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Automated extraction of geometry for hydraulic routing from digital elevation models (DEM) is a
procedure that must be easily accomplished for widespread application of distributed hydraulically
based rainfall excess—runoff models. One-dimensional kinematic routing on a regular grid DEM is
difficult due to flow division and convergence. Two-dimensional kinematic routing on a triangular
irregular network (TIN) surmounts many of these difficulties. Because TIN DEMs typically require far
fewer points to represent topography than regular grid DEMs, substantial computational economy is
also realized. One-dimensional routing using vector contour data overcomes the grid-based routing
disadvantages but often requires several orders of magnitude more storage points than a TIN. The
methodology presented in this paper represents a compromise between slightly increased computa-
tional complexity and the economy of TIN topographic representation. We take the unique approach
of subdividing each topographic triangle (TIN facet) into a set of coplanar triangular finite elements,
performing routing on a single facet and then routing the resulting excess hydrograph to downstream
facets and channels via upstream boundary conditions. Results indicate that shock conditions are
readily handled, computed depths match analytic results to within =3% and volume balances are
typically within 1%. This modeling system illustrates the viability of kinematic routing over a TIN

DEM derived directly from digital mapping data.

i. INTRODUCTION

Advances in digital mapping have provided hydrologists
with a plethora of data products that approximate topo-
graphic surfaces. Representation of the watershed surface is
of course a key component of any distributed watershed
modeling effort. The primary source of topographic informa-
tion prior to the 1980s consisted of contour maps. Translat-
ing this information into geometric elements used in rainfall-
runoff calculations is a laborious task. In many cases the
topography was distorted into a one-dimensional cascade of
planes [Alley and Smith, 1982; Green, 1984; Rovey et al.,
1977; Kibler and Woolhiser, 1970; Woolhiser et al., 1990;
Lyngfelt, 1985; U.S. Army Corps of Engineers, 1988] or
variable width trapezoid elements [Ross et al., 1977,
Jayawardena and White, 1979; Blandford and Meadows,
1984]. In each of these cases considerable human judgment
was required to obtain geometric routing elements. A pri-
mary objective of our research effort is to use topographic
mapping elements directly as geometric routing elements.

Automatic extraction of geometric routing elements has
been made possible by the advent of digital elevation models
(DEM). The form of the DEM dictates to a large degree how
automation will proceed. The three primary forms of DEM
data are regular grid data, triangular irregular networks
(TIN), and contour string (vector) data. Moore et al.
[1988b] provide an excellent review of these data types.
Regular grid data in digital form are the most commonly
available type but algorithms exist to convert various types
of DEM data to each of the other forms [Westwood et al.,
1984]. From a hydraulic routing viewpoint each type of DEM
data also has its particular advantages and disadvantages.

Regular grid data, although computationally convenient,
suffer from poor definition of low paths across grid cells, the
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inability of objective flow partitioning out of a single cell
[Moore et al., 1988a], and digital data redundancy in
smooth regions. As Mark [1978] points out, ‘‘the chief
source of this (data) structure should be the phenomena in
question and not problems, data, or machine considerations
as is often the case.”” As an advantage, regular grid DEMs
are easily interfaced with most forms of remotely sensed and
raster-based data which are often used to represent soil,
vegetation and land use information.

Contour-based data enable the ready definition of stream
tubes. Under the assumption that flow does not cross stream
tube boundaries, routing computations are easily carried out
as a series of one-dimensional coupled equations [Tisdale et
al., 1986; Moore et al., 1988b]. The chief disadvantage of
contour-based data is the large data storage requirement.
Moore et al. [1988b] estimate that approximately one order
of magnitude more points are required for comparable
surface approximation using contour data than for regular
grid data.

In comparing grid and TIN data Peucker et al. {1978} and
Mark [1975] conclude that for varying terrain types from 14
to 250 grid points are required for every TIN point. Two or
more orders of magnitude more contour points may there-
fore be required for surface representation as compared to
TIN points if estimates from the previous two references are
combined. The efficiencies of TIN DEM data pointed out
above result from the ‘‘coordinate random, but surface
specific’” [Peucker et al., 1978] character of a TIN. Because
topography is nonstationary [Pike and Rozema, 1975] and
land use and soil boundaries are irregular, regular grid data
must be adjusted to adequately represent the roughest land-
forms or the smali-scale features of soil and landuse. This
results in data redundancy in nearby smooth regions. TIMN
DEMs can be generated to an arbitrary tolerance of slope
preservation from regular grid digital elevation models
[Westwood et al., 1984]. The resolution of the TIN increases
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wvith a decreasing topographic slope approximation toler-
ance.

