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[1] Semiarid flash floods pose a significant danger for life and property in many dry
regions around the world. One effective way to mitigate flood risk lies in implementing
a real-time forecast and warning system based on a rainfall-runoff model. This study
used a semiarid, physics-based, and spatially distributed watershed model driven by high-
resolution radar rainfall input to evaluate such a system. The predictive utility of the
model and dominant sources of uncertainty were investigated for several runoff events
within the U.S. Department of Agriculture Agricultural Research Service Walnut
Gulch Experimental Watershed located in the southwestern United States. Sources of
uncertainty considered were rainfall estimates, watershed model parameters, and initial
soil moisture conditions. Results derived through a variance-based comprehensive global
sensitivity analysis indicated that the high predictive uncertainty in the modeled response
was heavily dominated by biases in the radar rainfall depth estimates. Key model
parameters and initial model states were identified, and we generally found that modeled
hillslope characteristics are more influential than channel characteristics in small
semiarid basins. We also observed an inconsistency in the parameter sets identified as
behavioral for different events, which suggests that model calibration to historical data is
unlikely to consistently improve predictive performance for different events and that
real-time parameter updating may be preferable.
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1. Introduction and Scope

[2] A trend toward a warmer climate has increased global
incidences of intense precipitation events [Trenberth et al.,
2007]. Consequences of this change in precipitation can be
seen in increased chances of flooding [Milly et al., 2002]
and in increased flood losses [Kundzewicz and Kaczmarek,
2000], despite widespread problems of water scarcity. Arid
and semiarid regions, i.e., areas where the annual rain is less
than 250 and 250–500 mm/a, respectively, are particularly
vulnerable to this change in climate. Additionally, the
highly nonlinear nature of the rainfall-runoff relationship
in these dry regions makes predictions of the impact of
precipitation changes especially difficult.
[3] Arid and semiarid regions span approximately one

third of the global land surface, one fourth of the contiguous
United States, and more than half of the western United

States [Goodrich et al., 2000]. The semiarid southwestern
United States experiences extremely localized and intense
summertime convective thunderstorms [Roeske et al.,
1989], often leading to ‘‘short-fused’’ local floods. Within
the United States, floods occurring within 6 h of the
causative rainfall event are termed flash floods [National
Weather Service, 2002]. These flash floods kill more Amer-
icans annually than any other natural disaster [American
Meteorological Society, 1985], while accounting for more
than 80% of all flood-related deaths, and causing average
annual economic losses of one billion U.S. dollars.
[4] Perhaps the most effective way to mitigate the risks

due to flash flood occurrence is to implement a real-time
flood forecast and warning system [e.g., Creutin and Borga,
2003; Kitanidis and Bras, 1980a, 1980b]. This nonstructural
(or ‘‘soft’’) measure is also suitable for climate change
adaptation applications [Kundzewicz, 2002]. Requirements
for such a system include a watershed model of the highly
nonlinear hydrological processes occurring at the semiarid
land surface [Pilgrim et al., 1988]. Only a high-resolution
spatially distributed model structure can appropriately rep-
resent the semiarid spatiotemporal variability in the rainfall
forcing and the consequent infiltration and runoff processes
[Michaud and Sorooshian, 1994; Osborn, 1964].
[5] In this paper, we investigate the predictive utility of a

semiarid flash flood forecasting system based on an event-
oriented, physically based, semiarid rainfall-runoff model,
KINEROS2 (Kinematic Runoff and Erosion) [e.g., Smith et
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al., 1995; Semmens et al., 2005]. Both gauge and radar
estimates of high-resolution rainfall for eight summertime
convective thunderstorm events were used over a subbasin
of the semiarid Walnut Gulch experimental watershed in
southern Arizona [Renard et al., 1993; Moran et al., 2008].
The Generalized Likelihood Uncertainty Estimation frame-
work (GLUE) [Beven and Binley, 1992] is used to
assimilate incoming event information into KINEROS2
in a forecasting mode. A variance-based and interaction-
accounting global sensitivity analysis method is applied to
explore the relative influence of uncertainties from sources
such as rainfall forcing, initial conditions and model
parameters on uncertainty in the estimated streamflow.

2. Sources of Uncertainty in Semiarid Flash Flood
Forecasting

[6] Flash flood warnings in the United States are provided
by the Weather Forecast Offices of the National Weather
Service (NWS). In the southwestern United States, these
warnings are typically based directly on estimates of spatially
averaged rainfall, or on flow estimates computed using
(currently) lumped rainfall-runoff models. The former
approach is implemented in the flash flood monitoring
and prediction approach that compares temporal accumu-
lations of spatially averaged rainfall for small basins with
corresponding flood guidance thresholds. A flood warning
is issued if a predefined rainfall threshold is exceeded.
Thresholds in arid regions are typically established based
on either past experience, or empirical or semiquantitative
approaches. While an experienced forecaster might be able
to provide good forecasts based on this information and on
an in-depth understanding of the forecast region, such
thresholds may not properly consider the effects of spatially
heterogeneous runoff production or of variability in initial
soil moisture conditions.
[7] Models presently used in NWS operational flash

flood forecasting are spatially lumped and were originally
developed to represent hydrologic processes in humid
watersheds, with time steps too coarse to provide adequate
simulation of semiarid hydrographs that can peak in 15 min
or less. These models include the Sacramento Soil Moisture
Accounting model [Burnash, 1995] and the Continuous
Antecedent Precipitation Index model [Anderson, 1993].
Neither of these models incorporates semiarid physics, e.g.,
channel transmission losses, though the models’ flexibility
allows for the simulation of a wide range of natural regimes,
but not necessarily for the right reasons [e.g., Van Werkhoven
et al., 2008]. Additional sources of uncertainty (rainfall
forcing, initial soil moisture conditions, model parameters)
are discussed in detail in the following sections. The impor-
tant overall question we attempt to address here is as follows:
‘‘How reliable is a semiarid flash flood forecast model under
the compounding effects of these uncertainties’’? Further
research questions are defined on the basis of the reviews
provided in the following sections.

2.1. Uncertainty in Rainfall Estimates

[8] Errors in rainfall estimates arising often from biases in
observations of the spatial rainfall representation and of the
rainfall volumes, can dominate the uncertainty in the
modeled semiarid runoff response [Goodrich et al., 1994;
Faurès et al., 1995]. The highly nonlinear watershed model

can magnify the effects of rainfall estimation errors, partic-
ularly as surface runoff rates decrease with increasing basin
size due to partial storm coverage and channel infiltration
losses [Goodrich, 1990; Goodrich et al., 1997].
[9] Flash flood events are typically driven by intense

summertime convective thunderstorm cells with limited
areal extent, usually less than 10–14 km in diameter.
Adequate representation of this extreme rainfall variability
even over small watersheds requires high-resolution rainfall
estimates obtained from dense rain gauge networks, high-
resolution radar, or possibly even high-resolution numerical
weather prediction models. Satellite precipitation estimates,
while improving continuously, are not yet of sufficiently
high spatiotemporal resolution [e.g., Hong et al., 2004], and
are not likely to be applicable to flood forecasting at small
basin scales [Yilmaz et al., 2005]. Typical rain gauge net-
works are of insufficient density, hence forecasters in the
semiarid United States rely on the comprehensive areal
coverage provided by the NWS NEXt generation RADar
Weather Surveillance Radar–1988 Doppler (NEXRAD
WSR-88D) system [Maddox et al., 2002].
[10] Volume biases in rainfall estimates potentially impact

