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Abstract. A variety of aircraft remotely sensed and conventional ground-based
measurements of volumetric soil water content (SW) were made over two
subwatersheds (4.4 and 631 ha) of the U.S. Department of Agriculture’s Agricultural
Research Service Walnut Gulch experimental watershed during the 1990 monsoon
season. Spatially distributed soil water contents estimated remotely from the NASA
push broom microwave radiometer (PBMR), an Institute of Radioengineering and
Electronics (IRE) multifrequency radiometer, and three ground-based point methods
were used to define prestorm initial SW for a distributed rainfall-runof model
(KINEROS; Woolhiser et al., 1990) at a small catchment scale (4.4 ha). At a medium
catchment scale (631 ha or 6.31 km?) spatially distributed PBMR SW data were
aggregated via stream order reduction. The impacts of the various spatial averages of
SW on runoff simulations are discussed and are compared to runoff simulations using
SW estimates derived from a simple daily water balance model. It was found that at
the small catchment scale the SW data obtained from any of the measurement methods
could be used to obtain reasonable runoff predictions. At the medium catchment scale,
a basin-wide remotely sensed average of initial water content was sufficient for runoff

simulations. This has important implications for the possible use of satellite-based
microwave soil moisture data to define prestorm SW because the low spatial
resclutions of such sensors may not seriously impact runoff simulations under the
conditions examined. However, at both the small and medium basin scale, adequate
resources must be devoted to proper definition of the input rainfall to achieve

reasonable runoff simulations.

1. Introduction

Passive microwave soil moisture research has focused on
the basic questions involved in the data interpretation algo-
rithm [Jackson and Schmugge, 1989]. There have been a
number of efforts to develop water balance models that
utilize these surface observations [Jackson, 1986; Prevor et
al., 1984]; however, these have only considered a single
profile and have not considered surface runoff dynamics.

Engman and Gurney [1991] recently summarized some
common viewpoints concerning remotely sensed soil mois-
ture observations and hydrologic modeling. The general
conclusion was that in order to fully utilize the information
that frequent spatially distributed soil moisture observations
might provide, we must reevaluate the hydrologic models
themselves. The soil component of many existing models is
constructed in such a way to make the model work even
though soil moisture has never been available as an input
variable. This element of the hydrologic cycle has thus
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become somewhat of a fitting parameter. As Engman and
Gurney [1991] noted, actual observations of soil meisture
may offer no improvement in runoff estimation because
these models do not properly incorporate this variable. This
was observed by Jackson er al. [1981] in a study involving a
continuous runoff simulation model. In that study they
examined how repetitive surface soil moisture observations
could be used to calibrate and update a model. Errors
resulting from inadequately defined spatial precipitation data
could be corrected with surface soil moisture observations.

A study conducted by Engman et al. [1989] examined the
impact of repetitive, spatially distributed remotely sensed
soil moisture data on hydrologic modeling. Using a passive
microwave data set collected in Kansas during the First
International Satellite Land Surface Climatology Project
Field Experiment (FIFE), the authors developed two-
dimensional surface moisture maps. After a review of vari-
ous modeling techniques, they selected a slab model devel-
oped by Sloan and Moore [1984). They found that the
observed soil moisture data provided an important check on
model performance, feedback for the physical description of
model elements, and information on the areas of the water-
shed contributing to base flow.

The Monsoon *90 interdisciplinary field experiment [Kus-
fas et al.,, 1991; Kustas and Goodrich, this issue] was
conducted in the semiarid U.S. Department of Agriculture
(USDA) Agricultural Research Service (ARS) Walnut Gulch
experimental watershed in southeastern Arizona in wh
extensive rainfall and runoff data have been collected as part
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of a long-term research program [Renard, 1970]. The Mon-
scon '90 experiment provided a unique opportunity to utilize
remotely sensed data for runoff estimation in an environment
absent of base fiow and dominated by ephemeral runoff. This
contrasts with the study by Engman et al. [1989] in which the
model applied was primarily structured to estimate more
highly damped base flow watershed response.

The present study utilized a model (a research version of
KINEROS [Woolhiser et al., 1990]) which estimates Horto-
nian runoff on an event basis. The model is structured so that
ground and remotely sensed estimates of soil water content
can be directly utilized as input for the prestorm soil water
content conditions. The model, with a variety of conven-
tional ground-based as well as aircraft-based remotely
sensed estimates of initial soil water contents, was applied to
the brush-dominated [Kincaid et al., 1964, 1966; Daughiry et
al., 1991] Lucky Hills-104 (LH-104) subwatershed at the
small catchment scale (4.4 ha). At the medium scale of
subwatershed WG11 (631 haor 6.31 km?) the model was also
employed to estimate runoff using two-dimensional prestorm
soil water content estimates obtained from the push broom
microwave radiometer (PBMR) [Schmugge et al., this is-
sue]. The study was conducted with the following research
objectives: (1) at the small catchment scale (4.4 ha), assess
the utility of using a limited set of soil water content (SW)
estimates, obtained from a variety of conventional ground-
based and aircraft remote sensing methods, for distributed,
event-based, rainfall-runoff computations and assess the
sensitivity of the computations to the various SW estimates;
(2) at the medium catchment scale (631 ha), assess the
advantages of using distributed remotely sensed soil water
content for definition of prestorm initial SW conditions for
rainfall-runcff modeling; (3) at the medium catchment scale,
compare runoff estimates obtained using remote estimates of
SW to those obtained from a daily water balance model (a
component of CREAMS [Knisel, 1980]) applied at the re-
cording rain gages and interpolated across the catchment;
and (4) at the medium catchment scale, assess the impact of
aggregating spatially distributed remotely sensed estimates
of SW on rainfall-runoff modeling.

