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Role of precipitation uncertainty in the estimation of hydrologic
soil properties using remotely sensed soil moisture in a semiarid
environment
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[1] The focus of this study is on the role of precipitation uncertainty in the estimation of
soil texture and soil hydraulic properties for application to land-atmosphere modeling
systems. This work extends a recent study by Santanello et al. (2007) in which it was
shown that soil texture and related physical parameters may be estimated using a
combination of multitemporal microwave remote sensing, land surface modeling, and
parameter estimation methods. As in the previous study, the NASA-GSFC Land
Information System modeling framework, including the community Noah land surface
model constrained with pedotransfer functions (PTF) for use with the Parameter
Estimation Tool, is applied to several sites in the Walnut Gulch Experimental Watershed
(WGEW) in southeastern Arizona during the Monsoon 90 experiment period. It is
demonstrated that the application of PTF constraints in the estimation process for
hydraulic parameters provides accuracy similar to direct hydrologic parameter estimation,
with the additional benefit of simultaneously estimated soil texture. Precipitation
uncertainty is then represented with systematically varying sources, from the high-density
precipitation gauge network in WGEW to lower quality sources, including spatially
averaged precipitation, single gauges in and near the watershed, and results from the
continental-scale North American Regional Reanalysis data set. It is demonstrated that the
quality of the input precipitation data set, and particularly the accuracy of the data set, in
both detection of convective (heavy) rainfall events and reproduction of the observed
rainfall rate probabilities, is a critical determinant in the use of successive remote sensing
results in order to establish and refine estimates of soil texture and hydraulic properties.

Citation: Peters-Lidard, C. D., D. M. Mocko, M. Garcia, J. A. Santanello Jr., M. A. Tischler, M. S. Moran, and Y. Wu (2008), Role
of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid
environment, Water Resour. Res., 44, W05S18, doi:10.1029/2007WR005884.

1. Introduction

[2] The simulation of soil moisture dynamics using land
surface models (LSMs) has been addressed in a wide variety
of studies and with models of various complexity [e.g.,
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Shao and Henderson-Sellers, 1996; Albertson and Montaldo,
2003]. Soil moisture plays a well-known role in the energy
and water budgets for land-atmosphere exchange [e.g., Betts,
2000; Berbery et al., 2003; Betts et al., 2003; Findell and
Eltahir, 2003; Koster et al., 2004]. As a result, important
applications such as agriculture, water resource manage-
ment, flood forecasts, and weather and climate prediction
depend on our ability to predict soil moisture.

[3] However, soil moisture profiles required for these
applications are not collected in situ on a routine basis
except in sparse networks, such as that in Illinois [Hollinger
and Isard, 1994] or throughout the USDA Soil Climate
Analysis Network (SCAN) [Schaefer and Paetzold, 2001].
Archives of these and other historical soil moisture data sets
are available at the Global Soil Moisture Data Bank
[Robock et al., 2000]. Soil moisture profiles are also
collected and studied at experimental watersheds estab-
lished by the USDA Agricultural Research Service (ARS),
such as that managed by the Southwest Watershed Research
Center at the Walnut Gulch Experimental Watershed
(WGEW) [Hymer et al., 2000] in southeastern Arizona.
Other than these networks, soil moisture observations in
particular locations are generally carried out during short-
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term field experiments, many of which have highlighted the
heterogeneous nature of soils by measurement of water
content and texture [Mohanty et al., 2002].

[4] Indirect, integrated estimates of soil moisture can be
obtained using thermal infrared measurements [e.g., Carlson
et al., 1995]. However, other studies [e.g., Entekhabi et al.,
1994; Houser et al., 1998] have suggested that the most
promising approach to surface soil moisture estimation over
time and space may be a combination of remote sensing and
modeling. In general, microwave remote sensing methods
using passive (radiometer) and active (radar) sensors
have had the greatest success producing surface soil
moisture estimates suitable for assimilation in LSMs
[Hollenbeck et al., 1996; Moran et al., 2004; Thoma et al.,
2006]. Overall, none of the remote sensing methods provides
an estimate of the vertical distribution of moisture in the soil
column; the profile of soil moisture can, currently, only be
estimated using modeling methods.

[5] In addition to the complexity and inherent nonlinear-
ity of an LSM, the two primary uncertainties in soil
moisture modeling are precipitation and soil hydraulic
properties. Many soil models, including the community
Noah LSM employed here, require the specification of
hydraulic parameters in order to determine the vertical
transport of moisture within the soil column by a simplified
form of the one-dimensional Richards’ [1931] equation.
Hydraulic parameters are often derived from soil texture
information, but the soil parameterization schemes often
remain crude, inflexible, or inappropriate owing to the
natural heterogeneity of the soils and a lack of detailed soil
property maps. In some cases, the LSMs have been dem-
onstrated to be more sensitive to the specification of soil
hydraulic properties or soil textures than to the atmospheric
forcing variables, including precipitation [Gutmann and
Small, 2005; Pitman, 2003].

[6] In this work, the community Noah LSM [Chen et al.,
1996; Ek et al., 2003] is applied to the simulation of soil
moisture in the semiarid WGEW during the North Ameri-
can monsoon season. Water and energy balance predictions
using the Noah LSM, in numerous versions, have been
validated at the point scale [Schlosser et al., 2000] and at
watershed scales [Bowling et al., 2003]. The Noah LSM is
also one of several models incorporated into the NASA-
GSFC Land Information System (LIS) [Kumar et al., 2006],
which provides a flexible software framework for the
execution of LSMs with various methods for the specifica-
tion of atmospheric forcing, surface conditions, and soil
textures and hydraulic parameters.

[7] Because of their heritage in global and regional
weather and climate modeling, all of the LSMs included
in LIS contain simplifying assumptions with regard to their
treatment of soil hydraulic and thermal properties. The
LSMs also typically rely on texture-based lookup tables
for the specification of these parameters. Recognizing the
limitations in an approach based on discrete texture classes,
numerous studies [e.g., Gupta et al., 1999; Hess, 2001; Liu
et al., 2004; Hogue et al., 2005] have attempted to optimize
LSM parameters using observations such as soil moisture
and surface temperature as constraints. While these studies
highlight the potential for parameter estimation methods to
derive large sets of “effective” parameters and to expose or
diagnose specific model weaknesses, little progress has
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been made toward the determination of physically consis-
tent parameter sets. Because of the complexity of estimation
methods and the numbers of parameter sets employed in
these studies, it has remained difficult to infer or derive any
parameter information that could be applied to other,
independent studies or models.

[s] With these issues in mind, Santanello et al. [2007]
examined the potential for use of aircraft-based microwave
radiometer and satellite-based radar retrievals of near-
surface soil moisture with the Noah LSM to infer a
physically consistent set of hydraulic parameters for the
primary soil types found in the WGEW. One of the
significant findings of Santanello et al. [2007] was that
the success of this methodology was dependent on the
number of remote sensing images acquired and the dynamic
range in soil moisture captured by these images. It follows
that the methodology should be similarly sensitive to the
accuracy and range of precipitation data used as input to the
LSM during the parameter estimation process. This work
extends that study by examining the role of precipitation
uncertainty in the parameter estimation process. This uncer-
tainty is represented with a systematic variation of input
precipitation from the high-density precipitation gauge net-
work in WGEW to other, lower quality precipitation sources.
We examine here the impacts of using precipitation gauges
collocated with the soil moisture measurement sites, a single
gauge located elsewhere within the WGEW, a first-order
National Weather Service (NWS) synoptic site located ap-
proximately 100 km from the WGEW in Tucson, Arizona,
and the continental-scale North American Regional Reanal-
ysis (NARR) [Mesinger et al., 2006] data set at one-third-
degree spatial resolution over the region of interest.

[0] As in the study by Santanello et al. [2007], the LIS
modeling framework and the Noah LSM are applied to
selected sites in the WGEW during the Monsoon ’90 field
experiment. Constraints on the simulated evolution of soil
moisture at the selected sites are provided by the application
of pedotransfer functions (PTF) [e.g., Cosby et al., 1984]
and via calibration against in situ observations using the
Parameter Estimation Tool (PEST) [Doherty, 2004]. In
general, this work supports ongoing development of the
Army Remote Moisture System (ARMS) [Tischler et al.,
2006] for the US Army Corps of Engineers. The supporting
data sets for this study are described in section 2, including
information on the experiment locations, soil moisture
observations, and input precipitation data sets. The ap-
proach and methodology of these experiments are described
further in section 3. Results of these experiments are
described in section 4, and conclusions from this study
are given in section 5.

2. Data

[10] The focus of this study is the Monsoon ’90 field
experiment carried out in the WGEW. Below, we briefly
describe the watershed and the field experiment, as well as
the unique soils and precipitation data that are the founda-
tion for this work.

