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[1] Four approaches for deriving estimates of near-surface soil moisture from radar
imagery in a semiarid, sparsely vegetated rangeland were evaluated against in situ
measurements of soil moisture. The approaches were based on empirical, physical,
semiempirical, and image difference techniques. The empirical approach involved simple
linear regression of radar backscatter on soil moisture, while the integral equation method
(IEM) model was used in both the physical and semiempirical approaches. The image
difference or delta index approach is a new technique presented here for the first time. In
all cases, spatial averaging to the watershed scale improved agreement with observed soil
moisture. In the empirical approach, variation in radar backscatter explained 85% of the
variation in observed soil moisture at the watershed scale. For the physical and best
semiempirical adjustment to the physical model, the root-mean-square errors (RMSE)
between modeled and observed soil moisture were 0.13 and 0.04, respectively. Practical
limitations to obtaining surface roughness measurements limit IEM utility for large areas.
The purely image-based delta index has significant operational advantage in soil moisture
estimates for broad areas. Additionally, satellite observations of backscatter used in the
delta index indicated an approximate 1:1 relationship with soil moisture that explained
91% of the variability, with RMSE = 0.03. Results showed that the delta index is scaled to
the range in observed soil moisture and may provide a purely image based model. It
should be tested in other watersheds to determine if it implicitly accounts for surface
roughness, topography, and vegetation. These are parameters that are difficult to measure
over large areas, and may influence the delta index.
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1. Introduction

[2] Near-surface soil moisture conditions are primary
determinants of cross-country mobility, irrigation schedul-
ing, pest management, biomass production, and watershed
modeling, and are also an important factor related to climate,
floods, and drought. Radar remote sensing presents advan-
tages for monitoring near-surface soil moisture (0–5 cm),
including synoptic, timely coverage with repeat passes,
and day or night operational capability. For these reasons,
there is much interest in developing radar-based remote
sensing techniques for monitoring surface soil moisture.
[3] Currently orbiting radar satellites offer an opportunity

for near-surface soil moisture assessment at high resolution

due to the response of radar backscatter to changes in soil
moisture resulting from the difference in real dielectric
constant, �e, for dry soil (�e = 2) and water (�e = 80)
[Henderson and Lewis, 1998]. Microwave energy penetra-
tion in the C-band used in this study is 1–5 cm depending
on the soil moisture [Nolan and Fatland, 2003; van Oevelen
and Hoekman, 1999]. Surface roughness and vegetation
affect backscatter as much or more than soil moisture [Zribi
and Dechambre, 2002; van Oevelen and Hoekman, 1999];
thus different methods of accounting for vegetation and
roughness have resulted in numerous models to determine
soil moisture from radar imagery.
[4] Research has shown it is possible to determine soil

moisture from C-band radar imagery using empirical, phys-
ical, and semiempirical models. Image differencing is a
fourth model used in this research. A brief discussion of the

Copyright 2006 by the American Geophysical Union.
0043-1397/06/2004WR003905$09.00

W01418

WATER RESOURCES RESEARCH, VOL. 42, W01418, doi:10.1029/2004WR003905, 2006

1 of 12



advantages and disadvantages of each type is presented
beginning with empirical models.
[5] Many empirical or regression-based models exist for

determining soil moisture directly from radar backscatter.
Although regression models using only single polarization
and single incidence angle radar are generally positive, they
range from weak (R2 = 0.09) for shrub-dominated sites
[Sano et al., 1998] in Arizona and winter wheat in Okla-
homa (R2 = 0.15) [Oldak et al., 2003] to moderate (R2 =
0.58) for a dry lake bed in Nevada and an agricultural field
in England (R2 = 0.44) [Kelly et al., 2003], to strong (R2 =
0.92) for herbaceous vegetation and shrubs in Israel
[Shoshany et al., 2000]. Leconte used the Dubois et al.
[1995] model to estimate surface roughness from a uni-
formly wet radar scene that was then used to account for
roughness in derivation of soil moisture estimates for new
images. This model worked well at the watershed scale (r =
0.96) when radar signal and measured water content were
averaged, but performed poorly at the field scale. Disadvan-
tages of empirical models are that numerous measurements
of in situ soil moisture are required at one site over time and
results are generally site specific, with varying predictive
capability as evidenced by studies conducted around the
world.
[6] Physical methods use a radar scattering model to

