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Abstract

This research investigates the appropriate scale for watershed averaged and site specific soil moisture retrieval from high resolution radar
imagery. The first approach involved filtering backscatter for input to a retrieval model that was compared against field measures of soil moisture.
The second approach involved spatially averaging raw and filtered imagery in an image-based statistical technique to determine the best scale for
site-specific soil moisture retrieval. Field soil moisture was measured at 1225 m2 sites in three watersheds commensurate with 7 m resolution
Radarsat image acquisition. Analysis of speckle reducing block median filters indicated that 5×5 filter level was the optimum for watershed
averaged estimates of soil moisture. However, median filtering alone did not provide acceptable accuracy for soil moisture retrieval on a site-
specific basis. Therefore, spatial averaging of unfiltered and median filtered power values was used to generate backscatter estimates with known
confidence for soil moisture retrieval. This combined approach of filtering and averaging was demonstrated at watersheds located in Arizona (AZ),
Oklahoma (OK) and Georgia (GA). The optimum ground resolution for AZ, OK and GA study areas was 162 m, 310 m, and 1131 m respectively
obtained with unfiltered imagery. This statistical approach does not rely on ground verification of soil moisture for validation and only requires a
satellite image and average roughness parameters of the site. When applied at other locations, the resulting optimum ground resolution will depend
on the spatial distribution of land surface features that affect radar backscatter. This work offers insight into the accuracy of soil moisture retrieval,
and an operational approach to determine the optimal spatial resolution for the required application accuracy.
Published by Elsevier Inc.
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1. Introduction

The distribution of near surface soil moisture is an important
factor in hydrologic cycles, floods, climate, and ecosystem
production. Resource managers can use such knowledge for a
wide range of decision making related to prescribed burns,
animal stocking rates, rangeland health and off road trafficabil-
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ity. Space based synthetic aperture radar (SAR) imagery can
provide broad scale information on near surface soil moisture
because radar signal return is responsive to changes in soil
moisture. However, signal return is strongly affected by other
variable surface features such as topography, roughness, and
constructive and destructive wave interference that result in
speckle inherent with active microwave systems (Mattia et al.,
2003). To account for variable surface factors and image
speckle, numerous approaches have been developed to derive
estimates of soil moisture from imagery.
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The methods designed to account for physical surface factors
and radar geometry can be grouped into empirical, semi-
empirical and physically based models (Baghdadi et al., 2004;
Bindlish & Barros, 2000; Oldak et al., 2003; Shoshany et al.,
2000) that account for surface feature influence on return signal
by different means. However, regardless of retrieval method,
imagery is typically filtered using one of several potential speckle
reduction filters (e.g., Frost et al., 1982; Kuan et al., 1985; Lee
et al., 1994). Most image filtering techniques are applied using
relatively small (several pixels) moving windows and are
evaluated in terms of image metrics without determining the
relationship between filter window size and retrieval accuracy.

In spite of spatial filtering, even with high resolution imagery
(1 to 25 m), studies have shown generally poor relationships
existed between modeled and measured soil moisture at site
(b1 ha) or field (1 to 10 ha) scales and only improved at broader
watershed scales (N10 ha) (Kelly et al., 2003; Le Conte &
Brissette, 2004; Thoma et al., 2006). The improvement in
accuracy of soil moisture retrieval after filtering and at broader
scales results largely from isolating central tendencies (i.e.,
average backscatter values) that are concealed by speckle at
finer scales. Only the large pixel sample sizes associated with
watershed scale allowed the central tendency in backscatter to
be clearly related to surface features (Kelly et al., 2003). These
and other researchers also showed that including a temporal
component improves prediction results at finer scales (Oldak
et al., 2003). But, this is unfortunate since many applications
require relatively fine resolution (at site or field scales) soil
moisture data at points in time.

Our hypothesis is that the central tendencies in radar backscatter
and the appropriate scale for soil moisture retrieval can be
determined through a combination of stepwise median filtering
that reduces speckle and spatial averaging over increasingly larger
areas to isolate central tendencies in image statistics. In this paper,
we demonstrate a technique to determine the minimum level of
filtering and spatial averaging necessary to determine backscatter
with known confidence using an image-based approach.

The objectives of this research were to test these methods
using field measurements and statistical analysis at multiple
watersheds. The first step was to validate soil moisture retrieval
from radar imagery using watershed scale validation sites in
Georgia, Oklahoma and Arizona. Then, the proposed methods
of filtering and spatial averaging were applied to images at the
field scale and evaluated for speckle removal and signal
enhancement. Finally, we demonstrated an image-based
approach for determining an appropriate resolution for soil
moisture retrieval at the site scale. This study offers a protocol
for determining the minimum spatial resolution for soil moisture
retrieval from radar imagery with known confidence.

