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ABSTRACT: A stochastic, spatially explicit method for assessing the impact of land cover classification error on
distributed hydrologic modeling is presented. One-hundred land cover realizations were created by systematic-
ally altering the North American Landscape Characterization land cover data according to the dataset’s misclas-
sification matrix. The matrix indicates the probability of errors of omission in land cover classes and is used to
assess the uncertainty in hydrologic runoff simulation resulting from parameter estimation based on land cover.
These land cover realizations were used in the GIS-based Automated Geospatial Watershed Assessment tool in
conjunction with topography and soils data to generate input to the physically-based Kinematic Runoff and Ero-
sion model. Uncertainties in modeled runoff volumes resulting from these land cover realizations were evaluated
in the Upper San Pedro River basin for 40 watersheds ranging in size from 10 to 100 km2 under two rainfall
events of differing magnitudes and intensities. Simulation results show that model sensitivity to classification
error varies directly with respect to watershed scale, inversely to rainfall magnitude and are mitigated or
magnified by landscape variability depending on landscape composition.
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INTRODUCTION

Land cover is a critical watershed characteristic
in surface water hydrologic modeling as it directly
affects processes governing hydrologic response, spe-
cifically evapotranspiration, infiltration, runoff, and
erosion. Thus, most hydrologic models use some
form of input parameters based on land cover

(Spanner et al., 1990, 1994; Nemani et al., 1993).
Distributed models, in particular, need specific data
on the distribution of land cover within a water-
shed, and classified remotely sensed imagery has
emerged as a standard mapping product for charac-
terizing the spatial distribution of land cover (Singh
and Woolhiser, 2002). Given that a hydrologic simu-
lation model is sensitive to land cover, it is hypo-
thesized that simulations results will be erroneous
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if land cover is misclassified. Some level of uncer-
tainty or error will be present in any land cover
map as it is difficult to fully account for natural
spatial variability and ambiguity in mapping land-
scape phenomena. Numerous efforts have focused on
quantifying spatial error inherent in classified
remote sensing imagery (van Genderen and Lock,
1977; Moody and Woodcock, 1994; Wilkinson, 1996;
Burrough and McDonnell, 1998; Choudry and
Morad, 1998; Skirvin et al., 2000; Bird et al., 2002;
Hurd and Civco, 2004).

The accurate depiction of earth surface processes
and their responses to land cover, climate, or
managerial change has been the goal of research
hydrologists for nearly a century. Fully integrated
watershed assessment tools for support in land man-
agement and hydrologic research are becoming
established both in basic and applied research
(Moore and Grayson, 1989; Gee et al., 1990; Vieux,
1993; Julien et al., 1995; Johnson and Miller, 1997;
Arnold et al., 1998; Storck et al., 1998; DHI, 2000;
Miller et al., 2002). Distributed hydrologic models
are frequently used for investigating the various
interactions among climate, topography, vegetation,
and soil as they affect watershed response (Singh
and Woolhiser, 2002). Conventional calibration and
validation exercises can improve the predictive capa-
bilities of models, but the determination of uncer-
tainty associated with different model inputs is
needed to better explain the limitations inherent in
the modeling technique.

One of the basic concepts of watershed hydrology
is that hydrologic processes are spatially nonuniform
and defined by changes in topography, geology,
soils, land cover, and landuse. The effects of differ-
ent watershed configurations of landuse or land
cover on streamflow response and water quality
have been intensively studied and relatively well
understood (National Research Council, 1999;
Brooks et al., 2003). Watershed assessment tools,
used for watershed management or engineering
design, must be able to integrate the spatial infor-
mation to assess the varying responses from differ-
ent watershed configurations (National Research
Council, 1999; Singh and Woolhiser, 2002).