predict backscatter from inputs including radar frequency,
incidence angle, surface roughness, and dielectric constant.
The most commonly used radar scattering model covering
a wide range of microwave and surface parameters is the
integral equation method (IEM) model of Fung et al.
[1992]. IEM has been validated at fine scales in a
laboratory setting [Hsieh et al., 1997; Licheri et al.,
2001; Macelloni et al., 2000] using uniform media but
has not been shown to consistently predict radar backscat-
ter at broad scales. Some of the more successful broad-
scale studies include those by Bindlish and Barros [2000],
who obtained maximum error in estimates of soil moisture
less than 10% for a large agricultural watershed in Okla-
homa, and Colpitts [1998], who found the IEM model
predicted soil moisture values 1.8% below measured soil
moisture with a standard deviation of 5.8% in plowed
fields. The IEM model is difficult to apply for soil
moisture retrieval over large areas because natural surface
roughness is not well described by statistical representa-
tions used in the models and it is difficult to measure over
large areas. Additional information such as topography and
soil type may also be required to optimize the performance
of IEM.
[7] Semiempirical adjustments to physical models have

been proposed as practical solutions to the problem of
obtaining accurate input parameters to physical models over
widely distributed and highly variable geographic surfaces
[Verhoest et al., 2000; Baghdadi et al., 2004]. Using a water
cloud model in Kansas grasslands, Hutchinson [2003] found
single date correlations between soil moisture and radar
backscatter were r = 0.62 and 0.67 for burned and unburned
areas, respectively. Baghdadi et al. [2004] optimized cor-
relation lengths for the IEM model and showed a reduction
in standard deviation in the difference between modeled and
observed backscatter from 2.6 to 1.8 dB that would pre-
sumably improve inversion results. Optimization such as
this is data intensive and limited in scope by the number and

variety of fields where roughness measurements can be
made.
[8] All models described to this point are based on soil

moisture retrieval from a single image. Image differencing
on the other hand requires two images obtained with
identical radar wavelength, viewing geometry, and beam
mode. Image differencing is an empirical model used by
several researchers with much improved results over mois-
ture retrieval using single date imagery [Sano et al., 1998;
Moran et al., 2000; Shoshany et al., 2000]. They demon-
strated this technique in landscapes where surface rough-
ness is time-invariant, thus optimizing the potential to
observe backscatter differences due solely to changes in
near-surface soil moisture. Coefficients of determination for
soil moisture and backscatter greatly improved when related
to the difference between a reference (dry) image and
changed (wetter) image (R2 = 0.93) [Moran et al., 2000].
However, the difference still required a site-specific cali-
bration to soil moisture. The newly developed delta index,
presented here for the first time, is similar to image
differencing except that the difference is divided by the
dry reference backscatter which scales the index to the
range of soil moisture. A significant advantage of difference
models such as the delta index is that variability in surface
properties, which must be parameterized in single-image
models, may be accounted for implicitly in the image pair.
[9] Objectives of this research were to (1) evaluate

empirical models, the physically based IEM model, semi-
empirical adjustments to IEM, and the newly defined delta
index, (2) identify the primary factors affecting accuracy in
each method, and (3) make recommendations to improve
results.

2. Methods

2.1. Study Area

[10] The study area was the 150-km2 Walnut Gulch
Experimental Watershed (31�430N, 110�410W) in southern
Arizona (Figure 1) operated by the U.S. Department of
Agriculture Agricultural Research Service. The watershed
is a semiarid rangeland supporting low-density grass and
shrub vegetation that has negligible effect on radar
backscatter [Moran et al., 2000]. Soils are composed
primarily of alluvium and contain 0–60% rock fragments
by volume in the top 5 cm of soil profiles. The diameter
of most rock fragments falls between 2 and 75 mm. Rock
fragment volume averaged 47% at the sites selected for
study in this experiment [U.S. Department of Agriculture,
2002]. Common near-surface soils are very gravelly
sandy loams, and very gravelly loamy sands. Elevation
ranges from 1220 to 1960 m across rolling and heavily
dissected terrain.

