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ABSTRACT

A simple, complete mixing model is used to evaluate the degree
of distortion involved in modeling chemical exchange and transport
at the soil surface as a lumped rather than a distributed process. A
complete mixing model was coupled to the kinematic cascade model,
KINEROS, to provide a distributed representation of chemical ex-
change and transport. A lumped model was developed by ignoring
spatial variations of chemical concentration in overland flow and in
the mixing zone. Chemical concentration and transport predicted by
the alternative approaches were evaluated for total transport, arrival
time, peak concentration time, and peak concentration. Total chem-
ical transport was virtually unaffected by model form. However, sig-
nificant differences were found in arrival and peak concentration
times as well as peak concentrations when chemical was placed only
in the upper plane of a two plane cascade. The lumped model pre-
dicted significantly lower peak chemical concentrations and arrival
times that were too short. A lumped model provides a good approx-
imation for transport from a single plane, but caution should be used
when a lumped model is used to describe chemical exchange and
transport on a cascade of planes.

SIGNIFICANT QUANTITIES of chemicals and nu-
trients may be transported to receiving waters by
surface runoff. The exchange and transport process at
the soil surface is extremely complex and has been
discussed by Ahuja (1986) and Bailey et al. (1974).
Bailey et al. (1974) described four important mecha-
nisms in the pickup of chemicals by overland flow
during a runoff-producing rainfall event. They include
the following mechanisms:

1. Diffusion and turbulent transport of a dissolved
chemical species by movement of soil water into
the overland flow

2. Desorption of the chemical species from soil par-
ticles into the soil water or directly into overland
flow

3. Dissolution of solid phase chemical into the soil

water or overland flow

Scouring of solid phase chemical or soil particles
by hydraulic forces with subsequent transport and
dissolution or adsorption-desorption while in
transport

The importance of each of these transport mecha-
nisms is determined by the chemical under consid-
eration, the method of application, soil characteristics,
vegetation, and recent hydrologic history.
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Because of the complexity of the exchange and
transport process, many simplifications have been
made in model development (Frere et al., 1975, 1980;
Donigian et al.,, 1977; Leonard et al., 1979; Ingram
and Woolhiser, 1980; Ahuja, 1982; Ahuja and Leh-
man, 1983; Heathman et al., 1985, 1986). One widely
used simplification is based on the concept of a thin
soil surface zone that interacts with the surface runoff
water (Steenhuis and Walter, 1980; Ahuja, 1982; Ahuja
and Lehman, 1983; Heathman et al., 1985; Snyder and
Woolhiser, 1985). Donigian et al. (1977) used the con-
cept of a thin zone at the soil surface in which com-
plete and instantaneous mixing between rainwater and
soil solution occurs. Ahuja and Lehman (1983) tested
Donigian’s model under free infiltration conditions
with Br as a tracer and found it able to predict runoff
concentrations fairly accurately. Ingram and Wool-
hiser (1980) applied conservation of mass equations
for water and chemical to differential components of
overland flow and to a conceptual mixing zone to de-
rive a more general exchange model described by par-
tial differential equations. Experimental measure-
ments in a flume using CaSO, as a tracer showed that
concentrations in surface runoff increased down the
flume and that concentrations in surface runoff were
much lower than in the near surface zone of the po-
rous medium.

With the exception of the work by Ingram and
Wootlhiser (1980), all chemical transport models have
been lumped. That is, the equations describing chem-
ical exchange and transport are ordinary differential
equations rather than partial differential equations.
Although the lumped models appear to have some
predictive capability when the parameters are esti-
mated by fitting experimental data, questions arise re-
garding the interpretation of the parameters and use
of the equations in other field situations. The objective
of this paper is to examine the degree of distortion
involved in modeling a distributed system as a lumped
system. Although a completely mixed reactor model
may be a gross oversimplification of the chemical ex-
change process, we use it in our comparison of lumped
and distributed models for mathematical conven-
ience. This presupposes that conclusions regarding
lumped vs. distributed models would not change due
to the type of exchange model used.

MODEL DERIVATION

The derivation of a complete mixing chemical
transport model is based on the following assump-
tions:




EMMERICH ET AL: COMPARISON OF LUMPED AND DISTRIBUTED MODELS 121

1. The chemical available for surface exchange and
transport is soluble and there is no adsorption
or desorption. However, equilibrium adsorp-
tion-desorption could easily be included.

