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KEYWORDS Summary The difficulty of predicting rainfall—runoff responses in arid and semi-arid
Wadi; catchments using typically available data sets is well known, hence the need to carefully
Arid; evaluate the suitability of alternative modelling approaches for a given problem and data
Rainfall—runoff; set; and to identify causes of uncertainty in order to prioritise research and data. In this
Model; paper, we evaluate the distributed model, Kineros2, in application to an arid catchment in
Oman Oman, using rainfall—runoff data from 27 storm events. The analysis looks at model

sensitivities, uncertainty and performance, based on uniform random sampling of the
model parameter space and predictions of features of the observed hydrograph at the
catchment outlet. A series of three experiments used different calibration strategies
(an 11-parameter calibration, a 5-parameter calibration, and a 3-parameter calibration
allowing some spatial variability of the saturated hydraulic conductivity). The parameters
most significantly affecting flow peak and volume performance are those controlling infil-
tration rates on hillslopes. The model output was also generally sensitive to a parameter
within the rainfall interpolation model. Relatively little sensitivity to initial catchment
wetness was observed. Prediction performance was generally poor, for all events and
for all the tested calibration and prediction strategies; and the uncertainty, estimated
using model ensembles, was very high. A 2-parameter regression model used in previous
work was found to perform better for predicting flow peaks. Literature review shows
our results are consistent with experience of other modellers of arid and semi-arid climate
hydrology. In order to realise the potential value of distributed, physically based models,
for application to arid and semi-arid regions, significant data collection and further
research is required, in particular regarding spatial rainfall observation and modelling.
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Introduction

Arid and semi-arid regions pose particular problems for
hydrological modellers. Amongst the sources of difficulty
are the high temporal and spatial variability of rainfall,
the large and variable transmission losses, the seasonal var-
iability of vegetation and its affect on runoff. Furthermore,
rainfall and flow observation is often hampered by sparse
rainfall and runoff gauge networks (Rodier, 1985; Sorman
and Abdulrazzaq, 1993; Al-Qurashi, 1995). These issues
add to the role of spatial variability as a factor in rain-
fall—runoff response, and hence the common view that spa-
tially distributed models are appropriate.

Developments in spatial data sets in the last decade have
provided new opportunity to explore the potential applica-
bility of physically based, distributed models to arid and
semi-arid regions. For example, digital elevation model
and rainfall estimation products are now available with
near-global coverage. Furthermore, developments in sto-
chastic modelling techniques allow extensive exploration
of model sensitivities and prediction uncertainty; and inves-
tigation of alternative calibration procedures and perfor-
mance measures (Wheater, 2002a). Also, open-source
codes for distributed rainfall—runoff models are now avail-
able and supported, allowing adjustments to model struc-
tures, and coupling with model analysis tools (e.g. the
Kineros2 model, Semmens et al., 2008).

However, the fundamental problems of observability of
spatially distributed processes and inputs, and lack of model
identifiability, severely restrict the practical value of phys-
ically based, distributed models (Wheater et al., 1993). Due
to generally sparse data, and high spatial variability, appli-
cability to arid and semi-arid catchments is especially ques-
tionable (see review below). Nevertheless, predictions of
flow are needed in such catchments for flood and water re-
source management, and use of predictive models is inevi-
table. Therefore, important questions to ask in the
context of arid regions are ‘*how much performance can
we get out of a distributed model, given an available data
set’’; “*how can we best estimate and illustrate the uncer-
tainty in predictions’’, ‘‘when and why do simpler, empiri-
cal models perform better?”’, ‘‘what can we learn from
the model, in order to prioritise data collection?’’.

This paper aims to examine the applicability of the phys-
ically based, distributed, rainfall—runoff model, Kineros2,
to 27 rainfall—runoff events from Wadi Ahin, an arid catch-
ment in Oman. Specific objectives are: (1) To identify the
key inputs affecting model outputs, hence indicating impor-
tant hydrological characteristics and data needs. (2) To test
parameter estimation and prediction strategies, in terms of
prediction performance. (3) To evaluate and illustrate
uncertainty in predictions. (4) To compare results with
those achievable using simple empirical analysis. First, we
briefly review research into the hydrology of arid and
semi-arid regions and implications for modelling.

Hydrology of arid and semi-arid regions

The variability of rainfall is a major consideration when
modelling arid and semi-arid zone hydrology. Rainfall char-
acteristics tend to be more variable in space and time

compared to humid areas (Pilgrim et al., 1988; Wheater
et al., 1991; Al-Qurashi, 1995). Rain gauge densities in
Walnut Gulch in Arizona, for example, which are about 1
per 2 km?, showed highly localised rainfall occurrence with
spatial correlations of 0.8 between gauges at 2 km separa-
tion, and close to zero at 5—20km spacing (Wheater,
2002b). Osborn and Renard (1973) recommended 300—
500 m separation between gauges to be able to capture
localised rainfall. In Saudi Arabia, the typical spacing be-
tween rainfall gauges at five experimental basins of a
five-year intensive study (Saudi Arabian Dames and Moore,
1988) was 10 km. That study showed that on 51% of rain
days, only one or two rain gauges out of 20 recorded rain-
fall, and the sub-daily data showed even more spotty re-
sults. On the other hand, clearly the nature of the
rainfall depends on local climate, and may not be so vari-
able. For example, analysis of data from arid areas in
Niamy and Niger showed that 80% of total seasonal rainfall
was found to fall as widespread events which covered at
least 70% of the 100 rain gauge network (Lebel et al.,
1997); and studies in semi-arid New South Wales, Australia
have also shown spatially extensive, low intensity rainfall
(Cordery and Pilgrim, 1970).

Another feature of arid and semi-arid zone hydrology,
which has proven difficult to model, is the variability of
losses. Various studies have noted the spatial and temporal
variability of runoff generation losses. Hughes (1995) dis-
cusses the role of non-stationary vegetation cover in con-
trolling infiltration and evaporation losses in southern
African catchments, and cites various examples. In situ
experiments from the Nahal Zin catchment in Israel re-
ported by Lange et al. (1999) illustrate the spatial variability
of runoff infiltration due to soil types, soil crusting and land
cover. For example, infiltration rates (after wetting) varied
spatially from 5 mm/h on a limestone plateau to 15 mm/h
on a sandy crusted plain, to 50 mm/h on a sandy vegetated
plain. Casenave and Valentin (1992) report infiltration plot
experiments on a wide variety of surface types and condi-
tions in semi-arid West African catchments, finding a similar
degree of variability in infiltration capacity. Various studies
have indicated large and variable channel transmission
losses, and it is not unusual to have high flow in the upper
catchment and low or zero flow at the downstream gauge
(Renard et al., 1966; Cordery et al., 1983; Walters, 1990;
Al-Qurashi, 1995). For example, Sharma and Murthy (1996)
analysed 79 events from subcatchments of the Luni River
in arid north—west India, finding that transmission losses be-
tween upper and lower gauges varied between 8% and 56%
of total flow. Hughes and Sami (1992) studied two events
in Cape Province, South Africa, and found that 75% and
22% of the flow volume was lost to the alluvium/sand chan-
nel bed, respectively. Small-scale studies of channel infil-
tration include Parrisopoulos and Wheater (1992), who
conducted in situ tests in a Saudi Arabian wadji, finding sat-
urated hydraulic conductivities to range between 200 and
600 mm/h within one soil column.