2.1. Walnut Gulch Experimental Watershed (WGEW)

[11] The WGEW, managed by the USDA ARS South-
west Watershed Research Center, is a 148 km? semiarid
watershed in southeastern Arizona. The predominant soil
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Figure 1.
sets.

textures in the watershed are loamy sands and sandy
loams, with a notable amount of coarse fragments. The
vegetation throughout the watershed is generally a mixture
of grasses and brush. The watershed is hilly with numer-
ous channels, and contains more than 90 precipitation
gauges and approximately 15 streamflow measurement
stations.

2.2. Monsoon 90 Field Experiment

[12] The Monsoon ’90 (hereafter M90) field experiment
was conducted in the WGEW from June to September 1990
[Kustas and Goodrich, 1994]. During M90, intensive sur-
face-based measurements were recorded at the eight “Met-
flux” sites indicated in Figure 1. These measurements
included standard meteorological variables, surface fluxes
of heat and moisture, and daily gravimetric soil moisture
data. A NASA C-130 aircraft carried an airborne L-band
Push Broom Microwave Radiometer (PBMR) from which
surface soil moisture was derived from the measured
microwave brightness temperature [Schmugge et al.,
1994]. The PBMR data was collected on 6 days during the
height of the M90 experiment over the northern portion of
the watershed, including the Metflux sites. Comparisons of
the gravimetric soil moisture, measured to a depth of 5 cm,
with the PBMR-derived observations during the M90
experiment demonstrated very good agreement, with a
compound error of 4.5% + 1.9%.

10 20 Kilometers

B Loam

Soil texture classes in the Walnut Gulch Experimental Watershed (WGEW) from various data

2.3. Soils Data

[13] For the application of an LSM to WGEW, there are
several “standard” a priori sources of soil texture informa-
tion. In order of increasing resolution, these include: the
global United Nations Food and Agriculture Organization
(FAO) Digital Soil Map of the World at a nominal resolu-
tion of 5 arc-min (~8.5 km), which also contains derived
information on some soil properties [Food and Agriculture
Organization, 1996; Reynolds et al., 1999; Nachtergaele,
2003]; the State Soil Geographic Database (STATSGO) data
set [Miller et al., 1994] at a nominal resolution of 15 arc-sec
(~400 m), including the “model-friendly”> CONUS-SOIL
multilayer soil characteristics data set [Miller and White,
1998]; and the county-level Soil Survey Geographic Data-
base (SSURGO) [U.S. Department of Agriculture, Natural
Resources Conservation Service, 2006] at a nominal reso-
lution of approximately 1.5 arc-sec (~40 m) in the region of
the WGEW. The FAO, STATSGO and SSURGO soil
texture maps for the WGEW are shown in Figure 1. Only
one soil texture class is specified for the entire watershed in
the FAO (sandy loam) and STATSGO (loamy sand) data
sets, while the SSURGO data set specifies several classes in
the WGEW including sandy loam and sandy clay loam.
These soil types are referenced to the texture classes of
Cosby et al. [1984] for the specification of hydraulic
parameter values in the Noah LSM. The SSURGO data
set also supplies maps of saturated hydraulic conductivity

30f22



W05S18

31.82

PETERS-LIDARD ET AL.: PRECIPITATION UNCERTAINTY AND SOIL PROPERTIES

W05S18

Raingage and Metflux locations

31.81 1

31.80 1 ‘
. . . 74
31.791 } } vy 2t

31.78 1 2
31.77 1
31.76 1 o 13 17 28

31.75 1 ! 3 3 24 29
31.74 1 | | 534
31.73 . . 18 25 . 3%
3 3 3 30
31.72 1 : : .28 :
' ' 20: 136
31.71 1 k .

31.70 1

42

‘ ‘ ‘ 69
. 50 : 67
437 ‘ 64
89 sS4 ‘
5190 %% g 68
: sg | 60 85

70 .
- 38
87

‘ 2 :

3 44 5 51 82
39 : 72 . 62
‘ 57
40| 45 : ‘
‘ 53 58 63
: 46 59 .
41 :

47

37 :
. 48~
49 :

-110.10  -110.07 -110.04 —110.01

-109.98 -109.95 —109.92

-109.89 -109.86 —109.83

Figure 2. Precipitation gauge locations (numbered) and Monsoon *90 Metflux site locations (boxes) in

the WGEW.

and porosity, two of the more influential soil parameters.
These supplemental maps have also been employed as input
to the Noah LSM in this work.

[14] In addition to these “standard” soils data sets, which
are based on large groupings of soil pedon data collected at
many locations not necessarily representative of the WGEW
soils, the WGEW has also been the subject of several field
campaigns in which in situ soil texture and hydraulic
property data were collected. During the M90 experiment,
soil texture estimates at each Metflux site are as given by
Schmugge et al. [1994]. Table 2 of Santanello et al. [2007]
cites estimates from a neural network-based PTF
(ROSETTA) [Schaap et al., 1998], measurements made
during 2002 (M. G. Schaap and P. J. Shouse, personal
communication, 2004, as cited by Santanello et al. [2007])
(hereinafter Schapp and Shouse, personal communication,
2004) and the 2004 North American Monsoon Experiment
(NAME) [Higgins et al., 2006]. In this work, we employ
comparisons with the 2002 measurements of Schaap and
Shouse (personal communication, 2004) because all of the
soil hydraulic properties required for the Noah LSM were
provided at sites 1 (Lucky Hills) and 5 (Kendall).

2.4. Meteorological Data

[15] For the simulations in this study, the input forcing
from solar and long-wave radiation, temperature, humidity,
wind speed, and surface atmospheric pressure were obtained
by a merger of data sets from the available sites in the
WGEW, due to the noncentered locations of the Metflux
sites as well as several sites having discontinuous observa-
tions, and are applied as spatially constant values through-
out the watershed. The precipitation data set collected at 84
precipitation gauges throughout the watershed (as shown in
Figure 2) is aggregated from breakpoint data to hourly
intervals and then interpolated spatially over the watershed
following the multiquadric-biharmonic method described by
Garcia et al. [2008]. As shown in Figure 2, the eight M90

Metflux sites are either collocated with (sites 1, 3, and 5-8),
or situated very near (sites 2, 4, and 8), a precipitation
gauge. For those sites without a collocated precipitation
gauge (gauges 2, 4, and 8), the interpolated field is
employed in order to determine the precipitation intensity
at those locations.

[16] Several methods for degradation of the forcing
precipitation were employed to produce alternative data sets
for input to the LSM, in order to examine the sensitivity of
the parameter estimation process (described below) and the
resulting soil moisture values to the quality of the input
precipitation data set. One method employed here was
application of the watershed mean-areal precipitation
(MAP) based on the interpolated field over the entire
WGEW at each hour. This method is thought to preserve
some information from the actual spatial distribution of the
precipitation in the watershed during the study period,
whereas a simple average of all gauges in the watershed
removes all such information from the resulting MAP value.
For example, during the study period examined here, the
MAP value found by simple mathematical averaging of the
WGEW gauges gives a total-period value of 31.2 mm,
whereas spatial averaging of the interpolated field produces
a total-period MAP value of 40.6 mm (see Figure 3). This
difference can be attributed to the limited spatial extent of
the convective precipitation observed during the M90
period, as discussed by Garcia et al. [2008].

[17] Another method for degradation of the input precip-
itation data set simply took the precipitation measured at a
single gauge near the center of the watershed (gauge 33,
indicated in Figures 2 and 3) for application over the entire
WGEW, as studies suggest that a single gauge is likely the
only instrumentation available in a typical area similar to
the size of the WGEW (~150 km?) throughout much of the
United States [see Garcia et al., 2008]. This particular gauge
was selected for its central location within the WGEW as well
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Figure 3. Accumulated precipitation from the various forcing data sets used in this work.

as coverage of its location in the PBMR observations during
the M90 experiment.

[18] One additional choice for a single-gauge source of
precipitation data for the period of interest was selected: the
nearest first-order NWS location is located approximately
100 km distant from the WGEW in Tucson, Arizona. For a
study location similar to the WGEW but without resources
provided by the SWRC, and especially during the M90
experiment, it is more likely that information on meteoro-
logical conditions will come from outside of the study
region entirely. The selection of the Tucson precipitation
gauge as a proxy source of information is intended to
represent that likelihood.

[19] One final method employed precipitation values in
the region of the WGEW as provided in the one-third-
degree North American Regional Reanalysis (NARR)
[Mesinger et al., 2006]. The NARR data set shows consis-
tently light and moderate, but not intense, precipitation
during the M90 experiment over the WGEW area. However,
such small precipitation rates and totals were not observed
in the WGEW, and the results provided by the NARR may
be attributed to the large region of focus in that work.
However, we considered that, in the absence of even first-
order NWS stations, data sets like the NARR may provide
the best information that can be obtained for many regions
about the world, and are similar in format and detail to
output from a numerical forecast model.