Topographic fit (or slope definition) is one primary param-
eter that must be defined for routing calculations. Hydraulic
roughness is the other primary parameter. If roughness
within TIN facets is constant, the economy of TIN surface
representation will translate directly into computational
routing savings. Should roughness vary within a facet,
further subdivision will be required. For infiltration compu-
tations, further TIN subdivision is required to acquire ho-
rmmogeneous regions of soil type and land use. Because TIN
facets are arbitrarily oriented with respect to the surface
gradient, they require a two-dimensional form of the routing
equations. This is the primary disadvantage of TIN DEMs
for routing computations. This disadvantage is largely miti-
gated by the methodology presented below.

2. OBJECTIVES

The routing methodology over a TIN DEM described
herein represents a compromise between exploiting the
economy of the data structure and increased computational
complexity of two-dimensional routing. A primary concern
in designing our method is automation via the ability to route
directly on the TIN DEM as obtained from mapping sources
without substantial, and often subjective, DEM data manip-
ulation. With these concerns in mind and the data framework
restricted to triangular irregular networks our primary ob-
jectives are (1) develop a methodology using two-
dimensional kinematic wave equations approximated by
finite elements on topographic TIN facets as obtained from
mapping sources; (2) test the method against analytic solu-
tions for special cases and route flow across TIN facets
boundaries via transformation of boundary conditions; (3)
assess the method’s ability to handle kinematic shocks; and
(4) link the overland flow finite element routing method to a
finite difference channel routing scheme to demonstrate the
methodology’s potential as a watershed rainfall excess rout-
ing model. Before formal development of the methodology,
background information is presented on prior uses of finite
element techniques for watershed routing as well as routing
specifically on a TIN DEM.

3. BACKGROUND

3.1. Finite Element Techniques
for Watershed Routing

TIN facet watershed representation logically leads to finite
element methods due to the irregular TIN element shape. In
addition to the advantages of finite element techniques over
finite difference methods for treating nonrectangular grids,
Raymond and Gardner [1976] found finite elements to be
highly accurate. Cullen [1974] also found finite element
methods competitive at twice the linear resolution with
second-order accurate finite difference schemes when inte-
grating the shallow water equations.

Early work by Taylor et al. [1974], Taylor and Al-
Mashidani [1974], Taylor [1976], and Taylor and Huyakorn
{1978} demonstrated that finite elements could be used on
idealized overland flow situations. Solutions were obtained
for the St. Venant equations and the simplified kinematic
wave (KW) equations. Results of the four previous studies
illustrated that when the KW approximation criterion of

Woolhiser and Liggett [1967] was met virtually no differ-
ence existed between KW solutions and those obtained by
approximating the St. Venant equations.

Numerous applications to watershed hydrology followed
the early works mentioned above. Works by Aparicio and
Berezowsky [1982], Ross et al. [1977, 1979], Heatwole et al.
[1982], El-Ansary [1984], Judah [1973), Judah et al. [1975],
Jayawardena and White (1977, 1979], and Blandford and
Meadows [1984] can be broadly grouped as applications
where one-dimensional routing is performed on constant or
variable width finite elements. One-dimensional routing on
flow strips linked to channels has distinct advantages over
multidimensional routing in a computational sense as one-
dimensional coupled systems can be used to accomplish
routing over a multidimensional surface [Jayawardena and
White, 1979]. However, from an automation viewpoint,
one-dimensional routing schemes suffer the distinct disad-
vantage of requiring considerable human interpretation (or
DEM data processing) to define flow strips and elements.