The application of distributed watershed models,
that allow for the representation and parameteriza-
tion of spatially nonuniform of hydrologic processes,
has improved our ability to model watershed systems
(Singh and Woolhiser, 2002). Kite and Kouwen (1992)
compared a lumped parameter hydrological model
with a semi-distributed version of the same model
where sub-basins were subdivided into land cover
types using Landsat images, and found that the
semi-distributed model provided better goodness of fit
statistics compared with the lumped parameter

model. The optimized parameter values found for
each land cover type confined the variations in
storages and infiltrations expected for each type. Tao
and Kouwen (1989) examined the effect of Landsat-
derived land cover information for flood forecasting
modeling, and found that the distributed model using
the Landsat data improved the predicted flood peaks
and total runoff at the 10% significance level com-
pared with a lump parameter model. Payraudeau
et al. (2003) found that land-use types within a distri-
buted model improved modeling results by defining
critical threshold levels for runoff generation. Woold-
ridge and Kalma (2001) found, using a semi-distribu-
ted watershed model, that land-surface classification
based on a combination of soil depth and land cover
type provided the most accurate streamflow predic-
tions during a 10-year validation period. Investi-
gation of the uncertainty associated with the
predictions revealed that a simpler classification
based solely on land cover actually provided a more
robust parameterization of streamflow response. The
Wooldridge and Kalma (2001) results illustrated the
hydrological importance of distinguishing between
forested and nonforested land cover types at the
regional-scale.

Remote sensing is commonly used to map landuse
and land cover that serve an input into watershed
assessment tools and models. Errors associated with
image classification may increase uncertainty in
modeling results (Rango, 1985; Singh and Woolhiser,
2002). Ragan and Jackson (1980) derived land cover
classifications from aerial photographs and Landsat
images for the Anacostia River Watershed in Mary-
land. Using the Soil Conservation Service’s curve
number model they found runoff differences between
the input sources to be insignificant between the two
methods. Other researchers have found similar
results (Rango et al., 1983; Draper and Rao, 1986).
However, other researchers have observed that small
classification errors in specific land cover types,
especially when related to impervious surfaces, can
have a substantial impact on the uncertainty of
runoff and water quality modeling results (Stuede
and Johnston, 1990; Zhang et al., 2000; Bird et al.,
2002; Endreny et al., 2003; Hurd and Civco, 2004).

This study was conducted to evaluate the uncer-
tainty in hydrologic simulations associated with
land cover data, created using Landsat imagery,
having a known misclassification error. A stochastic
methodology is presented to systematically and spa-
tially distribute the misclassification error into land
cover maps originally derived from remote sensing
images. These altered land cover maps were input
into a modified version of the open-source Automa-
ted Geospatial Watershed Assessment tool (AGWA;
http://www.tucson.ars.ag.gov/agwa) (Miller et al.,
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2002, 2007), where the land cover data are used to
generate parameter input files for the distributed
hydrologic model Kinematic Runoff and Erosion
Model (KINEROS2 ) (Smith et al., 1995; Goodrich
et al., 2002). KINEROS2 is then used to simulate
runoff for each of the land cover realizations.
Hydrologic simulations were run at a range of
spatial scales and two different rainfall events to
evaluate the uncertainty associated with introduced
spatial error derived from the land cover error
matrix.

KINEROS2 (Smith et al., 1995; Goodrich et al.,
2002) is a physically based, event-oriented, distri-
buted hydrologic model. Infiltration-excess overland
flow processes are used to generate surface runoff. A
watershed is represented as a series of planes and
channels, for which the processes of infiltration,
interception, runoff, erosion, sediment detachment,
transport, and deposition are all explicitly accounted.
Runoff is routed using the kinematic wave equations
for overland and channel flow. These equations, and
those for erosion and sediment transport, are solved
using a four-point implicit finite difference method
(Smith et al., 1995).

DESCRIPTION OF THE STUDY AREA

Located in southeastern Arizona, the Upper San
Pedro Basin encompasses the San Pedro River that
flows North from Sonora, Mexico, into Arizona
(Figure 1). With a wide variety of topographic,
hydrologic, cultural, and political characteristics,
the basin represents a unique study area for
addressing a range of scientific and management
issues. The area is a transition zone between the
Chihuahuan and Sonoran deserts and has a highly
variable climate with significant biodiversity. Major
vegetation components include desert shrub-steppe,
riparian, grasslands, agriculture, oak and mesquite
woodlands, and pine forests. Elevation within the
basin ranges from 900 to 2,900 m and is bounded
by relatively steep-fronted mountain ranges. All
sites selected for this study were located within the
uppermost 7,600 km2 of the basin, of which approxi-
mately 1,800 km2 is in Mexico. Climate in this
region is semi-arid, with the majority of the rainfall
associated with high-intensity, convective thunder-
storms during the summer monsoon rainfall season
(Renard et al., 1993). Detailed rainfall-runoff stud-
ies have been performed on the watershed for the
past several decades, and the timing and magnitude

of rainfall are well established (Osborn et al., 1980;
Renard et al., 1993).

