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ABSTRACT

Water quality modeling generally requires estimates of the amount
of eroded material entering water courses. This information is nec-
essary because sediment often transports adsorbed chemicals. Nu-
merous models have been developed to assist with assessment of this
problem. These models often contain some modification of the Uni-
versal Soil Loss Equation (USLE). A recently initiated effort to im-
prove USLE technology has produced a computer-based model, RUSLE
(Revised USLE}, which employs new relationships to estimate values
of the six factors in the equation. Three input databases are required:
climatic data, crop data, and field operations data. Although numer-
ous specific entries for these data are contained in the program, in
many cases users must supplement or modify the supplied data. Re-
sults of a sensitivity analysis help users tailoring the databases to

specific conditions.

DVANCES in natural resource modeling have been
dramatic in the past several decades. Many of these
have coincided with the rapid developments in computer
technology and specifically, the development of personal
computers. These developments have allowed increasingly
complex quantitative descriptions of soil hydrology or
““models.”” The model label has been used as a title, ac-
cusation, or compliment, and carries certain connotations
depending on the bestower of the title (Wagenet, 1988).
Some have looked askance at modelers, and have ques-
tioned both the motive of the modeling effort as well as
the ability of the modeler to deal with the complexity of
natural systems. Yet without the developments in analytical
models we only have limited ability to address more com-
plex questions being posed by society in dealing with con-
servation and environmental management problems.

Water quality of runoff from upland sources can change
greatly from season to season and may even fluctuate
during a given day. Such changes reflect natural stream
discharge cycles, meteorologic conditions, and fluctua-
tions due to agricultural practice changes. Such changes
also may influence biological activity. In addition to nat-
ural changes, water quality changes may reflect flow
abstractions for water supply as well as agricultural, ur-
ban, and industrial waste inputs. The many cause—effect
relationships are difficult to emulate without analytic
models. Recently, considerable progress in hydrologic
modeling was reported in a symposium -arranged and
edited by DeCoursey (1988).

Heretofore, water management has been primarily a
question of water quantity. Interest in water quality arose
with increased water degradation and the decrease in
water supplies of acceptable quality. To properly address
water quality, it is necessary to understand the parame-
ters directly connected to the uses of concern and to
analyze the associated conditions.

Interaction between water quantity and quality is in-
evitable for any water management effort. Furthermore,
it may be easier for technical, financial, and political
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reasons to maintain an acceptable water quality than to
restore it following degradation. Thus, water quality should
be of concern to everyone dealing with water resources.

Upland surface water quality problems have histori-
cally emphasized on-farm erosion control and down-
stream sediment damage. In the last two decades, this
emphasis has changed to include emphasis on the fate
of agricultural chemicals. Because many agricultural
chemicals move through the system adsorbed on sedi-
ment, this paper focuses on the erosion modeling process.
Conservation planning activities of many natural re-
source agencies (e.g., SCS, BLM, FS, and many state
agencies) have relied on the USLE (Wischmeier and
Smith, 1978). The USLE, as a stand-alone model or
combined in a subroutine in models such as SWRRB
(Williams, 1975), EPIC (Williams et al., 1983), AN-
SWERS (Beasley et al., 1980), and AGNPS (Young et
al., 1989), is widely used to evaluate the impact of al-
ternative management practices on soil erosion. Recent
improvements in the USLE technology have created new
opportunities in model development and erosion predic-
tion, leading to the development of the RUSLE.

This paper (i) describes the RUSLE model, and (ii) re-
ports on sensitivity analyses with the databases in the model.

RUSLE

Wischmeier (1976) explained that the USLE contains
parameters, which are recognized as universally affecting
erosion. Given the data available with which to identify
the model terms, the technology can be successfully used
to address conservation planning in most environments.
Recent efforts by USDA and university cooperators has
led to the RUSLE (Renard et al., 1991), which builds
on the USLE technology to produce a new model. The
RUSLE retains the same six factors of the USLE, but
the equations used to produce the factors differ signifi-
cantly. Furthermore, because of the complexity of the
equations used to quantify the factors, RUSLE has been
computerized to facilitate the calculations.

