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[1] Inaccuracy in spatially distributed precipitation fields can contribute significantly to
the uncertainty of hydrological states and fluxes estimated from land surface models. This
paper examines the results of selected interpolation methods for both convective and
mixed/stratiform events that occurred during the North American monsoon season over a
dense gauge network at the U.S. Department of Agriculture Agricultural Research Service
Walnut Gulch Experimental Watershed in the southwestern United States. The spatial
coefficient of variation for the precipitation field is employed as an indicator of event
morphology, and a gauge clustering factor CF is formulated as a new, scale-independent
measure of network organization. We consider that CF < 0 (a more distributed gauge
network) will produce interpolation errors by reduced resolution of the precipitation field
and that CF > 0 (clustering in the gauge network) will produce errors because of
reduced areal representation of the precipitation field. Spatial interpolation is performed
using both inverse-distance-weighted (IDW) and multiquadric-biharmonic (MQB)
methods. We employ ensembles of randomly selected network subsets for the statistical
evaluation of interpolation errors in comparison with the observed precipitation. The
magnitude of interpolation errors and differences in accuracy between interpolation
methods depend on both the density and the geometrical organization of the gauge
network. Generally, MQB methods outperform IDW methods in terms of interpolation
accuracy under all conditions, but it is found that the order of the IDW method is
important to the results and may, under some conditions, be just as accurate as the
MQB method. In almost all results it is demonstrated that the inverse-distance-squared
method for spatial interpolation, commonly employed in operational analyses and for
engineering assessments, is inferior to the ID-cubed method, which is also more
computationally efficient than the MQB method in studies of large networks.
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1. Introduction

[2] Land surface models (LSMs) of hydrological processes
rely principally on accurate observations of precipitation for
the simulation of soil moisture states, land-atmosphere fluxes,
and surface runoff for stream discharge estimation, numerical
weather prediction and water resources applications over a
wide range of spatial and temporal scales [e.g., Woods and
Sivapalan, 1999; Cosgrove et al., 2003; Carpenter and
Georgakakos, 2004]. The spatially distributed application of
an LSM over a region of interest requires the application of
similarly distributed precipitation fields that can be derived
from various sources, including surface gauge networks,
surface-based radar, and orbital platforms. The spatial vari-

ability of precipitation influences the spatial organization of
soil temperature and moisture states and, consequently, the
spatial variability of land-atmosphere fluxes [e.g., Taylor et al.,
1997; Nykanen et al., 2001]. The accuracy of spatially
distributed precipitation fields can contribute significantly to
the uncertainty of model-based hydrological states and fluxes
at the land surface, as found by Faurès et al. [1995], Chaubey
et al. [1999], Nijssen and Lettenmaier [2004], and others.
[3] We address the application of spatial interpolation

methods to observations of precipitation events during the
North American monsoon (NAM) [Adams and Comrie,
1997; Higgins et al., 1997] using a dense surface precipi-
tation gauge network operated by the U.S. Department of
Agriculture (USDA) Agricultural Research Service (ARS)
in the southwestern United States [Goodrich et al., 2008].
The position examined here is that an interpolated precip-
itation field retains a degree of resemblance to the actual or
true precipitation field that depends on both the geometry of
the observing network and on the mathematics of the
interpolation method. The observing network can be de-
scribed primarily by its configuration in space, its regularity
of network organization, a characteristic spatial scale of
representation, physiographic and climatological biases, etc.
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Issues of spatial scale [Eagleson, 1967], geometric regularity
[Smith et al., 1986], and representative bias [Briggs and
Cogley, 1996] in gauge network configuration have been
examined previously in the literature and are mentioned here
only as background in the further examination of network
organization and the interpolation methods themselves.
[4] This work differs significantly from previous efforts at

the description of gauge network configuration methods
[Rodrı́guez-Iturbe and Mejı́a, 1974; Bras and Rodrı́guez-
Iturbe, 1976; Pardo-Igúzquiza, 1998; Bradley et al., 2002]
and of simple comparisons of interpolation results for exist-
ing networks [Franke, 1982; Ball and Luk, 1998; Syed et al.,
2003]. The subjectivity of geostatistical (kriging) methods
lends significant uncertainty to their results and those meth-
ods are not easily configured for automatic or operational
applications. This work thus evaluates the applicability of
two objective interpolation methods under contrasting pre-
cipitation event morphologies. We seek to address the fol-
lowing issues: (1) statistical distinctions within and between
events of different convective morphology for simplistic and
sophisticated objective interpolators, (2) the possible impact
of gauge network configuration on the performance of these
interpolators, and (3) selection of objective interpolators that
account for both network geometry and event morphology.
[5] Convective precipitation variability, with a character-

istic spatial scale on the order of 1 km [Blöschl and
Sivapalan, 1995; Skøien et al., 2003], is difficult to diag-
nose with sparse surface gauge networks and even with
surface-based radar observations. Germann and Joss [2001]
employed variogram analyses for the examination of pre-
cipitation spatial continuity during the Mesoscale Alpine
Programme and found that spatial variation was well
correlated with convective activity. The potential impor-
tance of the relative spatial variance as an indicator of
network accuracy was identified by Tsintikidis et al.
[2002]. This work seeks to extend that consideration of
spatial variance from the observing network to the mor-
phology of the precipitation event itself. Our methodology
depends on the application of a number of network gauges
to the determination of precipitation at a greater number of
desired locations than the network can provide, such as the
interpolation of a sparse gauge network to a high-resolution
grid. One might contrast this problem with the opposite task
of finding the appropriate averaged precipitation for a
coarse resolution grid cell from the observations of many
gauges covered there [e.g., Rodrı́guez-Iturbe and Mejı́a,
1974; McCollum and Krajewski, 1998].
[6] Two methods of spatial interpolation are examined

