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Abstract

Rapid post-fire watershed assessment to identify potential trouble spots for erosion and 
flooding can potentially aid land managers and Burned Area Emergency Rehabilitation 
(BAER) teams in deploying mitigation and rehabilitation resources.  These decisions are 
inherently complex and spatial in nature and require a distributed hydrological modeling 
approach. The extensive data requirements and the task of building input parameter files 
have presented obstacles to the timely and effective use of complex distributed rainfall-
runoff and erosion models by BAER teams and resource managers. Geospatial tools and 
readily-available digital sources of pre-fire land cover, topography, and soils combined 
with rainfall-runoff and erosion models can expedite assessments if properly combined, 
provided a post-fire burn-severity map is available.  The AGWA (Automated Geospatial 
Watershed Assessment) hydrologic modeling tool was developed to utilize nationally 
available spatial data sets and both empirical (SWAT) and more process-based 
(KINEROS2) distributed hydrologic models (see: www.tucson.ars.ag.gov/agwa).  
Through an intuitive interface the user selects an outlet from which AGWA delineates and 
discretizes the watershed using a Digital Elevation Model (DEM).  The watershed model 
elements are then intersected with soils and land cover data layers to derive the requisite 
model input parameters. The chosen model is then run, and the results are imported back 
into AGWA for graphical display. AGWA can difference results from pre- and post-fire 
model simulations and display the change on the modeled watershed. This allows 
managers to identify potential problem areas where mitigation activities can be focused.  
An overview of AGWA and an application of it to the 2003 Aspen fire north of Tucson, 
Arizona are discussed herein.

http://www.tucson.ars.ag.gov/agwa
mailto:dgoodrich@tucson.ars.ag.gov


Introduction:

Wildfires can, and have had, a profound impact on the nature of watershed response to 
precipitation (DeBano et al. 1998).  Increases in peak runoff rate and volume, as well as 
sediment discharge, typically increase following fires, (Robichaud, et al. 2000; Anderson 
et al. 1976).  Mitigating these effects is one of the primary objectives of the Burned Area 
Emergency Response (BAER) teams.  Weather and climatic conditions often force these 
teams to make rapid post-fire assessments for decision-making on how and where to 
deploy remediation measures.  Building and running distributed hydrological models to 
predict potential impacts of fire on runoff and erosion can be a time-consuming and 
tedious task. The USDA-ARS Southwest Watershed Research Center, in cooperation with 
the U.S. EPA Office of Research and Development, and the University of Arizona have 
developed the AGWA geographic information system (GIS) based tool to facilitate this 
process. A GIS provides the framework within which spatially-distributed data are 
collected and used to prepare model input files and evaluate model results in a spatially 
explicit context.

The AGWA (Automated Geospatial Watershed Assessment) Tool

AGWA provides the functionality to conduct pre- and post-fire watershed assessments for 
two widely used watershed hydrologic models using readily available standardized spatial 
datasets.  The two models currently incorporated into AGWA are Soil & Water 
Assessment Tool (SWAT; Arnold et al. 1994; www.brc.tamus.edu/swat) and the 
KINematic Runoff and EROSion Model (KINEROS2; Smith et al., 1995; 
www.tucson.ars.ag.gov/kineros).  SWAT is a continuous-simulation model for use in large 
(river-basin scale) watersheds.  KINEROS2 is an event-driven model developed for small 
(<100 km2) arid, semi-arid, and urban watersheds.  The AGWA tool combines these 
models in an intuitive interface for performing multi-scale watershed assessments.  

