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Precipitation Models: South Dakota, U. S. A.
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Fourier series are used to describe the seasonal variation of the five parameters for a stochastic model
of daily precipitation utilizing a first-order Markov chain for the occurrence process and a mixed
exponential distribution for the daily precipitation amounts (MCME model). Spatial variability of the
means of each parameter for 16 stations in South Dakota has been illustrated by mapping isopleths.
MCME parameters for 4 stations not included in the analysis are more closely described by the arithme-
tic mean of parameters for the 6 nearest stations than by using parameters for the nearest neighboring
station or parameters estimated by spline fitting or linear interpolation. However, MCME parameters
estimated by all interpolation methods were significantly different from parameters identified for each of
the four stations by maximum likelihood techniques. The principal source of this spatial variability at
distances of on the ordeér of 100 km is data inconsistency due to methodological differences affecting
small precipitation amounts and apparently related to observation time. Sampling error, possible param-
eter identifiability problems, and real differences in the precipitation regime on a scale smaller than the

#393

Seasonal and Regional Variability of Parameters for Stochastic Daily

Catedra de Hidraulica General y Agricola, Escuela Tecnica Superior de Ingenieros, Agronomos, Universidad de Cordoba, Cordoba, Spain

station spacing also contribute to the observed variability.

Oh Dakota land,

Sweet Dakota land,

As on thy fiery soil I stand,

1 look across the plains,

And wonder why it never rains,

"Til Gabriel blows his trumpet sound,
And says the rain’s just gone around ...
(Chorus)

“Dakota Land,” early settlers’ folk song

INTRODUCTION

Agriculturalists all over the world, and particularly those
who live in the extensive semiarid regions, have long recog-
nized the importance of seasonal and annual variability of
precipitation to their livelihood. Information on rainfall prob-
abilities is vital for the design of water supply and supplemen-
tal irrigation schemes and the evaluation of alternative crop-
ping and of soil and water management plans. Such infor-
mation can also be beneficial in determining the best adapted
plant species and the optimum time of seeding to reestablish
vegetation on deteriorated rangelands. Although rather long
precipitation records are frequently available in many
countries, little use is made of this information because of the
unwieldly nature of the records. Many efforts have been made
to summarize precipitation records into more useful forms.
For example, in the United States, regional research groups
have published extensive tables of Markov chain parameters
and tabulated values of distribution functions for daily rainfall
[cf. Feyerherm et al.,, 1965; Barger et al., 1959].

Although these publications are more useful than the raw
data, in most circumstances they are not well adapted to pro-
vide input for simulation models, nor do they provide a suf-
ficiently concise description of the precipitation climatology of
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a region to improve our ability to differentiate between differ-
ent rainfall regimes or to group similar regimes.

In an effort to provide more concise models of daily precipi-
tation, several investigators have proposed stochastic models
describing both precipitation occurrence and the distribution
of precipitation amounts at a point in space [Jones et al.,
1972; Smith and Schreiber, 1973, 1974; Todorovic and Wool-
hiser, 1975; Haan et al., 1976; Buishand, 1977; Katz, 1977;
Woolhiser and Pegram, 1979; Stern, 1980a, b].

The seasonal variation in stochastic model parameters has
long been recognized and is usually accounted for by esti-
mating the parameters for time periods of a few days to a few
months and assuming that the parameters are constant within
the period but take discrete jumps at the end of the period [cf.
Richardson and Wright, 1984]. Several investigators have
fitted Fourier series to model parameters [ Feyerham and Bark,
1965; Buishand, 1977; Coe and Stern, 1982; Woolhiser et al.,
1973]. Jones et al. [1972] and Stern [1980a] fit polynomial
curves to first-order Markov chain parameters.

Woolhiser and Pegram [19797 used direct numerical maxi-
mum likelihood estimates of Fourier coefficients to describe
the seasonal variations of parameters in a stochastic model of
daily precipitation. They demonstrated the technique using a
first-order Markov chain as the occurrence process and a
mixed exponential distribution for the daily precipitation, and
they suggested that the means, amplitudes, and phase angles
of the Fourier series for each parameter could be mapped to
provide a parsimonious regionalized model of the point pre-
cipitation process.

Rolddn and Woolhiser [1982] and Woolhiser and Rolddn
[1982] compared the Markov chain-mixed exponential
(MCME) model with several alternatives for five widely-
scattered stations in the United States. According to the
Akaike information criterion [Akaike, 1974}, the MCME was
superior to the alternatives studied, including chain dependent
models, ie., where the distribution of precipitation on a wet
day is dependent on the state of the previous day.
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The objective of this paper is to examine the spatial charac-
teristics of the Fourier coefficients for each parameter in the
MCME model using data for the state of South Dakota, as an
example. We also examine alternative interpolation techniques
for estimating Fourier coefficients at points between stations.

STOCHASTIC DAILY PRECIPITATION MODEL

The precipitation occurrence process X, is described by a
first-order Markov chain, with two states defined by the tran-
sition probabilities

pijn) = P(X, = j1 X, = 1) (1)
ij=01 n=1,2 365
where state O signifies a dry day and state 1 a wet day, and

pa(n) =1 — pio(n) i=01 (2)

Let Y, be the amount of precipitation that falls on day ¢ when
X, = 1. We assume that Y, is serially independent and is inde-
pendent of X, ;. This means that there is dependence on
precipitation occurrence from day to day but that the amount
of precipitation (given a wet day) is independent of previous
occurrences and amounts. The assumption of independence
between the amounts of rainfall on successive days leads to
significant simplifications in the model structure and has been
used by several previous investigators [cf. Coe and Stern,
1982: Richardson and Wright, 1984; Stern, 1980a], although
small but significant correlations have been found [Buishand,
1977].

Let the random variable U, =Y, — T be distributed as a
mixed exponential with probability density function:

x(n)

Sl =2 exp (= 2 ) + p(-==) O
B(n) B(n) a(n)

where 0 < u < oo, T is a threshold (normally 0.25 mm or 0.01
inch), 0 < a(n) < 1,0 < f(n) < d(n),and n = 1,2, --- 365.

