
Available online at www.sciencedirect.com

t 112 (2008) 304–313
www.elsevier.com/locate/rse
Remote Sensing of Environmen
Temporal persistence and stability of surface soil moisture
in a semi-arid watershed

Michael H. Cosh a,⁎, Thomas J. Jackson a, Susan Moran b, Rajat Bindlish c

a USDA-ARS Hydrology and Remote Laboratory, Beltsville, MD 20705, United States
b USDA-ARS Southwest Watershed Research Center, Tucson, AZ 85719, United States

c SSAI, Lanham, MD 20706, United States

Received 10 January 2006; received in revised form 5 July 2007; accepted 15 July 2007
Abstract

Satellite soil moisture products, such as those from Advanced Microwave Scanning Radiometer (AMSR), require diverse landscapes for
validation. Semi-arid landscapes present a particular challenge to satellite remote sensing validation using traditional techniques because of the high
spatial variability and potentially rapid rates of temporal change in moisture conditions. In this study, temporal stability analysis and spatial sampling
techniques are used to investigate the representativeness of ground observations at satellite scale soil moisture in a semi-arid watershed for a long
study period (March 1, 2002 to September 13, 2005). The watershed utilized, the Walnut Gulch Experimental Watershed, has a dense network of 19
soil moisture sensors, distributed over a 150 km2 study region. In conjunction with this monitoring network, intensive gravimetric soil moisture
sampling conducted as part of the Soil Moisture Experiment in 2004 (SMEX04), contributed to the calibration of the network for large-scale
estimation during the North AmericanMonsoon System (NAMS). The sensor network is shown to be an excellent estimator of the watershed average
with an accuracy of approximately 0.01 m3/m3 soil moisture. However, temporal stability analysis indicated that while much of the network is stable,
the soil moisture spatial pattern, as represented by mean relative difference, is not replicated by the network mean relative difference pattern. Rather,
the network is composed of statistical samples. Geophysical aspects of the watershed, including topography and soil type are also examined for their
influence on the soil moisture variability and stability. Soil type, as characterized by bulk density, clay and sand content, was responsible for nearly
50% of the temporal stability. Topographic effects were less important in defining representativeness and stability.
Published by Elsevier Inc.
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1. Introduction

Soil moisture research has accelerated in recent years with the
launch of several satellite instruments, which measure the surface
layer of the soil. These instrument's include Aqua's Advanced
Microwave Scanning Radiometer (AMSR-E) (Njoku et al., 2003)
and the Tropical Rainfall Measuring Mission's (TRMM)
Microwave Imager (Bindlish et al., 2003) as well as the upcoming
Soil Moisture and Ocean Salinity (SMOS) (Kerr et al., 2001)
mission. As a part of the calibration and validation protocols for
these instruments, ground data and modeling are necessary to
insure accurate measurements. Field campaigns and in situ
networks are two methods of providing such data, however, the
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expense and limited conditions observed by field campaigns
necessitate the construction of in situ networks to provide more
robust calibration and validation. Installing large-scale networks
in a variety of landscapes will aid in the development of a satellite
soil moisture program.

Determining soil moisture at large scales is difficult because of
the variability at the surface. Famiglietti et al. (1999) showed how
soil moisture varies significantly from small scales (b10 m) to
field scale and larger (N1 km). Warrick et al. (1977) concluded
that accurate estimates of large-scale soil moisture could be
obtained using point observations. Point observations are
expensive, since it demands extensive sampling over long time
periods (Kachanoski & De Jong, 1988; Martinez-Fernandez &
Ceballos, 2003; Vinnikov et al., 1999). Any reduction in the
number of sampling points while still accurately estimating the
large scale average would be beneficial. Geostatistics could be the
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Fig. 1. The Walnut Gulch Experimental Watershed, which contains 19 surface soil moisture sensors.

1 Mention of this product does not constitute an endorsement.
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basis of one strategy. For example, the spatial correlation can be
incorporated by kriging (Delhomme, 1979) or semivariogram
analysis (Cosh & Brutsaert, 1999), but this also requires a dense
sampling network to adequately portray the correlation patterns
within the study region. The sampling locations also need to be
distributed across different land surface, soils and metrological
domains to capture different functional relationships.