The variability of losses is evident in reported runoff
coefficients. Grayson et al. (1992) found the runoff coeffi-
cient to vary between 9% and 28% during 3 events in 1997
in the Wagga catchment in Australia. Wheater and Brown
(1989) found the coefficient varied from 6% to 80% over 11
events in a Saudi Arabian catchment, and Mcintyre et al.
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(2007) estimated runoff coefficients to vary from 2% to 38%
(excluding two events which had estimated runoff coeffi-
cients >100%) from analysis of 36 events from Wadi Ahin in
Oman.

The variability of arid zone rainfall and infiltration losses
is often been cited as a reason for poor performance of
hydrological models. Michaud and Sorooshian (1994a), after
modelling runoff in Walnut Gulch (150 km?), concluded
‘‘Approximately half of the difference between observed
and simulated peaks was due to rainfall-sampling errors’’.
In their case, even data representing a spatial aggregation
to the 4 km x4 km pixel scale generally produced serious
underestimations of the peak flows. Wheater and Brown
(1989) found wide variation in the unit hydrograph parame-
ters when analysing a catchment in south-west Saudi Arabia
(area 597 km?), which they thought was due to rainfall and
transmission loss variability. Grayson et al. (1992) note the
fundamental model identifiability problems caused by data
limitations, including the variability of rainfall and soil infil-
tration rates, and found in two catchments that measured
infiltration rates needed to be altered by a factor of up to
five (to 1000 mm/h in one case) in order to achieve an opti-
mum fit to observed flow. Hughes (1995) notes that repre-
sentation of transmission losses is a fundamental model
limitation, in the context of monthly time-step models in
arid and semi-arid catchments.

Other aspects of arid and semi-arid zone climate and
hydrology which add to the difficulty of modelling include:
the general paucity of data on rainfall, flow, soil properties
and initial conditions (Grayson et al., 1992; Nouh, 2006); the
influence of seasonal and inter-annual vegetation variability
(Hughes, 1995); complexity of channel morphology (Costel-
loe et al., 2006); loss thresholds associated with over-bank
flow (Knighton and Nanson, 1994; Lange, 2005); and for
monthly water balance applications, the difficulty of esti-
mating potential evaporation (Hughes, 1995). More ex-
tended reviews of arid zone features and implications for
modelling are given by Rodier (1985), Pilgrim et al.
(1988), Walters (1990), Al-Qurashi (1995) and Wheater
(2005).

Description of Kineros and review of
applications

Kineros is described comprehensively in Woolhiser et al.
(1990) and Smith et al. (1995) and the more recent version,
Kineros2, in Semmens et al. (2008). Only an overview of the
model is given here. Kineros2 is a physically based, distrib-
uted, rainfall—runoff model which is designed for modelling
events in arid and semi-arid zone catchments. The catch-
ment is split into a number of rectangular planes (represent-
ing hillslopes) and straight-line channels, with a specified
connectivity. A set of parameters is specified for each plane
and channel. Surface flow is simulated for all planes and
channels using a four-point implicit finite difference solu-
tion (with an adaptive time-step option) to the kinematic
wave equation. Wave movement and depth is controlled
by slope, channel geometry, Manning’s coefficient (n) and
two relief (microtopography) parameters (re and rs). An
interception depth parameter (i) specifies an interception
loss associated with plant cover. This loss is applied over a

specified percentage of the plane area. Soil is represented
by either one or two soil layers. Infiltration rate is equal
to rainfall rate (following interception loss) until an infiltra-
bility limit is reached. This limit is a function of infiltrated
depth, governed by parameters saturated hydraulic conduc-
tivity (ks), capillary length scale (g), soil porosity (0) and a
scaling parameter. Surface runoff may be generated by
either infiltration or saturation excess mechanisms,
although if g is set to zero then infiltration rate is constant
at ks. Small-scale variability in ks is included using a coeffi-
cient of variation parameter v. There is also a parameter
which defines the proportion of soil volume which is rock
(r and r¢ on hillslope and channel, respectively). A channel
base flow may be specified for each channel reach, although
this would turn off the channel infiltration in that reach.
Other components of Kineros2 represent reservoirs, cul-
verts, urban areas and sediment transport — however, these
were not used in our application.

Wheater (1981) used an early version of Kineros to ana-
lyse a storm in Wadi Aday, Oman, using a 15-min time-step.
The loss was represented by a constant runoff coefficient of
0.75 for areas predominantly covered by hard rock, whereas
for the gravel areas a runoff coefficient of 0.50 was used.
Manning’s coefficients were initially estimated from text-
book values but later were calibrated in order to achieve
a good fit between observed and modelled peak flow. The
calibrated values were 0.025 for the gravel hills, 0.016 for
the hard rock areas, 0.032 for a channel reach in a gorge,
and 0.030 for the other channel reaches. The author pro-
posed that the results were better than those obtained using
the time-area approach because the model is physically
based therefore the non-linear routing effects of channel
storage and overland flow are represented.

Kineros was applied to Wadi Ahin, Oman by Mott MacDon-
ald (1992) as part of a groundwater recharge analysis. Topo-
graphical and geological information was used to determine
areas and slopes, and to determine the subcatchment
boundaries. The starting values of the ks and ¢ parameters
were determined from field investigation and previous cali-
brations in the region. Manual calibration was initially done
using three storms which were observed at six autographic
rain gauges, at a jebel foot flow gauge and at three flow
gauges near the coast. At the jebel foot, the calibrated
parameter set produced volume errors of +38%, —5% and
—44% for the three events, and at the coast the errors were
+14%, —13% and +3%. A subsequent calibration on 16 more
events, which used assumed ‘design’ rainfall profiles, had
a much wider range of volume errors, but a cumulative error
over all 16 events of just 1% at the jebel foot and 6% at the
coast. It was considered reasonable to transfer the cali-
brated Wadi Ahin parameters to adjacent ungauged
catchments.

Michaud and Sorooshian (1994b) applied the Kineros
model to the 150 km? Walnut Gulch catchment, using six
rainfall events for calibration and 24 events for validation,
using 2-min resolution rainfall data. Initial conditions were
estimated using a simpler daily model. The uncalibrated
Kineros parameters were estimated from physical observa-
tions or from text-book values. n was fixed at 0.04 for all
channels and 0.05 for all planes; ks for planes was derived
via published relationships with soil classes and varied spa-
tially from 3.61 to 8.92 mm/h, while 42 mm/h was assumed
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for channel alluvium. Manual calibration was used, varying
n, ks and the coefficient of variability of ks over planes
and channels, although the authors were not satisfied that
the optimum parameters were found due to the complexity
of the calibration task. Performance was considered to be
disappointing — for example, the validation root mean
square error (RMSE) for peak flows was 79% of the mean ob-
served peak, with four peaks overestimated by more than
100%.

Yatheendradas et al. (2008) applied Kineros2 to eight
events from a 6.4 km? subcatchment of Walnut Gulch, in or-
der to assess the utility of the model for flash flood forecast-
ing, and to identify the key sources of uncertainty. They
used radar rainfall with approximately 1 km x 1 km grid res-
olution, as well as data from eleven rain gauges, with an in-
put time-step ranging from 4 to 6 min. Twenty-one
parameters, two initial conditions and the rainfall were
sampled a large number of times (in cases over 100000)
within a Monte Carlo-based sensitivity analysis experiment.
They found that the principal cause of uncertainty was the
uncertainty in radar rainfall — for example the cumulative
rainfall in one event varied between approximately 15 mm
and 35 mm depending on the estimation method used. They
found that ks, r, n, n., and v were overall the most impor-
tant parameters and initial plane wetness s was also impor-
tant in cases. They also demonstrated high uncertainty
when trying to predict an event using parameter sets iden-
tified from other events.