2.2. Imagery and Image Processing

[11] ERS-2 and RADARSAT-1 imagery were used in this
study (Table 1). The ERS-2 imagery and associated soil
moisture data were obtained from Moran et al. [2000] for
the Walnut Gulch study area from field campaigns con-
ducted in 1997 at three sites that were sampled repeatedly
over time. Three RADARSAT-1 images were acquired
coincident with field measures of soil moisture at 44 sites
in 2003 on 30 July, 31 August, and 16 September.
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[12] Careful registration was necessary for meaningful
results in the image difference approach. Some registration
error was unavoidable but was minimized by averaging
pixels over a homogenous land surface that encompassed
areas of field work. RADARSAT imagery was georefer-
enced by matching clearly visible buildings and road
intersections with 1-m resolution U.S. Geological Survey
(USGS) digital orthophotographs. Registration error (root-
mean-square error (RMSE)) was kept below 4 m using
between 26 and 44 ground control points. No quantitative
information on registration accuracy was available for the
1997 ERS imagery, but similar registration procedures were
used.

2.3. RADARSAT Speckle Analysis

[13] A potential advantage of radar remote sensing over
passive microwave is the possibility to make observations at
higher spatial resolution. However, the interaction of radar
and rough surface features results in addition and cancella-
tion of waves, causing random return intensities for similar
adjacent surfaces, which is termed speckle [Henderson and
Lewis, 1998]. Speckle removal is necessary for quantitative
analysis, yet there exists a tradeoff between speckle removal
and resolution.

[14] The best size for a speckle-reducing median filter
window was determined for RADARSAT images by exam-
ining the change in backscatter statistics at 44 field sites
after passing moving window filters ranging in size from
3 � 3 to 49 � 49 pixels across the images. The pixel
resolution was retained at 7 m after all levels of median
filtering. The 7-m filtered output pixel resolution resulted in
pixels that contained information from surrounding pixels in
the input imagery and thus represented a ground area greater
than 7 m2. The relationship used to determine the ground
area represented by a square pixel cluster after passing a
moving window median filter is

a ¼
ffiffiffi
c

p
þ 2�

ffiffiffi
n

p
� 1

� �� �
� r

� �2
; ð1Þ

where
a ground area after median filtering (m2);
c square pixel cluster size of interest (pixels2);
n moving window median filter size (pixels2);
r pixel resolution (m).

[15] We determined an appropriate median filter size that
reduced speckle yet retained the highest possible ground
resolution by examining trends in backscatter statistics

Figure 1. Location of Walnut Gulch Experimental Watershed in southern Arizona, and sites where
ground measurements of soil moisture and surface roughness were made.

Table 1. Characteristics of Radar Imagery and Number of Field Sites Sampled at Time of Satellite Overpass

ERS-2 All Dates RADARSAT-1 19 Jan 2003 RADARSAT-1 All Other Dates

Number of images 8 1 3
Field sites 10 18 44
Pixel resolution 12.5 7 7
Polarization VV HH HH
Incidence angle, deg 23 46 46
Frequency, GHz C-band, 5.3 C-band, 5.3 C-band, 5.3
Wavelength, cm 5.6 5.6 5.6
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according to moving window filter size. Averaging the
mean and standard deviation at each filter level across all
44 sites provided a way to determine the best filter level for
the watershed as a whole, which was determined as the
moving window size where further increases in window size
did not appreciably change the watershed backscatter sta-
tistics. The filter size where curves flattened indicated the
finest spatial scale where speckle influence was minimized
(Figures 2a and 2b). For the mean curve this occurred with a
7 � 7 pixel moving window which represented a ground
area of 119 � 119 m, and for the standard deviation curve
this occurred with a 15 � 15 pixel moving window which
represented a ground area of 231 � 231 m. Standard
deviation continued to decrease even as the mean stabilized
beyond the 7 � 7 pixel median filter window (Figure 2b),
indicating that outlying backscatter values continued to be
removed with larger filter sizes. At the same time, the mean
backscatter became more positive (Figure 2a), indicating
that a skewed negative distribution of backscatter in unfil-
tered imagery became less important on computation of the
mean as filter size increased. Although larger window sizes

improved aesthetic image quality at broader scales, the
difference between mean backscatter of field sites using a
5 � 5 pixel window and any filter larger than 5 � 5 pixels
was no more than 0.07 dB (Figure 2a). For this reason, the
5 � 5 filter size was selected as the optimum filter window
size that balanced resolution with a consistent measure of
backscatter central tendency. From this point forward, when
making reference to the RADARSAT image data, only the
5 � 5 pixel median filtered imagery is discussed.
[16] Distribution and abundance of scatterers on the

ground including surface roughness and near-surface rock
fragments affect the spatial scale of speckle. Thus it is
expected that the magnitude and distribution of speckle will
vary by study area and the optimum median filter chosen for
this study area may be unique.
[17] Because some residual speckle effect may have still