P

2. Background
2.1. The Rainfall-Runeff Medel (KINEROS)

The KINEROS user discretizes basin-contributing areas
into one-dimensional overland flow and channel elements
using topographic maps. Geometric, hydraulic, and soil
parameters are either measured or estimated for each of the
model elements. Because the model does not have an
interstorm component, an estimate of the prestorm initial
relative soil saturation (SI, denoting the fraction of pore
space occupied by water) is required. The infiltration com-
vonent of the model is based on the Smith and Parlange
[1978] simplification of the Richards equation which assumes
a semi-infinite, uniform soil for each model element. The
Smith-Parlange model is stated as

EFJ’B
fo=K, ~—ap— (1
Je js(é)[-B__D (1)
B=Gel§, — S ()

where
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f. infiltration capacity [L/]

Foinfiltrated water [L];

K, saturated hydraulic conductivity [L/T];
¢ effective net capillary drive [L];

SW  volumetric soil water content;
Smax  maximum relative fillable porosity, equal to SW ./
&
SI  initial relative soil saturation, equal to SW/e;
£ pOrosity

In this formulation the suction term of the infiltration com-
ponent is explicitly dependent upon the initial, prestorm
volumetric water content. Significant sensitivity of the
model runoff predictions to SI was demonstrated by Good-
rich [1990]. Runoff generated by infiltration excess is routed
interactively using kinematic wave equations on both over-
land flow and channel elements via a finite difference solu-
tion (see Woolhiser et al. [1990] for details). Interactive
routing implies that infiltration and runoff are computed at
each finite difference node considering rainfall, upstream
inflow, and current degree of soil saturation. Therefore,
unlike an excess routing scheme, infiltration can continue
after rainfall ceases given that upstream inflow exists.

2.2. Data Collection

2.2.1. Lucky Hills-104 (4.4 ha). During the Monsoon
'90 field campaign, volumetric soil water content, rainfall,
and runoff were intensively monitored on the semiarid,
brush-dominated LH-104 watershed from roughly July 23 to
August 15, 1990. As part of the investigation, the small-scale
spatial variability of rainfall in LH-104 was also monitored
using five recording rain gages and 50 nonrecording rain
gages [Faurés, 1990]. Runoff was measured at the outlet of
the watershed by a calibrated Smith supercritical flume
[Smith et al., 1981].

Prestorm SW was measured by three ground-based meth-
ods and two remotely sensed methods. The ground-based
methods were (1) gravimetric water content, converted to
SW using bulk density measurements [Schmugge et al., this
issuel; (2) time domain reflectometry (TDR) [Topp ef al.,
1980; Zegelin et al., 1989; Faurés, 1990];, and (3) porous
electrical resistance sensors (ERS) [Coleman and Hendrix,
1949; Amer et al., 1994]. The gravimetric data (-5 cm depth,
average of three repetitions, roughly 0.3 m apart) were
collected daily at approximately 9:30 A.M. adjacent to an
automated meteorological and flux (METFLUX) station
[Kusras and Goodrich, this issue] located approximately 190
m NNE of the centroid of watershed LH-104 (sece Figure 1).

The TDR data were collected daily at approximately 9
A.M. at five locations adjacent to the recording rain gages
within the LH-104 watershed separated by an average dis-
tance of 130 m (see Figure 1). An average value of these five
readings was used as a measure of prestorm SW. The probes
were 15 ¢m in length and were installed vertically from the
surface to provide integrated volumetric water content over
the top 15 cm of soil. In situ calibration was performed to
develop a relationship between the TDR readings and SW.

The ERS were monitored every 20 min throughout the
measurement period using a data logger located at the
automated METFLUX station. The recorded resistance
readings were converted to SW using laboratory calibration
curves determined from soils obtained from the field site,
along with in situ bulk density measurements [Bradford and
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Figure 1. Lucky Hills-104 and ground soil water content
measurement locations.

Grossman, 1982]. Three sensors were placed at a depth of
2.5 cm, roughly 0.5 m apart, and two at depth of 5 cm,
roughly 0.5 m apart, and the average value of all five sensors
was used to estimate prestorm SW. Economic and personnel
constraints precluded obtaining distributed coverage of
gravimetric and ERS measurements over the LH-104 water-
shed.

Remotely sensed estimates of SW were obtained from two
instruments flown in fixed-wing aircraft. For both instru-
ments the soil brightness temperature was measured, and
after instrument verification, the surface soil water content
was predicted using algorithms developed by USDA and the
Institute of Radioengineering and Electronics (IRE) of the
Academy of Sciences of the former USSR, The first instru-
ment was a multifrequency microwave radiometer system
(2.3, 21, and 27 cm wavelengths) provided by the IRE
[Jackson er al., 1992]. At the altitude flown (~150 m) this
instrument provided an estimate of SW over a circular region
approximately 105 m in diameter. Because the IRE radiom-
eter operates only in profile mode and the flight line went
through METFLUX station 1, the water content estimate
centered over this station, adjacent to LH-104, was used for
this study.