[20] The cumulative time series of precipitation from
these sources, compared with that observed at the site 5
(precipitation gauge 82) Metflux location, are shown in
Figure 3. The precipitation estimates based on gauges
within the WGEW show little precipitation until late on
1 August 1990 (DOY 213), when a very intense event
occurred. The precipitation intensity during this event

varied between the data sets, however. The NARR data
set significantly underestimated the event intensity and the
Tucson gauge did not capture this event at all, while the
center-gauge records show slightly more intense precipita-
tion during this event. Following the analysis provided by
Garcia et al. [2008], this event was likely convective in
nature and was focused on a portion of the WGEW that
included the center gauge, providing the higher total pre-
cipitation there while much of the remainder of the water-
shed was less affected by the storm, producing a slightly
lower MAP estimate for the event.

[21] As a positive result of these input selections, the
MAP estimates seem to capture most of the small events
that occurred during the study period, such as those on
3 August (DOY 215) and 6 August 1990 (DOY 218). Overall,
the NARR input data show more frequent, low-intensity
precipitation events throughout the study period, especially
prior to 1 August 1990 (DOY 213) while the WGEW was
predominantly dry. The Tucson gauge recorded an intense
event on 24 July 1990 (DOY 205) that is not found in the
WGEW observations, and then only small events through
the remainder of the study period. A complete lack of
precipitation signal at the Tucson gauge on 1 August
1990 (DOY 213) reinforces the conclusion that the precip-
itation event on that day remained localized over and near
the WGEW.

[22] All of the gauge-based estimates in the WGEW
demonstrate a dry period between 25 July (DOY 206) and
29 July 1990 (DOY 210). The Tucson gauge shows the
highest total amount of precipitation over the study period,
and the NARR total is the second highest over the period
but with a distinctly different profile from that observed at
gauge locations. The WGEW MAP and center-gauge
estimates demonstrate the least total rainfall over the study
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Figure 4. Probability density functions of hourly precipitation rate (p) from the NARR reanalysis, the
Tucson NWS gauge, and the WGEW precipitation gauge (gauge 82) at site 5.

period of those input data sets considered here, and remain
close to each other in both magnitude and profile. The total
precipitation measured by the gauge at site 5 is nearly 10 mm
greater than the MAP or center-gauge based estimates. It should
be noted that additional storm event information is captured at
this site on 29 July (DOY 210), 2 August (DOY 214), and
6—7 August 1990 (DOY 218-219).

[23] Another representation of the differences between
the selected precipitation data sets may be shown by
probability density function (PDF) of hourly precipitation
rates within selected ranges, as shown in Figure 4. This
analysis shows that, for a significant portion of the study
period, no precipitation was recorded by surface gauges in
or near the WGEW. However, the NARR analysis suggests
that nonzero precipitation occurred over nearly 80% of the
study period, though significant portions of the NARR
precipitation occurred with intensity at or below the
measurement accuracy of the precipitation gauge stations
(0.25 mm). We attribute this result to the relatively coarse
(one-third degree) horizontal spatial resolution of meteoro-
logical variables generated by the NARR model. The NARR
also demonstrates a greater frequency of precipitation rates
below 1 mm hr™' than did the precipitation gauges or their
derivative measures, and did not contain any occurrences
above 1 mm hr " in intensity. The PDF analysis suggests that
the observations obtained at the Tucson and site 5 gauges
were similar in their patterns of intensity, though the Tucson

gauge recorded greater frequencies of both heavy rainfall and
dry periods than the site 5 gauge (gauge 82).

3. Background and Approach

[24] As mentioned above, this work builds upon and
extends the work of Santanello et al. [2007], which includes
more extensive discussions of the model soil physics,
parameter estimation, and the methodology specific to soil
hydrologic parameter and texture estimation. Below, we
provide a brief summary of this background material in
order to support our experimental approach in this work.

3.1. Soil Moisture Physics in Land Surface Models
(LSMs)

[25] The influence of near-surface soil moisture on the
partitioning of surface turbulent fluxes of moisture and
latent and sensible heat to the atmosphere, using both
offline LSMs and fully coupled land—atmosphere models,
has been documented in numerous studies [e.g., Cuenca et
al., 1996; Santanello and Carlson, 2001; Ek and Holtslag,
2004]. In order to simulate properly the evolution of
moisture distribution in the soil column, a set of soil
hydraulic parameters is combined with characteristic curves
that relate soil moisture with both matric potential and
hydraulic conductivity. The expressions derived by Brooks
and Corey [1964] and Campbell [1974] have been commonly
used in coupled meteorological models, along with parameter
lookup tables based on the results of soil studies by Clapp
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and Hornberger [1978], Rawls et al. [1982], Cosby et al.
[1984], and numerous others. A full survey of these functions
has been provided by Braun and Schadler [2005].

[26] High-resolution soil texture maps such as the
SSURGO data set remain difficult to obtain, especially on
regional and global scales. Often, there is little or no
variability indicated for a singular or mixed soil type due to
a dearth of data, despite observations of greater variation in
soil properties within certain soil types than between types
[Feddes et al., 2003; Soet and Stricker, 2003; Gutmann
and Small, 2005]. To bridge the conceptual gap between
commonly used soil texture classes and the heterogeneous
nature of individual soil types, numerous pedotransfer
functions (PTFs) have been developed [Cornelis et al.,
2001; Sobieraj et al., 2001]. Though the advantages of
continuous PTFs over class-oriented systems have been
demonstrated for hydrologic models [Soet and Stricker,
2003], continuous PTFs are not routinely employed in LSMs,
and the broad definitions of soil types as classes still dominate
the simulation of soil moisture dynamics in application.

3.2. Parameter Estimation Methodology

[27] An alternative to the uncertain specification of soil
hydraulic parameters by class-oriented methods in LSMs is
the use of parameter estimation and model calibration
methods. One relatively simple, model-independent and
well-established framework, the Parameter Estimation Tool
(PEST) [Doherty, 2004], has been used in a number of
scientific disciplines for parameter optimization given lim-
ited observations of the fundamental output variables. For
example, in application to this work, one can adjust the soil
porosity defined for the LSM until the differences over time
between simulated and observed soil moisture values are
minimized. By the specification of convergence limits and
an objective evaluation function, for single or numerous
variables and parameters of interest, PEST is able to
perform such adjustments until an optimum solution for
the desired parameter set is found. For the experiments
described below, an objective function based on the RMSE
of the simulated soil moisture (in comparison with the
PBMR observations) is specified.

[28] More sophisticated estimation methods have recently
been developed to estimate large and diverse sets of parameters.
Liu et al. [2003] used a multiobjective technique for offline
LSMs and partially coupled land-atmosphere models to
examine the ways by which deficiencies in the model
physics can impact coupled and decoupled simulations.
Following this work, Liu et al. [2005] performed controlled
parameter estimation studies of offline and partially coupled
models and examined the impact of including atmospheric
parameters, in addition to the usual soil and vegetation
parameters, in the optimization. Hogue et al. [2005] investi-
gated the transferability of optimized parameter sets from an
offline LSM to alternative surface conditions and time periods,
and concluded that parameter optimization needs to be site-
specific for best results and that recalibration for changes in
seasons or over long simulation periods may be required.

[20] Scott et al. [2000] estimated soil hydraulic parame-
ters using the Hydrus soil moisture model at two sites in the
WGEW. While their focus remained on the vertical distri-
bution of soil moisture and recharge at individual points,
their results demonstrated that the model employed was less
sensitive to the value of saturated hydraulic conductivity
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than to the values of porosity and pore size distribution
index, which are consistent with other studies. Scott et al.
also emphasized that the derived values are “effective” and
compensate for errors in the model’s representation of the
real soil physics, and that further research is needed to
assess the limitations of parameter estimation across spa-
tially distributed, heterogeneous watersheds.

[30] In this work, we explore two approaches to the
estimation of soil hydraulic parameters. In one approach,
the hydraulic parameters are estimated directly in a manner
similar to the studies described above; this approach is
denoted below as “PEST-Direct.” In the second approach,
the Cosby et al. [1984] PTF (described below) is employed
as an additional constraint on the parameter estimation
process. This yields an estimate not only of the soil
hydraulic properties but also of the soil texture, which is
useful for other applications that depend on the texture
information. This method, denoted below as “PEST-PTF,”
is described in more detail in the following section.