here. The first is an inverse-distance-weighted approach
that can be found in numerous references oriented at the
practical application of precipitation observations to fore-
casting and engineering problems. The second is the
multiquadric-biharmonic method reviewed by Hardy [1990],
a more holistic (regarding area of influence) but computa-
tionally intensive method of interpolation that can be
applied objectively and has been compared favorably with
geostatistical methods [e.g., Supachai, 1988; Syed et al.,
2003]. The sensitivity analyses described here evaluate
these two spatial interpolation methods for their ability,
using subsets of the given gauge network, to reproduce by
interpolation the precipitation field found with observations
over the complete network.

[7] This paper is organized as follows: the study location
and data sources are described in section 2 with a brief
description of the method of event characterization support-
ing the selection of precipitation events for this study. A brief
comment on potential orographic influences on the observed
precipitation is provided there. Measures of precipitation
gauge network organization and geometry, spatial interpola-
tionmethods and error metrics examined, and a description of
the methods employed in this work are contained in section 3.
Results are discussed in section 4, and conclusions and
potential applications are presented in section 5.

2. Study Location and Selected Events

[8] The Walnut Gulch Experimental Watershed (WGEW)
is located southeast of Tucson, Arizona, in a semiarid
region of Arizona and is operated and maintained by the
USDA Agricultural Research Service (ARS), Southwest
Watershed Research Center (SWRC). Nearly 100 precipi-
tation and runoff gages are operated on a continuous basis
within the watershed area of approximately 150 km2

[Goodrich et al., 1997]. The SWRC currently provides
breakpoint [Sansom, 1992] and summary records of precip-
itation events in the WGEW in an online archive [Goodrich
et al., 2008]. During its period of operation, the WGEW has
served as a study site for several field experiments including
Monsoon’90 [Kustas et al., 1991], the Soil Moisture
Experiments in 2004 (SMEX04) [Jackson and Lettenmaier,
2004], and the international North American Monsoon
Experiment (NAME) [Higgins et al., 2006]. The WGEW
hosts a soil profile instrumentation site within the USDA
Natural Resources Conservation Service (NRCS) Soil
Climate Analysis Network (SCAN, http://www.wcc.nrcs.
usda.gov/scan) in addition to a variety of other hydrome-
teorological and watershed observation sites.
[9] The locations of precipitation gauges within the

WGEW are shown by Goodrich et al. [2008, Figure 2]
and here in Figure 1. Given that network, 85 gauges were
selected from an archive set of 95 locations on the basis of
record continuity throughout the study period. Considering
only the 85 gauge locations employed in this study, the
WGEW contains one of the most dense precipitation gauge
networks in the world (�0.570 gauges km�2).
[10] The two events studied here were identified from the

largest occurrences of daily total precipitation, indicated by
WGEW network mean values, in August of each year during
1990–2003. The daily variability of August precipitation at
the WGEW is illustrated in Figure 2, where the value plotted
for each day is the mean precipitation amount during the
study period, and the bottom of the corresponding error bar
represents the median total precipitation for that day. The top
of an error bar in Figure 2 denotes the quantity of precipita-
tion that is one standard deviation above the mean for that
day, giving some indication of the large variance in August
daily precipitation that can be expected. Dates with the
largest daily total precipitation in each August are listed in
Table 1 and serve as our study sample.
[11] The climatological daily precipitation in August

shown in Figure 2 is generally consistent with the onset
phase of the NAM system in the southwestern United States
and the occurrence of air mass thunderstorms fed by mon-
soonal moisture sources [Simanton and Osborn, 1980;
Adams and Comrie, 1997; Higgins et al., 1997]. The events
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listed in Table 1 demonstrate considerable ambiguity with
respect to orographic influence: some events, such as the two
examined in detail below, actually have a negative correlation
of total precipitation with gauge elevation, while others show

neutral (zero) and small positive correlations. It should be
considered that the WGEW is not necessarily of sufficient
size for demonstration of orographic influences on the
mesoscale meteorology, and any further examination of

Figure 1. Precipitation gauge network at theUSDA-ARSWalnutGulch ExperimentalWatershed (WGEW)
[after Goodrich et al., 2008]. Location references are given in UTM coordinates (meters) for zone 12.

Figure 2. Precipitation in August for the considered period (1990–2003), shown as daily totals
averaged over all years in the study period and all stations in the WGEW gauge network.
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topographic and meteorological patterns on a scale larger
than the WGEW remains beyond the scope of this work. For
these reasons, orographic influences and the surface topog-
raphy are excluded from the application of interpolation
methods described below.
[12] We utilize the spatial coefficient of variation (CV) of

the precipitation field, calculated as the ratio of the standard
deviation to the arithmetic mean intensity of the observed
daily total precipitation across the study area, as an indicator
of convective character. Accordingly, we selected two
events with low and high spatial CV for detailed study, as
shown in bold type in Table 1. The selection of an event in
1990 contributes to collaborative research on Monsoon’90
experimental observations and resulting soil moisture and
surface flux patterns in the WGEW. For comparison and
contrast, the largest event in August 1996 was also selected
for its significantly larger value of spatial CV, despite its
smaller mean and maximum precipitation intensity.
[13] This work follows in part on the efforts of Germann