The second instrument was a push broom microwave
radiometer (PBMR, 21 ¢m wavelength) operated by NASA
[Jackson et al., 1992; Schmugge et al., this issue]. Multiple
flight lines were flown with this instrument to obtain spatially
distributed estimates of SW over the LH-104 watershed.
Thirty-four PBMR pixels were extracted from the overflight
data covering LH-104. Since the majority of the methods
used to measure SW were point-based measurements, the 34
PBMR pixels were averaged to obtain a single value of SW
for the LH-104 watershed. The effects of the spatial distri-
bution of initial soil water content on runoff were more fully
investigated within the larger WG11 watershed. The fre-
quency of remotely sensed measurements was dependent
upon aircraft availability; therefore temporal coverage dur-
ing the experiment was not as extensive as for the ground-
based methods, which were obtained at least daily, Table 1
contains the acquisition dates, times, and the average volu-
metric water content (SW) estimates for both the IRE (n =

Table 1. Remotely Sensed Volumetric Soil Water
Content and Acquisition Dates and Times for Lucky
Hills Watershed 104

IRE PEMR
Date DOY Time SW, % Time SW, %
July 31 212 1030 3.4
Aug. 1 713
Aug. 2 214 0830 13.7 0915 it.6
Aug. 3 215 0830 11.4 s e
Aug. 4 216 0830 14.0 0830 12.7
Aug. 5 217 0830 10.6 1000 7.4
Aug. 6 718
Aug. 7 219
Aug. 8% 220 s s 0900 6.8
Aug. 9 221 s s 0900 4.5

*Partial watershed coverage only.

1 pixel) and PBMR (n = 34 pixels) instruments (see section
3.1 for a discussion of the variability of the data).

Three rainfall events which caused runoff on LH-104 were
observed during the field campaign with nearly simultaneous
SW measurements. Table 2 contains the dates, starting
times, average total rainfall depths based on the five record-
ing rain gages (PPT), total observed runoff volume (V) and
observed peak runoff rate (g,). Because of the stochastic
nature of the storm arrival time, the infrequent gravimetric,
TDR, PBMR, and IRE soil water content measurements
must be adjusted to obtain values at the beginning of the
storm. Since the electrical resistance sensor measurements
were recorded every 20 min, the nearest point in time to
storm onset was used, and no drying time adjustments were
required. To perform the adjustment, daily TDR data at nine
rain gage locations were analyzed during periods of drying to
obtain an exponential decay function [Faurés, 1990]. The
procedure also accounted for any intervening rain between
measurement time and storm onset. However, very little
intervening rainfall occurred. For the August 1 storm, ap-
proximately 1 mm of intervening precipitation occurred,
resulting in adjustments to the initial SW ranging between
0.55 and 0.87%. Prior to the August 12 event, 2.3 mm of
intervening rainfall occurred between the last IRE measure-
ment and the storm, resulting in a 1.4% increase in SW. The
volumetric soil water content (SW) was converted to initial

Table 2. Lucky Hills~104 and WG11 Runoff Events
During the Monsoon "90 Campaign

PPT, V. Ops
Date DOY Time* mm mm mm/h

LH-104 Basin

Aug. 1 213 1515 12.1 0.04 0.34

Aug. 3 215 2040 13.3 3.5 17.5

Aug. 12 224 0155 51.6 15.4 46.5
WG11 Basin

Aug. 1 213 1456 46.5 8.6 17.8

Aug. 12 224 0200 30.4 (.42 0.72

*Earliest rain gage.
tIntegrated over the watershed.

-
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Figure 2.
discretized to 17 model elements.

relative soil saturation (SI) by dividing by a soil porosity of
0.394 (obtained from an average bulk density of 1.61, from 39
measurements in LH-104, and an assumed particle density of
2.65). The LH-104 basin average 51 values from each mea-
surement method were used for runoff model input. The time
step employed for all LH-104 runs was 0.5 min. Implications
for using these data in runoff modeling are presented in the
discussion and analysis section.

2.2.2. Subwatershed WGI11 (631 ha, 6.31 km?).
Subwatershed 11 (WG11) lies near the north central bound-
ary of the USDA ARS Walnut Gulch experimental water-
shed and spans a transition in vegetation type from a
semiarid shrub to grass. Ten recording rain gages are in or
near this watershed and were used in subsequent analysis
(see Figure 2). Runoff is measured at the watershed outlet
with a Walnut Gulch supercritical flume [Gwinn, 1964]. In
addition, two stock ponds are contained within this subwa-
tershed. The area draining into these stock ponds was
excluded from the analysis because the two runoff events
under consideration had little (under 4%, August 1, 1990) or
no (August 12, 1990) overflow volume from the ponds as
compared to total runoff volume at the outlet. Table 2 also
contains the start time of the rainfall {earliest of the ten rain
gages), areal-averaged rainfall, runoff volume, and peak flow
rate for these two WGI11 events.

Areal estimates of SW over WG11 using the PBMR were
obtained during the same flights used to obtain the LH-104
estimates for each of the dates and approximate times shown
in Table | where full watershed coverage was available. A
further analysis of these data is discussed in section 3.2.
Calibration and georegistration information for the PBMR
are described by Schmugge et al. [this issue]. With the data
in this form it is possible to overlay the watershed bound-
aries and extract the appropriate data. The WGI1 (631 ha)
catchment was subdivided into 256 overland flow plane and
channel model elements using 1:4800 orthophoto maps re-
sulting in a mean overland flow element size of 3.42 ha and
a mean first-order channel support area of 3.47 ha (Figure
2a). A geographic information system data layer consisting
of boundary coordinates for each of the rainfall-runoff mod-
eling element polygons was overlain onto the PBMR images.
For ecach element the number of PBMR pixels and the
average brightness temperature and soil water content as
well as standard deviation were extracted for each of the

GOODRICH ET AL.: RUNOFF SIMULATION USING REMOTELY SENSED DATA

O Recording Rain gage
(23 Pond Catchment

(a) Subwatershed WGI11, discretized to 256 model elements. (b) Subwatershed WGII,

