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Surface roughness is a key parameter of radar backscatter models designed to

retrieve surface soil moisture (hS) information from radar images. This work

offers a theory-based approach for estimating a key roughness parameter, termed

the roughness correlation length (Lc). The Lc is the length in centimetres from a

point on the ground to a short distance for which the heights of a rough surface

are correlated with each other. The approach is based on the relation between Lc

and hRMS as theorized by the Integral Equation Model (IEM). The hRMS is

another roughness parameter, which is the root mean squared height variation of

a rough surface. The relation is calibrated for a given site based on the radar

backscatter of the site under dry soil conditions. When this relation is

supplemented with the site specific measurements of hRMS, it is possible to

produce estimates of Lc. The approach was validated with several radar images

of the Walnut Gulch Experimental Watershed in southeast Arizona, USA.

Results showed that the IEM performed well in reproducing satellite-based radar

backscatter when this new derivation of Lc was used as input. This was a

substantial improvement over the use of field measurements of Lc. This new

approach also has advantages over empirical formulations for the estimation of

Lc because it does not require field measurements of hS for iterative calibration

and it accounts for the very complex relation between Lc and hRMS found in

heterogeneous landscapes. Finally, this new approach opens up the possibility of

determining both roughness parameters without ancillary data based on the

radar backscatter difference measured for two different incident angles.

1. Introduction

Soil moisture conditions play a fundamental role in land–atmosphere interactions

(Eltahir 1998) and have great importance in agriculture and natural resource

management (Dunne and Willmott 1996). Direct measurement of soil moisture over

larger areas can be impractical and expensive, which has led scientists to develop

techniques that exploit microwave sensitivity to this important parameter (Jackson

et al. 1996). These efforts have led to the use of physically based scattering models
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that can predict radar backscatter (s0) as a function of sensor configuration and

surface conditions, and can thus be inverted to estimate surface soil moisture (hS).

The Integral Equation Model (IEM) is one of the most widely used radar

backscatter models for retrieving hS from sparsely vegetated soils (Fung and Pan

1986, Fung et al. 1992, Fung 1994). IEM is a mathematical representation of the
scattering behaviour when radar transmitted microwave energy hits ground targets

and is scattered back to an antenna on the same platform. The backscatter (s0) as

quantified by the model is a function of radar specific parameters, such as frequency

of transmitted microwave energy, polarization and incidence angle. The backscatter

is also a function of target-specific factors, such as the roughness of the ground

surface and moisture contents of the material.

Two parameters are used by the IEM model to characterize surface roughness.

The first is the root mean squared height (hRMS), which is the standard deviation of
the corresponding mean height of the soil surface at centimetre scale. The second is

the correlation length (Lc), which is the length in centimetres from a point on the

ground to a short distance for which the heights of a rough surface are correlated

with each other. Radar backscatter as formulated by the IEM model is a function of

three unknown parameters, where the IEM model for known radar configurations

can be generally expressed as

s0~f hRMS, Lc, hsð Þ ð1Þ

It is not possible to derive the solution of these unknown variables from this single

equation. This under-determination is the core character of the problem associated

with the use of radar images with IEM-like models for retrieving ground

information.

To address this problem, research has been conducted to determine if there exists

a distinct relation between hRMS and Lc. If so, the conventional field measurement of
hRMS could be used to estimate Lc, since the estimates of Lc based on field roughness

measurements have been found to be problematic (Le Toan et al. 1999, Baghdadi

et al. 2000, Verhoest 2000). The use of both of these roughness parameters could

make the retrieval of hS possible from radar backscatter s0. For example, Baghdadi

et al. (2004) proposed a power-type relation, where

Lc~a h
b
RMS ð2Þ

and the a and b coefficients were determined by in situ measurements of surface

roughness from selected study sites. When these coefficients were used to derive Lc

from hRMS for independent study sites in France and Canada, good results were

reported. However, the application of this model at other locations might require a
robust set of in situ measurements for the semi-empirical calibration.

The specific objectives of this study were (1) to use the theoretical framework of

IEM to determine the relation between hRMS and Lc; and (2) to base the model

calibration on an image acquired with dry soil conditions, rather than in situ

measurements of hS. The involvement of integrals and Fourier transforms in the

IEM model made it difficult, though not impossible, to derive the relation between

hRMS and Lc, which may be built in the model. Thus, the approach adopted here was

to approximate IEM with simple functions, which made it easy to interpret and
manipulate. A sensitivity analysis of backscatter with respect to roughness

parameter was conducted using IEM to aid approximation and result interpretation.

M. M. Rahman et al.
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The approach was validated using an independent set of images and in situ

measurements at the same site to quantify the robustness of the theoretical

framework and compare the performance with other techniques available.

