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ABSTRACT

Woolhiser, D.A., Emmerich, W.E. and Shirley, E.D., 1985. Identification of water sources
using normalized chemical ion balances: a laboratory test. J. Hydrol., 76: 205—231.

A normalized chemical ion balance (NCIB) technique, that has been proposed to
identify multiple surface and groundwater inflows to a reach of a stream, is tested using
two sets of mixtures prepared in the laboratory. The first set consisted of 64 mixtures of
from 2—8 natural waters selected from 10 source waters. A second set of 25 mixtures was
prepared using 5 source waters. Each of the source waters and each mixture was analyzed
for at least 8 ions. Proportions of source waters in each sample were estimated using a
quadratic programming solution to minimize the sum of squared error terms of normalized
chemical ion-balance equations. Because PO?;_ was present in very low concentrations,
and was subject to significant error, it was found that better estimates could be obtained
by omitting it from the analyses. For the first mixture set, the probability of failure to
detect a source when it was present in the mixture was 0.23, and the probability of
identifying a source when it was not present was 0.29. For the second set of mixtures,
the probabilities were 0.0 and 0.33, respectively. Identification was improved by dividing
each normalized ion-balance equation by the error variance for that ion.

1. INTRODUCTION

To design optimal strategies to control surface or groundwater pollution
from point and nonpoint sources, authorities need models that relate observed
concentrations of dissolved inorganic or organic species in the stream or in
the groundwater to the sources of these species. Nonpoint pollution models,
based on the physical, biological and chemical processes involved in the
transport of various chemicals from source areas to streams or groundwater,
have been developed in the past decade (cf. Knisel, 1980). However, these
models are virtually impossible to verify for any but the smallest single-use
watersheds because of the diffuse nature of much of the inflow to the
stream. Because of large uncertainties in the source-based models, there is a
need for techniques which utilize the chemical characteristics of surface or
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groundwater to identify contributions from various sources, and thus can
serve as a check of model consistency.

The water present in a reach of stream at any time is generally considered
to be a mixture of waters that have followed different pathways to the
stream. During a surface runoff event, for example, water in the stream might
include direct rainfall, runoff from rainfall on saturated areas near the stream,
classical Hortonian overland flow, interflow and baseflow. The chemical
characteristics of each water source depend upon the chemical quality of the
rainfall, the physical and chemical characteristics of vegetation and plant
litter, and the physical and chemical composition of the geologic material
that it has.come in contact with as it moved through the watershed. Although
the true number of pathways is very large, we can usually select a rather small
number of sources that have unique absolute and relative concentrations of
principal and minor anions and cations. Furthermore, it is often assumed that
the stream water (or groundwater) is a mixture of solutions derived from
different origins with no loss of dissolved species occurring after mixing.

In groundwater studies, the Piper (1944) trilinear diagram has been widely
used to graphically test for apparent mixtures of waters from different
sources (Morris et al., 1983). More recently, numerical models of chemical
transport in groundwater flow have been developed to generate chemical
patterns and assist in interpreting field data (Schwartz and Domenico, 1973).

The substantial differences between the dissolved solids content (or
electrical conductivity) of surface runoff and groundwater (baseflow) have
long been used in a mass-balance approach to estimate the proportion of
stream discharge contributed from each source (Pinder and Jones, 1969;
Hall, 1970; Visocky, 1970). The same technique has been used with some of
the environmental isotopes to differentiate surface and groundwater sources
(Sklash et al., 1976). This approach is adequate when only two sources of
inflow are considered, but fails when there are more than two sources.
Schwartz (1980) apparently used a trial-and-error ion-balance technique to
estimate the quantities of surface water contributed from three sources:
groundwater, direct precipitation and drainage from a muskeg.

Tsurumi (1982) utilized the multiple ion-balance approach to estimate not
only the relative proportions of sources present in a mixture, but also the
ranges of chemical composition of the sources of chemical constituents. His
method requires several mixtures of the source waters at different
proportions and uses an iterative least-squares solution. The source com-
positions are subject to an anion—cation balance constraint.

Chemical element balances (CEB’s) have also been used to identify sources
of particulates for many elements which can be associated with specific
types of air-pollution sources (Kowalczyk et al., 1982). According to the
CEB model, the composition of particles at a receptor is a linear combination
of concentration patterns of particles from contributing sources. Kowalczyk
et al. (1982) determined source-strength coefficients by a least-squares fit to
the observed concentrations of several ‘“‘marker elements”.
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Woolhiser et al. (1979, 1982) developed a technique to estimate multiple
inflows to a stream reach based on a quadratic programming solution to find
the unknown positive inflow quantities that minimized the sum of squares of
normalized errors for up to eight ion-balance equations. They used Monte
Carlo techniques to investigate the sensitivity of the solution to errors in the
chemical analysis and errors in measurements of streamflow. This analysis
showed conclusively that the use of the normalized ion-balance equations led
to more accurate solutions than those obtained by minimizing the sum of
squared errors in the original lon-balance equations. The quadratic program-
ming algorithm constrained all inputs to be equal to or greater than zero.

Gorelick et al. (1983) proposed a method of identifying groundwater
pollution sources that includes a linear programming approach to the
minimization of errors in ion-balance equations and can accommodate both
nonconservative tracers and transient cases.

The technique presented by Woolhiser et al. (1979, 1982) may have
practical applications in detecting sources of surface water or groundwater
pollution when several potential sources are so located that it should be
physically possible for a pollutant to have traveled to the point in question
and where each potential source uses the suspected pollutant, but has
different relative proportions of other constituents. If water-quality samples
are obtained at regular intervals, it may also be possible to estimate the
contribution of each source to the annual runoff.

The key assumption in all of these models, except those that include
numerical models of chemical transport (Schwartz and Domenico, 1973;
Gorelick etal., 1983) is that all elements or dissolved ionic species considered
are conservative within the system under investigation. There must be no
chemical exchange, deposition, solution, gaseous transport and no uptake by
organisms. Woolhiser et al. (1982) listed the following errors that can affect
the accuracy of the calculated inflows:

(1) Errors in the chemical analyses (including sampling and storage errors).

(2) Exrors in determining the discharge rates at the upper and lower ends
of the stream reach.

(3) Nonrepresentative samples of the inflow waters.

(4) Omission of a significant inflow.

They also pointed out that, if the chemical characteristics of two or more
inflow sources are nearly identical, it should be very difficult to distinguish
between them.

In their empirical sensitivity analysis, they examined the implications of
error categories (1), (2) and (4), above, using “‘theoretical mixtures”
perturbed by adding normally distributed, zero mean error terms. The
“theoretical mixtures” were obtained by using ion-balance equations to
calculate the concentrations of each ion in a mixture of 3—7 water sources
sampled near a surface coal mine site in western Colorado, U.S.A. They
concluded that the technique appears to be promising as a method of
estimating surface and groundwater inflows from several sources in a reach
of a stream, but that further testing is required to determine the limitations.



208

If the normalized chemical ion-balance technique is to be used to identify
possible pollution sources, it would be desirable to know something about the
probability of making incorrect decisions (i.e. the probability of identifying
4 source if it is not present, or not identifying a source if it is present) under
controlled laboratory conditions. One might infer that, under field condi-
tions, the identification ability would be somewhat worse.

In this paper, we examine the ability of the technique proposed by
Woolhiser et al. (1982) to identify the components of laboratory mixtures of
waters and the implications of potential interference between sources with
small differences in chemical characteristics. The effect of different weighting
factors for each ion is also briefly examined.