2. A finite soil mixing depth exists in which chem-
ical in the soil interacts with the surface runoff
water.

3. Chemical from the water in the soil mixing depth,
from surface runoff, and from rainfall mix com-
pletely and instantaneously in the mixing zone.
The mixing zone includes the surface runoff and
soil mixing depth water. Therefore, the surface
runoff and soil mixing depth water always have
the same chemical concentrations.

4. There is no diffusion or dispersion of chemical
within or into the mixing zone from below the
soil mixing depth.

5. Infiltration rate is spatially uniform, but un-
steady.

6. The kinematic wave approximation is valid for
surface runoff.

Lumped, Complete Mixing Model

The lumped, complete mixing (completely mixed
reactor) model can be described by equations of con-
tinuity for water and a chemical species on a plane
element of unit width. The continuity equation for
water is

as/dt+dv/di=R -1~ Q,+ Q, [1]
where S is the volume of water on the soil surface per

unit width, S = j‘h dx; h is local depth of water on

0
the soil surface; L is the length of the plane element;
x is distance on the plane element; V is the volume
of water in the soil mixing depth (¢) per unit width,
L

Vo= [ e dx or the product of the porosity of the soil

0
(¢), the soil mixing depth (), and the length of the
plane (L); R is the input rainfall rate (units LT
L

R = f r dx, r is the rainfall rate (units L/7); I is the

0
L

infiltration rate (units LY/ 7T), | = fz' dx, i is the infil-

0
tration rate (units L/7); Q, is the runoff rate (units
L*/T); Q, is the volume running onto the plane ele-
ment from the plane above (units L%/T); and ¢ is time.
The continuity equation for chemical is

d(SC,) / dt + d(VC)) ] dt
= RCar - ICa - Q(;Cu + Q/)Calr [2]
where C, is the concentration of chemical 4 in the
mixing zone; C,, is the concentration of chemical A
in the rainfall; C,, is the concentration of chemical A4

in the water running onto the element from above.
Equations [1] and [2] may be combined to obtained

the equation,
dC, / dt = [R(C,, — C,)
T OlCow — CII/ (S + V) (3]

The storage, S, is obtained by an analytical or nu-
merical solution of the kinematic wave equation,

oh /ot + 6Q, ) ox = r — i [4]
where (), is a function of A;
Qo — ahm [5]

The £ values are then integrated from 0 to L to obtain
the storage at each time increment. For laminar flow
a = 8gs/Kv where g is the acceleration due to gravity,
sis the slope, K is a parameter related to surface rough-
ness, » is kinematic viscosity of water, and m = 3.

Distributed, Complete Mixing Model

The distributed, complete mixing model is de-
scribed by the kinematic wave Eq. [4] and [5], com-
bined with an equation for advective transport of
chemical to yield Eq. [6].

a(hC,) [/ dt + 3(epC,) / ot
+ dQ.C) / ox = rC,, — iC, [6]

Equations [4] and [6] can be combined to obtain Eq.
[7].
(h + ep) 3C, / a1y + Q,8C, ] ox
= nCy — C) (7]
Note that the term d(e¢) / 9¢ obtained by expanding
the second term in Eq. [6] is equal to zero.
At the upper boundary (x=0), # and Q, are both

zero, hence Eq. [7] reduces to the ordinary differential
equation,

dC, / dt = [n(C,, — C,)]/ e (8]
For the initial condition we have
Cux,0) = C,, [9]

where 'C,, is the initial concentration of the chemical
in the soil mixing zone.

Equations [4] through [8] can be solved analytically
for certain special cases and may be solved numeri-
cally in general. Note that the coefficients 4 and Q, in
Eq. [7] are obtained from the solution of Eq. [4].
Therefore, any inaccuracies in the numerical solution
for 4 will be reflected in the numerical solution for
Cx,0).

NUMERICAL AND ANALYTICAL SOLUTIONS

Numerical solutions to Eq. [4] were obtained by the
four-point implicit scheme

Wl + et =~k 4 ellah™) iy — (ah™)']

2AL Ax
; hm {“ — /,lnz !

where the superscript / refers to the time step, the
subscript j refers to the distance step, and w is a
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weighting function (0.5 < w < 1.0). Prior to ponding
the infiltration rate / is equal to the rainfall rate. After
ponding, it is given by the Smith and Parlange (1978)
Eq. [11],

; - _[Kexp(F/B)] m

[exp(F/B) — 1]

where K is the saturated hydraulic conductivity, F is
the accumulated infiltration depth; B is given by the
expression

B=0G¢(Sma—S)UA = V) [12]

where G is the effective net capillary drive, ¢ is po-
rosity, S.., 1S the maximum relative saturation under
imbibition, S, is the initial saturation, and V, is the
relative volume of rock in the soil matrix.