2. Background

This study focuses largely on the roughness parameters used to parameterize the

IEM model: hRMS and Lc. A better understanding of how these are used in the IEM

model and measured in the field is necessary to support the results of this study.

Characterization of surface roughness is generally accomplished by measuring the

height variations of the ground surface across a transect (Bryant et al. 2007). The

parameters hRMS and Lc are commonly extracted from this direct measurement of

roughness. The hRMS can be measured with a pin profilometer, also known as a

pinmeter. The pinmeter uses evenly spaced pins held parallel to each other to

determine a surface height profile for the length of the pinmeter (generally about one

metre). More recently, laser scanners have been investigated to determine very

precise relative x, y and z coordinates of the scanned surface. This system is often

deployed as a laser profilometer, which measures surface roughness using the same

laser-based principal but only in one dimension along a transect. There are a

number of studies that have addressed the accuracy and deployment of these

instruments and the post-processing necessary to obtain repeatable measurements

with known bias over natural surfaces (Baghdadi et al. 2000, Davidson et al. 2000,

Oh and Kay 1998, Le Toan et al. 1999, Mattia et al. 2003, Bryant et al. 2007). There

is far less understanding of the definition and measurement of Lc.

To fully describe the structure of surface height correlation, Lc is coupled with an

autocorrelation function. Usually an a priori assumption is made about the

autocorrelation function and it is not considered an unknown parameter. However,

the role of the autocorrelation function should not be discounted, since it might

influence measurement of Lc (Davidson et al. 2000). Because of the spatial

autocorrelation, it is possible to infer the height of a rough surface at a particular

point on the ground if some heights of the surrounding surface up to Lc are known.

Thus, Lc is commonly determined based on the profile measurements of height made

with a pinmeter or laser scanner. However, there is evidence that the magnitude of

Lc is scale related (Le Toan et al. 1999) and highly dependent on the length of the

transect (Bryant et al. 2007). The suggestions for optimum transect length vary

wildly from a couple of metres (Baghdadi et al. 2000) to hundreds of metres

(Verhoest 2000). This implies that consistent roughness parameters cannot be

estimated for parameterization of the IEM model. This is true especially for the

estimate of Lc, whereas hRMS measurements are better understood and less sensitive

to transect length (Davidson et al. 2000, Bryant et al. 2007).

In equation (1), the radar backscatter (s0) is presented as a function of hRMS, Lc

and surface soil moisture (hS). It is apparent that either two parameter values have

to be known to solve for the third or we must have three equations to solve three

parameters. Traditionally, the approach to address this under-determined problem

is to collect ground information for some parameters and use that to solve for the

others. To derive the relation between hRMS and Lc in this study, we propose that a

radar image of the surface during dry conditions could be used. This reduces the

dimensionality of the problem, since the value of hS is close to zero for dry soil and

can be excluded from equation (1) without significant error. Thus, if an equation

could be derived to produce a consistent relation between hRMS and Lc, then it

Derivation of roughness correlation length
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would be possible to retrieve moisture content using radar image and in situ

measurements of hRMS.

3. Materials and methods

3.1 Study site

This field study was conducted in the 150 km2 Walnut Gulch Experimental

Watershed (WGEW) operated by the United States Department of Agriculture,

Agriculture Research Service (USDA-ARS). The watershed is located in the

Sonoran desert, State of Arizona, near the US–Mexico border. The watershed has a

semi-arid climate in which the average annual rainfall is 330 mm. It is characterized

by rolling hills ranging in elevation from 1220 m to 1960 m and the major soil type is

sandy loam with rock fragment fractions of the order of 47% by volume at few

centimetres of the soil surface. The watershed has sparse vegetation, consisting

mainly of desert grass and shrub. There are many ephemeral streams and channels

running across the watershed with no perennial water supply or source. The

watershed is instrumented with precipitation gauges, meteorological stations, soil

moisture sensors and flumes for hydrologic experimentations (Renard et al. 1993).

3.2 Ground measurements of soil moisture and roughness

The top 5 cm surface soil moisture (hS) was measured at 43 sites over the two most

dominant soil types of the WGEW (very gravelly sandy loam Elgin-Stronghold

complex and very gravelly sandy loam Luckyhills-McNeal complex) at the time of

Radarsat overpasses on 30 July, 23 August and 16 September 2003. Using an eight

person team, 50 measurements were made with a Theta Probe from a 35635 m

square area at each of the 43 sites. The Theta Probe sends microwave energy into the

ground material, records the reflected energy and converts that to moisture content

that is soil type specific. Field measurements took approximately four hours, with

the time span divided equally before and after the satellite overpass. The objective of

these measurements was to capture the spatial variability of hS over 767 Radarsat

image pixels over each training site.