2. Study areas and data sets

2.1. Study areas

The three study areas used in this research were the 150 km2

Walnut Gulch (AZ) Experimental Watershed (31° 43′N, 110°
41′W) in southern Arizona, the 334 km2 Little River (GA)
Experimental Watershed (83° 40′W, 31° 36′N) in southern
Georgia, and the 611 km2 Little Washita (OK) Experimental
Watershed (98° 3′W, 34° 52′N) in central Oklahoma, all
operated by the United States Department of Agriculture,
Agricultural Research Service.

The AZ Experimental Watershed is a semi-arid rangeland
supporting low density grass and shrub vegetation (Renard
et al., 1993). Soils are composed primarily of alluvium and
contain 0 to 60% rock fragments by volume in the top 5 cm of
soil profiles. The topography consists of rolling and heavily
dissected terrain. Forty-two field sites were selected from grass
and shrub dominated landscapes.

The GAWatershed is in a sub-humid coastal plain region that
is heavily vegetated with a mixture of forest, crops, and pastures
(Bosch et al., 2006). Slopes are gentle and soils are sandywith no
rock fragments but may contain iron and manganese concretions
less than 1 cm diameter near the soil surface depending on the
extent of erosion. Twenty-two field sites were selected from
among pasture and fallow row crop fields, and measurements
were made when vegetation was senescent.

The OK Experimental Watershed is in a humid region
dominated by forest and pasture land (Allen & Naney, 1991).
Soils are composed primarily of wind deposited loess and
residuum and the topography is gently rolling. Sixteen field sites
were chosen within rested or actively grazed pastures, and like
GA, measurements were made when vegetation was senescent.
A single exception was a winter wheat field that experienced
significant phonological change between image acquisitions.

2.2. Imagery

Radarsat images used in this study were F5F fine beam, 46°
incidence angle, HH polarization, with 6.25 m resolution. This
is one of 5 fine beam modes used in applications that require the
highest spatial resolution (Radarsat International, 2000). At AZ,
four images were acquired coincident with field measures of
soil moisture in 2003 on 19 January, 30 July, 31 August, and 16
September. An additional image from 04 August 2002 was also
obtained for AZ. At GA, images were acquired coincident with
field measures of soil moisture in 2004 on 27 February, and 22
March. At OK, images were acquired coincident with field
measures of soil moisture in 2004 on 19 February, 14March, and
7 April. For the AZ, GA and OK study areas, one of the images
was selected to represent ‘dry’ or ‘reference’ soil moisture
conditions used in the delta index, described below. The
reference images were acquired on 19 January 2003, 22 March
2003, and 19 February 2003 for AZ, GA, and OK respectively.
Image resolution was rounded up to 7 m at import using nearest
neighbor resampling and was georeferenced bymatching clearly
visible buildings and road intersections with 1 m resolution
USGS digital orthophotographs. Registration error (RMSE) was
kept below 4 m using between 26 and 44 ground control points.

2.3. Vegetation water content and biomass

Earlier research in the AZ watershed indicated that the
sparse, rangeland vegetation there had little influence on radar



Table 1
Range in calibrated volumetric soil moisture measured at field sites at times of
satellite overpass

Study
area

Date Probe
Sm min
(m3 m−3)

Probe
Sm max
(m3 m−3)

Probe
Sm avg
(m3 m−3)

Reference
image

Watershed
Sm range
(m3 m−3)

AZ Jan_19_031 0.00 0.24 0.06 x 0.24
AZ Jul_30_03 0.02 0.20 0.14 0.18
AZ Aug_23_03 0.04 0.17 0.07 0.13
AZ Sep_16_03 0.03 0.07 0.05 0.04
AZ Aug_04_02 a 0.15 0.47 0.23 0.32
GA Feb_27_04 0.12 0.37 0.19 0.25
GA Mar_22_04 a 0.00 0.27 0.06 x 0.27
OK Mar_13_04 0.18 0.31 0.24 0.13
OK Apr_16_04 0.06 0.18 0.12 0.12
OK Feb_19_04 a 0.05 0.23 0.14 x 0.18
a Soil moisture was determined for the watershed using in situ continuously

recording capacitance or time domain reflectometry soil moisture sensors. Data
from these sensors were used to determine average watershed soil moisture for
selection of reference images in the delta index calculations. These data were
used for validation in AZ only once (aug_04_02) because they were point
measurements. In GA and OK the in situ sensors were located at field edges to
avoid farming operations and thus could not be used for validation. The average
RMSE for soil moisture measured with portable probes versus soil moisture
measured by in situ sensors near the sensors was 0.02 m3 m−3.
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backscatter (Moran et al., 2000) and research in Kansas
prairies indicated grass had little effect on backscatter
(Hutchinson, 2003). However, because the biomass was
denser in many GA and OK pasture sites than it was in the
AZ range sites, it was sampled destructively for vegetation
water content and biomass to determine if vegetation water
content affected soil moisture retrieval. At each GA and OK
field site, four 0.25 m2 quadrats were clipped and weighed wet
and after 48 h of forced air drying at 60 °C to determine
vegetation water content.

