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Abstract

The Integral Equation Model (IEM) is the most widely-used, physically based radar backscatter model for sparsely vegetated landscapes. In
general, IEM quantifies the magnitude of backscattering as a function of moisture content and surface roughness, which are unknown, and the
known radar configurations. Estimating surface roughness or soil moisture by solving the IEM with two unknowns is a classic example of under-
determination and is at the core of the problems associated with the use of radar imagery coupled with IEM-like models. This study offers a
solution strategy to this problem by the use of multi-angle radar images, and thus provides estimates of roughness and soil moisture without the
use of ancillary field data. Results showed that radar images can provide estimates of surface soil moisture at the watershed scale with good
accuracy. Results at the field scale were less accurate, likely due to the influence of image speckle. Results also showed that subsurface roughness
caused by rock fragments in the study sites caused error in conventional applications of IEM based on field measurements, but was minimized by
using the multi-angle approach.
© 2007 Published by Elsevier Inc.
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1. Introduction 1986; Fung et al., 1992). In general terms, IEM represents the
radar backscatter of an image with known radar configurations
Information about the distribution of surface soil moisture as a function (f) of A5 and surface roughness, where
(6s) 1s important for a number of applications ranging from the 0
management of agriculture and natural resources to the science @ = [ (hrws, Les)- (1)
of understanding land—atmosphere interaction to determining
vehicle mobility. Images of radar backscatter from orbiting
sensors have been used for mapping surface soil moisture
(Moran et al., 2004). Retrieval of 05 from radar backscatter (o)
is often based on radar backscatter models, such as the Integral
Equation Model (IEM), which was developed for bare soil, but
can be used with sparse vegetation (Fung, 1994; Fung & Pan,

The model characterizes surface roughness by the root mean
squared height (fryms) variation of the surface at centimeter
scale and the correlation length (L.) of the same height
variation. It is conventionally measured by a pin meter, and
more recently, by field-deployed laser scanners (both described
by Bryant et al. (2007)).

Recent studies have indicated that the magnitude of Arus
and L. are scale related (Le Toan et al,, 1999) and highly
dependent on the length of the transect (Bryant et al., 2007),
when measured with a pin meter or laser scanner. This is true
* Corresponding author. especially for the estimate of L. (Bryant et al., 2007; Davidson
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from a couple of meters (Baghdadi et al., 2000) to hundreds of
meters (Verhoest et al., 2000). L. also depends on the type of
auto correlation function used in its estimation from field data
(Baghdadi et al., 2004; Davidson et al., 2000). This implies that
consistent roughness parameters may not be estimated using
field data for use as an input to the IEM. Moreover, conducting
field measurement of roughness may become impractical and
expensive when large areas need to be covered.

In addition to the field measured roughness, the abundance
of rock fragments, if present in study locations, may influence
radar-perceived roughness. The radar signal penetrates a few
centimeters below the ground and is likely to be affected by
the subsurface nature of roughness caused by rock fragments
below the soil surface (Jackson et al., 1992). When the radar
signal penetrates a few centimeters below the ground surface,
it experiences multiple bounce by the subsurface rock
fragments, which may result in volume scattering. It is likely
that the radar-perceived roughness is a combination of surface
and subsurface roughness. On the other hand, the pin meter
measures roughness at the top of the soil surface and is not
designed to measure the roughness caused by the subsurface
rock fragments.

For all these reasons, measurement of distributed surface
roughness has been a barrier for regional application and wide
use of microwave technology for surface soil moisture sensing.
It would be beneficial to develop a surface roughness mapping
system based solely on satellite data and a radar backscatter
model, eliminating the need for field measurements altogether.
In such a situation, an operational soil moisture assessment
system based on a radar backscatter model would be practical.
Furthermore, maps of surface roughness may have potential
usefulness based on their own merit. The availability of image-
based roughness maps may provoke future applications to
erosion prediction, surface runoff modeling and soil moisture
estimation from passive microwave imagery.

Many components of research needed to develop an image-
based approach have already been published and can be
compiled to develop a method for mapping of roughness and
soil moisture. Zribi and Dechambre (2002) indicated an
interesting property of IEM that may have great use. They
found that the difference in backscatter (Ac”) generated by the
IEM model with two different incidence angles, keeping all
other parameters constant, is in proportion to roughness only.
It was found that Ag? is proportional to the ratio of sryg and
L., which was referred to as the z-index and defined as h&s/
L.. Z-index is computed by Zribi and Dechambre (2002),
where

his/Le = g(40”). (2)

This equation is generally valid when the difference in
incidence angles is large and surface moisture conditions remain
unchanged. Here, ‘g’ is a function, the specific form of which
can be estimated using IEM simulated data. This formulation
provides a foundation for mapping of surface roughness using
radar imagery with two incidence angles. However, the
formulation does not provide an explicit solution of Aryg and

L., which are needed as inputs to [IEM for the retrieval of surface
soil moisture from radar imagery.