The lumped model chemical concentration Eq. [3]
was solved by the finite difference formulation, with
the storage calculated by the kinematic wave model,
for the Jpper and lower planes separately as follows:

(| i
R(Cm _ g_ig)
Cl -G 2
At 05T+ S)+ v
L (@t Qz) (c;;' + Gy G c;,)
2 2 2

0.5(S*'+ S+ vV [13]

The distributed complete mixing model chemical
transport Eq. [6] was solved with the implicit finite-
difference formulation as follows:

(Cehy™! + (Cohlitt = (Coh)y — (Cohlya

+ G[CiY + CrliH T — G — Cj+1]
2At
w XX— (<CGQO>jljl - <CaQn>jH l)

2
= 0 (COJ — (GO

.+_

A
— 281 rC, — 5’((:’ CYt + (i Gyt

+ ((CH+ (1 CiLy) [14]

These finite difference formulations are of first-or-
der accuracy and some numerical dispersion is intro-
duced in regions where the second derivatives of / or
C, are large. The accuracy of the numerical solutions
can be determined by comparing them to analytical
solutions for special cases. Equations [4] and [7] can
be written in the characteristic form for the kinematic
wave equations (Miller, 1984) as follows:

dh/dt=r—1 [15a]
dx / dt = am pm™! [15Db]
and for the advective transport equation:
dC,/ dt = [H(C, — CHI/(h + e¢)  [l6a]
dx /dt = Q,)(h + «p) [16b]
The ordinary differential Eq. [15a] and [16a] are valid

along the characteristic ground curves given by Eq.
[15b] and [16b], respectively.

The solution domain is shown in Fig. 1. If we con-
sider the flow characteristic curve beginning at (0,0)
we can integrate Eq. [15a] to obtain Eq. [17]:

h=(r—Dt=gqt [17]
if r and i are constant and g is rainfall excess. By sub-
stituting this expression into Eq. [15b] and integrating,
we obtain Eq. [18];

xX=a(r — [18]
the characteristic curve dividing the solution domain

into the unsteady but spatially uniform region shown
as A and a steady but spatially varied region shown

as B in Fig. 1.
Within region A (Fig. 1) Eq. [16a] can be written as
dC,/ dt = —rC, / (gt + ep) [19]

if C,, = 0.0 Integrating Eq. [19] yields
Co = [Co ()7 / [(qt + ¢)7] [20]

which is valid within the region enclosed by the line
¢ = 0.0, the curve 0-¢,, and x = L. In the same region
Eq. [16b] becomes

dx/dt = [a(qt)"] / (gt + ep) [21]

with solution upon integration for the special case of
laminar flow (m = 3)

X =Xx, t (ag’f / 3) + (aed/q)
lepgt — (¢£°/2) — (e¢)In[(ep + qr)/e]] [22]
where x, is the value of x at 1 = 0.0.

30 4

Advective Chemical A
Transport Chargcteristic s

t
20 ——— 8x _gx d

4 Kinematic
Characteristic
4 dx

s (W:«m(qi)m“

T 7
o] d c L
X

Fig. 1. Solution domain for x and ¢ in the unsteady, uniform region
(A) and steady, nonuniform region (B) separated by characteristic
0— 1,
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In region B (Fig. 1) the solution of the kinematic
wave equation is

ah™ = Q, = gx [23]

and Eq. [16a] can be divided by Eq. [16b], if C,, =
0.0 and written as

dC,/ dx = —rC, / gx [24]
which upon integration yields
Ca = Ca/ X()r/q Xﬁ/‘/q [25]

where C,, is the solution to Eq. [20] along the char-
acteristic Eq. [16b] when it intersects the kinematic
characteristic given by Eq. [15b] (i.e., on the boundary
between regions A and B).