2. MATERIALS AND METHODS

The first set of 64 mixtures prepared in the laboratory included from 2 to
8 source waters selected from a set of 10 source waters. The 10 source waters
included 8 samples that had been collected as part of water-quality studies of
the Agricultural Research Service on the Walnut Gulch Experimental Water-
shed, near Tombstone, Arizona, U.S.A. The other two samples were from
the Tucson and Tombstone, Arizona, municipal supplies. A description of
the source waters is given in Table I, and the measured ion concentrations

TABLE I

Description of source waters

Source Description

No.
First set:
1 groundwater sample from Walnut Gulch Experimental Watershed L.G. Ranch
well
2 groundwater sample from Walnut Gulch Experimental Watershed well 63
3 groundwater sample from Walnut Gulch Experimental Watershed well 77
4 groundwater sample from Walnut Guleh Experimental Watershed well 91
5 sample from shallow well in alluvium of Walnut Gulch; alluvium saturated by
sewage plant effluent
6 surface runoff from main stem of Walnut Gulch
7 surface runoff from main stem of Walnut Gulch
8 rain-water sample, Walnut Gulch Experimental Watershed
9 Tucson, Arizona, municipal water supply (groundwater)
10 Tombstone, Arizona, municipal water supply (groundwater)
Second set:

1 +6 Tombstone, Arizona, municipal water supply (groundwater)

2+ 7 groundwater sample from Walnut Gulch Experimental Watershed well 75

3+ 8 rain-water sample, Walnut Gulch Experimental Watershed

4+ 9 sample from shallow well in alluvium of Walnut Gulch; alluvium saturated by
sewage plant effluent

54 10 Tucson, Arizona, municipal water supply (groundwater)
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TABLE II

Chemical characteristics of first and second set of source samples

Source Ion concentration™ Ion™

No. balance

POI” Cl'  NO; 803" HCO; Ca’" Mg’ Na°  K'  (meql™)
(ug 1"
First set:

1 0 52 64 35 —* 202 102 305 23 —
2 0 11.4 0.0 8.5 — 195 6.5 10.5 3.2 —
3 0 4.2 0.0 7.2 - 216 9.3 205 3.6 —
4 0 1.3 2.8 9.8 — 291 5.2 8.6 3.7 -
5 12,680 68.8 325 57.3 - 68.7 10.8 63.1 13.3 —
6 6 2.5 1.6 9.5 72.0 247 1.3 2.1 4.5 0.13
7 63 6.1 0.0 5.2 35.1 12.2 0.6 2.8 4.4 0.08
8 27 1.4 05 102 — 3.6 0.5 0.3 0.2 -
9 5 32.5 3.1 151.5 - 737 14.1 65.6 2.7 -

10 0 3.0 3.2 6.9 - 43.0 17.6 9.4 2.5 —

Second set:

1 0 45.0 10.8 43.5 244.0 76.3 20.1  32.3 1.7 0.56
2 0 4.4 4.2 14.0 164.7 449 8.8 7.7 1.8 0.16
3 0 1.4 0.0 1.8 6.1 1.3 04 0.1 0.0 —0.08
4 3,700 48.0 3.2 39.8 67.1 57.1 7.6 41.9 6.5 2.01
5 0 8.0 3.8 284 1464 42.2 46 229 0.6 0.19
6 0 42,0 106 416 244.0 76.0 20.1 319 1.4 0.64
7 55 4.4 4.2 13.6 164.7 449 8.8 7.8 1.8 0.17
8 5 1.4 0.0 1.3 6.1 1.3 04 0.0 0.0 — 0.07
9 3,650 52.0 3.0 38.0 183.0 56.4 7.5 414 6.5 —0.02

10 185 9.0 3.7 272 176.9 42.7 4.7 23.3 0.6 —0.24

*l mg 1" ! unless otherwise indicated.

*2 milli-equivalents cations minus anions.

# = not analyzed.

are shown in Table II. Surface water samples were centrifuged to remove the
sediment, and the other samples were not treated before use. 10-ml mixtures
were prepared by combining the sources in the proportions given in
Table III. Each proportion used to make the mixture was measured to the
nearest 0.01 ml.

A second set of 20 mixtures was prepared using 5 different source waters
similar to the first 10, except they were collected at a later date. Mixtures in
the second set were 100ml in volume, and were prepared by combining
sources in the proportions given in Table II1. Sources 1, 2, 3, 4 and 5 are the
same as 6, 7, 8, 9 and 10, respectively, except they were filtered through a
0.45-um filter before they were used to make the mixtures. The first five
sources were not treated in any way, and all proportions were measured to
0.01 ml. During the preparation and analysis of the second set of mixtures,
extreme care was taken at each step to minimize error.
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TABLE HI

Actual and calculated proportions of first and second set of source waters in laboratory
mixtures along with an error index

Mixture Source No. Error
No. index
1 2 3 4 5 6 7 8 9 10

First set:
1 A% 0.25 010 0 0 0 0.25 040 0 0 0

CI* 0.00 0.30 0.02 068 0 0 0 0 0 0 0.10

c2® 013 0 0.04 025 0 0 051 0.04 0.00 0.04 0.525
2 A 050 0 0 0 0 0 0.50 0 0 0

CI 0.42 0.05 0.11 0.15 0 0.29 0 0 0 0 0.40

Cc2 0.36 0 0 0 0 0 0.47 008 0 0.10 0.825
3 A 0.50 0 0 0 0 0 0 0.50 0 0

Cl 0.36 0.17 © 047 0 0 0 0 0 0 0.36

Cc2 0.39 0 0 0 0 0 0.05 050 0 0.06 0.89
4 A 0.50 0 0 0 0 0 0 0 0.50 0

CI 0.73 0.19 0 0 0 0 0 0 0 0.08 0.50

C2 0.48 0 0 0 0 0 0 0.06 0.47 0 0.945
5 A 0.50 0 0 0 0 0 0 0 0 0.50

C1 no convergence™

c2 0.39 0 0 0 001 O 0 0.12 0 0.49 0.88
6 A 0 0.50 0 0 0 050 0 0 0 0

Cl 0 0.98 0 0.02 0 0 0 0 0 0 0.50

C2 0 0.44 0.03 0 0 0 0.41 011 0O 0 0.45
7 A 0 0.50 0 0 0 0 0.50 0 0 0

C 0 0.67 0 0 0 0 0.33 0 0 0 0.83

Cc2 0 0.28 0.03 0 0 0 0.67 0.02 0 0 0.78
8 A 0 0.50 0 0 0 0 0 0.50 0 0

Cl 0 0.97 0 0.03 0 0 0 0 0 0 0.50

Cc2 0 0.43 0 0 0 0 0.33 024 O 0 0.67
9 A 0 0.50 0 0 0 0 0 0 0.50 0

CI 0.21 0.64 005 0O 0 0 0 0 0 0.10 0.50

Cc2 0 0.47 0O 0 0 0 0 0.05 045 0.02 0.93
10 A 0 0.50 0 0 0 0 0 0 0 0.50

CI 0 0.48 0 0.10 0 0 0 0 0 0.41 0.89

c2 0 0.44 0 0 0 0.05 0 0.07 0 0.43 0.88
11 A 0 0 0.50 0 0 050 O 0 0 0

CI 0 0.66 0.34 0 0 0 0 0 0 0 0.34

C2 0 0.10 043 0 0 0 0.47 0 0 0 0.43
12 A 0 0 0.35 0 0 0 0.256 0 0.40 O

CI 0.04 0.52 043 0 0 0 0 0 0 0.01 0.35

Cc2 0 0.40 049 © 0 ¢] 0 0 0.10 0 0.45
15 A 0 0 0.50 0 0 0 0 0 0.50 0

CI 0.17 0.66 0 0 0 0 0 0 0 0.17 0.00

C2 0 0 0.39 0 0 0 0 0.13 0.47 0.01 0.86
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Mixture Source No. Error
No. index
1 2 3 4 5 6 7 8 9 10