PBMR overflights. Based on the analysis of Schmugge et al.
[this issue], the brightness temperatures (75) in WG11 were
transformed to volumetric soil water contents (SW, in per-
cent) via the following linear transformation:

SW = —-0.31(T3) + 91.8 (3)

This transformation was obtained from regression (B2 of
0.94, standard error of estimate of 1.6%) between the gravi-
metric measurements at METFLUX site 4 and associated
brightness temperatures of PBMR pixels in the vicinity of
the METFLUX site. The same procedure used in LH-104 to
adjust the SW to storm start times was employed in WG11
[Faureés, 1990]. The time-adjusted SW values were then
divided by the soil porosity as obtained from texture via
Rawls et al. [1982], to obtain Sl (equation (2)). The entire
upland portion of the WGI11 watersheds has soils with a
sandy loam texture (porosity, 0.45) and the channels are
primarily sand (porosity, 0.44).

3, Discussion and Analysis

3.1. Small Caichment Scale:
Lucky Hills-104 (4.4 ha)

Although a single spatial average of SI was used for
KINEROS model input at the small LH-104 watershed
scale, a brief discussion of the variability of SI across the
sampling methods is presented to emphasize the scale de-
pendence of each measurement method and enhance inter-
pretation of the runoff modeling results. All soil water
content estimation methods except the IRE resulted in
multiple measurements within LH-104. The range and aver-
age SIfrom all five methods for four prestorm data collection
periods (if available) are plotted in Figure 3. Note that drying
time adjustment of SI to the prestorm point in time where
event rainfall begins has not been performed in Figure 3 to
highlight the variability encountered across measurement
methods. For the four cases plotted, the maximum time
between the various measurements, or sampling window, is
roughly 2.5 hours. The variability illustrated in Figure 3 is
typically a function of sampling scale, spatial measurement
separation, and measurement error.

For example, the gravimetric and TDR measurements are
separated by approximately 0.3 m and 130 m, respectively,
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Figure 3.

whereas the spot diameter for all frequencies of the IRE is
approximately 105 m (area roughly equal to 8700 m?), and
the spot diameter, or footprint, of each PBMR beam at a
flight altitude of roughly 400 m is approximately 180 m.
However, due to the rapid data sampling rates of the PBMR,
the plane does not move a full 180 m before acquiring the
next set of data. Therefore a great deal of pixel overlap
exists. This is why 34 pixel samples are obtained in the
relatively small LH-104 watershed. This contributes to the
relatively small range of SI values for the PBMR data. In
addition, these large-scale, remotely sensed spot samples
integrate and average the SI over the small-scale heteroge-
neities caused by microtopography as well as textural and
vegetal variation.

In contrast to the large-scale measurements, the ground-
based methods {(gravimetric, ERS, and TDR) sample a very
small volume of soil (of the order of 100-300 ¢m?). If the IRE
instrument has a typical L band effective penetration depth
of 2.0 cm, the IRE footprint will effectively sample a volume
of soil roughly equal to 1.7 x 10% cm’. The ground-based
sampling methods are therefore much more likely to sample
very small scale SI variations.

These data were used to esfimate prestorm SI for input
into the KINEROS rainfall-runoff model to address the first
objective. Goodrich [1990] successfully calibrated and veri-
fied the KINERGS model on the Lucky Hills—104 (LH-104)
watershed using observed rainfall at two recording rain
gages and runoff data from 1973-1977 while assessing model
performance using the MNash-Sutcliffe forecast coefficient of
efficiency on runoff volume (E) and peak runoff rate (Ep)
for evaluation criteria [Nash and Sutcliffe, 1970]. The coef-
ficient of efficiency was selected because it is dimensionless
and is easily interpreted. If the model predicts observed
Tunoff volume or peak runoff rate with perfection, £y or £
would, respectively, equal 1. If £ < 0, the model’s predic-
tive power is worse than simply using the average of
observed values, The efficiency statistics reported by Goo-
drich {1990] for 16 independent verification events from the
1973-1977 time period on LH-104 were £ = 0.99 and £ =
0.96. -

The same calibrated input files describing the watershed

Average and range of SI by method for four data collection windows in LH-104.

geometry, soils, and hydraulic roughness were used in this
investigation. However, it should be noted that since the
calibration-verification time frame (1973-1977), a rain gage
has been moved, the LH-104 runoff measuring structure has
been changed (1978), and shrub to grass management ma-
nipulations have occurred on a portion of the watershed
(approximately 1.8 ha, 1981 and 1984). Recalibration has not
been undertaken because these manipulations continue to
induce a period of nonstationary or changing watershed
conditions.

For the events that occurred during the intensive 1990 field
campaign the average prestorm SI values for each method
and storm (prior to drying time adjustment these values
correspond to SI values plotted as open circles in Figure 3)
were input into KINEROS to assess the variability induced
in computed runoff. To assess the relative magnitude of this
variability, computer simulations were also conducted using
different representations of the rainfall. This was accom-
plished by performing simulations with a single rain gage
adjacent to LH-104 and contrasting them to the simulations
made using the average SI values for the SI measurement
method with the five recording rain gages used by Fawres
[1990]. The research version of KINEROS used in this study
employs a linear space-time rainfall interpolation scheme
described by Goodrich [1990] to treat multiple rain gages. If
a single rain gage is used, the rainfall field is considered
uniform in space over the entire watershed.