and Joss [2000, 2001] toward the correlation of spatial
variation in precipitation intensity with event morphology.
We employ a method that is considerably less complex than
the radar reflectivity variogram analysis in that work with

our calculation of the spatial CV. However, it remains
difficult to judge the threshold at which one event appears
convective and another appears more stratiform solely on
the basis of the calculation of spatial CV. In light of previous
studies [e.g., Steiner and Smith, 1998], we considered the
spectrum of events listed in Table 1 and the likely convec-
tive characteristics associated with each on the basis of both
the time series of precipitation (as aggregated hourly totals)
during the event and its spatial CV. Overall, we expect
purely convective-based precipitation fields to exhibit great-
er spatial variance (CV) because of the concentration of
convective cells. Smaller spatial variation (CV) would be
found for purely stratiform events because of the relative
uniformity of precipitation over the study region. With these
considerations, we have specified an arbitrary threshold
around CV = 0.5, above which the event is considered
convective, and below which the event may demonstrate
mixed convective-stratiform or primarily stratiform periods
of precipitation. As shown in Table 1, one event from each
range is identified for analysis here.

2.1. Event 1: 12 August 1990

[14] The first event selected included the largest daily
total precipitation in the WGEW around the time of the
Monsoon’90 field experiment on 12 August 1990. The
spatial distribution of total precipitation during this event
is shown in Figure 3, as derived using the inverse-distance-
cubed interpolation method described below. During this
event, the network mean precipitation over the area of the
WGEW was 39.3 mm, with maximum totals greater than
70 mm and minimum totals less than 25 mm. As listed in
Table 1, a value of CV = 0.327 was observed for this event
that occurred primarily over a 7-h period beginning in the
early morning (�0200 MST) on 12 August 1990.
[15] On the basis of analyzed hourly precipitation totals,

the first 2 h of the storm were dominated by large precip-
itation rates, in some locations exceeding 40 mm h�1 and
indicative of leading convection in a squall line system.
Within the first hour of the event, only a portion of the
WGEW was affected by the passing convective line and
spatial CV > 1.6 was observed. For the 2 h with intense
convection, network mean total precipitation for this period
of the storm event was approximately 25 mm with spatial

Table 1. Dates and Statistics of the Largest August Precipitation

Events for 1990–2003 at the USDA-ARS WGEW

Date

WGEW Observed Precipitation Statistics

Minimum,
mm

Maximum,
mm

Mean,
mm

Variance,
mm2

Spatial
CV

12 Aug 1990 21.6 83.1 39.3 164.8 0.327
9 Aug 1991 0.0 29.0 16.6 32.4 0.344
23 Aug 1992 27.9 55.1 40.8 29.3 0.133
31 Aug 1993 15.2 80.0 35.4 155.3 0.352
25 Aug 1994 10.4 59.7 27.8 113.2 0.382
18 Aug 1995 0.8 57.7 16.3 110.6 0.646
18 Aug 1996 0.0 67.9 13.2 310.9 1.336
5 Aug 1997 18.3 92.9 39.3 256.6 0.408
12 Aug 1998 5.3 70.1 33.4 297.2 0.516
5 Aug 1999 9.9 43.2 21.6 66.8 0.379
6 Aug 2000 4.8 63.2 25.8 234.4 0.593
29 Aug 2001 11.2 39.4 21.5 54.5 0.343
1 Aug 2002 4.8 39.9 16.1 65.9 0.506
27 Aug 2003 1.1 73.4 31.0 285.0 0.545

Figure 3. Event 1 (12 August 1990) total precipitation (mm) over the WGEWarea, as derived using the
inverse-distance-cubed interpolation method described in the text.
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CV = 0.517. For the later portion of the storm event, with
precipitation rates generally less than 10 mm h�1, the
network mean total precipitation was approximately
15 mm with overall spatial CV = 0.402.
[16] With the observation of these two CV regimes in a

single event, we must consider the occurrence of propagat-
ing storms that can produce heavy precipitation in some
areas but overall more moderate total (network mean)
precipitation over the duration of the event and thus
moderate values of spatial CV. The observed configuration
of leading convection and trailing stratiform regions follows
the conceptual archetype for midlatitude squall lines [e.g.,
Parker and Johnson, 2000, 2004; Houze, 2004]. During the
storm event, spatial CV may thus shift from large to small
values according to the passage of the convective, and then
stratiform, precipitation structures within such a squall-like
event. Overall, spatial CV may finally obtain a moderate or
low value when the storm event total precipitation is
analyzed because of both the translation of the leading
convective line and the temporal dominance and overall
smoothing effects on the total precipitation field provided
by the trailing stratiform portion of the storm event.

2.2. Event 2: 18 August 1996

[17] The second event selected, on 18 August 1996, was
chosen because of its spatial concentration and overall
intensity within a short storm period. The spatial distribu-
tion of total precipitation during this event is shown in
Figure 4, also using the inverse-distance-cubed interpolation
method as described below. During this event, the network
mean precipitation over the area of the WGEW was only
13.2 mm, but had maximum totals greater than 60 mm and
minimum totals of 0.0 mm. The spatial CV = 1.336 for this
event as listed in Table 1.
[18] This event occurred over approximately 2 h in the

afternoon (�1500 MST) on 18 August 1996 and demon-
strated the localized characteristics of an air mass thunder-
storm event [e.g., Raymond, 1981; Faurès et al., 1995].
Radiosonde-based profiles of temperature, humidity and
winds at Tucson, Arizona, around the time of this event
(provided by the University of Wyoming, Department of
Atmospheric Science) are generally consistent with the type

III pattern for severe thunderstorm events over central
Arizona that was found by Maddox et al. [1995].