METHODS

A schematic of the research methodology is pre-
sented in Figure 2. GIS data for land cover, soils,
rainfall, and topography were compiled for the
Upper San Pedro River Basin, and a stochastic pro-
cess was developed to create 100 land cover surfaces
with misclassification error redistributed across the
landscape. A GIS analysis of the topography within
the San Pedro was used to randomly locate 40
watersheds (Figure 1). These watersheds fall within
four size classes (10, 20, 50, and 100 km2), and 10
watersheds within each size class were selected
using a random number generator. Each of these
watersheds was discretized into upland (overland
flow planes) and channel model elements, which
were then assigned parameters using AGWA as
required by KINEROS2 (Goodrich et al., 2002; Miller
et al., 2007) (Figure 2). This process was repeated
100 times for each of the stochastic land cover surfa-
ces for two return-period rainfall events. Simulation
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FIGURE 1. Location of the Upper San Pedro River Basin
With the 40 Watersheds Used in the Simulation Exercise

Highlighted in Shades of Gray According to Their Size Class.
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results were processed to investigate the uncertainty
in runoff.

KINEROS2 Parameterization

The core of the hydrologic modeling was per-
formed using the KINEROS2 model with inputs
generated by AGWA, a tool that transforms spatial
data into parameter input files for the KINEROS2
hydrologic model, and displays output data from
the model runs (Miller et al., 2002). The USDA-
ARS Southwest Watershed Research Center, in
cooperation with the USEPA Office of Research
and Development and the University of Arizona,
developed this tool to simplify the construction of
model input files. KINEROS2 runs outside of
AGWA, and the hydrologic simulations results are
imported back into AGWA for visualization using
standard GIS techniques. AGWA uses a series of
look-up tables and equations, including pedotransfer
functions (Rawls et al., 1982; Woolhiser et al., 1990)
to perform preliminary parameter estimation
(Miller et al., 2007). Soil properties are area- and
depth-weighted where necessary to approximate soil
conditions for the critical near-surface layer
for each channel and upland modeling element.
Canopy and vegetation characteristics required by
KINEROS2 are approximated based on look-up
tables provided by AGWA for vegetation classes in
the North American Landscape Characterization
(NALC) land cover dataset.

Land cover data serve as a primary source for esti-
mating various hydrologic parameters in AGWA
(Hernandez et al., 2000). Hernandez et al. (2000) per-
formed a sensitivity analysis of KINEROS using the
AGWA tool, showing that KINEROS is highly sensi-
tive to surface roughness (Manning’s n), saturated
hydraulic conductivity (Ks), and percent canopy cover,
and moderately sensitive to interception depth for
small rainfall events. Each of these parameters is
either determined expressly from or moderated by
land cover and determined by AGWA following a ser-
ies of look-up tables developed from calibration exer-
cises within the USDA-ARS Walnut Gulch
Experimental Watershed (WGEW), and a survey of
published reports (Hernandez et al., 2000).

Geospatial Data: Topography, Soils, and Land Cover

The land cover, topographic and soils datasets
were assembled as required by AGWA. A USGS
Level-2 30-m digital elevation model (DEM) was used
to represent topography, a polygonal soils map layer
was extracted from the USDA-NRCS State Soil Geo-
graphic (STATSGO) Database (USDA NRCS, 2006),
and classified NALC data (USEPA, 1993, 2006) were
used to describe land cover. The NALC land cover
maps were developed from georectified and atmo-
spherically corrected (Lunetta et al., 1998) Landsat
TM remotely sensed images. Images used in this
study had <30% cloud cover and were atmospheric-
ally corrected (Lunetta et al., 1998). The resulting
digital land cover maps had 10 classes: Forest, Oak
Woodland, Mesquite Woodland, Grassland, Desert-
scrub, Riparian, Agriculture, Urban, Water, and
Barren.