Results from the simulations described above are summa-
rized in Table 3. A cautionary note regarding interpretation
of results regarding the L.H-104 August | event is in order.
This event was very small, and the total runoff volume on a
per unit area basis was smaller than the measuring resolution
of the recording rain gages. In this situation, instrument,
data reduction, and observation errors are often a large part
of the overall output signal and may dominate model re-
sponse as measured by runoff quantities. Normally, an event
whose runoff volume is smaller than one-half the rain gage
measuring resolution is discarded for runoff simulation anal-
ysis, but it was included here because of the small number of
events occurring during the intensive field campaign.

From Table 3 it is apparent that the model has a tendency
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Table 3, Rainfall-Runoff Model Simulation Summary for Lucky Hills-104

August 1, 1990

August 3, 1990 August 12, 1590

Water

Content v, Oy v, 0, 18 0,,

Method 51 mm mm/h SI mm mm/h SI mm mmy/
GRAVY

Five gages 8.05 0.01 6.03 0.22 2.2 10.8 0.06 18.1 58.7

One gage 0.02 0.05 2.7 17.0 19.4 61.5

Five gages 0.13 0.02 0.05 0.21 2.2 10.4 0.14 18.8 60.3

One gage 0.03 0.10 2.6 16.5 20.1 63.3
TDR

Five gages 0.22 0.04 0.10 6.31 2.6 12.8 0.22 19.5 61.9

One gage 0.05 0.18 3.1 19.6 20 65.4
PBMR

Five gages 0.08 6.02 0.03 0.29 2.5 12.2 0.10 9.3

One gage 0.02 0.06 3.0 19.0 7 62.2
IRE

Five gages ce s s 0.29 2.5 2 0.20 19.1 61.5

One gage s s 3.0 9.1 20.7 64.8
Observed 0.04 0.34 3.5 15.4 46.5

runoff

to underpredict the small event on August | and overpredict
the large event of August 12. Previcus comments regarding
the model calibration and verification period and the subse-
quent watershed changes should be considered when com-
paring simulated to observed runoff data. In this part of the
investigation the focus is on the variability induced in runoff
sirmulations due to the variation in soil water content mea-
suring method and changes in rainfall representation.

The variability in runoff volume and peak runoff rate
induced by changes in relative soil water content measure-
ment methods appears to be of the same order or smaller
than that induced by using measured rainfall input from one
instead of five rain gages (see Figure 1). To separate the
effects of SI measurement method and rainfall representa-
tion more clearly, additional simulations were done holding
the water content measuring method constant (TDR) and
varying the model rainfall input by using each of the five
recording rain gages individually for model input. This is
contrasted with data from the five rain gage simulations
presented in Table 3 in which the rainfall representation is
held constant and the SI method changes. Figure 4 graphi-
cally summarizes these simulations. In this figure the range
of measured 2-min peak rainfall intensities from each of the
rain gages is used as a surrogate measure of rainfall variabil-
ity among rain gages. This is an appropriate measure, as
rainfall intensity largely controls runoff generation in the
semiarid environment of LH-104.

The variability of SI and rainfall intensity should not be
compared directly (incompatible measures) but can be inter-
preted via the induced variability in model outputs. In the
middle two regions of Figure 4 the variability in runoff
volume and the variability in peak rate in response to
changes in the SI measurement method and changes in the
rainfall representation are plotted side by side for each of the
three runoff events. For comparison on an individual event
basis the runoff simulation hydrographs and the observed
nydrograph for the August 3, 1990, event are plotted in
Figure 5. The hydrographs plotted in this figure illustrate the
impact of using one and five rain gages with the gravimetric

and IRE method. These data illustrate that the spatial
variation in rainfall induces larger variations in runoff char-
acteristics than the different SI measurement methods.

3.2. The Medium Catchment Scale: WG11 (6.31 kmz)

The WGI1 catchment analysis is presented in separate
subsections for clarity. Section 3.2.1 discusses the PBMR
data and how they were used to estimate soil moisture for
runoff simulations as well as the method of aggregating the
PBMR data to address objectives 2 and 4. Section 3.2.2
briefly describes how prestorm soil moisture estimates de-
rived from the CREAMS daily water balance model are
incorporated into the runoff modeling effort to address
objective 3. In section 3.2.3, comparative simulation analy-
sis based on SI estimates from PBMR and CREAMS out-
lined in sections 3.2.1 and 3.2.2 is presented. Finally, in
section 3.2.4 a description of the use of interesting historical
rainfall patterns with 1990 PBMR-derived SI patterns to
further explore PBMR aggregation impacts on runoff simu-
lation is discussed.

3.2.1. PBMR soil moisture estimates and runcff simula-
tion methed. The distribution of PBMR-derived estimates
of SI varied widely for the data acquisition dates listed in
Table 1. The relative frequency distribution (counts per class
over total counts) of all 40 X 40 m pixels in WGIT of
PBMR-derived SI for each flight day (excluding day of year
(DOY) 220 due to incomplete coverage) are reproduced in
Figure 6. This figure qualitatively illustrates an apparent
increase in the variability of 51 with increasing mean SI.
Further confirmation of this tendency is obtained by exam-
ining the variability across the 256 rainfall-runoff modeling
elements. For each element a mean SI and standard devia-
tion of 81 were computed from the 40 X 40 m pixels falling
within the element polygon (the average number of pixels
per overland flow plane element equals 21). Using these
data, the mean standard dewviaticn of SI, computed across
the 256 runoff model elements, is plotted against the mean of
mean element S for the same 256 model elements on the five
flight days in Figure 7. Since SI, the relative initial water
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LH-104.

content, is bounded by [0, 1] an entirely dry, uniform soil
would have a theoretically uniform SI equal to the residual
saturation with a standard deviation of zero. Similarly, for a
totally saturated soil, SI would tend to one (or a maximum
saturation under imbibition), and the standard deviation
would tend to zero as indicated by the dashed line in Figure
7. Attaining a very high SI may not be realized given the
rapid drainage in the coarse soils of WG11 and the difficulty
of obtaining a PBMR flight immediately following an intense
convective thunderstorm.