In both the USLE and RUSLE the fundamental equa-

tion is
A = RKLSCP [1]

where A is the computed annual soil loss; R is the rain-
fall-runoff erosivity factor; K is a soil erodibility factor;
LS is a topographic factor combining slope length, L,
and slope steepness, S; C is a cover-management factor;
and P is a supporting practices factor. :

R Factor

Of the RUSLE factors, R is the one most exactly com-
puted from available data, namely, from rainfall amount
and intensity. The factor represents the driving force of
sheet and rill erosion. Differences in R correspond to
variations in the climate’s erosivity.

One of the major improvements in RUSLE was a greatly

Abbreviations: USLE, Universal Soil Loss Btluation; RUSLE,
Rewvised Ur_nversal Soil Loss Equation; SLR, soil loss ratic; WEPP,
water erosion prediction project.
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improved isoerodent map of the western USA (USDA
RUSLE Handbook, 1993, unpublished data). Data from
more than 1000 locations were used to produce the new
map. Another change involves R-factor values for areas
with flat slopes in regions of long, intense rainstorms.
The RUSLE accounts for ponded water on the soil, re-
ducing the erosivity of raindrop impact. Finally, an
equivalent R approach was developed for use in the small-
grain farming areas of the Pacific Northwest to reflect
the combined effect of thawing soil and rain on either
snow or partly frozen soil.

K Factor

The K factor is an indicator of the inherent soil ero-
dibility under the standard conditions of the USLE unit
plot maintained in continuous fallow. Users have little
difficulty choosing a K-factor value because the USDA,
Soil Conservation Service! has identified values for ma-
jor mapping units. The site-specific K value may be dif-
ferent from the K value given in soil survey information
because of soil variability within a mapping unit.

The USLE erodibility nomograph is the most com-
monly used procedure for estimating K values, but it
does not apply for some soils. Erodibility data from around
the world were used to develop a RUSLE equation to
estimate K as a function of an average soil particle di-
ameter. The K values for the volcanic soils of Hawaii
are estimated with a special algorithm (El-Swaify and
Dangler, 1976).

Of greatest significance is that RUSLE varies K sea-
sonally. Seasonal variability is highest in the spring with
soil fluffing from freeze—thaw actions and lowest in mid-
fall and winter because of rainfall compaction and/or
frozen soil. Instantaneous K estimates are made from
equations relating K to the frost-free period and the an-
nual R factor. Weighting the instantaneous K estimate in
proportion to the EI (kinetic energy times maximum 30-
min rainfall intensity) for semimonthly periods provides
a weighted average annual K value. The RUSLE also
accounts for rock fragments in and on the soil surface.
Rock fragments on the surface are treated as surface
cover in the C factor, while rock in the soil profile of
coarse-textured soils is assumed to reduce permeability
and, in turn, increase runoff. This latter effect is re-
flected in the K value.

L and S Factors

Most RUSLE users have more questions about the L
factor than any other factor. This is because of the judg-
ment involved in choosing a slope length. Attention given
to the L factor is not generally warranted because soil
loss estimates are less sensitive to slope length than to
most other factors. The RUSLE uses four separate slope
length relationships. Three are functions of slope steep-
ness as in the USLE, and of the susceptibility of the soil
to rill erosion relative to interrill erosion. A separate
slope length relationship was developed specifically for
the dryfarmed cropland region of the Pacific Northwest-
ern USA.

Soil loss is much more sensitive to slope steepness
than to changes in slope length. The RUSLE has a more
nearly linear slope steepness equation than the USLE.

' Data published in Soil Survey Reports available through USDA-
SCS field offices.

On steep slopes, RUSLE-computed soil loss is about
one-half that predicted by USLE. The RUSLE also pro-
vides a slope steepness relation for short slopes subject
primarily to interrill erosion, and a steepness relationship
for the Palouse region of the Pacific Northwest.

In most applications, a slope estimated as a single
plane with the USLE can be a poor representation of the
field topography. Complex slopes can be readily rep-
resented by a series of segments in RUSLE to provide a
better estimate of the topographic effect.