The equation of the chemical advective character-
istic ground curve can be written as

dx [ di = gx [ [(gx/)"" + €] [26]
and upon integration yields

P = [0 - (f¢/4) Inxl + {[mq”/’”)’l]/al/m}
(Xl/m —_— xll/m) + (€¢/q) Inx [27]

where ¢, and x, are ¢ and x values when the charac-
teristic Eq. [26] starts on the boundary between region
A and B (Fig. 1).

The concentration at the upper boundary is ob-
tained by integrating Eq. [8] to yield

CA0,1) = C,, exp(—rt/e¢) [28]

where C,, = 0.0.

Solutions for C, as a function of ¢ at the downstream
boundary can be found analytically at a finite number
of points by solving along a set of characteristics such
as c-t,, d-e-f, etc. (Fig. 1). Note that characteristic
ground curves for chemical transport emanating from
the line (0,0)—(0,L) completely fill the solution plane
(See Fig. 1 and Eq. [21]).

MODEL CASES EVALUATED

The physical setup for all cases evaluated consists
of two planes each 15.25 m long (L) with a 3% slope

RAINFALL r

RUNOFF 0,

P
INFILTRATION

Fig. 2. Schematic drawing of overland flow planes, where r is the
rainfall rate; ¢ is the soil mixing zone depth; 4 is the surface runoff
water depth, s is the slope of the planes; I and /I are the upper
and lower planes; Q, is the runoff rate; L is the length of the
planes; x is a distance down the plane; and 7 is the infiltration
rate.

($) and unit width (Fig. 2). The surface exchange soil
had a porosity of 30%, 20% rock fragments > 2.0 mm,
20% initial relative saturation, and final infiltration
rate (/) of 2.54 mmy/h (infiltration and percolation be-
low the soil mixing depth were assumed equal). The
simulated rainfall events had a duration of 60 min at
a rate (r) of 25.4 mm/h. The soil mixing depth (e) was
10.0 mm with an initial chemical concentration of 1.0
mg/L. Overland flow was assumed to be over a rela-
tively smooth surface with K (as a part of Eq. [5]) set
to 700. Cases with chemical in the rainfall had a con-
centration, C,, = 0.1 mg/L.

The evaluation of the lumped and distributed form
of the complete mixing model required that the hy-
draulic routing be the same in all cases. The implicit
finite-difference model described above from the kin-
ematic cascade model KINEROS was used to obtain
consistent kinematic routing for all cases evaluated
and storage, .S, for the lumped model. The runoff hy-
drograph is shown in Fig. 3. w

Six cases of chemical placement were evaluated for
differences in runoff concentration, timing of peak
concentration, and total chemical transport between
the lumped and distributed model forms. The six cases
were:

Chemical on both planes and none in rainfall
Chemical on both upper and lower planes and
in rainfall

Chemical on lower plane and none in rainfall
Chemical on lower plane and in rainfall
Chemical on upper plane and none in rainfall

. Chemical on upper plane and in rainfall

These cases represented the most common chemical
placement situations encountered in surface exchange
and transport modeling.

Two special cases were also evaluated to compare
analytical and numerical solutions for the distributed
form of the complete mixing model. The physical setup
was the same as described above, except overland flow
was restricted to be laminar. To obtain analytical so-
lutions, it was necessary that rainfall and infiltration
rates were constant, no chemical in the rainfall, and
laminar flow.

N —
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T T T T
0 10 20 30 40 50 B0 70
TIME (min)
Fig. 3. Runoff hydrograph for cases evaluated.
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RESULTS AND DISCUSSION

Analytical and numerical solutions obtained from
the two special cases of the distributed form of the
complete mixing model were used to evaluate the §-
nite difference formulation. For case one the chemical
was present only in the soil mixing depth of the lower
plane. Analytical and numerical solutions for this case
are shown in Fig. 4. We note very close agreement
until £ = 15 min, when the numerical solution drops
below the analytical solution. The analytic solution
shows a sudden drop in concentration (from 0.25 to
0.0) at ¢ = 18 min. This is the result of the chemical
free runoff from the upper plane arriving at the lower
boundary as a concentration “shock.” This rapid
change in concentration is smoothed by numerical dif-
fusion in the finite difference model. For the second
case, chemical was present only in the upper plane.
Numerical and analytical solutions for the concentra-
tion leaving the lower plane are presented in Fig. 5.