The mixed exponential distribution can be interpreted as
the result of a random sample from two exponential distri-
butions where the distribution with the smaller mean f(n) is
sampled with probability «(n) and the distribution with the
larger mean §(n) is sampled with probability (1 — a(n)).

It has also been shown [Woolhiser and Pegram, 1979] that
the seasonal variations in each of the five parameters can be
described by the polar form of a finite Fourier series:

{1 — am)]
< €X
8(n)

a . [2nnj
yiAn) = yio + C;;sin|——+ ¢ 4
}}1(”) Yr() j;l { ij <365 (p:;)} ( )
where i = 1, 2, - -+ 5, y;(n) is the value of the ith parameter on
day n, n= 1,2, - - 365, m; = maximum number of harmonics

for the ith parameter, y,, = mean of each parameter, C,; =
amplitude, and ¢, ; = phase angle.

The expected value function of the total precipitation in k
days S(k) can be written in the following form:

k k . k
E[S(k]= Y ELY, X1= Y EU, X]1+T)E[X]
i=1 i=1 i

i=1

k

= Z [P(X,. = O)po,(i) + P(X;_, = Dp, ()]

i=1
{a()p) + [T — a(i)]oi) + T} (5)
PARAMETER ESTIMATION

Woolhiser and Pegram [1979] recommended direct numeri-
cal maximum likelihood techniques to estimate the Fourier

coefficients. Coe and Stern [1982] have formulated this prob-
lem as a generalized linear model which allows a regression-
type approach to be used to fit and test alternative models. In
this paper we use a procedure similar to that used by Woolhis-
er and Pegram [1979]. Both occurrence and precipitation
depth were handled independently, but the optimization pro-
cess followed was almost the same in both cases. First of all,
parameters of both the Markov Chain and the mixed ex-
ponential distribution were computed by maximum likelihood
methods for 14-day periods. Maximum likelihood estimates of
Markov Chain parameters are easily calculated by computing
the observed number of transitions a;;{(n) from state i (0 or 1)
on day n — 1 to state j (0 or 1) on day n. Then

agolk)
agolk) + ag (k)

ayo(k)
a;olk) + a, (k)

where k = 1, 26 and q;; (k) refers to the number of transitions
occurring within period k.

The maximum likelihood estimates of the parameters of the
mixed exponential distribution were obtained by maximizing
the log likelihood function:

Poolk) = (6)

piolk) = (7)

N(k)

log Ly = Y {log [%i exp (—uy;/Bi)

=1
H(52) e cum | ®
k

where «,, f,, and &, are the parameter values for the kth
period, k=1, 2,--- 26, u,;=the amount of precipitation
minus the threshold for the jth wet day in period k, and N(k) is
the number of wet days in period k.

The Fourier coefficients for each of the five parameters were
first estimated using least squares methods. These coefficients
were used as starting values for maximum likelihood esti-
mation of coefficients using a multivariate, unconstrained op-
timization technique from the IMS (International Mathemat-
ical and Statistical) Library, called ZXMIN, based on a paper
by Fletcher [1972].

The coefficients y,5, C;j, ¢;, i=1, 5, j=1,m for the
MCME were estimated by maximizing the following ex-
pressions [ Woolhiser and Pegram, 1979]:

Dry-dry transitions

365

log Ly = Z {ago(n) log poon) + ao;(n) log [1 — poo(n)]}
)
Wet-dry transitions
365
log L, = Z {a,0(n) log pio(n) + a;,(n) log [1 Pro(m1}
(10)

where a;;(n) is the observed number of transitions from state
i(0 or 1) on day n — 1 to state j(0 or 1) on day n. Mixed
exponential distribution:

365 m(n)
log Ly = Z Z1 {}Og [%%% exp [—u,,;/p(n)]

’ I — on) .
S ) exp <—-un,~/o(n>>]} (1)
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where m(n) = number of wet days n; n =1, 2--- 365 for the
period of record, u,; = the transformed precipitation for the
Jjth wet day for day n. :

Each parameter in (9)-(11) is expressed in the finite Fourier
series form as specified by (4). Let 6,, 8,, and 8,, be vectors
whose elements are the coefficients of the Fourier series de-
scribing the parameter set for the dry-dry transitions, the wet-
dry transitions, and the mixed exponential distributions, re-
spectively. The objective is to find the estimate § of @ that
maximizes log L in (9—(11).

The likelihood ratio test [cf. Hoel, 1971; Mielke and John-
son, 1973] was used to determine if an added harmonic was
significant. For example, to determine if the first harmonic is
significant in describing the seasonal variation in pgo(k), we
test the null hypothesis

Ho: 8,=8,"=(yy) (12)
against the alternative
Hyt 8,= (10, Ci1, 611) (13)

Let L(x, 8,) be the maximum likelihood function when H,
is true and L(x, 8,) be the maximum likelihood function under
the alternative hypothesis. Under certain regularity con-
ditions, the statistic, —2 log, {L(x, 8,)/L(x, 0,)} has a distri-
bution that approaches the chi square distribution with 2 de-
grees of freedom for large sample size. We accepted the null
hypothesis if the probability of obtaining a greater test statis-
tic was smaller than 0.05. As Woolhiser and Pegram [1979]
have noted, the true level of significance is somewhat different
because of repeated testing and problems with dependence
between parameters.

It can be shown that the amplitudes and phase angles of the
significant harmonics for each parameter are not independent.
Furthermore, the parameters a, ff, and § are also not indepen-
dent. For this reason, the order in which the parameters are
analyzed will affect which harmonics are declared significant
by the likelihood ratio test and also the final log-likelihood
value. Because one goal of this research is to present a re-
gionalized precipitation model, it is important that consistent
procedures be followed. Accordingly, three stations were ana-
lyzed in detail using different optimization sequences. The se-
quence leading to the highest final log-likelihood value was
selected. The order in which parameters were included was 9§,
B, and « for both harmonics. The order for the Markov Chain
parameters is not important, because they are independent.
The first through the fourth harmonics were included for each
parameter in that order.