the simulated runoff response more than the biases in spatial
variability [Faurès et al., 1995]. Summertime convective
rainfall estimates are operationally derived using a stan-
dardized NWS Z-R (reflectivity-rain) relationship, which
translates the amount of reflected radar waves into rainfall
rates [Fulton et al., 1998]. This relationship assumes a
power law form: Z = aRb, where the dimensionless empir-
ical parameters are set as NWS standard to a = 300 and b =
1.4. However, the resulting rainfall estimates are often too
high for semiarid convective storms [Morin et al., 2005;
Hardegree et al., 2003]. Optimal values for a and b have
been shown to vary widely between storms, for example,
Morin et al. [2005] adjusted parameter a in the NWS
relationship to an improved value of 655 for 13 individual
storms over the Walnut Gulch, and noted a significant range
of 0.58–1.8 in ratios of the resultant storm depth estimates
compared to values of a very dense gauge network. Another
source of uncertainty is hail contamination, which can
severely distort rainfall estimates due to the sixth power
dependence of reflectivity on drop diameter, even in semi-
arid summertime convective storms [Krajewski and Smith,
2002]. The discussion above leads us to the second impor-
tant research question: To what extent are modeled runoff
predictions affected by errors in the spatial distribution and
the volume of the rainfall input?

2.2. Uncertainty in the Initial Soil Moisture Estimates

[11] Soil moisture conditions control runoff generation
through their impact on soil infiltration rates and on the
connectivity of surface and subsurface runoff pathways
[Goodrich et al., 1994; Grayson and Bloeschl, 2000]. The
rainfall-runoff response has a strong nonlinear dependence
on semiarid antecedent wetness [Nicolau et al., 1996;
Beven, 2002], influencing both overland and channel flows
[White et al., 1997]. While the actual rainfall event response
of a semiarid watershed has to be modeled with high space-
time resolution, the level of detail in the modeling of soil
moisture contents during interstorm periods is likely deter-
mined by the sensitivity of the flash flood predictions to the
accuracy of the model’s initial soil moisture states. The third
important research question is therefore as follows: How
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sensitive are modeled runoff predictions to the specification
of initial soil moisture conditions, and thus, how complex
must the between storm soil moisture accounting model be
for accurate flash flood forecasting?

2.3. Uncertainty in the Model Parameter Estimates

[12] Semiarid watershed models typically require a higher
level of spatial and process complexity compared to humid
region models. This spatial complexity arises from the high
spatial variability of rainfall and the corresponding highly
complex spatiotemporal interaction between watershed and
storm geometries, which strongly influences the shape and
volume of the flood hydrograph [Osborn, 1964; Michaud
and Sorooshian, 1994]. Regardless of the spatial resolution
of the distributed watershed model used, some spatial
lumping is unavoidable in representing real-world complex-
ity [e.g., Wagener and Gupta, 2005]. This process of
lumping requires that the model’s parameters are estimated
in a way to reflect the integration of the spatially distributed
physical watershed characteristics at the model element
scale. While a priori values for the spatially distributed
model parameters can be estimated from soil and other
physical watershed characteristics, it is unlikely that those
estimates will accurately represent the watershed character-
istics at the model element scale. This is largely due to
differences in measurement and model element scale. The a
priori estimates can be calibrated if observations of stream-
flow are available, though the large number of spatially
distributed parameters makes it likely that a focus on some
key parameters is required. Therefore, the fourth important
research question is as follows: ‘‘Which model parameter
uncertainties strongly influence the modeled predictions of
runoff’’?

3. Description of the Rainfall-Runoff Modeling
Framework and Analytic Techniques

3.1. Modeling Framework

[13] The modeling framework used in this study consists
of a semiarid specific watershed model, KINEROS2, and
two data preprocessing programs: (1) the GIS-based Auto-
mated Geospatial Watershed Assessment tool (AGWA) to
estimate the geometric model element attributes (area,
slope, mean flow length), model element spatial configura-
tion (e.g., how flow is routed from one model element to
the next), and a priori model element parameter values, and
(2) the AMBER algorithm that performs the Z-R conver-
sion. Each component is briefly described below.
[14] KINEROS2 [Woolhiser et al., 1990; Smith et al.,

1995; Semmens et al., 2005; Goodrich et al., 2006; http://
www.tucson.ars.ag.gov/kineros/] is an event-oriented, dis-
tributed, physically based model developed to simulate the
runoff response in basins that are overland flow-dominated.
KINEROS2 simulates interception, dynamic infiltration and
infiltration – excess surface runoff, with flow routed
downstream using a finite difference solution of the one-
dimensional kinematic wave equations over a basin concep-
tualized as a cascade of planes (hillslopes) and channels. The
Parlange three-parameter infiltration equation [Parlange et
al., 1982] is implemented as the KINEROS2 dynamic infil-
tration algorithm interacting with both rainfall and surface
runoff in transit, and hence is well suited to model channel
transmission losses in semiarid ephemeral streams. Plane

microtopographic relief is represented by a plane transverse
saw tooth geometry. KINEROS2 was recoded in the context
of this study from a procedural version with outer space and
inner time looping to an object-oriented one with outer time
and inner space looping to facilitate real-time forecasting.
[15] The AGWA tool [Semmens et al., 2005; Miller et al.,

2007; http://www.tucson.ars.ag.gov/agwa/] is a GIS frame-
work that creates the parameter file for input to KINEROS2
from spatially distributed physical watershed characteristics
(elevation, land cover, soil etc.). The flow duration in
Table 2 provides a list of the hillslope and channel hydro-
logic parameters used in this study and estimated by
AGWA. The basin is discretized into plane and channel
elements based on a user-selected threshold drainage area,
called the Channel (or Contributing) Source Area (CSA)
that is expressed as a percent of the watershed area, and
applied to a digital elevation model. Geometric shape,
hydraulic and infiltration parameters are generated for each
KINEROS2 plane using spatially weighted averaging.
[16] The NWS Areal Mean Basin Estimated Rainfall

(AMBER) algorithm [Davis and Jendrowski, 1996; http://
www.erh.noaa.gov/er/rnk/amber/] computes mean accumu-
lated areal rainfall from the digital hybrid reflectivity data of
the Weather Surveillance Radar–1988 Doppler (WSR-88D).
In this study we customized AMBER to provide radar pixel
rainfall information for KINEROS2. AMBER has several
customizable parameters, including the reflectivity-rain
relationship parameters and the hail threshold.

3.2. GLUE Framework

[17] The Generalized Likelihood Uncertainty Estimation
framework (GLUE) [Beven and Binley, 1992; Beven and
Freer, 2001] is a set theoretic approach to uncertainty
analysis based on the idea of equifinality [Beven, 1993].
For a given model structure, equifinality argues that many
parameter sets can typically provide acceptable (or ‘‘behav-
ioral’’) simulations of a complex environmental system. In
GLUE, each behavioral parameter set is weighted by its
relative likelihood (i.e., measure of performance henceforth
called likelihood function), to provide model confidence
intervals on the resulting forecast ensemble. GLUE implic-
itly handles model nonlinearity, factor interactions and
errors in the model structure and observations. The likeli-
hood values of nonbehavioral parameter sets are set to zero.
GLUE was originally inspired by the regional sensitivity
analysis method [Spear and Hornberger, 1980] which
introduced the idea of behavioral/nonbehavioral parameter
set classification.