As a complement to the work by Zribi et al., Rahman et al.
(2007) expressed the relation between hgryms and L. using
simple equations based on IEM theory. Then, using a radar
image obtained with relatively dry surface condition (65 on the
order of 0.03 m®> m ?), they showed that it was possible to
derive both /hpyg and L. from the measurement of radar
backscatter. That is, the effect of O on the ¢° of a radar signal
measured in the dry season (ag,y) is very low and this was
neglected altogether without making significant error. [EM
simulation indicates that 0.03 m®> m > deviations in the soil
moisture may cause error up to 1 db (Rahman et al., 2007),
when the moisture condition is low. Considering the stated
absolute accuracy of the radar sensor is approximately 1 dB
(Staples & Branson, 1998), this error may be acceptable. The
general form of the equation was written as

ogry = h(hRMch). (3)

This equation holds over certain incidence angle ranges,
usually 30 to 50°. The specific form of the equation was
estimated using I[EM simulated data for certain radar config-
urations (Rahman et al., 2007).

Substituting terms between Eqs. (2) and (3) it should be
possible to solve for two roughness parameters, /hrys and Lo,
explicitly, where

L. = w(46°, agry), and @)
hrms = Y(46°, Ugry)-
Here, w and y are two functions determined by substitution
of terms. The resulting roughness maps then can be used to
parameterize IEM for producing surface soil moisture map.

As evident in this formulation, a maximum of three radar
images are needed for roughness mapping. These include two
images with different incidence angles to determine Ac” and
one image with dry ground condition to measure o'gry. The
image requirements can be reduced to two if the images at
two incidence angles are available for dry surface conditions.
In this case, one of them can be used for extracting ogry and
both can be used to extract Ac®. The images required for
computing Ac’ can be acquired with either dry or wet
surface conditions. However, the moisture content of the
ground surface has to remain unchanged during acquisition
of these two images, since Ac” is modeled as a function of
roughness only (Eq. (2)). Moreover, the roughness itself has
to remain unchanged during acquisition of all images, since
the goal is to solve for the roughness parameters from
images.

In spite of these limitations, data from currently orbiting
radar sensors can be used to resolve Eq. (4) and determine both
hrums and L for IEM parameterization. In the second step, the
values of /pypg and L. can be substituted in Eq. (1) and
expressed as
o = }v(Aao,agry,Hs), (5)

wet
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where the subscript “wet” in 00 is used to distinguish it from
backscatter of a dry surface (O'gry), as defined earlier. Eq. (5)
then can be inverted for solving surface soil moisture, where

Os = . (AO_O’ Ugry’ G&et)' (6)

Here, A and agry are functions of roughness parameters,
such as Ac’(hpms, Lo) and ogy(hrms, Lo), which in turn
implies that g is modeled in Eq. (6) as function of roughness
and 6. In the presence of integrals and Fourier transform in
the ‘N’ function of IEM, it is difficult, though not impossible, to
get an inverse. This difficulty can be overcome by an
approximation of Eq. (6) with a polynomial of required order.
IEM simulated data can be used for this purpose.

Since the solution of all parameters, such as hrys, L and 0,
can be obtained through simultaneous use of images as
described above, pixel-by-pixel computation can be implemen-
ted to derive the outputs in the form of maps.

The specific objectives of this study are as follows:

1) Implement the method outlined above for mapping charac-
teristic parameters of surface roughness by the use of two
Envisat ASAR images (June 9 and June 15, 2004) obtained
under dry surface conditions;

2) Compare image-based measurements of spyg and L, with
conventional pin meter measurements for 13 sites in the
semiarid Walnut Gulch Experimental Watershed (WGEW)
near Tucson, Arizona;

3) Use the resulting roughness map to parameterize IEM for
mapping soil moisture from two more Envisat ASAR images
(July 14 and August 2, 2004) of WGEW under relatively wet
ground condition; and

4) Validate the resultant surface soil moisture maps with field
measurements of the same 13 sites during the overpass of
Envisat on July 14 and August 2, 2004.

2. Materials and methods

To achieve research objectives, a study was conducted in
Arizona in 2004, where a range of radar remote sensing data,
and field collected roughness and soil moisture data was used.
The IEM model approximated by simple functions were applied
to the radar data for estimation of soil moisture and surface

Table 1
Sensor configuration of radar imagery used in this study

roughness, which were then compared with the field collected
data.

2.1. Study site

This field study was conducted in the 150 km* Walnut Gulch
Experimental Watershed (WGEW) operated by United States
Department of Agriculture, Agriculture Research Service
(USDA-ARS). The watershed is located in the Sonoran desert,
State of Arizona, near the US—Mexico border. The watershed has
a semi-arid climate in which the average annual rainfall is
330 mm. It is characterized by rolling hills ranging in elevation
from 1220 to 1960 m and the major soil type is sandy loam with
rock fragment fractions on the order of 47% by volume within
the top few centimeters of the soil surface (USDA-NRCS,
2002). The watershed has sparse vegetation, consisting mainly of
desert grass and shrub. There are many ephemeral streams and
channels running across the watershed with no perennial water
supply or source. The watershed is instrumented with precipi-
tation gages, meteorological stations, soil moisture sensors and
flumes for hydrologic experimentations (Renard et al., 1993).