3. Network Configuration Analyses and Spatial
Interpolation Methods

[19] In determining the characteristics of precipitation
field samples by common methods of observation, we must
consider the limitations of both the equipment and its
deployment. Individual precipitation gauges in a network
are subject to errors in mechanical operation and intensity-
dependent calibration [Humphrey et al., 1997], site consid-
erations such as sheltering [Upton and Rahimi, 2003], and
wind-related effects [Larson and Peck, 1974; Sevruk, 1996].
[20] The configuration geometry of gauge networks has

been explored consistently over the past several decades for
various purposes, e.g., research, management and economic
objectives [Rodrı́guez-Iturbe and Mejı́a, 1974; Bras and
Rodrı́guez-Iturbe, 1976; Pardo-Igúzquiza, 1998]. The re-
gional collection of data is oriented ideally on the minimi-
zation of estimation error, instrumentation cost, and
scientific analysis. Regional regression analyses of network
observations, such as stream gauge data sets [Matalas and
Gilroy, 1968], allow for the evaluation of gauge site
‘‘performance’’ in a network as well as for field estimation
at ungauged sites. Rodrı́guez-Iturbe and Mejı́a [1974] and
later researchers thus often focused on network design for
regional and long-term mean estimates of precipitation, with
specific attention to spatial and temporal correlation of
observations, the available number of stations, and the
optimum network geometry [Bradley et al., 2002].

3.1. Gauge Network Configuration

[21] The density of a given network is given simply by

D ¼ N

A
; ð1Þ

where N is the number of gauge locations in the complete
network, or a selected subset, and A is the area of the study
region. However, considering only the network density
ignores the geometrical configuration of gauges in the
network, prompting statistical evaluations of the network by

Figure 4. Event 2 (18 August 1996) total precipitation (mm) over the WGEWarea, as derived using the
inverse-distance-cubed interpolation method described in the text.

W05S13 GARCIA ET AL.: MONSOON RAINFALL INTERPOLATION

5 of 14

W05S13



ensemble experiments [e.g., Bradley et al., 2002].Morrissey
et al. [1995] had previously concluded that the standard error
of observations in a network depends on that geometrical
configuration, and not just on the density of stations and the
spatial structure of the measured field. It may thus be
considered that an imposed or generalized spatial structure
for an observed field such as precipitation, as results from a
geostatistical approach, could be inappropriate. Overall,
Morrissey et al. concluded that uniform networks are best in
the spectrum of observation accuracy, followed by random,
quasi-linear, and finally clustered networks.
[22] The intergauge distance is found by location-based

calculations for all gauge-to-gauge combinations in a given
network, and the mean and variance (or standard deviation)
of this distribution are important here. Also calculated is the
unbiased coefficient of skewness for the distribution of
intergauge distances,

gd ¼ N

N � 1ð Þ N � 2ð Þ
XN
n;m¼1

dn;m � md

sd

� �3

; ð2Þ

where {n, m} are gauge indices, dn,m is the distance between
the two gauge locations, and md and sd are the mean and
standard deviation for the distribution of intergauge
distances, respectively.
[23] We consider also the distribution of nearest-neighbor

distance and its moments for a given gauge network. Smith
et al. [1986] considered the mean of that distribution, but
we are particularly interested in its coefficient of skewness.
We suggest that this constitutes a clustering factor (CF) for
the network, found with an unbiased formulation analogous
to equation (2) as

CF ¼ gnn ¼
N

N � 1ð Þ N � 2ð Þ
XN
n¼1

dnn � mnn

snn

� �3

; ð3Þ

where n is a gauge index, dnn is the distance to its nearest
neighboring gauge, and mnn and snn are the mean and
standard deviation for the distribution of nearest-neighbor
distances, respectively.
[24] Examples of these measures are illustrated in Figures 5

and 6, where the geometric statistics for four different gauge
network configurations are calculated. Figure 5a shows a true
regular network after Smith et al. [1986], in which a gauge is
equidistant from each of its nearest neighbors and thus forms a
triangular lattice network. The coefficient of skewness for the
overall distribution of intergauge distances is small (gd= 0.22).
In this case, the clustering factor is undefined because of the
singular value of nearest-neighbor distances (dnn = 1.0) for all
gauges in the network. The geometry of our 85-gaugeWGEW
network is examined in Figure 5b, where we find that the
overall coefficient of skewness for the distribution of inter-
gauge distance is small (gd = 0.68) and that clustering of
gauges is even smaller (CF = �0.06).
[25] For comparison, two possible subset networks for the

WGEW are shown in Figure 6. A network with N = 42
gauges and a CF < 0 is shown in Figure 6a, where large
nearest-neighbor distances dominate the distribution. This is
indicative of a sparse network that may still seem to represent
the distribution of precipitation well over the entire WGEW,
but at a lower resolution than provided by the complete
gauge network. In this case, we suggest that gauge redun-

dancy (a still-ambiguous concept in network analysis) may
be reduced, but that the resulting interpolated field will be
much smoother than obtained with the complete network.
[26] The coefficient of skewness for the distribution of all

intergauge distances in Figure 6a is very near that for a
counterpart network subset with CF > 0 in Figure 6b. Other
statistics of the latter network reflect the small nearest-
neighbor distances that dominate the distribution and pro-
duce gaps in coverage over the WGEW. While gauge
redundancy in the network may not increase above that
observed in the complete WGEW network, neither would
we find it to be reduced, as for the network with CF < 0. We
expect increased uncertainty and thus greater errors due to
the reduced representation of the complete precipitation
field using this network subset. In summary, for networks
with CF < 0 we expect errors (relative to results for the
complete network) due to reduced resolution of the precip-
itation field, and for networks with CF > 0 we expect errors
due to reduced areal representation of the precipitation field.