3.3. Variance-Based Global Sensitivity Analysis and
Sampling Strategy

[18] Sensitivity analysis (SA) estimates the impact of
changes in factor values (e.g., parameters, states or input
variables) on the simulated model response of interest [e.g.,
Wagener and Kollat, 2006]. From an uncertainty viewpoint,
SA investigates the influence of factor uncertainties on the
uncertainty in the model response [e.g., Saltelli et al., 2004],
hence, ‘‘sensitivity’’ and ‘‘influence’’ are used interchange-
ably. A more influential factor has thus potentially a larger
effect on the output uncertainty. An SA approach can be
defined as ‘‘global’’ if all factors are varied simultaneously,
rather than one at a time. The Global SA (GSA) method
used here is based on multivariate sampling of the entire
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feasible factor space to obtain representative sensitivity
information. This study used a variance-based GSA method
called Sobol’ method [Sobol’, 1993], which accounts for
factor interactions at all orders, and provides resultant quan-
titative sensitivity information that is both a necessary and
sufficient condition to rank the factor influences [Saltelli et
al., 2004]. The order of a factor interaction is based on the
number of factors involved in that particular interaction.
Conceptually, for ‘‘n’’ orthogonal factors, the Sobol method
decomposes the total variance (V) of an output variable of
interest (y) into components corresponding to those of that
variable at different orders:

V yð Þ ¼
Xn

i¼1

Vi þ
X

1�i�j�n

Vi;j þ V1;2;...;n: ð1Þ

Dividing the above equation by V(y) provides the sensitivity
terms (S) for all interactions:

1 ¼
Xn

i¼1

Si þ
X

1�i�j�n

Si;j þ S1;2;...;n ð2Þ

where the subscripts denote the particular interaction, e.g.,
S1,3,5 would denote interaction between factors 1, 3, and 5.
The Sobol’ method assumes the sufficiency of the second
moment (variance) for describing uncertainty. This method
was implemented using the SIMLAB software version 2.2
(http://simlab.jrc.cec.eu.int/).
[19] We applied the Sobol’ sampling strategy [Sobol’,

1993] for both the Sobol’ SA and the GLUE analysis [e.g.,
Ratto et al., 2001]. The enhanced Sobol’ method [Homma
and Saltelli, 1996; Saltelli, 2002] computes the first- and
total-order (i.e., total influence including all interactions)

SA indices directly for any factor without calculating
intermediate-order indices. The Sobol’ sampling for this
method generated 102,400 factor sets in the 24-factor space
as a first Monte Carlo run collection, and 98,304 factor sets
in the 23-factor space as a second collection. Note that in
the presence of interactions, the sum of the total-order
indices of the factors can be greater than one. Additional
second-order indices also used later in this study were
calculated from Sobol’ sampling densities of 71,168 and
77,312 for the 23- and 24-factor spaces, respectively.

4. Description of Watershed and Data Sets

4.1. USDA ARS Walnut Gulch Experimental
Watershed and the WG11 Study Area

[20] The Walnut Gulch Experimental Watershed
(WGEW) is located in southeastern Arizona, primarily in
a high foothill alluvial fan portion of the San Pedro River
watershed underlain by very deep (>400 m) Cenozoic
alluvium regional groundwater aquifer [Moran et al.,
2008]. WGEW spans 150 km2 in area and 1220–1830 m
in elevation. Depth to groundwater within the WGEW
ranges from �50 m at the lower end to �145 m in the
central portion of the watershed. The climate over the
watershed is semiarid, with substantial interannual and
intra-annual variations and an average annual precipitation
amount of 324 mm.
[21] The specific area of investigation underlying this

study is the WG11 subbasin of the WGEW. WG11 has its
outlet at flume 11 and spans an area of 7.9 km2. From this
area, the catchment upstream of pond outlet 16 was excluded
as it rarely discharges into the stream, and did not for any of
the events used in this study (Figure 1). This reduced the area
to 6.4 km2 with an elevation range of 1430–1525 m. The

Figure 1. (bottom) The Walnut Gulch Experimental Watershed. (top) WG11 subbasin shown magnified
against the radar grid background. Subbasin segmentation has been performed with a discretization level
of 7.5% contributing source area (CSA).
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lower end ofWG11 is desert brush, while a transition to range
grassland occurs approximately midway up the watershed.
WG11 has wide sand bed channels which can result in
significant channel transmission losses.

4.2. Rainfall and Discharge Measurements

[22] The digital hybrid reflectivity (DHR) data provides
corresponding rainfall estimates on a polarimetric grid (1�
circumferential by 1 km radial resolution). The variable
radar rotational scan speed imparts time steps ranging from
4 to 6 min for this study’s events. In the DHR product, each
individual pixel reflectivity is assigned the respective lowest
unobstructed tilt possible (i.e., less than 50% blockage
above 150 m above ground level (AGL)). This potentially
decreases error in the ground surface rain estimates caused
by atmospheric evaporation that occurs when the sampled
reflectivity is at a high-elevation AGL. The sampled height
had a maximum of around 2 km for WG11 [Fulton et al.,
1998]. The Tucson NWS DHR archive started in 2003, but
owing to recent dry years over the WGEW, only 8 events
were available for the present study (Table 2). Twelve radar
pixels completely covered the reduced WG11 area (Figure 1).
[23] The dense rain gauge network of the WGEW

[Goodrich et al., 2008] provided rainfall data from 11 gauges

in and near WG11, and discharge data for flume 11
(available at http://www.tucson.ars.ag.gov/dap/, see
Table 2). The breakpoint instantaneous discharge data
(finest resolution being 1 min) was converted to radar time
step values by averaging over time windows delineated by
the midpoints of the radar time steps; this was judged to
represent the original data time series better. Basin-averaged
cumulative gauge rainfall calculated for selected events
using Thiessen polygons and corresponding observed
hydrographs are shown in Figures 2 and 3, respectively.

4.3. A Priori Parameters From AGWA and Field
Measurements

[24] Data layers used in AGWA include the digital
elevation model from the U.S. Geological Survey (USGS)
(at http://data.geocomm.com/), the soils coverage/shapefile
from the State Soil Geographic Database (STATSGO), and
the land cover grid from the MultiResolution Land Char-
acteristics (MRLC) Consortium–National Land Cover Data
(NLCD). All data sets were available at or interpolated to a
10 m resolution. The a priori parameter values obtained for
a CSA value of 7.5% (see Table 1) suggest a high spatial
uniformity in WG11. These data layers do not (or do not
reliably) provide some of the a priori parameters, including

Figure 2. Comparison of rainfall estimates from gauge and from radar (two different Z-R relationships)
for four events: (top) Basin mean cumulative rainfall depths. (bottom) Same information after
normalizing each series by its total value. The value of 146.3 mm/h indicates the selected hail threshold.
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microtopography and channel geometry, which were derived
from available field measurements (Table 1). Both the
microtopographic roughness and the channel geometry
(especially near the outlet) affect the hydrograph, with
the microtopography primarily affecting the recession
[Woolhiser et al., 1996]. The microtopography parameters
rill depth and rill spacing were set from pin meter data
[Bryant et al., 2007], with rill depth set as twice the
average root mean square height and rill spacing as equal
to the correlation length. Channel geometry for selected
reaches near the outlet was set to field values from an
earlier study [Goodrich, 1990].