The impacts of averaging SI inputs on model runoff
simulation should be most apparent in the region of maxi-
mum variability of SI. For the given data set this corre-

IRE Radiometer, T Gage

20+
Gravimetrie, 1 Gage
- 18 1 IRE Radiomater, 5 Gages
£
g Gravimetric, 5 Gages
E
2 10
&
=
[2]
&
a
3
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Figure 5. LH-104 observed and simulated hydrographs for

1990, event with different combinations of rain

3, 1890 ifferent com f rain
gage and SI medel input.

Variation in runoff volume and peak rate due to TDR SI variability and rainfall variability in

sponds to the data acquired on DOY 214. Unfortunately, this
is the day after the large runoff-producing event on DOY 213
(August 1, 1996). This was the reason for selection of
historical storms for the analysis in section 3.2.3 to test
hypothetical cases which should exhibit maximum interac-
tion between the SI distribution and rainfall patterns in
runofl production as interpreted through application of the
KINEROS model.

Prior application of KINEROS toc WG11 was conducted
by Goodrich [1990]. In that study a split sample calibration
and verification of events spanning a period of time from
1966 to 1988 was carried out using a research version of
KINEROS. For 10 calibration events on WG11 the forecast
coefficients of efficiency for runoff volume and peak runoff
rate were £y = 0.86 and £, = 0.84, respectively. For 20
independent verification events the efficiencies dropped off
to £y = 0.49 and £y = 0.16. Scatterplots of the observed
versus simulated runoff volumes for the calibration and
verification events set are presented in Figure 8.

The calibration efficiencies for WGI11 were guite good
when compared to other modeling studies with Walnut
Gulch data [Hughes and Bearer, 1989], The scatterplots for
the W11 verification set (Figure 8) show a trend of under-
prediction for small events and overprediction for large
events. If one believes the model does a fair job in repre-
senting the hydrologic response of WG11, this model repre-
sentation can be utilized to assess the worth of the PBMR
remotely sensed soil moisture estimates for runoff simula-
tion. This constituted a basic premise of the study.

As in the case of the LH-104 watershed, the same cali-
brated input files describing catchment geometry, soils, and
hydraulic roughness properties resulting from the prior cal-
ibration and verification of WGI11 [Goodrich, 1990] were

.
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Figure 6. Relative frequency distribution of SI in WG11 derived from five PBMR flights.

used in this investigation. However, at the WG11 basin scale
it was more realistic to examine the use of the areal distri-
bution of remotely sensed prestorm initial relative soil water
content (SI) measurements, and the aggregation of these
measurements, on runoff simulations (objectives 2 and 4).
For each of the 256 runoff model elements (overland flow
planes and channels) in Figure 2a, a mean prestorm 51
derived from PBMR data was input to KINEROS for the
August 1 and August 12 storm events. Breakpoint rainfall at
each of the 10 rain gages was the other primary model input.
As in the LH-104 analysis, the impacts on runoff simulation
due to a simplified, uniform rainfall representation are as-
sessed by using only rainfall input from a single centrally
located rain gage in WG11 (rain gage 88, Figure 2b) with Sl
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ions; see Figure 2a.)
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defined in the most complex manner, namely, 256 SI values,
one for each rainfall-runoff model element.

To assess the impacts of averaging remotely sensed
PBMR SI estimates on runoff model simulations, a stream
order reduction methodology described by Band [1989] was
utilized. This is a more logical approach of aggregation for
assessing impacts on runoff modeling than pixel aggregation
(1 x 1to2 X% 2, etc.) due to the directed nature of runoff
generation imposed by the topography. In the first pass of
this aggregation approach, the SI values are averaged using
area weighting as if the first-order channels from the most
complex basin representation (Figure 2a) are removed. This
results in an effective stream order reduction of one for SI
representation complexity. In the case of WG11 the number
of independent SI values was reduced from 256 (Figure 2a)
to 52 for the first aggregation (stream order reduction) step.
In the next aggregation step the stream order for SI repre-
sentation is reduced by one again, resulting in 17 (12 over-
land flow areas and five channels) independent SI inputs
values per storm. This level of ST representation is shown in
Figure 2b. During the averaging of the SI representation the
topographic and geometric model complexity representa-
tions are not altered, so the impacts of ST averaging on runoff
are isolated. Therefore 256 runoff model elements are main-
tained, but averaged SI values are assigned to groups of
runoff model elements as the stream order averaging pro-
ceeds. The results of the various simulation runs are pre-
sented in section 3.2.3, where they are compared to the
simulation runs using CREAMS SI estimates discussed in
the next section.

3.2.2. CREAMS soil moisture estimates and runeff simu-
lation method. To address objective 3, the utility of the
remotely sensed PBMR ST estimates was judged by compar-
ing these results to runoff simulations in which 5I was
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obtained with a simple daily water balance model component
of CREAMS [Knisel er al., 1980]. CREAMS uses a daily
time step to perform a multilayer soil water balance at the
field scale. Input parameters are used to describe soil tex-
tural characteristics, plant rooting depth, and mean monthly
changes in solar radiation, temperature, and leaf area index.
Readers are referred to Knisel et al. [1980] for a more
detailed description of CREAMS and related input parame-
ters.