1.0
: iR —— Analytlcaﬁ
a5 -90 7} Numerical
275 .80
8g
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88 .80 .
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£} 20
3 .
Z3 J ‘
= 10 4 ;
=
00 [
T T T ———

0 10 20 30 40 50 60 70

TIME (min)

Fig. 4. Concentration vs. time for the analytical and numerical so-
lutions to the distributed form of the model with chemical in lower
plane.
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Fig. 5. Concentration vs. time for the analytical and numerical so-
lutions to the distributed form of the model with chemical in upper
plane.

We note that in the analytical solution there is a delay
of 18 min before the arrival of the chemical as a shock
and that the chemical has been considerably diluted
by rainfall and infiltration as it passed over the lower
plane so that the peak concentration is about 0.25.
Again, the finite difference solution shows numerical
dispersion, which leads to an earlier arrival time and
a significantly lower peak concentration. We con-
cluded that the finite difference approximation is ad-
€quate to examine the degree of distortion involved
in modeling a distributed system as a lumped system.
We recognize also that the finite difference solutions
show numerical dispersion that smooths out abrupt
changes in concentration. Such smoothing is actually
more representative of actual surface runoff concen-
trations. Chemical dispersion and diffusion were not
included in the complete mixing model, but they would
smooth abrupt changes in surface runoff concentra-
tion. Therefore, using the numerical formulation to
solve for C, adds quasichemical dispersion and dif-
fusion into the model that is not explicitly accounted
for.

Figure 6 shows the mixing zone chemical concen-
tration vs. time at the lower plane edge for the case
of chemical on both planes. No difference was found
in the predicted mixing zone concentration at the lower
plane edge for the two forms of the complete mixing
model. The concentration decreased from the initial
concentration (1.0 mg/L) to near zero in about 50 min.
For both forms of the model, 21% of the chemical was
transported to the edge of the lower plane by the sur-
face runoff and 79% percolated below the soil mixing
depth. The chemical concentration decreased at a
slower rate with chemical in the rainfall until it reached
the input rainfall concentration of 0.1 mg/L. and re-
mained constant.

It is of interest to note that the solution for concen-
tration as a function of time at the downstream
boundary, Eq. [20], differs from that proposed by Ahuja
and Lehman (1983). Ahuja and Lehman’s equation is
identical to our equation for the upstream boundary
(Eq. [28]), which is not surprising since they assumed
negligible surface water storage. However, Eq. [20]

— 1.0
<< 90 -— [istributed
U‘Q ' Lumped
=z 80 ~
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CE
L 70
2y
o .70
e
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=) 50 —
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52
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&) 20 ~
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s .10+
=
.00 H
[ S S E— T T —

0 10 20 30 40 50 60 70

TIME (min)
Fig. 6. Concentration vs. time for chemical in both planes.
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contains the infiltration rate / as a parameter as well
as the rainfall rate and e¢. Therefore, for a given rain-
fall rate and mixing zone depth, ep, there will be a
family of curves depending on the infiltration rate ;
= r — g. Furthermore, for a single plane, it can be
shown that the chemical concentration in the runoff
at the lower boundary at any time will be higher than
at the upstream boundary (i.e., for all positive values
of r, g, ¢ ¢, and ¢ C, in Eq. [20] is = C, in Eq. [28].

Figure 7 shows the mixing zone chemical concen-
tration vs. time at the lower plane edge for chemical
on the lower plane. The distributed model had slightly
higher concentrations starting at about 8 min into the
event until about 18 min. After 18 min the concen-
tration became lower than the lumped and finally both
model versions approached zero at 35 min. The higher
initial concentrations of the distributed model were
attributed to the translocation of chemical down the
lower plane. This translocation depleted the chemical
from the upslope areas sooner than with the lumped
model, causing the concentration to drop below the
lumped concentration until they merged at zero. The
concentration difference was reflected in a slight in-
crease in the runoff transport percent from 26 for the
lumped model, to 28 for the distributed model. Per-
colation below the soil mixing depth removed 72 and
74% of the chemical from the mixing zone for the
distributed and lumped form, respectively. Including
chemical in the rainfall and chemical in the lower plane
produced results similar to those without chemical in
the rainfall. The rate at which the chemical concen-
tration decreased was slower and remained constant
after reaching the rainfall concentration.