5. Methodology and Analytic Tools

[25] The four research questions discussed in section 2
were used to develop several model experiments to find
answers in the context of the data, model and watershed
available for this study. Methods used in these experiments
are described below.

5.1. Estimating Rainfall for Model Input

[26] Typically, hail contamination of radar rainfall esti-
mates is simplistically handled by a maximum rain intensity
threshold, e.g., 103.8 mm/h in case of the NWS. However,
this threshold can vary widely depending on local condi-
tions. For example, Fulton et al. [1998] reported values

ranging between 75 and 150 mm/h. Mendez et al. [2003]
analyzed maximum gauge intensities at different durations
and frequencies for summer thunderstorms over Walnut
Gulch. They found that the maximum 5-min intensities
(i.e., at the radar data time step) frequently exceeded
103.8 mm/h, and sometimes were near 250 mm/h. Using
radar data, Morin et al. [2006] modeled rain cells as circular
Gaussian elements with a maximum intensity and a decay
factor: these can give theoretical maximum pixel-scale
intensities greater than 103.8 mm/h. From the latter two
studies, and because flash flood forecasting mainly deals
with intense rainfall over short return periods, we raised the
hail threshold to a reasonable 146.3 mm/h, which has been
estimated as the mean of the maximum 5-min gauge
intensities for a 10-year return period [Mendez et al.,
2003]. Note that the actual WG11 peak storm intensities
are rarely close to, and are mostly less than, this new value
(Table 2). However, peak storm intensities much larger than
146.3 mm/h have been observed over the entire WGEW.
Raising the hail threshold provided a better match between
the cumulative basin-average radar and gauge rainfall series.
[27] The high storm depth biases in the radar estimates

(see section 2.1) made the WG11 gauge data with a 0.0100

accuracy [Keefer et al., 2008] more reliable. Following the
‘‘bulk adjustment’’ optimization approach [Krajewski and
Smith, 2002], the event-specific radar rain estimates were

Figure 3. Evaluation of hydrographs obtained from a priori model parameter estimates against
observations.
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improved by scaling to match the basin-average storm
totals against those from the gauges, and by adjusting the
radar-gauge time lag. These event-specific lags were cal-
culated as the values at which maximum correlation of the
WG11 average storm depth series occurred (Table 2). The
gauge and improved radar estimates were merged through
simple averaging, since there was no reason to prefer one
spatial distribution over the other. Figure 2 shows the
pattern similarity in some individual and merged cumula-
tive hyetographs.

5.2. Determining a Priori Model Parameters and Their
Feasible Ranges

[28] Two groups of a priori model runs were conducted.
The first group used the AGWA-generated model parameter
values, and the second group used additional field measure-
ments of microtopography and channel geometry. In both
groups, soil net capillary drive values (G, [inches]) were
recomputed from textural soil saturated hydraulic conduc-

Table 1. Factors and Their Uncertainty Ranges

Factor

Corresponding
uncertainty
source type

Factor
Notationa

Corresponding
Uncertainty

Source Description

AGWA-Estimated
Uncertainty Source
Value or Range

User Changes
to Uncertainty

Source Value/Range Factor Range

1 Plane element
model parameter

PKsM soil-saturated
hydraulic conductivity

8.44 mm/h - 0.4–2.5

2 PnM soil surface roughness 0.055–0.057 - 0.4–2.5
3 PCVM coefficient of

variation of
PKsM’s parameter

0.95 - 0.4–2.0

4 PGM soil net capillary drive 114.97 mm regressed against
PKsM’s parameter

0.67–1.5c

5 PRocM soil volumetric rock fraction 0.43 - 0.75–1.25
6 PIntM maximum interception depth 2.97–3 mm - 0.75–1.25
7 PDistM soil pore size distribution index 0.3 - 0.7–1.3
8 PPorM soil porosity 0.459 - 0.75–1.25
9 PRillDA microtopographic rill depth 0 16.8 mm 0–72.5 mm
10 PRillSA microtopographic rill spacing 0 68.35 mm 0–254 mm
11 PCanM surface intercepting cover fraction 25% - 0.75–1.25
12 Channel element

model parameter
CKsM soil-saturated hydraulic conductivity 210 mm/h - 0.8–1.1

13 CnM soil surface Roughness 0.035 - 0.4–2.5
14 CCVA coefficient of variation

of CKsM’s parameter
0 - 0–2.0

15 CGM soil net capillary drive 101 mm regressed against
CKsM’s parameter

0.4–2.5c

16 CRocA soil volumetric rock fraction 0 - 0–0.1
17 CDistM soil pore size distribution index 0.545 - 0.7–1.5
18 CPorM soil porosity 0.44 - 0.85–1.15
19 CWCoM Woolhiser coefficient 0 0.15 0–3
20 CWidM bottom width 5.7–14.3 m selected measurements fixed 0.33–0.7b

21 CTortF channel tortuosity 300–1901 m width,
0.009–0.026 slope

selected measurements fixed 0.95–1.1b

22 Plane element
initial condition

PSMIA initial soil moisture 0 event-dependent 0.2–0.6

23 Channel element
initial condition

CSMIA initial soil moisture 0 event-dependent 0.2–0.6

24 Radar rain input RainM merged gauge-radar rain - - 0.2–1.35

aPostfix M, multiplier; postfix A, adder to uncertainty source field values. CTortF (factor 21) affects channel length (multiplied) and slope (divided).
bBased on ratio between available information and AGWA values for field-measured sections.
cModifier applied to user-changed, not AGWA-provided values.

Table 2. Observed Discharge Characteristics and Rain Comparison Statistics for the Study Events

Event
Event
Date

Flow Start
Time, UTC

Flow Duration,
min

Number
of Peaks

Peak Flows,
m3/s

Flow Volume,
m3

Maximum Rain
Intensity, mm/h

(Radar/Gauge)
Rain Depth

Ratio

Radar-Gauge
Time Step

Lag
Derived ‘‘a’’

ValueGauge
Radar: Morin

Z-R

1 29 Jul 2003 21:38 83 1 0.94 1153 80.8 45.6 0.35 0 149.9
2 25 Aug 2003 19:16 159 2 0.76, 1.14 3006 80.8 74.9 1.33 0 975.3
3 28 Aug 2003 0:00 200 2 1.62, 1.89 5929 76.2 32.6 0.39 0 175.8
4 9 Aug 2005 4:34 44 1 0.10 82 54.8 11.0 0.23 2 82.4
5 9 Aug 2005 22:57 96 1 1.89 2948 106.7 33.3 0.38 2 167.2
6 29 Jul 2006 5:59 197 2 5.08, 1.98 9224 126.5 49.7 0.41 2 186.3
7 30 Jul 2006 14:30 78 2 0.44, 0.48 1054 45.7 23.9 0.34 1 142.0
8 31 Jul 2006 12:05 88 1 1.49 2611 47.3 25.4 0.38 2 168.4
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tivity values (Ks
text, [inches/h]) via a regression suggested by

Goodrich [1990]:

G ¼ a 1=Ktext
s

� �b ð3Þ

where the empirical parameters are set to a = 4.83 and b =
0.326. The empirical Woolhiser coefficient was set to 0.15
(factor 19 in Table 1): this coefficient reduces the effective
wetted infiltration perimeter during low flows when a
trapezoidal channel simplification introduces significant
error [Unkrich and Osborn, 1987]. The initial soil moisture
state (Table 1) was set to 0.4, except in events 7 and 8,
where it was set to 0.6. These values were chosen on the
basis of general antecedent conditions and from previous
experience in calibrating KINEROS2 for Walnut Gulch
watersheds.
[29] The number of parameter values for which feasible

ranges have to be assigned is generally very high in
spatially distributed watershed models. This number has
to be reduced since such a high dimensional space is
infeasible to sampling using a Monte Carlo approach as
was utilized here. A common strategy of constraining the
dimensionality of the parameter space preserves the relative
spatial magnitudes of the a priori field for any parameter by
using multipliers, hence giving an overall magnitude ad-
justment to that parameter’s spatial field of a priori values.
This aims to preserve the relative spatial magnitudes in the
distributed response of the relevant process, under the
assumption of linear variation of that process response with
the parameter values [e.g., Canfield and Lopes, 2004]. In
spite of this linearity assumption being potentially ques-
tionable [see Tang et al., 2007], particularly when multiple
aspects of the system response are considered, we have
used this strategy of multipliers, not only on the parameters,
but also on the rain estimates and the initial soil moisture.
For parameters with a priori values of zero, additive
modifiers (adders) are used instead of multipliers, which
together with the multipliers (or multiplicative modifiers)
constitute the ‘‘factors’’ varied in the sensitivity analysis.
For the model parameters, the spatial distributions of the a
priori fields are preserved by the corresponding factors in
the absence of any additional information. Note that the
usage of factors assumes that for any parameter, the
component of the sensitivity of the modeled response due
to uncertainty in the spatial distribution of that parameter
(that is ideally close to the spatial distribution of the a priori
field), is negligible. In other words, the sensitivity of the
modeled response to any parameter is attributed exclusively
to the magnitude bias of its spatial field, and not to its
spatial distribution.
[30] Table 1 shows the selected factor uncertainty ranges

based on information about corresponding parameter ranges
from WGEW and from similar Arizona basins, and from
previous studies. Factors are generally listed with prefixes P
(for plane) and C (for channel), and postfixes M (for
multiplier) and A (for adder). The field-measured channel
geometry for selected outlet reaches was not varied. The
tortuosity factor (CTortF, factor 21 in Table 1) is related to
channel lengths and slopes in reciprocally different man-
ners, i.e., channel lengths are magnified commensurately
with reductions in channel slopes to conserve the elevation
differences between channel end points.

[31] For the Monte Carlo runs, the saturated hydraulic
conductivity (Ks) field was further constrained since AGWA
1.5 does not provide textural Ks

text values, but only the final
KINEROS2-ready Ks

final values along with the parameters
used in the Ks

text-to-Ks
final transformation: the volumetric

rock content (Vr, [dimensionless]), the porosity (f, [dimen-
sionless]), the vegetation/litter interception (CI, [%]), and
the fraction of surface impervious area (FI). This transfor-
mation initially calculates the gravimetric rock content (Gr,
[dimensionless]):

Gr ¼ 1� fð Þ* 1� Vrð Þð Þ= 1� f* 1� Vrð Þð Þ ð4Þ

This is used to compute the rock-adjusted Ks
rock:

Krock
s ¼ Ktext

s *Gr ð5Þ

Finally, Ks
final is calculated

Kfinal
s ¼ Krock

s * e0:0105*CI
� �

* 1� FIð Þ ð6Þ

For WG11, the AGWA FI values at 0 are not varied. For
channel elements, CI is zero, making Ks

final equal to Ks
rock. A

reverse transformation on the Ks
final values provided the a

priori Ks
text values. The Ks

final values were thus implicitly
varied through factors to the corresponding f, Vr and FI

values used in the transformation, and were themselves
finally subjected to the corresponding factor variation. No
factor was applied to Ks

text. Note that this differs from similar
studies [e.g., Canfield and Goodrich, 2006], where the
considered spatial Ks field is only subject to its factor
uncertainty without any such implicit variations.

5.3. Defining Hydrograph Shape Descriptors,
Objective Functions, and Likelihood Functions

[32] From a forecasting perspective, accurate predictions
of hydrograph characteristics such as peak magnitude (and
volume), peak timing and channel overbank timing on the
hydrograph rising limb are critically important. For timely
termination of the issued alarm/warning, additional accuracy
in the timing of receding flow falling below the overbank
level is also desirable. Therefore, five basic hydrograph shape
descriptors were considered: peak magnitude, peak volume,
start timing, peak timing and end timing. Nonbasic shape
descriptors considered included the ‘‘inflection’’ point divid-
ing the hydrograph receding limb into nondriven quick and
nondriven slow portions [Boyle et al., 2000]. This point was
located using an approximate slope-change-based method, as
the time-instant point on the receding limb with the maxi-
mum vertical depression from a line segment connecting the
peak magnitude and peak end point (Figure 4).
[33] With one exception, the measures of simulation error

or objective functions (OFs) (later transformed to likeli-
hoods) were formulated in terms of the absolute magnitude
of the relative deviation from the observed value, i.e., Fs =
jSS � SOj/SN, where SS and SO denote values for the
simulated and observed shape descriptors, respectively.
The normalizer (SN) is either the observed value or a user-
selected constant value (e.g., a representative radar time step
of 275 s for timing-based OFs like FTP in Table 3). This
formulation makes the OFs comparable across different
peaks, and for magnitude-based OFs like FQP (Table 3),
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accounts for heteroscedasticity (i.e., nonconstant variance)
in the residuals [Sorooshian and Dracup, 1980]. Apart from
the five basic shape descriptors, other OFs (Table 3)
considered flow magnitude, volume, timing, slope, skew
and net time series errors. Skew was defined as the hydro-
graph risetime divided by the total hydrograph time. For the
slope-based OFs over different portions of the hydrograph,
the magnitude and time terms in the slope equation were
normalized using respective observed values to impart a 45�
angle to the observed slope. The OFs apply to single peaks,
except the last two OFs in Table 3 that apply to the entire
event.
[34] The OFs were used to formulate the likelihood

functions (LFs) required by both by GLUE and the sensi-
tivity analysis, with the prefix ‘‘L’’ applied in this study
when referring to the LF associated with a particular OF
(see Table 3). Zero values were assigned to the LFs
classified as nonbehavioral, and the remaining LF values
were obtained by an additive inversion of the OFs in which
they were first rescaled on a 0.1–1 range, and then again
rescaled to sum to one. The wide 0.1–1 range in the first
rescaling attempted to impart power to the sensitivity
analysis of the behavioral region variations, where a narrow

range would have essentially devolved to a binary classifi-
cation. For simulations with insufficient basis to classify the
descriptor as nonbehavioral because either the observed or
the simulated shape descriptor value did not exist (e.g.,
connected to the inflection point), the LF values were set to
the midpoint of the behavioral LF value range.
[35] A Monte Carlo set membership method [Van Straten

and Keesman, 1991] was used to establish the overall
behavior of a Monte Carlo simulation, with ‘‘LFB’’ denot-
ing the likelihoods based on this binary behavioral/nonbe-
havioral classification. Van Straten and Keesman [1991]
defined a behavioral zone with specified upper and lower
bounds around the entire observational time series, and
simulations were classified as behavioral if they fell fully
inside these bounds. Here, we instead defined upper and
lower bounds around the five basic shape descriptor values
to define a behavioral range. The maximum deviation on
peak magnitude (FQP) was set to ±0.15 (i.e., ±15%), while
the timing descriptor OFs (FTS, FTP, and FTE, see Table 3)
were constrained to within ±2, ±2 and ±3 radar time steps,
respectively (i.e., endpoint timing was allowed more flex-
ibility). Because the aforementioned OFs do not explicitly
consider hydrograph start and/or end values, the maximum
deviation on volume (FVU) was set to ±0.5 to filter out
simulations that deviate significantly from observed flows.
The behavioral LFB LF only provides information about the
binary hydrograph classification, while the ‘‘original’’
shape-descriptor-based LFs represent variations in the re-
spective behavioral portions of the factor space. Hence, we
also formulated ‘‘enhanced’’ shape-descriptor-based LFs to
represent only their variations in the factor space behavioral
to LFB by combining information both from the respective
original LFs and from LFB.

