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Summary. The process of quality control of micrometeorological and carbon dioxide (CO2) flux
data can be subjective and may lack repeatability, which would undermine the results of many
studies. Multivariate statistical methods and time series analysis were used together and inde-
pendently to detect and replace outliers in CO2 flux data derived from a Bowen ratio energy
balance system. The results were compared with those produced by five experts who applied
the current and potentially subjective protocol. All protocols were tested on the same set of
three 5-day periods, when measurements were conducted in an abandoned agricultural field.
The concordance of the protocols was evaluated by using the experts’ opinion (mean ˙ 1.96
standard deviations) as a reference interval (the Bland–Altman method). Analysing the 15 days
together, the statistical protocol that combined multivariate distance, multiple linear regression
and time series analysis showed a concordance of 93% on a 20-min flux basis and 87% on a
daily basis (only 2 days fell outside the reference interval), and the overall flux differed only by
1.7% (3.2 g CO2 m�2/. An automated version of this or a similar statistical protocol could be
used as a standard way of filling gaps and processing data from Bowen ratio energy balance
and other techniques (e.g. eddy covariance). This would enforce objectivity in comparisons of
CO2 flux data that are generated by different research groups and streamline the protocols for
quality control.

Keywords: Bowen ratio energy balance; Multiple linear regression; Multivariate distance;
Net ecosystem carbon dioxide flux; Quality control; Time series analysis

1. Introduction

Independent testing of results in different laboratories is a fundamental requirement of science.
This is particularly important for studies that have far-reaching socio-economic implications,
such as the quantification of carbon fluxes and inventories in relation to global climate change.
Increasing efforts are under way to expand the network of carbon flux measurements by differ-
ent research groups (Aubinet et al., 2000; Svejcar et al., 1997; Baldocchi et al., 2000). Modellers
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use such data to calibrate and validate models to extrapolate and predict carbon budgets over
space and time (e.g. Schimel et al. (2001), Ito and Oikawa (2002) and Melesse and Hanley
(2005)). Thus, it is essential to assess the potential inconsistencies and differences between data
sets that could be attributed to quality control (QC) by different individuals. QC is defined as

‘a system of routine technical activities to measure and control the quality of the inventory as it is being
developed’

(Intergovernmental Panel on Climate Change, 2000).
Current knowledge about carbon fluxes is largely based on micrometeorological measure-

ments with Bowen ratio energy balance (BREB) and eddy covariance systems. Individual experts
in different laboratories subject data from these measurements to QC, and it is not known how
consistent this process is across experts. Carbon flux measurements with BREB and eddy covari-
ance systems involve several signals that are sampled at rates as high as 10 Hz. Raw data are
typically aggregated to one set of values every 10–30 min. Aggregated data are inspected by an
expert who eliminates observations that are identified as ‘incorrect’ and fills the gaps that are
created by violations to micrometeorological assumptions, equipment malfunction and poor
weather (Falge et al., 2001). Typically, outliers in BREB and eddy covariance data are replaced
with linearly interpolated values based on records surrounding the erroneous measurements.
This method is appropriate only when the gaps are much shorter than the shortest meaningful
pattern in the data, and it ignores the potentially rich information that is contained in the auto-
correlations and cross-correlations of the signals. This QC process depends both on clear rules
and on subjective decisions made by each expert.

The subjectivity of the QC process may affect both the identification of observations as erro-
neous and the values that are used to fill gaps. It is therefore very important to develop a protocol
that can be used as a standard method among scientists. When applied to the same raw data,
the protocol should always yield identical results, regardless of who performs the QC.

Scientists working on carbon flux measurements have not used the body of theory and tech-
niques that is available for the analysis of signals (e.g. Chatfield (2004)), although the main issue
in QC is a smoothing problem. A ‘smoother’ estimates the state of a system (i.e. values of all sig-
nals from the flux system) at time t on the basis of measurements before and after t. Estimation
can be purely empirical or it can be based on a mechanistic model of the system. The benefits of
the latter are multiple, but it requires detailed knowledge of the ecosystem characteristics and
climate conditions.