The means of the Markov chain parameters (y,q, ¥,,) Reed
not be optimized simultaneously, because they are indepen-
dent; however, they are not independent of their associated
amplitudes and phase angles. Therefore a three-parameter
(mean, amplitude, and phase angle) optimization was made
when the first harmonic was studied. If the first harmonic was
not significant, the mean was studied along with the second
harmonic. If the first harmonic was significant, the mean was
fixed, and subsequent optimizations included only the ampli-
tude and phase angle of higher harmonics. No improvement
was obtained by optimizing the mean along with all harmon-
ics, but the computer time was increased.

Estimation of the three mixed exponential distribution pa-
rameters Y40, Ya0, ¥so 18 more difficult because the three mean
values are not independent. Likewise, the mean value of each
parameter is not independent of its associated amplitudes and
phase angles. Thus a large number of procedures can be fol-

lowed in the optimization process. Woolhiser and Rolddn
[1982] demonstrated that the best procedure is to optimize
the three means simultaneously and then to sequentially opti-
mize the amplitude and phase angle of each harmonic. We
found that the procedure described by Woolhiser and Rolddn
[1982] led to biased estimates of the expected annual precipi-
tation as calculated by (5) but that this bias could be nearly
eliminated by a second round of optimization retaining all
parameters previously declared significant.

SpATIAL CHARACTERISTICS OF THE LOCAL DALY
PRECIPITATION PROCESS

The spatial (geographical) character of the local daily pre-
cipitation process can be described by the random fields y,q(u),
¢; fu), and ¢, {u), where u is the vector of spatial coordinates
u=(x, y),i=12--5 and j=1, 2 - m. Because precipi-
tation measurements are made at points in space, we must
infer the properties of the continuous random fields from the
parameter estimates at M stations with coordinates u,, = (x,,
Vo) (m = 1,2, --- M). It should be emphasized here that we are
considering only the spatial variability of the local daily pre-
cipitation process, X, Y, as evidenced by the spatial character
of the fields describing the seasonal variation of parameters of
this process. The more difficult time-space daily precipitation
process is beyond the scope of this investigation.

Creutin and Obled [1982] presented a comprehensive review
and evaluation of mapping techniques for rainfall fields. The
parameter fields under discussion here must be viewed in the
context of a single realization, and therefore the mapping tech-
niques must be selected from those that they classified as spa-
tial methods rather than climatological methods. Included in
this category are

1. The nearest neighbor method: The estimated value of
any given point is taken as the observed value at the nearest
neighboring station.

2. The arithmetic mean: It is assumed that the parameter
is constant over a particular region and can be estimated by
the average of the observed values within the region.

3. Spline-surface fitting: This consists of finding the sur-
face interpolating the observed points, which also satisfies an
optimal “smoothness” criterion. If only three observed points
are considered, this method reduces to a linear interpolation.

4. Kriging method: The value at an ungaged point is esti-
mated as a linear combination of n surrounding observed
values, which minimizes the estimation variance.

Each of these methods may be used to estimate point
values. The point values estimated by methods 3 and 4 could
be used to prepare maps of parameter isolines to provide a
regional description of the daily local precipitation process. As
we have pointed out previously, some of the parameter fields
under consideration are not independent; however, as a first
approximation, we will neglect this dependence in the follow-
ing analyses.

SpATIAL CHARACTERISTICS OF PARAMETERS: SOUTH DaAxkoTA

Precipitation data for the state of South Dakota were used
to examine the spatial variability of the Fourier coefficients
describing the MCME parameters. This region is ideal for
such a study because there is a substantial gradient of precipi-
tation from southeast to northwest and orographic effects
should be minor, except in the Black Hills region in the south-
western corner of the state.

Figure 1 is a map of the state of South Dakota showing the
16 stations used for parameter estimation and the four sta-
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Fig. 1. Location map and average annual precipitation.

tions used for testing alternative interpolation methods. Isohy-
ets of mean annual precipitation calculated from National
Weather Service daily data are also shown. Except for Martin,
Gettysburg, and Long Valley, these means are based on a
40-year period of record beginning March 1, 1928, and ending
February 28, 1959. The observation time, total number of wet

days, mean annual number of wet days, mean precipitation on
wet days, and elevation above sea level for all stations are
shown in Table 1. The data from Aberdeen and Rapid City
are from recording gages; all other stations had 8-inch (20.3
cm) standard rain gages read at 24-hour intervals. The means,
amplitudes, and phase angles for the Markov chain parame-

TABLE 1. Meteorological Information for Stations Analyzed (1928-1959 Except as Noted).

Mean

Precip- Mean Mean

Obser- Total itation Annual Annual

vation Number on Wet Number Eleva- Precip-

Time, of Wet Days, of Wet tion, itation,
Station LT Days mm Days m mm

Base Stations
Aberdeen 0000 3270 6.20 82 395 507
Academy 1800 2324 8.74 58 511 508
Brookings 0700 3137 6.27 78 500 492
Camp Crook 1700 2439 S.64 61 951 344
Cottonwood 1700 2592 5.99 65 736 388
Lead 1 E 1800 4602 533 15 1916 613
Martin (1934-1973) 1700 2559 6.22 69 1089 430
Milbank 0700 3027 7.34 76 349 555
Newell 0800 3492 4.65 87 875 406
Oelrichs 1800 2009 8.53 50 1017 428
Pierre : 0000 3282 511 82 529 419
Pollock 1900 2200 7.04 55 498 387
Rapid City 0000 3788 452 95 965 428
Redfield 1800 2702 6.76 68 395 457
Redig SS 2881 4.78 72 936 344
Yankton 0700 3256 7.11 81 387 579
Test Stations

Gettysburg (1931-1970) 1800 2696 6.36 67 634 428
Long Valley (1927-1966) 1800 2559 7.52 69 753 481
Mitchell 2 SW 0700 3341 6.45 84 539
Onida 4 NW 1800 2132 7.52 53 564 400

SS, observation fime near sunset.

e
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TABLE 2. Fourier Coefficients for the Markov Chain Parameter py,