3.3. Estimation of Soil Hydraulic Parameters and
Texture

[31] Santanello et al. [2007] demonstrated that aircraft-
based radiometric observations of near-surface soil moisture
could be combined with the Noah LSM using PEST, within
the LIS simulation framework, to estimate soil hydraulic
parameters that compared reasonably well to the various in
situ estimates for the WGEW, as referenced above. Because
that study employed the PTF established by Cosby et al.
[1984], which is consistent with the assignment of hydraulic
parameters according to the soil classes currently employed
in the Noah LSM, useful byproducts of the soil hydraulic
property estimation are simultaneous estimates of sand, silt
and clay content which, when combined, provide an overall
estimate of soil texture. The Cosby et al. PTF models the
hydraulic parameters as follows:

0; = 0.489 — 0.00126*SAND, (1)

~ 10.0exp[1.88 — 0.0131*SAND]

0.0070556*10.0 exp[—0.884 + 0.0153*SAND)]
K= 1000.0 SNE)

b =2.91+0.159*CLAY, (4)

where 0, is the porosity (m® m™3), v is the saturated or air-
entry matric potential (m), K, is the saturated hydraulic
conductivity (m s~ '), b is the inverse of the pore size
distribution index, and SAND and CLAY are specified as
percentages of the soil sample. This PTF yields soil
hydraulic properties as continuous functions, in contrast to
the typical approach of LSMs in which lookup tables
contain average values for discrete soil texture classes.
Given that the functional form of the PTF is appropriate for
a particular location, the use of a PTF provides an additional
constraint on the soil hydraulic parameter estimation that
forces the estimated hydraulic properties to converge in a
more physically consistent manner.
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Table 1. Mean Bias of the Top 5-cm Volumetric Soil Moisture
Between Noah and the PBMR Observations, Averaged Over the
Six PBMR Times at All Eight Metflux Sites, for the Simulations
With Varied Soil Texture Data Sets and PEST*

Soils Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8
FAO 3.054 1372 2.172 1.276 2.254 1.749 3.838 4.087
STATSGO 2.524 0.891 1.666 0.851 1.699 1.331 3.345 3.578
SSURGO 3.384 4.272 4.896 1.276 5.759 1.854 6.679 4.501

-N/C
SSURGO  —1.029 4.671 3.608 —1.806 4.434 —2.088 7.082 —3.319
-K/P

PEST-Direct —0.141 —0.371 0.091 —0.036 —0.072 —0.140 0.371 0.082
PEST-PTF 0.105 —0.3890.338 0.057 0.189 0.192 1.126 0.432

“Volumetric soil moisture is given as percent.

[32] As in work by Santanello et al. [2007], the PEST
objective function employed in this study is the root-mean-
square error (RMSE) of the simulated volumetric soil
moisture, compared against the PBMR observed soil mois-
ture, both of which represent a 5-cm layer average. The
calibration was performed independently on a point-by-
point basis at each of the eight Metflux sites shown in
Figure 1.

3.4. Experimental Design

[33] An alternative to the PEST-PTF approach described
above, and that most commonly employed in previous
studies, is the direct estimation of hydraulic parameters
using PEST. On the basis of the discussion above, one
might expect that this “PEST-Direct” approach would
result in smaller RMSE than the PEST-PTF approach, but
because the PTF constraint is not employed, the PEST-
Direct approach could estimate hydraulic properties that are
physically inconsistent with a single soil texture. Accord-
ingly, one of the first objectives of this study is to compare
the performance of the PEST-Direct and PEST-PTF
approaches to the estimation of soil hydraulic parameters
by comparing these simulation results with in situ hydraulic
property estimates.

[34] In addition to the comparison of PEST methods, the
second major objective of this study is to examine the role
of precipitation uncertainty in the soil parameter estimation
process. In order to do this, as described above, we
incorporate various precipitation estimates of differing ac-
curacy for the WGEW during the M90 experiment.

[35] In order to conform to the spatial resolution of
PBMR soil moisture products obtained during the M90
experiment, as described above, the simulation system was
configured with 40-m horizontal grid spacing over the
WGEW. Simulations were begun at 00 LST on 23 July
1990 (DOY 204) and continued to 00 LST on 10 August
1990 (DOY 222). At the start of each model simulation, the
Noah LSM was configured to calculate the maximum
allowable time step for numerical stability in the soil
moisture dynamics, based on the soil parameters to be used.
The typical time step was calculated as 5—6 minutes,
depending on the soil type estimates a priori at the simulated
point. Hourly meteorological and precipitation forcing val-
ues were linearly interpolated to the necessary time step in
the course of the simulation.

[36] The Noah LSM was configured with four soil layers
of 5-, 35-, 60-, and 100-cm thicknesses for a total soil
column depth of 2 m. The initial soil moisture at all levels in
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the profile was set to that obtained from the PBMR
observations for the surface layer, and the initial soil
temperature at all levels in the profile was set to 293 K,
which was near the observed air temperature at the initial
time. The temperature at the bottom of the soil column in
the Noah LSM was set to 286.5 K and remained constant
over the course of the simulation, and no water was present
on the vegetation at the initial time. The topsoil layer
thickness of 5 cm was chosen in order to replicate the
penetration depth of the PBMR observations and the in situ
gravimetric measurements. In addition to the soils and
precipitation data sets described above, the land cover and
vegetation parameters for the Noah LSM in the simulation
system were derived from the 1992 North American Land-
scape Characterization (NALC) [Lunetta and Sturdevant,
1993] data set, along with climatological values for surface
albedo (derived on a quarterly basis) and vegetation green-
ness fraction (derived on a monthly basis) from those
employed in operational use of the Noah LSM at the
NOAA-NWS National Centers for Environmental Predic-
tion [Ek et al., 2003].

[37] In order to duplicate the results presented by
Santanello et al. [2007], we first executed the simulation
system at each of the eight Metflux sites shown in Figure 1
using the four different soils data sets described above,
without soil texture calibration. We then executed these
simulations using the PEST-based soil texture optimization
by the two methods described above. Following these experi-
ments, the precipitation at each site was systematically varied
using the different estimates described above. The collection
of these experiments is intended to demonstrate the impact of
precipitation uncertainty on estimates of soil texture by way
of the simulated surface soil moisture results. Finally, we
demonstrate the impact of precipitation uncertainty on
simulated surface soil moisture results while calibrating
both soil texture and a particular parameter of the Noah
LSM formulation for evaporation from bare soil.

4. Results

[38] The experiments conducted for this work focus first
on the PEST-Direct and PEST-PTF approaches to soil
hydraulic parameter estimation, using all the available
precipitation data for the WGEW. Following these experi-
ments, we examine the role of precipitation uncertainty in
soil parameter estimation, including the tradeoffs between
infiltration- and evaporation-related soil parameters.

Table 2. Mean RMSE of the Top 5-cm Volumetric Soil Moisture
Between Noah and the PBMR Observations, Averaged Over the
Six PBMR Times at All Eight Metflux Sites, for the Simulations
With Varied Soil Texture Data Sets and PEST*

Soils Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8
FAO 3.858 2.341 3.029 1.628 2.517 2371 4.298 4.688
STATSGO 3.331 1.906 2.609 1.214 1.959 1.997 3.822 4.151
SSURGO-N/C 4.286 5.529 5.741 1.628 6.280 2.455 7.275 5.206
SSURGO-K/P 1.865 5.996 4.432 2247 4.867 2.519 7.726 4.258
PEST-Direct 1.057 1.126 1.756 0.631 0.372 1.041 1.655 1.293
PEST-PTF 1.660 1.174 1.985 0.710 0.978 1.385 2.527 1.518

“Volumetric soil moisture is given as percent.
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Figure 5. Values of soil hydrologic parameters estimated from the PEST-PTF and PEST-Direct
simulations at all eight Metflux sites in the WGEW, compared with values from the SSURGO soil survey
and in situ measurements by Schaap and Shouse (personal communication, 2004). Details on the SSURGO
data set can be found in the text. The Schaap and Shouse measurements were taken only at Sites 1 and 5.
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Estimation

Figure 5. (continued)

STATSGO, and SSURGO-N/C cases (where N = Noah and
C = Cosby) listed there, the soil texture class for each site is

[39] The bias and RMSE for the simulated volumetric soil taken directly.from the indicated source map. The standard
moisture at all eight Metflux sites in the WGEW, relative to the ~ N0ah LSM soil parameter lookup table, based on the average
six PBMR measurements obtained during the M90 experi- values from Cosby et al. [1984], is then.used to specify soil
ment, are shown in Tables 1 and 2, respectively. For the FAO, hydraulic and thermal parameters for a given texture class.
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Table 3. Mean Bias of the Top 5-cm Volumetric Soil Moisture
Between the PEST-PTF Method and the PBMR Observations,
Averaged Over the Six PBMR Times at All Eight Metflux Sites, for
the Simulations With Varied Precipitation Forcing®

Precipitation Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8

Interpolated ~ 0.105 —0.389 0.338 0.057 0.189 0.192 1.126 0.432
WGEW MAP 0.826 —0.236 0.133 —0.148 —0.379 —0.141 1.663 0.614
Gauge 33 0.005 —0.361 0.090 —0.089 —0.330 —0.141 0.809 0.396

*Volumetric soil moisture is given as percent.