For WGEW, the abundance of rock fragments might influence the results of

IEM. The effect of rock fragments in the radar backscatter and a framework to

account for it was given by Jackson et al. (1992). The main problem caused by the

presence of rock fragments is the differential content of moisture in soil and in rock

fragments of the targeted material. Rock fragments have little moisture, even when

the surrounding soil is saturated. The Theta Probe instrument used for soil moisture

field work may fail to capture the composite nature of soil moisture in the presence

of rock fraction. The pins of the instrument need to penetrate into the soil in order

to get a moisture reading. This requires a spot on the ground that has a negligible

amount of rock fragments. Surface roughness for the 43 sample sites was measured

by Sano et al. (1998) using a pinmeter of 1-m profile length. The pinmeter traced the

surface height variation at 1-cm intervals along a piece of long graph paper, which

was digitized and hRMS and Lc were extracted. Thirty pinmeter measurements were

made at selected locations parallel to the local contour at each sample site. Values of

hRMS and Lc were computed from the measurements and averaged over each site.

Field data collected from 43 sites spread over 150 km2 of WGEW are summarized

in table 1. The moisture content of the study site was generally low, with an average

of roughly 0.10 m3 m23 during the study period. The variation of the moisture

M. M. Rahman et al.
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content across time was significant. The average moisture content was 0.18 m3 m23

in June and had dropped to 0.04 m3 m23 by September. The variability of the

moisture content across space was greater in the wet season (0.08–0.27 m3 m23) than

the dry season (0.02–0.08 m3 m23). The average hRMS was 1.13 cm across all sites,

with a maximum of 2.34 cm. The average field measurement for Lc was 7.39 cm,

ranging from 5 cm to 14 cm.

3.3 Satellite data processing

Four Radarsat images were acquired for this study (19 January, 30 July, 23 August

and 16 September 2003). The configurations of the sensor specific characteristics are

given in table 2. The image digital numbers (DN) were converted to decibel values

and projected to UTM NAD 83 coordinate system. The images were geometrically

registered using approximately 40 ground control points from aerial photographs of

the study area. Accepted root mean squared (RMS) errors, i.e. the distance between

ground control points of the aerial photograph and the same points identified in the

image, varied from 3 m to 4 m. A median filter consisting of a 5-pixel moving

window was applied for speckle reduction (Thoma et al. 2006). Although the

topography of the study area is rolling hills, the sites selected for this study were

relatively flat. Thoma et al. (2006) found small effects of topography on the radar

Table 1. Summary statistics of field measured moisture content (hS), roughness RMS height
(hRMS), correlation length (Lc) and Radarsat backscatter (s0). Number of sites543.

Mean Standard deviation

19 January 2003
hS 0.05 0.03
s0 (dB) 213.81 1.59

30 July 2003
hS 0.18 0.06
s0 (dB) 211.59 1.26

23 August 2003
hS 0.07 0.04
s0 (dB) 212.67 1.62

16 September 2003
hS 0.04 0.01
s0 (dB) 213.39 1.47

In total
hS 0.10 0.07
s0 (dB) 212.56 1.63

hRMS (cm) 1.13 0.40
Lc (cm) 7.39 1.92

Table 2. Sensor configuration of radar imagery used in this study.

Radarsat-1

Pixel resolution 8 m
Polarization HH
Incidence angle 46.59u
Frequency C-band (5.3 GHz)
Wavelength 5.6 cm
Time of overpass 6: 30 pm

Derivation of roughness correlation length
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backscatter in the study sites, and this correction for topography was not applied for

this study. The backscatter from the 35635 m area corresponding to each sample

site was extracted and averaged to match the area where field measurements of

moisture content and roughness were made. The image acquired on 16 September

2003 represented the driest soil conditions (table 1) and was used for the derivation

of Lc following the method proposed in this paper. The image acquired on 19

January 2003 represented similarly dry soil conditions, and was used to validate the

assumption that the radar signal observed over dry ground was almost entirely

dependent on surface roughness. The radar backscatter values measured on 30 July,

23 August and 16 September 2003 (representing a wide range of soil moisture

conditions) were used to compare with IEM-generated backscatter based on the

derived Lc and field-measurements of hRMS and hS.

3.4 IEM model and implementation

The IEM was run in both the forwards mode as in equation (1), and inverted to

derive values of Lc from field-measured hRMS and hS and satellite-measured s0. The

inversion of IEM was accomplished by the development of a look-up table (LUT).

This method involved the creation of a table of backscatter values associated with

Lc, hRMS and hS generated by multiple runs of IEM for the Radarsat configuration

and a range of Lc, hRMS and hS. The LUT was used to determine the best Lc for

sample sites based on the field-measured values of hRMS and hS and the satellite-

measured s0. The premise is that the estimates of Lc based on the ground

measurement of surface roughness were not reliable for the IEM application because

of the reported (Baghdadi et al. 2000) relation between Lc and the profile length of

the pinmeter. The analyses of this study investigated the LUT method and other

methods for estimating Lc, including field measurements and a theory-based

derivation that is developed in this paper. The success of each approach was

determined by which method of estimating Lc worked best as an input to IEM to

reproduce actual satellite backscatter.