2.4. Surface roughness and soil moisture measurements

Thirty replicates of correlation length and root mean square
of surface heights were determined from field measurements
with a pin meter (Bryant et al., 2007) at each field site in AZ.
Twenty measurements were made at each field site in GA
and OK. Because AZ was rangeland and the sites in GA and
OK were in pasture or fallow row crops that had already
over wintered, we assumed that surface roughness did not
change between image acquisitions. The roughness measure-
ments were not needed for use with the delta index retrieval
model, but were included to describe the watersheds and
make inference about the influence of roughness on image
statistics.

For all but three image dates, soil moisture measurements at
field sites were made over an integrated 0 to 5 cm depth using
capacitance-based moisture probes at 30 to 50 locations on a
grid within each 1225 m2 field site for each watershed. All field
measurements of soil moisture were made within 4 h of the
6:30 PM satellite overpass times.

For the Radarsat image acquisition on 04 August 2002 in the
AZ watershed, soil moistures were retrieved from continuously
recording in situ capacitance sensors installed at 5 cm depth at 13
locations in the watershed (Keefer et al., submitted for
publication). Similarly, watershed average soil moisture was
determined from continuously operating moisture probes in-
stalled at 5 cm depth on 22 Mar 2004 in GA (18 sites) (Bosch
et al., 2004) and from time domain reflectometry soil moisture
sensors on 19 Feb 2004 at OK (7 sites) (Starks et al., 2006).

3. Methods

3.1. Delta index for soil moisture retrieval

In this study, we chose to use the recently proposed delta
index to retrieve soil moisture from radar images (Thoma
et al., 2006). The delta index implicitly accounts for
topography and other surface features including vegetation
and roughness that would be exceedingly difficult to measure
accurately at broad scales (Callens & Verhoest, 2004) as long
as they remain unchanged between image acquisitions. Delta
index was calculated using wet and dry image pairs obtained
at different times of the year for bare, fallow, or senescent field
site pixels in the three study areas. These delta index values
were then compared to soil moisture measured on the ground
at 35 m.
The delta index on a per pixel basis is defined as,

Delta index ¼ j r
o
wet � rodry
rodry

j; ð1Þ

where σo
dry= radar backscatter from dry soil obtained from a

reference image (Table 1), and σo
wet= radar backscatter from

the same location when soil is wet obtained from imagery other
than the reference image (Table 1).

The delta index requires that vegetation and surface
roughness remain unchanged between image acquisitions and
that imagery have the same incidence angle and foot print. In
this study, the delta index was calculated on a per pixel basis
using unfiltered and filtered imagery for selected field sites
where changes in vegetation and roughness were negligible
(senescent pastures and fallow fields, except for one wheat field
in OK). This was ensured by selecting validation sites in AZ
rangelands and fallow fields and pastures in GA and OK study
areas and by using imagery that had the same viewing geometry
at each acquisition.

For mapping applications, users should consider masking by
land use if significant crop growth or cultivation takes place
between image acquisitions. Change in either vegetation indices
or backscatter across whole fields in agricultural areas would
indicate that delta index calculations may be invalid. In practice,
images are filtered or spatially averaged before computing the
delta index to minimize effects of speckle. If reference scenes
are chosen after long dry periods and vegetation and surface
roughness remains unchanged, then the computed delta index
values result from changes solely due to soil moisture and
speckle. Speckle effects can be minimized via filtering and or
spatial averaging described below.



Table 2
Watershed averaged surface roughness parameters measured once at each field
site during the course of the study

Study
area

RMS
surface
height
(cm)

Correlation
length
(cm)

SD RMS
surface
height
(cm)

SD
correlation
length
(cm)

Slope of
power vs.
soil
moisture a

Cutoff
value b

(power)

AZ 0.79 8.20 0.29 2.47 0.2704 8.112 ˙10− 3

GA 0.76 15.05 0.36 11.80 0.1439 4.317 ˙10− 3

OK 0.99 19.41 0.25 13.67 0.1709 5.127 ˙10− 3

a Power was calculated using the IEM model (Fung et al., 1992) with
watershed averaged surface roughness characteristics and radar parameters
matching the imagery.
b Cutoff value is user set to correspond with +/−3% allowable error in

estimated soil moisture.
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3.2. Image filters and statistics

The block median filter was chosen because of its simplicity
and it does not require a priori knowledge of speckle statistics.
In this study, four levels of a block median filter (3×3, 5×5,
7×7, 9×9 pixels) were applied to the 7 m resolution Radarsat
backscatter images from the three study areas producing 50
backscatter images including the unfiltered imagery. Block
filtering degraded resolution by multiples of 7 m; for example,
raw 7 m resolution imagery passed through a 3×3 block median
filter resulted in a 21 m resolution filtered image product.

Filtering changes delta index values at different resolutions
because of the absolute operator in the equation. Speckle shifts the
delta index in the positive direction in less aggressively filtered
imagery and at finer scales. The delta index in practice can be used
with or without the absolute operator because it is an empirical
relationship with soil moisture. This issue does not change the
findings of this research related to appropriate site-specific spatial
scale for input to soil moisture retrieval models because the
appropriate site-specific scales were determined from analysis of
power values without the need to compute a delta index.