The mixing zone chemical concentration vs. time
at the lower plane edge for the case of chemical in the
upper plane is plotted in Fig. 8. The two forms of the
model had significantly different peak concentration
times and peak concentrations. Solute was present in
the runoff from the lumped model at the same time
runoff started from the planes (Fig. 3). This ““accel-
erated” model transport is much faster than particle
transport over the lower plane would be and is un-
realistic. The lumped model also predicted that the
peak concentration would occur earlier in the event,

— 1.0 7 \
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o E ‘ Lumped
= .80
cE %
.70 —
28 o
oa b0 ‘1
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Lt 50
s¢ 7
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. |
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Ra 30
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&)
5 - -
5 - 10 |
= |
S |
.00 %L

T T T
0 10 20 30 40 50 60 70

TIME (min)
Fig. 7. Concentration vs. time for chemical in lower plane.

The peak concentration for the distributed model was
35% higher than for the lumped model. Differences in
peak concentrations were attributed to the translation
of chemical down the lower plane as a chemical front
in the distributed model and the additional dispersion
induced by the lumped model.

The solute concentrations for the case with chemi-
cal in the upper plane were much lower than the case
with chemical in the lower plane. This illustrates what
Ahuja (1986) has discussed, that in a cascade of planes
the lower plane without chemical can serve as an ef-
fective filter to lower surface chemical transport and
peak concentrations. Sixteen percent of the chemical
was transported to the lower plane edge in the surface
runoff when it was applied only on the upper plane,
as opposed to a average 27% when it was applied only
to the lower plane. The remaining percentage for both
cases was removed from the mixing zone by perco-
lation.

The chemical concentration in the mixing zone vs.
time for the case of chemical on the upper plane and
in rainfall is plotted in Fig. 9. There were significant
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Fig. 8. Concentration vs. time for chemical in upper plane.
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Fig. 9. Concentration vs. time for chemical in upper plane and rain-
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differences in the time and concentration of peaks for
the two models. The two predictions were identical
until runoff started. Then as runoff started, the accel-
erated transport from the lumped model influenced
the mixing zone concentration at the lower edge of the
lower plane (Fig. 3). The influence of the upper plane
in the distributed model was delayed until the chem-
ical could be translocated down the lower plane. The
advective transport in the distributed mode] is con-
ceptually closer to the actual process than the lumped
approach to transport on a cascade of planes. The ac-
celerated transport also caused the lumped model peak
concentration to occur soconer. The peak concentra-
tion predicted by the distributed model was 15% higher
than the lumped model peak. After the peaks, the pre-
dicted chemical concentrations for the two models
merged to the rainfall concentration.

The simple complete mixing model used to describe
the surface exchange process is independent of the sur-
face transport process. The distributed model has an
advective transport component (the term 4Q,C, / 9 x
in Eq. [6]) and disturbances propagate at the charac-
teristic velocity dx / dt = Q/ (h + e¢). For the lumped
model, solute introduced at the upper end of a plane
is propagated instantaneously to the lower boundary.
Other surface exchange models and associated as-
sumptions that are incorporated into lumped and dis-
tributed transport models would only influence the
magnitude of the difference that we found with the
simple complete mixing model. The influence of
advective and accelerated transport would always
remain.

SUMMARY AND CONCLUSIONS

A simple complete mixing model was used to ex-
amine the degree of distortion introduced by modeling
chemical exchange and transport as a lumped rather
than a distributed process. All cases evaluated used a
cascade of two planes with chemical placement on the
planes in various combinations. The kinematic cas-
cade model KINEROS was used to produce a con-
sistent hydraulic routing for all cases with time vary-
ing infiltration.

The total chemical transport predicted by the
lumped model was almost identical to that predicted
by the distributed model for the cases evaluated. How-
ever, placement of chemical in the upper plane pro-
duced significant differences in chemical arrival time,
peak concentration time, and peak concentrations. The
lumped form of the model predicted shorter arrival

and peak concentration times, and lower peak con-
centrations. A lower plane without chemical provides
a filter to reduce surface transport and runoff concen-
trations. For the case with chemical placed only in the
lower plane there was little difference between con-
centrations predicted by the lumped model and those
predicted by the distributed model.

A lumped model structure should be used with cau-
tion for modeling chemical exchange and transport
over a cascade of planes as it produces an unrealistic
accelerated transport and over-dispersion. A lumped
or distributed model structure would have a small ef-
fect on the results from modeling surface exchange
and transport on a single plane or element.
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