The same LUT was also used for inverting IEM in order to obtain estimates of

soil moisture. This is a similar idea to the estimation of Lc by the use of LUT. In the

latter case for each study site, the field-measured hRMS, method-derived Lc and

Radarsat image backscatter are matched with LUT values to get the best fit soil

moisture.

4. Results and discussion

The main objective of this study was to explore a theory-based relation between

hRMS and Lc, and an image-based calibration procedure. Results are presented for

the overall sensitivity of the IEM model to the two roughness parameters, hRMS and

Lc, and the theory-based derivation of the relation between hRMS and Lc. The values

of Lc derived from this new approach were compared with other published

approaches for estimating Lc and validated with field measurements.

4.1 Sensitivity of IEM to roughness parameters

To explore the relationship between hRMS and Lc embedded in IEM, a good

understanding of how these two roughness parameters affect backscatter is helpful.

A set of backscatter values were generated using IEM for various combinations of

hRMS and Lc, keeping all other parameters constant (figures 1 and 2). In this

M. M. Rahman et al.
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example, the following parameters were used: hS50.05 m3 m23 for sandy loam soil,

frequency of microwave energy55.3 Ghz, microwave polarization5HH, and

incidence angle546.59u. This sensitivity analysis expands the work of Altese et al.

(1996) by choosing much broader ranges of values of roughness parameters within
IEM validity (Mametsa et al. 2002).

The sensitivity of the roughness parameters to backscatter followed a general

pattern that changed with variations in the combination of hRMS and Lc.

Backscatter increased at a decreasing rate with hRMS, however the rate of increase

was greater at lower values of Lc (figure 1). On the other hand, backscatter

sensitivity to Lc was not large overall (figure 2). However, the sensitivity increased

with the decrease of hRMS, where Lc became more sensitive than hRMS to

backscatter. For very low values of Lc, an error of one centimetre in Lc caused s0

to deviate by up to five decibels. This specific character of sensitivity to Lc implies
that IEM should not be expected to work well if the measurements of smaller values

of Lc are not accurate.

Thus, the sensitivity of s0 to both roughness parameters was dependent on each

parameter alone, and the relation between the two. This suggests that the roughness

parameters interact with each other in determining backscatter. It is possible that a

trade-off might exist between the two roughness parameters, meaning a combina-

tion of high value of Lc and low value of hRMS might generate the same backscatter

as might low value of Lc and high value of hRMS. Overall, the relative sensitivity of
s0 to hRMS was higher, but the sensitivity of s0 to Lc dominated when the values of

Lc were small. The understanding of the sensitivities of s0 to roughness parameters

Figure 1. Sensitivity of root mean square (RMS) height (hRMS) of surface roughness to
radar backscatters. Derived by Integral Equation Model (IEM) simulation with a fixed
moisture content, hS50.05 m3 m23 and unchanged radar configurations (HH, 46.59u,
5.3 GHz). Only valid combinations (Mametsa et al. 2002) of hRMS and Lc up to 15 cm are
included.

Derivation of roughness correlation length
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has implications on how the IEM is approximated with simple functions in order to

derive relations between hRMS and Lc, which is discussed in §4.2.

4.2 Derivation of Lc

A generalized form of the IEM was introduced earlier in equation (1) as s05f(hRMS,

Lc, hS). In the dry season, the moisture content of an area can be very low and

spatially uniform. The effect of hS on the s0 of a radar signal measured in the dry

season (s0
dry) can be very low and neglected altogether without making significant

error. In that case the IEM can be expressed as

s0
dry~f hRMS, Lcð Þ ð3Þ

To test the validity of the assumption that s0
dry is only a function of roughness, the

difference between s0 from 16 September and 19 January images was computed for

all study sites. The soil moisture content during these two image acquisitions was

small (0.04 m3 m23 and 0.05 m3 m23, respectively) and they were considered ‘dry’.

The mean difference of s0
dry measured on these two dates was found to be 20.42 dB.

Compared to the means of individual images (about 213 dB) this difference was

small, which showed that s0
dry from both images was quite similar, given that hRMS

and Lc did not change over this short time period. This small difference can mostly

be attributed to the slight difference in moisture content between January and

September. The IEM simulation suggests that a 0.01 m3 m23 difference in moisture

content changes backscatter by 20.37 dB when the moisture level is about

Figure 2. Sensitivity of correlation length (Lc) of surface roughness to radar backscatters.
Derived by Integral Equation Model (IEM) simulation with a fixed moisture content,
hS50.05 m3 m23 and unchanged radar configurations (HH, 46.59u, 5.3 GHz). Only valid
combinations (Mametsa et al. 2002) of hRMS and Lc up to 15 cm are included.