The objective of this work is to test the use of multivariate statistics, time series analysis and
a combination of both to define QC protocols. We evaluate the concordance of these statistical
protocols with the current, potentially subjective, method based on expert opinions. We assess
the degree of agreement between methods because it is not possible to know which one is cor-
rect. We use the statistical protocols for both outlier detection and prediction of carbon dioxide
(CO2) flux data, as measured by a BREB system. After testing several protocols, we report here
on the four protocols that showed better agreement with the average opinion of an expert panel,
who independently applied the current QC protocol to the same three data sets.

2. Methods

2.1. Site and data description
The study area is in northern Kazakhstan, near Shortandy (51◦ 37′ N–71◦ 05′ E), 60 km north
of Astana. The climate is cold semiarid with average annual precipitation 323 mm, 60% of which
occurs between May and September. The average temperature for this same period is 15.8 ◦C
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whereas the annual average is 1.6 ◦C (Gilmanov et al., 2004). Considering the June–October
period, the 2002 growing season was very close to that of the average year, with a total precipi-
tation of 180 mm and average temperature of 13.0 ◦C. These values are almost identical to the
averages for 1936–2000 (188.4 mm and 13.9 ◦C respectively).

This area is in the Kazakh steppe ecoregion (Olson et al., 2001) and has not been cultivated
by wheat farmers during the last decade because of the effects of economic policy changes on
input–output prices and subsidies. Abandoned lands are currently dominated by weeds (gen-
era Sonchus and Cirsium) and shrubs (genera Artemisia and Matricaria) and are undergoing
secondary succession (Laca et al., 2003).

Flux measurements were done continuously with a BREB tower from May 18th until Novem-
ber 22nd (days of the year (DOYs) 138–326) of 2002, except for occasional failures of the equip-
ment. Three sets of BREB data consisting of five consecutive days each were selected from
different periods of the growing season, when canopy heights were 30, 90 and 80 cm. Each
period consisted of a time series of 360 data, which is the result of averaging the BREB data
every 20 min during 5 days. All three periods included complete sets of micrometeorological vari-
ables and CO2 and water fluxes (FCO2 and FH2O), some of which are reported in Table 1. In this
study, negative values of FCO2 indicate ecosystem net CO2 uptake, as photosynthesis exceeds
ecosystem respiration during the day, whereas positive values denote net CO2 efflux from the
ecosystem into the atmosphere. Even though the first period (PE-1) and the second period (PE-2)
had different micrometeorological conditions, they had similar average daily FCO2 (approxi-
mately −17.5 g m−2 s−1/ (Table 1). The third period (PE-3) had a much lower average flux
(0.61 g m−2 s−1/, which represents respiration because it occurred during vegetation senescence.

2.2. Bowen ratio energy balance technique
A BREB system (model 023/CO2, Bowen ratio system, Campbell Scientific Inc., Logan, Utah,
USA) was used for continuous monitoring of FCO2 and FH2O between the atmosphere and the
abandoned field. The Bowen ratio β is defined as the ratio between sensible heat H and latent
heat flux LE (Bowen, 1929). FCO2 was indirectly estimated by the BREB system as described
in detail by Campbell Scientific (1998). The equations that are used in this study are contained
in Appendix A, and the complete list of variables measured and calculated is given in Table 2.
For details about instrumentation see Gilmanov et al. (2004).

The FCO2 data were corrected for changes in CO2 density that were caused by the simul-
taneous flux of water vapour (Webb et al., 1980), as described by Campbell Scientific (1998).
The correction for the effect of H-flux was not performed because it has been found that the air
streams entering the infra-red gas analyser sample and reference cells have the same temperature
(Angell et al., 2001).