C Factor

The C factor is very important in soil loss estimation
because it represents conditions that can be modified by
management to reduce erosion. The C values are weighted
averages of soil loss ratios (SLR’s) that represent the
ratio of soil loss for a given condition at a given time to
the corresponding soil loss under conditions of a unit
plot. Thus, the SLR’s vary during the year as manage-
ment and cover conditions change. To compute C, SLR’s
are weighted according to the erosivity distribution for
semimonthly periods during a year. In RUSLE, a subfac-
tor method is used to compute SLR’s as a function of
five subfactors given by the equation

C = PLU CC SC SR SM [2]

where PLU is the prior land use subfactor, CC is the
canopy subfactor, SC is the surface cover subfactor, SR
is the surface roughness subfactor, and SM is the soil
moisture subfactor (used in the Pacific Northwest Pal-
ouse area).

Subfactor-yvalyes PLU and SR represent the within-soil
effect and are calculated from the amount of biomass
that accumulates in the soil from roots and incorporation
of crop residue. The RUSLE computes biomass decom-
position on and in the soil using a residue decomposition
model. Surface ground cover effects on erosion have
been observed to vary greatly in research studies. The
SC factor is computed with a negative exponential coef-
ficient times the percentage of ground cover. The coef-
ficient is increased as the tendency for rill erosion to
dominate over interrill erosion increases. Guidelines are
presented in the computer program to select the appro-
priate coefficient value. Crop canopy (CC) accounts for
the role of plants in intercepting the energy of raindrops
and allowing their reformation and drip from the crop
canopy. The soil moisture subfactor (SM) used in the
small grain farming areas of the Pacific Northwest rep-
resents the role of soil moisture withdrawal and replen-
ishment in affecting rainfall excess and erosion hazard.
Erosion potential rises with increased soil water content.

The subfactor approach in RUSLE permits application
and development of SLR’s where values are not avail-
able from previously published experimental analyses.
The SLR’s can be determined from some fundamental
crop and tillage measurements. Data are needed to reflect
canopy and residue characteristics, and root mass in the
upper 4 in. (100 mm) of the soil profile. Tillage mea-
surements are needed to indicate the percentage of soil
disturbed, random roughness and the amount of residue
incorporated. Thus, the user must specify the crops in a
rotation and the dates of operations, such as tillage,
planting, and harvest. The computer program then cal-
culates SLR’s, rotation, and average annual C factor.
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Grazing effects on rangeland, pasture, and meadow
are reflected in the effects of canopy height, ground
cover, and root biomass. In RUSLE, ground cover is
given as 1.0 minus the amount of bare soil, reflecting
the addition of rock and stone cover in addition to
vegetative litter.

P Factor

The P factor values are the least reliable of the RUSLE
factor values because of the absence of experimental data
to reflect the many combinations of conditions encoun-
tered. The P factor primarily represents how surface con?
ditions affect flow paths and flow hydraulics.

In RUSLE development, data have been analyzed to
evaluate the effect of contouring. The results have been
interpreted to give contouring factor values as a function
of ridge height, furrow grade, and erosivity. New P-
factor values have been developed to account for the effect
of terraces in causing deposition within the terrace channel.
Buffer strips and a broader array of strip-cropping condi-
tions also have been developed which require the user to
postulate infiltration changes between strips. Conservation
practice values for rangelands also are presented which
require estimation of the time to reconsolidation following
disturbance as well as infiltration changes as a function of
cover and roughness. Some of the practice values on crops
and rangeland are slope dependent.

All of the P-factor improvements were developed using
fundamental detachment and transport theory based on
flow hydraulics and sediment transport such as devel-
oped in CREAMS (Knisel, 1980; Foster et al., 1981).
Field experimental data were then used to select param-
eter values for fundamental hydraulic and transport re-

lationships.

The Revised Universal Soil Loss Equation
Computer Program

Figure 1 illustrates the RUSLE logic flow for a typical
soil loss calculation. The left-hand portion of the figure
is where specific field-management/conservation-prac-
tice information is input by the user. The right-hand box
contains the general program-supplied database sets called
by the user representing the CITY DATABASE (climate
data), CROP DATABASE (plant data representing above-
and belowground characteristics) and OPERATIONS
DATABASE (farming and soil disturbing factors).