Taylor and Al-Mashidani [1974] compared full and kine-
matic wave equations on a simple two-dimensional test case
with rectangular finite elements and compared these results
to a simple laboratory simulation. The stability of the
method was demonstrated but no application to watershed
geometries was undertaken. Kawahara and Yokoyama
[1980] employed the shallow water equations on a regular
triangular grid. A large-scale global solution was used and
very small time steps were required in their study. Channel
routing was not linked into their solution methodology.
Hamrick et al. [1985] used two-diniensional kinematic wave
equations with four-point quadrilateral finite elements in a
standard Galerkin formulation and in a streamline upwind
modified Galerkin method. Application to a prototype park-
ing lot supplied promising results but linkage to concentrated
channel flow was not demonstrated. Although not applied to
mapping DEM products, the streamline upwind modified
Galerkin method of Hamrick et al. [1985] shows potential for
application to grid or TIN DEM data if methodology to
compute computational order and to handle convergent flow
is developed.

Work by Eraslan et al. [1981] and Eraslan and Lin [1985]
is not based on finite elements but on the discrete element
method which is conceptually similar to integrated finite
differences and uses regular and irregular grid data. Their
application derived basin geometry from contour maps, but
it appears that regular grid DEM might be easily interfaced
with their system,

3.2, TIN DEM Specific Techniques
for Watershed Routing

Previous work on routing on a TIN has proceeded along
two lines. In the first method a TIN facet is converted to an
equivalent plane over which one-dimensional routing is
performed [Palacios and Cuevas, 1989; Cuevas and Pala-
cios, 1989; Silfer et al., 1987]. If the TIN facet drains out of
two sides, an area-weighted ratio is used to apportion the
hydrograph from the equivalent plane to the downstream
TIN facets. In the second method, two-dimensional flow
equations are used and a global solution is performed over
the entire basin TIN network [Vieux, 1988].

Vieux [1988] presented a thorough analysis of two-
dimensional kinematic wave overland flow routing without
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linkage to channel flow. He discusses applications with both
linear triangle and four-node quadrilateral elements but
found significant shortcomings in the use of both types of
elements. These shortcomings limit ready application di-
rectly on DEM data. These problems will be discussed in
more detail in the section on finite element formulation.
However, the primary difficulty with TIN facets is elimi-
nated by using the TIN internal finite element discretization
presented below.

4. MATHEMATICAL DEVELOPMENT

The two-dimensional continuity equation for unsteady
free surface flow is

oh 9Q, 90,
— + 4 = (g - 1
o T T o {g—1) (1
where
h flow depth [L];
¢t time [T];

Q. discharge parallel to the x axis [L*/TL];
Q, discharge parallel to the y axis [L*/TL];
g precipitation rate (lateral inflow) [L*/TL?];
f infiltration rate (lateral outflow) [L3/TL?].

The kinematic wave assumption implies a unique relation-
ship between depth and discharge as

Q.= ah™ 2)
Q,=a,h" 3)

where m is the depth-discharge exponent, «, is the x
direction depth-discharge coefficient, and «, is the y direc-
tion depth-discharge coefficient. Uniform flow resistance
laws such as Manning’s and Chezy’s are often utilized to
define the coefficients and exponents for (2) and (3). The
partial derivatives with respect to x and y in (1) are obtained
by differentiating (2) and (3) with respect to x and y,
respectively. By substituting the partial derivatives into (1}
we obtain

dh — _—
57 Faumh o Teymh PV (g=rf) 4
The local velocities V, and V, are defined as
Ve=ahm! (5)
V,y=a,hm ! (6)

These relations are substituted into (4) to obtain

ah dh ah

VsV =) M
To address the first objective, (7) is solved over a two-
dimensional domain using finite elements to approximate the
spatial derivatives. The resulting ordinary differential equa-
tions are solved in time via finite differences. Application of
the above equations is restricted to those cases for which the
kinematic wave approximation is valid [Woolhiser and Lig-
gert, 1967]. Routing into pits and routing where backwater
effects are significant, such as over microtopography, cannot
be treated using the above eguations.

Topographic - -
Nodes Charinel

Giobal Node
12 17 Vertex No.
Finite Element
Node No. "™
TN
: Facet 1
! Quadrisected

Fig. 1. TIN representation of a hypothetical watershed.