First set (cont.):
14 A 0 0 0.50 O 0 0 0 0 0 0.50

CI 0 0.03 047 018 O 0 0 0 0 0.31 0.78

c2 002 0 0.44 0.01 O 0 0 0.16 0.01 0.37 0.81
15 A 0 0 0 050 0 050 0 0 0 0

CI 0 0.02 0 0.98 0 0 0 0 0 0 0.50

Cc2 0 0 0 0.42 0 0.33 0 0.24 0 0.01 0.7
16 A 0 0 0 0.50 O 0 050 O 0 0

CI 0 0.07 0O 093 0 0 0 0 0 0 0.50

Cc2 no convergence
17 A 0 0 0 050 0 0 0 0.50 O 0

Ci 0 0.06 0O 094 0 0 0 0 0 0 0.50

C2 0 0 005 026 O 0.02 O 0.66 0 0 0.76
18 A 0 0 0.10 0.25 O 0 0 0.40 0.25 0

Cl 0.27 0.70 0 0.03 0 0 0 0 0 0 0.03

Cc2 0 0 0 0 0.01 012 0 0.57 0.22 0.06 0.63
19 A 0 0 0 0.50 0 0 0 0 0 0.50

CI 0 0 0 0.55 0 0 0 0 0 0.45 0.95

c2 0.03 O 0 0.42 0 0 0 0.12 0 0.43 0.85
20 A 0.025 0.05 0.125 O 0.125 0.125 0.225 0.1256 O 0.20

Ci 0 0 0.17 0 0.12 0.14 0.21 0.17 O 0.18 0.89

c2 0 0.19 0.13 0.07 0.11 0.26 0 0.13 0 0.12 0.65
21 A 0 0 0 0 0.50 0 050 0 0 0

CI 0 0 0 0 0.45 0.08 0.39 006 0.02 0 0.84

c2 0.01 O 0 0 042 011 042 0 0.04 0O 0.84
22 A 0 0 0 0 0.50 O 0 0.50 0O 0

Ci 0 0 0 0 0.40 O 0.13 046 0.01 O 0.86

c2 0 0 0 0 0.37 0 0.23 0.37 003 0 0.74
23 A 0 0 0 0 0.50 0 0 0 0.50 0

CI 0 0 0 0 044 O 0 0.11 045 0 0.89

c2 0 0 0 0 0.40 0 0.10 0.02 048 O 0.88
24 A 0 0 0.033 0.067 0.167 0 0.30 0.267 0.00 0.167

CI 0 0 0 0 0.16 0.24 0.11 0.31 0.01 0.18 0.44

C2 0 0 0 0 0.15 0.24 0.14 0.28 0.01 0.18 0.59
25 A 0.10 0 0.05 0 0 0.40 O 0.45 0 0

Cl 0 0.15 0 085 0 0 0 0 0 0 0.00

Cc2 0.05 0 0.08 O 0 0.33 002 051 0 0 0.89
26 A 0.20 O 0 0 0 0 0.80 O 0 0

Cl no convergence

C2 no convergence
27 A 0.20 O 0 0 0 0 0 0.80 0 0

Cl 0.11 028 0 061 O 0 0 0 0 0 0.11

Cc2 0.18 0 0 0 0 0 0 0.82 0 0 0.98
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TABLE III (continued)

Mixture Source No. Error

No. index
1 2 3 4 5 6 7 8 9 10

First set (cont.).

28 A 0.20 0 0 0 0 0 0 0 0.80 0

CI 0.53 0.32 0 0 0 0 0 0 0 0.14 0.20

c2 0.17 0 0 015 0 0 0 0 0.51 0.17 0.68
29 A 0.10 0.05 0 0 0 0 0 0 0 0.85

CI 0.05 0.05 0 008 0 0 0 0 0 0.82  0.92

c2 0.06 0 0 0 0.01 0.02 001 008 O 0.82 0.88
30 A 0 0.20 © 0 0 0.80 0 0 0 0

CI 0 0.77 0O 0.23 0 0 0 0 0 0 0.20

C2 0 0 0.06 0 0 0.08 059 022 0 0.04 0.08
31 A 0 0.20 0 0 0 0 0 080 O 0

CI 0 0.70 0 0.30 O 0 0 0 0 0 0.20

c2 0 0.17 © 0 0 0 0.02 081 O 0 0.97
32 A 0 0.20 0 0 0 0 0 0 0.80 0O

CI 0.36 0.11 045 0 0 0 0 0 0 0.08 0.11

c2 001 O 0.11 034 0 0 0 0.10 0.18 0.26 0.18
33 A 0 0 0.20 0 0 0.80 0 0 0 0

CI 0 0.29 0.56 0.15 0 0 0 0 0 0 0.20

c2 0 0 026 0 0 0.01 024 050 0 0 0.21
34 A 0 0 020 0 0 0 0.80 0 0 0

Cl1 0 0 0.08 0 0 0 0.79 0.13 0 0 0.87

c2 0 0 0.07 0 0 0 0.81 012 0 0 0.87
35 A 0 0 0.20 0 0 0 0 0 0 0.80

Cl 0 0.04 0.14 008 0 0 0 0 0 0.74 0.88

c2 0.03 0.01 012 0O 0 0 0.02 013 0 0.68 0.81
36 A 0 0 0 020 O 0.80 0 0 0 0

CI 0 06.24 0O 076 0 0 0 0 0 0 0.20

C2 0 0 011 0 0 043 0.08 038 0 0 0.43
37 A 0 0 0 020 ©0 0 080 0 0 0

C1 0 0 0.09 0 0 06.09 © 0.83 0 0 0.00

C2 0 0 0.07 0 0 0 0.07 085 0 0 0.07
38 A 0 0 0 0.10 0.05 0 0 0 0.40 0.45

C1 0.22 015 0 0 0.62 0.08 © 0 0.41 0.12 0.54

C2 0.09 0.26 0 0 0.05 0 0.04 0.38 0.17 0.60
39 A 0 0 0 0.20 0 0 0 0 0 0.80

CI 0 0 0 032 0 0 0 0 0 0.68 0.88

C2 0 0 0 024 0 0 0 0.07 0 0.68 0.88
40 A 0 0 0 0 0.20 080 O 0 0 0

C1 0 0.02 0 0 0.13 0.23 048 0 0.03 0 0.36

C2 0 0.02 0 0 0.12 0.28 047 0.08 0.03 0 0.40
41 A 0 0 0 0 0.20 O 080 O 0 0

CI 0 0 0.01 0 0.15 0.35 031 0.17 0 0 0.46

c2 0.02 0 0 0 0.14 0.38 032 0.13 0 0 0.46
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TABLE III (continued)

Mixture Source No. Error

No. index
1 2 3 4 ] 10

w
[w)
~
o
©o

First set (cont.):