A range of distributed rainfall—runoff models, each with
different process representations, data requirements and
methods of incorporating spatial variability, have been ap-
plied to arid and semi-arid regions. Examples include ELl-
Hames and Richards (1998), Lange et al. (1999) and Costel-
loe et al. (2006). These investigators and others report some
level of success in simulating the rainfall—runoff response,
and demonstrate the potential advantages of distributed
modelling. However, it is clear that the fundamental identi-
fiability issues illustrated by Grayson et al. (1992) and Mi-
chaud and Sorooshian (1994b), and discussed more
generally by Wheater et al. (1993) and Wheater (2002a),
persist. Next, we examine the significance of the identifi-
ability of Kineros2, and whether and how it can be managed
within the prediction procedure, using an application to
Wadi Ahin.

Description of Wadi Ahin

Oman’s ephemeral rivers (wadis) may be classified into
those that drain to the coast, and those that drain to the
interior desert. Wadi Ahin is one of the former, situated in
the north of Oman (Fig. 1). The catchment can be subdi-
vided into two areas; Ahin West (upstream of the flow gaug-
ing station near Hayl, with elevation above sea level ranging
from 300 m to 1300 m, area 734 km?) and Ahin East (from
Hayl to the coast, ranging from sea level to 300 m, area
76 km?). In this paper we study data from Ahin West (which
we refer to as ‘the catchment’ from here on).

In the piedmont area of the catchment, Hawasinah Nap-
pes, Aruma Group rocks and Tertiary limestones, are inter-
spersed with alluvial wadi deposits. In the upper parts of the
catchment the alluvium is typically less than 20 m thick,
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Figure 1  Outline of mainland Oman and the location of Wadi

Ahin.

ranges in composition from clay to boulder and in many in-
stances has been weakly to strongly cemented. The wadi
channels are mainly gravel and sands. Land cover is mainly
desert with sparse vegetation cover. The terrain is moun-
tainous, with slopes ranging from 3% to 92% on hillslopes,
and from 0.1% to 0.32% in the channels (measured from a
90 m resolution Digital Elevation Model).

Compared to much of the Arabian Gulf area (see Nouh,
2006), availability of rainfall and flow data for Wadi Ahin
is reasonable. There are seven recording rainfall gauges
within the catchment (Fig. 2). Five of the gauges operate
with digital data loggers. The other two operate using chart
recorders. The annual average rainfall at these gauges
ranges from 98 mm at Hayl Ashkariyyin (gauge number 7
in Fig. 2) to 143 mm at Al-Wagbah (gauge number 3). The
flow gauge at Hayl (location in Fig. 2) is a pressure trans-
ducer plus crest stage guages. The stage-discharge curves
are based on direct measurement using current meter mea-
surements for low flows, and indirect measurement for peak
flows using the slope-area method (a channel survey was
done after each flood over a length of 35 m upstream and
32 m downstream of the flow gauge, water surface slopes
were estimated from four crest stage gauges in this length,
and slope-area method was applied using Manning’s equa-
tion). In this reach, the channel bed is sand and small cob-
bles, the right bank is steep rock, and the left bank is a re-
cemented conglomerate slope (1:12 gradient on average)
with boulders or large cobbles at higher flow depths. A Man-
ning’s n of 0.036 was used within the slope-area method.
For the floods studied in this paper, the top width is esti-
mated to range from less than 5 m to more than 75 m. As
the channel bed is shifting, the channel is re-surveyed after
each large flood. Events with clearly erroneous flood fluctu-
ations were not included in our data set, although it is noted
that human, instrument or stage-discharge errors may af-
fect the quality of the flow estimates.
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Figure 3
hence there are 28 sub-plots).

Twenty-seven runoff-generating events from 1996 to
1999 are selected, based on availability of the hourly rain-
fall and flow data, and perceived quality of data. These
events are plotted in Fig. 3 (in this plot, rainfall has been

Timestep (hrs) Timestep (hrs)

Rainfall and flow time-series for the 27 events (the March 1997 event is split into 26th—28th March and 29th—2nd April,

averaged without weighting over the seven gauges). Statis-
tics of the events are given in Table 1. Measuring the time
lags between peak rainfall and peak flow is complicated
because some events contain more than one rainfall and



96

A. Al-Qurashi et al.

Table 1 Statistics of the runoff events
Date Peak Peak gauge- Total rainfall No. gauges  Rainfall centroid Base flow Runoff Time lag
rainfall at average (sum of gauge- with <2mm distance from (mm/h)®  coefficient of peak
any gauge rainfall average (mm) rain flow gauge (km) (h)®
(mm/h) (mm/h)
22-Jan-96 17 8 61 0 23 0.001 0.29 4,3 and 3
11-Mar-96 16 6 21 0 20 0.001 0.28 4
26-Jun-96 28 4 5 4 18 0.000 0.13 4
27-Jul-96 16 4 11 0 22 0.001 0.06 4,3 and 7
07-Aug-96 31 5 9 3 28 0.003 0.15 3
25-Jan-97 12 7 35 0 24 0.000 0.08 4
26-Mar-97 40 8 97 0 25 0.001 1.48 4, 4 and 4°
23-Jun-97 8 2 5 3 28 0.004 0.04 4
03-Jul-97 15 3 8 3 27 0.003 0.05 7
08-Aug-97 27 5 13 2 24 0.002 0.09 4
13-Sep-97 17 3 6 2 25 0.003 0.13 4
11-Oct-97 15 2 4 3 19 0.002 0.16 4
29-Oct-97 26 4 9 2 16 0.003 0.15 2 and 2
02-Nov-97 18 3 8 3 16 0.017 0.33 4
27-Jan-98 17 6 22 0 22 0.003 0.09 4
31-Jan-98 22 4 21 0 24 0.003 0.05 9
21-Feb-98 16 6 20 0 24 0.003 0.04 3and 7
13-Jun-98 4 1 5 4 23 0.000 0.02 9
16-Jun-98 5 1 1 6 19 0.001 0.02 6
17-Jul-98 6 1 2 5 26 0.001 0.09 5
20-Jul-98 22 7 10 3 25 0.001 0.13 4
23-Jul-98 9 1 3 4 20 0.000 0.10 6
08-Aug-98 21 4 5 3 17 0.001 0.09 3
05-Sep-98 8 4 1 6 20 0.001 0.15 4
17-Sep-98 14 2 2 6 19 0.001 0.17 3
24-Oct-98 2 1 1 5 22 0.001 0.26 6
02-Mar-99 23 6 14 4 12 0.000 0.21 3

2 Baseflow is taken as the flow at the start of the rainfall event.

® Where more than one value is given, the values refer to different rainfall bursts/flow peaks within the same event.
€ These values neglect a major rainfall burst which had no clear associated flow peak (see Fig. 3).