5. FiNiTE ELEMENT FORMULATION

A triangular irregular network representation of a simple,
hypothetical, watershed is illustrated in Figure 1. Each facet
has pointers to three nodes, with x, y, and z coordinates,
and pointers to adjacent facets. Given this information,
Palacios-Velez and Cuevas-Renaud [1986], Maidment et al.
[1989], and Jones et al. [1990] have developed methods to
extract the drainage network. Palacios and Cuevas [1989]
have also developed methods to derive the computational
order for routing runoff on the TIN facets.

A TIN facet to TIN facet approach is utilized in this study.
This is one fundamental difference between the current
approach and those of Vieux [1988], Vieux et al. [1990] and
Kawahara and Yokoyama [1980], who employed a basin-
wide solution of depth and discharge for all triangular finite
element nodes at each time step. To accomplish routing on
an individual TIN facet, the facet is quadrisected to form 16
local triangular finite elements with the uniform slope of the
TIN facet as illustrated in the enlargement of facet 1 in
Figure 1. Linear basis functions over the 16 local finite
elements are used to approximate the flow depth 4 on the
TIN facet. In this approach the individual TIN facet there-
fore forms the boundaries of the global solution domain.
When using the kinematic wave approximation to the shal-
low water equations there is no reason to employ a global
solution because the nature of the equations does not incor-
porate the influence of downstream boundary conditions.
Routing computations are therefore completed on a facet by
facet basis. A complete routing computation {event) begins
on a facet along the ridge with a known depth (h = O)
upstream boundary condition. Hydrographs are stored at
facet outflow nodes so that upsiream boundary conditions
can then be derived for the routing computation on the next
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downstream facet. When a channel is reached, facet outflow
becomes lateral inflow for channel routing.

Standard linear basis functions are used to approximate
the depth A(x, y) at any location within the facet using the
riormal linear combination of nodal depths and basis weights
as

h(x, y)= 2, hd; (8)

i=1

where

F(x, y) depth within the facet;
h; nodal depths;
®; linear basis functions;
n  number of nodes in a TIN facet (15 for facet
quadrisection).

Using linear basis functions the depth at any point in the
facet will be approximated by piecewise continuous planar
surfaces over the local elements within the facet. Equation
(8) is substituted into (7) to form the residual over a local
element to obtain

1 ah®, v ah®; . ah®; ( =0
e - —+ —=(g~f)=
ot Y ox Yy ay a-f

=1

9

In the global assembly over the TIN facet the conventional
Galerkin technique is used so the same basis function
weights are applied to the local element residuals from (9) to
obtain

n
| <~ 30, ah;d; hD;
[®]] Z — t mV, —— + mV, ——
R at ax

i=1

~(g-f)|drR=0  (10)

where [®]T = [®,, ®,, --+, ®,] and R is the single TIN
facet domain. Upon assembly, (10) may be written in matrix
form as

[AlA] + [BIh] - [C]=0 (11)

Before assembly, further simplification can be achieved if
the local coordinates are transformed into a coordinate
system in which the surface gradient is parallel to one of the
principal axes. This is accomplished by rotating the global
coordinate system into a local system with the local y' axis
parallel to the surface gradient of the facet before quadrisec-
tion (see Figure 2). The following conformal rotation equa-
tions are used to rotate (x, y) coordinates of the TIN facet
vertex nodes (10, 12, and 17, in Figure 2):

x' _|cos @ -sin 8 |[x 12
y'] lsiné  cos 8 {\y (12)

After this rotation all element velocities in the local x
direction (V) vanish. The resulting one-dimensional system
is sclved for node depths in a two-dimensional domain and
thus the need for two-dimensional elements and basis func-

Downslope Gradient
Direction of TIN Facet

Fig. 2. TIN element and coordinate rotation parallel to slope
gradient.

tions. The rotation is valid because the kinematic wave
equations result in a unique correspondence between depth
and discharge at a point (see (2) and (3)). Directional
discharge differences are only a function of the local rough-
ness, directional components of the surface gradient and
excess rainfall rate.