Mean [LI98 $12s $13 Prar
Station Y10 Cyy rad Cys rad Cis rad Ci, rad
Base Stations
Aberdeen 0.8166 0.0578 29906 0.0171 0.3606 * * * *
Academy 0.8645 00878 27382 0.0146 14611 * * * *
Brookings 0.8191 00763 27852 0.0156 0.9210 * * * *
Camp Crook 08652 0.0597 29728 0.0145 0.8075 0.0254 0.7695 0.0126 —~2.0938
Cottonwood 08554 0.0752 28645 00191 12622 00120 -—0.0408 * *
Lead 1 E 0.7502 00626 40111 0.0229 1.1149 00147 —2.1001 * *
Martin 0.8425 0.0732 29288 00190 0.6847 * * * ®
Milbank 0.8299 00769 26661 00165 0.7123 * * * *
Newell 08107 00684 30760 00168 14434 * * * *
Oelrichs 0.8849 00663 28537 00144 20121 00111 —18125 * *
Pierre 0.8202 0.0681 3.0101 0.0239 05885 0.0124 -0.5478 * *
Pollock 0.8710 0.0599 27472 0.0195 0.8586 0.0116 —0.7555 * *
Rapid City 0.7973 0.0837 3.1115 0.0237 0.8546 * * * *
Redfield 0.8453 0.0785 2.6493 0.0181 0.7983 * * * *
Redig 0.8404 00695 28531 00120 10363 00124 —07198 00110 23941
Yankton 0.8185 0.0917 2.7340 * * * * 0.0189 —1.441
Test Stations

Gettysburg 0.8463 00724 28390 0.0187 09320 * * 00134 —2.2531
Long Valley 0.8700 0.0627 3.1709 * * * * * *
Mitchell 0.8199 0.0835 2.7721 * * * * 0.0126 —1.5337
Onida 4 0.8778 0.0604 27861 0.0117 12786 0.0095 —0.1680 * *

*Harmonic not significant at 0.05 level.

ters and the mixed exponential distribution parameters are
presented in Tables 2 through 5.

A preliminary analysis revealed that for most stations the
parameter « was constant throughout the year. Therefore no
higher harmonics were considered in all optimizations. This
procedure prevented potentially severe interactions between
harmonics in « and the other ME parameters.

To provide a visual impression of the spatial characteristics
of the Fourier coefficients, isopleth maps of the means, y;q,
i=1, 2,5 were prepared by drawing smooth curves
through points obtained by linear interpolation between the
coefficient values for adjacent stations. Parameters estimated
for the test stations were not used in constructing the iso-

TABLE 3. Fourier Coefficients for

pleths. Isopleth maps of the means of p,, and p;o for the
Markov chain are shown in Figures 2 and 3. It is apparent
from these figures that there are significant spatial variations
in these occurrence process parameters. However, it must be
emphasized that each optimized coefficient includes a sam-
pling error term due to the finite length of record and also
includes a measurement error term. The annual mean prob-
ability of a wet day following a dry day (1 — Py,) is greatest in
the southeast and in the Black Hills region and is lowest in the
northwest and southwest. This is generally true of the mean
wet-wet transition probability (1 — p,,), except for the relative
maximum at Pierre, in the center of the state. The trends from
the northwest to the southeast are probably real; however,

the Markov Chain Parameter p,,

Mean $ars $22, P23, ®2ar
Station Y20 Cyy rad C,, rad C,y rad C,s rad
Base Stations
Aberdeen 0.6332 00494 —2.8574 00398 22510 * * * *
Academy 0.7143 0.0978 —3.0031 00815 28908 * * * *
Brookings 0.6613 00840 —3.1717 00653 2.8360 * * * *
Camp Crook 06619 00769 —3.0811 00603 22251 * * * *
Cottonwood  0.6843  0.1302  —3.1392  0.0469 2.6142 * * * *
Lead | E 0.5449 00809 —2.6774 00391 21198 * * * *
Martin 0.6625 00860 —29634 00711 24512 00535 0.0527 * *
Milbank 0.6444 00556 —3.4206 0.0605 24631 * * * *
Newell 0.6035 0.0794 —3.3779 00653 21368 0.0542 0.1564 0.0327 25102
Oelrichs 0.7184 0.0688 —2.7602 0.0520 2.4645 * * * *
Pierre 0.6170 00586 —2.9438 0.0466 1.9987 * * * *
Pollock 0.7308 0.0782 33887 0.0412 26174 00414 00697 * *
Rapid City 0.5786 0.0905 —2.9413 00458 23506 0.0316 —0.5810 * *
Redfield 0.6755 0.0733 29872 00865 2.3667 * * * *
Redig 0.6548 0.0960 —3.5296 0.0553 2.1858 0.0355 —0.0093 * *
Yankton 06282  0.0824  —-3.0682 0.0465 26165 * * * *
Test Stations
Cetivehnro N6R3T 00974  —3.1735  0.0639 21576 * * * *

TR
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TABLE 4. Fourier Coefficients for the Mixed Exponential Distribution Parameters o and f
B
o
Y30 Y40 Cups bars Caa Dazs Cus Pass Coss uus
Station mm mm rad mm rad mm rad mm  rad
Base Stations
Aberdeen 0.3873 1.084 0.652 —0.3361 * * * * #* *
Academy 0.6034 5158 0.844 —0.6221 * * * * * *
Brookings 04061 1.190 0.805 —09419 * * * * ¥ *
Camp Crook 05135 1998 1.116 —0.5970 * * * * * *
Cottonwood 05135 1.752 0.378 —0.4025 * * * * * *
lead 1 E 0.5777 1985 0031 -05084 0.2797 —1.2888 * * « ®
Martin 0.6233 2378 0639 —0.5896 * * * * * *
Milbank 0.4482 2323 * * * ® * ® * *
Newell 0.4568 0916 0478 —0.7552 0.1311 -—1.4224 * * * *
Oelrichs 0.8484 5965 1830 —0.4766 08197 —0.9568 0.7493 -2.606 * *
Pierre 0.4462 0.816 0465 -—-0.7626 0.0996 —0.8102 * * * *
Pollock 0.6290 3964 1511 —0.3202 * * * * * *
Rapid City 0.4197 0.696 0408 —0.5410 0.0950 -—0.6382 0.1072 —2.942 * *
Redfield 0.5332 2199 0986 —0.4850 * * 0.3922 -2.858 * *
Redig 0.5027 1.610 * * * * * * * *
Yankton 0.4988 1.364 0.573 —0.6232 * * * ® *
Test Stations
Gettysburg 0.5629 2.539 0.835 -0.3344 * * * * * *
Long Valley 0.6589 4553 1426 —0.4382 * * * * * *
Mitchell - 03857 0934 3.597 —0.5935 * * * * * *
Onida 4 0.6240 4.605 1245 —0.3849 * * * * * *

*Not significant at 0.05 level.

some of the differences may be due to the observation time or  isopleths are apparent near Oelrichs and Academy, suggesting
to the possibility that some cooperative observers are report-  either rapid changes in the distribution of amounts or signifi-

ing too few wet days.