been present after filtering, the backscatter at each of 44
field sites was averaged over 5 � 5 pixels, representing an
effective ground area of 91 � 91 m to obtain backscatter
values used in subsequent analysis. The 12.5-m resolution
ERS-2 imagery was not median filtered because it was
lower resolution and three-look, which had the effect of
reducing speckle. However, backscatter for the ERS-2 field
sites (different from those used with RADARSAT) was also
determined by averaging pixels, in this case a 7 � 7 pixel
area (87.5 � 87.5 m) that further reduced speckle effects. In
both ERS and RADARSAT imagery the number of pixels
averaged to determine backscatter at field sites represented
approximately the same geographic extent.
[18] No topographic correction was applied to ERS

imagery because the associated field sites were flat. How-
ever, because some of the field sites associated with the
RADARSAT imagery were not flat, a local incident angle
correction was applied [Henderson and Lewis, 1998]. The
correction involved multiplying backscatter values by the
ratio of backscatter received from a sloping surface to that
received from a horizontal surface, where

bos=b
o
h ¼ sinQi= sin Qi � alocð Þ; ð2Þ

bs
o backscatter from sloping surface;
bh
o backscatter from a horizontal surface;

Qi average radar incident angle;
aloc local incident angle determined from 7-m digital

elevation model.
The correction effect was minor in most cases because
slopes at the field sites were mostly level.

2.4. Soil Moisture Measurements

[19] Soil moisture measurements at field sites were
made in one of three ways over an integrated 0- to 5-cm
depth, or at 5-cm depth for the in situ sensors. (1) For each
ERS-2 image, 49 soil moisture measurements were made
gravimetrically over a 90 � 90 m area at three sites. (2) For
RADARSATimage acquisition dates, 30 July, 31August, and
16 September 2003, volumetric soil moisture was measured
using capacitance-based Dynamax TH2O Theta probes at 30
to 50 locations on a grid within a 35 � 35 m area at
each of 44 sites. The number of measurements made was
based on sampling intensity needed to obtain a stable
measure of mean soil moisture. (3) For the RADARSAT
image acquisition date 19 January 2003, soil moistures were
retrieved from continuously recording Stevens/Vitel Hydra

Figure 2. Effect of median filter window size on
RADARSAT backscatter. (a) Mean backscatter from 44
field sites on three image dates in Walnut Gulch, Arizona.
(b) Mean of standard deviations of backscatter from 44 field
sites on three image dates. The area used to calculate
standard deviation and mean for each of 44 sites was five by
five pixels (91 � 91 m) nested over the 35 � 35 m ground
area sampled for soil moisture at time of satellite overpass.
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soil moisture probes installed at 5-cm depth in 18 widely
distributed locations within the study area. All field
measurements of soil moisture were made within a few
hours of 1100 LT and 1830 LT overpass times for ERS-2
and RADARSAT, respectively. A factory calibration for
mineral soil was used for Theta probes, and factory
calibration for sand type soil was used with the in situ
Vitel probe in all but one location where the clay
calibration was used.
[20] Rock fragment content has been shown to affect

radar backscatter through its effect on water holding capac-
ity [Jackson et al., 1992] because rocks do not absorb
appreciable amounts of water. This coupled with the fact
that portable probes could only be inserted where rocks
were absent caused an overestimation of bulk volumetric
soil moisture. Thus a rock fragment correction was made by
subtracting rock fragment volume from volumetric soil
moisture in the following manner:

Qr ¼ Qv � fr �Qvð Þ; ð3Þ

where Qr = rock fragment adjusted volumetric soil moisture,
Qv = field measured volumetric soil moisture, and fr =
fraction of bulk soil occupied by rock fragments >15 mm.
[21] Rocks up to 15 mm diameter could fit between the

measuring rods of the portable Theta probes, and therefore
this size fraction was not considered in the soil moisture
adjustments. Subtracting the fraction that could fit between
the sensing rods from the average study site rock fragment
content provided the best average estimate for rock frag-
ment correction (fr = 0.376). After rock fragment correction,
volumetric soil moisture for the sites used in this study
ranged from 0.02 to 0.35.