Local coordinate rotation to obtain one-dimensional rout-
ing avoids an additional numerical problem encountered by
Vieux [1988]. Vieux demonstrated that when a four-node
quadrilateral finite element is rotated an incompatibility
results when integrating to form the [B] matrix. This occurs
because the resulting sign and magnitude of elements of [B]
are not independent of the ordering used in nodal coordinate
assignment to the natural isoparametric coordinate system
before Gauss-Legendre quadrature. He recommends against
the use of four-node quadrilateral finite elements when
anisotropy of slope exists. Further analysis by Vieux [1988]
showed that triangular elements do not suffer this incompat-
ibility upon rotation and recommends their use. Vieux [1988]
also found that the most accurate solutions were obtained
when one of the finite element sides is parallel to the gradient
direction.

After rotation and assembly to form (11) the time deriva-
tive of the depth vector is approximated by an ordinary
trapezoidal finite difference approximation. The vector of
depths at the advance time is obtained using the following
equation,

[h]* "4 = [D]EIR] + AD]T'[C] (13)

where [F] = [A] — 0.5(A0n[B] and [D] = [A] +
0.5(An)[B]. After rotation the nonzero local element veloc-
ities (V;), which contribute to the [B] matrix, are computed
from dépth values of the local element vertices (h;, hy, By)
at the previous time step (¢) as follows:

('M(_Xl m =1 m— 1 m 1 4
v, = 3 [#] + h; +hy ] (14)

An iterative and a noniterative evaluation of (14) were
tested. Mo significant improvement was found by iterating;

N
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Fig. 3. (a) Single and (b) four coplanar facet test.

therefore a noniterative approach was employed to further
simplify and enhance solution speed.

TIN facet by facet solution of (11) offers several distinct
advantages over a basinwide global solution. The system of
equations in (11) is small and easily solved. For the level of
discretization shown in Figure 1 the maximum number of
unknown nodal depths is 10. This condition corresponds to
the case where a known upstream boundary condition
(inflow or & = Q) exists at one edge of the facet and outflow
occurs across the remaining two facet edges. For the case
where upstream boundary conditions are defined on two
facet edges, six unknown nodal depths exist. Because the
kinematic wave equations are used, we must exclude the
case where flow into the facet occurs on all three boundaries
as it would violate basic assumptions. This must be treated
in the algorithms which compute the routing sequence over
the TIN [Palacios-Velez and Cuevas-Renaud, 1986].

Facet by facet routing also allows ready reporting of
spatially distributed hydrographs throughout the basin. Fi-
nite element discretization within a TIN facet also avoids a
problem encountered by Vieux [1988] where all three TIN
facet nodes (corresponding to nodes of a single finite element
in Vieux’s [1988] case) fall on the watershed boundary
(Figure 1, facet 2). When a global solution over the water-
shed is used this element has & = 0 at all nodes due to the
watershed boundary condition and a solution does not exist
for it.

To store boundary conditions in the facet to facet routing
scheme the nodal depths on the outflow edges of a facet are
converted to discharge orthogonal to the facet edge. For
each of the five nodes along a facet edge, discharge depths
are stored as a function of time. This outflow becomes the
upstream boundary condition for the downstream facet.

When the downstream facet is being processed, the dis-
charge orthogonal to the boundary is converted back to
depth for the slope and roughness of the current facet. If a
facet outflow edge contributes to a channel, the facet dis-
charge is treated as spatially variable lateral inflow to the
channel segment.

Concentrated flow in a channel segment is routed in a
trapezoidal geometry using a one-dimensional, four-point
implicit, finite difference method with nine computational
nodes. One-dimensional finite differences are used for chan-
nel routing because of linear channel segmentation at facet
boundaries and assumed uniform channel cross section for
each segment. Spatially variable lateral channel inflow is
received from adjacent facets. Because spatially variable
lateral inflow is received, an analytic solution for the un-
steady uniform flow region (zone A) cannot be obtained.
This finite difference method is formally described by Wool-
hiser et al. [1990]. However, the implementation described
by Woolhiser et al. {1990} assumes uniform lateral inflow and
incorporates a zone A solution when valid.

6. TESTING AND RESULTS

Several simple noninfiltrating examples were selected for
initial testing of the methodology described above. Time step
size was selected to meet the criteria of Woolhiser et al.
[1990] and in each case local (TIN facet) and global (water-
shed) volume balances were computed for further computa-
tional checks. Initial examples included dimensionless, one-
dimensional, coplanar cases to allow numerical results to be
compared directly to analytic solutions. In Figure 3a the
aumerical finite element solutions at two local facet nodes of
a single TIN facet are compared to analytic solutions.