One of the primary inputs to CREAMS is daily rainfall
depth for a given rain gage. Therefore SI values were
computed on a rain gage by rain gage basis for each of the 10
rain gages used in the WG 11 rainfall-runoff simulations. The
CREAMS-derived SI estimates for each storm are interpo-

{d} Bunoff (mm)} - PBMR Sl

1401

‘ s IEL
Obs. Vol. (mm)

Observed versus simulated volumes for calibration and verification events sets for WG11.

lated to individual model runoff elements using a similar, but
time-invariant, linear interpolation scheme as was used for
rainfall interpolation [Goodrich, 1990]. Simulations for the
August 1 and 12, 1990, events were completed using
CREAMS-derived SI values. The results of these simula-
tions are discussed and compared to the simulations using
PBMR-derived SI estimates in the following section.

3.2.3. Results and comparisons of runoff simulations using
PBMR and CREAMS initial soil moisture estimates. Distrib-
uted rainfall, prestorm time-adjusted PBMR and CREAMS
estimates of S1, and locally generated total runoff per unit
area (as interpolated from each model element) for the two
SI input cases for the August 1, 1990, rainfall event are
presented in Figure 9. It is apparent that the locally gener-

{b) CREAMS 8!

(e} Runoff {(mm) - CREAMS §i

Figure 9. August 1, 1990, storm event: (a) PBMR SI estimates; (b) CREAMS SI estimates; (¢)
distributed precipitation (millimeters); (d) locally generated total runoff (millimeters) using PBMR SI

inputs; (¢) locally generated total runoff (millimeters) using CREAMS SI inputs.
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Figure 10, August 1, 1990, obse

largely dominated by the input rainfall pattern. Observed
hydrographs and hydrographs of the various simulation
combinations for the August | and 12 storm events are
presented, respectively, in Figures 10 and 11. These figures
include the simulated hydrographs for (1) CREAMS SI
estimates with 10 rain gages, (2) PBMR 51 estimates using
256 model elements and 10 rain gages, (3) PBMR SI esti-
mates using one model element (a single basin average of SI)
with 10 rain gages, and (4) PBMR SI estimates using 256
model elements and cone central rain gage (number 88). The
relative impact of different rainfall representations and
PBMR SI averaging on total simulated runoff volume and
peak runoff rate for the simulations illustrated in Figures 10
and 11 is summarized in Table 4.

The hydrographs plotted in Figures 10 and 11 indicate a
general tendency of the model to overpredict the large event
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rved and simulated hydrographs.

on August 1 and underpredict the smaller event on August
12. This is consistent with the verification results illustrated
in Figure 8. No clear conclusion can be drawn on the relative
advantage of using remotely sensed PBMR SI estimates or
CREAMS SI estimates, as the PBMR SI inputs produce
marginally better results for the August 1, 1990, storm but
the situation is reversed for the August 12, 1990, storm.
However, several conclusions can be drawn from Figures 10
and 11. As was the case in the small-catchment analysis on
1.H-104, the change in rainfall representation has a greater
impact on runoff simulation than does a change in the SI
input determination method from PBMR to CREAMS. This
is readily apparent in the August 12, 1990, event and less so
in the August 1, 1990, event. The other major conclusion that
can be drawn from these figures is the minor impact of
averaging of PBMR SI inputs on simulated runoff. The
simulated hydrographs using 256 element Sl inputs are
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August 12, 1990, observed and simulated hydrographs.
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virtually identical to those using 2 single basin-wide
S1 average.

The minor impacts on runcif simulation due to averaging
R SIinputs can be partially explained by the relatively
uniform, dry initial conditions that existed prior to the
observed runoff events on August 1 and 12 as illustrated in
Figures 6 and 7. Impacts on runoff computations due to
averaging of PEMR SI should be more apparent in a more
variable, higher mean SI situation, as was alluded to earlier.
This hypothesis is explored in the following section.

3.2.4. PBMR SI aggregation impacts on runoff simula-
tions using historical rainfall events. To further investigate
impacts of PBMR SI aggregation on runoff simulation, a
hvpothetical data set was assembled by assuming spatially
distributed precipitation inputs from a variety of events fell
on wetter, more variable, PBMR 81 inputs from fights on
August 2,4, and 5, 1990 (see Table | and Figure 12) and were
used as inputs into the KINEROS model. The rainfall events
consisted of the August 1 and 12, 1999, storms as well as
three historical storms (October 21, 1978; June 24, 1986;
August 10, 1986). The rainfall events from the calibration set
were selected for specific spatial rainfall patterns. The Oc-
tober 21, 1978, event was relatively uniform; the June 24,
1986, event had high rainfall gradients in the upper central
portion of WG11; and the August 10, 1986, event produced
steep precipitation gradients in the lower portion of WG1I1.
Each of these events produced relatively small runoff events
(October 21, 1978, @, = 0.6 mm/h; June 24, 1986, 0, = 0.6
mm/h: and August 10, 1986, ¢, = 2.5 mm/h) which wiil tend
to maximize the influence of the SI initial conditions on
runoff generation as the storm scale will not overwhelm the
initial soil water content condition [Goodrich, 1990].