2.5. Roughness Measurements

[22] Sano et al. [1998] measured surface roughness along
thirty 1-m transects with a pin meter at each of the 44 field
sites sampled for soil moisture on RADARSAT overpass
dates. Surface heights were measured at 1 cm horizontal
increments aligned with the local contour. Both root-mean-
square error of surface heights (hrms) and correlation length
(Lc) were computed for each 1-m transect [Henderson and
Lewis, 1998]. Results were averaged by site for use in
model simulations.

hrms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

zi � �zð Þ2
s

ð4Þ

where n = number of height measurements, zi = a single
measurement, and �z = mean of all measurements.
[23] Correlation length is derived from the autocorrela-

tion function:

rj ¼

Pn�j

i¼1

zi � �zð Þ ziþj � �z
� �

Pn
i¼1

zi � �zð Þ2
ð5Þ

for j = 1, 2, 3, 4 . . . n/4 where
n number of measurements of height;
zi a single measurement;
�z mean of all measurements;
j distance between measurements;

Lc is where rj = 1/e.

2.6. Models

[24] The first three models described below have been
used by previous researchers and are presented here for
comparison with the newly proposed delta index model.
Each model was used at site and watershed scales and with
the same soil moisture data for validation so that they could
be compared directly.
[25] Empirical regression relationships between observed

backscatter and soil moisture were determined at site and
watershed scales and also for areas of homogenous vegeta-
tion. The regression relationships were condition-specific,
meaning they were developed for unique radar systems and
scales.
[26] The IEM model of Fung et al. [1992] determines

backscatter as a function (f) of radar-specific parameters and
surface properties for bare soil surfaces, where

so ¼ f F; I ; hrms; Lc;�er;�ei; and acfð Þ ð6Þ

so dual polarized backscatter response (dB);
F radar frequency (GHz);
I incident angle (degrees);
�er real part of dielectric constant of scattering medium;
�ei imaginary part of dielectric constant of scattering

medium;
acf autocorrelation function shape.

For all simulations in this study, F = 5.3 GHz, I = 46.5�, and
acf = exponential. Field-measured values of hrms and Lc
were used in IEM simulations while dielectric constant was
determined from field measured soil moisture using the
relationship of Hallikainen et al. [1985]. Inversion of the
IEM model was made with a look-up-table (LUT) that was
created by running forward iterations of the IEM model for
the expected range in dielectric constant and roughness
characteristics in the study area (Table 2). The LUT was
used to predict soil dielectric constant from RADARSAT
pixel values and measured roughness at field sites. Soil
dielectric constant was converted to soil moisture using the
relationship of Hallikainen et al. [1985].
[27] A semiempirical model was used to adjust measured

surface roughness inputs to IEM to account for discrepancies
between simulated and observed backscatter that resulted
either from inadequacies in the IEMmodel for this study area
or inaccurate model inputs. The most likely factor resulting
in discrepancies has been identified by Callens and Verhoest
[2004] and others [Oh and Kay, 1998; Davidson et al., 2000]
as inaccurate measurements of Lc. They have shown that
while hrms can be measured to within 10% accuracy using
traditional 1-m profilers, impractically long profile lengths
are required to achieve the same level of accuracy for Lc.
Because of the difficulty of physically measuring Lc accu-
rately in the field, Baghdadi et al. [2002] proposed calibrat-
ing Lc based on the much more easily measured and accurate
hrms. The calibration was determined by iterative adjustment
of Lc inputs to the IEM model so that RMSE between
observed and IEM modeled backscatter was minimized.
The calibration for this watershed took the form

Lopt ¼ 2 if hrms < 1:25; otherwise 1:25� hrmsð Þ0:25 ð7Þ

where Lopt = optimum calibrated correlation length for
surface conditions and radar geometry determined by min-
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imizing RMSE between observed and IEM simulated back-
scatter (cm), and hrms = field-measured root-mean-square
error of surface heights from equation (4) (centimeters).
[28] First we focused on adjustments to field measured Lc

to derive Lopt as suggested by Baghdadi et al. [2002], then
moved on to iterative adjustments of hrms to account for
inaccuracies in hrms measured in the field with a pin meter
profiler. Multiple iterations indicated that the best calibra-
tion for hrms in this watershed occurred when hrms was
multiplied by a factor of 2. Then,