Figures 2, 3 and 4 illustrate the data contained in the
CITY, CROP, and OPERATIONS DATABASE sets,

. respectively. Because the information contained in these
sets is general, the user may need additional sets or may
need to modify an existing set to make it better describe
a specific site where a soil loss estimate is required. Prior
to either making these modifications or developing a new
data set, the user of RUSLE technology needs to have
an idea of how sensitive a specific soil loss estimate is
to individual parameters. Thus a sensitivity analysis was
performed to illustrate how changes in a specific param-
eter value affect the output.

Sensitivity Analysis

Background

Several approaches are available for performing sen-
sitivity analysis. Lane and Ferreira (1980) defined sen-

RUSLE
SOIL LOSS ESTIMATION

f Data files are general
defined by user

Defined by user for
specific field/management/
i conservation practice
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Fig. 1.7Fhe, RUSLE logic flow for a typical soil loss calculation.

sitivity as the rate of change in an output variable as a
result of the change of an input factor. Sensitivity analy-
sis 1s useful in formulation, calibration, and verification
of water resource models (McCuen and Snyder, 1986).

Meier et al. (1971) indicated that the sensitivity of a
model’s responses to variations in input data can be used
to indicate the relative importance of various types of
input information. Emphasis can then be placed on de-
veloping and refining those data which have the greatest
influence on model output. In other words, given limited
resources which will be used for data collection and data
preparation, sensitivity analyses can be conducted to de-
fine how best to expend the effort.

A sensitivity analysis should be designed in accord-
ance with the range of expected errors in gathering field
data under different conditions. It is a systematic means
of examining the response of a model independent of
errors in parameter estimation or field data. This makes
it possible to examine, in an objective manner, the ra-
tionality of the model as well as the effect of input errors
on model output (McCuen, 1973).

Sensitivity analysis attempts to rank parameters based
on their contribution to overall changes in model predic-
tions. However, in most hydrologic applications, large
variances in measurements are the rule and deterministic
sensitivity analysis may be less useful. Much has been
written about sensitivity analysis and the techniques used
are generally grouped in two categories, deterministic
approaches and stochastic approaches.

The primary assumption in the deterministic approach
is that the response surface of the output variable of

S

I
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FILE EXIT HELP SCREEN
- < Create/Edit City Database Set TEST 0.20 > —
city code: 13001 city: CHICAGO state: IL
total P: 33.3" EI curve #: 101 Freeze~Free days/year: 192
elevation: 607 10 yr EI: 100 R factor: 140
- Mean P - Tav (deg. F) —————— %EI ————— %EI
1: 1.6 1: 26 1: 0 13: 39
2: 1.31 2: 27.65 2: 0 14: 52
3: 2.59 3: 36.25 3: 0 15: 63
4: 3.66 4: 48.85 4: 1 16: 72
5: 3.15 5: 60 5: 2 17: 80
6: 4.08 6: 70.5 6: 3 18: 87
7: 3.63 7: 75.6 7: 4 18: 91
8: 3.53 8: 74.15 8: 6 20: 94
9: 3.35 9: 66.1 9: 9 21: 97
10: 2.28 10: 55.05 10: 14 22: 98
11: 2.06 11: 38.85 11: 20 23: 98
12: 2.1 12: 29.1 12: 28 24: 100
F7 Saves, Esc Returns to CITY Main Menu

F10 Tab Esc F1 F2 F7 Del
CMD FUNC esc help clr save del

Fig. 2. Sample of data contained in the CITY DATABASE.

interest is effectively linear within the small region of
the parameter space explored by perturbations. The nom-
inal values chosen for this analysis are usually those con-
sidered to give the best model predictions for a particular
situation. A local sensitivity analysis is analogous to de-
termining the partial derivative for each output variable
with respect to each parameter. Performing a sensitivity
analysis by increasing or decreasing each parameter by
a fixed percentage of some nominal value assumes that
each parameter is equally important.