AGWA is an extension for the ArcView versions 3.X (ESRI, 2001). ArcGIS 9.0 and web 
versions of AGWA are currently under development.  AGWA is distributed freely via the 
Internet as a modular, open-source suite of programs (www.tucson.ars.ag.gov/agwa).  
Data requirements to run AGWA include elevation (USGS DEM data), land cover (EPA 
MLRC), soils (USDA STATSGO, USDA SURRGO, FAO) and precipitation data 
(observed or design storms), all of which are typically available at no cost over the 
Internet for the conterminous United States.  A fundamental assumption of AGWA is that 
the user has previously gathered the necessary GIS data layers for the area of interest.  All 
of these data layers are easily obtained for the conterminous United States.  Pre-
processing of the DEM to ensure hydrologic connectivity within the study area is 
required, and tools are provided in AGWA to aid in this task.  These tasks can be done 
relatively rapidly within AGWA but could also be completed for forests and land areas 
prior to a fire.  By doing so the BAER teams would only have to deal with preparing a 
post-fire burn-severity map for the area of interest when time is of the essence.  

http://www.tucson.ars.ag.gov/agwa
http://www.tucson.ars.ag.gov/kineros
http://www.brc.tamus.edu/swat


Once an AGWA session has been initiated, the program is designed to lead the user in a 
stepwise fashion through the transformation of GIS data into simulation results.  A 
conceptualization of the steps necessary to apply AGWA is presented in Figure 1.  The 
AGWA Tools menu is designed to reflect the order of tasks necessary to conduct a 
watershed assessment.  This process consists of five major steps:  (1) watershed outlet 
identification and watershed delineation; (2) watershed subdivision by topographically 
controlled contributing areas; (3) model parameterization based on topography, land 
cover, and soils; (4) preparation of parameter and rainfall input files; and, (5) model 
execution and visualization, and comparison of results.  
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Figure 1.  Conceptualized and sequence of steps in the use of 
AGWA for hydrologic modeling

In step (2), the geometric complexity of a watershed model representation is controlled by 
the user-defined contributing source area (CSA).  This is the drainage area required to 
initiate a first-order channel and represents the transition where runoff is better treated as 
concentrated channel flow versus overland flow.  Methods to automatically select the 
appropriate CSA across a broad range of basin morphologies are not clearly defined in the 
literature, but based on prior experience a default CSA of 2.5% of the total watershed 
drainage area is typically sufficient for preliminary watershed analysis.  The user can 
modify this value, with a smaller CSA resulting in a more complex representation of the 
watershed (e.g. a greater number of model elements).



In regards to step (3), geometric model parameters (slope, flow length, etc.) are derived 
directly from the topographic data.  Infiltration, interception, and erosion parameters are 
derived from look-up table relationships between these variables and the soil and land-
cover attribute information in the input data sets (e.g. soil texture, soil group, vegetation 
type).   These look-up table relationships are based on the literature and limited model 
calibration from highly instrumented experimental watershed data.  However, the user can 
modify them if local observations enable model calibration.  A critical element in using 
AGWA for post-fire assessments is establishing relations that can be used to translate 
burn severity into changes in the infiltration, hydraulic roughness, and erosion model 
parameters.  This issue is discussed in more detail in a companion paper by Canfield et al. 
(this issue).

After hydrologic model execution (SWAT or KINEROS2), AGWA will automatically 
import the model results and add them to the polygon and stream map tables for spatial, 
color-ramped displays (step 5).  A separate module controls the visualization of model 
results.  The user can toggle among viewing various model outputs for both upland and 
channel model elements, enabling the problem areas to be identified visually.  If multiple 
land-cover scenes exist, the user can parameterize either or both of the two models and 
attach the results to a given watershed.  Results can then be compared on either an 
absolute or percent change basis for each model element. Model results can also be 
overlaid with other digital data layers to further prioritize management activities.  
Examples of AGWA applications for assessments of the hydrologic impacts of past land-
cover change, as well as of alternative futures land-use change, can be found in 
Hernandez et al. (2000), Miller et al. (2002), and Kepner et al. (2004).

Hydrologic Models

Key components of AGWA are the hydrologic models used to evaluate the effects of land 
cover and land use on watershed response. Both the KINEROS2 and SWAT models are 
able to process complex watershed representations to explicitly account for spatial 
variability of soils, rainfall distribution patterns, and vegetation.   