flow peak, and in other cases more than one rain peak can
be associated with the single flow peak. However, 37 lags
are relatively distinct and lie between 2 and 9 h; 27 of
these lie between 2 and 4 h. Eight of the ten largest events
in terms of rainfall volume were in the winter months Jan-
uary—April. This period also had relatively uniform rainfall
(a greater proportion of the gauges had significant rainfall).
There is an exceptional event from 26 March to 1 April
1997. The estimated return period of that peak flow is
85 years, and the runoff coefficient is 1.48, clearly due to
under-measurement of rainfall or over-estimation of flow.
Excluding that event, the runoff coefficients ranged from
0.02 to 0.33, with a mean of 0.15. The annual average
cumulative flow at the Hayl gauge over the four years is
approximately 29 Mm*® (0.92 m*s~" or 0.0045 mm/h), fall-
ing to 0.9 Mm> and 4.4 Mm> at two gauges close to the
coast. This highlights the degree of transmission loss in
parts of the catchment. At the Hayl gauge, the river is
dry for 14% of the time, as measured between 1996 and
1999. Base flow is sustained by groundwater springs and,
when present, is very small compared to flow peaks (see
Table 1). The spatial correlations of hourly rainfall are
plotted in Fig. 4.
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Figure 4 Rainfall correlations between gauges plotted
against distance between gauges.

Using substantially the same data set from Wadi Ahin,
Mcintyre et al. (2007) regressed peak flow, flow volume
and runoff coefficient to four rainfall parameters and an
antecedent wetness index (base flow), and found that rain-
fall volume is the primary control on flow volume and peak.
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Other effects found to be significant were: increased ante-
cedent wetness increased flow volume and peak; increased
spatial variability of rainfall increased flow volume and
peak; increased distance of the rainfall centroid from the
flow gauge reduced flow volume and peak; increased peak
rainfall increased peak flow. In that paper, it was specu-
lated that the performance of the regression model, for pre-
dicting flow volumes and peaks at the catchment outlet,
might not be improved upon by using a distributed simula-
tion model such as Kineros2 .

Application of Kineros

The application of Kineros2 (which we will refer to simply as
Kineros) to the Wadi Ahin data consisted of the following
main steps: (1) initial analysis of sensitivity and numerical
behaviour; (2) modification of the Kineros code; (3) global
sensitivity analysis and parameter estimation (calibration);
(4) prediction performance analysis (validation); (5) refine-
ment of calibration procedure, and review of performance
improvements. The catchment was split into 20 planes, as
illustrated in Fig. 2, with eight associated channel reaches.
The planes were based on topography, land cover and soil
type. Channels represent the locations of identifiable chan-
nels. The slopes and geometries of planes and channels (Ta-
ble 2) were estimated from the Digital Elevation Model, and
the channel cross-section data.

Initial analysis

Throughout our analysis, only one soil layer was used. De-
fault parameter values were set to those identified during
a previous Kineros analysis of Wadi Ahin (Mott MacDonald,
1992). These parameter values are listed in Table 3. One-
at-a-time, local sensitivity analysis around the default
parameter values gave a strong initial impression that ks
and n were consistently the most important parameters
affecting the simulated hydrograph for every event, and
that other parameters and initial conditions had practically
zero influence. However, as would be expected, it was
noted that the results of this analysis were dependent on
the default parameter values about which perturbations
were made, especially the value of capillary force, g (which
had a default value of zero, hence fixing the infiltration rate
equal to ks).

The local sensitivity analysis indicated some significant
volume balance errors. We speculated that volume balance
errors may have been due to the restriction, implicit to Kin-
eros, on the maximum number of numerical elements per
plane, which might introduce significant errors when repre-
senting a long hillslope length by a single plane. This led to a
series of experiments on a single plane of length 20000 m,
representing the longest plane used in the Wadi Ahin model.
The resolution of the spatial grid was incrementally in-
creased by splitting this single plane into a number of planes
in series. A step input of uniformly distributed rainfall was
applied with zero infiltration and the Kineros solutions were
compared with the analytical solution of Parlange et al.
(1981). The Kineros solutions using only one plane ade-
quately matched the analytical solution although minor er-
rors and instability were noted; and adding more planes in

Table 2 Properties of planes and channels

Length (m)  Width (m)  Area (km?)  Slope
Planes
1 15127 5611 84.4 0.04
2 12073 5534 66.4 0.03
3 12459 5163 63.9 0.03
4 10778 6157 66.0 0.06
5 1789 40547 72.1 0.35
6 14060 3884 54.3 0.05
7 11175 1798 20.0 0.06
8 8520 2882 24.4 0.09
9 695 17618 12.2 0.92
10 3473 2461 8.5 0.05
11 12541 3233 40.3 0.04
12 4276 2964 12.6 0.09
13 7851 1907 14.9 0.11
14 19674 910 17.8 0.01
15 16305 3933 63.7 0.06
16 18336 3645 66.4 0.05
17 2616 1298 3.4 0.06
18 12372 2952 36.3 0.07
19 2710 326 0.9 0.01
20 3429 1630 5.6 0.05
Channels
1 5526 50 0.3 0.041
2 5887 50 0.3 0.041
3 14726 50 0.7 0.012
4 12646 50 0.6 0.055
5 8410 50 0.4 0.073
6 10302 60 0.6 0.012
7 4618 60 0.3 0.016
8 2922 60 0.2 0.02

series did not always increase accuracy and in some cases
significantly increased numerical errors. The volume bal-
ance error reported by Kineros was a good indicator of
numerical accuracy. Realistic rainfall inputs and ks values
were used too, also with the conclusion that adding more
planes had no significant numerical accuracy benefit.

The outcomes of this initial analysis were: (1) we were
confident to proceed with the discretisation in Fig. 2, how-
ever volume balance errors need to be monitored; (2) a glo-
bal sensitivity analysis, using a large number of samples
from the parameter space, was needed to generalise the lo-
cal sensitivity analysis; (3) some adjustments to the Kineros
code were needed to allow uniform random sampling of
parameters, and to include analysis of rainfall uncertainties
and slope.

Modification of the Kineros code

Within the original Kineros code, the rain gauge data are
spatially interpolated using the following method. For each
model plane (e.g. Fig. 2), a centroid coordinate is specified
by the user. At each time-step the ordinates of the rainfall
at the three nearest surrounding gauges (or, in special
cases, the nearest 2 gauges) are used to define a planar sur-
face, and the average rainfall is computed as the ordinate of
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Table 3 Kineros parameters and values

Parameter Symbol  Units Default value Range Default value Range
(planes) (planes) (channels) (channels)
Manning’s coefficient n sm~"/3  0.035 0.01-0.1 0.036 0.01-0.1
Relief (microtopography) re mm 50 10—100 NA NA
Relief spacing rs mm 10 = NA NA
Woolhiser coefficient (channel microtopography) w — NA NA 0.15 —
Saturated hydraulic conductivity ks mm/h  3.72 0—-10 41.7 20-50
Capillary length scale g mm 0 0-500 0 0—-500
Variation of ks v 0.1 = NA NA
Initial saturation S 0.45 0-0.5 0.45° 0-0.5
Soil porosity 0 0.1 — 0.44° —
Interception depth i mm 2 - NA NA
Rock cover r 0 — 0 —
Plant cover p 0 — NA NA
Rainfall interpolation non-linearity f 1 0—10 NA NA
Slope factor slp 1 0.5—1 NA NA

2 In plane no. 9 the default ks value was 31.22 mm/h, in plane no

. 10 it was 20.8 mm/h; in all others it was 3.7 mm/h.