A detailed accuracy assessment of the NALC land
cover data was completed by Skirvin et al. (2000). In
their approach, airborne videography was used to iso-
late a random sample of 527 points stratified by map
class. An error matrix was assembled following Con-
galton (1991), and Cohen’s Kappa and Kendall’s Tau-
b statistics were used to quantify the producer’s,
user’s and overall classification accuracies (Table 1).
User’s classification is sometimes referred to as errors
of omission, the probability that observed points have
been correctly identified. Producer’s accuracy (or
errors of commission) is the probability that classified
data were correctly identified within a given category
(Congalton, 1991). Comparisons between observed
and classified land cover types produce an overall
accuracy score of 71.73%. The Kendall’s Tau-B score,
a nonparametric correlation ranked test (Zar, 1999)
is 0.741 with a standard error of 0.024. The Cohen’s
Kappa score, a measure of agreement between two
classifiers (Cohen, 1960), is 0.646 with a standard
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error of 0.024. This study focused on the impact of
errors of omission, which measure between-class dis-
crimination. These errors occur when a pixel is mis-
identified as another class. Errors of omission were
used in this study as they directly affect the estima-
tion of hydrologic parameters within a given plane.
Errors of commission, wherein a pixel is incorrectly
classified as belonging to the target class, may com-
pensate for errors of omission in the total producer’s
accuracy. However, they do not improve the user’s
accuracy, which is affected by the accuracy of individ-
ual pixels and is most important for the overall accu-
racy of parameter estimation.

Unit-Area Land Cover Modeling

To illustrate localized impacts of misclassification,
a simplified KINEROS2 input file was prepared in
which nine upland elements were parameterized
according to the landscape characteristics estimated
for each of the land cover classes. A unit-area plane
with the same dimensions as the NALC GIS data
(60 m2) was input to KINEROS2. Soil parameters
were estimated for a sandy loam, the dominant soil
type within the study area. The plane slope was set
to 4.6%, and rainfall data for a storm with a 30-min
duration and 15.7-mm depth served as the input
data. Simulated runoff for each land cover class using
the generic unit-area plane were compared to demon-
strate the relative impact of the type of misclassifica-
tion error among the various land cover classes.

Error Simulation Model for Land Cover Data

A program was written in Arc Macro Language
(ESRI, 1998) to systematically redistribute misclassi-

fication errors (Table 1) into the 1997 classified
NALC scene to produce 100 realizations of altered
land cover data. The stochastic algorithm begins by
extracting each of the 10 land cover types from the
classified NALC imagery into single-class maps.
These data are intersected with random number
maps, and individual pixels are transformed into dif-
ferent land cover classes following the errors of omis-
sion in Table 1. In this way, 10 new class maps are
generated, which are then spatially merged to create
a new realization of land cover map with induced
error. The total number of cells and proportion of the
map area for each land cover class are extracted from
the new realization, and the map is accepted or rejec-
ted based on the overall similarity to the original
map. Each class is allowed to vary within a specified
threshold (in this case 1%) from the original map,
ensuring that the representation of land cover within
all 100 realizations are statistically similar to the oth-
ers and that neither errors nor land cover classes are
over-represented. Each of the 100 realizations retains
approximately the same total area in each land cover
class (with minor variation in the total number of
pixels in each class), but the location of the pixels is
highly variable among the maps.

Hydrologic Modeling: Watershed Discretization and
Characterization

Each of the 40 watershed outlet points was input
in AGWA, which was used to determine the contribu-
ting watershed area and to subdivide each watershed
into upland and channel planes as required by KIN-
EROS2. AGWA uses a flow accumulation map
derived from a DEM to determine the location and
extent of stream channels within the basin, and
allows for the contributing source area that defines

TABLE 1. Error Matrix Detailing Results of the Airborne Video-Based Accuracy
Assessment of the 1997 NALC Land Cover Map Based on Results of Skirvin et al. (2000).