[40] Forthe SSURGO-K/P case (where K=K and P=0,=
porosity), the SSURGO soil texture map is used with the Noah
LSM lookup table for all soil parameters except the saturated
hydraulic conductivity (K,) and the porosity (6;), which are
given in the SSURGO data set. It is recognized that these cases
employ sets of soil hydraulic parameters that may not be
physically consistent, as the SSURGO values for these param-
eters for a given soil may not be near those given in the Noah
LSM lookup table for soils in the same texture class. Resulting
differences in the optimized soil texture are meant to demon-
strate the inconsistency in such a combination of data from
disparate sources. While a PTF approach is intended to
produce parameter values for a given soil texture that are
physically consistent within the set, simple substitution of
lookup table value with those given in the SSURGO data set is
not necessarily a proper approach unless all of the necessary
parameter values are provided, ensuring that same physical
consistency.

[41] The final cases listed in Tables 1 and 2 indicate the
parameter estimation methodologies described above:
PEST-Direct and PEST-PTF. It is consistent with the results
of Santanello et al. [2007] that, by using all six PBMR
observations during the M90 experiment for calibration of
the soil hydraulic parameters, the PEST-Direct and PEST-
PTF cases demonstrate the smallest bias and lowest RMSE
among the various cases at all eight Metflux sites in the
WGEW. As shown in Table 2, the use of PEST by either
method in order to calibrate the soil texture at each site
results in an RMSE of 1.5% or less, compared to approx-
imately 4% using standard soil classes from the FAO,
STATSGO, or SSURGO maps and the default values
provided in the Noah LSM. Tables 1 and 2 confirm the
expected result that the PEST-Direct approach yields slightly
lower bias and RMSE values than the PEST-PTF approach.
The average difference in soil moisture RMSE is 0.4%
volumetric, which is well within the uncertainty of the
observations. This result suggests that the two approaches
are essentially equivalent with respect to soil moisture
prediction error.

[42] Figure 5 shows a comparison of the soil hydraulic
properties estimated via the PEST-PTF and PEST-Direct
approaches at the eight WGEW Metflux sites, the “stan-
dard” SSURGO-based estimates, and the in situ estimates
of Schaap and Shouse (personal communication, 2004). As
described above, the SSURGO-N/C values are derived from
the SSURGO soil texture maps for WGEW referenced to
the Noah LSM lookup tables. The SSURGO-K/P values
are the same as SSURGO-N/C for the air-entry pressure
(PSI_sat) and the pore size distribution index (Bexp) while
the porosity and saturated hydraulic conductivity (K sat)

PETERS-LIDARD ET AL.: PRECIPITATION UNCERTAINTY AND SOIL PROPERTIES

W05S18

are derived from the SSURGO mapping unit data based on
pedological analysis.

[43] As shown in Figures 5a and 5b, the in situ estimates
of porosity and K_sat at sites 1 and 5 suggest that the PEST-
PTF provides superior estimates of these properties when
compared with the results of the PEST-Direct approach. In
addition, it is interesting to note that the SSURGO-N/C
estimates are the closest to the in situ estimates for porosity
and K sat despite the results shown in Tables 1 and 2, in
which the SSURGO-N/C results produce the highest soil
moisture prediction bias and RMSE for all sites. This
appears to be related to differences in the other two
hydraulic parameters, shown in Figures S5c and 5d.
Figures 5a and 5b also show that the PEST-PTF method
yields porosity and K sat estimates that are consistently
closer to the SSURGO-N/C estimates than those estimated
by the PEST-Direct approach.

[44] Estimates of the other two hydraulic parameters are
shown in Figures 5S¢ and 5d. The PEST-PTF and PEST-
Direct estimates for the air-entry matric potential PSI_sat at
sites 1 and 5 produce mixed results. The PEST-Direct
results at site 1 are closer to the in situ observations, while
the PEST-PTF results are closer at site 5. The behavior of
PEST-Direct at sites 2 and 8 is particularly suspect, and
underscores the issue discussed previously that the direct
approach may yield parameter combinations that are incon-
sistent with a single soil texture. The PSI sat estimates at
other sites also produce mixed results with respect to the
SSURGO values. The Bexp results at sites 1 and 5 are
consistent with those for porosity and K sat, in which the
PEST-PTF approach appears to provide estimates closer to
the in situ observations. In addition, the PEST-PTF results
are consistently lower than the SSURGO results for Bexp.

[45] The Bexp and PSI sat results may explain the
somewhat counterintuitive result that the PEST-PTF ap-
proach yields significantly lower soil moisture prediction
errors than the use of SSURGO parameters, despite the
similarities in their estimated porosity and saturated hydrau-
lic conductivity values. This suggests the critical role that the
other hydraulic properties can play in soil moisture prediction.
Overall, these results highlight the importance of the PTF
constraint on estimation of hydraulic parameters as a physi-
cally consistent set, rather than individually. While the PEST-
Direct approach can be more accurate for a few individual
sites and parameters, the hydraulic parameters at each site
can be inconsistent with one another and, as a set, would
correspond to a soil texture that is physically unrealistic.

4.2. Precipitation Uncertainty
[46] Considering the results presented in the previous

section, further simulations oriented on exploration of the
role of precipitation uncertainty in the parameter estimation

Table 4. Mean RMSE of the Top 5-cm Volumetric Soil Moisture
Between the PEST-PTF Method and the PBMR Observations,
Averaged Over the Six PBMR Times at All Eight Metflux Sites, for
the Simulations With Varied Precipitation Forcing®

Precipitation Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8

Interpolated  1.660 1.174 1.985 0.710 0.978 1.385
WGEW MAP 2.570 1.155 1.453 0915 1411 1.127
Gauge 33 1.953 1.142 1.447 1.168 1.616 1.486

2.527 1.518
2307 1.733
2.154 1354

*Volumetric soil moisture is given as percent.
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Figure 6. Simulated and observed near-surface soil moisture at WGEW site 5 for the precipitation
sensitivity experiments.

100 —

80 - [ ’[ I |
Q) B
< w0 | | [MObserved
S ] [ Interpolated
|5 g g 5 5 EJWGEW MAP
- on 3 3 ) -: -: ]| | [BSauge 33
[} I
N 40 L

20 =

0 - : : : : : : :
Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8
Metflux Site

Figure 7. Observed and estimated soil sand content at the eight WGEW Metflux sites during the M90
experiment.
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Figure 8. Final PEST-estimated sand-clay-silt content for the precipitation uncertainty simulations at

site 5, depicted on the USDA soil texture triangle.

process have employed the PEST-PTF approach to estimate
soil textures and associated hydraulic properties. Similar to
Tables 1 and 2 above, simulated surface soil moisture bias
and RMSE values at the eight Metflux sites in the
WGEW under the described variety of precipitation forc-
ing are listed in Tables 3 and 4, respectively. Generally,
the biases are smaller and the RMSE values are lower
than in Tables 1 and 2, indicating that the PEST-PTF
approach to estimation of the soil textures and hydraulic
parameters is more important to accurate simulation of the
surface soil moisture than the use of the best possible
precipitation forcing, provided that the forcing is based on
information from observations (gauge values, not modeling
or reanalysis results) at a nearby location (within the WGEW
in this case, not from a distance of nearly 100 km). In short,
the best results are produced in simulations that employ
forcing data based on local observations, an intuitive and
physically consistent result.

[47] It is for this reason that we note another important
result: simulations that employed precipitation forcing from
the Tucson and NARR sources were unable to converge upon
an optimized solution for soil hydrologic properties using
either the PEST-Direct or PEST-PTF approaches. This result
underscores the necessity of having at least one precipitation
gauge in the immediate area of interest in order to produce a
viable estimate of soil texture parameters and reasonable soil
moisture results. Even with six PBMR-derived soil moisture
images available for comparison and calibration over the
simulation period, the precipitation intensity and temporal
patterns in the records from those two sources were highly
inconsistent with the observed precipitation at the WGEW
sites. This inconsistency was so great that the proper simu-
lation of the observed soil moisture in the WGEW, within the

limits of our specified soil moisture RMSE objective func-
tion, was impossible, regardless of the extent to which PEST
was allowed to adjust the soil textures and hydraulic param-
eters employed in the Noah LSM.

