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PONDING TIME FOR VARIABLE RAINFALL RATES

Runoff estimates during a storm depend
crucially on the prediction of time to ponding
tp, under arbiirary rainfall patterns. On the
basis of careful numerical calculations,
Smith (1972) and Smith and Chery (1973)
have proposed an accurate parametric model,
yielding 1, with a better than 10% precision,
such that ;
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where r is the rainfall rate given as a function
of time, r should not vary too rapidly near
ponding time, so that r,,, the rate at the time
of pondl‘ﬂg, is well defined. The soil
properties are defined by three parameters:
A, which is essentially a linear function of
the initial water content; 6y, assumed to be
uniform; B8 which is close to {wo; and K the
conductivity at saturation, i.e. the final
infiltration rate. One of the most important
implications of equation (1) is that for the
same r, and the same initial conditions,
ponding occurs when Of"’ rdt reaches a
critical value, independent of the rainfall
pattern.

An alternate expression is proposed in the
following which has about the same accuracy
as equation (1) for Smith’s examples and is
simpler to use, i.e., it requires one less
parameter to be obtained by curve fitting.
Furthermore Smith’s model is an empirical
one based on calculations for simple rainfall
patterns, while the present one, although
approximate, is derived from theoretical
considerations and can be applied in
principle for any rainfall pattern.

We have (see equation (A9) in the
Appendix)

tn—t [rp/(r,, I\'S)] o Prdt =B (2)

The parameter B is the equivalent of 4 in
equation (1), and it is shown in the Appendix
that B is theoretically related to the sorptivity
S.by

B = S§*2K, 3)

It is not surprising that both K and §
should enter the problem since they are the
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two fundamenta! soil properties which are
usually measured in practice to define a soil,
e.g. see Talsma (1969) and Talsma and
Parlange (1972).

Basically (r,/Ks — 1)*7* in equation (1) is
replaced by In™! [rp/(r,,~l\’s)] in equation
(2). The analytical dependence on ry is
different in each case, but more importantly
the need for the empirical parameter 8 has
now disappeared. Note that during the early
stages of infiltration, with r = Sr~V2/2>>
K, equation (2) is an identity and thus z, is
indeterminate. This checks with the physi-
cal consideration that in this case the soil
surface is safurated but without ponding.
However, equation (1) does not have the
same property except in the special case 3
= 2. For that special case, equations (1) and
(2) then become identical when r =
St~Yi>> K if A=B. In general, Smith
([\972‘)’ found that B was close to two;
hence. even if not equal, 4 and B should
have the same general behavior. For in-
stance, it is shown in the Appendix that S*
varies linearly with 0;, equation (A8). Con-
sequently, equation; (3) shows that B, and
hence 4, should also vary linearly with ©;.
This is in full agreement witti Smith’s calcu-
lations.

The fundamental observation .of Smith
that ,f* rdr is constant when r, and ©; are
unchanged is also in agreement with equa-
tion (2). Consequently, to compare the pre-
diction of equation (2) with Smith’s calcula-
tions, as summarized by equation (1), it is
sufficient to consider the case of r and ©;
constant. This comparison is important to
check the precision of equation (2) for the
cases considered numerically by Smith
(1972), since his numerical results should
indicate any soil behavior which differs
significantly from assumptions on which
this equation is based.

Table 1 gives the rainfall rates and the
exact ponding times calculated by numeri-
cal simulation for six different soils (as in
Smith 1972) and the corresponding values
of B and 4 from equation (1). The values of
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Table 1. Values of K, (coa/min), r, (cm/min), ¢, (min), for six soils from numerical simulation and corresponding
values of B from equation (2), as well as 8 and the values of 4 from equation (1)
Poudre S. ro 0.339 0.423 0.508 0.635 0.762 0.931
B=1.92 Iy 8.74 5.09 3.36 2.07 1.39 0.88
K, =0.1397 B 5.56 5.38 5.29 5.28 5.22 5.04
A 4.09 4.13 4.15 4.20 4.18 4.04
Nickel G.S.L. ro 0.0847 0.127 0.1481 0.1693 0.1905 0.2117
3 =20 I 17.13 7.17 5.18 3.87 2.97 2.32
Ky =0.0267 B 3.83 3.86 3.86 3.82 3.75 3.64
A 3.15 3.43 3.49 3.50 348 3.40
Nibley S.C.L. ry 0.0635 0.0868 0.127 0.148 01.69 0.191
B =1.935 1, 30.12 16.48 6.92 4.94 3.80 3.02
Ky =0.0167 B 6.31 6.36 6.22 6.10 6.18 6.28
A 5.05 5.19 5.13 5.03 5.08 5.15
Colby S.L. o 0.847 0.1270 0.1481 0.1693 0.1905 0.z117
B=1.96 N 8.05 3.42 2.50 1.94 1.54 1.26
K, = 0.0085 B 6.49 6.29 6.29 6.38 6.47 6.52
A 5.66 5.50 5.49 5.56 563 5.66
Colby S.L.
(constant ¢) Iy 0.0635 0.0847 0.1058 0.127 0.1693 0.3175
B =194 1y 11.8 6.85 4.33 2.92 1.57 0.483
K = 0.0085 B 5.23 5.50 5.49 5.38 5.18 5.68
A 4.35 4.58 4.55 4.43 4.23 4.51
Muren C. re 0.0847 0.127 0.1481 0.1693 0.1905 0.2138
B =1.89 Iy 15.71 7.12 5.25 4.06 3.22 2.54
K¢ = 0.0095 B 11.80 11:60 11.69 11.85 11.99 11.94
A 8.44 8.52 8.49 8.51 8.53 8.40