The purpose of a stochastic sensitivity analysis is to
assess the effect that a parameter has on an output variable
over the range of parameter values that are likely to be
exhibited. The range of parameter values is often based on
a frequency distribution that is characteristic of each pa-
rameter. Stochastic sensitivity analysis attempt to partition
the variance observed in an output variable among the pa-

rameters. Because of statistical and computational limita-
tions, partitioning is often limited to producing an ordered
list of parameters to which the outputs are sensitive.
Tiscareno-Lopez (1991) presented a synopsis of sen-
sitivity analysis techniques. He used a Monte-Carlo method
in his stochastic approach to illustrate changes in model
predictions caused by changes in the Water Erosion Pre-
diction Project (WEPP) Watershed model parameters for
application§-in.semiarid rangeland watersheds.

Methodology

Herein, parameters and variables of the three data-
bases of RUSLE were systematically varied and the change
in predicted soil loss (4) (% change in output resulting
from a % change in input) analyzed. Parameters are
defined here as single, fixed values. Variables are values

FILE EXIT HELP SCREEN
Create/Edit Crop Database Set TEST 0.17
crop: corn category: 1

res. @ harv. (lb/A): 7280 row spacing (in): 30 plant pop. (#/A): 25000
surf. res. decomp. cons.: 0.01200 ub. res. decomp. cons.: 0.01200
res. at 30% cover (#/A): 950 at 60% cover: 2400 at 90% cover: 6050

days root mass canopy fall days root mass canopy fall

of #/Ac (in cover height of #/Ac (in  cover height

growth top 4") (%) (£t) growth top 4") (%) (£ft)

0 0 o} 0 180 0 0 o}

15 0 o} 0 195 0 0 0

30 92 10 0.5 210 o 0 0

45 180 50 1 225 0 o 0

60 272 80 1.7 240 0 0 0

75 544 100 2.5 255 0 0 0

90 544 100 3 270 ¢] ] 0

105 0 0 0 285 0 0 0

120 8] 0 0 300 0 0 0

135 0 0 0 315 0 6] Q

150 0 0 0 330 0 0 0

165 0 0 0 345 0 0 0

F10 Tab Esc F1 F2 "F5 7 Del
CMD FUNC esc help clr jump save del

Fig. 3. Sample of data contained in the CROP DATABASE.

< F7 Saves, Esc Escapes to CROP Main Menu

-
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UL

FILE EXIT HELP
~< Create/Edit Field Opera

-
’ field operation: cult.; row
Effect #1: % disturb.:85 rough
Effect #2:
Effect #3:
Effect #4:
Effect #5:

SR EERREEN

ness:0.6 % cov. left:70 depth:4

SCREEN
tion Database Set TEST 0.17 >

[NeecBEN e NS, BN NSV R

no effect

soil surface disturbed

current crop residue added to surface
other residue added to surface
residue removed from field

current crop harvested

crop growth begins

current crop is killed

call in a new crop growth set

F7 Saves, Esc R
F10 Tab Esc F1 F2 FS F6 F7
CMD FUNC esc help clr jump list save

eturns to OP Main Menu
Ins Del
ins del

Fig. 4. Sample of data contained in the OPERATIONS DATABASE.

that change in space or time. Examples of RUSLE param-
eters are plant characteristics and freeze-free days per year.
Variables include precipitation and temperature, which are
contained in the city database as sets of monthly average
values, and root mass and canopy cover, which are time
varying and are described by semimonthly periods.

Unlike simpler models, RUSLE has the capability of
responding in unexpected ways to input modifications.
Changes in some parameters affect the value of others,
thus either offsetting or magnifying the resulting change
in predicted soil loss. [t also is possible to change a single
parameter which in turn changes entire groups of others.
This study demonstrates several such model response
characteristics. Knowledge of such behavior is useful to
users, just as general sensitivity information is useful.

It is stressed that sensitivity analysis results are site-
and condition-specific. This analysis gives users an un-
derstanding of model responses, but the results should
be expected to vary at different sites and under other
conditions. Users are encouraged to test their situations
similarly, particularly with respect to program input with
known uncertainties.