The 95% confidence interval (CI) for the mean power value
centered over each field site at each step in the growing region
procedure was determined using the percentile bootstrap method.
The bootstrapmethod has been shown to be a robust technique for
computing confidence intervals around the mean of lognormal
data (Helsel, 2005; Singh et al., 2006). The bootstrapped 95%
confidence interval is the 2.5th and 97.5th percentiles of the
estimates of the mean. The ordered means were determined by
samplingwith replacement from the original set of n observations.
In this study we computed 500 means on pixel power values for
determining the confidence interval on the mean for each step in
the growing region process. The confidence interval widths were
plotted versus the number of pixels used in the calculation which
translates directly to ground area.

Confidence intervals have been used to establish the
suitability of backscatter estimates for soil moisture retrieval
Fig. 1. Sensitivity of observed power to change in soil moisture according to the
advanced IEM model using watershed averaged roughness parameters for the
three watersheds (Table 2). This relationship was used to determine the
allowable uncertainty in power that would limit retrieved soil moisture error to
+/−0.03 m3 m−3. Solid lines represent best fit linear regression.
(Griffiths & Wooding, 1996; Mattia et al., 2003) but have not
been used in the inverse sense to determine the spatial scale over
variable surfaces required for an estimate of known quality.

3.3. Image-based approach for determining confidence

The image-based approach to determine optimum filter and
cluster sizes is based on a sensitivity analysis of observed power
versus soil moisture using watershed averaged surface rough-
ness in the Integral Equation Method model (Fig. 1) (IEM; Fung
et al., 1992). In this study, an error of +/−0.03 m3 m−3 soil
moisture was deemed acceptable. The cutoff value for 95%
confidence interval range on mean power values (cu) used to
determine the optimum growing region size was determined as,

cu ¼ md 0:03; ð2Þ
where m is the slope of the power versus soil moisture
relationship.

Cutoff values for each watershed are presented in Table 2.
Users can set the threshold depending on the required level of
certainty, but should be aware that the accuracy of the radar
sensor is approximately 1 dB (Staples & Branson, 1998), and
the accuracy of the soil moisture sensors under field conditions
with variable soil types is approximately 0.05 m3 m−3

(Dynamax Inc., 1999).1
4. Results and discussion

4.1. Field and laboratory calibration of soil moisture sensors

Field calibration of the portable capacitance probes was made
using three soil cores collected from the top 5 cm of field sites in
GA and OK. A laboratory calibration of the portable probes was
developed for the AZ study area using soil collected from the top
5 cm at each field site (Fig. 2). The sandy surface soils and loose
structure minimized the influence of disturbance in the laboratory.
The calibrated probe readings were used for validation.
1 Use of trade names in this report is for information purposes only and does
not contitute an endorsement bt the USDA-ARS.



Fig. 2. Laboratory and field calibration of the capacitance probe used in
validation. Laboratory calibration was made using 44 soils collected from AZ
field sites. Field calibration was made at GA and OK watersheds against
gravimetric moisture from three soil cores per field. Capacitance probe soil
moisture was determined volumetrically. Confidence intervals (90%) for
regression coefficients in both calibrations overlap indicating the coefficients
may be from the same population.
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The laboratory calibration of probes using AZ soils indicated
that soil moisture was typically underestimated (Fig. 2). The
accuracy of the probes in the laboratory (RMSE=0.058m3 m−3,
r2 =0.90) was consistent with manufacturer claims that the probe
accuracy would be +/−0.05 m3 m−3 when used in the field with
variable soil types (Dynamax Inc., 1999). Spread in the field data
may be due to differences in soil type, and non-uniform
distribution of water content and rock fragments. In the dry
condition, rocks and soil have little difference in moisture
content. As the soil becomes wetter the disparity between rock
and soil moisture content becomes greater. The random insertion
Fig. 3. (Upper) Cumulative mean volumetric soil moisture related to the number of s
sites are presented, five moist and five drier. Moist site and dry site cumulative me
standard deviation stabilized to +−1% at most sites after 15 soil moisture measurem
of probe spikes that may or may not be near rocks further
increases variability in measurement values. Additional scatter
may result from air pockets created when probes displace
pebbles in wet soils creating air filled voids. Both voids and rock
fragments cause underestimation of soil matrix water content,
but over estimation of bulk moisture content. Furthermore, there
is increased spatial variability in the field under moist conditions
due to non-uniform drainage, and evapotranspiration. Probe
calibrations were made with rock fragments in laboratory
samples to account for these interacting effects.

4.2. Accuracy and scale of field measurements of soil moisture

Field measured soil moisture at 35 m was used to validate
soil moisture retrieved from individual pixels of filtered
imagery at scales varying from 7 to 63 m. For each image
date and filter level, the RMSE was calculated on a site-by-site
basis for the watersheds. The data were then grouped by filter
level for comparison across watersheds. The validation was
made on individual pixels because 1) it was difficult to
accurately measure soil moisture in the field in expansive nested
extents, 2) individual pixels in filtered imagery represent the
highest spatial resolution possible in filtered imagery, and 3)
information from many pixels in the raw image product is
effectively summarized in filtered pixels.