Lopt ¼ 0:25 if hrms < 1:5; otherwise 1:5� hrmsð Þ2: ð8Þ

[29] An image difference technique proposed by Sano et
al. [1998] was modified to evaluate backscatter from a dry
reference scene and a wetter scene of interest by normaliz-
ing the difference of pixel values to the dry scene value. The
delta index represents a change relative to dry scene
backscatter, and thus the delta index should be interpreted
in light of dry scene soil moisture. This is because any
‘‘dry’’ scene backscatter is likely to be affected by at least a
small amount of residual soil moisture. For two carefully
coregistered images representing dry conditions in one
image and wetter conditions in the other obtained at a
different time, the delta index is defined on a per pixel
basis as

delta index ¼
sowet � sodry

sodry

�����
����� ð9Þ

where sdry
o = backscatter (decibels) from a pixel in a radar

image representing dry soil conditions, and swet
o = radar

backscatter (decibels) from a pixel in the same geographic
location representing wet soil conditions at a different time.
[30] The delta index quantifies the change from a more

negative backscatter (dry image) to a more positive back-
scatter (wet image). In terms of soil moisture this is a
change in the positive direction. Because backscatter values
are always negative, the absolute value is necessary to scale
the delta index to a positive range that reflects the positive
change in soil moisture status. The delta index can be
calculated for spatial extents greater than the pixel resolu-
tion by averaging backscatter from blocks of pixels to
further minimize the influence of speckle if both images

are filtered in the same way and if the arithmetic average of
pixel values for coincident areas in the two images are used
in the computation.
[31] In semiarid regions, long dry periods up to several

months duration are common and generally are the best
times to obtain a reference image representing dry soil
conditions across broad areas. Obtaining dry reference
imagery for more humid regions may be difficult, but if
soil moisture measurements are made on the ground at times
of image acquisition it may be possible to account for that
level of soil moisture through subtraction, or interpret the
delta index as a relative change from the reference soil
moisture, rather than an absolute measure of soil moisture.
In this study the watershed average volumetric soil moisture
associated with imagery used for the reference pixel values
was between 0.01 and 0.05 at the time of dry reference
image acquisition on 19 January 2003 and 7 July 1997 for
RADARSAT and ERS, respectively.

3. Results and Discussion

3.1. Scale Effects on Model Accuracy

[32] A general finding related to scale pertinent to all
models used in this study is that site-specific relationships
between model predictions and observed soil moisture were
poor. A representative example is that obtained for the site-
based empirical relationship for all RADARSAT image sites
on four dates (Figure 3a). The same observation is presented
in later sections for the other models. The most likely reason
for poor results at high spatial resolution is due to the
insensitivity of the radar to changes in soil moisture, effects
of residual speckle, and natural variability of surface char-
acteristics that interact to affect backscatter that confound
relationships. This is even true for physical models that can
account for complex interactions, because variability in
surface characteristics that serve as model inputs is difficult
to measure accurately over large areas of natural surfaces.
Some residual speckle influence is expected to affect site-
specific relationships because the speckle-reducing tech-
nique was based on the best filter for the watershed as a
whole. Natural variability in surface features would imply
the chosen filter technique may ‘‘over’’ filter or ‘‘under’’
filter in different areas. By averaging spatially across the
watershed and temporally across a large range in soil
moisture conditions, the variability of surface factors is
minimized while the range in observations is maximized.
Only when central tendencies in soil moisture and back-
scatter become apparent through the noise of variability do
useful broad-scale relationships appear (Figure 3b). This
study indicated that accurate soil moisture relationships
obtained with radar may not provide improved spatial
resolution over that achievable with passive sensors. This
does not mean radar imagery used in this study is only
useful for broad-scale observations, but that the highest
resolution achievable must be broader than the scale repre-
sented by individual sites used in this study.

3.2. Empirical Model

[33] On a site by site basis, the relationship between 5 �
5 pixel average backscatter and soil moisture was weak.
Backscatter and soil moisture, grouped by date and then
spatially averaged across the watershed, showed a dramatic
improvement over site-specific relationships (Figure 3a) by

Table 2. Parameters Used in Forward Iterations of IEM Model to

Generate the Look-up-Table (LUT) of Expected Backscatter for

Known Surface Parameters and Viewing Geometrya

Parameter Value

Frequency, GHz 5.3
Incidence angle, deg 46
Lc correlation length, cm 0.1–50.1
hrms height, cm 0.1–5.1
Real dielectric constantb, unitless 0.2–80
Imaginary dielectric constantb, unitless 0.00–23.83
Autocorrelation function exponential

aThe LUT was used with measurements and adjusted measurements of
surface roughness to determine soil moisture from RADARSAT imagery.