REEL
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Fig. 4. Comparison of finite element to one-dimensional finite
difference solution with channel linkage.

Numerical equilibrium depths for nodes 1 and 5 are within
2.9% and 2.5% of the analytic depths with a local (and
global) volume balance error of —1.24%.

The next case, illustrated in Figure 3b, was selected to
test the ability of the methodology to pass upstream facet
solutions across facet boundaries to downstream facets.
Four coplanar TIN facets are used in this test. The computed
average dimensionless depths of the five local nodes at the
end of the second and fourth facet are plotted with the
appropriate analytic solutions in Figure 3b. Average numer-
ical equilibrium depths for rows 1 and 2 are within 2.2% and
1.4% of the analytic depths and the global volume balance
error is —0.35%.

To test linkage of the finite element TIN facet routing to
one-dimensional finite difference channel routing the cases
illustrated in Figure 4 were employed. In the finite element
geometry two coplanar TIN facets are constructed with
one-dimensional flow contributing laterally to a single chan-
niel element. The response from this case is compared to a
finite difference solution obtained from KINEROS [Wool-
hiser et al., 1990} on a single one-dimensional overland flow
plane contributing laterally to a channel. Impervious geom-
etries of each case were constructed with equal area, slope,
hydraulic roughness and computational node density in the
direction of flow. A rainfall hyetograph from September 13,
1975 of rain gage 384 of the U.S. Department of Agriculture
Agricultural Research Service (USDA-ARS) Walnut Gulch
experimental watershed was used as input to each of the two
systerns. The hyetograph and channel outfiow hydrographs
from the finite element and finite difference solutions are
tlustrated in Figure 4. Peak outflow rate from the TIN

geometry is 3.8% greater than outflow from the KINEROS
geometry. Global volume balances from the TIN finite
element and KINEROS finite difference solutions were
—2.0% and 1.8%, respectively.

In the above cases minor spatial oscillations of computed
depth were observed in the finite element solutions over the
TIN facets. Raymond and Gardner [1976], Zienkiewicz
[1977], and Huyakorn and Pinder [1983], among others, have
noted that solutions obtained from the Galerkin method
exhibit spatial oscillations for convection-dominated situa-
tions. Reduction of the computational grid mesh or using
upstream weighting to introduce numerical dispersion are
suggested solutions for spurious oscillations. We avoid fur-
ther discretization as a matter of practicality. Upstream
weighting is also not used for several reasons. To obtain an
exact solution with upstream weighting the proper weighting
coefficient must be selected. However, selection of the
coefficient is case dependent [Zienkiewicz, 1977]. In addi-
tion, upstream weighting is difficult to implement because of
the arbitrary orientation of topographic TIN facets in rela-
tion to flow direction. Hamrick et al. [1985] also found that
two-dimensional kinematic wave overland flow solutions
obtained from a standard Galerkin method and a streamlined
upstream weighting modified Galerkin method were almost
identical. For the methodology presented herein further
discretization and the implementation of upstream weighting
is not warranted due to good agreement with analytic results
and reasonable volume balance errors.
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Fig. 5. Cross-gradient dimensionless depth profiles at three times
for a kinematic shock condition.
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Fig. 6. TIN representation of a portion of the Lucky Hills 106
watershed.

Each of the cases discussed above employed coplanar
TIN facets. For a more realistic, noncoplanar condition,
kinematic shocks will be encountered where downstream
facets have a smaller slope and/or a greater hydraulic rough-
ness. To assess shock handling capability of the TIN facet
finite element methodology the case shown in Figure 5 was
constructed. For a uniform pulse of rainfall, dimensionless
depth profiles across TIN facet 2 are shown at three dimen-
sionless times. The local volume balance error for TIN facet
2 is 0.10% and the global volume balance error for the
three-facet system is 0.24%. This case illustrates the pro-
gression of the shock into the interior of TIN facet 2 and
demonstrates the ability of the numerical methodology to
adequately treat a shock condition.