[48] As shown in Figure 3, the NARR and Tucson
precipitation totals are approximately 43% and 56% greater,
respectively, than those over the watershed for the period,
and their temporal profiles are also significantly different
from those records observed in the WGEW itself. In
addition, Figure 4 shows that the precipitation rate PDFs
from both sources are quite different from those observed in
the WGEW. A large event in Tucson in the early dry period
that was not also observed in the WGEW, and the tendency
for the NARR data set to produce consistent low-intensity
rainfall with few heavy events, contribute to the inability of
PEST to produce a solution using these inputs. Because the
MO90 period was one of highly convective and therefore
localized precipitation, it would be expected that precipita-
tion events and regimes with a higher spatial or temporal
correlation would be more likely to produce viable soil
hydrologic parameter estimates using synoptic or mesoscale
analyses and networks. The results suggest that it is also
important to capture the correct range of precipitation inten-
sity in order to evaluate the ability of the LSM to correctly
simulate soil drying after each event, as controlled by both
hydraulic and hydrologic properties. Other quality-based
characteristics of the precipitation record that may be required
for successful optimization results are discussed below.

[49] Figure 6 shows the simulated and observed volumet-
ric soil moisture (VSM, often expressed in m®> m > or
percent) at the six PBMR observation times, as well as
the time series of simulation bias, at site 5. The error bars on
the plot indicate the standard deviation of observed in situ
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Figure 9. Scatterplot of the change in the number of precipitation “events” (defined here as the number
of hours in the time series with measurable precipitation) versus the change in the PEST-estimated sand

content.

(gravimetric) values at the same times, although it should be
noted that the gravimetric averages upon which these error
bars are centered are close, but not exactly equal, to the
PBMR values at each observation time. This figure high-
lights the changing sensitivity of both simulated and
observed soil moisture values to precipitation inputs over
time: the results remain quite similar during the initial dry
period and following the large event on 2 August 1990
(DOY 214), but then diverge during the dry period after
6 August (DOY 218). This indicates that events measured at
other precipitation gauges in the network, but not at site 5,
may contribute to large errors in some of the simulation
results that occur outside the range of observed soil moisture
on 8 August (DOY 220). Despite the accuracy of the input
precipitation forcing, the simulated soil moisture remains too
high through the end of the simulation. This result may be due
in part to errors in the specification of evaporation parameters
for bare soils, as discussed below.

[s0] It is clear from Tables 3 and 4 that the optimization
procedure using PEST for determination of soil textures
produces results superior to the use of the default Noah
LSM lookup tables based on coarse specification of soil
texture classes, no matter which watershed-based rainfall
estimate is used. However, we also wish to determine
whether these results are physically realistic, and whether
that realism decreases with the accuracy of the precipitation
input. Figure 7 demonstrates the impact of selected precip-
itation records on the estimated sand content of the soil
column, as derived using the PEST-PTF approach. The
complete sand-silt-clay observations collected during the
MO0 experiment [Schmugge et al., 1994] are listed in
Appendix A.

[s1] As shown in Figure 7 and Table A1, the tendency of
this approach is to estimate values of sand content that are
too high, and also to estimate little or no silt content in the
soil column. This apparent lack of silt content is a direct
consequence of the Cosby et al. [1984] PTF in equations
(1)—(4), which depend on only the sand and clay content of
the soil column. Therefore, we must conclude that any
sensitivity to silt is indirect in this work, and the opportunity
exists for extension of this work with other PTFs that may
take into account the full heterogeneity of the soil column.
The tendency for PEST to estimate slightly higher sand
content than observed may be due to the unique composi-
tion of soils in the WGEW. There is an unusually high rock
content in these soils that cannot be accounted for in the
Noah model, for which PEST compensates by suggesting
higher sand content and, therefore, higher hydraulic con-
ductivity and lower porosity. Both of these results are
consistent with high rock content in the soil column.

[52] As indicated in Figure 7 and Table Al, at some
locations there seems to be a strong correlation between the
density and sampling frequency of precipitation gauges and
the estimated soil textures using the PEST-PTF approach.
For example, sites 2, 4, 5, and 6 demonstrate a significant
decrease in estimated sand content, and an increase in
estimated silt content, with decreasing representativeness
of the precipitation input data. Such impacts are evident
even in the change from use of a collocated precipitation
gauge to the use of center-gauge precipitation estimates. For
other locations, such as sites 7 and 8, the sand percentages
are so high as to be physically meaningless, suggesting that
other model formulation or parameter errors may need to be

14 of 22



W05S18

Table 5. Mean Bias of the Top 5-cm Volumetric Soil Moisture
Between the PEST-PTF Method and the PBMR Observations,
Averaged Over the Six PBMR Times at All Eight Metflux Sites, for
the Simulations With Varied Precipitation Forcing and With
FXEXP Also Estimated by PEST"

Precipitation Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8

Interpolated —0.204 —0.336 —0.070 —0.139 —0.126 —0.215 0.216 0.029
WGEW MAP —0.151 —0.181 —0.041 0.009 —0.062 —0.071 0.161 0.054
Gauge 33 —0.170 —0.256 —0.088 —0.033 —0.088 —0.134 0.167 0.042

“Volumetric soil moisture is given as percent.

corrected in order to produce reasonable, physically mean-
ingful estimates. At two intermediate locations, sites 1 and 3,
the estimated sand content actually decreases slightly with
less accurate precipitation input, though overall the estimated
sand content remains high and silt content remains low at
these locations.

[s3] The USDA soil texture triangle, along with the
results of the precipitation experiments for site 5, is shown
in Figure 8. The observed soil class at this site was either
sandy loam or sandy clay loam, depending on the source of
the classification. A box around each of the observed values
indicates the overall range of these observations, given an
expected level of representation uncertainty. We must con-
clude that errors in model formulation, combined with the
difficulty of complete optimization using a simple two-
parameter PTF as that by Cosby et al. [1984], lead to the
unlikely estimates of soil content and classification by the
PEST-PTF method that are shown in Figure 8.

[s4] As noted above, optimized estimates of sand, clay
and silt content at several of the simulation sites seem
particularly sensitive to the precipitation inputs. To further
explore this sensitivity, we examined the change in opti-
mized sand content with respect to several characteristics of
the input precipitation, including overall total, average
intensity, and frequency of occurrence. The only significant
relationship that we have found is shown in Figure 9, which
illustrates changes in the estimated sand content with
respect to a change in the number of precipitation events
detected, based on collocation of the precipitation gauge
and soil moisture measurements.

[55] Consistent with the discussion above, there is a
decrease in the estimated sand content when the events
actually observed at the site are not represented in the input.
For example, using the center gauge rather than the precip-
itation gauge at the site may lead to representation errors as
well as those due to spatial variations in the precipitation
intensity. Such errors are represented by sites 2, 4, 5, and 6
in the lower left quadrant of Figure 9. This makes concep-
tual sense, as missed events would lead to a dry bias in
simulated soil moisture. To compensate for this dry bias,
and according to the PTF shown in equation (3), the PEST-
PTF approach will yield a smaller sand content in order to
decrease the saturated hydraulic conductivity, which will
then decrease the drainage and retain more moisture in the
5-cm surface soil layer.

[s6] Conversely, we also find that there is a slight
decrease in the estimated sand content when the number
of events simulated at the site is greater than that actually
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observed, owing to the fact that all events in the WGEW are
captured when using the full network for calculation of the
MAP. These results tend to produce more frequent, lower
intensity events than may have been recorded at an indi-
vidual site, such that the general decrease in event intensity
leads to a decrease in the estimated sand content, while the
general increase in event frequency increase leads to an
increase in the estimated sand content. The net result of
these overlapping factors, which are diminished event
intensity but at a greater frequency of occurrence, is a slight
decrease in the estimated sand content for a given site. We
conclude that the ability to detect the occurrence of indi-
vidual rainfall events at a given location is a key factor in
the estimation of soil texture using multitemporal remote
sensing and the parameter optimization methods described
here.

4.3. Evaporation Parameter Uncertainty

[57] To this point, all of the PEST-derived parameter
estimates have been only for soil hydraulic properties, with
the PTF constraint also providing soil texture as a byprod-
uct. As in work by Santanello et al. [2007], we have not
attempted simultaneous calibration of any other parameters
in the Noah LSM. However, as shown in Figure 6 and
discussed above, a systematic bias was evident in the dry-
down period prior to DOY 221 that caused the soil moisture
errors on that date to be lower with more distant sources of
precipitation forcing. Several Noah model parameters were
tested as potential sources of this counterintuitive result. It
was found that PEST tended to increase such parameters as
the greenness and leaf area index beyond reasonable values
in this area in an attempt to increase the rate of evaporation
and thus decrease the moisture content of the surface soil
layer. Other parameters tested included the minimum sto-
matal resistance, the water infiltration/runoff parameter, and
the bare soil evaporation parameter. The latter was the only
parameter for which optimization led to a significant im-
provement in the results. The final experiments in this work
thus combine the estimation of soil hydraulic parameters,
under the influence of various input precipitation time
series, with estimation of the bare soil evaporation param-
eter FXEXP in the Noah LSM.