2.3. Quality control process
The analysis of QC protocols was divided in two sections. The first evaluates the current protocol
that is used by several scientists who are specialists in the field of biometeorology. The second
part contains details of four alternative protocols that are based on statistical methods, which
showed higher agreement with the current protocol. Agreement is used in the sense of Bland
and Altman (1999), who suggested the use of the standard method as a ‘gold standard’. This
does not mean that it is free of error, but instead that it is our ‘best guess’ of the true flux value.
In the case of this study, we use the average and variability of the experts’ opinion (mean ± 1.96
standard deviations (SDs)) as the limits of agreement. Agreement of each protocol is quantified
as the percentage of data points that fall within this reference interval.
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Table 2. Variables that were used in the multivariate distance method and the subset that was used
for multiple linear regression

Variable Description Unit Multiple
linear regression

Measured variables
@CO2 CO2 concentration gradient between arms μmol mol−1

@H2O Water vapour concentration gradient mmol mol−1

between arms
@T Temperature gradient between arms ◦C
CO2 reference Ambient CO2 concentration μmol mol−1 �
Tair Air temperature ◦C �
ea Water vapour pressure mbar �
Rn Net radiation W m−2 �
G1 Soil heat flux from sensor 1 W m−2

G2 Soil heat flux from sensor 2 W m−2

Tsoil Soil temperature ◦C �
RH Relative humidity % �
BV Battery voltage V
U Wind speed m s−1 �
PCPN Total precipitation mm
CS615 Volumetric soil water content m3 m−3

PAR Photosynthetically active radiation μmol m−2 s−1 �
Tirga Infra-red gas analyser temperature ◦C

Calculated variables
SoilH2O Volumetric soil water content (corrected with m3 m−3 �

gravimetric measures)
Cp Soil heat capacity J m−3 K
G Heat flux at the soil surface W m−2 �
λ Latent heat of vaporization J g−1

β Bowen ratio —
H Sensible heat flux W m−2

ρa Air density g m−3

Kh (Kc) Eddy diffusivity for heat; assumed the same m2 s−1

for CO2
dρc CO2 density differential between arms g m−3

ρc=ρa CO2 density–air density ratio —
σ Webb et al. (1980) correction component —
FH2O Water vapour flux g m−2 s−1

Kh Kh-value used to calculate the CO2 flux m2 s−1

FCO2 CO2 flux (Webb et al. (1980) corrected) mg m−2 s−1

du/dz Derivative of horizontal U with respect to —
vertical U

Ri Richardson number —
φ(m) φ-parameter in calculation of Kh —
KH Eddy diffusivity calculated from aerodynamic m2 s−1

method

2.3.1. Current protocol
To evaluate the current QC method, the three selected data sets were sent to five scientists
who are currently using the BREB technique. The specialists independently applied the QC
protocol to the data sets in the way that they normally do with their own data. The results
were compared to estimate the variability of the results between scientists. These scientists
look for BREB problems and spikes in the data and make linear interpolations over the bad
data. Their criteria are based on their experience. All experts have equivalent expertise working
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with the BREB technique on range land ecosystems; thus the comparison was considered
valid.

There are two known problems with the BREB technique when estimating fluxes, which are
used in the current QC protocol and are known as Ohmura’s criteria. The first case occurs
when β approaches –1.0, because the calculation becomes unstable and yields abnormally high
or low FCO2 values (Ohmura, 1982). The second problem is that the eddy diffusivity for CO2
(Kc) may not be valid when the direction of H (or LE) has opposite sign from the temperature
(or water vapour) gradient (Ohmura, 1982). These two cases have been included in proposed
guidelines for QC of flux data using the BREB technique (Payero et al., 2003; Heiser and Sellers,
1995). An alternative method for the opposite flux case is known as the aerodynamic method
(Dugas et al., 1999) and it calculates Kc by using wind speed, atmospheric stability and canopy
height.

Four of these experts (E1, E2, E3 and E5) use a spreadsheet that was originally created by
William Dugas (Blackland Research Center, Temple, Texas, USA) for the US Department of
Agriculture ‘Rangeland carbon dioxide flux project’ (Svejcar et al., 1997). This spreadsheet
contains all the formulae for flux calculations plus tests for the Ohmura criteria and graphs to
help the user to perform the QC process more interactively. These four experts also share some
common criteria when reviewing the data and deciding which observations are outliers.