5 In 4 channel reaches, default s value was 0.05; in all other channel it was 0.45.
€ In channel no. 1, default 0 value was 0.15; in all other channel it was 0.44.

this surface over the plane’s centroid (Woolhiser et al.,
1990). This is formulated into the weighted average of the
three gauged values, Eq. (1a), where the three weights
sum to one. This weighted average is applied uniformly over
the plane. For our Wadi Ahin model, we added a parameter
(f) into the weighting, Eq. (1b). This parameter controls the
weight given to the nearest rain gauge. For example, f=0
means that the three gauges are weighted equally, f=1is
the Kineros default, f =10 weights much more strongly to
the nearest gauge. Clearly, this one-parameter model does
not aim to produce a realistic spatial rainfall field, but al-
lows a limited exploration of the sensitivity of results to
assumptions within the rainfall interpolation.

P= OC1P1 + O(sz + O(3P3
p— O({P1 + O(£P2 + O(éPg
oc]; + oc’; + O();

(1a)
(1b)

Additionally, the Kineros code was modified to include a
slope factor parameter s(p which allows the measured slope
to be adjusted to an effective slope. Finally, the shell for
the code was modified so that Kineros operates within a uni-
form random sampling procedure.

Global sensitivity analysis and parameter
estimation

Global sensitivity analysis, using uniform random sampling
of the parameter space, provided some insight into how
the Kineros model was behaving, and assisted in deciding
which parameters to treat as variables in the calibration
process. In order to reduce the sampling problem to a man-
ageable size, 0, v, i, w, r and p were fixed at the values in
Table 3, leaving 11 parameters (for planes: ks, g, n, re, s, f,
slp; and for channels: ks., g., nc, sc) which were sampled
randomly from their uniform distribution defined by the
ranges in Table 3. These ranges reflect the range of values
in the literature, consistent with the nature of the soils in

Wadi Ahin. At this stage, the parameters are not allowed
to vary spatially. Initial soil saturation was considered as a
parameter due to absence of measurements. Its range was
limited to 0—0.5 because values greater than 0.5 often
caused numerical instability problems. Baseflow was set to
zero in all channels except the outlet channel (channel 8
in Table 2) for which the baseflow values in Table 1 were ap-
plied. This treatment of baseflow allowed Kineros to simu-
late channel infiltration for over 95% of the channel
length, and also to include baseflow in the catchment outlet
flow estimate.

A total of 20 000 parameter sets were sampled and the
model was run using each set, for each of the 27 events.
Five outputs from Kineros were recorded for each run: peak
flow (Qp), flow volume (Q,), time to peak after beginning of
simulation (Q;), total rainfall volume (R,), numerical mass
balance error (E). Five performance measures (objective
functions) were then calculated, as specified in Eqgs. (2)—
(6). Q,, Q, and @, are the observed values at the Hayl flow
gauge. In OF;, K, is fixed to a representative time-scale of
4 h (the most common time lag between peak rainfall and
peak runoff — see Table 1).

_ Q; — Qp
OF, = e (2)
oF, = |4~ Q__VQV (3)
Qi -Q
OF; = K (4)
OF, = % (OF + OF,) (5)
OF5:%(OF1+OF2+OF3) (6)

In five events flow gauging ceased before the end of the
runoff recession so Q, does not necessarily represent the
full runoff volume, however @, is always measured over
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the same time-period as Q,. A sixth objective function mea-
sures the average performance in terms of flow peak and
volume over a specified N events

1
OF = Z OF, (7)

i=1,N

The response of the objective functions over the range of
each parameter defines the sensitivity of that objective
function to that parameter. In particular, we are interested
in the response over the parameter sets which give a ‘good’
result (the others are considered to be outside the relevant
parameter space). Due to significant scope for observed
flow errors, a ‘good’ result is defined here as an objective
function value less than 0.3. As a measure of the relative
univariate sensitivities, we use the univariate Kolmogo-
rov—Smirnov (KS) statistic. For each parameter, this mea-
sures how far the distribution of the good parameter
values deviates from the uniform distributions defined in Ta-
ble 3. The method of calculation of the statistic is described
in Mcintyre et al. (2005).

The KS statistic was calculated for each parameter, for
each event, for OF;, OF, and OF;. The parameters were
ranked in terms of the significance of the KS value for each
event. The average rank over all 27 events, for each objec-
tive function, is presented in Table 4, together with an over-
all rank based on the average of these averages. In the case
of OF;, OF, and OFs, respectively, two, two and six events
were omitted in the calculation of average ranks because
there were few (less than 100) parameter sets giving good
performance. ks is found to be the most influential param-
eter overall, followed by g, n, n. and f, and there were only
small variations in rank between objective functions. All
parameters were significant at the 95% level. Conclusions
about sensitivity were unchanged when using an alternative
sensitivity measure (based on comparing variance of the
good parameter values with the prior variances) and when
visually reviewing parameter-objective function scatter
plots. Fig. 6 shows the scatter plots of the 11 parameters
against the values of OF, indicating that, except for g
and ks, the optimal values are not well-identified by the
20000 samples. Fig. 6 also illustrates that the response of
OF¢ seems to suggest that re is more important than the
summary statistics in Table 4 suggest; and that the event-
averaged performance was poor — at best 0.52 (52% error).

Table 4 Average ranking of importance of parameters to
OFs, and overall rank

OF; (Qp) OF, (Q.) OF3 (@) Overall rank
n 3.5 3.6 3.3 3
re 6.9 6.0 6.4 6
ks 1.2 1.1 1.9 1
g 3.0 2.6 3.8 2
s 6.3 6.7 6.5 7
ne 4.8 6.0 2.3 4
ks. 8.2 8.4 9.0 9
Sc 8.8 9.3 9.5 10
g 9.4 9.0 9.9 11
f 6.3 5.4 5.1 5
slp 7.5 7.8 8.3 8

0.5+ T T ™
1 10 20 27

Event number

Figure 5 Optimum parameter values over events (OF,).
Dashed line shows the parameter set which was optimal over
all events combined. Parameter units are given in Table 3.

Although the rainfall parameter f was ranked only 5th in
terms of its effects on flow, its importance to rainfall vol-
ume was large; variation of f from 0 to 10 caused between
1% (22 January 1996) and 156% (17 July 1998) variation in
rainfall volume, and on average 31%.

The best out of all the samples, as measured by the min-
imum value of a chosen OF, gives an approximation to an
optimum parameter set. The optimum parameter values
were found, in general, to vary widely over the events and
over the OFs. For example, Fig. 5 shows the variation of
the OF, optimal parameter values over the 27 events, and
(in dashed lines) the single parameter set which produced
the minimum value of OF, averaged over all events (OF).
Only ks may be considered as reasonably consistent over
events. No significant correlations between event type (spa-
tial variability, magnitude, location or intensity of rainfall)
and parameter values were observed.

The parameter interaction is indicated by correlation
coefficients. The correlations between parameters were
calculated for each event, based on the ‘good’ parameter
sets (omitting the events where these do not exist) as de-
fined by OF4 < 0.3. Strong negative correlations consistently
exist between ks and n, ks and n. and ks and g; strong posi-
tive correlation consistently exist between ks and re, and ks
and f. The magnitudes of these correlation coefficients
were consistently greater than 0.1 over the 27 events; on
average the values were —0.34, —0.55, —0.15, 0.23 and
0.12, and at greatest —0.58, —0.80, —0.42, 0.41 and 0.37,
respectively. For each event there were various other strong
correlations, but these were not consistently strong over
events. For OF; and OF, (using 0.3 as the threshold) the
results were comparable. For OF3;, n and n. were also
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significantly correlated (with an average correlation coeffi-
cient over all events of —0.20 and minimum —0.85).