In a final test, the TIN routing methodology was applied to
the topography of a portion of the Lucky Hills 106 catchment
consisting of 15 facets and three channels (see Figure 6).
This catchment is a subbasin of the USDA-ARS Walnut
Gulch Experimental Watershed. While testing the method
on this catchment a problem was encountered. The problem
occurs when a TIN gradient direction is nearly paraliel to a
facet edge which is a watershed flow line boundary. This
condition can occur due to the inexact TIN approximation of
the topography (see Figure 6). If this condition occurs,
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analytical results predict development of a depth profile
along the gradient direction for constant excess rainfall.
However, the current algorithm implementation assigns the
TIN facet edge along the watershed boundary to a zero
depth boundary condition. To maintain volume balance the
finite element algorithm forces the row of local nodes adja-
cent to the facet edge to have artificially larger depths. This
induces an oscillation which can force nodes to have a
negative, erroneous, depth (see Figure 6). The zero depth
boundary condition is too stringent in this case and other
boundary conditions will be investigated in future efforts to
address this problem.

However, this problem can be avoided if the gradient is
parallel to the TIN facet edge, implying a proper TIN
approximation of the topography. In this case the depth on
the nodes of the facet edge is not set to zero and the runoff
depth profile develops normally in a downstream direction
along the flow line. To insure gradient alignment with a TIN
facet flow line boundary it is envisioned that the algorithms
of Palacios-Velez and Cuevas-Renaud [1986], Palacios and
Cuevas [1989], and Jones et al. [1990] can be modified to
automatically detect and correct facet flow line edge and
gradient alignment. For the partial Lucky Hills 106 case
tested above, manual adjustments to TIN vertex locations
were made and routing was successfully completed. The
response from this case is compared to a one-dimensional
finite difference solution on overland flow planes and chan-
nels obtained from KINEROS [Woolhiser et al., 1990] in
Figure 7. The KINEROS representation had three channel
elements and six overland flow planes. Comparisons are
shown for both a simple rainfall excess pulse and for the
same rainfall event used in Figure 4. Global volume balances
from the TIN finite element and finite difference solutions
were —2.4% and 0.05% for the excess pulse and ~2.1% and
0.47% for the rainfall event, respectively. The similarity of
results between the two models (Figure 7) is not unexpected.
Because a common topographic map was used to construct
both the KINEROS and TIN facet representations the
resulting slope distributions for the two models were very
similar. In addition, a common hydraulic roughness was
used for both models.

The computational requirements for the finite element
routing method are more intensive than a one-dimensional
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Fig. 7. Comparison of finite element to one-dimensional finite difference solution on Lucky Hills for two excess input
cases.
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TABLE 1. Computational Time Comparison Between Finite Element and One-Dimensional Finite
Difference Solutions for Several Equivalent Geometries

Finite Element

One-Dimensional Finite Difference

Number of CPU Number of Overland CPU
Facets Time, s Flow Planes Time, s
Case 1 4 28 2 9
Case 2 6 44 ; 13
Case 3 15 88 11 16

finite difference routing scheme. This is illustrated in Table 1
where the CPU time (VAX 11/750) for the two schemes is
compared for equivalent basin geometries and excess rainfall
hyetographs. Although the finite element computational time
requirements are greater it must be kept in mind that
considerable interpretive time must be expended to derive
the overland flow plane geometries for one-dimensional
finite difference routing. From experience, it is the authors’
opinion that the advantages of objective automatic deriva-
tion of routing geometry directly from TIN mapping prod-
ucts and subsequent finite element routing outweigh the
added computational burden.

7. CONCLUSIONS

The local TIN finite element routing strategy was tested to
illustrate the viability of the method for kinematic routing of
excess rainfall on small catchments. The technique capital-
izes on the coordinate random, surface specific efficiency of
a triangular irregular network of digital elevation data to
represent topography. Quadrisection of individual TIN fac-
ets and local coordinate rotation orthogonal to the surface
gradient permits ease of application by providing a small
system of simultaneous equations for solution. The tech-
nique also possesses sufficient numerical robustness to han-
dle kinematic shocks. Facet by facet routing also allows
ready incorporation of one-dimensional, finite difference,
channel routing. The results indicate that further research to
incorporate infiltration and additional refinement of numeri-
cal techniques is warranted. Comparisons of this routing
technique with techniques based on contour and regular grid
DEM data will also be conducted as part of future research.
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