3.2. Spatial Interpolation Methods

[27] This work supports an effort at the selection and
implementation of objective analysis methods for applica-
tion of meteorological observations, especially precipita-
tion, in a distributed LSM framework [Kumar et al., 2006;
Tischler et al., 2007]. These methods are investigated with
respect to their capability to reproduce certain gauge- and
network-provided observations without user interaction or
interference. The methods examined here have been selected
for their simplicity and relative objectivity in formulation.
The first method, interpolation by an inverse-distance-
weighted algorithm, has demonstrated efficiency and reli-
ability in consistent operational usage, even in regions of
noted orographic influence on precipitation patterns. The
second method, interpolation by a multiquadric-biharmonic
algorithm, is more sophisticated in formulation than the
inverse distance algorithm, and its results have been com-
pared favorably with geostatistics as an objective alternative
to that method.
3.2.1. Inverse-Distance-Weighted (IDW) Interpolation
[28] The inverse distance method of spatial interpolation

enjoys a long history of usage and reliability, due primarily
to its simplicity of formulation and its persistent application
in operational settings. This method has been employed for
some time in the National Weather Service (NWS) River
Forecast System (RFS) [National Weather Service, 1999]
for the operational estimation of precipitation over much of
the United States. The results of inverse distance methods
have been compared, often unfavorably, against those of
geostatistical methods by several researchers [e.g., Ball and
Luk, 1998; Dirks et al., 1998].
[29] In the IDW method, the value of the interpolated

field pi at a location (xi,yi) is found by

pi ¼
1

Wi

Xnn�N

n¼1

wi;npn; ð4Þ

where pn is the known value of the field at gauge n. Weights
wi,n are given by

wi;n ¼ cx xi � xnð Þkþ cy yi � ynð Þkþ cz zi � znð Þk
h i�1

; ð5Þ
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where {cx, cy, cz} allow for anisotropic weights, and the
normalization factor Wi is found by

Wi ¼
Xnn�N

n¼1

wi;n: ð6Þ

This work will consider only cx = cy = 1 and cz = 0,
indicating horizontally isotropic weighting without explicit
topographic influence.
[30] The summations in equations (4) and (6) may be

limited in a number of ways, by which a subset of the gauge
network is selected according to a ‘‘radius of influence’’ or a

specified number of ‘‘nearest neighbors’’ (nn � N) for
interpolation to an unknown (or missing) location. It should
be noted that, if the limiting value nn = 1 is chosen, the
mathematics of the IDW method collapse to the selection of
the single nearest gauge value, which is the well-known
‘‘nearest-neighbor’’ or Thiessen [1911] polygon method for
the spatial distribution of precipitation observations. In this
work, all available gauges in a network subset are employed
in spatial interpolation calculations, such that 1 � nn < N.
[31] The order (exponent) k in equation (5) of the IDW

algorithm is sometimes at issue in its application. In the
NWSRFS and many other examples, k = 2 (indicating the
inverse-distance-squared method) is widely accepted for

Figure 5. Example gauge networks and metric calculations for (a) a regular network (N = 105), with a
unitless distance measure, and (b) the WGEW network (N = 85), with UTM locations in m.
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general use. Several researchers [e.g., Simanton and Osborn,
1980; Tung, 1983], have experimented with variations in this
order, examining its effects on the spatial distribution of
information from precipitation observations. The response
given by equations (4)–(6) for a linear network of three
gauges is illustrated for values of k = {1, 2, 3} in Figure 7.
Results for these three variations on the IDW algorithm are
denoted as IDW-1, IDW-2 and IDW-3, respectively. Evalu-
ation of such experiments requires the reservation of one or
more stations in the available network for the purposes of
comparison and validation, a difficult task in regions where
the gauge coverage is already sparse. In areas of dense gauge

coverage, as for the WGEW, this approach becomes more
viable and appropriate.
[32] Finally, a computationally attractive feature of the

IDW method of spatial interpolation is its capability for
precalculation during a numerical simulation, such that time
is saved at each interval of the simulation for which new
precipitation (or other) input is available. However, this
capability relies implicitly on stationarity of the gauge
network. These features and capabilities will be important
in comparison with the multiquadric-biharmonic interpola-
tion method, described below.