Isopleth maps for the means of «, f§, and J for the mixed
exponential distribution are shown in Figures 4, 5, and 6. The
parameter o shows significant spatial variation with a range
from 0.4 to 0.8. Both f and 6 show significant spatial vari-

cant measurement errors.

COMPARISON OF SELECTED TECHNIQUES
FOR ESTIMATING PARAMETERS
AT UNGAGED LOCATIONS

ations as well. There is some similarity between the patterns of Fourier coefficients for each of the five parameters in the
the isopleths for « and the mean values of § and 6. Because of MCME model were estimated for the four test stations shown
their dependence, this is to be expected. Concentrations of in Table 1. The following techniques were used: (1) nearest

TABLE 5. Fourier Coefficients for the Mixed Exponential Distribution Parameter &
Vs Csy, bs1s Css, b3, Css, Gs3s Csay  Psar
Station mm mm rad mm rad mm rad mm  rad
Base Stations
Aberdeen 8915 5.161 —0.8031 * * * * * *
Academy 11.814 7.008 —0.8322 * * * * * *
Brookings 8.963 5.878  —0.8724 * * * * * *
Camp Crook 8.307 5385  —0.7437 * ® * * * *
Cottonwood 8.830 3797  —0.7052 * * * * * *
Lead 1.E 9.792 6358 —0.7911 0.6553 —1.8196 0.6248 —3.0335 * *
Martin 11361 10.777 —0.6848 * * * * * *
Milbank 10.279 4732 —0.7504 * * * * * *
Newell 7.084 4737  —0.7033 * * 0.5893  --2.7910 * *
Oelrichs 16.187 14.636  —0.8286 * * * * * %
Pierre 7716 4206 —0.6764 0.6553 0.1056 * * * *
Pollock 9.901 8423  —0.8750 * * 1.5443  —3.0897 * *
Rapid City 6.741 4.463 -0.6862  0.4191 -0.7159 05105  -—-2.868 * ¥
Redfield 9.797 4.097  —-0.7270 * * * * * *
Redig 6.292 3.620 —0.6661 * ® * * # "
Yankton 10.958 5.027  —0.8480 * * * * * *
Test Stations

Gettysburg 9.705 6.322 —-0.6921 * * % # * *
Long Valley 11.059  10.112  —0.6451 * * - -
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Fig. 2. Isopleth map of annual mean py, (¥10)

neighbor, (2) the arithmetic mean of the six nearest stations, The techniques were compared by calculating the log-
(3) a- spline-surface fit to the six nearest stations using the likelihood functions using the estimated coefficients and (9}~
technique described by Creutin and Obled [1982] and at- (11) with precipitation data for each test station. The maxi-
tributed to Duchon [1976] and Paihua and Utreras [1978], mum likelihood (ML) functions for each test station can be
and (4) a linear interpolation using the three nearest stations  utilized to test the following hypothesis:
defining a triangle that includes the station. Hy: w, =(8,) w, = (8,)

The estimated coefficients, using each of the above methods, . .
are shown for the Markov chain and the mixed exponential against the alternative
distribution in Tables 6 and 7, respectively. Hy: w,=(8,) w, =(8,)

Fig. 3. Isopleth map of annual mean pg {y20)
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where the subscripts 1 and 2 refer to the occurrence process
and ME distribution, respectively, and 8,” and 6,’ refer to
parameters estimated by one of the four techniques discussed
previously; 8, and 0, are the parameter vectors estimated
from the actual record at the test station by ML techniques
with the constraint that each parameter of the MCME model
will have no more harmonics than the neighboring stations
(ie., both pyo and p,, are allowed two harmonics; both f and

I
(o]
]m
.
S
3

Isopleth map of mean « (y5,).

¢ are allowed one harmonic, and o is described only by the
mean value).
The likelihood ratio statistic
A= —2log, {L(x, 8;)/L(x, 0&)}
is approximately chi square with 10 degrees of freedom for the
Markov chain and 7 degrees of freedom for the mixed ex-
ponential distribution.
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TABLE 6. Fourier Coefficients for Test Stations: Markov Chain

POO PlO
Estimation Mean [/ b2 Mean (29N b2 b3, Log
Technique Yio Cyy rad Ci,y rad Y20 Cyy rad C,, rad C,s rad  Likelihood
Long Valley Station
I (Martin) 0.8425 0.0732 29288 0.0190 0.6847 0.6625 00860 —2.9640 0.0711 24512 0.0549 00527 —6014.54
2 0.8441 0.0757 29178 0.0191 1.1439  0.6625 0.0886 —2.9586 0.0573 24617 - 6009.55
3 0.8449 0.0742 2.9042 00193 0.7787 0.6682 0.1013 —3.0405 0.0649 2.5028 —6008.41
4 0.8390 0.0754 29184 0.0200 0.6443  0.6598 0.1072 -—-3.0758 0.0653 25138 —6029.44
ML 0.8700 0.0627 3.1710 * * 0.7123 0.1018 —3.0391 0.0635 22982 —5952.78
Mitchell Station
[ (Academy) 0.8645 0.0878 2.7382 0.0146 14611 0.7143 00978 —3.0031 0.0815 2.8908 * * —7479.54
2 0.8329 0.0799 2.7629 0.0158 1.0407 0.6568 0.0753 —3.0991 0.0645 2.5286 —7304.78
3 0.8353 0.0821 2.8404 0.0151 1.2818 0.6669 0.0878 29932 0.0627 2.6796 —7315.81
4 0.8432 0.0845 27528 0.0137 1.3295 0.6847 0.0910 --3.0796 0.0713 2.8336 —7347.85
ML 0.8198 0.0835 2.7721 * * 0.6154 0.0630 —2.9380 0.0446 2.5872 ~7283.02
ML 4th harmonic 0.0126  —1.5336
Gettysburg Station
[ (Redfield) 0.8453 0.0785 2.6493 0.0181 0.7983 0.6755 0.0733 29872 0.0865 23667 * * —6575.26
2 0.8413 0.0715 2.8003 0.0183 0.7966  0.6692 0.0688 —3.0643 0.0594 24313 —6572.04
3 0.8372 0.0678 2.8345 0.0206 0.6340  0.6593 0.0653 29579 0.0595 2.2244 —6579.63
4 0.8053 0.0546 3.1664 0.0211 0.2978 0.6024 0.0438 -2.8508 0.0217 20336 —~6716.52
ML 0.8463 0.0724 2.8390 0.0187 09320 0.6831 0.0974 —3.1735 0.0639 2.1576 * * —6561.01
ML 4th harmonic . 00134 —2.2531
Onida Station