Predicted Land
Cover

Observed Land Cover

TotalForest
Oak

Woodland
Mesquite
Woodland Grassland Desertscrub Riparian Agriculture Urban Barren

Forest 20 4 0 0 0 0 0 0 0 24
Oak woodland 2 50 0 3 0 0 0 0 0 55
Mesquite woodland 0 1 27 13 12 2 0 1 0 56
Grassland 0 8 16 113 21 0 0 1 0 159
Desertscrub 0 4 4 12 115 0 0 2 0 137
Riparian 0 0 0 0 0 21 2 1 0 24
Agriculture 0 0 1 0 15 2 5 1 0 24
Urban 0 0 0 0 0 0 0 24 0 24
Barren 0 0 2 0 19 0 0 0 3 24
Total 22 67 50 141 182 25 7 30 3 527

Note: Results are presented as the number of pixels falling into each class.
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the uppermost headwaters to be adjusted. As the
source area is reduced the overall number of channels
and plane elements is increased, thereby increasing
watershed representation complexity. In this study,
the source area was fixed at 1% of the watershed
area. One implication of this approach is that as the
watershed size increases, the source area also increa-
ses; while the number of watershed elements remains
relatively constant, the average plane size increases
and spatial averaging and smoothing reduces the
influence of spatial variation in land cover and soils.
Watersheds were subdivided at the same percent con-
tributing source area to maintain a consistent ratio of
watershed channel and plane elements among all
watersheds. As channels represent significant runoff
and sediment sinks as modeled by AGWA, this
approach also serves to maintain a more consistent
ratio of transmission losses across scale.

Automated watershed parameterization in AGWA
takes place on the subdivided watershed, which is
intersected with the land cover, soils, and topo-
graphic data layers. Algorithms and look-up tables
are used to estimate the suite of KINEROS2 hydro-
logic parameters for each upland element. In this
approach, all channels are assumed to be sandy
alluvial washes and are assigned identical param-
eter sets. A majority of watershed elements were
not homogenous in soil and cover characteristics; in
these cases parameters are area-weighted and the
resulting value is used in the final estimation.
Thus, large planes tend to approximate regional
characteristics, whereas very small planes may be
more representative of underlying landscape variab-
ility.

Calibration of KINEROS2 on each of the 40
watersheds was not possible due to the lack of run-
off gauges. Prior research on the heavily instrumen-
ted WGEW was used to provide estimates of model
parameters as a function of topographic, soil, and
land cover characteristics. Walnut Gulch is assumed
to be representative of upland watersheds within
the San Pedro. These prior studies (Goodrich, 1991;
Syed, 1999) were able to calibrate KINEROS to very
high efficiencies depending on scale: correlations
coefficients ranged from 0.98 at the sub-hectare
scale to 0.86 at the small watershed scale (60 km2).
Syed (1999) found that it was difficult to effectively
calibrate KINEROS2 on larger watersheds
(>100 km2) due to low runoff to rainfall ratios at
those scales. With increasing watershed size, chan-
nel transmission losses reduce the effective dis-
charge per unit area, and calibration becomes
increasingly difficult in this influent semi-arid
watershed. Watersheds used in this study represent
the largest watersheds suitable for modeling with

KINEROS2 in the absence of detailed calibration
and validation data.

Rainfall Input Files

Rainfall data were assembled from long-term
records taken on the USDA-ARS WGEW (Osborn
et al., 1980), which currently has 89 continuously
recording rain gauges. The WGEW lies within the
Upper San Pedro River Basin. Return-period rainfall
events for a 5-year, 60-min and 10-year, 30-min
storms were formulated based on Osborn et al.
(1980). These events were chosen because they fall
within the range of calibration efforts previously
mentioned and they typify relatively small and large
runoff-producing events in the region. Generally,
thunderstorms in the region are characterized as
high intensity, convective thunderstorms. However,
short duration thunderstorms are typically more
intense than storms of longer duration. In this study,
the two rainfall events used deliver similar rainfall
depths (36 and 41 mm, respectively), but the lesser
rainfall total occurred during a more intense storm
(0.5 and 1 h, respectively). The rainfall hyetographs
were uniformly distributed across the landscape for
input to the model. This approach does not represent
the spatial distribution of rainfall intensities that
naturally occurs in this region, but ensures that the
total rainfall on all watersheds is equivalent, thereby
reducing uncertainty in the output resulting from
rainfall variability.