5.4. Combining Likelihood Functions

[36] Likelihood functions (LFs) were combined to eval-
uate the overall performance of individual factor sets using
two different methods. For individual events, the multi-
objective LF was obtained by multiplication of the individ-
ual shape-based LFs. However, for updating across events,
the LFs were combined by addition thereby allowing for an
inconsistency in the behavioral factor sets across events,
i.e., a factor set was able to simulate one event or the other,

Figure 4. Schematic event hydrograph showing maximum
depression (shown as the vertical dash dotted line) method
used for selecting the inflection point.

Table 3. Objective Functions Considered in This Studya

OF OF Notation OF Type OF Description

1 FQF magnitude-based relative deviation from observed ratio of inflection to peak magnitude
2 FQP magnitude-based relative deviation from observed peak magnitude
3 FQI magnitude-based relative deviation from observed inflection magnitude
4 FSDQ slope-based relative deviation from slope angle of observed driven part
5 FSNQ slope-based relative deviation from slope angle of observed nondriven quick part
6 FSNS slope-based relative deviation from slope angle of observed nondriven slow part
7 FTS based on time relative to rain event relative deviation from observed time to start
8 FTP based on time relative to rain event relative deviation from observed time to peak
9 FTE based on time relative to rain event relative deviation from observed time to end
10 FTR hydrograph time duration-based relative deviation from observed time of rise
11 FTF hydrograph time duration-based relative deviation from observed time of fall
12 FS hydrograph time duration-based relative deviation from observed hydrograph skew
13 FVU volume-based relative deviation from observed peak volume if multipeak
14 FV volume-based relative deviation from observed event volume
15 NSC observation series error-based 1-(Nash-Sutcliffe efficiency, i.e., NSE)

aObjective functions (OFs), basic OFs as mentioned in section 5.3 are shown in bold. Corresponding likelihood functions have an L prefix.
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but not both [see also Zak et al., 1997]. For the latter, each
hydrograph-likelihood was weighted by the number of
behavioral simulations obtained for that hydrograph before
a combined LF was calculated.

6. Results and Discussion

6.1. A Priori Parameter Model Runs

[37] Both groups of a priori runs (as defined in section 5.2)
did not match the observations well (see Figure 3 for
selected events). Table 4 lists the ranges and means of the
basic objective functions (OFs), the volume-based FV OF,
and the Nash-Sutcliffe efficiencies (NSEs) for all events,
along with the changes observed in moving from the first
parameter set (AGWA generated parameters only) to the
second parameter set (AGWA generated with additional
field observations for some parameters). Since the OFs are
normalized, a positive difference in mean values over all
runoff events represents improvement. This improvement is

seen to occur mostly in the OFs related to hydrograph
timing (FTS, FTP, and FTE, see Table 3), while peak
(FQP) and volume (FVU and FV) deteriorate. The overall
NSE also gets worse (note that for NSE, higher values are
better). Further, most of the NSE values are less than the
behavioral threshold selected to be zero. This result clearly
highlighted the need for adjustment of the a priori parameter
values based on available observations of the watershed
streamflow response.

6.2. Intercomparison of Rainfall Estimates and Their
Streamflow Simulations

[38] Gauge, radar, and merged rainfall estimates show
complete WG11 storm coverage for almost all events. We
intercompared all three estimates by first examining the
corresponding areal average cumulative rain depth series.
Figures 2a (top)–2d (top) show the data for four events. As
expected, the NWS and the Morin et al. [2005] radar
estimates match in shape, since the revised hail threshold
did not cut off the peak intensities here. However, discrep-
ancies in magnitude and in shape are seen between gauge
and radar estimates, likely due to evaporation impacts and
the radar-gauge time lag, or both. These discrepancies may
also be due to radar operational problems, such as the clutter
suppression effect wherein the radar algorithm may mistake
a highly stationary rain field as background clutter and filter
it out. The reflectivity (Z) estimates for event 1 are believed
to be contaminated with this type of error (E. Pytlak, NOAA
NWS, personal communication, 2006). Table 2 also shows a
significant range in the ratio of the Morin et al. [2005] radar
reflectivity-rain (Z-R) estimates to gauge values.
[39] The effect of errors in the spatial rainfall representa-

tion on the streamflow predictions was examined in a
limited way by comparing the behavioral simulations from

Table 4. Evaluation Results of a Priori Model Runsa

OFs

AGWA-Generated
Parameters

AGWA Plus Field
Estimates

ChangebMean Min Max Mean Min Max

FQP 1.10 0.20 2.52 1.42 0.07 3.53 �0.32
FTS 2.79 0.92 5.50 1.46 0.00 3.67 1.33
FTP 3.21 0.00 10.35 1.46 0.00 2.75 1.75
FTE 4.44 2.16 7.59 3.31 1.08 5.41 1.13
FVU 1.42 0.66 3.03 1.97 0.57 5.08 �0.55
FV 1.23 0.80 3.01 1.72 0.05 5.11 �0.49
NSE �2.00 �5.43 �0.45 �6.33 �21.15 0.15 �4.33

aMean, Min, and Max refer to the mean, minimum, and maximum value
across events.

bPositive indicates improvement.

Figure 5. Simulations selected as behavioral to the first (left) peak of this two peak event hydrograph
(event 6). Performance on second peak differs with rainfall source used to drive model.
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three different 23-factor Monte Carlo sample populations
driven by the merged rain input, the gauge input and the
Morin et al. [2005] radar estimates, respectively. This
comparison indicated the general superiority of the merged
estimates in two ways: they provided better consistency in
the behavioral factor sets across hydrograph peaks (even in
multipeak events), and they replicated the observations
better by providing behavioral simulations for a larger
number of the observed peaks. To demonstrate the first
improvement, Figure 5 shows, for each rainfall input, the
simulations behavioral with respect to the first peak of event
6. For the second peak, these simulations are seen to be
nonbehavioral for both gauge (consistent underestimation)
and radar (consistent overestimation), but are mostly be-
havioral for the merged case. To exemplify the second
improvement, the number of simulations behavioral to the
second peak of event 6 was examined: these were 262, 69,
and 0 for the merged, gauge, and improved radar estimates,
respectively, thus again suggesting that the merged product
is preferable.
[40] However, even considering only merged rainfall

estimates, a high degree of variability in the behavioral
factor sets was still observed across events. This suggests
that updating-based methods for parameter estimation might
be better suited than optimization-based methods for mod-
eling ephemeral streams in dry regions. Increasing the
acceptable likelihood ranges to increase the population of
behavioral models did not reduce the problem of variability
of behavioral parameter sets between events.