(a) Anomalous observations are examined for all pertinent meteorological conditions—such
as photosynthetically active radiation, air temperature and precipitation—that exist at
the time that the flux spikes occur. If there is no reason for a spike to occur, then that
datum or data are linearly interpolated.

(b) Graphs are examined for general trends and obvious outliers (spikes) are interpolated
first; then fine-tuning is done over the rest of the data.

(c) Ohmura’s criteria for opposite flux sign and potentially problematic β-values (typically
−1:3 <β <−0:7) are considered as ‘flags’ for outlying observations.

(d) Other flags for outliers are those which define ‘fast changing’ and ‘large fluxes’, which in
this case were set to 0.2 and 0.75 mg CO2 m−2 s−1 respectively.

(e) Because there is a sequential order of the equations for calculating FCO2 (see Appendix
A), the order of interpolation of variables follows the order H , FH2O and FCO2.

Expert E4 uses a computer program for the QC process which is based on setting monthly
thresholds for eliminating FH2O- and FCO2-values that are too low, changing too rapidly com-
pared with the previous row or too high. A linear smoother is built with the ‘good’ records. This
linear model smooths all the good values and interpolates the ‘bad’ values unless there are more
than four consecutive bad fluxes, in which case the observation is marked as ‘unrepairable’ and
left out of the daily flux calculation. We considered this case as representative of the current
protocol because its result still depends on the expert judgment to define the thresholds.

2.3.2. Statistical methods for developing quality control protocols
We tested the use of multivariate distance (MD), multiple linear regression (MLR) and time
series analysis (TSA) for creating a QC protocol that would always yield the same result. A
record was defined as an outlier when its standardized residual from a statistical model fell
outside the ±3 SD range. All outliers were removed and gaps were filled as described below.

The Mahalanobis distance was used for detecting multivariate outliers. This MD method was
chosen because, when variables are highly correlated in a multivariate sense, it is possible for a
point to be unremarkable when seen along one axis but still to be an outlier when it represents
an unusual combination of scores on two or more variables (Tabachnick and Fidell, 1996).
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Multiple linear regression models were built to obtain predictions of FCO2 for those records
which were detected as outliers by the MD or TSA methods (which are described below). The
data that were used to build the MLR models were the observations of all five days remaining
after the deletion of outliers. Stepwise MLR was used to select from 10 possible independent
variables (Table 2) and to calculate the parameter estimates. We used Cook’s distance to deter-
mine whether outliers were influential in the MLR analysis (Neter et al., 1996). We also used
TSA to detect and replace outlying observations in the time series of FCO2. Autoregressive inte-
grated moving average models are used in TSA basically for predicting values at time t based
on past values (Shumway and Stoffer, 2000).

Several statistical protocols were generated by combining the use of MD, MLR and TSA.
In the next section we describe and analyse the four protocols that showed better agreement
with the opinion of the expert panel. For the statistical analyses we used the packages JMP IN
(Sall et al., 2001) and the freely available R (R Development Core Team, 2004).

3. Results and discussion

3.1. Current quality control protocol
Corrected daily fluxes (average) and the variability of opinion (SD) were fairly stable within peri-
ods (Table 1 and Fig. 1). The uncorrected flux F was the only sampled variable that showed a
significant relation with SD (SD=1:83+0:109F , R2 =0:70; P =0:001). The other two variables
that showed a relationship with SD are the magnitude of the average corrected flux (proportional)
and wind speed (inversely proportional) (Table 1). Apparently a lower wind speed biases to-
wards more positive values of F: The highest variability of opinion (SD=12:18 g m−2 day−1) was
observed on DOY 204 and coincided with an original (uncorrected) flux value of 76 g m−2 day−1.
Given the combination of factors, period PE-3 had the lowest variability of opinion between
experts. The expected proportional effect of precipitation on SD was not clearly observed
(Fig. 1). Although period PE-1 had the highest amount of rain in 5 days (29.9 mm), it did
not show the highest variability between experts (Fig. 1).