Evaluation of the Results

Simulated runoff volumes increase with watershed
area and are highly variable both within a given
watershed and across spatial scales. Thus, model
simulation results were normalized according to the
average result for a given watershed. Both the range
and 95% confidence interval (CI) were normalized for
each watershed size class by dividing the range in
responses for a given watershed by the mean water-
shed response. The normalized range for each water-
shed was determined as

rn ¼MaxðQÞ �MinðQÞP100
i¼1

Q

100

; ð1Þ

where rn is the normalized range, Q is runoff (m3) for
each of 100 simulation runs (n).
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The normalized confidence interval (CIn) for each
watershed was determined using

CIn ¼
1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

P100
i¼1

Q2�
P100
i¼1

Q

� �2

nðn�1Þ

vuut
ffiffi
n
p

P100
i¼1

Q

100

ð2Þ

Global statistics for the minimum (rnmin), average (rnavg)
and maximum (rnmin) normalized range and standard
deviation were derived by combining the results from
the 10 watersheds within a given size class. The
minimum and maximum values represent the small-
est and largest values of the range for each of the 10
watersheds in a given size class. These values were
calculated using the following equations:

rnavg ¼

P10
h¼1

rn

10
; rnmax ¼ maxðrnÞ; rnmin ¼ minðrnÞ ð3Þ

RESULTS

Unit-Area Modeling

The relative importance of misclassification errors
found in Table 1 are reflected in the unit-area mode-
ling results (Table 2). Changes in simulation results
from a unit area plane are given in Table 2 and show
that the type of classification error had a strong effect
on simulation results. For example, if an oak wood-
land is misclassified as mesquite woodland, or vice
versa, there is no change in runoff volume. However,

if a desertscrub pixel is misclassified as mesquite
woodland, simulated runoff increases by 39%. The
greatest hydrologic error would be to misclassify a
vegetated pixel as urban or vice-versa. However,
urban areas are highly distinctive and the probability
of misclassifying urban as vegetation is relatively low
(see Table 1), thereby reducing the potential for
greatly over- or underestimating runoff response.
Likewise, there are large hydrologic implications for
misclassifying a pixel as riparian, or for misidentify-
ing a riparian target, but the probability of doing so
is low. Significant changes in hydrologic response
were present throughout the unit-area simulation
runs, which emphasizes the sensitivity of KINEROS2
to hydrologic parameters estimated by AGWA.

Watershed-Scale Modeling and Land Cover
Uncertainty

There is a strong central tendency in runoff simu-
lations across scales (Table 3) with results generally
normally distributed about the mean. The average CI
for runoff is consistently low and approaches 1% of
the mean value for only the largest of the water-
sheds. The range in hydrologic response among the
10 watersheds within each size class widens with
each increase in watershed area, indicating that
greater variability in watershed characteristics and
hydrologic response is captured at the larger scales.

The maximum normalized range (rnmin) represents
the watershed response within one of the 10 water-
sheds in a size class that differed most significantly
from the global statistics for that size class. A wide
spread in the range is an indication that the overall
watershed response for watersheds in that class was
highly variable.

Even in those cases where a wide range in watershed
response was observed, the CI remained relatively

TABLE 2. Percent Change in KINEROS2 Simulated Runoff Volume (m3)
Resulting From Misclassification of a Uniform 60-m Resolution Grid Cell.