KINEROS2

KINEROS2 (K2) is an event-oriented, physically based model describing the processes of 
interception, infiltration, surface runoff, and erosion from small agricultural and urban 
watersheds, and is based on Hortonian overland flow theory (Smith et al., 1995). In this 
model, watersheds are represented by discretizing contributing areas into a cascade of 
one-dimensional overland flow and channel elements using topographic information. 
Surface flow in both overland and channel elements is modeled using a finite difference 
approximation of the one-dimensional kinematic wave equations in which upslope 
supply, rainfall rates, and infiltration rates are considered simultaneously at each finite 
difference node.  The infiltration component of K2 is based on the simplification of the 
Richard’s equation posed by Smith and Parlange (1978).  It is relatively well suited to 
describing the hydrodynamics of runoff and erosional processes on burned southwestern 



watersheds, where infiltration rates are low, and rainfall is infrequent but intense.  
Sediment transport is treated using unsteady, one-dimensional convective-transport 
equations similar to those used for runoff.  Entrainment of sediment is modeled as 
resulting from raindrop impact or flow-induced entrainment.  Sediment transport for up to 
five, non-interacting particle sizes is described using the Engelund and Hansen (1967) 
total load equation.

SWAT

SWAT is a river basin scale model developed to predict the impact of land-management 
practices on water, sediment, and agricultural chemical yields for large, complex 
watersheds with varying soils, land use, and management conditions over long periods of 
time (Arnold et al. 1994). The model combines empirical and physically-based equations, 
uses readily available inputs, and enables users to study long-term impacts. The 
hydrology model is based on the water balance equation:
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where SW is the soil water content minus the 15-bar water content, t is the time in days, 
and R, Q, ET, P, and QR are the daily amounts of precipitation, runoff, 
evapotranspiration, percolation, and return flow, respectively; all the units are in 
millimeters. Since the model maintains a continuous water balance, complex basins are 
subdivided to reflect differences in ET for various crops, soils, etc. Thus, runoff is 
predicted separately for each sub area and routed to obtain the total runoff for the basin. 

Analysis and Application

Estimating Post-Fire Runoff Volume Change Using Curve Numbers

Surface runoff in SWAT is estimated with a modification of the SCS Curve Number 
method (U. S. Department of Agriculture, 1986).  A survey of Burned Area Emergency 
Response (BAER) plans showed that the Curve Number (CN) approach is often used in 
post-fire assessment. Currently, many BAER teams select post-fire CNs based on 
experience, without the value of careful post-fire data analysis.  Two papers in this 
volume calculated post-fire CNs and found a small change in post-fire runoff volume 
(Canfield et al, 2005; Springer and Hawkins, 2005).  However, Canfield et al. (2005) 
found that change in post-fire peak was approximately an order of magnitude higher after 
the Aspen Fire in Pima County, AZ, even though there was no significant change in post-
fire CN (i.e. little change in total post-fire runoff volume).  McLin et al. (2001) also noted 
that post-fire runoff peaks can be very high, while runoff volumes are less changed.  
Therefore users of unit hydrographs have chosen to overestimate volume in order to 
accurately predict peak runoff rates.



Analysis of post-fire CNs from BAER team reports for several burn severities on fires in 
the Southwest (Hayman, CO; Cerro Grande, NM; and, Oracle Hill, AZ) and modeled 
runoff from a fifty mm storm indicate up to two orders of magnitude change in runoff 
volume, which is inconsistent with observations. To select a CN that more accurately 
reflects the calculated post-fire CNs described in other studies in this volume, (Canfield et 
al; Springer and Hawkins), we employed a relationship between CN and cover.  