Vachaud et al. (1985) developed the concept of temporal
stability as a tool in efficiently sampling a sparsely instrumented
region. This method identifies stable measurement sites that
predict the large-scale average over long time scales. They
studied a 2000 m2 grass field in Grenoble France for a 3-year
period. Kachanoski and de Jong (1988) considered the scale
dependency of 720-m transect. Cosh et al. (2004a) extended this
idea to a larger network (∼25 km) in the Walnut Creek
agricultural watershed in central Iowa.

Cosh et al. (2004a) was for only a few months in duration,
and it was concluded that a longer study period was necessary to
capture possible changes in the spatial pattern due to seasonality
and remove the influence of short-term weather patterns. In
another investigation in Chickasha, Oklahoma, Cosh et al.
(2006) extended the period of study for a soil moisture network
and coupled it with a local field experiment that would provide
an accurate snapshot of the overall soil moisture field.
Unfortunately, the time of study was during an unusually dry
summer resulting in a narrow range of values for validation.
Each of these studies also addressed soil moisture stability in
arable land with significant amounts of precipitation. Semi-arid
and arid regions are yet to be studied and often these studies are
for short durations and do not consider a long-term network.
Soil moisture temporal stability in a semi-arid watershed holds
key differences from previous studies because of the low
average soil moistures and seasonality of precipitation.

This study extends the length of time used in a temporal
stability study for a soil moisture network and couples the
analysis with an intense field experiment to validate the network
soil moisture measurements during the rainy season in a semi-
arid watershed. Temporal stability analysis and correlation
analysis will be used to examine a 3.5-year study period (March 1,
2002 to September 13, 2005) of the Walnut Gulch Experimental
Watershed (WGEW) in southeastern Arizona. The dramatic
variations in temporal and spatial variability of surface soil
moisture make semi-arid regions difficult to quantify with tra-
ditional short-term investigations. In addition, regression
analysis will be used to estimate the contribution of various
land surface parameters such as soil type, rock fraction, and
topography to the temporal stability and representative character
of the network in an effort to identify time stability indicators.
Lastly, the network average will be compared to satellite data to
determine if there are relationships between space-borne sensors
and in situ data.

2. Study region

Walnut Gulch watershed is a semi-arid region in southeastern
Arizona that has been hydrologically monitored since 1954. The
watershed is located around the historic town of Tombstone
featuring an ephemeral tributary of the San Pedro River. The soil
moisture sensor network is distributed uniformly across the
150 km2 watershed (Fig. 1). The dominant land use is rangeland
with vegetation varying from shrubs to grasses. In addition to
numerous flumes and raingages, 21 soilmoisture sensors (Stevens
Hydra Probes1) have been recording surface soil moisture and soil
temperature since 2002 as part of a program to calibrate and
validate satellite estimated soil moisture. Of these 21 sensors
(identified as RG## for the raingage that they are located near), 19
are located within the watershed, while two are in the outlying
region and are not considered in the remainder of the study. These
sensors are installed horizontally at 5 cm with a sensing range of
3–7 cm from the surface and record hourly instantaneous data.
The period of study available for the current investigation is from
March 1, 2002 to September 13, 2005. The majority of the
precipitation in this watershed occurs during the late summer
months, during the North American Monsoon season. The study
also includes the Walnut Gulch Soil Climate Analysis Network
(SCAN) station. This station (Water Climate Center Staff, 2005)
has a variety of meteorological and hydrological sensors
including a Hydra probe soil moisture sensor at 5 cm. Because
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of the close proximity of the SCAN station to RG83, the SCAN
data are not used in the calculation of any averages or statistics,
but is included to provide some comparison.

In August of 2004, the Soil Moisture Experiment (SMEX04)
was conducted in cooperation with the North American
Monsoon Experiment (NAME) (Gutzler et al., 2005). NAME
was organized to study the North American Monsoon System
(NAMS) that controls the precipitation cycle for much of the
interior and southwestern United States (Gochis et al., 2003).
Intensive aircraft surveys and ground truth sampling was
organized and executed throughout the summer of 2004 to
measure the hydrologic state at a high temporal resolution. In
order to explore the contributions of the land surface interactions
in NAMS, intensive soil moisture investigations were conducted
in southeastern Arizona (USA) and northern Sonora (Mexico).
These included an aircraft campaign was organized to study the
spatial distribution of surface soil moisture using the Polarimet-
ric Scanning Radiometer (PSR) operated by the NOAA
Environmental Technology Laboratory and a large-scale ground
validation campaign in the Walnut Gulch Experimental
Watershed (WGEW). Point samples of surface soil moisture,
both gravimetric and dielectric, were collected at the watershed
scale (64 samples over 25 km by 10 km) and the regional scale
(40 samples over 50 km by 75 km) between 11am and 3pm
(MST) each day to coincide with aircraft overflights and satellite
overpasses. These samples are considered ‘transient’ because
they do not sample the exact same soil volume from one day to
the next day as is the case with in situ sensors. These will be
subject to small-scale variability (Famiglietti et al., 1999). This
data provides a basis for evaluating both the quality of the in situ
network calibration and its spatial representation. Five dielectric
probe samples were also taken at each of the 64 sites. In amanner
similar to Cosh et al. (2005), the dielectric probes were calibrated
using the co-located gravimetric samples to create a site-specific
calibration equation for volumetric soil moisture (VSM). From
the Gravimetric Soil Moisture, in g/g, the (Gravimetrically-
based) Volumetric Soil Moisture of the Sample (GVSMSAMP) is
calculated with