42 A 0 0 0 0 0.20 0 0 0.80 0 0

CI 0 0 0 0 0.08 0 0.30 0.58 0.04 0 0.66

Cc2 0 0 0 0 0.08 0 0.31 0.57 0.04 0 0.65
43 A 0 0 0 0 0.20 0 0 0 0.80 0

CI 0 0 0 0 0.09 0 0.19 0.05 067 0 0.76

cz2 0 0 0 0 0.10 © 0.16 0.09 065 0 0.75
44 A 0 0 0 0 020 0 0 0 0 0.80

CI 0 0.34 0O 0 0.12 0.03 0.08 0.12 0.02 0.28 0.40

Cc2 0 0.31 0 0 0.13 0 0.12 0.14 0.02 0.29 0.42
45 A 0.10 0 0 0 0 090 0 0 0 0

CI 1.00 0 0 0 0 0 0 0 0 0 0.10

c2 0 0 0.07 0 0 0.57 0.13 0.22 0 0.01  0.57
46 A 0.10 0 0 0 0 0 0 0.90 0 0

Cl 0 0.27 0 073 0 0 0 0 0 0 0.00

C2 0.07 0© 0 0.01 0 0 0 091 0 0 0.97
47 A 010 0 0 0 0 0 0 0 0.90 0

CI 0.42 055 0 0 0 0 0 0 0 0.03 0.10

C2 0 0 0 0 0.01 0 0.11 0.20 0.69 0 0.69
48 A 0.10 0 0 0 0 0 0 0 0 0.90

CI 0.03 0.02 0 014 O 0 0 0 0 0.81 0.84

Cc2 0.06 0 0 0 0 0.05 0 0.09 0 0.79 0.85
49 A 0 0.10 © 0 0 090 © 0 0 0

CI 0 1.00 0 0 0 0 0 0 0 0 0.10

c2 0 0 0.01 0 0 0 0.97 002 0 0 0.00
50 A 0 0.10 0O 0 0 0 6.90 0 0 0

CI 0 0 0 0 0 0 1.00 O 0 0 0.90

c2 0 0 0 0 0 0 0.98 0.02 0 0 0.90
51 A 0 0.10 0 0 0 0 0 090 0 0

CI 0 0.09 0 0.01 O 0.04 © 0.86 0 0 0.95

Cc2 0 0.06 0 0 0 0 0.02 091 0 0.01 0.96
52 A 0 0.10 O 0 0 0 0 0 0.90 ©

C1 no convergence

C2 0 0 0 0 0 0 0.07 015 077 0 0.77
53 A 0 0 0.10 0O 0 6,90 0 0 0 0

CI 0 0.93 0 0.06 0 0 0 0 0 0 0.00

Cc2 0 0 0.10 0 0 0 0.63 0.27 0 0 0.10
54 A 0 0 0.10 0 0 0 0 0.90 0

Cl no convergence

c2 0 0 0 0 0 0 0.05 009 086 0 0.86
55 A 0 0 0.10 0 0 0 0 0 0 0.90

CI 0 0.03 0 0.20 0O 0 0 0 0 0.77  0.77

c2 0.05 0 0 0.05 0 0 0.01 015 0 0.74 0.74
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TABLE III (continued)

Mixture Source No. Error
No. index
1 2 3 4 5 6 7 8 9 10

First set (cont.):
56 A 0 0 0 0.10 0 090 0O 0 0 0
Cl1 0 0.33 0 0.67 0O 0 0 0 0 0 0.10
Cc2 0 0 0.06 0 0 0.27 0.18 0.48 0O 0 0.27
57 A 0 0 0 0.10 0 0 090 0 0 0
ClI 0 0 0.01 O 0 0 0.29 069 0 Q0 0.29
C2 ‘no convergence
58 A 0 0 0 0.10 0 0 0 0.90 0 0
Cl 0 0.07 0 0 0 0.07 0 0.86 0 0 0.86
C2 0 0.03 0.01 O 0 0.01 0.02 092 0 0 0.90
59 A 0 0 0 0.10 0 0 0 0 0.90 0
ClI 0.37 0.40 0 0 0 0 0 0 0 0.23  0.00
c2 0 0.04 0 0 0.01 0 0.02 014 0.79 0 0.79
60 A 0 0 0 0.10 © 0 0 0 0 0.90
Cl 0 0.056 0 035 O 0 0 0 0 0.60 0.70
Cc2 0.02 0 0 0 0 0.07 O 0.27 0 0.63 0.63
61 A 0 0 0 0 0.10 0.90 0 0 0 0
Cl1 0 0 0 0 0.02 010 084 O 0.03 0.01 0.12
Cc2 0 0.02 0 0 0.02 0,18 0.75 0 0.03 0 0.20
62 A 0 0 0 0 0.10 0 0.90 0 0 0
ClI 0 0 0 0 0.04 0.06 072 0.16 O 0.01 0.76
c2 0 0 0 0 0.03 0.13 0.68 0.14 0.01 0.01 0.71
63 A 0 0 Q 0 0.10 0 0 0.90 0 0
Cl 0 0 0 0 0.07 0 0.06 0.86 001 0O 0.93
C2 0 0 0 0 0.08 0 0.01 090 O 0 0.98
64 A 0 0 0 0 0.10 0 0 0 0.90 0
C1I 0 0.28 0 0 0.02 0 0 0 0.70 0 0.72
Cc2 0 0 Q0 0 0 0 0.14 O 0.86 0 0.86
Second set:
1 A 0.5 0.5 0 0 0
Cl 0.46 0.46 0 0 0.08 0.92
Cc2 0.46 0.46 O 0 0.08 0.92
2 A 0.5 0 0.5 0 0
ClI 0.42 O 0.43 0 0.15 0.93
c2 042 0 043 0 0.15 0.93
3 A 0.05 O 0 0.5 0
ClI 0.47 O 0 0.47 0.06 0.97
c2 0.48 0 0 0.45 0.07 0.93
4 A 0.5 0 0 0 0.5
C1 0.45 O 0 0 0.65 0.95
c2 0.45 0 0 0 0.55 0.95
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TABLE III (continued)

Mixture Source No. Error
No. " index

Second set {(cont.):

5 A 0 0.5 0.5 0 0

CI 0 0.52 048 O 0 0.98

c2 0 0.52 048 O 0 0.98
6 A 0 0.5 0 0.5 0

CI 0.01 046 O 0.50 0.03 0.96

Cc2 0 0.46 0 0.560 0.03 0.97
7 A 0 0.5 0 0 0.5

Cl no convergence

Cc2 0.01 051 0 0 0.48 0.98
8 A 0 0 0.5 0.5 0

CI 001 O 0.45 0.49 0.05 0.94

Cc2 0.01 O 0.45 0.48 0.06 0.93
9 A 0 0 0.5 0 0.5

CI 0 0.03 049 0 0.48 0.97

c2 0 0.02 049 O 0.48 0.98
10 A 0 0 0 0.5 0.5

CI 001 0 0 0.51 0.48 0.98

c2 0.01 0 0 0.51 0.48 0.98
11 A 0.25 0.25 0.256 025 O

CI 0.19 0.31 0.16 0.24 0.09 0.85

Cc2 019 0.31 0.16 0.25 0.08 0.86
12 A 0.25 0.25 0.26 O 0.25

ClI 0.21 0.26 0.20 O 0.33 0.91

c2 0.21 0.26 0.20 O 0.33 0.91
13 A 0.25 0.25 0 0.25 0.25

ClI 0.24 0.26 0 0.24 0.26 0.98

c2 0.24 0.26 O 0.24 0.26 0.98
14 A 0.25 0 0.25 0.25 0.25

CI 0.21 006 0.19 0.24 0.30 0.89

C2 0.22 0.07 0.18 0.23 0.31 0.88
15 A 0 0.25 0.25 0.256 0.25

CI 0 0.27 0.23 0.26 0.25 0.98

C2 0 0.27 0.23 0.25 0.25 0.98
16 A 0.5 0.5 0 0 0

Cl 0.5 0.5 0 0 0 1.00

C2 0.5 0.5 0 0 0 1.00
17 A 0.5 0 0.5 0 0

C1I 0.45 0.01 042 0 0.12 0.93

C2 0.45 0.02 0.42 0 0.11 0.93
18 A 0.5 0 0 0.5 0

Cl 0.46 O 0 0.50 0.04 0.96

C2 0.48 0 0 0.47 0.05 0.95
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TABLE 111 (continued)