2.2. Satellite data processing

Four Envisat ASAR images were used in this study; the
specific type of the product is Alternating Polarization Ellipsoid
Geocoded, which is described in the ASAR product handbook
(ESA, 2002). Some of the features of the images used for
analysis in this study are given in Table 1.

The image digital numbers (DN) are in units of amplitude
and were converted to backscatter values (¢°) following the
ASAR product handbook. The computation of ¢° was

_ @
= s, (7)

where ¢ is the radar backscatter in power [m*/m?], 4 is the
pixel intensity in amplitude values, K is the external calibration
constant [m?/m?] and o is the distributed incidence angle. The
external calibration constant and distributed incidence angles of
a particular image are found by performing header analysis
using ‘BEST’ software (www.envisat.esa.int). The backscatter
is converted from power to decibel unit (dB) for the use in the

Envisat ASAR

Image data June 9, 2004 Junel5, 2004 July 14, 2004 August 2, 2004
Purpose Roughness mapping Roughness mapping Soil moisture mapping Soil moisture mapping
Pixel resolution 12.5m 12.5m 12.5m 125 m

Used polarization \'AY% \AY% \'AY% \'A%

Image swath 1S6 1S2 1S6 IS5

Incidence angle 41.08° 24.8° 41.08° 37.39°

Frequency C-band (5.3 GHz) C-band (5.3 GHz) C-band (5.3 GHz) C-band (5.3 GHz)
Wavelength 5.6 cm 5.6 cm 5.6 cm 5.6 cm

Time of overpass 10:16 am 10:27 am 10:16 am 10:19 am
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analysis. Power to decibel conversion is a logarithmic con-
version, where

a’(dB) = 10[log (a°)]. (8)

The ASAR images acquired on June 9 and June 15, 2004
were coincident with dry surface conditions and were used for
the roughness mapping. The two images were selected so that
the difference in incidence angles was the largest possible. IEM
simulations suggest that the backscatter differences become
more sensitive to surface roughness as the difference in
incidence angle increases and are helpful for estimation of
roughness. The ASAR images acquired on July 14 and August
2, 2004 corresponded to relatively wet surface conditions and
were used for soil moisture mapping.

A median filter consisting of a 9-pixel moving window was
applied for optimal speckle reduction (Thoma et al., 2006).
Despite the filtering, some extreme high and low values of radar
backscatter were detected in all output maps. Particular pixel
values that deviated from the mean value of pixels (plus or
minus) by more than three times the standard deviation were
considered extreme values. The prevalence of extreme values
was not large, and they seemed to associate with the mountain
tops and surrounding areas, indicating likely effects of
topography on the radar backscatter. A mode filter based on a
3-pixel moving window was applied over the image to replace
extreme values with the mode of the surround values. This filter
was effective in relatively flat areas where extreme values were
less prevalent. In mountainous regions, a second pass of another
mode filter based on a 10-pixel moving window was needed.

A good image-to-image registration was essential for this study
since backscatter of corresponding pixels of two images were
differenced in computing roughness of that pixel. Visual
inspection indicated that the geocoded images that were used in
this study had good image-to-image registration; therefore, further
image registration was not applied. However, deviations up to
three pixels were observed in image-to-ground registration in
some parts of the study area, when geocoded images were
compared with geo-registered aerial photographs. The accuracy of
the computation needed for mapping surface roughness should be
unaffected by this deviation, however, the deviation may affect the
validation process. For validation of the results, that is, comparing
output maps values with field data, an area of 110 by 110 m
corresponding to each sample site was extracted from the
roughness and soil moisture maps based on their known
coordinates and was clipped. The averages of the values within
clipped areas were compared with the field measurements of
roughness and soil moisture. The 3-pixel deviation in registration
may have affected the clipping part of validation process. To check
if the 3-pixel deviation in registration had an impact, the size of the
clipped area was increased to 150 by 150 m and the validation
process was repeated. The increase in window size used for
clipping was likely to capture effects of 3-pixel registration error.

2.3. Ground measurements of soil moisture and roughness

The top 5-cm surface soil moisture (fg) was measured at 13
sites over the two most dominant soil types of the WGEW (very