The numerical volume balance error reported by Kineros
varied between 0% and 59% over all events, although only
four events resulted in any errors greater than 20%, the
overall average was 0.50%, and the ‘good’ parameter sets
(OF4<0.3) gave an average error of 1.38%, and the best
parameter sets (minimum OF,) gave an average error of
1.62%. Interestingly, this implies that the realistic model re-
sponses are, on average, more numerically problematic
than the rest of the responses. The number of failed runs
(i.e. when Kineros crashed) varied between 0 and 18 of
the 20000 runs, and on average was 6.

The outcomes from this global sensitivity analysis are: (1)
The primary importance of the Manning’s coefficient, n, the
capillary length, g, and the ks are confirmed; the channel
roughness, n., and the rainfall parameter, f, are the next
two important overall. (2) The variability of the estimated
optimum parameter values is high over events and this ap-
pears to be random, except for optimum values of ks which
were relatively consistent over events. (3) There are high
correlations between some of the important parameters,
with ks and g, and n and ks having especially strong interac-
tion, and this partly explains the variability of optimum
parameters over events. (4) Numerical errors are high for
some parameter sets, but less than 2% on average for the
best parameter sets.

Prediction (validation) performance analysis

The best fit from the 20 000 sampled parameter sets is re-
corded using objective functions OF; to OFs, Egs. (2)—(6)

slp

Scatter plot of parameter values against OF,. Parameter units are given in Table 3.

for each event; and the best fit averaged over all 27 events
is recorded using OF,, Eq. (7). This gives an approximation
to the best achievable performances using Kineros. Then,
the following four prediction strategies were tested:

(1) As a benchmark, the default parameter set (based on
Mott Macdonald, 1992) is applied to each event and
the performance is recorded.

(2) Each event in turn is disregarded in the computation
of OF¢, and the subsequent optimum parameter is
applied to that event. Thus, each of the 27 events is
predicted using the parameter set which produces
the overall best fit to the other 26 events (i.e.
validation).

(3) The optimum parameters sets derived for each of the
other 26 events are used individually to produce an
ensemble of predictions for each event. Taking the
average of the ensemble is the third prediction
strategy.

(4) Based on the same ensemble, a second average is
recorded, where only the parameter sets which
achieved objective function value less than 0.3 during
calibration are allowed to contribute to the ensem-
ble, rather than all 26.

Prediction performances achieved using these four ap-
proaches (default parameter set, calibration by lumping
all events into one objective function, ensemble model
average and reduced average) are compared. Our analysis
of prediction performances concentrates on the use of OF,
and OF, as combined measures of flood and volume perfor-
mance, however other measures are also reported for
comparison.
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The minimum values of OF; achieved in calibration were
always less than 0.01 (i.e. at least one of the 20000 param-
eter sets was able to fit the observed flow peak to within 1%)
except for one event which achieved a match to within 3%.
The minimum values of OF, were all practically zero, except
for the extreme flow event of 26 March 1997 where, at best,
volume was under-predicted by 40% (the observed runoff
coefficient was 1.48). The minimum value of OF3 was prac-
tically zero for 21 events, and close to zero (less than 0.12)
for the other 6.

The best values of OF; from calibration, and those
achieved using each of the first three prediction (validation)
strategies listed above, are shown in Fig. 7. This shows that
using the parameter set identified by lumping the perfor-
mance over 26 events into one objective function (OF) is
the safest with an average validation performance
OF,=0.60, while the default parameter set gave more
‘good’ results with OF 4 < 0.3 (4 good results). Using the third
and fourth strategies produced 5 and 6 good results, respec-
tively, but performances were much more variable. The var-
iable performance of the ensemble average may be due to
the smoothing of peak flows, as timing of peaks varies with-
in the ensemble. As an example illustration of the fits of the
various calibration objective functions and prediction strat-
egies, Fig. 9 shows time-series results for the event of 22
January 1996. Fig. 9 also indicates that the lower objective
function values do not always produce the most visually
pleasing fits.

Using OF; as the calibration and the prediction perfor-
mance criteria did not lead to markedly different conclu-
sions. The single best parameter set identified by
averaging OF; over the events produced an average perfor-
mance in validation of 0.78 and 6 good results (OF; < 0.3),
while the default parameter set had corresponding values
of 0.60 and 5, and the ensemble average achieved corre-
sponding values of 1.07 and 7. Using the OF,-optimal param-
eter sets, the corresponding flow volume performances
were 0.45 and 9; 0.73 and 9; and 1.11 and 11.

— Cg|

= = = val| (one best parameter set)
— — — val (ensemble average)

val (default parameter set)

OF4

Event number

Figure 7 Performance (OF,) in calibration and validation
using different prediction strategies, for each of the 27 events
(11-parameter calibration).

6 -
— Cg|

= = = yva| (one best parameter set)
— — — val (ensemble average)

val (default parameter set)
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Figure 8 Performance (OF4) in calibration and validation
using different prediction strategies, for each of the 27 events
(5-parameter calibration).
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Figure 9 Example of calibration and validation results for 22
January 1996. Bars from top axes are rainfall; dots are observed
flow data, and lines are simulated flow.

The ensembles fully encompassed the observed data for
all events with one exception (the March 1997 event), and
therefore robustly represent the prediction uncertainty.
However, the uncertainty is unacceptably large for practical
purposes. For example, the ensemble of predicted runoff
coefficients, using the OF, optimal parameter sets, varied
on average from 0.04 to 0.79, and in one case (25 January
1997) from 0.01 to 0.91. This degree of variability is evident
in the example in Fig. 9g. The runoff coefficients simulated
by any one of the 27 parameter sets varied widely over the
events, on average from 0.03 to 0.54, and in one case (using
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the parameter set which was optimal for 16 June 1998) from
0 to 0.72. This confirms the strong dependence of the model
response on the spatial—temporal nature of the rainfall, as
well as on the selected parameter set.

In these predictions, which transfer parameter sets be-
tween events, or use a single parameter set identified over
26 events, the initial saturation parameters (s and s;) and
the rainfall distribution parameter (f) are implicitly as-
sumed to be transferable from one event to another. This
is debatable. In principle they are clearly not transferable,
however, as the values of the other parameters are depen-
dent on the values of s, s. and f, arguably the sampled opti-
mal values of these three parameters should not be viewed
independently from the associated parameter set. In order
to test whether this makes a difference in practice, we re-
peated the prediction exercise while fixing s, s. and f at the
values identified for the event being predicted rather than
those inherent to the parameter set under trial. This did
not notably change prediction performance: for example,
the average OF, using the OF, calibration increased from
0.60 to 0.64; and 3 and 7 good results (OF4<0.3) were
achieved using the default parameter set and the ensemble
average, respectively.