6.3. Behavioral Ranges and Correlation Structures
in Factors and Likelihood Functions

[41] Behavioral solutions could be found throughout
the a priori factor ranges for either of the Monte Carlo
(MC) collections (refer to section 3.3). However, some
restructuring tendency of the behavioral distributions away
from the initial uniformly sampled pattern was seen for
factors PKsM, PnM, CnM, CWCoM, and RainM (refer
to Table 1). PKsM showed higher frequencies in the 1.5–2
range for the posterior distribution plots (Figure 6), suggest-
ing a preference for larger hillslope-scale soil saturated

hydraulic conductivities, and correspondingly higher infil-
tration. Similarly, factors PnM, CnM and CWCoM showed
higher frequencies for values less than 1.5. RainM showed a
clear tendency toward values greater than 0.5 with a max-
imum near 1, due to the low radar-gauge rainfall depth ratios
(Table 2). Apart from these five factors, no tendency toward
a deviation of factors from uniform distributions was found.
[42] Also, no significant correlation was found using a

two-factors-at-a-time analysis. However, moderate correla-
tions were observed for some individual peaks: PKsM versus
RainM in the first MC run collection (0.6–0.7 range), and
PKsM versus PRocM in the second MC run collection
(0.45–0.62 range; refer to Table 1 for PRocM). These
positive correlations can be explained by the co-occurrence
of these factor pairs either as quotients or differences in the
model equations. RainM affects the rain rates at the land
surface that occur only in the model infiltrability equations
after being scaled using Ks

final (refer to section 5.2), i.e.,

r* ¼ r=Kfinal
s ð7Þ

where r is the surface rain rate. This division by Ks
final results

in a positive correlation. PRocM affects the vadose zone
behavior only through model equations that calculate Ks

final

from the Gr manifestation of Vr (see equations (4) to (6)),
where the presence of Ks

final andGr in the numerators on both
sides of equation (6) (i.e., after substituting equation (5))
results in a positive correlation. Aside, a principal compo-
nents analysis also showed no strong directional components
in the factor space.
[43] The histograms of the original and the enhanced

Likelihood Functions (LFs; refer to Table 3) showed no
peaked distribution, hence showing no loss in the discrimi-
natory power of the sensitivity analysis due to a good variation
in the LF values. In the 2-LF correlation plots, the five basic
original LFs showed strong correlations (i.e., >0.75) for LFTS
versus LFTP (i.e., start timing versus peak timing), and for
LFQP versus LFVU (i.e., peak magnitude versus volume).
Hence, for a multiobjective analysis, the three LFs selected
were LFQP, LFTP and LFTE (i.e., end timing).We henceforth

Figure 6. Example posterior distribution of the all event behavioral region over the range of the PKsM
factor (corresponding to the plane soil saturated hydraulic conductivity).
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denote the combined multiobjective LF of these three LFs as
‘‘LFM.’’ The five basic enhanced LFs showed no strong
mutual correlation, suggesting that all of them should be used
for formulating an enhanced multiobjective LF.

6.4. Sensitivity Analysis

[44] Using the enhanced likelihood functions (LFs)
resulted in almost the same sensitivity indices as the
behavioral classification-based LFB. This showed the loss

of power to extract sensitivity information using the en-
hanced LFs which were supposedly representative of the
variations in the behavioral regions. This problem was due
to the dominance of the binary behavioral classification on
the sensitivity indices over these variations in the calcula-
tion of these sensitivity indices when the percentage of
behavioral simulations is very low (<1% here). Hence, the
enhanced LFs were not considered in further analyses.

Figure 7. Sobol’ indices showing sensitivity of model output to variations (a) in rainfall multiplier,
RainM, through selected likelihood functions (LFs) and showing sensitivity of three different LFs to all
factors: (b) Nash Sutcliffe efficiency based LNSC, (c) Multiobjective LFM, and (d) Behavioral LFB.
RainM is rightmost factor in Figures 7b–7d.
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[45] In the first Monte Carlo (MC) run collection, the
merged rain estimates had a factor range of 0.2 to 1.35 (see
factor 24 in Table 1), reflecting the radar depth bias across
the study events (Table 2). Figure 7a shows the all-event
influence of the rain depth bias factor (RainM; refer to
Table 1). The total-order indices show the dominant influence
of RainM, highlighting the importance of depth bias-free rain
inputs for accurate forecasts. LFB has a second-order effect,
though most of the individual peaks have negligible second-
and first-order effects (not shown). This would have made it
difficult to detect the rain influence from the behavioral
classification using sensitivity analysis (SA) methods which
do not explicitly consider interaction at all orders (e.g., RSA
or regional SA with a second-order factor correlation analy-
sis). The rain influence using RSA is probably better detected
from LFs like the multiobjective LFM on which RainM is
seen to have a significant first-order effect. Also, use of
identifiability plots may help to constrain the RainM uncer-
tainty in regions without rain gauge measurements, poten-

tially allowing the universal application of radar rain
estimates under the current large depth biases.
[46] Figures 7b and 7c show the high relative rainfall

estimate influence as compared to other factors for the
Nash-Sutcliffe efficiency-based LNSC and the multiobjec-
tive LFM LFs, respectively. LNSC seemed slightly more
sensitive to the model factors compared to LFM (LNSC
similarly compared against LFM’s single-objective compo-
nents LFQP, LFTP, and LFTE; refer to Table 3 for these
LFs). The influence of the PKsM factor (refer to Table 1) on
the LNSC LF was seen to approach that of RainM: Sobol’
SA results showed a significant 37% RainM-PKsM second-
order effect out of the total PKsM index (see section 6.3
regarding this interaction). Figure 7d for the behavioral LFB
LF (refer to section 5.3) shows the almost complete influ-
ence of RainM, with generally very small first-order effects.
This happens because LFB is an implicit combination of the
basic hydrograph shape descriptors, and hence of factors
which influence each of the descriptors, with consequent
high-order interactions in the LFB combination. Hence, we

Figure 8. Sobol’ indices showing relative influence of model parameters and initial conditions on the
model response. Individual plots show fractional influence on: (a) Nash Sutcliffe efficiency based LNSC,
(b) multiobjective LFM, and (b) behavioral LFB.