[s8] Bare soil evaporation in Noah is derived by multi-
plying a factor (FX) by the calculated potential evaporation
for the fraction of bare soil at each simulation point. The
parameter FXEXP determines this factor:

FXEXP
FX — SMC — SMCDRY 7 (5)
SMCMAX — SMCDRY

Table 6. Mean RMSE of the Top 5-cm Volumetric Soil Moisture
Between the PEST-PTF Method and the PBMR Observations,
Averaged Over the Six PBMR Times at All Eight Metflux Sites, for
the Simulations With Varied Precipitation Forcing and With
FXEXP Also Estimated by PEST"

Precipitation Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8

Interpolated ~ 1.420 1.168 1.726 0.611
WGEW MAP 2315 1.060 1.390 0.813
Gauge 33 1913 1.092 1.384 1.159

0.499 1.012 1.511
1.186 1.114 1.203
1.511 1.478 1.176

1.295
1.458
1.045

*Volumetric soil moisture is given as percent.
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Figure 10. Same as Figure 6, but for the simulations with PEST also estimating the Noah bare soil

evaporation parameter FXEXP.

where SMC (m® m ™) is the top layer volumetric soil
moisture content calculated by the LSM at each time step,
SMCDRY is the dry volumetric soil moisture threshold at
which direct evaporation from the surface soil layer is halted
(SMCDRY = 0.02 m®> m* in this work, but is set equal to
the vegetation wilting point in a more recent version of the
Noah LSM), and SMCMAX is the porosity (m* m ) that is
given by equation (1) above. On the basis of the work of
Chen et al. [1996], FXEXP =2 is typically selected in order
to provide a nonlinear evaporation stress function; however
the original Noah LSM value of FXEXP = 1 was found to
reproduce better the observed evaporation in WGEW (not
shown). Therefore, FXEXP had been set to 1 in the
experiments described above, as in work by Santanello et
al. [2007].

[s9] Tables 5 and 6 list the estimated surface-layer soil
moisture bias and RMSE, respectively, at the eight Metflux
sites in the WGEW for PEST-PTF experiments, similar to
those shown in Tables 3 and 4, except that here PEST has
been allowed to adjust the FXEXP parameter in the Noah
LSM as well. The RMSE in Table 6 is improved, in
comparison with that shown in Table 4, for all sites and
input precipitation variations. These results demonstrate that
optimization of key parameters in the LSM to allow both
drainage and evaporation from the surface soil layer, in
order to best fit the given observations, results in the best
possible simulation under a given input precipitation time
series. For experiments that employ precipitation gauges
collocated with the soil moisture observations, the RMSE is

reduced on average from about 1.5%, for the optimization
that ignores FXEXP, to about 1.2%. Although this differ-
ence is rather small, at site 7 the difference is more
significant, with an RMSE reduction from about 2.5% to
1.5%. As above, optimization experiments using the Tucson
gauge and NARR forcing did not converge on a solution,
which again underscores the importance of input precipita-
tion sources that are able to detect the observed rainfall
events in the watershed and nearest the point of interest.

[60] In comparing Tables 3 and 5, we find that biases are
reduced when using the collocated precipitation gauges or
interpolated values for sites 3, 7, and 8, which are three of
the sites with the largest estimated sand content as shown in
Figure 7. The estimated sand content values at these sites
were also least sensitive to the number of events, as shown
in Figure 9. The additional optimization of FXEXP at these
sites resulted in estimated soil textures that are more
consistent with those at the other locations, as discussed
below.

[61] The biases in Table 5 are most improved in those
simulations that employed the mean or center-gauge pre-
cipitation forcing. This improvement suggests that, in the
absence of the best available precipitation forcing, allowing
the LSM additional freedom in the optimization process can
result in lower soil moisture biases. When using the best
available precipitation forcing, and at locations other than
sites 3, 7, and 8 as noted above, this freedom does not result
in much additional bias improvement, given the limited
number of soil moisture observations and the forcing used
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in these experiments. Clearly, to fully explore the tradeoffs
between observation frequency and precipitation accuracy
for soil hydrologic parameter estimation, a future soil
moisture campaign or mission with more observations over
a longer period would be required.

[62] The simulated soil moisture content for these experi-
ments at site 5, with error bars based on in situ measurements,
and calculated biases in relation to PBMR observations, are
shown in Figure 10. These results may be compared with
those given in Figure 6 for the experiments in which FXEXP
was held fixed. These results demonstrate that the bias is
improved at all PBMR observation times, most notably at
two times: early in the simulation period before the intense
precipitation event on 1 August 1990 (DOY 213), and
through the drying period up to 9 August (DOY 221). It is
during these relatively dry periods that the bare soil evapo-
ration, together with the high sand content, produces the best
possible soil moisture simulations.

[63] The sand content at each location that was estimated
in the experiments for which PEST was also allowed to
adjust FXEXP are shown in Figure 11, and the full sand-
silt-clay estimates are given in Appendix A (Table A2). The
simulations using the best available precipitation lead to
lower estimates of sand content than shown in Figure 7, and
are generally much closer to the observed sand content
observed at the respective sites. As expected, removal of the
model formulation error allows the optimization system to
produce not only more accurate soil moisture estimates, but
also more reasonable estimates of soil texture. The optimi-
zation of FXEXP values allows the LSM to remove addi-
tional soil moisture from the topsoil layer by evaporation,
rather than by increasing the estimated sand content in order
to increase the soil drainage capacity. Figure 11 demon-

strates that the results remain sensitive to the accuracy of the
precipitation input, but also confirms the expected result,
that use of the full WGEW precipitation gauge network as
shown in Figure 2 produces estimates of soil texture that are
closest to the observed texture.

[64] A graphical representation of results for site 5 on the
USDA soil texture triangle is shown in Figure 12. In this
case, the experiment using collocated precipitation gauge
data correctly estimates a sandy loam soil texture, with a
reasonable estimate of clay percentage compared to the
noninterpolated results, although the estimated sand per-
centage is high. Generally, as shown in Table A2, the
additional calibration of the FXEXP parameter leads to
PEST-estimated soil textures that are closer to those ob-
served at all Metflux sites in the WGEW than obtained in
experiments for which FXEXP was held constant. It is also
found that the experiments using center-gauge precipitation,
which had previously resulted in small estimates of sand
content, tended with flexibility in the value of FXEXP to
result in higher estimates of sand content, and thus overall
soil textures closer to those observed. We find that there is
less variation in the estimated values of sand content with
changes in the input precipitation source than in previous
experiments, as shown in Figure 12.

Table 7. Estimated FXEXP Values at All Eight Metflux Sites for
the PEST-PTF Simulations With Varied Precipitation Forcing

Precipitation Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8

Interpolated ~ 0.779 1.026 0.824 0.897 0.765 0.805 0.614 0.818
WGEW MAP 0.866 1.133 0.893 1.157 1.260 1.062 0.576 0.791
Gauge 33 0.920 1.119 0.907 1.041 1.162 0.956 0.614 0.830
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[65s] Figure 13, like Figure 8, shows the response of the
optimization system in the estimation of both sand content
and FXEXP to changes in the number of precipitation
events. As noted above, sites 3, 7, and 8 are those with
the highest estimated sand content (see Figure 7) and are the
least sensitive to the number of precipitation events (see
Figure 9). The results in Figure 13 suggest that the optimi-
zation of FXEXP at these locations lends to a greater
commonality with the other sites in the soil hydraulic
response to wetting and drying periods. Further compar-
isons of Figures 9 and 13 suggest that the PEST-PTF
approach in which adjustment of FXEXP is allowed pro-
duces a more intuitive and physically consistent response of
the estimated sand content to the number of detected
precipitation events. As before, precipitation input that
included a lower number of detected events was found to
result in soil textures with lower estimated sand content,
while precipitation input with a number of detected events
closer to that actually observed at individual locations with
collocated gauges were found to result in soil textures with
greater estimated sand content.