t, shown here differ slightly from those
presented by Smith (1972), owing to
improveme:ts in numerical precision. The
values o 7p and ¢, are used to calculate the
left-hand side of equation (2) which is then
ecaal to B. This function should be constant
and equal to $%2K according to equation
(3). However, equation (2) is based on an
approximate theory; hence, we expect that
B is not truly constant. Indeed, Table 1
shows that B varies slightly with r,, for each
soil. However, its dependence on rp is
minimal. For instance, in the worst case,
that of Poudre sand, B varies by less than
10%, which is comparable to the variation
of A (see Table 1). Hence, even for that
soil, taking §%2K; = 5.3 cm in equation
(2), 1, 1s predicted to within 5%. For Nickel
G.S. L., Nibley S. C. L. and Colby S. L.,
B is near constant and taking § %/2K ¢ equal to
3.8, 6.2 and 6.4 cm, respectively, in

equation (2) yields 1, within 2%. The values
of §%/2K for Colby S. L. (constant ¢) are
equal to 4.45 cm with a 4% precision.
Finally, in the case of Muren C. taking
S?/2K = 11.7 cm in equation (2) yields 7,
with a 2% precision.

In conclusion, equation (2) provides a
precise correlation of Smith’s calculations,
which should be applicable to general
rainfall patterns. The prediction of the
ponding time requires a knowledge of the
value of B, which was assumed here to be
constant even for large variations of r,. We
are presently improving the model by an
optimization technique (Parlange 1975)
which takes into account the small variation
of B withr,,.
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APPENDIX

Recently, an approximate model was presented
which predicts the ponding time for constant r
(Parlange 1972). When r is a given function of
ume rather than a constant, the model can be
extended following the general procedure used
by Parlange (1972) for constant r. To the low-
est order, it is assumed that the water flux
within the soil varies with time but not posi-
tion. This assumption is exact when the dif-
fusivity is a delta-function and is a good ap-
proximation for most soils which have a very
rapidly varying diffusivity. Then,

K - D 86joz =r (A1)

where K is the conductivity, and D is the
diffusivity, which are functions of the water
content 6, and z is the distance of a point
from the surface. Equation (A1) is easily integ-
rated to yield.

1

(2}
z=[ DO [r - K®)] 40, (A2)
(€]

where O, is the water content at the surface
and is an unknown function fo time, and O is
the initial water content. The dependence of
6, on time is obtained from conservation of
mass, or
1 a,
- rdt =] (O - 0)(02/80)d0 (A3)
O O
combining equations (A2) and (A3) yields
1 0,
[ rac=] (6-0)D®
0 o,
[r - k@] 6 (A4)

In particular, the ponding time 7, is the time at
which the water content O, reaches the value
O,, water content at saturation, or,
Iy 6
[ rar=[ (©-6)D(®)
o 0
[r=&(©)]¢6 (AS)

Equation (A5) is rather formidable since it
presumes a knowledge of the dependence of
both D and K on ©. However, Talsma et al.
(1972) have shown that accurate results are ob-
tained if one assumes that D (60 — ©;) and
dK [d© have a similar dependence on ©.
Specifically, (©-0;) D is written as (Talsma et
al. 1972)

(0~6,)D = (UK/dO)S?*2K, (A6)

where K is the conductivity at saturation and

0,

s=2[ (0 - 6)Dd0 (AT
&

As long as D varies rapidly with ©, we can also
write
N
§t=2(0,-6) [ DdO (A8)
0

which shows that §? depends linearly on O
Equation (AS) is then greatly simplified when
equation (A6) is used and reduces to

Iy
In~ 1[";)/(";1""\,5)} f x rdt = S‘Z/?—Ks (AQ)
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