1 (Pierre) 0.8202 0.0681 3.0101 0.0239% 0.5885+ 0.6170 0.0586 29438 0.0466 1.9987 * * - 5929.50
2 0.8455 0.0712 2.8333 0.0187 0.8882 0.6758 0.0812 -3.0174 00571 24565 —5778.14
3 0.8190 0.0626 3.0476 0.0234 04892 0.6192 00517 -—2.9363 0.0372 2.0130 —5944.24
4 0.8328 0.0672 2.9270 0.0225 0.6612  0.6452 0.0638 29951 0.0486 2.1564 - 5828.23
ML 0.8778 0.0604 2.7861 0.0117 1.2786  0.7251 0.1048 32027 0.0579 1.8452 * * ~5703.85
ML 3rd harmonic 0.0095  —0.1680

1, Nearest neighbor: 2, Arithmetic mean; 3, Spline; 4, Linear interpolation; ML, Maximum likelithood.
*Harmonic not significant at 0.05 level.
+Third harmonic for Pierre; AMP, 0.01238; PHS, —0.54779.
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TABLE 7. Fourier Coefficients for Test Stations: Mixed Exponential
B 0
x Log
Estimation 730 Va0 Cyys Gar, Cya $az, Cia Paz V500 Csys $s1s Csa, P52 Likeli-
Technique mm mm rad mm rad mm rad mm mim rad mm rad hood
Long Valley Station
1 (Martin)  0.6233 23779 06388 —0.5896 * * * * 11.3622 10.7775 —0.6848 * * 591.93
2 0.5757 27940 0.7620 ~--0.5657 * * * 10.4419 74828 —0.7356 * * 724.18
3 0.5689 19533 0.4623 —-0.5457 * * * * 10.1752  8.0264 —0.6833 * * 609.07
4 0.5332 1.3945 0.2896 —0.5376 * * * * 9.3599  7.1933 —0.6635 * * 51232
ML 0.6589 4.5527 14257 04382 * * * * 11.0589 10.3010 —0.8079 * * 772.05
: Mitchell Station
(Academy) 0.6035 5.1580 0.8443 —0.6221 * * * * 11.8140 7.0089 —0.8322 * * 1485.68
2 04893 2.1742 0.6681 —0.7007 * * * * 99212 51613 —0.7844 * * 1826.08
3 0.5059 25883 0.7417 -0.7462 % * * * 100254 6.0274 —0.8263 * * 1779.50
4 0.5244 33274 0.7925 -0.7260 * * * * 10.7696 63576 —~0.8475 * * 1686.01
ML 03857 09337 03597 —0.5935 * * * * 90279 48913 —0.7555 * * 192190
Gettysburg Station
I (Redfield) 0.5332 2.1994 09865 —0.4850 * * 03922 —28577 97973 4.0970 —-0.7270 * * 1390.79
2 0.5079 25908 0.7976 —0.5492 * * * * 9.7384 56058 —0.7773 * * 1401.04
3 0.5023 1.6764 09169 -0.4999 * * * « 8.7808  4.8641 -—0.7389 * * 1381.16
4 0.3553 0.3785 0.3708 -0.5392 * * * e 7.7216  5.0571 —0.7581 * * 1069.43
ML 0.5629 2.5387 0.8354 —0.3344 * * * * 9.7051  6.3218 —0.6922 * * 1407.48
Onida Station

(Pierre) 0.4462 08156 04651 —0.7626 0.0996 -—0.81020 * “ 77158 42075 —0.6764 0.6563 0.1056 390.46
2 0.5188 24943 0.8052 ~0.4881 * * * - 9.4945 54483 —0.7698 * * 652.30
3 04374 09246 0.5486 —0.6965 * * * * 7.7470  4.9530 —0.7140 * * 440.53
4 04911 1.5799 0.7247 --0.6488 * * * * 8.3287 5.0800 —0.7217 * % 560.76
ML 0.6240 4.6050 1.2454 - 0.3840 * * * * 10.8791 10.1117 —0.6450 * * 689.25

1, Nearest neighbor; 2, Arithmetic mean; 3, Spline; 4, Linear interpolation; ML, Maximum likelihood.

For the occurrence process, method 2 (arithmetic mean of
six nearest stations) gave the highest likelihood function for
three of the four stations and was second best for the fourth.
However, the null hypothesis was rejected (p = 0.05) for all
techniques for all stations, which means that all estimation
techniques gave Fourier coefficient values that were statis-
tically different from those estimated using the real data at the
test station. The arithmetic mean provided the best estimators
for the distribution of amounts for all stations, but the null
hypothesis was rejected for all cases except for the arithmetic
mean estimates at Gettysburg.

Although the number of stations is marginal [c.f. Hughes
and Lettenmaier, 19817, the regionalization technique of krig-
ing was also examined. Semivariograms were computed for
the means of the parameters py, and p,,, using the universal
kriging program described by Skrivan and Karlinger [1979],
and are shown in Figure 7. The variograms are flat {or both
parameters, suggesting a significant “nugget” effect. This
rather large nugget variance may be caused by a number of
factors, including real mesoscale differences in the precipi-
tation regime at a scale much smaller than the spacing of the
data points, measurement errors, observer bias, time of read-
ing the gages, and modeling errors. A normalizing transforma-

tion of the form .
2
r, = log (——’—L> =01
L—pio

was also tried, but the shape of the empirical semivariogram
did not change. The rather poor performance of all interpola-
tion techniques indicates potentially serious problems. There-
fore the factors which may have contributed were examined in
more detail.