Mixture Source No. Error

No. index
1 2 3 4 : S 10

(o
D
~
o
el

Second set (cont.):

19 A 0.5 0 0 0 0.5

CI 0.56 0.07 0.15 0 0.22 0.72

Cc2 0.46 007 O 0 0.47 0.93
20 A 0 0.5 0.5 0 0

Cl 0.05 027 069 O 0 0.77

Cc2 0 0.50 050 0 0 1.00
21 A 0 0.5 0 0.5 0

Cl 0 0.47 0.01 0.49 0.04 0.96

c2 0 0.47 0 0.47 0.07 0.94
22 A 0 0.5 0 0 0.5

CI 6.25 0056 071 O 0 0.08

c2 0 0.51 0 0 0.49  0.99
23 A 0 0 0.5 0.5 0

CI 0 0.01 0.46 0.48 0.05 0.94

c2 0 0.01 0.45 0.47 0.07 0.92
24 A 0 0 0.5 0 0.5

Ci 0.14 002 0.83 O 0 0.51

c2 0 0.02 051 O 0.48 0.98
25 A 0 0 0 0.5 0.5

CI 0.02 002 © 0.46 0.50 0.96

C2 0.03 001 O 0.44 0.52 0.94

*1 Proportions present in laboratory mixture.

*2 Calculated using 8 ions.

*3 Calculated omitting PO3".

* Wolfe’s (1959) algorithm did not converge after 400 iterations.

All source samples and mixtures were analyzed for eight different ions,
and two of the sources in set 1, and all sources and mixtures in set 2, were
analyzed for HCOj3. Concentrations of the cations Na", K*, Mg?* and Ca?*
were determined by atomic absorption spectrometry. A Technicon® Auto-
analyzer Industrial IT System™ was used to determine the concentrations of
Cl, NOj, SOZ™ and PO}~ HCOj ion was determined by potentiometric
titration.

3. ANALYSES
3.1. Mathematical model

The normalized ion-balance equations can be written in the form:

*Citation of brand names is for the readers’ information only, and does not imply
endorsement by the U.S. Department of Agriculture.




11 T 1 [xy €
C§1 C§2 C;n —‘1 x2 62
Chi ChH...CHL..Ch —1]ix; ) = | ¢ (1)

xn

Ciy Chy ... Chp.—1111 €m
where C7; is the concentration of the ith ion in the jth inflow divided by the
concentration of the ith ion in the mixture; x;,7 = 1,2, ..., n, is the decimal
fraction of the jth inflow in the mixture; and ¢;, i =1, 2, ..., m, is the nor-

malized error term.
From mass balance:

$uy =1 (2)

Eqg. 2 can be solved for x, and substituted into eq. 1, resulting in the
expression:
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Ci Cn Cy Ciny ChHL 1|4 = (€ (3)
xn—l
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where C;; = Cf; — C},,. Thus, we have m equations with (n —1) unknowns
where m 2 n (usually). Because negative x;’s are not physically realistic (in
most cases) we wish to have the x; 2 0. Under these circumstances, it is
convenient to formulate this as a quadratic programming problem by finding
thex;, j=1,2,...,n— 1 that minimize the objective function:

E = i (€, (4)

Squaring each equation in eq. 3, summing and neglecting the constant, we
obtain a quadratic form:

E = D'X+ XTAX (5)
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where D is a vector of coefficients of the linear terms and X7 indicates
transpose. Thus, F is to be minimized subject to the nonnegativity constraint,
x;20;7=1, 2,...,n—1. It should be noted that, in this form, x, is not
constrained to be = 0, so some care must be used in setting up the data so
that x,, is the most likely source. Conditions for existence and uniqueness of
solutions can be found in Hadley (1964). In our problem, the matrix A4 is
positive semi-definite. Any local minimum will be a global minimum, but it
might not be unique. Since the x;’s are unbounded, there might he no
solution. In the latter case, a solution might be found by eliminating another
variable. A will be positive definite when its determinant is non-zero, and in
this case there is a unique solution.

A version of the Wolfe (1959) quadratic programming algorithm was
used to find the best linear combination of source waters for each mixture.
The complete source set was considered in the algorithm, and two runs were
made for each mixture, one with 8 ions considered and a second with PO3~
omitted. In the second source and mixture set, mixtures I—I15 and 16—25
were from sources I—5 and 6—10, respectively, and were calculated on that
basis. Because sources I—5 and 6—10 were essentially the same except for
filtration, all mixtures made from both source groups were considered part
of the second mixture set unless otherwise noted. HCO3 was omitted from
the analyses for both sets. The results of these analyses are shown in
Table I11.

It should be noted that in set I, the number of candidate sources (10) is
greater than the number of ion- and water-balance equations (9 with PO3~
included and 8 without). It is apparent that, in some circumstances, this
situation can lead to problems of nonuniqueness. To examine this factor,
we constructed a theoretical mixture consisting of 0.8 parts of source 2
and 0.2 parts of source 4. Two trials were run, the first with sources 7—9 as
candidates, and the second with sources 110 as candidates. The algorithm
converged to the correct answers in both cases. To examine the effect of
errors on the quadratic matrix and algorithm convergence, independent,
normally distributed error terms, with zero mean and coefficient of
variation of 0.05 were added to the concentration of each ion in every
candidate source and in the mixture. Ten of these simulated runs were
examined for each case. For case I (9 candidates and 9 equations), the
algorithm converged to correct answers in 7 runs, and did not converge in
400 iterations for 3 runs. For case 2 (10 candidates and 9 equations), the
algorithm did not converge ‘3 times, and converged to the apparently
correct answers 7 times. For each run in which the algorithm did not
converge, the values of the x;, after 400 iterations, were very close to the
correct values. Although every effort should be made to reduce the number
of candidate sources to fewer than the number of ions used in the analyses,
it appears that useful results can be obtained if n is slightly larger than
(m + 1), provided that there are fewer than (m + 1) sources actually present.
For example, in mixture 20 in Table III, 8 sources were included in the
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mixture; thus, when PO}~ was omitted from the analysis, there were as many
equations as sources in the mixture. The algorithm identified 7 nonzero
sources, and all errors, ¢;, were exactly zero. This solution is probably not
unique. It is also possible that some of the other solutions for the first set of
mixtures are not unique; however, it should be noted that in each case, the
sum of squared error terms in eq. 1, calculated by using the x; identified by
the algorithm, was less than if the “‘correct” x; were used. The question of
uniqueness is explored in more detail in the Appendix.

3.2 Interactions between sources

To determine if a solution with the chemical characteristics of any of the
sources could be approximated by a linear combination of any of the other
sources, the analyses program was run with each source considered as a

TABLE IV

Best linear combinations of first and second set of sources

Mix- Proportion of source in mixture R* Inter- Slope
ture cept
No. 1 2 3 4 5 6 7 8 9 10

First set.