GVSMSAMP ¼ GSM⁎BDSAMP ð1Þ
where BDSAMP is the bulk density of the sample volume.
Volumetric soil moisture is the most common form of soil
moisture used in modeling and remote sensing because it is the
most easily measured using aircraft and satellite sensors. Field
samples of bulk density and volumetric rock fraction, RFSAMP,
were taken independently near the raingages and soil moisture
sampling sites while making sure not to disturb the installations.
One of the 5 dielectric soil moisture samples, θ, was taken at the
exact same location as the gravimetric sample. This concurrent
observation was used to calibrate other dielectric observations
using the following equation

h ¼ ½1:07þ 6:4V � 6:4V 2 þ 4:7V 3� � a0
a1

ð2Þ

where V is the voltage reading from the probe, and a0 and a1
are calibration constants, the root mean square error between
the GVSMSAMP and θ is minimized by changing a0 and a1
(Delta-T Devices Ltd., 1999). The overall root mean square
error (RMSE) associated with the calibration for the WGEW
dielectric probe sampling as compared to the gravimetric sampling
was 0.024 m3/m3. TheWGEWpresents a new challenge, because
of the large amount of surface rock in the study region and
throughout southeastern Arizona. To address this a newmethod of
rock fraction correction will be introduced.

3. Rock fraction

There is a degree of bias in the location of ground sampling,
because of the presence of a large amount of rock at the
surface. Samples were generally taken at locations with fewer
surface rocks. This sample represents the soil (plus small
rocks) rock fraction. However, for remote sensing and grid
based modeling, the volumetric moisture of the surface layer
is required. A procedure was developed for converting the
point observations, which is referred to as the Rock Fraction
Correction (RFC).

The bulk density (and volumetric rock fraction) samples
were approximately 300 cm3 in volume, which is comparable to
the ground sampling protocols for soil moisture (100 cm3).
During SMEX04, surface volumetric rock fraction was
measured for each sampling location in the study, defined as
percentage volume not passing a no. 10 sieve (2 mm). There is a
need to ‘correct’ this ground sample to a large-scale estimate,
which would incorporate a more accurate rock fraction. The first
step in this correction is to calculate the volumetric soil moisture
of the soil only, GVSMSOIL. This is accomplished by using the
volumetric rock fraction of the sample at the surface, RFSAMP,
with

GVSMSAMP ¼ GVSMSOIL⁎ð1� RFSAMPÞ: ð3Þ

The GVSMSAMP is an aggregate soil moisture composed of
soil moisture and rock and Eq. (3) demonstrates how these two
variables can be separated. In order to provide a more area
representative estimate of volumetric rock fraction, we used the
data provided in the Soil Survey Geographic Database (Soil
Survey Staff, 2004). Using the VSMSOIL and the rock fraction
estimate from the SSURGO database, the rock fraction corrected
volumetric soil moisture, VSMRFC, is calculated by

GVSMRFC ¼ GVSMSOIL⁎ 1� RFSSURGOð Þ: ð4Þ

More simply, this equation can be rewritten as

GVSMRFC ¼ GVSMSAMP⁎
1� RFSSURGO
1� RFSAMP

� �
ð5Þ

which clearly shows how the rock fraction correction is a scaling
value, referred to as the Rock Fraction Correction. This correction
should also be applied to the dielectric probe samples, because the
dielectric probes are inserted in the ground with the same bias of
sampling location (more soil than rock). The GVSMSAMP can be
replaced with θ̄ , which is the average volumetric soil moisture
from the site specific calibrated dielectric probes. This is based on