Refinement of calibration procedure, and review of
performance

The procedure for estimating the optimal model parame-
ters, described above, was rather ambitious, with respect
to the number of parameters to be optimised (11). In partic-
ular, it seems likely that the parameter variability and poor
prediction performances may have been associated with the
over-parameterisation, and the associated sparseness of the
uniform random sampling of parameters. The problem was
reduced by eliminating channel infiltration, and fixing g=0
so that hillslope infiltration rate is constant at ks; and fixing
slp = 1 hence relying on the variation of the re microtopog-
raphy parameter to optimise slope scaling effects. Calibrat-
ing the five remaining active parameters (n, n, ks, re and
f), the model evaluation was repeated using the same pro-
cedure. Results for OF,4 are in Fig. 8. Using OF,4, the perfor-
mance using the single best (OF¢) parameter set was 0.56 on
average, with 4 good performances; the equivalent values
using the ensemble method were 1.33 and 5. Using the
OF;-optimal parameter sets, the corresponding peak flow
performances were 0.60 and 5; and 1.29 and 6. Using the
OF,-optimal parameter sets, the corresponding flow volume
prediction performances were 0.43 and 12; and 1.28 and 9.
In summary, the 5-parameter version of Kineros did not sig-
nificantly change prediction performance (using best values,
6 good predictions compared to 7 for OF,; 12 good predic-
tions compared to 11 for OF;; 5 good predictions compared
to 6 for OF,). The variability of the optimal value of ks and
n. over events did not reduce from the results shown in
Fig. 6, hence there was no apparent advantage in terms of
parameter identifiability.

Finally, spatial variability was introduced into the most
sensitive parameter, ks. To represent the different soil
types, the ks values for plane numbers 13, 14 and 15 were
allowed to vary independently from the value used for the
other planes. This was based on the soil types and the geol-

ogy. The other most generally important parameters, n and
n., were also calibrated, but were set to be uniform over
the catchment. The other parameters were fixed at their
optimum value from the previous calibration. Only 25
events were run in this case (the 22 January 1996 and 26
March 1996 events failed to run due to unknown numerical
problems). The performances over the 25 events did not
generally improve upon the 5-parameter version. For
example, using the parameter set which was OF¢-optimal,
gave an average prediction OF4 value of 0.61 with 3 good
results.

Discussion

A global sensitivity analysis of 11 parameters found that
they were all significantly affecting all objective functions
over all tested events. This was foreseen, as we knew that
they are all influential in theory. The finding that the param-
eters governing hillslope infiltration rates, ks and g, and the
Manning’s roughness, n, are consistently the most important
confirms previous research in arid and semi-arid catchments
(e.g. Sorman and Abdulrazzaq, 1993; El-Hames and Rich-
ards, 1998; Yatheendradas et al., 2008). Although channel
infiltration is thought to be significant in practice, the
parameters governing channel infiltration were found to
be the least significant, as measured by the KS statistic. Per-
haps this was because of the limited channel bed area com-
pared to the planes in the model (Table 2); an extended
channel network would be expected to increase importance
of channel bed infiltration (e.g. Grayson et al., 1992). Initial
saturation of channel soil was the second least significant
parameter, and that of the planes was only seventh out of
11 parameters. However the initial saturation was varied
only over the range 0—0.5 because of numerical stability
problems at higher values, although we think this range is
not unreasonable for the Wadi Ahin events. Correlation be-
tween some parameters was strong, particularly between ks
and the other relatively important parameters, for example
the roughness parameter n. This, we assume, is because the
main function of n is to control flow velocity and residence
time, and hence cumulative infiltration loss. Correlations
which we expected (e.g. slope parameter slp and roughness
n have opposite effects in theory) were less strong, although
were still significant.

The difficulty of identifying a model which produces
acceptable results over different events has been demon-
strated. A key parameter, ks, was found to be relatively
constant over events (Fig. 5), however other key parame-
ters, notably g and n, are much more variable. Furthermore,
transferring a parameter set from one event to another usu-
ally produced very poor performance. We were not able to
find evidence that the event-optimal parameter values were
related to the spatial location and variance of the rainfall.
There was limited evidence that the more spatially varied
the rainfall, the worse the calibration performance (e.g.
the correlation between OF4 and the spatial variability in-
dex in Table 1 = 0.43), but no evidence of the same for pre-
diction performance. We also tried eliminating the
parameter sets derived from events with highly variable
rainfall, on the speculation that these are especially diffi-
cult to use for calibration, however this was not beneficial.
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Michaud and Sorooshian (1994b) did a comparable appli-
cation of Kineros to Walnut Gulch, but with considerably
better coverage of rain gauges and with higher time-resolu-
tion data, better spatial data on soils, higher resolution ele-
vation models, and the catchment area was approximately
one fifth of that of Wadi Ahin. They found that the valida-
tion root mean square error (RMSE) for peak flows was 79%
of the mean observed peak, with four out of 24 predicted
peaks overestimated by more than 100%. Our best validation
peak flow RMSE error (achieved using our 5-parameter cali-
bration to OF,;) was 147% of the mean observed peak, and
none of our 27 peaks were overestimated by more than
100%, although at best only 7 of our peaks were predicted
to within 30%. Their validation RMSE for volumes was 73%
of mean observed volume, while our equivalent was 299%
(achieved using our 5-parameter calibration to OF,),
although this reduces to 106% if the March 1997 event is
omitted. Given the much poorer spatial data available for
Wadi Ahin, the comparison with the results from Walnut
Gulch (Michaud and Sorooshian, 1994b) is not disappointing,
and might be attributed to the less localised rainfall in Wadi
Ahin (compare the correlations in Fig. 4 with the Walnut
Gulch correlations mentioned in our literature review).

We previously applied regression models to predict flood
peaks and volumes in Wadi Ahin (Mcintyre et al., 2007),
using the substantially the same events as presented in
the current paper (the same events but splitting some of
the longer events into two events, incorporating one event
which would not run in Kineros due to numerical problems,
and excluding the outlying March 1997 event to give a total
of 34 events in the regression). We found that, by linear
regression of flow peak and volume against gauge-average
rainfall, 16 of 34 observed flow peaks were predicted to
within 30%, and 11 of 34 observed flow volumes were pre-
dicted to within 30%. Using Kineros, our best corresponding
results were seven out of 27 and 12 out of 27. A potential
benefit of a distributed simulation model over a lumped
empirical model is the theoretical ability to significantly im-
prove predictions by accounting for the spatial—temporal
nature of the rainfall and rainfall—runoff processes, how-
ever in our application Kineros has failed to do so.

The reasons for the limited performance of Kineros in the
Wadi Ahin application are not proven. A starting point for
further analysis would be more extensive representation
of rainfall errors in the experiments. The one-parameter
rainfall model provided a limited exploration of the possible
realisations of spatial rainfall. The use of a space-time sto-
chastic rainfall model for generation of rainfall scenarios
would allow more extensive analysis of sensitivities of Kin-
eros, and could be used to demonstrate that rainfall estima-
tion problems are over-riding, which cannot be concluded
from this paper, although is indicated by Yatheendradas
et al. (2008). There is likely to be significant bias in the esti-
mate of areal rainfall because the gauges in Wadi Ahin are
biased towards lower elevations, and this may be the cause
of the estimated runoff coefficient of 1.48 for the March
1997 event. A stochastic model which includes elevation
adjustment is therefore recommended. Chandler and
Wheater (2002) and Yang et al. (2005) provide such a model
for daily rainfall; for sub-daily rainfall further development
of continuous space-time Poisson process models is required
(Wheater et al., 2005).