M. M. Rahman et al.



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f A
riz

on
a]

 A
t: 

18
:1

1 
3 

Ju
ly

 2
00

7 

0.05 m3 m23 for a roughness condition similar to WGEW. So, the assumption that
the s0

dry is only a function of roughness seems plausible.

It is possible to invert IEM of the form represented in equation (3) and write

Lc~f{1 hRMS, s0
dry

� �
~g hRMS, s0

dry

� �
, where g5f21. The functional form of g

should always be traced and the coefficients should be estimated, as is done in this

study. This gives rise to the framework under which a theoretical relation between

hRMS and Lc of the following kind is possible,

Lc~g hRMS, s0
dry

� �
ð4Þ

If the value of hRMS is known from field measurements and s0
dry is known from a

radar image, the value of Lc for that site can be determined from equation (4). In this

study, Lc is estimated following this concept. A radar image of dry ground

conditions is a prerequisite for estimating Lc using the technique developed and

applied in this study.

However, in the presence of integrals and Fourier transform in the f function of

IEM, it is very difficult, though not impossible, to derive g which is an inverse of f.

This difficulty can be overcome if an approximation with good precision of the

function f is used. The following equation was estimated as approximation of the

IEM f function. Figure 3 shows the complex nature of the relationship between hRMS

Figure 3. Approximate Integral Equation Model (IEM) embedded relationship among
RMS height (hRMS), correlation length (Lc) and radar backscatter (s0) for a fixed moisture
content, hS50.05 m3 m23 and unchanged radar configurations (HH, 46.59u, 5.3 GHz). The
graphs are plots of equation (5), which is an approximation of IEM with low and negligible
moisture condition. The numbers inside the graphs are s0 in dB unit. Only valid combinations
(Mametsa et al. 2002) of hRMS and Lc up to 15 cm are included.

Derivation of roughness correlation length
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and Lc, as modelled by IEM and captured by the equation

s0
dry~{10:99{0:60h2

RMSz8:64 ln hRMS{0:88 ln Lcð Þ2 ð5Þ

Coefficient of determination, R250.99, RMSE50.3.

A simple procedure of approximation was followed here. First, a rectangle was

formed, for which the x axis was hRMS (varying from 0.1 cm to 3.0 cm) and the y axis

was Lc (varying from 0.5 cm to 15.0 cm). Both these axes were divided into a finite

number of segments to form a grid, each cell of which was rectangular in shape and

of the same size. Intersecting points in the grid represented combinations of hRMS

and Lc values, for which radar backscatter was generated using IEM. Combinations

of hRMS and Lc that were not valid for IEM were excluded (Mametsa et al. 2002).

Small values of moisture content (hS50.05 m3 m23) were chosen to represent dry

ground conditions, which were kept constant for all observations to simulate the

same moisture content across the entire watershed. A radar frequency of 5.3 GHz

and an incidence angle of 46.59u was used to generate HH polarized backscatter

from IEM. These backscatter values were placed along the z axis.

Second, a good number of equations with different functional forms were fitted

using TableCurve software (systat.com). Only one fitted function with a simple form

and good fit was chosen for this study (equation (5)). Equation (5) is an

approximation of IEM with a simple function. In spite of its good fit with IEM,

where the R2 is 0.99 and the RMSE is 0.3, some of the features of this equation

presented in its plot in figure 3 may not match exactly with that of figures 1 and 2,

which are drawn based on IEM simulated data. This may occur particularly at the

extremes of the parameter values of roughness. However, extreme roughness values

are rare in practice and should have insignificant impact on practical application.

Moreover, at a higher level of parameter values, such as hRMS greater than 2 cm, the

roughness sensitivity to backscatter diminishes substantially as evident in relation-

ships presented in figures 1–3. The sparsely spaced contour lines in figure 3 at higher

hRMS values represent less sensitivity. Whatever amount of error might exist in the

approximation should cause minimal impact on the result.

Once the equation was established, it was possible to analyse the theoretical

relation between hRMS and Lc. In effect, equation (5) is the specific form of

equation (3) that was introduced in general terms. For a particular site, when hRMS

is known from field measurements and backscatter is known from a radar image

with dry ground conditions, these two values can be substituted into equation (5) to

obtain the solution to Lc. In this way, the solution process of equation (3), which

was expressed in general terms in equation (4), becomes simple and the value of Lc

can be obtained. The image acquired on 16 September 2003 was the driest (table 1)

and used for this purpose. However, the process can be repeated for a variety of

radar configurations, as described.