We recognize that the scale of field measured soil moisture
does not match the scale represented in the imagery for all
validation scales but suggest that the chosenmeasurement scale is
a good approximation of soil moisture at scales between 7 and
63m. This is primarily based on results presented in Fig. 3a and b,
where as few as 10measurements provided a good estimate of soil
moisture that changed little with the number of measurements
increasing as the 35×35 m area was traversed. Furthermore, field
soil moisture measured in 3 ad hoc 100 m plots centered over
three 35 m AZ plots differed by less than 2% when intra-site soil
moisture varied between 0.06 and 0.15 m3 m−3.
oil moisture measurements made in a 35×35 m area on 29 Jul 2003 in AZ. Ten
an stabilized after 30 and 15 measurements, respectively. (Lower) Cumulative
ents regardless of site moisture status.



Fig. 4. Soil moisture retrieval accuracy assessed as the difference between
measured and delta index modeled soil moisture for three watersheds at 7, 21,
35, 49, and 63 m resolution. RMSE was computed for each site in the watershed
then averaged up to the watershed scale. All field measurements were made at
35 m ground resolution. Delta index was calculated using one dry image and one
wet image pixel centered over the field site.

Fig. 5. Relationship between watershed averaged soil moisture retrieval
accuracy and field moisture conditions. Soil moisture retrieval accuracy
decreases as soil moisture increases.
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A high level of accuracy in measured soil moisture is critical
for assessing the validity of retrieval algorithms. Preliminary
investigation of spatial soil moisture variability in the field at
35 m was made by over-sampling several field sites to
determine the sample size that achieved stable cumulative
mean soil moisture and cumulative standard deviation that
varied by less than 0.01 m3 m−3. An appropriate sample size for
a 35 m area depended on the moisture status of the site. In
general, wetter sites had greater intra-site variability and thus
required more soil moisture measurements to reach stable
cumulative mean while cumulative standard deviation stabi-
lized at approximately 20 measurements regardless of site
moisture status (Fig. 3).

For a range in moisture content between 0.01 and 0.17 m3

m−3, comparison between in situ sensors and portable sensors at
35 m indicated the in situ sensors were a reliable approximation
of area averaged portable sensor measurements with RMSE
ranging from 0.00 to 0.04 m3 m−3 with an average RMSE of
0.02 m3 m−3. The over-sampling of soil moisture at the field
sites and calibration ensured high precision and accuracy of
field measured soil moisture at the 35 m scale sampled in the
field. This made it possible to use measured soil moisture as
model validation with confidence at 35 m scale.

4.3. Effect of vegetation water content and phenology on soil
moisture retrieval

Dry biomass averaged 625 and 97 kg ha−1 for GA and OK
field sites respectively. The average water content in above
ground vegetation that was sensed by the radar but not
measured by field methods using soil moisture probes during
validation was 59.8 and 10.4 g m−2 for GA and OK watersheds
respectively. This represents 0.60 and 0.10% of the soil
moisture in the top 1 cm of the soil profile. The small amount
of vegetation moisture was expected as the GA and OK sites
were chosen to represent bare soil or pasture in a senescent state.
In the single winter wheat field sampled in the OK study area,
the vegetation water content was 0.25% of the soil moisture in
the top 1 cm of the soil profile, and the dry biomass for this field
was mid-range for all sites sampled.

Although some structural change occurred between image
acquisitions in the watersheds which would seem to violate the
delta index assumptions, we feel it would be minimal based on
conclusions of Moran et al. (2000) that vegetation structure had
little effect on backscatter in the AZ watershed and Hutchinson
(2003) that indicated Kansas prairie grasses had little effect on
backscatter. The impact of change in vegetation structure in
humid environments is more difficult to evaluate because it
changes rapidly. Although we used imagery from winter and
early spring in most cases to mitigate structural effects, there
may still be some influence. For this reason, we suggest the
amount of change in vegetation structure that occurred in this
study would be near the upper allowable limit when using the
delta index method. We concluded that the minimal amount of
vegetation moisture in all sites in all study areas and the minimal
phenological change between image acquisitions did not
unreasonably violate delta index assumptions and hence had a
negligible effect on retrieval accuracy.