Parameter Identifiability

Because all Fourier coefficients are not considered simulta-
neously In the optimization process and the coefficients are, in
fact, dependent, it is possible that some of the spatial varia-
bility in individual coefficients is due to convergence to a local
optimum. Parameter sampling variability is always present as
well, although it will decrease as record length increases. An
empirical examination of parameter identifiability was per-
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formed by simulating 10 sets of 40-year records using Fourier
coefficients identified for Pierre. Fourier coefficients were then
estimated for each simulated record. The means and standard

deviations of the Fourier cofficients are compared with the -

theoretical coefficients in Table 8.

The statistics presented in Table 8 show that there is little
sampling variability in the Fourier coefficients for the Markov
chain parameters py, and p,, and for the mean values of a, 8,
and é. However, there is a significant problem in identifying
the Fourier coefficients for the first and second harmonics for
p and . Although two harmonics were present for 6 in the
simulation model, the first harmonic was identified as signifi-
cant only once, and the second was not identified as signifi-
cant for any of the 10 samples. This demonstrates the strong
dependence between the parameters o, ff, and 6 and indicates
that it is possible to reach local optima. Thus we conclude
that the noise in the Markov chain parameter fields and in the
means of o, B, and ¢ is probably not due to sampling variation
or problems of parameter identification but that parameter
identification problems could be significant for the second and
higher harmonics for f and all harmonics for § for the ME
parameter fields.

Effects of Observation Time

From Table 1, we see that the observation time is not the
same for each station. If there is a substantial diurnal vari-
ation in the rainfall process, differences in the observation
times could cause differences in both the number of wet days
and the distribution of precipitation amounts per day. To in-
vestigate this possibility, we obtained hourly precipitation
data for Rapid City and Aberdeen from the National Climatic
Data Center, NOAA.

The frequency of precipitation occurrence during each hour
was estimated for each 14-day period and for the year (see
Figure 8). Three daily records, beginning at midnight, 0700,
and 1800, were assembled from the hourly records for each
‘station, and the Fourier coefficients were estimated for each
record. Likelihood ratio tests showed that the null hypothesis
could not be rejected at the 5% level for the ME model for
Aberdeen; however, the null hypothesis was rejected for the
occurrence process where (8,) were estimated from the re-
cords with 1800 hours starting time and (0,) were estimated
from the record with 0700 starting time. For Rapid City the
null hypothesis could not be rejected at the 5% level for either
the Markov chain process or the ME model. Thus it appears
that the time of day definition can account for some of the
variability in the parameter fields but is probably not the sole
cause. It should be noted that this method of determining the
effects of observation time on the rainfall process does not
account for the effects of evaporation from the rain gage.

The effects of evaporation and possibly other meth-
odological factors can be examined by dividing the stations
into two groups: those with observation time at midnight and
in the morning hours, and those with observation times from
1700 to 1900. Lead was omitted from the analysis because of
major elevation effects. An analysis of the data in Table 1
reveals that the average of the annual precipitation recorded
at the eight stations read at midnight or morning is not signifi-
cantly different from the average at the 11 stations with the
afternoon observation time (students i = 0.3275), but the

e e L "l el
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TABLE 8. Parameter Identifiability Statistics: Pierre

Coefficient
Fourier Theoretical ~ Observed Standard of
Coefficients Mean Mean Deviation Variation
Poo
Y10 0.8202 0.8213 0.0036 0.0043
Cy,y 0.0681 0.0642 0.0042 0.0657
¢,,, rad 3.0101 3.0378 0.0891 0.0293
C,, 0.0239 0.0195 0.0035 0.1772
¢, rad 0.5885 0.6080 0.2843 0.4676
Cys 0.0124 0.0072 0.0094 1.3156
¢, rad -0.5478 —0.4449 0.3636 0.8173
Pl()

Y20 0.6170 0.6165 0.0122 0.0197
Cyy 0.0586 0.0709 0.0134 0.1897
¢,,, rad —2.9438 -2.9099 0.1425 0.0490
C,, 0.0466 0.0388 0.0158 0.4059
¢,,, rad 1.9987 1.9869 0.3582 0.1803
Coy 0 * *
¢33 rad * *

Alpha
Y300 0.4462 0.4348 0.0213 0.0489

Beta
Va0, MM 0.8156 0.7782 0.0356 0.0457
C,y, mm 0.4648 0.4806 0.0470 0.0978
¢4y, rad —0.7626 —0.8032 0.0594 0.0739
C,y, mm 0.0991 0.0345 0.0452 1.3088
b4, rad —-0.8102 —-1.1318 0.3622 0.3200
C43, mm 0 * *
}43 rad * *
Cy, mm 0 0.0081 0.0256 3.1562
Paq, rad —0.9318 1

Delta
Y50, MM 7.7158 7.6682 0.2052 0.0268
Cs,, mm 4.2088 0.1135 0.3592 3.1633
¢s,, rad —0.6764 —3.6167 t
Cs,, mm 0.6553 * *
¢, Tad 0.1056 * *
Csy, mm 0 0.0881 0.2786 3.1614
¢ss, rad 2.0320

*Harmonic not significant at 0.05 level.
+Harmonic identified as being significant for only one simulation.

of two wet days and by the evaporation of small precipitation
amounts before the gage is read.