[66] Values of FXEXP resulting from these latter simu-
lations are listed in Table 7. The values fall, for the most
part, around the default value of FXEXP = 1 as employed
previously, depending on location. Sites that previously
demonstrated high values of estimated sand content, in
experiments with FXEXP held fixed, are found to have

Table Al. PEST-Estimated Soil Properties Using the Cosby et al.
[1984] PTF at All Eight Metflux Sites for the Simulations With
Varied Precipitation Forcing®

Precipitation

Site Source SAND (%) CLAY (%) SILT (%)
1 Interpolated 95.3 4.7 0.0
1 WGEW MAP 77.0 0.0 23.0
1 Gauge 33 92.2 7.8 0.0
1 Observed 66.0 £5 10.0 £ 5 2405
2 Interpolated 88.5 11.5 0.0
2 WGEW MAP 75.7 0.0 243
2 Gauge 33 47.9 0.0 52.1
2 Observed 69.0 £ 5 1105 20.0 £5
3 Interpolated 90.9 9.1 0.0
3 WGEW MAP 95.8 42 0.0
3 Gauge 33 88.0 12.0 0.0
3 Observed 71.0 £5 905 2005
4 Interpolated 85.5 14.5 0.0
4 WGEW MAP 58.5 0.0 41.5
4 Gauge 33 23.7 0.0 76.3
4 Observed 73.0 £5 50£5 2205
5 Interpolated 88.3 11.7 0.0
5 WGEW MAP 64.8 0.0 35.2
5 Gauge 33 31.7 0.0 68.3
5 Observed 69.0 £5 11.0£5 20.0 £5
6 Interpolated 89.1 10.9 0.0
6 WGEW MAP 73.7 0.0 26.3
6 Gauge 33 42.0 0.0 58.0
6 Observed 67.0 £5 805 2505
7 Interpolated 98.3 1.7 0.0
7 WGEW MAP 100.0 0.0 0.0
7 Gauge 33 99.4 0.6 0.0
7 Observed 80.0 =5 6.0 £5 1405
8 Interpolated 100.0 0.0 0.0
8 WGEW MAP 100.0 0.0 0.0
8 Gauge 33 94.4 5.6 0.0
8 Observed 720+5 805 2005

#“Observed” values are those provided by Schmugge et al. [1994].
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Table A2. As in Table Al, but With FXEXP Also Estimated by
PEST

Precipitation

Site Source SAND (%) CLAY (%) SILT (%)
1 Interpolated 64.7 0.0 353
1 WGEW MAP 97.0 3.0 0.0
1 Gauge 33 90.3 9.7 0.0
1 Observed 66.0 £ 5 1005 2405
2 Interpolated 89.1 10.9 0.0
2 WGEW MAP 97.1 2.9 0.0
2 Gauge 33 89.3 10.7 0.0
2 Observed 69.0 £ 5 11.0+5 2005
3 Interpolated 84.1 15.9 0.0
3 WGEW MAP 94.0 6.0 0.0
3 Gauge 33 85.7 14.3 0.0
3 Observed 71.0£5 905 2005
4 Interpolated 71.4 12.6 16.1
4 WGEW MAP 67.7 0.0 323
4 Gauge 33 27.1 0.0 72.9
4 Observed 73.0 £ 5 50+5 2205
5 Interpolated 82.3 17.7 0.0
5 WGEW MAP 80.4 0.0 19.6
5 Gauge 33 46.0 0.0 54.0
5 Observed 69.0 £5 11.0+5 200 £5
6 Interpolated 81.9 18.1 0.0
6 WGEW MAP 77.4 0.0 22.6
6 Gauge 33 359 0.0 64.1
6 Observed 67.0 £5 805 2505
7 Interpolated 87.0 13.0 0.0
7 WGEW MAP 98.4 1.6 0.0
7 Gauge 33 89.5 10.5 0.0
7 Observed 80.0 £5 6.0+5 14.0 5
8 Interpolated 97.8 2.2 0.0
8 WGEW MAP 97.7 23 0.0
8 Gauge 33 90.3 9.7 0.0
8 Observed 720+5 805 200£5

optimal FXEXP values less than unity, which result in
greater evaporation from bare soil areas during the simula-
tion period. In particular, sites 7 and 8 had previously
estimated sand content values near 100%, but with allow-
ances for variation in FXEXP have estimated values for that
parameter among the lowest of all the study sites. As shown
in Figure 11, estimation of FXEXP along with the soil
texture results in smaller RMS errors in surface soil mois-
ture at the individual PBMR observation times, indicating
the interaction between bare soil evaporation (via FXEXP)
and soil drainage (via sand content) in the reduction of
simulation biases. Although the estimation of FXEXP
reduced the simulation error for soil moisture, remaining
errors can likely be attributed to other inconsistencies and
deficiencies in the model formulation.

5. Summary and Conclusions

[67] This work extends the recent study by Santanello et
al. [2007] in which it was shown that soil texture and
associated hydraulic parameters may be estimated using a
combination of multitemporal microwave remote sensing,
land surface modeling, and parameter estimation methods.
As in that study, the LIS modeling framework was
employed with the Noah LSM, additional specification of
PTFs after Cosby et al. [1984], and parameter optimization
using PEST. Using selected sites in the WGEW that were
instrumented and observed during the M90 experiment, this
system was applied as part of ongoing development of the
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Army Remote Moisture System (ARMS) [Tischler et al.,
2006].

[68] This approach was demonstrated and results were
obtained for the optimized soil textures using varied initial
soils data at each of the eight M90 Metflux sites in the
WGEW, and it was shown that the system could produce
simulated surface soil moisture values with RMS errors of
about 1.5% or less, compared with about 4% RMSE when
standard soil classes from FAO, STATSGO or SSURGO
data sets and the default hydraulic parameter tables in the
Noah LSM were employed. The precipitation time series at
each site was then systematically varied using available
observations and estimates, including those from the synop-
tic precipitation gauge closest to WGEW (Tucson, Arizona)
and analyzed results from the NARR data set. A significant
finding of this work was that our approach to the estimation
of soil textures did not result in a convergent solution when
using the Tucson precipitation gauge or NARR estimate to
provide input precipitation, highlighting the importance of
using in situ precipitation gauges for appropriate representa-
tion of the primary forcing variables. In addition, it was found
that the accuracy of soil texture estimates remained sensitive
to the number of events represented in the input precipitation
time series compared to those that were observed at gauge
locations within the WGEW, with fewer simulated events
than observed leading to the estimation of less sandy soils and
estimated soil textures farther from those observed at the
WGEW Metflux sites.

[69] The importance of calibrated hydraulic parameters
for the accurate simulation of soil moisture infiltration, and
their interaction with the evaporation of surface moisture
from bare soils in the semiarid environment of the WGEW,
in the estimation of reasonable effective soil textures was
demonstrated by repetition of the precipitation sensitivity
study with simultaneous optimization of the bare soil
evaporation parameter FXEXP in the Noah LSM. This
multiparameter calibration resulted in the lowest volumetric
soil moisture RMS errors in this study, reducing errors in
volumetric soil moisture content across the eight Metflux
sites in the WGEW to about 1.2%.

[70] In addition to the improvement in simulated surface
soil moisture content, the multiparameter calibration ap-
proach generally resulted in improved estimates of soil
texture as well as a more consistent response of the
estimated sand content to the number of simulated precip-
itation events, relative to those observed at each site. After
optimization of the FXEXP parameter, the estimated sand
content at each site was more accurate when also using the
observed or interpolated precipitation from the full WGEW
gauge network, in contrast with the results before optimi-
zation of the FXEXP parameter which demonstrated uni-
formly high estimates of sand content. As above, the
simulation of fewer precipitation events than observed at
the Metflux sites was found to result in estimates of less
sandy soils than measured. However, comparison of the
simulation sensitivity to the number of precipitation events
both before and after optimization of the FXEXP parameter
suggests that a more consistent simulation response is
obtained by allowing for increased evaporation from bare
soils than initially indicated in the Noah LSM, thereby
reducing the dependence on infiltration, and thus the ad-
justment of hydraulic parameters to unphysical values, to

PETERS-LIDARD ET AL.: PRECIPITATION UNCERTAINTY AND SOIL PROPERTIES

W05S18

compensate for wet biases in the simulated surface soil
moisture results.

[71] There are many caveats to this study, including the
limited time period, single LSM, simple calibration ap-
proach, single PTF, and limited validation data. However,
this study is an important step toward the estimation of soil
texture and hydraulic properties using multitemporal remote
sensing data. This study is limited geographically to the
WGEW and to the aircraft-based PBMR observations
obtained during the M90 experiment. Recent results for
the retrieval of surface soil moisture from satellites (e.g.,
RADARSAT) by the Delta Index approach, described by
Thoma et al. [2006] and demonstrated for use in parameter
estimation approaches by Santanello et al. [2007], provide a
pathway toward the operational estimation of both surface
soil moisture values and soil textures. These methods will
be further tested in simulations for locations with precipita-
tion climatologies and soil textures significantly different
from those found at the WGEW, such as Little River, Georgia;
Little Washita, Oklahoma; and North Park, Colorado. Further
refinement of the methods in this, and previous, studies will
help pave the way for applications of future remote sensing
missions oriented on soil moisture observations, such as the
upcoming NASA SMAP mission.

Appendix A

[72] The appendix gives the observed and estimated sand,
silt, and clay percentages at each Metflux site using three
different precipitation sources. The estimates in Table Al
are obtained using the PTF-constrained LIS-PEST with a
fixed value of FXEXP, while the estimates in Table A2
show the PTF-constrained LIS-PEST results with a simul-
taneous estimation of FXEXP.
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