The National Land Cover Dataset (NLCD) includes an estimate of percent cover for each 
land-cover type.  CNs for each of these have been estimated based on Hydrologic Soils 
Group classes A, B, C, and D, and cover conditions (USDA, 1986).  For natural land 
covers (excluding wetlands and most agricultural classes areas), and urbanized areas, 
relatively strong relationships exist between percent cover and CN (Figure 2).  If we 
employ these regression relationships, a revised post-fire CN can be estimated using a 
post-fire estimate of cover for each hydrologic soil group.  By assuming a 15% reduction
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in cover for low-severity burns, a 50% reduction for high-severity burns (as is assumed in 
Disturbed WEPP - http://forest.moscowfsl.wsu.edu/cgi-bin/fswepp/wd/weppdist.pl, and a 
32% reduction for moderate-severity burns, we can obtain revised estimates of post-fire 
CNs (Table 1).   
Several trends in the Table 1 AGWA-derived CNs can be noted in comparison to BAER 
team estimates (not shown).  The estimated CNs in Table 1 are generally higher for 
unburned conditions and lower for burned conditions than estimates used by BAER 
teams.  This results in higher runoff depths for pre-fire conditions and lower runoff 
depths for post-fire conditions.  To illustrate these differences, runoff depth has been 
estimated using the CNs in Table 1, and using

Figure 2 – Estimated Post-Fire Average Annual 
Runoff over a 10 Year Simulation Period (mm)



Table 1:  Original and revised AGWA-based Curve Number estimates as a function 
of hydrologic soil group, land-cover class and burn severity 

(low, moderate or high)

Class Name Cover A B C D
84a Bare  0 77 86 91 94
84 Fallow 5 76 85 90 93
22 High Intensity Residential 10 81 88 91 93
21 Low Intensity Residential 15 77 85 90 92
33 Transitional 20 72 82 87 90
51 Shrubland 25 63 77 85 88
71 Grasslands/Herbaceous 25 49 69 79 84
41 Deciduous Forest 50 55 55 75 80
42 Evergreen Forest 50 45 66 77 83
43 Mixed Forest 50 55 55 75 80
51 Shrubland 25 63 77 85 88
41l Deciduous Forest 43 59 60 78 82
42l Evergreen Forest 43 49 71 80 85
43l Mixed Forest 43 59 60 78 82
51l Shrubland 21 65 79 86 89
41m Deciduous Forest 34 65 65 80 85
42m Evergreen Forest 34 55 76 82 88
43m Mixed Forest 34 65 65 80 85
51m Shrubland 17 68 82 88 90
41h Deciduous Forest 25 70 71 83 87
42h Evergreen Forest 25 60 82 85 90
43h Mixed Forest 25 70 71 83 87
51h Shrubland 12 73 88 91 91
Note:   l - low severity burn

m - moderate severity burn
h - high severity burn

CNs from BAER team reports on the Cerro Grande (Evergreen), and Oracle Hill Fires 
(Deciduous Forest and Shrubland) using a 40-mm rainfall event.
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Figure 3 – Calculated Curve Number from a 40 mm storm using AGWA and BAER 
team estimates (cover, hydrologic soil group, burn severity)

The values in Figure 3 show that the AGWA estimates tend to produce a higher runoff 
volume for unburned conditions and a lower runoff volume for burned conditions.  This 
results in a smaller estimate of runoff-volume change as a result of wildfire.  This is 
consistent with the results described in Canfield et al. (this volume) and Springer and 
Hawkins (this volume), which show that observed post-fire runoff-volume change is 
small relative to the large change in runoff peak rates.  Note that the 40-mm storm event 
is quite large; and the differences demonstrated in Figure 3 would be greater for smaller 
events because a higher fraction of the rainfall will go to the initial abstraction.

AGWA-SWAT Application to the 2003 Aspen Fire near Tucson, Arizona

The overlay of land cover and soils allows AGWA to select a parameter set appropriate 
for that given land cover on that soil.  The addition of a burn-severity map allows further 
characterization of hydrologic response based on the land cover, soils classification and 
burn severity. A critical element in using AGWA for post-fire assessments is translating a 
burn severity map into relationships that can be used to alter infiltration and erosion 
model parameters.  This issue is discussed in more detail in a companion paper by 
Canfield et al. (this volume). In hydrologic-model terms, different CN values, and 
different post-fire roughness values can be selected based on the new classification.  The 
burn severity map for the 2003 Aspen fire (Figure 4) illustrates a complex mosaic of low, 
moderate, and high severity burns.  