I — 0.0l 048 0 0 0 0 0 0 0.51 0.72 1.32 0.75™
2 0 — 1.0 0 0 0 0 0 0 0 0.69 0.26 1.08%?
3 0 099 — 0.01 0 0 0 0 0 0 0.69 2.14 0.64%2
4 0 0 045 — 0 0 0 0 0 0.55 0.88 1.27 1.10%
5 056 0 0 0 — 0 0 0 0.44 0 0.15 28.7%*1 —0.002
6 0 0 0 0.46 0 - 0 0.54 0 0 0.59 261 0.58%
70 0.96 0 0 0 0 —  0.04 0 0 0.07 8.28%" —0.08

§ 0 0 0 0 0 0.34 066 — O 0 0.86 2.15 1.43%
9 0.33 0.30 0 0 0 0 0 0 — 0.36 0.108 7.7 0.06

10 0.16 0.10 © 0.74 © 0 0 0 0 —  0.87 1.76 0.59%

Second set:

I - 0 0 0.26 0.74 0.87 5.75 1.40%
2 003 — 056 0 0.41 0.77 — 0.75 1.72%
3 no convergence

4 015 0 0 —  0.85 073  7.74 1.16%2
5 0.21 0.18 061 0 — 0.82 0.92 1.77%
6 - 0 0 0.19 0.81 0.87 5.72 1.43%
7 0.03 — 056 0 0.41 0.76 —1.83 1.78%
8 no convergence

9 0.12 0 0 ' — 0.88 0.67 9.86 1.12%
10 0.22 0.19 0.59 0 —  0.83—~0.75 1.70%

*1 Intercept significantly different from zero at 5% level.
*2 Slope significantly different from zero at 5% level.

3 Slope significantly different from zero at 1% level.

4 Slope significantly different from zero at 0.1% level.




220

mixture and the other sources considered as candidates. The results of this
analysis are shown in Table IV. This shows, for example, that source I of the
first set is best approximated (according to the objective function given by
eq. 3) by a mixture of 0.01 parts source 2, 0.48 parts source 3, and 0.51
parts source 10. Simple linear regressions were run between the concen-
tration of each ion as calculated from the proportions shown in Table 1V and
the measured concentrations of each ion for each source. The coefficients of
determination, R?, the intercept, and the slope for these regressions are
shown in the last three columns of Table IV.

An examination of the coefficients of determination, slopes and intercepts
reveals several cases when one of the sources can be rather closely approxi-
mated by linear combinations of other sources. For example, source 4 of the
first set can be approximated by a combination of 0.45 parts source 3 plus
0.55 parts source 10 with R? = 0.88. The intercept is not significantly
different from zero, and the slope is close to one. Therefore, one would
expect that it would be difficult to identify these sources, or that they could
be identified when they are actually not present.

4. RESULTS AND DISCUSSION

PO3™ ion was present in very low concentrations (ug 1™! range) in most of
the sources used to make the mixtures (Table II). Handling and analyzing
samples with low concentrations presented analytical problems that became
important in this study. The two problems that were observed, with PO} in
particular, were contamination and dilution below the detection limit.
Contamination was confirmed in the second set of source samples where
PO} ion was found in sources 7, 8 and 10 after filtration. In the first set of
sources and mixtures, both contamination and dilution could account for
the observed results of PO3 ™ ion in a source, but not found in a mixture
containing that source. Contamination of the analysis sample used to analyze
sources 6, 8 and 9 were suspected in that, when mixtures containing these
sources were combined with other sources that did not contain PO3~, the
resulting mixture contained PO~ in only two cases. Contamination and
dilution problems were not observed with the other ions, although they
probably were present. At higher concentrations, small amounts of con-
tamination are not detectable.

If the NCIB method is to be used simply as a detection technique to
identify the presence or absence of a particular source in a mixture, it is
useful to examine the probability of not detecting a source when it is
present (type-I error) and the probability of detecting a source when it is not
present (type-II error). The probabilities of type-I and -II errors for each
source, and for all sources combined, are shown in Table V. Although these
probabilities apply only to these particular sets of sources and are affected
by the mixing strategy used, they do reveal some important points. In general
the type-I error was reduced and -II was increased when PO3~ was omitted in
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TABLEV
Probability of type-I and -II errors

Source First set Second set
No.
type I type I1 type I type II
all POZ” all PO;"~ all  PO3” all PO3”
ions  omitted ions  omitted ions omitted lons  omitted
1 0.29 0.21 0.14 0.18 0.0 0.0 0.43 0.43
2 0.20 0.47 0.567 0.18 0.13 0.0 0.29 0.29
3 050 0.21 0.16 0.24 0.0 0.0 0.0 0.0
4 0.40 0.73 0.39 0.14 00 0.0 0.0 0.0
5 0.0 0.07 0.0 0.10 0.13 0.0 0.86 0.86
6 0.80 0.33 0.20 0.22 0.0 0.0 0.70 0.17
7 0.36 0.29 0.16 0.64 0.0 0.0 0.83 0.83
8 047 0.0 0.18 0.82 0.0 0.0 0.50 0.0
9 0.69 0.0 0.17 0.17 0.0 0.0 0.0 0.0
10 0.07 0.0 0.20 0.28 0.50 0.0 0.70 0.70
All sources 0.38 0.23 0.20 0.29 0.08 0.0 0.43 0.33

the first mixture set, suggesting that including PO3~ has some merit in
reducing incorrect detection, but this occurs at the expense of increasing the
chances of failure to identify a water source that is, in fact, present. For the
second set of mixtures, omitting PO3 "~ reduced both type-I and -II errors.
Overall, the second set of mixtures had a much lower incidence of type-I
errors than the first set, but had a larger number of type-1I errors. The larger
number of type-Il errors was probably due to similarity of the sources, as
indicated by Table IV. Although there were more type-II errors (Table
IIT), the size of the errors was generally much smaller for the second set of
mixtures. The type-I and -II errors are very small for source 5 of the first set
and sources 4 and 9 of the second set. These sources are quite different from
the others, as indicated by the data in Table II and the results of the linear
combination test shown in Table IV. It should be noted that the presence or
absence of sources such as these, which indicate water-quality changes due to
man’s activities, are of primary interest in pollution studies. The surface
runoff samples, sources 6 and 7 in set I, had rather large type-I and -II
errors, probably because they are intermediate in composition between the
rainfall sample and the Walnut Gulch groundwater samples. It is somewhat
surprising that the errors were so low for water 10, which has a high simple
correlation with a linear combination of sources I, 2 and 4.

Another way of portraying results of this laboratory test of the NCIB
technique is to construct an error index that accounts for differences in
actual and predicted proportions of each source in each mixture. The
following index was used for each mixture:

ZVS
I, = 1—05 Z 1% — % | (6)

7=1
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Fig. 1. Empirical distribution function of error index.

where x;, is the proportion of mixture k made up of source j; xy is the
estimated proportion; and N, is the number of sources considered. If the
agreement is perfect, I, = 1. These error indices are tabulated in the last
column of Table III, and the sample distribution functions are shown in
Fig. 1. Fig. 1 clearly shows that errors in the PO3 ~analyses led to substantial
prediction errors, especially in the first mixture set. It is apparent that,
although the normalizing procedure compensates for the relative abundance
of ions, a set of weighting factors, w;, should be applied to each equation in
eq. 3 to account for uncertainties and accuracy of chemical analysis for each
ion. Kowalczyk et al. (1982) weighted concentrations by 1/0? where o; was
the estimated standard deviation of the error in concentration for the ith
ion.