Figure 6. As in Figure 4b, but for WGEW-subset networks with (a) N = 42 and CF < 0 and (b) N = 42
and CF > 0.
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3.2.2. Multiquadric-Biharmonic (MQB) Interpolation
[33] Recent exploration and use of the multiquadric-

biharmonic (MQB) method for spatial interpolation can be
attributed primarily to an extensive review of related work
by Hardy [1990], the originator of the method. Prior to that
time, the MQB method was included in a qualitative
comparison of numerous interpolation functions by Franke
[1982] and in a specific, quantitative comparison with
geostatistical methods by Supachai [1988]. The latter study
found that the MQB method compared favorably with a
more subjective geostatistical analysis performed over the
same region. The MQB method has since been employed in
analyses of precipitation fields on regional [Nuss and Titley,
1994] and watershed scales [Syed, 1994; Syed et al., 2003].
The work of Syed included comparisons with geostatistical
analyses of precipitation patterns over the WGEW during
the Monsoon’90 experiment that are directly relevant to the
results and discussion presented here.
[34] In the MQB method, the value of the interpolated

field qi at a location (xi, yi) is found by

qi ¼
XN
n¼1

anbi;n; ð7Þ

for which the coefficients an are determined below and the
weights bi,n are given by

bi;n ¼ cx xi � xnð Þ2þcy yi � ynð Þ2þcz zi � znð Þ2þR2
h i1=2

; ð8Þ

where the three-dimensional weight is indicated for
generality, but again we consider only horizontally isotropic
weights with cx = cy = 1 and cz = 0. The parameter R allows
for the fit of a continuously differentiable hyperbolic surface
to the given data set [Hardy, 1990]; where R = 0 is
specified, the data set is fitted with conic surfaces that are
discontinuous at the given locations. This is illustrated with
the response in Figure 7 given by equations (7)–(8) for a
linear network of gauges. A detailed analysis of optimal
values for the R parameter has been presented by Carlson
and Foley [1991]. Because the selection of values for R

remains nontrivial in practice [e.g., Franke et al. 1994], and
would change with the gauge network configuration
(numbers and locations of gauges), for ease of application
we have elected to specify R = 0 in this work.
[35] Following the MQB formulations presented by

Hardy [1990] and Saunderson [1992], the coefficients an
are found by considering that qj is the known value of the
field at gauge j,

qj ¼
XN
n¼1

anbj;n; ð9Þ

or, in matrix notation for the given network,

Qj ¼ Bj;nAn; ð10Þ

for which the terms are given by

Qj ¼

q1

q2

..

.

qN

2
66664

3
77775;Bj;n ¼

0 b1;2 � � � b1;N

b2;1 0 � � � b2;N

..

. ..
. . .

. ..
.

bN ;1 bN ;2 � � � 0

2
66664

3
77775; and An ¼

a1

a2

..

.

aN

2
66664

3
77775:

ð11Þ

By premultiplication, the solution for the coefficients An is
obtained as

An ¼ B�1
j;n Qj; ð12Þ

where the matrix inverse may be found by a preferred
algorithm, such as the Gauss-Jordan (employed here) or the
least squares methods of inversion. Then, at each time for
which spatial interpolation is to be performed, the
calculation follows equations (7) and (12) as

Qi ¼ Bi;n An ¼ Bi;nB
�1
j;n Qj; ð13Þ

for which all bi,n and bj,n result from the chosen form of
equation (8). It is noted explicitly here that the values in Qj

depend on the time series of observations at each gauge
location. However, in the context of numerical simulation,
the weights for the known gauge locations in Bj,n (if
stationary) and the inversion and multiplication of that
matrix with the simulation domain locations in Bi,n may be
precalculated, saving computation time in that step of the
interpolation process.

3.3. Ensemble Methodology

[36] We evaluate interpolated precipitation amounts at
selected points against the recorded precipitation at those
locations, essentially in an attempt at reproduction of the
‘‘truth’’ for locations of missing gauge values. The statistics
considered here are standard and common representations
of comparison error. These statistics include the bias (pri-
marily as an indicator of sampling-related error in ensemble
aggregation results), the mean absolute error (MAE), and
the root-mean-square error (RMSE).
[37] Of various procedures available for comparisons

between subset-based fields F(x, y, s) and the master set–
based F(x, y, S), we employ the well-known data denial or

Figure 7. Normalized functional response of interpolation
methods for a linear network of three gauges.
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‘‘jackknife’’ method [Cressie, 1993] that relies on the
simple removal of source locations for each realization of
a subset F(x, y, s). For each subset, the field values at
‘‘missing’’ locations may be found by the described inter-
polation methods using only those gauges in the subset, and
the resulting values may then be compared with those in the
full set, F(x, y, S). In these experiments, a random non-
repeating ensemble of gauge subsets was selected for each
value of 1 � n � 84 for individual comparison with the full
set of gauges (N = 85). This methodology is somewhat
analogous to the Monte Carlo method employed by
Krajewski et al. [1991]. The results of these comparisons
were then aggregated and analyzed for the statistics
reported below.
[38] The number of required, randomly selected subsets

NS for statistical significance of the aggregated ensemble
results may be found, after Cressie [1993], by

NS ¼ t cð Þ
p

; ð14Þ

where the precision of the estimate is indicated by p and the
function t represents Student’s t distribution on the basis of
the desired confidence c in the estimate. However, with
expected errors of 0.25 mm (0.01 inches, the measurement
resolution of most precipitation gauges in the United States)
at a confidence level of 99.9%, only 14 subsets are required
for evaluation, and we have found that this small ensemble
size results in potentially large biases in the aggregated
results. Even at an expected error of 0.10 mm, at the same
level of confidence, the calculated 33-subset ensembles still
allow some undesirable bias at low network densities in the
aggregated results. We have thus elected here to evaluate
ensembles with 66 members (i.e., randomly selected gauge
network subsets) in the space of 1 � n � 84, with expected
errors of 0.05 mm at a confidence level of 99.9%. These
selections are applied to produce randomly selected,
nonrepeating subsets of the complete gauge network for
analysis according to the jackknife method.