Base Run

This study employed RUSLE Test Version 20 (we do
not anticipate any major changes before the first official

Table 1. Base run data.ti

Topographic data for 3 slopes

Location Soil 1 2 3
Chicago, IL A Tama seil, surface (slope)
texture—silt, hydrologic %
soil group C, K, =
0.042 metric SY units 5 35 3
(and 0.32 English (Length)
m

units) from nomograph

413 305 41.3
(125 ft) (100 ft) (125 ft)

T Cover management, field operations are shown in Table 2.

i Conservation practice and contouring information: moderate ridges
7.6 to 10.2 cm (3 to 4 in.) height, furrow grade = 2%, and cover/
roughness code 6, no cover and/or minimum roughness.

version is released). An initial RUSLE simulation was
deemed the ““base run.”” Base run database input is il-
lustrated in Figs. 2, 3, and 4. Sensitivity analysis was
then performed by changing parameter and variable val-
ues from their base values. Conditions chosen for the
base run (Table 1) were corn under conventional tillage
in the Chicago, IL, area. Base corn (Zea mays L.) pa-
rameters were from the CORN DATABASE set, as shown
in Fiptn3. Table 2 describes the field operations (values
from the OPERATIONS DATABASE) and the base-run
operations schedule.

The program calculated the following RUSLE factor
values: R = 140, K = 0.297,LS = 0.716, C = 0.086,
and P = 0.883; the computed annual soil loss is 4 =
2.26 tons acre~! (5.07 t ha-1).

Model Response to CITY DATABASE
Perturbations

The first parameter tested is the city code, a numerical
identifier. Changing this code redefines the entire set of
variables and parameters in the city database; i.e., we
changed cities and all their attributes while holding the
crop and operation attributes constant. Figure 5 illus-
trates the effect of using five different city codes, chosen
for proximity to Chicago. It is apparent that this d atabase
contains information to. which the model is very sensi-
tive; Milwaukee and Indianapolis yielded results that
represented changes of over 30% from the base Chicago
run. Further tests on individual parameters and variables
within the city database explain these differences.

Table 2. Field operations schedule, base run.

Distur- Cover
Date Operation bance Roughness left Depth

% cm (in.) % cm (in.)
10 April  Fertilizer application 20 127 (0.50) 90 10 (4)

15 April  Tandem risk 100 1.91(0.75) 50 10 (4)
28 April  Field cultivator 100 177 0.70) 75 10 (4)
28 April  Spike harrow 100 076 (030) 80 10 (4)
28 April  Row planter 20 1.52(0.60) 85 10(4)
25 October Harvest 0 0.76(030) 100 0 (0)
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Dub FW Mad Mil Ind
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Fig. 5. Result of changing the city code from 13 001 (Chicago,
IL) to 15 002 (Dubuque, [A), 14 002 (Ft. Wayne, IN), 49 003
(Madison, WI), 49 004 (Milwaukee, WI), and 14 003
(Indianapolis, IN).

10

% Change in Soil Loss

i00 101 102 103 84 11

EI Distribution Code

Fig. 6. Effect of changing EI distribution code.

The EI (storm kinetic energy times 30-min maximum
intensity summed over a year is defined as R) distribution
code represents sets of 24 semimonthly values (% of the
annual R factor). The code for Chicago, 101, was re-
placed by nearby codes 100, 102, and 103. Readers are
referred to the RUSLE Handbook (pending) for a U.S.
map of El distribution codes. Results indicated very little
change in predicted seil loss-—Iless than 3% in Fig. 6 for
the cited codes. The code for the Denver area, 84, was
then substituted for contrast. There was still little change;
again, the resulting soil loss was within about 5% of the
base. A code from the West Coast, 11 (near San Fran-
cisco) was then tested. Results from the El code exercise

100
10
0
“T101
10 Illl
- 0 "
m
S [ 102
C-*( 101
= o w_uﬂ.-l_ll"llll_l_ll_-
<
-
@) 20
103
4 104
=
O 0
O
=
o
A 20 84
101
0 b

Jan Jun Dec

Time of Year

Fig. 7. Annual time series of EI distributions.