gravelly sandy loam Elgin—Stronghold complex and very
gravelly sandy loam Luckyhills—McNeal complex) at the time
of Envisat overpasses on July 14 and August 2, 2004.
Depending on the level of moisture, approximately 20—30
measurements were made with a Theta Probe over a 110 by
110 m area at each of the 13 sites. The objective of these
measurements was to capture the spatial variability of 65 over
9x9 Envisat image pixels for each training site. The time span
over which the field measurements were undertaken was
divided equally before and after the satellite overpass. Soil
moisture data during dry season overpass of Envisat (June 9 and
June 15, 2004) was measured with a Vitel Probe installed at
5 cm depth at all 13 sites for automatic and year round
monitoring of soil moisture. For the WGEW study site, the
abundance of rock fragments may have caused problems for the
Theta Probe or Vitel Probe to capture the true moisture content
of the soil. The problem caused by the presence of rock
fragments is the differential content of moisture in soil and in
rock fragments of the targeted material. Rock fragments have
little moisture even when the surrounding soil is saturated.
Radar backscatter may be sensitive to moisture content of rock—
soil composite as opposed to the moisture content of the soil
only measured by the Theta Probe signal. The pins of the Theta
Probe instruments need to penetrate into the soil in order to get a
moisture reading. This requires a spot on the ground that has
negligible amount of rock fragments. A rock fragment
correction was made by subtracting the rock fraction effect
from the field measure of volumetric soil moisture in the
manner described by Thoma et al. (2006). The adjustment
involves reducing the field measured moisture content by the
average proportion of rock fragment in the study site, which is
47%, to represent moisture content of rock—soil composite. This
computation was based on the assumption that the rock contains
negligible amounts of moisture and the Theta Probe measured
moisture constitutes the soil portion of the rock—soil composite.
It was further assumed that all experiment locations have the
same rock fragment content, the magnitude of which is equal to
the watershed average. This later assumption may have some
implication to the accuracy of the result, given the unavailability
of rock fragment data for all study locations.

Field data collected from 13 sites spread over 150 km? of
WGEW were summarized in Table 2. The moisture content of
the study site was generally low, with an average of roughly
0.05 during the study period. The average moisture content was
0.04 m®> m™? in July and had increased to 0.07 m®> m * in
August. The variability of moisture content across space was
greater (0.02 t0 0.06 m® m ™ in July, and 0.02 t0 0.10 m®> m™ > in
August). The soil moisture contents were the same in June 9 and
June 15 (0.03 m® m ™).

Surface roughness for the 13 sample sites was measured
using a pin meter of 3-m profile length in December, 2004. The
pin meter traced the surface height variation at 1-cm intervals
and the trace was documented in a photograph with a digital
camera. Ten pin-meter measurements were made randomly over
an area of 35 %35 m around each sample site. The photographs
were processed with a computer program to generate values of
hrvs and L, averaged over each site (Bryant et al., 2007). An
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Table 2
Summary statistics of field measured moisture content (fs), roughness RMS
height (frums) and correlation length (L)

Field measurements, 13 June 9, Junel5, July 14, August 2,
sites 2004 2004 2004 2004
Moisture content® (ds), in m> m™>

Mean 0.03 0.03 0.04 0.07

SD 0.01 0.01 0.01 0.01
Surface roughness in cm

Mean hRMS 0.79

SD hrms 0.29 Conducted once in December, 2004

Mean L. 8.20

SD L. 2.47

% Correction for rock fragment applied.

exponential autocorrelation function was assumed for comput-
ing L.. This assumption was based on an experiment in which
exponential and Gaussian correlation functions were used for
estimation of L. and the exponential function worked better
with these data. This method of measuring roughness may have
some limitations. When radar signal penctrates a few cen-
timeters below ground surface it experiences multiple bounce
by the subsurface rock fragments, which results in volume
scattering. This is in addition to the scattering due to surface
roughness. As a result, radar-perceived roughness is likely
larger than that of field measurements. The roughness
measuring field device, the pin meter, is not designed to
account for subsurface nature of roughness. Therefore,
roughness measurements by the pin meter may not be adequate
to characterize surface roughness for input to IEM, especially
for study sites with large amounts of rock fragments.

The average hrvs across all sites was found to be 0.79 cm,
with a maximum of 1.3 cm and a minimum of 0.48 cm. The
average field measurement for L. was 8.2 cm, ranging from
5.0 cm to 12.2 cm.

2.4. Radar model and implementation

The Integral Equation Model (IEM) is the most widely-used,
physically based radar backscatter model, and is well suited for the
sparsely vegetated landscapes of the study site. In general, [EM
quantifies the magnitude of backscattering as a function of
moisture content and surface roughness, which are unknown, and
the known radar configurations. Estimating surface roughness
or soil moisture by solving the IEM with two unknowns is the
core of the problems associated with the use of radar imagery
coupled with IEM-like models. The conceptual model for solving
this problem and mapping surface roughness and soil moisture
without the use of ancillary data is outlined in Eq. (1) thru Eq. (6).
To implement this model, the specific forms of Egs. (2), (3) and (6)
need to be derived in simple form for the radar image
configurations used in this study. Because of the complex form
of the IEM, analytically deriving these equations can be difficult.
However, approximations of these equations with high level of
precision may be possible by fitting polynomials with the IEM
simulated data. This process is independent of field data and
simply transforms [EM approximately into simple polynomials
with parameter estimates.

With multiple runs of IEM, two data sets of o’ were
simulated for the radar configurations similar to the June 9 and
June 15 Envisat ASAR images (Table 1), and for wvalid
combinations of L. and Aryg (Fig. 1). The moisture content
0s was kept fixed at 0.03 m® m ™ to simulate a dry condition
similar to the June 9 and June 15 images. The only difference in
configuration between these two images, and therefore the two
data sets, is the incidence angle (25° and 41°, respectively). The
two data sets of backscatter were subtracted from one another
(Ac®) and the z-index was computed from corresponding
values of L. and /gys. Backscatter difference was regressed
with the z-index to get a best fit function to relate the two
parameters, the general form of which is specified in Eq. (2). In
order to get the specific form of Eq. (3), simulated backscatter
associated with the June 15 image configuration was regressed
with roughness parameters to fit a polynomial function of
required order. The resulting equation, therefore, became an
approximation of IEM under low moisture conditions, which is
similar to the dry season. This procedure for determining the
specific form of Eq. (3) was described in great detail by Rahman
et al. (2007).