4. Results and Discussion

[39] Aggregated error statistics of the randomly selected
ensembles, as described above, are analyzed with respect to
both gauge network density, represented by the number of
gauges N in the network, and the calculated clustering factor
CF for the ensemble member. The impacts of these results
on the selection and optimization of an interpolation method
according to event morphology are also discussed.

4.1. Error as a Function of Network Density

[40] Graphical results showing the ensemble mean MAE
and RMSE with respect to the number of gauges N in the
subset network, evaluated against the full network, are
shown for event 1 in Figure 8a. It is clear that the IDW-1
method produces far inferior results, that the IDW-2 method
produces slightly larger errors than its higher-order coun-
terpart, and that results of the IDW-3 and MQB methods are
nearly indistinguishable over much of the set space.
[41] Similar results are found for event 2, as shown in

Figure 8b. However, it is clear that the MQB method
performs better than all orders of the IDW method in this
case. The overall magnitudes of MAE and RMSE increase

with the spatial CV of the events and are consistent with the
analysis of convective and stratiform character for each
event as discussed above.
[42] The bias results for each event are not shown, but

were different for each of the interpolation methods and
are described here. For event 1, bias results were found
to range up to 2.5 mm, which is 6.4% of the mean and
only 3.0% of the maximum event precipitation as listed
in Table 1. Interpolation biases were found to remain
above 1% of the mean event precipitation only for low
network subset densities, up to approximately one third
of the complete WGEW gauge network (n � 28). For
event 2, bias results ranged up to 4.5 mm, which is
34.1% of the mean but only 6.6% of the maximum
event precipitation. For this more convective case, inter-
polation biases were found to remain above 10% of the
mean event precipitation for network subset densities up
to approximately one sixth of the complete WGEW
gauge network (n � 13) and above 1% for network
subset densities up to approximately three quarters of the
complete network (n � 66). Overall, these results sug-
gest an exponential decrease in interpolation bias with
network density, though this factor may be explained by
the consideration of still too few ensemble members at
those network densities in the jackknife method
employed here.
[43] It is evident in these results that event 2, of more

distinctly convective morphology, produces greater values
of MAE and RMSE than the mixed morphology of event 1.
As expected, it is more difficult to describe accurately the
spatial distribution of precipitation in a convective event
with a limited or partial network than with the complete
network, regardless of the interpolation method selected.
This conclusion presents significant implications for other
locations with less dense gauge networks. Specifically, the
accuracy to be expected from an interpolator operation is
limited inherently by the spatial resolution provided by the
gauge network. We suggest that the interpolation order,
resulting errors, the gauge network density (or a proxy
measure, such as the mean spacing of nearest neighbors),
and the characteristic spatial scale of the precipitation event
must all be considered together in such analyses. For
isolated or strongly convective events, such as event 2
examined here, large errors must be expected where the
surface gauge network remains inadequate for the observa-
tion and spatial representation of the event dynamics, for
which no method of interpolation based purely on mathe-
matics can compensate. In such a case, ancillary information
(e.g., topography, where orographic influences are sus-
pected) and dynamical models represent more physically
based, and potentially more accurate, approaches to the
problem of event analysis.

4.2. Error as a Function of Network Geometry

[44] Graphical results showing the individual gauge net-
work subset values of MAE and RMSE with respect to the
calculated subset clustering factor CF are shown for event 1
in Figure 9a. Results for the IDW-1 method are not shown,
but more than 5,400 ensemble member results for each of
the other interpolation methods (IDW-2, IDW-3 and MQB)
were analyzed in the demonstration of these error metrics. A
close-up view of the range in results for �3 < CF < 3 is
shown here, though the complete set of analysis results
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spanned the range �13 < CF < 75 for this event.
Within the range shown, results for nearly 54% of the
complete set are represented. It is evident that the
calculated errors are generally smaller, and depend less
on the selection of interpolation method, for CF < 0.
For networks with CF > 0, greater differences between the
results of the various interpolation methods are shown.
[45] The corresponding error results for event 2 are

shown in Figure 9b. In this case, the range �3 < CF < 3
shown there represents more than 79% of the results for the
complete set of interpolation experiments, which spanned
the range �16 < CF < 74 for this event. Again, the
calculated errors are generally smaller and less dependent
on the selection of interpolation method for CF < 0, though
larger differences between the interpolation methods are
evident for this event than for event 1. For networks with
CF > 0, greater differences in results of the various
interpolation methods are again apparent.
[46] Overall, it is concluded that the MQB interpolation

method performs best but, like the IDW methods, remains
subject to significant errors when clustering of the gauge
network prevents adequate spatial coverage and thus repre-
sentation of the observed storm event. In all cases, it is
shown that better results are obtained for gauge networks
that are less clustered in geometry and can better represent
the overall spatial coverage and observed resolution of the
convective events. As discussed above, for networks with
CF < 0 the calculated errors remain relatively smaller and
are due primarily to reduced resolution of the precipitation

field, while for networks with CF > 0, calculated errors are
relatively larger and are more likely due to missed
features in the precipitation field because of reduced areal
representation.