are illustrated in Fig. 6, clearly showing that any nearby
ElI codes yield fairly similar results. Yet the San Fran—
cisco distribution caused the model to predict about 50%
less soil loss for the same base conditions. Figure 7 shows
the six EI distributions, plotted as annual time series.
Both the Midwest/Great Plains and West Coast distri-
butions have distinct high and low periods, but these
occur in different seasons. The West Coast rains occur
during the winter, and are less intense than either the
Great Plains or Midwest rains. Those storms producing the
greater soil loss in the Midwest and Great Plains cccur
during the period of management disturbances such as
plowing and cultivating, when the soil is most vulnerable
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to erosion. Thus, RUSLE is sensitive to EI distribution,
but reasonably close estimates produce consistent results.

Two variables in the CITY DATABASE are precipi-
tation and air temperature. These were each varied from
base values for the Chicago database by as much as
+20% in 5% increments. All values of each variable
were permuted at once, modifying the entire variable
array instead of the 24 values independently. The tem-
perature values are strikingly more important to the re-
sulting soil loss estimates than precipitation (Fig. 8), and
represent the effect of temperature on residue decom-
position. Different results might be experienced in arid
areas or in very humid areas. The RUSLE users are
encouraged to make their own sensitivity evaluations for
the crop and climate they are working with.

We then varied the CITY DATABASE parameter
“freeze-free days® +20%, in 5% increments. The freeze-
free days are used in the calculation of the time varying
soil erodibility. The program responded reasonably to neg-
ative variations, showing only a moderate sensitivity (—10%
change in response to a 20% parameter reduction) (Fig.
9). The RUSLE showed no sensitivity above the base value
of 192 freeze-free days because the time-varying soil er-
odibility term is assumed to have an upper limit.

Also shown in Fig. 9 is the RUSLE response to var-
iation of the R factor. Given that this is one of the direct
RUSLE factors, the result might be unexpected. Exam-
ination of Eq. [1] indicates that any change in R should
yield an identical change in response, whereas the re-
sponse is about half that expected. This is because R
factor changes result in RUSLE modification of the K
factor and the C factor in addition to direct effect on the
soil loss estimation {Fig. 10).

Model Response to CROP DATABASE
Perturbations

The base crop, com, was modified to test model sen-
sitivity to various CROP DATABASE parameters and var-
iables. The first parameter tested was residue at harvest.
As shown in Fig. 11, resulting soil losses varied inversely
with changes in residue amount. The magnitude of change
is nearly equal (20% reduction in this parameter results in
near 20% reduction in computed soil loss).

Residue amounts at 30, 60, and 90% cover were var-
ied as a set. Changing these amounts changes the amount
of residue and in turn the SC and SR subfactors in the
C factor. Figure 11 shows a direct relationship between
changes in residue amounts and changes in soil loss (4),
with a 20% variable change resulting in only 4% varia-
tions in soil loss. The residue decomposition rate caused
directly proportional changes in soil loss of about half
the change in parameter; 1.e., a —20% change in rate
resulted in about —10% change in soil loss (Fig. 11).

Also directly related to changes in soil loss are changes
in fall height, the distance waterdrops fall from the veg-
etation, as shown in Fig. 12. Changes in fall height affect
the CC. Though about half as sensitive as residue at
harvest, fall height is over twice as sensitive as changes
in residue amounts at 30, 60, and 90% cover.

Percentage canopy cover was shown to be an impor-
tant variable with mverse effects. As illustrated in Fig.
12, soil loss changes from the base varied from 39% to
—6% with —20% and 20% changes in this parameter,
respectively. The interactions are complex and nonlin-
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parameters in CITY DATABASE.

ear. Root mass also caused inversely proportional changes
in soil loss predictions, but of much smaller magnitude
than percentage canopy cover. Figure 12 also shows the
changes in soil loss resulting from changes in root mass.
This parameter affects the canopy cover subfactor as does
the previous term.

It should be noted that the canopy cover in this ex-
ample is relatively sensitive, possibly because there was
little surface cover with this conventional tillage scena-
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Fig. 11. Results of varying CROP DATABASE parameters
and variables: harvest residue, residue decomposition, and
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rio. Had a no-till rotation been used, the residue on the
surface would have probably ‘‘swamped” the canopy
effect. Thus, the complexity of the subfactor approach
to calculating C factors in RUSLE requires careful con-
sideration of the equations involved for specific crop and
climatic conditions.