Table 1
Rock fractions and the rock fraction correction

Site Sample
rock
fraction

SSURGO
rock
fraction

RF
correction

RMSE,
θ̄ m3/m3

RMSE,
θ̄RFC m3/m3

R2

RG003 0.11 0.1400 0.96629 0.017 0.017 0.695
RG013 0.23 0.1600 1.09091 0.130 0.155 0.446
RG014 0.24 0.3713 0.82730 0.018 0.016 0.599
RG018 0.20 0.1600 1.05000 0.024 0.024 0.680
RG020 0.42 0.3713 1.08405 0.082 0.073 0.626
RG028 0.23 0.5175 0.62662 0.046 0.012 0.643
RG034 ⁎ 0.4163 0.71429 ⁎ ⁎ ⁎

RG037 ⁎ 0.5313 0.67958 ⁎ ⁎ ⁎

RG040 0.08 0.3825 0.67120 0.054 0.018 0.701
RG046 0.15 0.5175 0.56765 0.126 0.072 0.000
RG057 0.29 0.5625 0.61620 0.062 0.024 0.060
RG069 0.17 0.5438 0.54970 0.093 0.024 0.600
RG070 0.31 0.5438 0.66123 0.038 0.013 0.345
RG076 0.18 0.2413 0.92530 0.112 0.102 0.006
RG082 0.13 0.5850 0.47701 0.080 0.022 0.763
RG083 0.21 0.5175 0.62076 0.046 0.009 0.707
RG089 0.41 0.3825 1.04661 0.091 0.090 0.122
RG092 0.07 0.5175 0.51882 0.053 0.017 0.430
RG100 0.34 0.4163 0.88447 0.045 0.033 0.662

‘⁎’ indicates no sampled rock fraction and the Rock Fraction Correction is
estimated from nearby similar RFSSURGO site. RMSE values and R2 were
calculated between the dielectric probe soil moisture (θ̄ or θ̄RFC) and SMSNRFC.
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the average of five sampling points compared to the single gravi-
metric sample.

h̄RFC ¼ h̄⁎
1� RFSSURGO
1� RFSAMP

� �
: ð6Þ

It is also necessary to apply a correction to the 19WGEW soil
moisture sensor network (SMSN) data sets. Since the SMSN
sensors were installed in the same soil (locally) that was sampled
during SMEX04, it is logically to apply the same RFC to the
sensor data per site, resulting in an SMSNRFC for each sensor.

Table 1 shows the rock fractions and the correction con-
stants. This also lists the RMSE values for comparison of the
Fig. 2. Time series of soil moisture network average and the SMEX04
SMSNRFC with (θ̄ ) and (θ̄RFC) as well as the R2 values (this
value is the same for both comparisons because one is a linear
combination of the other). RMSE values decreased from 0.064
to 0.42 m3/m3 error on average. R2 values were often high
indicating a moderate to strong relationship between the ground
sampling and the local soil moisture sensor though some
sensors had poor performance to local measurements. The
RMSE of the SMSNRFC average to the θ̄RFC (which is based on
64 sampling points) is approximately 0.01 m3/m3 for the
SMEX04 time period. For two of the locations (RG34 and
RG37), there were no local rock fraction samples taken, so the
rock fraction correction for the nearest sample (b1 km away)
site was used.

Fig. 2 is a plot of the two SMSN time series (uncorrected
and corrected) during the SMEX04 experiment. Using the RFC
on the soil moisture sensor network lowers the estimated soil
moisture for the WGEW by approximately 0.023 m3/m3. This
correction is sensor location dependent and not uniform for all
sensors. Also plotted are the uncorrected (θ̄ ) and corrected
(θ̄RFC) soil moisture averages from the dielectric probe
sampling during SMEX04. The average difference between
these measurements is 0.02 m3/m3. Fig. 3 is a plot of the entire
period of study with an inset of the SMEX04 time period for
reference. This study uses the RFC soil moisture data.

4. Temporal stability methods

The main tool for temporal stability analysis is the mean
relative difference plot. This plot compares a particular soil
moisture sensor location to the sensor network average computed
from all sensors. Introduced by Vachaud et al. (1985), the mean
relative difference (MRD) is defined as

d̄i ¼ 1
t

Xt

j¼1

Si;j � S̄j
S̄j

ð7Þ

where Si,j is the jth sample at the ith site of n sites within the study
region. S̄ j is the computed average among all sites for a given date
GVSM average with and without the Rock Fraction Correction.