Error statistics were calculated for each ion for each of the mixtures
shown in Table VI, according to the equation:

€ = (Crie = Cumin)/Crir (7)

where Crp;, is the theoretical concentration of the ith ion in the kth mixture
and Cy;, is the measured concentration. The theoretical concentration is a
linear combination of sources included in the mixture:

Ng

Cri = Zl Coii X1 (8)
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TABLE VI

Error statistics

Ton First set Second set
mean standard mean standard
error deviation error deviation
(%) ‘ (%)
Na 21.3 15.8 -0.42 1.63
K” 9.8 7.5 -0.52 7.10
ca’” 12.4 11.1 0.11 0.76
Mg?” 14.3 11.1 1.32 3.53
NO; 22.7 52.8 3.44 7.45
P O 3 - (") - JE— — o
8035° 5.3 11.9 5.72 7.00
Ccl 15.3 25.0 7.06 5.70

*PO?{ omitted from calculations because of a very large percentage error.

where C; is the concentration of the ith ion in source j; and x;;, Is the
proportion of source j in the kth prepared mixture.

The mean and standard deviation of the errors for each ion are shown in
Table VI. These errors for the first mixture set were much larger than
anticipated, and show a significant bias in that the average theoretical
concentration is greater than the measured concentration for all ions. The
bias ranges from a low of + 5.3% for SO to + 22.7% for NOj. The high
value for NO3 is what one could expect from a nonconservative ion: however,
no such bias would be anticipated for the other ions. There are six possible
sources of bias in water analyses: unrepresentative sampling, instability of
samples between sampling and analyses, interference effects, bilased
calibration, a biased blank correction, and inability to determine all forms of
the determinant (Cheeseman and Wilson, 1972). For the first set of mixture
samples, it appears that instability, interference effects, and possibly biased
calibration might account for the errors shown in Table VI. Also, mistakes in
preparing the mixtures and dilution mistakes are, of course, reflected in
these data, but are difficult to identify. Identifying the source of these errors
was made more difficult because HCO3 was measured only for sources 6 and
7 (Table II) in set I, so we could not check the ion balances for the other
sources or mixtures.

These large unexplainable errors served as the impetus to prepare the
second set of mixtures and determine if the errors could be reduced. The
results indicated that all errors generally were reduced for the second
mixture set {(Tables III, V and VI). The method of mixture preparation was
the likely source of most of the error in the first set of mixtures. In the
preparation of the first set of mixtures, the small amounts of source samples
used to make the mixtures could account for some of the errors, and this
was corrected in the second set of mixtures by using larger samples. The

ik
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methods of analysis were the same for both sets of mixtures, although
different technicians performed the analyses, and this could account for
some error or bias. The second set of mixtures still had an overall bias, with
the theoretical concentration being greater than the measured concentration,
but the error was significantly smaller, as measured by the mean error and
standard deviation (Table VI).

Because of the HCOj3 analysis of the sources and mixtures, the errors in
the second set were investigated further by calculating the ion balance using
the major cations and anions {Table II). The difference in milliequivalents
per liter between the cations and anions was less than 1 meq for all sources
except source 4. Source 4 was from a shallow well influenced by sewage
effluent, and microbial activity in the sample was suspected to have shifted
the HCO3 equilibrium and affected the ion balance. The influence of source
4 on the mixtures was evident in that almost all the mixtures containing it
had the higher ion-balance errors (data not presented). Source 9, which was
the same as source 4, but filtered through a 0.45-um filter that should
remove microbial activity, had low ion-balance errors throughout. Since ion-
balance errors were relatively low and embodied all the analysis errors, a
specific source of error could not be determined.

The errors in the computed proportions of source waters, e,, for all

o A o

mixtures, were calculated using the relationship:

|‘OO_[ H T T T T T [@C;mmn D!D D| D Dl‘
0.80F .
OSET
oSET 2
0.60F B
0
o
0.40 4
0.201 .
B o m @ OF ]
OOO 1 ° 1D L H i 3 { 1 ! 1 i
-1.00 -0.60 -0.20 0.0 0.20 0.60 1.00

e)(

Fig. 2. Distribution of proportion errors, ¥; — X;.
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TABLE VII
Comparison of predictions between variance weighted equations and equally weighted
equations

Mix- Source No. Error
ture index
No. 1 2 3 4 5 6 7 8 9 10
First sel:
1 A" 025 010 0 0 0 025 040 0O O 0
c2" 013 0 0.04 025 0 0 0.51  0.04 0 0.04 0.53
W 0.21 0 0 0 0 013 055 0.03 0 0.07 0.75
2 . 0.5 0 0 0 0 0 0.5 0 0 0
c2 0.36 O 0 0 0 0 0.47 008 0 0.10 0.83
W 0.46 O 0 004 0O O 0.40 0.07 O 0 0.90
3 A 0.5 0 0 0 0 0 0 0.5 0 0
C2 0.39 0 0 0 0 O 0.05 05 O 0.06 0.89
W 045 O 0 0 0O 0 0.02 05 0O 0.03 095
4 A 0.5 0 0 0 0 0 0 0 0.5 0
c2 0.48 0 0 0 0 0 0 0.06 0.47 O 0.95
W 0.28 0 0 0 0 0 0 0.14 0.46 0,12 0.74
6 A 0 0.5 0 0 0 0.5 0 0 0 0
C2 0 0.44 0.03 0 0 0 0.41 0.11 O 0 0.45
W no convergence
16 A 0 0 0 0.5 0 0 0.5 0 0 0
c2 no convergence
W no convergence
26 A 0.2 0 0 0 0 0 0.8 0 0 0
c2 no convergence
W no convergence
57 A 0 0 0 010 0 0 0.9 0 0 0
C2 no convergence
W 0 0 0 0 0 023 052 0.26 0 0 0.52
Second set:
11 A 0.25 0.256 0.256 0.26 O
Cc2 0.19 0.31 0.16 025 O 0.86
W 0.24 0.24 0.24 0.24 0.03 0.97
12 A 0.25 0.25 0.256 0 0.25
C2 0.21 0.26 0.20 0 0.33 0.91
W 0.24 0.25 0.26 0 0.27 0.99
14 A 0.26 0 0.256 0.256 0.2b
C2 0.22 0.07 0.18 0.23 0.31 0.88
\ 0.25 0.03 0.24 0.22 0.26 0.96
17 A 0.5 0 0.5 0O 0
C2 0.45 0.02 042 0 0.1t 0.93
W 048 O 0.48 0 0.03 0.97
20 A 0 0.5 0.5 0 0
C2 0 0.50 0.50 0 0 1.00
W 0 0.49 0.51 0 0 0.99
23 A 0 0 0.5 0.5 0
C2 0 0.01 0.45 0.47 0.07 0.92
W 0.01 0 0.50 0.49 O 0.99
*1 A = actual.

*2 02 = equal weight, POJ™ omitted.
*3 W = variance weighted, PO} omitted.
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where x; is the actual proportion of source j in the mixture; and x; is the
amount calculated with PO3~ omitted. The empirical distribution functions
of these errors are shown for both sets of mixtures in Fig. 2. Because of the
mass-balance constraint, given by eq. 2, the mean error is zero. There is also
a positive probability mass of e, = 0, corresponding to the sources not
present in a mixture that were correctly identified as being not present. The
falsely identified sources are reflected in the negative errors in Fig. 2, and the
tendency to underestimate the proportions of sources present s shown in
the positive errors. The reduction in the dispersion of these errors by the
improved procedures for mixture set 2 is remarkable.

A set of weighting factors, w; = 1/0;% where ¢, is the error variance for
the ith ion, was calculated, and the analysis was repeated for 14 mixtures.
The results are compared with the actual proportions and the proportions
calculated with the equally weighted equations in Table VII.