4.3 Derived Lc compared to other Lc estimations

In this section, comparisons are made between the proposed theory-based derivation

of Lc (discussed in the previous section) and Lc estimated using three other methods

(table 3). The results are presented in a series of figures in which method-dependent

Lc is plotted along the y axis and field-measured hRMS is plotted along the x axis for

the 43 sample sites measured in this study (figure 4). The methods compared to the

M. M. Rahman et al.
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theory-based Lc include field measurements of Lc, and the Lc determined from the

IEM LUT based on the measured values of hRMS, hS and s0 (described in §3).

Theory-based Lc was also compared to the empirical formulation of Baghdadi

et al. (2004), as summarized in equation (2). For the application of equation (2),

Baghdadi et al. suggested that values of the coefficients be adjusted iteratively to

match the data used for this study. In the first iteration, the values of coefficients as

proposed for exponential correlation function were used to compute Lc from field-

measured hRMS. Using these Lc, hRMS and field measured hS, s0 values were

generated using IEM, which were then matched with the Radarsat backscatter of the

Table 3. Comparison of various method derived roughness correlation lengths.

Methods for computing roughness
correlation length (Lc) Mean (cm)

Standard
deviation Minimum Maximum

Lc by field measurements 7.39 1.92 4.72 13.91
Lc by Baghdadi et al. (2004) model 1.93 .83 1.56 5.49
Lc by inverting look-up table (LUT) 4.99 5.62 1.83 25.00
Lc by proposed model 5.92 5.47 1.68 24.70

(b)

(a)

(d)

(c)

Figure 4. Root mean square (RMS) height (hRMS) computed from field measurements of
roughness versus method driven correlation length (Lc); (a) Lc by proposed model with fixed
hS, (b) Lc by field measurements of roughness, (c) Lc by Baghdadi et al. (2004) model, and (d)
Lc by inverting look-up table (LUT) with variable hS.

Derivation of roughness correlation length
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study area. In the second iteration, a different set of coefficients were chosen and the

process was repeated. The iterations ended when the best possible matches between

IEM-simulated backscatter and Radarsat-measured backscatter were found.

Finally, the following relationship between Lc and hRMS was found appropriate

for the watershed under study.

Lc~h2
RMS for hRMS§1:25 cm; otherwise, Lc~1:56 cm ð6Þ

The comparison between theory-based Lc and field measured hRMS (figure 4(a))

revealed that most of the values of Lc were less than 5 cm and did not vary

substantially with hRMS. For such small values of Lc, the effects of Lc on s0 were the

greatest (figure 2). This explains why previous studies have reported difficulties

retrieving accurate hS from IEM when Lc is based on field measurements using

roughness meters with relatively short profile lengths. Estimates of Lc based on

short profiles have proven faulty (Baghdadi et al. 2000). Verhoest et al. (2000)

suggested that Lc tends to be more accurate with longer profile length. The second

prominent feature is the presence of high Lc values that are associated with high

hRMS. These observations suggest that there are two general categories of Lc, one for

low values that do not vary with hRMS, and the other for high values that are

associated with high hRMS.

The empirical model proposed by Baghdadi et al. (2004) in equation (2) and its

adaptation to the watershed under study (equation (6)) has features almost identical

to those just described (figure 4(c)). That is, for most of the observations, Lc is low

and does not vary with hRMS and the higher values of Lc increase exponentially with

hRMS. This is probably the reason why the method developed in this paper produces

results that are similar to those of Baghdadi et al. (2004). However, the Baghdadi

et al. model is semi-empirical, where the model coefficients require an iterative, site-

specific adjustment based on numerous field measurements. This results in a lack of

generality for application. Equation (4) suggests that the relation between hRMS and

Lc is not a fixed one, but rather it varies with the level of s0, which in turn depends

on the particular site. Figure 3 shows the complex nature of relationships among

hRMS, Lc and s0 more elaborately. This is in contrast to equation (2), which offers a

certain fixed relation between hRMS and Lc. This fixed nature of relation between

roughness parameters may not be compatible with IEM.

The Lc that was derived by inverting the IEM LUT to fit the field data best has a

relation with hRMS (figure 4(d)), which is similar, to some extent, to that obtained

with the theory-based Lc (figure 4(a)). In both cases, most of the Lc observations

were low; and there were some results that showed Lc increased with hRMS.

However, Lc values from the best-fit LUT were, in general, larger than those

computed using the theory-based method. The LUT-derived Lc values were based

on model inputs of hRMS, hS and s0. Measurement errors in any or all of hRMS, hS

and s0 might accumulate in the Lc in the process of matching. Moreover, in

figure 4(a) moisture content is assumed constant across all study sites; on the other

hand, in figure 4(d) field measured moisture content, which is variable, is matched

with the LUT in addition to matching hRMS and s0.