The other variable that we observed to have an effect on SD is the number of ‘medium-size’
spikes in the series. These are the spikes that are left after the extremely high spikes have been
interpolated (usually there is no disagreement in those). If there are many of these medium-size
spikes in a series, the QC process will become more variable among experts in terms of which
spikes are interpolated. The suspected outliers (spikes) were concentrated during sunrise, sun-
set and night (Figs 2, 3 and 4), which are the periods when this technique is known to yield
erroneous measures (according to Ohmura’s criteria).

These results show that, even though the general method to correct this type of data set was
similar among experts, the final result that was obtained by different experts varied. This means
that when comparing fluxes that are measured by different research groups there is an error
(which is expressed here as the variability of opinion when working on identical data sets) that is
not currently being estimated. Part of these differences is probably masked when annual budgets
are calculated, but this does not make the current protocol better.

3.2. Statistical quality control
In this section we describe four protocols that were defined after several trials and combinations
of statistical methods. Briefly, protocol PR-A uses MD to detect outliers on FCO2 data and
MLR to replace those values; protocol PR-B works on the result of PR-A, adding the use of
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Fig. 1. Original and quality-controlled daily CO2 fluxes for periods (a) PE-1, (b) PE-2 and (c) PE-3 (values for
the original (uncorrected) series on DOY 166 and 204 (4.6 and 76.0 g m�2 day�1) are not shown to preserve
the scale of the plot; error bars are SDs): , daily precipitation; �, original; �, E1; �, E2; �, E3; �, E4;
�, E5; 4, average

TSA to detect a second set of outliers and also uses MLR to replace the deleted values; protocol
PR-C uses only TSA on a larger number of variables that influence the calculation of FCO2, the
key step being the definition of potentially faulty β-values; protocol PR-D is similar to protocol
PR-C but uses a wider range for defining faulty β-values, which should increase the number of
outliers detected.
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Fig. 2. Original (. . . . . . .) and quality-controlled ( ) FCO2 20-min average series for period PE-1 by
using protocols (a) PR-A, (b) PR-B, (c) PR-C (�, �1:25<β <�0:75) and (d) PR-D (�, �1:4<β <�0:6), and
(e) wind speed ( ) and precipitation ( ) ( , daytime period): when the original series is not visible it
means that the simulation did not differ from it; out-of-scale values (from �11.1 to 12.9 mg m�2 s�1) are not
shown to highlight the differences between protocols
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Fig. 3. Original (. . . . . . .) and quality-controlled ( ) FCO2 20-min average series for period PE-2 by
using protocols (a) PR-A, (b) PR-B and (c) PR-D (�, �1:4<β <�0:6), (d) the average opinion of the expert
panel and (e) wind speed ( ) and precipitation ( ) ( , daytime period): when the original series
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Fig. 2; out-of-scale values (from �3.1 to 116 mg m�2 s�1/ are not shown to highlight the differences between
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Fig. 4. Original (. . . . . . .) and quality-controlled ( ) FCO2 20-min average series for period PE-3 by using
protocols (a) PR-A, (b) PR-B and (c) PR-D (�, �1:4 <β < �0:6), (d) the average opinion of the expert panel
and (e) wind speed ( ) ( , daytime period): note the different flux scale from those in Figs 2 and 3
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Protocol PR-A is a combination of MD and MLR methods. The first step was to use MD to
detect outliers, for which we used a large number of recorded and calculated variables (Table 2).
Using the Mahalanobis distance method, the outliers detected represented 8%, 10% and 7% of
the total records on each period, which is lower than the number of modifications that were
done by the experts (Table 1). For the remaining records, an MLR model was fitted to obtain a
prediction for the ‘deleted’ records and to replace the corresponding FCO2-values. The stepwise
(forward) method selected the significant variables from an original pool that included the 10
variables that are marked in Table 2, as well as their square and cross-products (65 variables
in total). The variables were selected as predictors among the complete set because they were
directly measured (except volumetric soil water content and G), not directly involved in the
calculation of FCO2 but are known to be correlates of FCO2 (the response variable).