4.4. Soil moisture retrieval at the watershed- and site-scales

Surface soil moisture was retrieved using the Delta Index
(Eq. (1)) from individual pixels centered over each field site for
block median filters of increasing size, from unfiltered (7 m) to
9×9 pixels (63 m). For each image acquisition date and pixel
resolution the modeled and measured soil moistures for each
site were used to compute an RMSE by site (Fig. 4). This differs
from our earlier work (Thoma et al., 2006) where we
determined the RMSE as watershed averaged soil moisture
versus watershed averaged delta index for several dates at 91 m
resolution. The lowest RMSE (0.03) for the collection of field
sites in a single watershed was obtained for the very dry 16 Sep
03 AZ image at 49 m resolution. Retrieval accuracy for other



Fig. 6. Soil moisture retrieval accuracy at 7, 21, 35, 49, and 63 m for the three watersheds validated at 35 m. Error statistics are presented in Table 3. Figures are
a) AZ— 04 Aug, 2002, b) AZ— 30 Jul, 2003, c) AZ— 23 Aug 2003, d) AZ— 16 Sep 2003, e) OK— 13 Mar 2004, f) OK 16 Apr 2004, g) GA— 27 Feb 2004, and
h) retrieval accuracy at watershed scale determined from 35 m Delta Index and 35 m soil moisture at the field sites.
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dates and watersheds varied by scale but generally decreased
with increasing filter size until pixel resolution was degraded to
49 m (7×7 pixel filter), beyond which no substantial
improvement occurred.

The 3-watershed average RMSE that included a range in
surface conditions through space and soil moisture through time
provided an indication of expected accuracy over varied terrains
in the three watershed study areas. The decrease in 3-watershed
averaged RMSE between unfiltered (7 m) (RMSE=0.46) and
5×5 median filtered (35 m) imagery (RMSE=0.12) was
attributed primarily to speckle reduction. The best 3-watershed
average RMSE (0.11) was obtained with a 7×7 filter resulting



Table 3
Error statistics for Fig. 6

Figure Study area Date Scale Slope Intercept r2 RMSE

6a AZ 4-Aug-02 7 −1.15 0.67 0.04 0.45
4-Aug-02 21 0.17 0.17 0.08 0.18
4-Aug-02 35 0.78 −0.09 0.55 0.18
4-Aug-02 49 0.78 −0.09 0.55 0.18
4-Aug-02 63 0.71 −0.07 0.53 0.18

6b AZ 30-Jul-03 7 −0.33 0.45 0.00 0.48
30-Jul-03 21 −1.14 0.30 0.13 0.15
30-Jul-03 35 −0.85 0.22 0.12 0.13
30-Jul-03 49 −0.21 0.08 0.03 0.11
30-Jul-03 63 −0.27 0.09 0.04 0.12

6c AZ 23-Aug-03 7 −1.50 0.70 0.00 0.91
23-Aug-03 21 0.31 0.08 0.01 0.09
23-Aug-03 35 0.46 0.05 0.03 0.08
23-Aug-03 49 0.29 0.06 0.02 0.06
23-Aug-03 63 −0.15 0.11 0.00 0.08

6d AZ 16-Sep-03 7 3.31 0.26 0.01 0.50
16-Sep-03 21 −0.96 0.15 0.01 0.10
16-Sep-03 35 0.59 0.03 0.01 0.05
16-Sep-03 49 0.75 −0.01 0.08 0.03
16-Sep-03 63 −0.55 0.05 0.03 0.04

6e OK 13-Mar-04 7 −1.98 0.84 0.12 0.29
13-Mar-04 21 −1.01 0.40 0.06 0.09
13-Mar-04 35 0.30 0.07 0.01 0.10
13-Mar-04 49 0.30 0.08 0.01 0.11
13-Mar-04 63 0.77 −0.04 0.06 0.10

6f OK 16-Apr-04 7 −0.63 0.37 0.01 0.31
16-Apr-04 21 −0.07 0.08 0.00 0.10
16-Apr-04 35 −0.26 0.07 0.05 0.05
16-Apr-04 49 −0.01 0.02 0.00 0.12
16-Apr-04 63 −0.40 0.09 0.15 0.11

6g GA 27-Feb-04 7 0.54 0.28 0.01 0.32
27-Feb-04 21 −0.28 0.20 0.01 0.16
27-Feb-04 35 0.15 0.06 0.01 0.14
27-Feb-04 49 −0.01 0.07 0.00 0.15
27-Feb-04 63 −0.02 0.06 0.00 0.16

Slope, intercept and Pearson's correlation coefficient values are for linear
regression.
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in 49 m resolution. Further improvement was not observed with
a larger filter window. Although for all dates and watersheds the
RMSE on a site basis was not excellent, it still may be
sufficiently accurate for applications that require soil moisture
data over large heterogeneous areas.

The disparity between measured and modeled soil moisture
may in part be related to field soil moisture content (Fig. 5).
Agreement was generally least for the wettest AZ image on 4
August 2002, and greatest for the driest AZ images on 16
September 2003 and 23 August 2003. In dry conditions, the
spatial uniformity of soil moisture explained the good
agreement between measured and modeled soil moisture after
speckle was minimized via filtering. As noted in the field and
laboratory calibration of capacitance probes (Fig. 2), wetter
conditions were more variable and difficult to characterize due
to differences in drainage and evapotranspiration. Residual error
due to mis-match in spatial variability of soil moisture and
filtered image resolution requires a different approach discussed
in the next section.