Predicted Land Cover

Misclassified Land Cover

Forest
Oak

Woodland
Mesquite
Woodland Grassland Desertscrub Riparian Agriculture Urban Barren

Forest 0 98 98 38 43 )42 76 343 248
Oak woodland )49 0 0 )30 )28 )71 )11 124 76
Mesquite woodland )49 0 0 )30 )28 )71 )11 124 76
Grassland )28 43 43 0 3 )58 27 220 152
Desertscrub )30 39 39 )3 0 )59 23 210 144
Riparian 73 242 242 139 147 0 203 664 501
Agriculture )43 13 13 )21 )19 )67 0 152 98
Urban )77 )55 )55 )69 )68 )68 )60 0 )21
Barren )71 )43 )43 )60 )59 )83 )50 27 0

Note: Land cover in the ‘‘predicted’’ class were systematically changed to those in the ‘‘misclassified’’ class.
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small (data not shown). This is an indication that the
distribution associated with the 100 simulations is
still tightly constrained around the mean, even
though there may be outliers in which the introduct-
ion of misclassified data significantly impacted the
simulated hydrologic response. Conversely, the nor-
malized minimum range and CI are representative of
results in which a given watershed was insensitive to
introduced spatial error. In those cases, where the
normalized range or CI are within 1% of the mean,
there is effectively no distinction among all the simu-
lation realizations for that watershed.

Impact of Rainfall

The range and CI are narrowed with increased
rainfall intensity and magnitude, and the variability
in runoff volume was small across the range of water-
shed scales for the 10-year rainfall event. Although a
strong association between watershed scale and the
variability in runoff volume is evident for the 5-year
rainfall event (36 mm), no such clear trends are
apparent when the larger magnitude 10-year rainfall
event (41 mm) was used.

DISCUSSION

In AGWA, land cover modifies the estimated value
of Ks using a direct relationship to canopy cover. KIN-
EROS simulations are strongly affected by both Ks

and rainfall intensity. Errors in classification that
tend to increase the estimated canopy cover, such as
from desertscrub to agriculture (Table 2) will result in
slightly elevated values of Ks, resulting in decreased
runoff. Increases to Manning’s roughness are gener-
ally associated with increasing vegetative density and

canopy cover (Shen and Julien, 1993), which further
increases the opportunity for infiltration thereby
decreasing overland flow and runoff volume.

Results from the stochastic exercise using 100 vari-
ations in land cover were reclassified according to the
error matrix of Table 1, which show that the impact
of such error on hydrologic simulation is relatively
mild for the watersheds in this study (Table 3). Fur-
thermore, rainfall characteristics strongly mitigate
the uncertainty associated with simulated runoff.
There is an inverse relationship between watershed
size and uncertainty for a given rainfall event. The
sensitivity of hydrologic response was found to be
directly related to the analysis scale. Both the nor-
malized range and the 95% CI became larger as the
watershed class size is increased. Furthermore, in all
cases the range and CI are dampened with increased
rainfall.

Outputs from the 100 simulation runs for each
watershed effectively depict the relative impact of
land cover on model output. Results given in Table 3
show the general effects on results as a function of
scale and rainfall, but this technique can be applied
on an individual watershed basis. Results may be
presented as a distribution of simulation results that
are reflective of the underlying uncertainty resulting
from misclassification within the targeted watershed.

The San Pedro River basin is predominately
a desertscrub-grasslands community with abundant
mesquite woodlands, and it would be expected that
the greatest number of misclassified pixels would fall
in these categories. As shown in Table 1, there is a
high percent error among the most dominant land
cover types. Taken together, these observations indi-
cate that the majority of errors are among land cover
types that behave relatively similar to one another in
a simulation environment (Table 2). Results from this
study are inextricably linked to model sensitivity to
climatic and land cover conditions. Models that are
more sensitive to land cover parameters, such as

TABLE 3. Normalized KINEROS2 Simulation Results for Runoff Volume as a Function of Watershed Size and Rainfall Depth.