The number of variables that were selected was fairly stable between periods, with 19, 23 and
22 variables (plus the intercept) selected for each period. Given that the outlying observations
were eliminated before building the models, the adjusted R2-values were fairly high (0.72, 0.61
and 0.63 for periods PE-1, PE-2 and PE-3 respectively). When the same variables selected by the
stepwise method were used to fit a model to the uncorrected series (360 records), the adjusted
R2-values were reduced to 0.27, −0.0075 and 0.29. However, using Cook’s D-method it was
found that no record was extremely influential and therefore no correction was needed. Figs 2(a),
3(a) and 4(a) show the resulting FCO2-series from applying protocol PR-A, plotted together
with the uncorrected series. For period PE-1, although the extremely high and low 20-min flux
values were replaced, some spikes are still left. Different is the case in period PE-2, where at the
end of DOY 205 and 206 some big spikes are undetected as outliers (Fig. 3(a)).

Protocol PR-B was based on the use of TSA to detect a second set of outliers in the FCO2 series
resulting from protocol PR-A. The purpose was to make use of the information that is given
by multiple related variables (protocol PR-A) and the predictive value of past observations
(TSA). A second-order autoregressive model (AR(2)) was found to fit better this type of time
series. This AR(2) model was fitted to the FCO2 series and the outlying records were replaced
with the prediction from a new MLR model. The result from protocol PR-B (Figs 2(b), 3(b)
and 4(b)) was a more smooth series than from protocol PR-A. The outliers detected repre-
sented 11%, 12% and 9% of the total for each period, which is still lower than the number of
modifications that were done by the experts (Table 1).

Protocol PR-C was developed as an imitation of the sequence of steps that the expert panel
followed to do the QC process, as described above. An AR(2) model was fitted to the time series
for each variable that is involved in the calculation of FCO2, and the outliers were replaced with
the values that were predicted by the model. The resulting time series at each step were pasted
back to the EXCEL spreadsheet so that the calculated variables (e.g. FCO2/ were recalculated.
The five-step protocol PR-C consisted in replacing the outliers in key variables of the calculation
of FCO2 in the following order:

step 1—directly measured gradients of CO2, water vapour and temperature (@CO2, @H2O
and @T ) and ground heat flux at the surface (G);
step 2—sensible heat (H); for all those records when −1:25<β <−0:75, H was linearly inter-
polated and then an AR(2) model was fitted; those records that were interpolated and those
detected as outliers were replaced with the model prediction;
step 3—water vapour flux (FH2O); this step does not affect the calculation of Kc but does
influence the value of FCO2;
step 4—eddy diffusivity of CO2 (Kc);
step 5—CO2 flux (FCO2/.
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Steps 2–5 were applied to the series that resulted from the correction of the variable in the
previous step. Fig. 2(c) shows the resulting FCO2 series from applying protocol PR-C, plot-
ted together with the uncorrected series for period PE-1. It can be observed that most of the
extremely high and low 20-min flux values were replaced but some spikes are still left, espe-
cially on day 164. This is probably because the range that was used to interpolate H in step 2
(−1:25<β <−0:75) is considered to be conservative. The outliers detected represented 30%, 17%
and 12% of the total for each period, which means that for period PE-1 it modified a much higher
number of records than the experts, but for the other two periods it was very similar (Table 1).

Protocol PR-D is almost identical to protocol PR-C, with the only exception that the range
that was used for interpolating H in step 2 was increased to −1:4 < β < −0:6. By comparing
Fig. 2(d) with Fig. 2(c) it is clear that protocol PR-D creates a smoother series that should be
closer to the expert panel’s opinion, because it tends to eliminate almost all the spikes that are
visible in the time series graph. For period PE-2, protocol PR-D did not perform well because of
some spikes that were not detected as outliers on DOY 204 and 205 (Fig. 3(c)). In period PE-3,
protocol PR-D resembled very well the series product of the expert panel average (Figs 4(c) and
4(d)). The outliers detected increased by only 2% in each period compared with the number
from protocol PR-C.