Fig. 3. A time series plot of the SMSN average for the entire study period. The inset plot details the SMEX04 study period and the associated GVSMRFC average.
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and time j ( j=1 to t). The sensors in this study record hourly data
(instantaneous in situ measurement) and the gravimetric samples
were collected each day between 11am and 3pm. It is assumed
that results of this analysis are applicable to any time of day
Fig. 4. Mean relative difference plot for the Walnut Gulch Experimental Watershed
deviation of the relative differences. Labels refer to the raingage location number.
because samples are only compared at the same time period. The
mean relative difference compares the value at a particular site to
the average over the area of study. It determines if it is consistently
greater or less than the mean and how variable that relationship is
. The time period is June 2002 to September 2005. Error bars are one standard



Table 2
Statistics for the soil moisture sensor network

Raingage MRD MRD, S.D. Bias RMSE

82 −0.792 0.256 −0.032 0.038
70 −0.678 0.403 −0.032 0.042
SCAN −0.604 0.403 −0.021 0.027
83 −0.426 0.353 −0.017 0.024
100 −0.375 0.399 −0.011 0.017
37 −0.328 0.316 −0.012 0.018
28 −0.309 0.254 −0.012 0.016
34 −0.303 0.331 −0.009 0.015
40 −0.202 0.255 −0.009 0.014
14 −0.200 0.357 −0.004 0.014
92 −0.161 0.394 −0.008 0.015
76 −0.083 0.997 −0.008 0.046
3 −0.077 0.480 0.003 0.021
69 −0.012 0.478 0.000 0.021
46 0.009 1.331 −0.001 0.052
57 0.036 0.511 −0.004 0.017
18 0.149 0.512 0.014 0.027
89 0.566 1.006 0.026 0.060
20 1.611 1.530 0.059 0.077
13 1.628 1.179 0.060 0.074

Shown are the MRD (mean relative difference) and its standard deviation, and
also the bias and root mean square error for each sensor as compared to the
watershed average for the entire time period. Units are in m3/m3.
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as determined by the standard deviation of the relative differences
(SDRD), defined as

rðdÞ2i ¼
1

t � 1

Xt

j¼1

Si;j � S̄j
S̄j

� d̄i

� �
: ð8Þ

A sensor is considered to be temporally stable if it has a low
SDRD (for this study, approximately less than 0.60 m3/m3),
such that there is a consistent, though potentially biased rela-
tionship between the site and the overall average. A site is
Fig. 5. Map of the mean relative differences for the Walnut Gulch Experimental Wat
relative difference standard deviations are also represented by a circle. The period o
considered representative of the large-scale average if its MRD
is near zero. A large MRD (positive or negative) is a potentially
correctable problem, whereas a large standard deviation is not.
A large standard deviation is an indication that the soil moisture
at the site is not linearly related to the watershed average;
therefore, it is simply a poor predictor.

The correlation coefficient is another method of assessing
temporal stability of spatial patterns (Chen et al., 1997; Cosh
et al., 2004a). A correlation coefficient measures the relation-
ship between two samples and is defined for these purposes by

ri;i V¼

X
j

ðSi; j � S̄•; jÞðSi V; j � S̄•; jÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

ðSi; j � S̄•; jÞ2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

j

ðSi V; j � S̄•; jÞ2
r ð9Þ

where Si,j and Si',j are the volumetric soil moisture values for
two sampling sites, i and i', for a given time, j. The average soil
moisture for that time including sampling points is S̄•,j. Closely
correlated sites should have an ri,i' near 1, while uncorrelated
sites have ri,i' values near 0. Vachaud et al. (1985) used a similar
measure, the rank correlation coefficient, but the tendency of
soil moisture sensors to occasionally report erroneous data
values, including dropped values, negatively impacts the value
of this coefficient. The correlation coefficient is less sensitive to
this problem, because the total number of sites reporting doesn't
affect this statistic in the same manner that it affects the rank
correlation coefficient.

Temporal stability has also been shown to be related to soil
type, topography, and land cover (Jacobs et al., 2004; Mohanty &
Skaggs, 2001). However, we do not yet have a full understanding
of the interaction and impact of all factors on temporal stability. To
study these relationships, a simple multivariate regression analy-
sis or general linear model (GLM) is used to quantify the depen-
dence of temporal stability on associated land surface parameters.
ershed for 19 soil moisture probes identified by a ‘+’. Locations with high mean
f study is March 1, 2002 to September 2005.