Two more data sets of IEM simulated backscatter were
created for radar configurations similar to wet season images
acquired on July 14 and August 2, 2004 (Table 1) and for valid
combinations of L, and Agys (Fig. 1) and 65 (0.03 to 0.40 m?
m ). For each data set the moisture content (6s) was regressed
with simulated backscatter, L. and &gy to fit a polynomial.
These fitted polynomials represent the inverted IEM, which is
specified in general terms in Eq. (6) for conditions on July 14
and August 2, 2004.

3. Results and discussion

The objectives of the study were to produce surface soil
moisture and roughness maps using radar remote sensing data
and to compare the map values with the ground measurements.
The derivations of the specifics of the conceptual model to
achieve the objectives are presented and their application for
producing desired outputs are demonstrated. The strength and
weaknesses of the whole approach are discussed.

Roughness RMS Height, cm
n
|

I I
5 10 15

Roughness Correlation Length, cm

Fig. 1. The ranges of roughness parameters, correlation length (L) and RMS
height (frms), valid for IEM (area under the curve), Mametsa et al. (2002).
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1.75

R? = 0.998, RMSE = 0.02

1.5

1.25

Z-index

0.754

0.5

0.254

Radar Backscatter Difference (A 0’0). dB

Fig. 2. Relation between roughness z-index (hkwys/Lc) and radar backscatter
difference (Ac”) between two images of same target under unchanged ground
conditions with different incidence angle (41° and 25°) as specified in Eq. (7).

3.1. Mapping roughness

Surface roughness is often expressed by its statistical
characteristic parameters, such as /Arys, L. and the shape of
the autocorrelation function. In this study, mapping of surface
roughness refers to mapping of srns and L., while an a-priori
assumption was made on the shape of the autocorrelation
function. Mapping of Arys and L, was achieved by explicitly
solving the specific form of Eqs. (2) and (3) as indicated in
Eq. (4) and described below.

The specific form of Eq. (2) was derived by the use of a
simulated data set, the description of which is given before in
the Radar Model and Implementation subsection. The data set
included IEM-simulated backscatter difference (Ac”) between
two incidence angles (25° and 41°), and the surface roughness
and moisture information for which the data set was simulated.
The incidence angles selected for simulation match the radar

3 T

images acquired for roughness mapping (Table 1). Using that
data set, a function was fitted through z-index and Ac® to
get a specific form of Eq. (2). It was found that the definitions
of z-index as well as the specific functional form used by Zribi
and Dechambre (2002) needed a slight change to better fit the
radar configurations used in this study. With the newly defined
z-index, which is hxys/Le, the specific form of Eq. (2) became

hiss/Le = (0.618 4+ 0.0946°) /(1 — 0.13846°), 9)

with R2=0.998 and RMSE=0.02 (Fig. 2). Note that this is not
an empirical model derived from field data, but rather, an
approximation of IEM using simple functions based on IEM
simulated data.

Plugging the backscatter difference (Ac”) between consecu-
tive pixels of two images acquired over the study site with dif-
ferent incidence angles (25° and 41°) into the above equation, a
map of z-index was produced. These images were acquired in the
summer time under dry surface conditions over a short temporal
interval (June 9 and June 15), thereby satisfying the invariant soil
moisture, roughness and vegetation conditions on which Eq. (9) is
based.

Derivation of Eq. (3) was achieved by the use of the [EM-
simulated data set for dry surface condition and a single
incidence angle (41°). The dry surface condition was simulated
by the use of low and invariant value of moisture level
(s=0.03 m®> m*). The data set was described in the Radar
Model and Implementation subsection. Following Rahman et al.
(2007), a polynomial of required degree was fitted with the data
to get the specific form of Eq. (3) as

Oy = —27.94 + 32.58hpms — 1.40Lc — 18.78hg g

+0.05L% + 0.86hrwmsLe + 2.65h3 s
+0.12hp L — 04hrmsLE, (10)

where R>=0.987 and RMSE=0.65 (Fig. 3). Again, this is an
approximation of IEM with a simple function. Multiple

25F-

This portion is not valid for IEM

Roughness RMS Height cm)

R? =0.987, RMSE = 0.65

10 15

Roughness Correlation Length (cm)

Fig. 3. IEM embedded relationship among roughness RMS height (hgus), correlation length (L) and Radar backscatter (¢°) for a fixed moisture content, f5=0.03 m*
m >. The graphs are plots of Eq. (10) that approximates IEM with negligible moisture condition. The numbers inside the graphs are ¢° in dB unit.
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Fig. 4. Roughness map (/irms in cm) derived from radar images by the use of IEM, as formulated in Eq. (4). The solid line represents the boundary of USDA ARS

Walnut Gulch Experimental Watershed.

solutions for hrys and L. exist for a particular value of
backscatter, which is an inherent character of IEM. The
estimated equation reflects this character. The first solution is
always accepted following Baghdadi et al. (2004).