3.3. Comparison of statistical protocols
The four protocols differed not only in the final daily fluxes but also in the number of points that
each edited from the original data sets. The number of points edited increased from protocol
PR-A to protocol PR-D. This was fully expected according to the way that these protocols were
defined. When individual 20-min data points that resulted from the statistical protocols were
compared with their corresponding reference interval, all four protocols showed concordance
around 90% (Table 3).

The results of daily fluxes of the four protocols for each period are plotted in Fig. 5, in relation
to the reference interval defined from the experts’ opinion. The individual values of daily fluxes
and their agreement with the reference interval are also summarized in Table 1. The concordance
on a daily basis was lower than for 20-min values because the total number of days was low (15).
Note for example that the protocol with highest concordance (87%, protocol PR-B), had only
2 days that fell outside the limits of agreement. Protocol PR-D showed higher concordance than

Table 3. Concordance and difference of statistical protocols from
the instantaneous, daily and overall average fluxes as determined
by the expert panel

Protocol Concordance (%) Overall difference†

20-min Day Flux Percentage
(g CO2 m−2) (%)

PR-A 91 73 28.1 14.8
PR-B 91 87 3.2‡ 1.7
PR-C 90 73 50.6 26.7
PR-D 89 80 44.7 23.6

†Overall difference calculated from the average overall flux of the five
experts, for the 15 days that were used in the study (−189.2 g CO2 m−2/.
‡Fell within the reference interval (mean ± 1.96 SDs).
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protocol PR-C, which suggests that the broader range that was used for β in protocol PR-D
was more appropriate.

In period PE-1, protocol PR-C failed to represent well DOY 164 (Fig. 5(a)) and this was
due apparently to one faulty β that was not captured by the range used. This made the AR(2)
model predict positive flux values for a short period of time (Fig. 2(c)). Period PE-2 showed
more variability between protocols on a daily basis (Fig. 5(b)), which coincides with the greater
variation between experts (Fig. 1). Fig. 3 shows that the difference between protocols PR-A,
PR-B and PR-D and the average series was given by how the protocols handled two groups
of positive spikes on DOY 205 and one group on DOY 206. For period PE-2, protocol PR-B
resulted in daily fluxes that agreed with the experts’ opinion (Table 1 and Fig. 5(b)). Protocol
PR-B resembled the experts’ opinion better because it basically cut out all the spikes. Only at
the end of DOY 204 did protocol PR-B wrongly predict opposite (negative) flux values, com-
pared with the average opinion series (Figs 3(b) and 3(d)). Protocol PR-D could not imitate the
‘average’ pattern because only two faulty β-values were associated with these spikes (Fig. 3(c)).
Furthermore, most of these spikes were well described by past values, which explains why they
were not pointed out as outliers by the sequence of AR(2) models. Period PE-3 was the easiest for
reproducing the general trend of the QC process that was done by the expert panel (Fig. 4). Only
one day (DOY 258) of protocol PR-A fell outside the agreement interval (Table 1 and Fig. 5(c)).

Taking the 15 sampled days as a whole, the overall difference in CO2 flux ranged between
3.2 and 50.6 g m−2 (Table 3). The former value corresponds to the result of protocol PR-B and
represents only 1.7% difference. This was the only value that fell within the reference interval.

4. Conclusions

The variability in average daily flux quality controlled by experts is related primarily to the
magnitude of the uncorrected flux (determined in part by wind speed) and to the number of
medium-size spikes in the series. The explanation for the latter to be important is because the
decision to eliminate this type of spike depends more on the opinion of each expert.

The four statistical protocols that were described here were successful in eliminating the large
outliers in every period. This was reflected in the very similar average fluxes on a daily basis com-
pared with the original flux series for each particular period. On a 20-min basis, the agreement
with the experts’ method was around 90%.

Using TSA in combination with the multivariate methods (multiple distance regression and
MLR) in protocol PR-B represented in general an improvement from using only the latter
(protocol PR-A). Protocols PR-C and PR-D used only the relationship of present observations
with past values but a larger number of variables were quality controlled. The broader range of
faulty β-values that were used in protocol PR-D represented an improvement compared with
protocol PR-C, especially in period PE-1.