Both of these factors could affect the number of wet days
and the distribution of rainfall amounts. Differences should be
most apparent on days with small rainfall amounts, so if the
threshold is raised from 0.254 mm (0.01 inch) to a higher level,
spatial variability of parameters should decrease. To examine
this factor, we analyzed a subset of six stations: Aberdeen,
Pierre, Pollock, Redfield, Gettysburg, and Onida. The MCME
Fourier coefficients were identified for three thresholds, 0.254
mm, 1.27 mm, and 2.54 mm. As the threshold, T, is raised
from 0.254 to 1.27 mm, the variances of the coefficients y,,
and 7,, are significantly reduced (F > 5.05 df, =df, = 5),
while the coefficients y34, y40, and yso are not significantly
changed (see Table 9). As the threshold is raised to 2.54 mm,
the variances of the coefficients y,, and y,, are significantly
reduced as compared to the coefficients for 7" = 0.254 mm, but
the variance of coefficient y5, shows a significant increase,
possibly reflecting the reduced number of wet days at the
higher threshold. The effect of the three thresholds on the
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PRECIPITATION FREQUENCY
AVERAGE NUMBER OF WET HMOURS PER YEAR
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Fig. 8.

parameter variability is introduced by methodological differ-
ences that affect the small precipitation amounts. Observation
time appears to be a significant factor, and its effect can be
attributed to the diurnal variability of precipitation oc-
currence and evaporation of small amounts of rain, so that
gages serviced in the P.M. show smaller numbers of wet days
than those serviced at midnight or in the morning. Although

TABLE 9. Effect of Threshold on Vanability of Fourier
Coeflicients for Six Stations

Standard

Parameter Coefficient Mean Deviation F

Threshold = 0.254 mm (0.01 inches)
Poo Y10 0.8462 0.0252
Pio Y20 0.6774 0.0464
o Y30 0.5304 0.0971
B Yao 2.5343 1.5166
& Yso 9.4856 1.0688
Number of 66.284 12.064

wet days

Threshold = 1.27 mm (0.05 inches)
Poo Y10 0.8887 0.0085 8.79*
Pio Y20 0.7507 0.0147 9.96*
% Y30 0.6677 0.0610 2.53
B Va0 44770 0.6952 475
) ¥so 11.1693 1.1219 .10
Number of 47.080 3.59

wet days ~%

Threshold = 2.54 mm (0.10 inches)
Poo Y10 09126 0.0067 14.17*
Pio Y20 0.7885 0.0118 15.46%
o ¥30 0.6337 0.1482 2.33
B Yao 5.1724 0.8176 3.44
) Yso 11.8786 2.4196 S.12*
Number of 35.699 2.533

wet dave

Hourly frequency of precipitation occurrence.

much of this variability, particularly in the occurrence process,
can be removed by using a threshold higher than 0.254 mm, it
is not clear how one could estimate the parameters for the
process with T = 0.254 mm, given the parameters for a higher
threshold.

DiSCUSSION

The fundamental assumption involved in mapping Fourier
coefficients to provide a concise regional description of daily
precipitation is that the model parameters, as represented by
the coefficients, vary smoothly over the region. This is, of
course, the assumption we make when we draw isolines of
mean annual precipitation, so it is intuitively appealing. An
examination of the parameter maps (Figures 2 through 6), the
semivariograms for the mean Markov chain parameters
(Figure 7), and the results of the comparisons of interpolation
procedures, however, shows that there is a substantial vari-
ation of parameters in distances of the order of 50 to 100 km.
An important question raised by this investigation is, “How
much of this variability is real, representing true differences in
the precipitation regime, and how much is spurious, intro-
duced by measurement errors, operator bias, time of reading
the gages, and modeling errors?” Qur investigation revealed
that much of the observed variability could be attributed to
methodological differences which affect the small rainfall
amounts and appear to be most consistently related to time of
observation. However, parameter identifiability and sampling
errors also contribute. Real mesoscale differences in the pre-
cipitation regime certainly exist, but this contribution to spa-
tial variability of parameters is unknown.

Although we have shown that parameters estimated by four
interpolation schemes were statistically different from parame-
ters identified for four test stations, it is possible that, in some
cases, information derived from precipitation sequences simu-
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Fig. 9. Effect of threshold on expected number of wet days for adjacent stations (Pierre and Onida).

ences are caused by observation times. It should also be noted
that the observation time for three of the four test stations is
at 1800. The interpolated parameter estimates for these sta-
tions were based upon stations which included different obser-
vation times. Thus it appears that significant inconsistencies in
data are present and may cause problems of unknown severity
in regionalizing procedures and testing.

SUMMARY AND CONCLUSIONS

Fourier series are used to describe the seasonal variation of
the five parameters for a stochastic model of daily precipi-

tation utilizing the Markov chain—mixed exponential
(MCME) model. Numerical maximum likelihood techniques
were used to estimate the Fourier coefficients, and a likelihood
ratio test of the 0.05 level was used to test the significance of
each harmonic. The weighting parameter, «, in the mixed ex-
ponential distribution, was constrained to be a constant
throughout the year.

A concise description of seasonal variations of parameters
for the state of South Dakota has been obtained by using from
15 to 27 coefficients. This procedure provides much more in-
formation than, for instance, a listing of the monthly mean
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precipitation and requires only a few more parameters. Spatial
variability of the mean of each parameter has been illustrated
by mapping isopleths. :

Semivariograms calculated for the mean Markov chain pa-
rameters y,, and y,, showed a “nugget” effect. The source of
the large nugget variance was examined. We found that much
of the observed spatial variability in parameters, at distances
of 100 km or less, may be attributed to real differences in the
precipitation regime and to inconsistencies in the records due
to methodological differences affecting small precipitation
amounts. Time of observation appears to be an important
factor, but parameter identifiability and sampling error also
contribute. This suggests that precipitation records proposed
for use in regional parameter mapping must be carefully
screened to ensure consistency of data.

The MCME parameters for four test stations were more
closely estimated by arithmetic averages of the parameters of
six nearby stations than by three other interpolation tech-
niques, including nearest neighbor, spline fitting, and linear
interpolation. This finding is consistent with the variograms
calculated for the mean Markov chain parameters. This sug-
gests that this estimation procedure is superior to the com-
monly used practice of transposing precipitation records
rather long distances (other factors, such as length of record,
being equal) and that the more complex interpolation pro-
cedures, such as kriging or spline fitting, are not justified. We
also found that the interpolated parameters for the four test
stations were significantly different from parameters identified
from-precipitation records.

Geographical barriers obviously affect the precipitation
climatology. Therefore the application of this model to a re-
gional description is not recommended in mountainous re-
gions.
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