The L. as a function of Aryg and z-index from Eq. (9) was
substituted in Eq. (10) to obtain

Oy = —27.94 + 32.58hpyis — 18.78hgyis + 2.65h3s

P— (—1.40%h%3s + 0.86%hyms + 0.12%hgs)

1
%75 _ %7,0
+ <Z— index) (005 hRMS 04 hRMS)
(11)

This equation was solved numerically to obtain Aryg as a
function agry and z-index (and z-index, in turn, as a function of
Ac®). The resulting hgys was then substituted back in Eq. (9)
to solve for L.. Thus, the solution of /ryg and L. as a function
of ag,y and Ac? indicated in Eq. (4) was achieved. Using Arc
Info programming facilities, the solution process was conducted
on a per-pixel basis, where the radar image acquired on June 15,
2004 was used for extracting Jgry and the z-index map produced
in an earlier stage was used for extracting the value of z-index of
the corresponding pixel. The resulting value of hgryg Was
assigned to the corresponding pixel of a new map referred to as

hrms map (Fig. 4). The map of L. was obtained by the simple
Arc Info grid operation as L. =hays/z-index (Fig. 5). In Figs. 4
and 5, blue colors represent high roughness, which seem to be
associated with the mountainous areas, for both spyg and L.
The river stream beds and adjacent areas, and mountain valley
areas look smoother with low roughness values represented by
the red color. In this application, Eq. (10) was derived for a fixed
incidence angle, close to angles of the experimental fields. Error
might increase with distance from these fields and with changes
in local incidence angle caused by rough terrain.

3.2. Mapping soil moisture

The general framework for estimating soil moisture through
parameterizing IEM with the image-derived roughness maps was
provided in Eq. (6). In order for the framework to be operational,
the approximate specific form of Eq. (6) needed to be determined.
IEM simulated data were used again for this purpose. This time
the radar configurations were chosen to simulate July 14 and
August 2, 2004 images for valid combinations of /gy, L. and
0s. Using the data set in a regression analysis, Eq. (12) and Eq.
(13) were derived as approximations of Eq. (6) for July 14 and
August 2, 2004 respectively. These are fourth order polynomial
equations, for which multiple solutions are theoretically possible.
However, within the domain of our parameter values unique

- High 30.00

-Low:0.10

Scale

Fig. 5. Roughness map (L. in cm) derived from radar images by the use of IEM, as formulated in Eq. (4). The solid line represents; the boundary of USDA ARS Walnut

Gulch Experimental Watershed.
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<>
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Fig. 6. Soil moisture map (in m*> m ) for July 14, 2004 derived from radar images by the use of IEM, as formulated in Eq. (6). The solid line represents the boundary of
USDA ARS Walnut Gulch Experimental Watershed. A similar soil moisture map was produced for August 2, 2004, but the maps were nearly identical in color and the

second map was not included here.

solutions for soil moisture were achieved. As with Egs. (9) and
(10), Egs. (12) and (13) were not derived from field data, but from
an approximation of the inverted [EM.

In(fg) = 353 + 1.384In(—a°) — .913{In(—c")}*
—1.735In(L) + 947{In(Le)}* + 013{In(L OF = 017{In(L)}*
—1.791In(hgwis) + 5475 {In(hrwis) )} + 743 {In(hrus) )
+. 087{111 hRMS); -1 951n(hms)ln L )
710{ln(hRMS)z} n(Le) — .187{In( hRMS)3}
+. 006{111( )} ll’l(hRMs) + 048{11’1 ln(hRMs
+.055{ln( O P {In(hrus) ¥ + L 29lln( 9 In(hrys)
+.1In(—6")In(L,) — .112In(—¢°){In(L.)}*
—-.79 ln(—ao){ln(hRMS)}z

(12)
where R?=0.996 and RMSE=0.04.

=064 + 1.765In(~0°) — 986{In(—0 0y}

—1.83In(L,) + .866{In(L)}* + 028{In(Le - 019{In(Le N
— 5151n(hRms) + 5. 366{ln(h}zms)} + 885{11’1(hRMs)}

+. 112{11’1(}!1{1\/[5)} —2. 08911’1(}!1{1\/]5)11’1( )

—1 071{1n(hRMs)} In(L,) — 197{1n(hRMs)} In(L.)

+. 017{1H(L )} ll'l(hRMs) + 048{1II(L )} ll'l(hRMs)

+. 053{111(L )} {ln(hms)} + 1. 003111( Go)ln(hRMs)
+.07In(—¢°)In(L,) — .084In(—¢°){In(L.)}*
—.688In(—0%){In(hpys) }*

ln(Gs) =

(13)

where R*=0.996 and RMSE=0.04.