By using a GIS, this information can be used to develop a complex mosaic of CNs, which 
can allow users to more accurately reflect hydrologic conditions within the model 
representation.  The traditional method of implementing the CN technique (USDA, 1986) 
uses a spatially-weighted average CN, which can be used to describe the hydrologic 
response of a watershed.  Since runoff is highly sensitive to CN, small differences in CN 
can result in big differences in runoff (Hawkins, 1975).  A revised post-fire CN map for 
the Sabino Canyon watershed is given in Figure 5.

To fully utilize the revised CN map, the watershed must be partitioned into model 
elements small enough to represent a single hydrologic soil group, land-cover and burn-
severity classification.  Therefore, AGWA should not be used to partition a watershed at a 
more coarse level than the default 2.5%, and there may be situations, where this level is 
too coarse.
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Sabino Canyon Watershed

Figure 5 – Revised Curve Number Map of Aspen 
Fire on the Sabino Canyon Watershed



A second change that occurs on hillslopes is a change in hillslope roughness.  Evaluation 
of roughness in the companion paper (Canfield et al, this volume) indicates that post-fire 
roughness on hillslopes can be over an order of magnitude lower in forested areas 
following fire.  Rather than fix roughness separately for all soil/cover/complexes, the 
post-fire evaluation with AGWA sets roughness at a value reasonable for bare soil (n = 
0.011; Engman, 1986).  Selection of this value allows for more than an order of 
magnitude change in extremely rough environments, such as conifer forests.

The revised CN map in Figure 5 was used to generate SWAT model parameters for a 10-
year simulation driven by a historical observed climatic record.   The resulting average 
annual runoff by subwatershed area is illustrated in Figure 6.  For this simulation, 
watershed roughness and infiltration parameters were held constant.  This is unrealistic as 
the watershed recovers over time, but the objective is to evaluate how average annual 
runoff would change in a post-fire regime.  Canfield et al. (this issue) presents time-
varying relationships (first post-fire day equals day one) for KINEROS2 parameters of 
hillslope hydraulic roughness and saturated hydraulic conductivity based on optimized 
post-fire observations at Starmer Canyon near Los Alamos, New Mexico.
Post-fire simulations from design or observed storms can also be spatially compared to 

pre-fire simulations driven with the same climate for various simulation outputs (e.g. 
peak runoff rate, total storm volume, total sediment transport, erosion, etc.).  These 
differences can be displayed in percentage difference terms from the pre-fire case, or in 
terms of absolute differences.

Conclusions

Figure 6 – First Year Post-fire Water Yield Difference 
Modeled by SWAT-AGWA (% change)
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Estimation of post-fire hydrologic response and change analysis is an important step in 
developing a plan to remediate potential post-fire flooding and erosion. The GIS-based 
AGWA tool (www.tucson.ars.ag.gov/agwa) allows the use of readily available spatial 
datasets to perform pre-fire hydrologic analysis using empirical (SWAT) and process-
based (KINEROS2) hydrological models.  If a burn-severity map is available, estimates 
of runoff volume can be made by modifying post-fire CNs.  An application of AGWA-
SWAT is illustrated using available data sets and a burn-severity map on the 2003 ASPEN 
fire near Tucson, AZ.  A relationship between cover and CN provides a basis for 
estimating post-fire changes in CNs.  The estimated changes in CNs are smaller than 
those derived from experience and used in many post-fire BAER analyses.  However, 
they agree more with the observed changes in post-fire runoff volume, which show that 
the change in runoff volume is small relative to the large change in post-fire peak runoff.  
Therefore, a second modification in AGWA is to drastically decrease hillslope roughness, 
which increases peaks without a large increase in runoff volume.  An application of 
KINEROS to the Starmer Canyon dataset at Los Alamos (Canfield et al, this volume) 
shows that hillslope roughness approximates bare conditions following the fire, and 
rapidly recovers.  In summary the AGWA tool offers the capability of rapid post-fire 
watershed assessments to more effectively target remediation efforts.  We would 
welcome, and assist in, the application of AGWA by resource managers and BAER teams.
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