Fig. 6. (a) Map of the MRD for the 64 GVSM sampling points during SMEX04 (August 3–26, 2004). (b) Map of the MRD for the soil moisture sensor network during
the SMEX04 study period (August 3–26, 2004).
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Cosh et al. (2004b) demonstrated how a modified GLM can be
used to compute R2 values which quantify how much of the
variability of a parameter can be attributed to other land surface
characteristics. The characteristics of interest in this study include
bulk densities, sand and clay content, rock fraction, slope, aspect,
and elevation, and they were assumed to be linear covariates.
More complex models are not considered in the present study.
From the model, the sequential sum of squares (SeqSS) for each
parameter and the total sum of squares (TSS) can compute the
coefficient of determination, R2, by

R2 ¼ SeqSSðparameterÞ
TSS

: ð10Þ

The total of these R2 values also provides an estimate of the
total model quality. The method used in this study will not
consider covariate interactions and will only focus on the linear
relationships.
5. Results

A 3.5-year time period was available for study, March 1st,
2002 to September 13th, 2005. Fig. 4 contains the results of the
temporal stability analysis for the 19 sensor locations within the
watershed. Five of these locations (RG76, RG46, RG89, RG20,
and RG13) are observed to have a greater SDRD than the other
sensors. Other sensors are much better at estimating the
watershed average, such as RG03 and RG69. Table 2 lists the
statistics for comparing the watershed average to each sensor. It
is shown that many sensors have an RMSE of approximately
0.02 m3/m3 when estimating the watershed average, which is
good for a relatively sparse network. Fig. 5 is an interpolated
color map of the MRD that illustrates the soil moisture pattern
of the wet and dry areas for the same time period. Sensors that
had large SDRD are circled. There is a tendency for less stable
sites to have positive mean relative differences. In a semi-arid
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watershed in a region such as Arizona, a majority of the time the
watershed average is expected to be less than 0.10 m3/m3

volumetric soil moisture. Because soil moisture varies between
0.0 m3/m3 and ∼0.50 m3/m3, most often instability will occur
at high moisture values, whereas, erroneously low moistures
will appear accurate and stable. However, one location with a
negative mean relative difference is identified as unstable as
well. It is necessary to closely examine the rainy, or wet periods,
or a semi-arid watershed to identify unstable sensors, which
may be masked by this low moisture stability. SMEX04 was an
opportune rainy period to more closely examine the network to
detect these unstable sensors.

The comparison of the averages is one method of
determining accuracy, another is to consider the spatial patterns
of soil moisture. Fig. 6a is an MRD plot for the SMEX04
GVSM sampling (August 3–26, 2004). This spatial pattern is
quite different from the MRD plot for the soil moisture sensor
network, shown in Fig. 5. Part of this difference will be related
to the greater density of the GVSM data set. In addition, these
are for different time periods, therefore the sensor network
pattern must be reexamined for the shorter SMEX04 time
period. Fig. 6b is the MRD plot for the soil moisture network for
only the SMEX04 time period (August 3–26, 2004). The
patterns are still different, while the pattern for the network over
the shorter period remains qualitatively consistent with the 3.5-
year time frame. Therefore, while the soil moisture pattern
indicated by the moisture network does not coincide with the
GVSM estimation of the soil moisture pattern, the network still
is able to estimate large-scale soil moisture means. Due to the
local-scale variability at the surface, the exact location of the
sensor largely determines the mean relative difference.
Therefore, the network does not record an accurate map of
the surface soil moisture, but it is an accurate set of sample
points that predict a large-scale average. In order to accurately
Table 3
Correlation coefficients between soil moisture sensors for March 1, 2002 to Septem

82 70 SCAN 83 100 37 28 34 40 14 92

82 1.00 0.12 0.91 0.85 0.26 0.33 0.48 0.31 0.73 0.13 0.3
70 1.00 0.11 0.08 0.03 0.02 0.04 0.04 0.09 0.02 0.0
SCAN 1.00 0.79 0.22 0.30 0.46 0.25 0.63 0.10 0.3
83 1.00 0.24 0.32 0.46 0.30 0.69 0.19 0.3
100 1.00 0.12 0.14 0.12 0.24 0.05 0.1
37 1.00 0.17 0.59 0.27 0.08 0.7
28 1.00 0.21 0.42 0.09 0.2
34 1.00 0.32 0.09 0.1
40 1.00 0.13 0.3
14 1.00 0.1
92 1.0
76
3
69
46
57
18
89
20
13
record soil moisture patterns, higher density sampling or aircraft
surveys are more appropriate.