The relation between the theory-based Lc and hRMS (figure 4(a)) is quite

different in appearance from that obtained with field measurements based on the

pinmeter (figure 4(b)). This raises questions about how well the theory-derived Lc

represents field conditions. No doubt, the use of the theory-derived roughness

M. M. Rahman et al.
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produces better results in terms of aligning IEM-derived s0 with Radarsat s0, which

is discussed in the next section. This suggests that the theory-based roughness

represents, with some degree of precision, how the Radarsat sensor system responds.

The most likely reason for this apparent incompatibility between model-derived and

field-measured Lc might be the error in field measurements. A pinmeter of 1-m

profile length is often used for roughness measurements, but recent studies suggest

that more representative estimations of Lc require roughness measurements with

longer profile length. However, how well the model derives Lc to represent field

surface roughness remains unanswered, in spite of its ability to provide better Lc

input to IEM.

4.4 Field validation of derived Lc

To examine the performance of Lc estimates using different methods, field-

measurements of hRMS, hS and method-derived Lc, were used to generate s0 using

IEM, and then, these were compared with the satellite measurements of s0 for the 43

study sites. The methods that produced IEM-modelled s0, which aligned more

closely with satellite-measured s0 were considered superior. The assertion is that the

inappropriate Lc estimate hinders IEM from performing well as a model to represent

satellite-measured s0. In an ideal situation, satellite-measured s0 should align with

IEM-modelled s0 along the one-to-one line.

Lc that is derived by the method proposed in this study and the field-measured

values of hRMS and hS were used in IEM to generate s0 for comparison with satellite-

measured s0 (figure 5(a)). When compared with an IEM model run based solely on

field measurements (figure 5(b)), the results were greatly improved and the scatter

clustered about the one-to-one line. Note that the proposed method uses the

theoretical framework of IEM and a radar image under dry ground conditions for

the estimation of Lc.

On the other hand, the empirical method (equation (2)) of deriving Lc, performed

as well as the theory-based method (figure 5(c)). These two methods show similar

characteristics in the relation between hRMS and Lc as discussed in the previous

section and illustrated in figure 4.

Values of Lc derived by inverting the IEM LUT, which is equivalent to running

IEM in the backwards direction, resulted in the least scatter (figure 5(d)). In this

approach, Lc was read from a IEM generated LUT by matching satellite-measured

s0, field measured hRMS and hS with the LUT values as closely as possible. So the

close matches along a one-to-one line between satellite-measured and model

generated s0 found in figure 5(d) was by design. However, it was useful to compare

the theory-based results with those based on the best fit LUT to determine the

limitations of this dataset.

The analyses so far have used site-specific comparisons between IEM-modelled

s0, generated by the use of field measurements of hRMS, hS and method-derived Lc,

and the satellite backscatter from 43 study sites of 35 m2. As opposed to the

findings in this study, relations between IEM outputs and satellite measurements at

this scale were found to be weak by many studies (e.g. Njoku et al. 2000, Leconte

and Brissette 2004, Thoma et al. 2006). However, results of these studies

improved significantly when the computations were conducted at the watershed

scale. The results of this study were aggregated at a watershed scale (by averaging

all 43 values to one value per date) to see if the data used in this study confirm

those findings. The mean and standard error of satellite backscatter from all 43

Derivation of roughness correlation length
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sites were compared with the same statistics derived from IEM backscatter

generated using a method-derived Lc and field measurements of hRMS and hS from

43 sites (table 4). However, the basic conclusions were the same as for the site-scale

comparisons.

Since the ultimate goal of the proposed method for deriving Lc was to better

estimate soil moisture using radar images and IEM, it is informative to compare the

model-estimated versus the field-measured soil moisture. The LUT was used for

inverting IEM in order to obtain estimates of soil moisture. For each study site, the

field-measured hRMS, method derived Lc and Radarsat image backscatter were

matched with LUT values to obtain soil moisture.

When model-predicted soil moisture was compared with field measurements of

soil moisture (figure 6), a good number of observations had higher moisture level

(particularly in July) and deviated substantially from the one-to-one line

representing a mismatch between field measurements and model predictions. This

might be a reflection of the complexity associated with the soil moisture estimation

(a) (c)

(b) (d )

Figure 5. Actual Radarsat backscatter over Walnut Gulch Experimental Watershed
(WGEW) versus Integral Equation Model (IEM) predicted backscatter when field
measurements of moisture content (hS), RMS height (hRMS) and method driven correlation
length (Lc) are provided as inputs to the model keeping radar configuration fixed (HH, 46.59u,
5.3 GHz). (a) Lc by proposed model, (b) Lc by field measurements of roughness, (c) Lc by
Baghdadi et al. (2004) model, and (d) Lc by inverting look-up table (LUT).

