.102 -0.025 0241 0918
Sand 1.0 -0.942 -0933 0.171
Silt 1.0 0.805 -0.293
Clay 1.0 -0.042
Bulk Density 1.0

of rainfall depth and duration, and rainfall duration and t..
The rest of the correlations were considered insignificant.

Validity of the Regression Model. The validity in
using a linear regression model to assess the uncertainties
in model parameters of a nonlinear model was checked by
analysis of residuals. Normal probability and residual plots
of runoff volume and sediment delivery are presented in
figure 7. Nonnormality is evident and the variance of
sediment delivery tends to increase for larger sediment
delivery predictions. Nevertheless, this approach is able to
identify unbiased estimates of parameter sensitivity which
are useful during model development and data collection
(Gardner, 1984). Further research is needed to determine
the higher-order effects for nonlinear cases.

Number of Simulations. Figure 8 illustrates the
changes in parameter sensitivity for different numbers of
model simulations using variable rainfall. Using the set of
simulations for the parameter sensitivity under variable
rainfall, §§ stabilized at approximately 400 simulations.
This indicates that the number of simulations performed for
this analysis was satisfactory.

CONCLUSIONS

This analysis is a first attempt to identify the WEPP
watershed model uncertainties by applying the Monte
Carlo method for sensitivity analysis using information of a
typical Southwestern semi-arid rangeland watershed.
Uncertainty in the hydrologic and soil erosion predictions
due to errors in model parameter estimation is identified.

The results indicate that runoff volume and peak runoff
predictions from hillslopes are very sensitive to rainfall
characteristics (depth, duration, and 1,), and the parameters
and variables that regulate infiltration (saturated hydraulic
conductivity, initial soil water content, and standing
biomass). The importance of rainfall characteristics on
runoff predictions was confirmed by a reduction in the
coefficients of determination of multiple linear regressions
equations (0.90 to 0.69) when rainfall characteristics of
storm events were fixed at 50 mm/h. Under fixed rainfall
conditions the saturated hydraulic conductivity is the most
important parameter in predicting runoff volume and peak
runoff. -
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Figure 7-Residual analysis plots for runoff and sediment delivery for variable rainfall.

Erosion predictions from hillsiopes are highly sensitive
to rainfall characteristics (depth, duration, and i, ratio).
Infiltration and soil cover parameters significantly affect
sediment detachment and sediment delivery from
hillslopes. Sediment detachment and sediment delivery are
more sensitive to the critical shear stress parameter, T,
than to the interrill, K;, and rill, K, erosion parameters for
both variable and fixed rainfall conditions. However, under
fixed rainfall conditions both sediment detachment and
sediment delivery predictions are more sensitive to the
interrill erosion parameter, K;, than to the rill erosion
parameter, K. This supports the findings of Nearing et al.
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(1990), who mentioned that for places where no-till
management factors are involved, as on rangelands,
interrill erodibility is the dominant soil erosion factor.

The results presented herein show that because of the
low coefficients of determination caused by the large
variations of parameters, the sensitivity indices cannot be
generalized. However, B is useful for this stage of model
development when parameter uncertainties are still being
determined. These sensitivity indices not only represent a
warning signal of parameter uncertainty during this stage
of model development, but they also provide guidance in
data collection of model inputs. Ranking model parameters
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according to model sensitivity helps the model user in
deciding which parameters should be measured in the
watershed and which parameters can be obtained from the
relevant literature.

Finally, three major tasks are needed for a more
extensive use of this methodology. First, it is necessary to
incorporate nonlinear effects and interactions between
parameters into the sensitivity indices. Second, because
this sensitivity analysis included the characteristics of only
one watershed the results cannot be generalized for
multiple geographic locations or different land use
conditions. If this approach is used, it should be realized
that baseline conditions for a wider range of soils,
topography, vegetation, and climate of rangeland
watersheds are required. Third, although this study used
version 91.5 of the WEPP watershed model, not the final
version of the model, it is expected that the most sensitive
parameters already identified will continue to be the most
sensitive for future versions of the model when applied to
rangeland watersheds. Only the magnitude of error in
model predictions is expected to change.
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