W05S19 YATHEENDRADAS ET AL.: SEMIARID FLASH FLOODS

13 of 17

W05S19



answer the second research question about rain influence as
follows: While merging of high spatial resolution gauge and
radar estimates might potentially provide better simulations
than either one by itself, the influence of rain depth/volume
bias uncertainty almost completely dominates the model
response.
[47] Figure 8 shows similar SA results from the second

collection of MC runs. Figures 8a, 8b, and 8c show factor
influences using the LNSC, LFM and LFB LFs, and are
similar to the respective Figures 7b, 7c, and 7d. Small
differences occur due to the removal of the rain depth bias
uncertainty. Among themselves, all the original LFs uni-
formly show sensitivity to almost the same few factors in
the same order, which hinders a detailed analysis about
which factors affect which specific hydrograph shape
descriptors. The parameters corresponding to the three most
influential hillslope factors are mostly the hillslope soil
saturated hydraulic conductivity (i.e., PKsM factor), the
hillslope soil volumetric rock fraction (i.e., PRocM), and
the hillslope soil surface roughness (i.e., PnM). Similarly,
the parameters corresponding to the most influential channel
factors are the channel soil surface roughness (i.e., CnM)
and the channel Woolhiser coefficient (i.e., CWCoM). The
influence of CWCoM, undetected in earlier studies, shows
the importance of estimating the effective channel cross-
sectional wetted perimeter through the Woolhiser coefficient
for accurate infiltration calculations. Note that the five
factors observed to be identifiable in section 6.3 are also
the most sensitive.
[48] Overall, hillslope factors dominate the model re-

sponse more than the channel factors, showing the impor-
tance of detailed field measurement and scaling studies of
hillslope parameters for reducing corresponding uncertain-
ties in semiarid flash flood forecasting in mechanistic
models of small basins. Over larger basins, channel factors
will likely become more influential due to the greater impact
of channel infiltration losses [Goodrich et al., 1997]. Hence,
we answer the fourth research question about model param-
eter influence as follows: In general, uncertainties in the
hillslope model parameters impact predictions more than
those in the channel parameters for small basins. The most
influential hillslope parameter uncertainties stem from the
soil saturated hydraulic conductivity, the soil volumetric rock
fraction, and the soil surface roughness, while those for the

channel are from the soil surface roughness and the Wool-
hiser coefficient.
[49] Figures 7 and 8 consistently show that initial soil

moisture specification in channels (CSMIA factor) is re-
dundant for the model response. However, the hillslope
initial soil moisture (PSMIA factor) can be important, and
for the behavioral LFB LF which is particularly relevant for
flash flood forecasting, it is almost as influential as PKsM.
Hence, the third research question about the initial soil
moisture influence can be answered as follows: Initial
hillslope soil moisture can have a dominant effect on the
predicted response in flash flood forecasting. Hence, more
sophisticated interstorm model components are required to
track hillslope soil moisture with a high degree of accuracy.

6.5. Model Predictive Uncertainty

[50] Considering the high behavioral response inconsis-
tency across events, and the associated differences in the
model responses, a high predictive uncertainty is expected.
Equispaced values over the feasible RainM factor range
(refer to Table 1) were combined with the behavioral factor
sets from the second Monte Carlo run collection to obtain
Figures 9a and 9b, which show the predicted 90% confi-
dence intervals for event 6 using behavioral factor sets from
all and from prior events only, respectively. These uncer-
tainties shown are higher than desired for flash flood
forecasting (e.g., more than 10 times in the peak magnitude
here). Hence, the answer to the first research question posed
earlier is as follows: Given current uncertainties in the radar
rain estimates, model parameters and initial conditions, the
predictive uncertainties in flash flood forecasting can be
much higher than desired.

7. Conclusions and Future Work

[51] There is a clear and pressing need for improvements
in our ability to generate operational flash flood forecasts in
the semiarid southwestern United States and other dry
regions around the world. This study investigated the
predictive uncertainty of the physically based, distributed
semiarid rainfall-runoff model KINEROS2 driven by high-
resolution radar rainfall input for this purpose. Uncertainty
sources considered were rainfall estimates, model parame-
ters, and initial moisture conditions. The variance-based
Sobol’ global sensitivity analysis method was used to

Figure 9. The 90% confidence intervals incorporating radar rainfall uncertainty for prediction of the
29 July 2006 event using behavioral factor sets from (a) all events and (b) prior events only.
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investigate dominant sources of uncertainty. The flash flood
forecasting system was implemented using the GLUE
methodology to facilitate operational assimilation of incom-
ing event information. The approach is applicable to any
model amenable to a Monte Carlo framework, and can be
implemented operationally for a fixed number of factor sets
without requiring resampling or optimization. The Monte
Carlo framework utilized factors applied to the rainfall,
initial soil moisture and model parameters.
[52] The methodology was applied to simulate the runoff

response for eight summertime convective thunderstorm
events occurring over the WG11 subbasin of the semiarid
Walnut Gulch Experimental Watershed. The Walnut Gulch
runoff regime is characterized by ephemeral flow with long
periods of no-flow between storm events. Hydrograph fits
were characterized by shape descriptors that represent mag-
nitude, volume, shape, and timing. In decreasing order of
importance, the dominant uncertainties were found to orig-
inate from the bias in the radar rainfall depth estimates, the
model parameters, and the initial soil moisture conditions.
[53] In particular, we found the following:
[54] 1. The uncertainty due to depth/volume bias in the

radar rainfall estimates almost completely dominated the
uncertainty in the modeled response.
[55] 2. Merging of high spatiotemporal resolution rainfall

estimates from gauge and radar has the potential to improve
the model forecasting ability.
[56] 3. Uncertainties in the hillslope model parameter

values had greater impact on the predictions than uncertain-
ties in the channel parameters. For hillslopes, the three most
influential parameters were soil saturated hydraulic conduc-
tivity, the soil volumetric rock fraction and the soil surface
roughness. For channels, most influential were soil surface
roughness and the Woolhiser coefficient. The latter param-
eter reduces the effective wetted perimeter for infiltration
during low flows when a trapezoidal channel simplification
introduces significant error.
[57] 4. The initial channel soil moisture does not signif-

icantly influence the modeled response, whereas the initial
hillslope soil moisture can have a strong effect at least in
small basins as analyzed here.
[58] 5. Given the typical level of uncertainty in currently

available radar rainfall estimates, model parameters and
initial conditions, the predictive uncertainty in the modeled
flash flood response is often likely to be much higher than
what would be considered acceptable for accurate flash
flood forecasting. This result is likely to be similar for
virtually any flash flood forecasting model due to the
dominance of rainfall uncertainty, and improved rainfall
estimates are the most needed step to improve forecasting
skills.
[59] 6. Behavioral parameter sets of one event do often

not remain behavioral for another event, resulting in a
corresponding inconsistency across events. The inconsis-
tency of behavioral parameter sets between events suggests
that a real-time parameter updating procedure is likely to be
more useful than a calibration approach which optimizes the
model with respect to past events.
[60] This study illustrates the considerable difficulty in-

volved in the identification of models for flood forecasting
in semiarid regions. The most pressing concern is that
improved real-time bias-free rainfall estimates are required

for achieving reduced uncertainty in flood forecasts. Given
the capabilities of the current generation of weather radars,
such real-time bias removal may only be possible when
used in conjunction with sophisticated numerical weather
prediction models. The influential uncertainties found for
poorly defined parameters indicate the need for better
parameter estimates in the mechanistic model, either
through detailed scaling-related field studies predominantly
of the hillslope processes, and/or through improved strate-
gies in investigating high-dimensional parameter spaces that
consider potential errors in the spatial distribution. Our
findings regarding the dominant effect of initial hillslope
soil moisture states indicates a need for improved continu-
ous soil moisture accounting. In general, the complexity of
semiarid hydrometeorological processes that is represented
in correspondingly complex semiarid watershed models,
and the high degree of observational error (introduced
through the actual observation and through the data pro-
cessing), still make studies of the kind presented here
challenging. Improvements in all aspects are needed to
advance operational prediction accuracy and to enable
hypotheses testing in scientific studies.
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