Correlation analysis revealed that there is little to no rela-
tionship between theMRD and the correlation coefficients for the
sensor locations. Table 3 shows the correlation coefficients be-
tween the soilmoisture sensors in order of increasingMRD for the
entire study period (March 1, 2002–September 13, 2005). There
are a wide range of values fromweak correlation (−0.3bri,i'b0.3)
to strong negative (ri,i'b−0.7) and strong positive (ri,i'N0.7) with
no trend or relationship to MRD. This may indicate that moisture
within the water is distributed at small scales and is not spatially
correlated. Future work will analyze in greater detail how the
spatial correlation lengths of soil moisture affect stability and
estimation.

Using a GLM, the relationship between various topographic
parameters and soil properties was quantified for both the sensor
network and the GVSM sampling sites from SMEX04, in a
manner similar to Cosh et al. (2004b). Table 4 contains the R2

values for GLM analyses conducted on three data sets: SMSN
(3.5 year), SMSN (SMEX04 only), and SMEX04 Gravimetric
Sampling. For the SMSN 3.5 year study, the results show that
the leading soil parameters of importance for MRD are sample
bulk density (R2 = .318), sand (R2 = .125), and clay percentages
(R2 = .062). These parameters account for approximately 50% of
the variability of MRD and can be considered a proxy for the
soil type. It can be concluded that soil type not only influences
MRD, but stability as well, where stability is represented by
SDRD. Almost 60% of the SDRD variability can be credited to
the soil type parameters listed in Table 4. These findings are in
agreement with the previous studies by Mohanty and Skaggs
(2001) and Jacobs et al. (2004), where it was demonstrated that
soil type and topography influence MRD and SDRD.

For the SMSN SMEX04 only data set indicates a greater
reliance on sample bulk density, while other soil parameters
ber 13, 2005

76 3 69 46 57 18 89 20 13

6 0.07 −0.10 0.10 −0.07 0.33 −0.37 −0.02 −0.23 −0.07
5 0.02 −0.02 0.01 0.06 −0.01 −0.03 0.01 −0.12 0.00
4 0.18 −0.11 0.01 0.06 0.36 −0.40 0.01 −0.25 −0.07
7 0.00 −0.06 0.06 −0.22 0.40 −0.31 −0.02 −0.21 −0.06
1 −0.02 −0.01 0.05 −0.05 0.08 −0.7 0.03 0.04 0.00
6 0.23 −0.02 0.06 −0.09 0.56 −0.09 −0.02 −0.05 0.00
0 0.01 −0.02 0.02 −0.08 0.15 −0.15 −0.01 −0.10 −0.04
1 0.32 0.00 0.06 −0.15 0.07 −0.02 −0.04 −0.04 −0.03
4 0.00 −0.06 0.15 −0.14 0.26 − .20 −0.04 −0.16 −0.09
0 −0.08 0.03 0.07 −0.23 0.06 0.02 −0.05 −0.02 0.01
0 0.02 0.01 0.07 −0.08 0.60 −0.11 −0.04 −0.10 −0.01

1.00 −0.06 −0.14 0.40 0.02 −0.14 0.05 −0.07 −0.04
1.00 0.33 −0.09 −0.06 0.08 −0.03 0.07 0.02

1.00 −0.22 0.05 0.03 −0.01 0.04 0.04
1.00 −0.05 −0.14 0.06 −0.11 −0.06

1.00 −0.18 −0.01 −0.03 0.04
1.00 −0.04 0.11 0.04

1.00 −0.01 −0.01
1.00 0.05

1.00



Table 4
R2 values from General Linear Model for mean relative difference the WGEW
sensor network and the watershed sampling during SMEX04

SMSN,
3.5-year

SMSN during
SMEX04

SMEX04
sampling

MRD SDRD MRD SDRD MRD SDRD

Soil characteristics
Sample bulk density 0.318 0.080 0.465 0.489 0.005 0.022
Soil bulk density 0.003 0.000 0.049 0.061 0.002 0.012
Rock fraction 0.021 0.232 0.013 0.023 0.007 0.003
Clay Percentage 0.062 0.154 0.008 0.009 0.000 0.002
Sand percentage 0.125 0.125 0.118 0.076 0.110 0.069