M. M. Rahman et al.
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by field techniques, where the presence of rock fragments in the soil is significant.

The WGEW study site contains 47% rock fragment by volume. To measure soil

moisture with the Theta Probe, the pins of the instrument need to penetrate into the

soil, which requires a spot on the ground that has a negligible amount of rock

fragments. To characterize the moisture content of a rock-soil composite, this

method may have limitations and may potentially cause overestimation of soil

moisture. Effort has been made in the past with mixed results to adjust the estimated

soil moisture to account for rock fragments (Thoma et al. 2006). However, a reliable

methodology for this adjustment is yet to be developed.

Table 4. Watershed scale comparison of model-generated backscatter with the Radarsat
backscatter.

Methods Mean (dB)
Standard
deviation

Bias of model pre-
diction RMSE

Radarsat backscatter over
WGEW

212.56 1.63 – –

IEM backscatter: Lc by field
measurement

213.85 3.26 1.29 3.38

IEM backscatter: Lc by
Baghdadi et al. (2004) model

213.31 2.11 0.75 2.30

IEM backscatter: Lc by
inverting LUT

213.33 1.91 0.77 1.85

IEM backscatter: Lc by
proposed model

212.78 2.50 0.22 2.18

WGEW, Walnut Gulch Experimental Watershed; IEM, Integral Equation Model; LUT,
look-up table.

Figure 6. Field measured soil moisture (hS) versus Integral Equation Model (IEM) predicted
soil moisture when field measurements of root mean square (RMS) height (hRMS) and
correlation length (Lc) driven by the proposed method are provided as inputs to the model
keeping radar configuration fixed (HH, 46.59u, 5.3 GHz).

Derivation of roughness correlation length
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5. Conclusions

The IEM is commonly used to retrieve surface soil moisture content from

measurements of radar backscatter (see review by Moran et al. 2004). It performs

well in quantifying the backscatter from a known surface condition in a laboratory

setting. However, studies have shown that it is difficult to achieve a similar

performance in field conditions. Estimation of the correlation length (Lc) of surface

roughness is one of the main difficulties in parameterizing IEM, and poor estimation

of Lc has resulted in poor IEM performance. Our results showed that the sensitivity

of radar backscatter (s0) to both Lc and RMS height of surface roughness (hRMS)

was dependent on each parameter alone, and the relation between the two. In

general, the relative sensitivity of s0 to hRMS was higher overall, but the sensitivity of

s0 to Lc dominated when the values of Lc were small.

In this paper, a new method for determining Lc was presented, based on the theory

behind IEM. IEM was simplified by making an assumption that the moisture content

(hS) of the targeted material was very low and uniform across the space. In this

situation, the effect of the hS on radar backscatter becomes negligible. This assumption

is equivalent to a radar image taken over dry ground, for which the backscatter is

almost entirely dependent on surface roughness. IEM-modelled backscatter, in this

condition, was approximated by simple functions of the roughness parameters Lc and

hRMS. These simple functions were manipulated to express Lc as a function of hRMS and

s0. Field measurements of hRMS and remote sensing measurements of s0 from a radar

image with dry soil conditions (s0
dry) were used to estimate Lc using this function. IEM

performed well for reproducing satellite backscatter from wetter ground conditions

when this Lc along with the field measurements of hRMS and hS were used as inputs.

Though the results presented here (equation (5)) are only appropriate for the same

Radarsat configuration used in this study (table 2), this process can be repeated as

described for any sensor configuration of radar satellite, assuming a radar image

acquired with dry ground conditions is available.

Based on extensive field data analysis, the performance of the new theory-based

method showed an improvement over the use of field measurements. It also has

advantages over simple empirical approaches (e.g. equation (2)) because it does not

require field measurements for iterative calibration.

The main contribution of this work is the development of a theory-based relation

between Lc and hRMS that can improve the performance of IEM in field applications.

Such a relationship, as captured in equation (5) and plotted in figure (3), opens up the

possibility of determining both roughness parameters without any ancillary data except

s0
dry. Zribi and Dechambre (2002) showed that the difference between radar backscatter

measured from two different incident angles (Ds0) with unchanged ground conditions

was proportional to a Z index, where Z~h2
RMS

�
Lc. Thus, hRMS as a function of Lc and

Z can be substituted into equation (5) in order to solve the two roughness parameters

explicitly as a function of s0
dry and Ds0. Once the roughness parameters are known, the

IEM can be inverted to solve for hS. In this way, it will be possible to measure soil

moisture content and surface roughness from remote sensing without ancillary data.

Research has been conducted and field validation has been performed (Rahman et al.

2006) to demonstrate the effectiveness of this method.
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