4.3. Discrimination and Interpolation According to
Event Morphology

4.3.1. Discrimination Methodology
[47] The discrimination of convective and stratiform

events was not solely based on the calculated spatial CV,
but primarily on the analysis of breakpoint and hourly
precipitation rates during the event and additional knowl-
edge of the event environment. It would certainly be
advantageous to develop a method of event discrimination
based on the calculated spatial statistics of the events, e.g.,
spatial minimum and maximum precipitation rates, spatially
distributed total event precipitation, and spatial moments
including variance and CV as listed in Table 1. However, in
both the convective and mixed or stratiform events exam-
ined here it was found that the MQB interpolation method
generally outperformed the IDW interpolation methods,
leaving little additional information to be provided to the
interpolation selection or method formulation by the dis-
crimination according to event morphology.
4.3.2. Interpolator Selection and Optimization
[48] For holistic evaluation of the precipitation field over

a limited gauge network, the MQB interpolation method
seems to provide better error characteristics than the IDW
methods examined here. The MQB method is followed

Figure 8. Plots of (top)MAE(N) and (bottom) RMSE(N) for (a) event 1 on 12 August 1990 and (b) event
2 on 18 August 1996.
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closely in accuracy by the IDW-3 method, which provides
nearly equivalent results for stratiform events. Greater
differences between the interpolation methods should be
expected for events of more convective character, and
especially for clustered networks (CF > 0). Interpolation
experiments with small, idealized gauge networks have
suggested that the MQB method is insensitive to the
impacts of clustering on interpolation results, while the
IDW method may erroneously weight duplicate information
equally in gauge clusters (G. Woodard, personal communi-
cation, 2007). This result lends justification to the use of
MQB results as a baseline, and suggests that it may be
possible to incorporate information on gauge clusters into
the IDW formulation, bringing its results closer to those of
the MQB method. The IDW-2 method, a common and
accepted choice in operational settings, is clearly not as
accurate as its higher-order counterpart in convective con-
ditions. These results extend the work of Simanton and
Osborn [1980], who considered only simple correlation in
their assessment of IDW interpolation accuracy at various
orders.
[49] The computational burden of the interpolation meth-

od increases with the number of gauges in the observation
network. This is especially the case for the MQB method
because of the matrix inversion and multiplication opera-
tions required. It is likely a better approach to employ the
IDW-3 method, which provides comparable results for
mixed and stratiform events, when computational con-
straints are at issue. There is no obvious difference in
computational burden between IDW-2 and IDW-3 methods.

[50] We may also consider the application of interpolation
methods in a targeted ‘‘window’’ approach, where the MQB
method could be applied to isolated convective events and
the IDW-3 method could be applied to larger mixed or
stratiform events and over larger areas. It is likely easier to
apply the IDW-3 method in a ‘‘moving window’’ approach
on the basis of a limited number of nearest neighbors, or
with a fixed radius of influence, because of the formulation
mathematics involved. The MQB method requires consid-
eration and operation on the entire network in the observa-
tion window, likely lending difficulty to the application of
that method over larger areas where the influence of distant
gauge observations on interpolation at a particular location
is expected to remain small or negligible. In such a case, the
IDW methods are inherently better suited to the interpola-
tion of the precipitation field.

5. Summary and Conclusions

[51] Discrimination of event morphology according to
spatial CV, and its potential correlation with the selection
and effectiveness of applied interpolation methods, has been
examined here. The clustering factor CF was formulated
from the coefficient of skewness for the distribution of
nearest-neighbor distances in the gauge network, as an
indicator of clustering in the observing network. A simple
jackknife analysis demonstrated the performance of MQB
and IDW interpolation methods at various orders, though it
was found that a greater number of ensemble members may
still be required for the reduction of residual bias in the

Figure 9. Plots of (top) MAE(CF) and (bottom) RMSE(CF) for (a) event 1 on 12 August 1990 and (b)
event 2 on 18 August 1996.
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results and for more thorough sampling throughout the
range of CF. Overall, the MQB and IDW-3 methods
produce superior error statistics in events of mixed or
stratiform morphology and for networks with CF < 0. In
convective events, the MQB method produced clearly more
accurate interpolation results, and for clustered networks
(CF > 0) was more accurate than the IDW methods by a
small margin. In all cases, the IDW-2 method, a common
choice, is not as accurate as the MQB and IDW-3 methods.
[52] It is difficult to determine how the CF could best be

incorporated into the mathematical formulation of interpo-
lation functions in order to reduce the influence of redun-
dant gauges, but some precedent is available [e.g., Habib et
al., 2001; Daly et al., 2002; Ahrens, 2006]. The distribu-
tions of error with respect to network geometry (specifically,
clustering) may be useful for a priori estimates of expected
error for a reduced network and for particular precipitation
event morphology, with proper consideration given to the
method and order of interpolation selected. As mentioned
above, however, such mathematical considerations may
remain unnecessary in use of the MQB method for spatial
interpolation. This aspect of MQB utility, especially in
studies of networks with large numbers of gauge locations
and thus considerable computational burden, remains an
issue for further investigation.
[53] It is recognized that the results of the analyses pre-

sented here may remain specific to the region, time period,
and weather and climate regimes studied. As described
above, the rainfall records examined in this work occurred
in a semiarid region of moderate orographic influence and
during a portion of the boreal summer season under the
synoptic influence of the NAM system. For application to
other locations, time periods, and weather and climate
regimes, it is intended that the described methodology will
remain robust, though the results of an individual application
may differ significantly from those discussed here.
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