The inversion of IEM derived in Egs. (12) and (13) was
implemented in the Arc Info grid environment to produce soil
moisture (fg) maps, where image-derived roughness maps
(hrwms and L¢) and radar images (o) under wet condition were
used as inputs. Thus, soil moisture maps were produced for the
images acquired on July 14 and August 2, 2004 (Fig. 6). In
Fig. 6, the dominant red colors in the map represent low level of
moisture across almost the entire watershed, except river streams
and mountain valley areas, where the color is bluish representing
relatively higher level of moisture. However, this map may
contain some error caused by varying incidence angles in
locations far from the experimental fields and in rough terrain.

3.3. Field validation of surface roughness and soil moisture maps

Field measurements of soil moisture were made over the 110
by 110 m area of each of the 13 sample sites, whereas
measurements of roughness are made over a 35 by 35 m area.
The 110 by 110 m areas corresponding to each sample site were
identified on the soil moisture maps based on their known
coordinates for clipping. The same operation was conducted on
the surface roughness map, but the clipped areas were 35 by
35 m. The average of the map values within clipped areas was
compared with the field measured values of roughness (Figs. 7
and 8) and soil moisture (Fig. 9).

It was found that the field-data-derived surface roughness
parameters were generally low both for /gy\g and L, compared
to the same derived from radar images (Table 3). The image-
derived hrys and L averaged over all experiment locations
were 2.19 cm and 13.3 c¢cm as opposed to 0.79 cm and 8.2 cm
respectively for field measurements. This may be a confirmation
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Fig. 7. Comparison of roughness (hrys), where field measurements from 13
experimental sites were plotted in the x-axis and image-derived roughness
estimates extracted from same sites were plotted in the y-axis.
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Fig. 8. Comparison of roughness (L.), where field measurements from 13
experimental sites were plotted in the x-axis and image-derived roughness
estimates extracted from same sites were plotted in the y-axis.

that the subsurface roughness caused by the rock fragments
plays an important role. The radar signal is probably responsive
to multiple bounce by the subsurface rock fragments when it
penetrates a few centimeters below ground surface. As a result,
radar-perceived roughness may be much larger than that of field
measurements. The roughness-measuring field device was not
designed to account for subsurface nature of roughness. There-
fore, roughness measurements by the pin meter may not be
adequate to characterize surface roughness for input to IEM,
especially for study sites with large amounts of rock fragments.

Concerning soil moisture, good association between image-
derived soil moisture and averaged field measured soil moisture
were found once the field measured soil moisture was adjusted for
the effects of rock fragments (Fig. 9, Table 4). The image-derived
moisture contents averaged over all experiment locations are
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Field Measured Moisture Content (m3/m3)

Fig. 9. Validation soil moisture maps, where field measurements from 13
experimental sites were plotted in the x-axis and, image-derived moisture
estimates extracted from same sites were plotted in the y-axis. Cross signs are
points associated with July 14, 2004 overpass of Envisat and the circles are with
August 2, 2004.

Table 3
Comparisons of roughness measurements by image data

Mean SD Min Max

Validation

L. derived from field measurements by pin meter,cm  8.20 2.42 498 12.15

L. derived from image data, cm 13.25 3.60 7.61 2243

hrms derived from field measurements by pin  0.79 0.28 0.48 1.30
meter, cm

hrwms derived from image data, cm 2.19 049 1.17 297

0.07m> m™ > and 0.08 m* m "> for July and August as opposed to
0.04 m®> m > and 0.07 m> m* respectively for field measured
moisture content. Thoma et al. (2006) presented similar evidence
for the same watershed following a different technique. It appears
that radar remote sensing is successful in providing good
estimates of soil moisture at a watershed scale, although its
success at the field scale remains uncertain.

In this study there are a number of potential sources of errors
that may have some association with the uncertainty in the result
at the field scale, which is evident in the scattering of points in
the Fig. 9. The adjustment of field measured soil moisture
concerning rock fragments involves reducing the field measured
moisture content by the average proportion of rock fragment in
the study site, which is 47%, to represent moisture content of
rock—soil composite. This computation was based on the as-
sumption that the rock contains negligible amounts of moisture
and the Theta Probe measured moisture constitutes the soil
portion of the rock—soil composite. It was further assumed that
all experiment locations had the same rock fragment content,
the magnitude of which was equal to the watershed average.
This later assumption may have some impact on the accuracy of
the results, given the unavailability of rock fragment data for all
study locations.