The averaging of PBMR SI patterns from the August 2, 4,
and 5, 1990, flight dates, via the stream order reduction
methodology described above, was repeated for each of
these storms using 10 rain gages to describe rainfall input.
The impacts of PBMR SI averaging on runoff simulation for
these storm/SI combinations were then assessed. In addi-
tion, simulations using a single central rain gage, to describe
rainfall input, were performed to compare the impacts of SI
averaging against simplified rainfall representation. Figure
13 plots the absolute change in simulated peak runoff rate
due to 51 averaging (256 SI values to one) and a change in
rainfall representation from 10 rain gages to one for each of

Simulation Summaries for August |

Table 4. WGIH
2, 1990, Events

and August 12,

August 1, August 12,
1990 1990

v, Cp, v, b
Case mm mm/h mm  mm/h

Observed 8.62 178 042 0.72

10 rain gages

CREAMS SI 12.4 26,1 0.31 0 0.47
PBMR SI, 256 elements 11.8 249 020 0.30
PBMR SI, 17 elements 11.8 249  0.19  0.29
PBMR SI, four elements 11.9 250 020 0.29
PBMR SI, one element 11.9 250 020 0.29
One rain gage (number 88): 15.7 28,1 1.50  1.91

PBMR Si, 256 elements

Figure 12. PBMR-derived SI patterns over WG11 for (a)
August 2, 1990, (b) August 4, 1990, and (c) August 5, 1990
flights.

the storm/SI combinations. Examination of this figure re-
veals that even with this varied range of storm and SI
combinations, the impacts of using a single basin average of
ST derived from PBMR are relatively small. In terms of an
absolute percentage change in peak runoff rate the values
ranged from 0.5% (June 24, 1986, storm, SI DOY 214) to
12.3% (August 10, 1986, storm, SI DOY 217) for SI averag-
ing and 10.1% (August 1, 1990, storm, SI DOY 214) to over
400% (June 24, 1986, storm, SI DOY 217) for going from 10
rain gages to one rain gage, with the largest change occurring
on the small historical runoff event. As was the case in the
small catchment scale of the Lucky Hills-104 watershed (4.4
ha), differing spatial rainfall representation has a far greater
impact than SI measurement on runoff simulations. It may
be possible to better represent the spatial rainfall patterns
using the PBMR brightness temperatures fields as a high
correlation exists between these data and interpolated rain-
fall patterns [Schmugge er al., this issue]. This subject is
being addressed in subsequent analyses.

4. Conclusions

Conclusions regarding the analysis described in this inves-
tigation must be considered in the context of the semiarid
Walnut Gulch environment, the small number of events
considered, and the scale of water content measurement
methods in relation to watershed scale. It should also be
reiterated that runoff is almost exclusively generated via an
infiltration excess mechanism in this environment. The con-
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clusions are organized to address the ebjectives outlined
earlier in the paper.

1. At the small watershed scale of Lucky Hills—104 (4.4
ha), when using an average value of SI for input, there
appeared to be little difference among the 51 measurement
methods as indicated by the variation in computed runoff
volume and peak rate. If an average value of initial relative
water content (SI) value is desired for runoff modeling, it
could be reasonably obtained by any of the methods used in
the study. However, changes in rainfall representation had a
much greater impact on runoff simulation than changes in 51
input determination, so adequate resources should be de-
woted to definition of spatial rainfall variability.

2. Remotely sensed estimates of distributed prestorm
initial soil water content were easily integrated as input into
the KINEROS rainfall-runoff model at the medium catch-
ment scale (6.31 km?). This required georeferenced bright-
ness temperature estimates and transformation equations to
convert brightness temperature to volumeiric soill water
content [Schmugge et al., this issue]. The infiltration formu-
lation in KINEROS can directly incorporate information in
this form after an adjustment is made for surface drying in
the elapsed time between the flight and the beginning of
runoff-producing rainfall.

3. Based on this data set, it appears that the CREAMS SI
estimation method works as well as the remotely sensed 51
estimation method. Though the differences between the
spatially distributed SI patterns from CREAMS and PBMR
appeared to be substantial (Figures 9a and 9b), the influence
on runoff model output was small. This does not imply that
for another process, such as evapotranspiration modeling
and estimation, cne or the other method will be advanta-
2eous.

4, For runoff simulations a simple basin average of
remotely derived SI estimates at the medium catchment
scale (631 ha or 6.31 km?) appears to be adequate for runoff

©
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all representation on simulated peak runoff rate for

simulation. However, as was the case at the small catchment
scale (4.4 ha), a greater spatial resolution of the rainfall is
required, and adequate resources should be devoted to this
task. This result has important implications for the use of
space-based microwave estimates for defining distributed
prestorm initial soil water content conditions for rainfall-
runoff modeling in semiarid regions. A criticism of typical
passive microwave sensors is their relatively coarse spatial
resolution. This analysis indicates that using a single basin
average of SI for the 6.31 km® WGI! basin does not
seriously limit use of such data for rainfall-runoff modeling
for the test cases examined. Therefore for deriving prestorm
soil water content conditions for runoff modeling, satellite-
based passive microwave systems may be entirely adequate
(current technology, depending on antenna size and orbital
altitude, enables resolutions of between 5 and 10 km).
However, analysis at yet larger scales is warranted, and until
comparable data collection and analysis is performed in
other diverse situations, this conclusion must, of course, be
limited to the semiarid conditions examined. The conclu-
sions must also be tempered by understanding that using the
KINEROS rainfall-runoff model carries with it associated
assumptions in its formulation and implementation. The
primary focus of this study concentrated on runoff pro-
cesses, and extrapolation of the conclusions to other pro-
cesses is not warranted. Definition of resolution require-
ments for other processes, such as the estimation and
simulation of energy fluxes and evapotranspiration using
parallel analysis, is an immediate and important task. This
task is the subject of ongoing research using the Walnut
Gulch and Monsoon 90 databases.
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