bReal and imaginary dielectric constants were computed via Hallikainen
et al. [1985].
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reducing the effect of variation in surface roughness, soil
moisture, and residual speckle. Spatial and temporal aggre-
gation highlighted a range of soil moistures that induced a
backscatter response outside the variability caused by con-
founding factors. This in part explained better correlation
between backscatter and multidate imagery when the tem-
poral range of soil moisture was greater than that generally
found in a single image. Useful relationships might be
possible at scales intermediate between ‘‘site’’ and ‘‘water-
shed,’’ as indicated by a weakly defined scale based on
areas of homogenous vegetation type (Figure 3b).
[34] Although several of the condition-specific relation-

ships were strong, they have limited predictive capability
due to subtle changes in backscatter response across large
ranges in soil moisture indicated by flat regression line
slopes. The need to spatially average backscatter at some
scale agreed with LeConte et al. [2004], Kelly et al. [2003],
Hutchinson [2003], and Moran et al. [2000], who also
found poor relationships at field scales but better relation-
ships when sites or fields were spatially averaged.
[35] Aside from predictive capability, another interesting

observation can be made related to vegetation and its

influence on backscatter. In general, backscatter from
shrub-dominated portions of the watershed is greater than
that from grass-dominated portions of the watershed regard-
less of moisture status (Figure 3b). This difference, presum-
ably due to vegetation type, is only apparent when data are
averaged across the watershed.

3.3. Physical Model

[36] The geographic limitations imposed by empirical
techniques do not apply to physical models such as IEM,
but physical models present other challenges. The IEM
model is point based and has been validated with scatter-
ometers at lab and plot scales with well-defined media of
known dielectric constant and well-characterized roughness.
However, when the IEM model was extended to highly
variable landscapes using space-based imagery, it per-
formed poorly (Figure 4a). IEM backscatter was less than
observed RADARSAT backscatter for all dates, which
contradicts Baghdadi et al. [2002], who found IEM gener-
ally overestimated observed backscatter. This difference
may be in part explained by the presence of minor amounts
of vegetation in this study area as pointed out earlier.
Bindlish and Barros [2001] showed a weak positive rela-
tionship (R2 = 0.23) between radar backscatter and range-
land biomass. The lack of fit between measured and
observed backscatter could be caused by not accounting
for vegetation in the IEM model or due to difficulty
measuring Lc and hrms of rangeland surfaces used for model
inputs. Also, the inability of the pin meter to measure
subsurface rock fragments that affect volume scatter may
have resulted in underestimation of IEM backscatter relative
to observed radar backscatter. The speculation that the
problem is largely due to roughness is echoed by the
findings of Moran et al. [2000], who showed vegetation
had no effect on backscatter in this watershed, and others
who have noted difficulty characterizing surface roughness
at field scales [Verhoest et al., 2000; Baghdadi et al., 2004],
and results presented next for the semiempirical model.
[37] Inversion of the IEM model with the LUT to

generate predictions of soil moisture performed poorly on
a site by site basis, but had a near linear fit when data were
spatially averaged (Figure 4b). Nevertheless, soil moisture
modeled this way overestimated measured soil moisture on
all image dates.

3.4. Semiempirical Model

[38] Semiempirical adjustments can be made in light of
potential weaknesses in field measurement of model param-
eters. The physics behind IEM theory have been carefully
evaluated and shown to work at fine scales, but it is not
clear if weaknesses in the model result in poor results at
broad scales or, if more likely, the lack of fit between
observed and modeled backscatter is due to uncertainty in
observed radar backscatter, uncertainty in field measured
surface roughness, or uncertainty in field measured soil
moisture.
[39] Uncertainty in radar backscatter for the duration of

this study was expected at worst to be within 2 dB
[Staples and Branson, 1998], and although this level of
error could result in modeled error greater than plus or
minus 0.10 cm3 cm�3, it was not considered for adjustment
beyond the median filter step because radiometric calibra-
tion was performed by the data provider.