Normalized runoff

5-Year Rainfall Event (36 mm) 10-Year Rainfall Event (41 mm)

10 km2 20 km2 50 km2 100 km2 10 km2 20 km2 50 km2 100 km2

Average runoff (m3 · 105) 0.782 1.02 2.17 2.38 2.28 4.09 9.66 17.2
rnavg 0.793 1.22 1.36 5.17 0.28 0.34 0.36 0.51
rnmin 0.489 0.660 0.832 0.970 0.19 0.24 0.19 0.19
rnmax 1.43 3.88 2.57 25.49 0.47 0.77 0.51 0.91
CInavg 0.028 0.044 0.048 0.272 0.01 0.01 0.01 0.02
CInmin 0.017 0.028 0.033 0.037 0.01 0.01 0.01 0.01
CInmax 0.048 0.156 0.109 1.70 0.01 0.03 0.02 0.03

Note: Results are based on 100 simulations for each watershed with 10 watersheds in each size class. normalized results are expressed as a
percent of the mean runoff response for the watershed where rnavg = average normalized range, rnmin = minimum normalized range,
rnmax = maximum normalized range, CInavg = average normalized 95% CI, CInmin = minimum normalized 95% CI, and CInmax = maximum
normalized 95% CI.
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SWAT (Arnold et al., 1998), would evince a different
range of uncertainty resulting from misclassification
error. Likewise, the range in uncertainty is heavily
influenced by rainfall patterns and runoff response,
and these results are confined in discussion to the
semi-arid landscape of SE Arizona and the pattern
and magnitude of rainfall used in the analysis.

Given that the locations of the outlets of the 10
watersheds within each size class were randomly
generated, they contained a wide variety of land
cover and topographic distributions throughout the
study area. However, watersheds within a given class
size tend to have many features in common. For
example, smaller watersheds tend to be located near
the headwaters, which are most often in more den-
sely vegetated hilly or mountainous terrain in the
San Pedro basin. Thus, smaller watersheds tend to
be steeper and often occur on shallow, gravelly soils.
Land cover characteristics are also clustered within
the San Pedro basin. For example, agriculture occurs
only on the valley floor, and watersheds of the scale
included in the analysis do not extend fully down the
valley. Larger watersheds also include headwater
regions, but they extend farther down the mountain
fronts and incorporate some characteristics of the
lower valley. Thus, a landscape and land cover bias
exists in the watershed scale analysis; the larger
watersheds are more likely to be representative of
the regional characteristics than smaller watersheds
that may contain relatively anomalous land cover
and soil characteristics.

Large watersheds are more likely to contain a
greater range in watershed characteristics simply due
to the fact that they cover a larger area. Larger water-
sheds appear to exhibit a greater degree of error and
uncertainty in the estimation of model parameters
due to the increased number of misclassified pixels
within their boundaries. A comparison of the water-
sheds that exhibited the greatest and least range in
runoff response showed that large watersheds exhib-
ited greater uncertainty in runoff prediction when a
greater range in land cover types was present. At the
smaller scales, the influence was greatest when urban
or riparian cover classes were present.

CONCLUSIONS

Automated watershed modeling approaches that
rely on available GIS data, such as AGWA, should
account for the uncertainty in modeling results that
result from spatial errors inherent in the base data-
sets. In this case, the land cover data serve as a
primary source for model parameters. Uncertainty is

propagated through the model as a function of spatial
averaging of the data and the probability of the occur-
rence of error within the watershed boundary. Distri-
buted watershed modeling in ungauged watersheds
does not allow for the calibration or validation of simu-
lation results. In such instances, model simulations
cannot be constrained through parameter determin-
ation, and results should be presented in conjunction
with uncertainty estimates as presented in this study.

In the semi-arid setting of this project AGWA-based
KINEROS2 modeling did not show a high degree of
uncertainty due to quantified land cover error. How-
ever, the corollary argument is also true: uncertainty
in land cover classification leads to simulation uncer-
tainty for all scales of watersheds when less intense
rainfall events are used to drive the model, with the
greatest degree of uncertainty associated with large
watersheds. These results are inherently model- and
location-specific. The impact of misclassification error
may be relatively severe if the degree of error presen-
ted in the misclassification matrix is relatively high
among classes with a highly variant response to rain-
fall, which is not present in the NALC data for the
San Pedro. Applications of this technique using differ-
ent runoff simulation models, such as SWAT, that
have the potential to be more directly responsive to
land cover change have suggested future directions
for this research. The stochastic algorithm presented
here is model-independent and provides a mechanism
for evaluating model, rainfall, and location-specific
impacts of land cover error on runoff simulation.
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