These mixtures were selected to represent those for which the estimates,
using equally weighted equations, were quite good, and those which were
poor, or for which the Wolfe algorithm did not converge. For the first set of
mixtures, the variance weighting improved the estimates for mixtures I, 2
and 3, and allowed convergence for 57. The algorithm still did not converge
for 16 and 26, and the weighted estimate for mixture 4 was inferior to the
unweighted estimate. The algorithm did not converge for the variance
weighted equations for mixture 6. For the second set of mixtures, the
variance weighting improved the estimates for mixtures 11, 12, 14, 17 and
23, and had little effect on mixture 20. It also reduced the probability of
identifying a source when it was not present.

ey T Xj

5. SUMMARY AND CONCLUSIONS

A normalized chemical ion-balance technique (NCIB), to identify water
sources in a mixture, was tested using two sets of mixtures prepared in the
laboratory. The first set consisted of 64 mixtures of from 2—8 natural
waters, selected from 10 sources (surface, groundwater and precipitation).
A second set of 25 mixtures was prepared using 5 source waters. Each of the
source waters and each mixture was analyzed for at least 8 ions. Proportions
of source waters in each sample were estimated using a technique described
by Woolhiser et al. (1979, 1982). For the first set of mixtures, the
probability of failure to detect a source when it was present in the mixture
(type-I error) was 0.23, and the probability of identifying a source when it
was not present (type-1I error) was 0.29. For the second set of mixtures, the
probabilities were 0.0 and 0.33, respectively.

It is possible that some of the solutions for mixture set I are not unique.
However, the values of the objective functions attained with the estimated x;
were always better than those attained with the theoretically “correct” x;.
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Every effort should be made to include at least as many ions in the analyses
as there are candidate sources.

The linear dependence between sources was investigated and found to be
significant for several sources. Significant errors, including bias as well as large
error variances, were found in the chemical analyses for the first set of mix-
tures. These errors were substantially reduced for the second set of mixtures,
probably because larger sample volumes were used and greater care was taken
in preparing and analyzing the samples. The sensitivity of the NCIB technique
to errors in chemical analyses dictates that great care should be taken in
sample collection and analyses. The NCIB technique, with each normalized
ion-balance equation weighted by the inverse of the error variance, showed
improved estimates and a reduction in the probability of the type-II error.

It appears that there is little chance of failing to detect a source if it is
present in the mixture in relatively large proportions (= 0.25), unless there is
significant interference between sources. However, sources detected with an
estimated proportion smaller than 0.10 are quite likely to be incorrectly
identified. Additional investigations would be required to verify or disprove
their presence.

T. Econopouly assisted with computer programming. Laboratory analyses
were performed by Donna Hansen and V. Weiss.

APPENDIX -~ UNIQUENESS OF QUADRATIC PROGRAMMING SOLUTIONS

The normalized ion-balance equations can be written in the form:
n
€ = 3 chx; —1 = (C*X), —1, 1<i<m (A-1)
j=1

where C* = (c¢};), a m x n matrix; ¢j; = concentration of the ith ion in the
jth inflow divided by the concentration of the ith lon in the mixture; X =
(x;), a n x 1 column matrix; x; = fraction of the jth inflow in the mixture;
and ¢; = normalized error term {due to mismeasurement, etc.).

The normalized inflows satisfy:

X

= 0 and 2ox; =1

so we can establish values from them by minimizing:

m

F(X) = 2 () —m (A-2)

i=1
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on

/

D = l ; 1;x,>0, 1<j<n]

f

F can be written in matrix notation as:

F(X) = X"AX —2BTX (A-3)
where A = C*TC*, an x n matrix; and B = an x 1 matrix with:
B, = izicij

F is continuous, and D is a closed and bounded set. Thus, F has a minimum
on D, though it may not be unique. F' is a quadratic form, and:

m " n \ o
XTAx = Y ( v c;’;x,) >0
=11 =1

so A is a positive semi-definite. Thus, the long form of Wolfe’s (1959)
algorithm can be used to find a minimum.

1f 1Al == 0, then A is positive definite and, as noted by Wolfe (1959), F
has a unique minimum. When the determinant is zero, as when m <n,
further analysis is needed to decide if a minimum found by Wolfes
algorithm is unique.

Suppose X, is a minimum of F on D. If there is another minimum, say X,
then consider X, +tV, 0<¢t<1 where V=X, —X,. This is the line
segment joining X, and X,. Since X, and X, are in D, and D is convex, this
segment lies in D. The convexity of F gives:

F(X, +tV) = F[tX, —8)X,] < tF(X)+ (1 —t)F(X,)
and since F(X,) = F(X,) is the minimum value of F on D, we get:
F(X,) < F(Xo +tV) < tF(X))+(1—1) F(Xy) = tF(Xo)
(11 F(Xo) = F(Xo)
This reasoning gives rise to necessary and sufficient conditions for I to have

multiple minima:
F has multiple minima if there is a vector V such that:

(1y v=+0
(2) Xo +tVeED for small t 2 0 (A-4)

(3) F(X, +tV)is constant for small ¢ = 0

For (2) of expressions (A-4) to hold, we need 1= (X, HtV)=2Xy +
tSV, and X, + tV = 0 for small ¢. Since £X, = 1 and X, = 0, this happens
just when 2V = 0, and V; = 0 for every j corresponding to zero coordinates
of X,. Since:
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F(Xo +tV) = (XoTAX, —2BYX o) + (X, TAV + VTAX, —2BTV)
+ 12 (VTAVY)

for (3) of expressions (A-4) to hold, we need X TAV + VTAX, —2BTV =
0 and VTAV = 0. As noted by Wolfe (1959), VTAV = 0 implies AB = 0
and, by taking the transpose, VT A = 0. Thus, the two equalities reduce to
BTV =0and AV = 0. In summary, we get:

F has multiple minima if there is a vector V such that:

(1) V.#0
(2) V, 20 for j€ K = {jl(Xy) = 0}

3 3 Vv,.=0 (A-5)

(4 AV =0

(5) B'V =0
Note that if V satisfies expressions (A-5), then so does any scalar multiple of
V. In particular, in view of (1) of expressions (A-5), we may divide V by the
maximum of the absolute values of the coordinates of V to get an added
condition:

6y —1 <V, <1 for 1<j<n

A change of variables, V; = V; + 1, and letting 0 = (1,..., 1)" gives:
F has a multiple minima if there is a vector V such that:

(1) V # b
(2) V, = 1forj € K

(4) AV = Ab (A6)
(5) BTV = BTb

6y V; <2 for 1s<j<n

(7y V; 20 for 1<j<n

We are now in a position to express our problem in terms of another
gquadratic programming problem; this time we are only concerned with the
value of a maximum, not its unigqueness.

{2)—(7) of expressions (A-6) can be putin a normal form by adding slack
and surplus variables as described in Hadley (1964). That is, there are
variables W;, which include the V; and matrices A* and b*, which allow us to
write (2)—(7) of expressions (A-6) as A*W = 5™ and W = 0. Now consider
the quadratic form:

R
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FIW) = 2 (V;—1) —n (A7)
j=1

The maximum of f on D* = {W|A*W=0b% WZ0} will be —n just when W in

D* gives V = b. Thus, we arrive at the conclusion:

F has a unique minimum on D if the maximum of f on D* is greater than
—n. We also note that, because of (6) and (7) of expressions (A-6), and the
manner in which slack and surplus variables are added, that D is closed and
bounded. Thus, / will have a maximum on D™,
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