Protocol PR-D did not resemble the average of the experts’ opinion in period PE-2 because it
did not recognize some spikes as outlying observations. There are at least two possible explana-
tions for this. One is that these spikes are erroneous measures and that the AR(2) model fails to
detect them when they happen consecutively. In favour of this explanation is the fact that there
are no precipitation events on DOY 205 and DOY 206 that could explain these large FCO2-
values, which is probably what made the experts think that these were outlying observations.
The alternative explanation is that the spikes that were not detected as outliers are plausible
values and that protocol PR-D may be yielding an accurate estimation. Because there was no
independent estimation of the flux during this period, we cannot rule out either of these two
explanations.
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The results that are presented here show that statistically based methods can be used to control
the quality of series of FCO2 data. Protocols PR-B and PR-D appear to be the most promis-
ing because they resembled successfully the average opinion of the expert panel. Additionally,
protocol PR-D also quality controlled other relevant variables that are used in the calculation
of FCO2 (i.e. @T , @CO2, @e, G, H , LE, Kc and FH2O). Protocol PR-B was the protocol that
matched more closely the average opinion of the expert panel, considering the 15 days together.
It differed only by 3.2 g m−2, which represents only 1.7% difference.

If any of these protocols or a similar protocol were used as a standard method for a QC
process, it would eliminate the variability that is generated by the response of different experts.
Moreover, the statistical protocols can be easily automated, which would make the process
considerably faster. Such a procedure may be the base for generating a standard protocol for
QC of data from similar micrometeorological techniques, such as the eddy covariance method.
Further research is needed to test these protocols under different climate conditions and types
of vegetation so that its application can lead to the benefits that have just been described.
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Appendix A: Basic equations used for the analyses of Bowen ratio energy
balance data

The Bowen ratio β is defined as the ratio between sensible heat H and latent heat LE (Bowen, 1929):

β =H=LE, .1/

H =ρaCpKH

@T

@z
, .2/

LE= λρ"Kυ

P

@e

@z
, .3/

where ρa (kg m−3/ is the air density, Cp (J kg−1 K−1/ is the specific heat of air at constant pressure, KH

(m2 s−1) is the eddy diffusivity for sensible heat, Kυ (m2 s−1/ is the eddy diffusivity for water vapour, T
(◦C) is the air temperature, z (m) is the height of the instrument arms, λ (J kg−1) is the latent heat of
vaporization, " is the ratio of the molecular weight of water to that of dry air (0.622), e (kPa) is the vapour
pressure, P (kPa) is atmospheric pressure and @ represents the difference between the two BREB arms.

Since the vertical gradients of temperature (@T ) and vapour pressure (@e) can be estimated from mea-
surements at two heights above the canopy (in this study they were at 1.0 and 2.0 m), β can be calculated
by substituting equations (2) and (3) into equation (1) and assuming that KH =Kυ (similarity theory):

β =γ
@T

@e
, .4/

where γ =CpP="λ (kPa ◦C−1/ is the psychrometric constant.
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The one-dimensional (vertical) surface energy balance is defined as

Rn−G=H +LE, .5/

where Rn is the net radiation, G is the soil heat flux and all the components of the balance are expressed
in watts per metre squared. Both Rn and G can be directly measured, allowing the estimation of LE as

LE= Rn−G

1+β
: .6/

Water vapour flux FH2O is equal to LE/λ. The value of LE that is obtained from equation (6) is used
to calculate Kυ with equation (3). As mentioned above, Kυ is assumed to be equal to KH and also to be
equal to the eddy diffusivity for CO2 (Kc/. Therefore, the CO2 flux FCO2 is estimated as

FCO2 =ρaKc
@c

@z
, .7/

where @c is the CO2 concentration gradient estimated from measurements at the same two heights from
which the gradients of temperature (@T ) and vapour pressure (@e) are estimated above the canopy.
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