The flow data may also be questioned, most notably that
of the March 1997 event. Fig. 3 shows that this flow re-
sponse has an uncharacteristic high flow duration, and there
is no clear flow peak associated with one of the major rain-
fall bursts. The quality of this data was not investigated as
part of this study, but is recommended. The sensitivity of
validation results to omitting this event from the calculation
of OF¢ was tested, and found not to improve performance as
measured by Eqgs. (2)—(6). Infact, in terms of the number of
events for which OF, < 0.3 was achieved, it marginally de-
graded performance.

Using an ensemble of 26 parameter sets estimated from
different events has been useful as it allows us to visualise
the degree of uncertainty in predictions (e.g. Fig. 9g), and
potentially it provides a basis from which to investigate
how much the uncertainty may be reduced, for example
by improved rainfall estimation. It also provides a frame-
work for adding sources of uncertainty, for example the
uncertainty which may arise from introducing a more com-
prehensive set of plausible rainfall inputs or more than
one-parameter set from each event. At present the uncer-
tainty is unsatisfactory — so high (with runoff coefficients
within each ensemble prediction ranging on average from
0.04 to 0.79) that it is practically useless for decision-sup-
port. This conclusion is consistent with the simultaneous
finding of Yatheendradas et al. (2008) in their application
of Kineros to flash flood forecasting in Walnut Gulch.

Our Kineros application, including several iterations of
the experiments reported in this paper, has cost more than
18 person-months, and more than the equivalent of 12
weeks of continuous processing on a desktop computer. In
contrast, our regression analysis of the same data (McIntyre
et al., 2007) took no more than six person-days, and no
more than 1 h of processing time. This is an unfair compar-
ison, because of the research context and because simply
using the Mott Macdonald (1992) Kineros parameters would
have significantly saved us time without much loss of predic-
tion performance (see Figs. 7 and 8). However the differ-
ences in complexity of the modelling approaches and
corresponding resource cost are clearly wide, yet the differ-
ences in prediction performances and the insights into key
processes seem to be small, or in favour of the simpler
approach.

Kineros has the underlying restriction that the spatial
variability of slope, and soil and surface properties are
lumped to plane scale/channel scale effective values.
Therefore, especially where plane areas and channel
lengths are high (as in our Wadi Ahin application), the model
may not be considered truly distributed. Hence, the ability
to model rainfall—runoff processes in a distributed,
physically based manner has not been tested in this paper.
Whether this would be theoretically possible using a
different model and a much finer spatial discretisation is
arguable, due to fundamental commensurability and
observability issues (Beven, 1989; Wheater, 2002a).
Although the available digital elevation data would support
a much finer resolution model of the surface processes, the
uncertainty arising from the other, less observable surface
properties, subsurface properties and spatial rainfall prop-
erties seems likely to remain limiting. In the few cases
where research-quality data sets are available, and much
more spatially detailed models have been used, calibration
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of infiltration and roughness parameters remains advisable
and performance remains quite poor (e.g. Grayson et al.,
1992; Michaud and Sorooshian, 1994b). An additional con-
straint on the physical realism of our application of Kineros
is that the channel network is limited to the major channels
(Fig. 2), and the omission of the more distributed stream
network is expected to cause significant underestimation
of total channel transmission loss (e.g. Grayson et al.,
1992). Instead, within the calibration process, these losses
were lumped into plane infiltration. Finally, as with all mod-
els, Kineros is based on simplified representations of pro-
cesses, for example neglecting lateral subsurface flow,
soil crusting effects and flow dependence of n, and may
benefit from structural development for any particular
application, should supporting observations be available.
The value of Kineros is questionable in the context of this
Wadi Ahin application, however it could have three advanta-
ges in different circumstances. Firstly, it contains parame-
ters which, in design at least, are physically based and in
some cases may be related to soil classifications (Michaud
and Sorooshian, 1994b). Therefore it may be applicable to
represent physical change, or for catchments with relatively
good spatial data on soil properties (although this was im-
plied to be of limited value by Michaud and Sorooshian,
2004b; also see Grayson et al., 1992). Secondly, the ability
of Kineros to represent distributed runoff processes and gen-
erate spatially continuous runoff may be attractive for some
applications, for example simulation of the effects of local
interventions such as storage reservoirs or inundation map-
ping, whereas we only aimed here to predict flow variables
at the catchment outlet. Thirdly, the model generates tem-
porally continuous runoff within each event, while we only
assessed prediction performance for volumes and peaks of
the hydrographs (although the full hydrograph can some-
times be predicted from the peak and/or volume (e.g. Shar-
ma and Murthy, 1996), and this is somewhat evident in Fig. 3).

Conclusions

The distributed, physically based rainfall—runoff model,
Kineros was applied to 27 rainfall—runoff events (Fig. 3)
from an arid catchment in Oman, with the main objective
of assessing the value of the model for predicting features
of the event hydrographs at the catchment outlet. A random
sampling experiment was applied to evaluate the global
sensitivity of parameters and to approximate the optimal
parameter sets, using objective functions representing peak
flow, flow volume and time to peak performances. The fac-
tors found to most affect the volume and peak performance
were generally consistent with those previously identified in
the literature — infiltration rates in the hillslopes, the Man-
ning’s roughness in hillslopes and channels, and the rainfall
parameter. When each event was treated independently,
using the best of the sampled parameter sets, Kineros was
able to accurately simulate flow peak, flow volume and time
to peak, for almost all events. However, the parameter sets
which were estimated to be optimal for individual events
did not perform well when transferred to other events. Fur-
thermore, the parameter set which gave best calibration
performance over any combination of 26 events did not gen-
erally produce acceptable performance (defined as within
30% of observed) when used to predict the 27th event (Figs.

7 and 8). The parameter sets identified for the events indi-
vidually were used to produce an ensemble of predictions.
This produced very high uncertainty, for example runoff
coefficients within each ensemble ranged on average from
0.04 to 0.79. The average of the ensemble was a very poor
representation of the observed flow data. Different objec-
tive functions (peak and volume, peak only, and volume
only) were tried, as well as a second experiment where
the infiltration model was substantially simplified, and a
third experiment which allowed spatial variability in the
infiltration rate, but the same general conclusions were
reached. It was concluded that the two-parameter regres-
sion model used by Mcintyre et al. (2007) was more success-
ful than Kineros at predicting flow peaks and was slightly
worse for predicting flow volumes at the catchment outlet.

The potential value of distributed (or semi-distributed)
rainfall—runoff models in application to arid regions lies
mainly in their ability to represent surface topography
and/or rainfall in a spatially distributed manner; and to sim-
ulate spatially distributed runoff. The Wadi Ahin application
reported in this paper supports the opinion that data sets
typically used for distributed (or semi-distributed) rain-
fall—runoff modelling in arid regions cannot provide an
accuracy which justifies the effort and expense of this mod-
elling approach. The limitations imposed by relatively
sparse observations of rainfall are of particular concern,
as well as the need for calibration of key surface and subsur-
face parameters. Further performance enhancements might
be achieved for Wadi Ahin by using a more spatially distrib-
uted application of the Kineros model, which could fully ex-
ploit available topographical data. However, the value of
making the model even more complex in light of the general
data restrictions is questionable and is not recommended.
Major research priorities, towards improved hydrological
models for arid regions, are improved methods for rainfall
observation and modelling.
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