Another source of error in the field validation may be related
to the method of speckle reduction. A median filter consisting of
a 9-pixel moving window was applied for speckle reduction,
which may not be adequate. Theoretically, speckle is random
error added to the pixel values of an image, which is inherent to
the radar remote sensing. The terrain of the watershed under

Table 4
Watershed scale field validation of soil moisture measurements by image data

Validation Mean SD Min Max
July 14, 2004
0s by field measurements, m’m3 0.04 0.01 0.02 0.06
0 derived by image data, m®> m™> 0.07 0.02  0.03 0.11

0s derived by [EM using field measured ~ 0.16 0.10 0.03 035

roughness, m> m >

August 2, 2004
0s by field measurements, m* m > 0.07 0.0l  0.05 0.10
0 derived by image data, m* m* 0.08 0.03 004 0.12
0s derived by IEM using field measured ~ 0.15 0.10 0.04 035
roughness, m* m >

Over all
0 by field measurements, m* m > 0.05 0.02 0.02 0.10
0s derived by image data, mm 3 0.07 0.03 0.03 0.12
0s derived by IEM using field measured ~ 0.15 0.09 0.03 035
roughness, m> m °
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Fig. 10. Performance of radar backscatter model, when field measurements of
roughness are used as inputs. Cross signs are points associated with 13
experimental sites on July 14, 2004 overpass and the circles are with August 2,
2004. In few cases IEM predicted moisture content fall outside valid range; these
points are not included in the graph.

study, which is rolling mountain, may seem a source of potential
error, since a terrain correction was not applied. However, the
sites chosen for the study were flat and should not be a major
concern. The way equations were derived to form the
framework of an equation-based solution may also have some
impact on the results. A fixed incidence angle was chosen for
deriving each equation. This may appear problematic since the
equations were applied in pixel-by-pixel computation for the
entire image for which the incidence angles varied block wise.
However, since the experiment locations were closely spaced,
the difference in incidence angles among locations were very
small and the assumption of fixed incidence angle may not be a
big problem after all.

The results presented in Fig. 9 using image-derived estimates
of roughness can be compared to the performance of IEM when
the field measurements of roughness were used as inputs to the
model (Fig. 10 and Table 4). It was found that the image-derived
roughness perform far better in parameterizing IEM for soil
moisture retrieval. This finding may be evidence that it is
probably the input parameters that result in poor performance of
the IEM model rather than the model itself. This may also be
considered an indirect and aggregated precision of the image-
derived roughness parameters estimated in this study.

4. Conclusions

In previous studies, radar images have been used for retrieving
distributed surface soil moisture based on field measurements of
surface roughness data used to parameterize the IEM. The
estimation of the characteristic parameters of surface roughness
using field data has been unreliable and the measurement of
roughness itself is cumbersome and infeasible for large scale
application. In this study, a method was developed to map
characteristic parameters of surface roughness using radar images

as a replacement for field-collected ancillary data. The method-
driven estimates of soil moisture were validated against field
measurements. Results indicate that there is good association
between image-derived soil moisture and field measured soil
moisture. Moreover, the implementation of this method is rather
straight forward (Fig. 11). It involves approximation of IEM and
some of its derivatives with simple functions using model
simulated data and the manipulations of these functions by the use
of image data and ArcInfo programming.

It was found that the image-derived surface roughness was
larger than field measured roughness. This may confirm that the
subsurface roughness caused by the rock fragments plays an
important role. Radar signal is probably responsive to multiple
bounce by the subsurface rock fragments when it penetrates few
centimeters below ground surface, in addition to the scattering
due to surface roughness. As a result, radar-perceived roughness
may be much larger than that of field measurements. The
roughness measuring field device is not designed to account for
subsurface roughness. Therefore, roughness measurements by
the pin meter may not be adequate to characterize surface
roughness for inputting in IEM, especially for study sites with
large amounts of rock fragments.

The conditions, under which the model is developed, applied
and validated, are best suited to its application in rangelands,
where the vegetation is sparse, precipitation is low and the
surface roughness does not change between dry and wet
periods. To broaden the applicability of the model to
agricultural land, especially in the mature stage of crop growth
when the vegetation becomes dense, additional validation work
must be conducted. In particular, future research must
investigate the application of the model under a broader range
of vegetation and moisture conditions. If the model is not
applicable in areas of dense vegetation (agricultural land for
example), additional research should be conducted to incorpo-
rate a variable reflecting vegetation cover or density into the
model. Further, the method developed in this study is applied
for C-band radar image and its applicability for other radar
frequencies needs to be determined.

The model developed through this research required the use
of dry season radar images for estimation of surface roughness.
Agricultural land preparation may change surface roughness
between dry and wet periods. As a result surface roughness
estimated from dry images may not be applicable to a wet image
for soil moisture estimation. Future research is therefore needed
to either establish the error introduced or eliminate the
requirement for a dry season images for roughness estimation.

The method developed in this study also depends on the use
of radar images from two different view angles, which can be
acquired from existing radar sensors given a time span of the
repeat cycle of the satellite. However, the moisture or roughness
conditions may undergo change within this time-frame making
the method developed here less applicable. The capability of a
radar sensor to acquire data at multiple view angles at the same
time should be considered in the design of future radar systems.
In addition, future research into the feasibility of replacing the
need for images at two-view angles with images at two different
polarizations could be beneficial. Existing radar sensors already
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Fig. 11. Schematic diagram of the steps followed for the image-based mapping of surface soil moisture and roughness. Note that if image 1 and 2 are acquired in dry

condition, one of them can serve as image 3.

have the capability of simultaneously acquiring images at
multiple polarizations. This would eliminate errors introduced
due to registration inaccuracy when merging the images at two-
view angles. Research in any one of these directions is highly
recommended.
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