Analysis at the watershed scale masks variability in site
specific agreement between modeled and measured soil
moisture on a site-by-site basis (Fig. 6). It should be noted
that our estimate of “watershed” soil moisture is restricted to the
type of fields validated and does not apply to urban, forest or
cropped areas that occur in some of the watersheds. Model
performance was poor at all site specific scales (Table 3) for all
study areas, which indicated that speckle effects which are
readily apparent when validated at 7 m resolution may have still
not been entirely removed even at the broadest filter level
(Fig. 6a–g). Other factors such as natural variability in soil
moisture and subtle change in roughness and vegetation may
confound results in spite of our careful selection of bare, fallow,
or senescent pasture fields intentionally selected to avoid
phonological change between image acquisitions. Still other
sources of error result from using two images in the delta index
calculation. This introduces potential error from registration,
slight satellite view angle differences and the choice of image
filter which may select geographically different pixels from
within the same geographic block for wet and dry imagery.
There are other radar retrieval models or filtering algorithms
that may yield better results at the scales investigated in this
study. However, in this study results for site specific soil
moisture retrieval at 35 m averaged to watershed scale indicate
that even when retrieval scale and field measurement scale are
identical results are poor on a watershed basis (Fig. 6h). This
result supports the need for an image-based approach that
considers both natural variations in surface features that drive
backscatter response, and speckle to determine the appropriate
scale for site specific soil moisture retrieval. The technique
demonstrated in the next section has general applicability
regardless of model choice.

4.5. Results of combined filtering/averaging on image statistics

Spatially averaging observed power across larger areas after
block median filtering offers a means to account for variability
at extents broader than the largest 9×9 pixel filter window
(63 m). Because the extents that result from spatial averaging
power values were large, it was not possible to validate results
using our ground based measurements that represented much
smaller areas. Instead, a statistical approach was used to assess
the combined method.

Considering first the AZ watershed imagery only, the
combined effect of median filters and spatial averaging is
presented using imagery from 5 dates representing conditions
from dry to moist (Fig. 7). The confidence interval range for
power was generated from growing regions centered on each of
42 field sites. The spatial scale where a combination of filtering
and averaging resulted in 95% confidence interval less than the
cutoff (user set based on sensitivity analysis) was called the
‘optimum’ cluster size (Table 2). Circles indicate the optimum
cluster size determined as the growing region size where
observed power is less than the cutoff value set by the sensitivity
analysis.

Based on the relative position of the curves, it is apparent that
unfiltered imagery had the largest and most variable range in
power at most spatial scales, while larger block median filters
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resulted in lower magnitude and less variable power until large
areas were added in the region growing procedure. Inmost cases,
variation stabilized with larger growing regions as the effects of
outlying pixel values were mitigated. However, in a few of the
field locations larger growing regions encompassed greater
variability as evidenced by spikes in the curves. These are
interpreted as dramatic changes in roughness or vegetation when
growing regions became large enough to cross field, topographic
or vegetation-type boundaries. For the most part, variation in the
confidence interval range varied predictably with filter level
where more aggressively filtered images required fewer pixels
centered on each field site to achieve a high level of confidence
in parameter estimate. However, the smaller pixel count did not
translate to a smaller optimum ground area, because filtered
imagery had coarser resolution pixels.

The confidence interval analysis applied to all three study
areas (Fig. 7 a–c) indicated that in general, for any filter level
and growing region size, the 95% confidence interval range was
CIAZbCIOKbCIGA. This relationship mirrored the variation if
not the magnitude of RMS surface heights for the three
watersheds (Table 2). As expected, variability increased with
increasing variation in surface roughness. The most likely
explanation for the trend in required ground area for the three
watersheds is that roughness effects due to oriented tillage
operations in GA induced greater range and variability in
backscatter by field while lack of tillage and random orientation
of roughness elements in the rangeland study sites (AZ and OK)
made for more consistent backscatter response as region
growing areas increased in size.
Fig. 7. Using multi-date imagery representing a broad range in soil moisture, we sho
growing regions increase around study sites in (Upper) AZ watershed, (Middle) OK w
pixels necessary to obtain a 95% confidence interval on observed power less than the
as the (cluster size)× (filter level)× (raw image resolution).
The ground area necessary for good parameter estimation is
related to the soil moisture–power relationship in Fig. 1. Less
sensitivity reflected in a smaller slope value in this relationship
results in larger ground areas necessary to achieve a good
parameter estimate. It is important to note, especially with the
GA watershed that it may not be possible to obtain a good
estimate of observed power with this type of imagery at field
scales common in this watershed. In a practical sense, either the
confidence level for parameter estimate must be lowered, or
very large areas that cross field boundaries must be included
thus dramatically increasing the minimum resolution for good
parameter estimates. This finding may explain the high degree
of variation reported in the literature when observers regress soil
moisture on backscatter (Griffiths & Wooding, 1996; Hutch-
inson, 2003; Shoshany et al., 2000). It is likely, but difficult to
ascertain from these studies that the strength of the relationship
was indirectly related to the variation in surface roughness or
other varying surface properties.