Topographic
Elevation 0.019 0.015 0.032 0.102 0.000 0.018
Slope 0.077 0.003 0.042 0.071 0.048 0.123
Aspect 0.143 0.053 0.031 0.000 0.015 0.010

Total model 0.774 0.662 0.757 0.830 0.187 0.200

MRD is the Mean Relative Difference and SDRD is the Standard Deviation of
the Relative Differences.
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decrease in importance (R2b0.010). This indicates that for short
periods of time (such as the month long SMEX04), the
relationships between these soil parameters and stability can
change. Topographic parameters have minimal relationships to
MRD or stability, as most of the R2 values are less than 0.10. The
exception is aspect, which has some influence on theMRD for the
sensor network. Slope is shown to have little to no effect on
stability; however, given the large spatial scale of the study, in
comparison to that of Jacobs et al. (2004), it is reasonable to
conclude that slope cannot be included in this study. All sampling
locations are positioned in a flat land surface, though nearby
topographymay be varied. Topographic information for the GLM
analysis is derived from larger scale (30 m DEM data) maps,
which can be misrepresentative of the small-scale point
measurements that compose this sensor network. Analysis of
Fig. 7. Comparison of the soil moisture average from the WG network and the
the SMEX04 sampling was less conclusive, as both GLM results
had R2 values equal to or less than 0.20, which is not significant.
Clearly, future work is necessary to evaluate which parameters
play crucial roles in the temporal stability of the WGEW.

Lastly, the primary purpose of the soil moisture sensor
network in the WGEW is to support the calibration and
validation of the AMSR-E satellite instrument. Temperature
brightness data has been collected over the globe and soil
moisture products have been produced for many different
vegetation covers. However, a simple comparison of network
soil moisture to satellite emissivity indicates that there exists a
subtle relationship for this watershed network. Fig. 7 is a plot of
the ascending (R2 =0.29) (overpass at 13:30 MST) and
descending (R2 =0.22) (overpass at 1:30 MST) emissivities
for WGEW compared to the coincident WGEW soil moisture
average for the shorter time period of January 1–September 30,
2004. Using AMSR-E data, emissivity, e, as defined by

e ¼ TB10:7GHz

0:861⁎TB37GHz þ 52:55
ð11Þ

where TB10.7 GHz is the temperature brightness at 10.7 H GHz in
K and TB37 GHz is the temperature brightness at 37 V GHz in K
(De Jeu, 2003). There is a weak, but evident relationship
between the observed soil moisture and satellite emissivity, as
shown by the R2 values, which shows the potential of estimating
soil moisture from remote sensing observations. This weak
relationship can be attributed to the spatial variability and the
size of the AMSR-E foot-print (60×60 km).

6. Conclusions

It has been shown that the WGEW SMSN is an accurate and
stable estimator of the watershed average. However, the surface
emissivities derived from Ascending and Descending scenes of AMSR-E.
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pattern of soil moisture was not consistent as determined by
comparing the MRD pattern between a dense (64 sampling
points) ground sampling effort and the in situ soil moisture
network (19 sites). If one of the more representative sites were to
be used as a surrogate for the watershed average, the RMSE
would be approximately 0.01 m3/m3 for a long study period. In
semi-arid watersheds, unstable sensors have a tendency to have a
higherMRD, becausemost of the time the entire network has very
low moisture. Variability can therefore only occur as high
moisture values. Since volumetric soil moisture must be non-
negative and soil moisture is low in a semi-arid region, the soil
moisture distribution is non-normal and skewed negatively.MRD
variance is greater for sites, which have a greater MRD, because
these locations are biased toward higher soil moisture values and
therefore have a greater dynamic range. Previous studies have
shown unstable sensors in both high and low MRD, and the
SDRD values are generally larger than those found in Martinez-
Fernandez and Ceballos (2003) and Vachaud et al. (1985) which
are based on similar types of measurements (in situ sensors). The
SDRD values are comparable however to those found by Jacobs
et al. (2004) which used transient (non-in situ) sensors. This is
most likely a result of the differences in sampling method, in situ
versus transient sampling and time interval of sampling.
Relationships between temporal stability and land surface
parameters were investigated with a GLM. Soil characteristics,
including bulk density and sand and clay content, was shown to be
responsible for 50% of the temporal stability, but less influence
(∼20%) on the representative character. Topographic parameters,
such as slope, aspect, and elevation, had little effect (R2b0.20) on
stability or representative character. Lastly, comparisons of the
sensor network average to the emissivities from the AMSR-E
instrument demonstrated that there is a good relationship.
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