Plant population and row spacing are information pa-
rameters in RUSLE, included to permit later develop-
ment of a plant growth subroutine. Perturbations of these
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Fig. 12. Results of perturbations of CROP DATABASE
parameters: percentage canopy cover, root mass, and canopy/
drop fall height.
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Fig. 13. Effects of deletions of cultivator (cult), disk (disk),
harvest (har), and both planting and harvest (pl/lmar)
operations.

parameters cause no change in predicted soil loss val ues
in RUSLE.

Model Response to OPERATIONS DATABASE
Perturbations

Sensitivity analysis of individual values in this data-
base may be particularly misleading because other tem-
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poral conditions greatly affect response. Operations in a
sequence may alter the effects of subsequent or earlier
operations. Because the C factor for semimonthly inter-
vals is multiplied by the percentage of El in the interval,
the specific operation may be effective for only a small
part of the year. For example, we modified the roughness,
percentage of area disturbed, percentage residue left, and
depth of disturbance parameters within the row planter op-
eration. Percentage of area disturbed changes caused min-
imal change in predicted soil loss. Roughness and depth
change results were on the order of 1%. Percentage cover
changes caused changes in calculated soil loss from 4 to
— 5%, varying inversely with parameter changes.

The same exercise was then performed perturbing the
parameters of the spike harrow operation. Similar results
were obtained.

These results should not lead one to infer model in-
sensitivity to operations parameters. This is an obvious
example of other conditions masking the effects of these
parameters. In this case, the planting and cover of a corn
crop mitigated effects of previous disk, cultivator, and
harrow operations. To illustrate, we deleted operations
from the schedule (Table 2), as though the farmer skipped
an operation or stopped working midseason. Figure 13
shows the results, as compared to the base run results.
Eliminating either the cultivator or disk operation re-
duced scil loss slightly. The impact of plants is apparent
when either the harvest or both planting and harvest are
deleted. Eliminating plants increased the predicted soil
loss from the base value of 2.3 to 25.8 tons acre~! (5.2
57.8 tha~'. Results on the same order of magnitude were
also achieved by deleting all operations following the
cultivator and by eliminating all after the disk.

SUMMARY AND CONCLUSIONS

The RUSLE model is a useful tool to assist in making
field-management decisions that affect soil loss. In this
study, a sensitivity analysis on parameters and variables
in the CITY, CROP and OPERATIONS DATABASES
discovered a range from minimal sensitivity to extreme
sensitivity. For the case of corn grown under conven-
tional tillage in the Chicago, IL, area, moderate sensi-
tivity (10-40% change in prediction resulting from 20%
change in a variable) was found for city code, precipi-
tation, temperatures, R factor, harvest residue, fall height,
and percentage canopy cover. Only slight sensitivity
(<10%) was found for reasonably nearby EI distribution
codes, freeze-free days, root mass, and residue at 30,
60, and 90% cover. An EI distribution code from a dra-
matically different climate caused large changes in soil
loss (magnitude of change more than 50% from the base).
While many parameters and variables exhibited nearly
linear response, freeze-free days and percentage canopy
cover responses were nonlinear. Results of changing such
field operation parameters as percentage of area dis-
turbed, roughness, depth, and residue left were shown

to be masked by later operations and plant growth. In-
sensitivity under the base conditions cannot be extrapo-
lated to other conditions, as was shown by eliminating
several field operations.

[t is stressed that such a sensitivity analysis produces
valuable information to help users determine which pa-
rameters and variables to put effort and resources into.
Model users are encouraged to perform a simple sensi-
tivity analysis such as these for their unique situation.

Surface water quality has historically meant soil erosion
and sedimentation in rivers and reservoirs. Adsorbed ag-
ricultural chemical transported from upland areas has be-
come a concern In recent decades. Incorporating RUSLE
in more comprehensive models, such as EPIC and AGNPS,
should permit more complete problem resolutions.
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