Many combinations of filter level and spatial averaging can
be used to achieve a 95% CI range on the mean observed power
(Fig. 8). Each point on each of the lines represents such a
condition but the spatial extent of the different combinations
varies widely due to intra-pixel variance that remained after
different levels of filtering. Examination of the resulting ground
area necessary to achieve the optimum spatial area for retrieval
indicated that the most aggressive filter did not translate to the
smallest usable ground area. This counterintuitive finding
resulted from growing regions increasing into contrasting
surfaces more quickly when image resolutions were low.
w the reduction in magnitude and variation of confidence intervals for power as
atershed and (Lower) GAwatershed. The optimum cluster size is the number of
cutoff value (user set based on sensitivity). The ground resolution is determined



Fig. 7 (continued ).
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4.6. Image-based optimization of scale for site specific
estimates

Evaluation of spatial averaging and filtering necessary to
derive 95% CI for mean observed power indicated the smallest
spatial extent was derived from unfiltered imagery for all three
study areas (Fig. 7) and was 162 m, 310 m, and 1131 m for AZ,
OK and GA watersheds, respectively. The ground area
represented by the optimum cluster size in imagery increased
with filter level and was largest at all filter levels for GA and
least for AZ as evidence by right-shifted points in Figs. 7 and 8.
This trend corresponds to greater variability in roughness at the
field sites as indicated in roughness statistics (Table 1).
Although field sites were selected in the centers of large fields,
the GA fields were not typically as expansive as the rangelands
in the OK and AZ watersheds. In the confidence interval
method optimum ground resolutions derived from filtered
imagery are larger than those derived from unfiltered imagery



Fig. 8. Ground area required to obtain a high confidence estimate of observed
power for soil moisture retrieval for three study areas. Each point on the lines
represents a 95% confidence in observed power estimate. Square, diamond,
triangle, dash and circle represent unfiltered, 3×3, 5×5, 7×7, and 9×9 filtered
imagery respectively.
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due to more rapid reduction in pixel sample size relative to
spatial variation as filter level increases. Therefore users of this
technique should be aware of landscape heterogeneity repre-
sented in imagery over which spatial averaging occurs.

5. Conclusions

There are multiple studies reporting good results of soil
moisture retrieval from radar imagery at the watershed scale, but
there are few studies claiming similar results at the field or site
scale. Results presented in this study confirmed the spatial
limitation of high resolution radar imagery for estimating site
scale surface soil moisture. The results herein offer both an
explanation for this dichotomy and a procedure to determine the
best possible spatial resolution with known confidence.

Site scale soil moisture retrieval from high resolution radar
imagery using only filtering to minimize backscatter variability
had limited utility (Fig. 6). The best 3-watershed average RMSE
(0.11) for a range in soil moisture conditions was obtained at
35 m resolution using a 5×5 pixel block median filter (Fig. 4)
with results directly related to scale and indirectly related to soil
moisture (Fig. 5). That is, results were best at the broadest scales
under the driest conditions. While this level of accuracy may be
sufficient for watershed applications where data from many
pixels are averaged up for a single watershed estimate,
improvement in soil moisture prediction at true site scales
with SAR imagery will likely only be achieved via spatial
averaging and thus a further reduction in resolution.

The image-based approach for determining optimum
retrieval for site scale evaluated spatial averaging and filtering
to minimize speckle effects and variation in other surface factors
that influenced backscatter. The 95% confidence interval range
on mean observed power was used to determine the optimum
filter window and cluster size associated with the smallest
usable ground area. The smallest effective ground resolution
was obtained with unfiltered imagery and was 162 m, 310 m,
and 1131 m for AZ, OK and GA watersheds, respectively.
Filtering reduced small scale variation in observed power, but
increased the effective ground area for the same confidence
level due to a tradeoff between sample size and filtered image
resolution.

The optimum ground area, which is between 25 and 160
times the original SAR image spatial resolution, is based on the
assumption that product confidence must be high (95%). This is
the case for hydrologic model calibration in which calibration
success requires high accuracy of satellite products (e.g. Peters-
Lidard et al., 2003).

The CI method represents a technique for deriving input for
retrieval models in the absence of field validation when there is
significant speckle noise and variation in land surface
characteristics. It is valid only for images acquired when the
site has minimal vegetation cover with negligible attenuation of
the radar response. In this study, the assessment of the CI
method was based solely on image statistics because it could not
be validated against the ground moisture data due to
mismatched scales. This method can be used with imagery
from different radar satellites, different raw image resolutions,
and other retrieval models. If possible it should be validated at
appropriate scales against field measured soil moisture.

This study offers a statistically sound approach for determin-
ing the optimal spatial resolution for soil moisture retrieval
customized for a given site and given application accuracy. The
approach demonstrated here relies on the sensitivity of the soil
moisture–power relationship, but perhaps could be modified to a
purely image-based approach if some knowledge of surface
roughness or land surface features was available. This will shed
some light on the mixed performance of soil moisture retrieval
approaches using SAR imagery at site to watershed scales. It will
also open the door to use of soil moisture maps for model
calibration and parameterization which often require both fine
spatial resolution and high input accuracy.
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