Figure 3. (a) Backscatter versus measured soil moisture
by site and averaged for the watershed on four dates in 2003
using only RADARSAT observations. (b) Empirical
relationships derived for homogenous areas of vegetation
with both RADARSAT and ERS radar sensors across
multiple dates.
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[40] Uncertainty in field-measured soil moisture was
addressed by confidence interval testing at 95% with one
sample t-test. This indicated that sample sizes of field soil
moisture measurements (30–50 measurements at each field
site) were sufficient to ensure mean soil moisture estimates
were within 1 and 2% of true soil moisture for dry and moist
field conditions, respectively. Additional measurements did
not change the mean value more than 1%. Therefore
adjustment of soil moisture used to compute dielectric
constant was not considered. The discrepancy in field area
sampled (35 � 35 m) for RADARSAT image dates and the
area used to determine mean backscatter (91 � 91 m) may
have influenced model results. However, the pixels used to
determine the mean backscatter were centered over the field
sites, and the field sites on the scale of 100 m were
relatively homogenous. In two field trials at 13 representa-
tive field sites we obtained mean soil moisture values in
nested blocks of 35 � 35 m and 100 � 100 m that differed

by less than 0.018 cm3 cm�3. This provided some assurance
that the measurements made at 35 � 35 m adequately
represented the soil moisture status of larger 100 � 100 m
areas.
[41] This left uncertainty in surface roughness as an

important factor that could affect model performance.
Surface roughness parameters, Lc and hrms, have strong
influence on IEM-generated backscatter and thus, through
adjustment, have much potential to improve fit between
observed and modeled soil moisture. Furthermore, others
have had difficulty accurately measuring surface roughness
[Baghdadi et al., 2002; Verhoest et al., 2000]. Coefficients
were calibrated using equations (7) and (8) to achieve
adjustments to field-measured Lc and hrms that minimized
the difference between modeled and measured backscatter.
Evaluation of roughness calibration was made by compar-
ing LUT modeled soil moisture to field measured soil
moisture (Figure 5).
[42] Simulations using adjusted surface roughness param-

eters showed improvement when Lc was decreased and
when hrms was increased. Shorter correlation lengths and
larger hrms values effectively increased roughness in the
IEM model and its inversion which improved the fit
between modeled and observed soil moisture. Poor agree-
ment between modeled and observed backscatter resulted
when field measures of surface roughness, Lc and hrms, were
used (RMSE = 0.13). Considerable improvement occurred
by adjusting Lc only (RMSE = 0.05), but little additional
improvement could be achieved for all dates by adjusting
hrms and Lc simultaneously (RMSE = 0.04). However,
adjusting hrms and Lc simultaneously had a large influence
on accuracy of soil moisture prediction for the wettest
month. This difference may be due to inability of the
surface-based pin meter to account for volume scattering
caused by subsurface rock fragments that have a greater
proportional effect on volumetric soil moisture in wetter
conditions (equation (3)). Although the fit between modeled

Figure 4. (a) Site-averaged IEM versus RADARSAT
backscatter for 44 field sites sampled on four dates. The
error bars represent backscatter standard deviation. (b) Site-
specific modeled versus measured soil moisture and average
modeled versus measured soil moisture. Only RADARSAT
results are presented because surface roughness data were
not available for IEM simulation at the ERS-2 field sites.

Figure 5. Modeled versus measured soil moisture for
simulations at the watershed scale. The shift in data grouped
by symbol represents Lc calibration suggested by Baghdadi
et al. [2004] or Lc calibration plus hrms adjustment. Only
RADARSAT results are shown here because surface
roughness data were not available for IEM simulation at
the ERS-2 field sites.
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and measured backscatter could be optimized by adjusting
roughness parameters, inversion to obtain soil moisture still
overestimated measured soil moisture.
[43] Others [Baghdadi et al., 2002; Verhoest et al., 2000]

have made adjustments to Lc based on the assumption that
hrms can be accurately measured in the field and is related to
Lc. However, those studies were made in agricultural fields
that have periodic row structure and may not have high rock
fragment content. Empirical adjustments to both hrms and Lc
may complicate handling of roughness in model inversions.
Adjustment of hrms, however, may be necessary in rocky
environments to account for subsurface volume scattering
that cannot be measured using surface-based pin meters.

3.5. Delta Index Model

[44] As with the other models, the site-specific relation-
ship between delta index and measured soil moisture was
poor but improved dramatically with spatial and temporal
averaging (Figure 6a). A strong relationship through time

existed between the delta index and field-measured soil
moisture at the watershed scale with delta index explain-
ing 91% of the variability in soil moisture when both
RADARSAT and ERS imagery were used to predict soil
moisture (Figure 6b). In this study the delta index rela-
tionship was a good predictor of soil moisture with pairs
of HH and pairs of VV polarized imagery. The key to
meaningful results lies in obtaining imagery with the same
beam position, precise image to image registration, and
speckle filtering and so that differences result primarily
from changes in moisture status.
[45] The effect of normalizing with dry reference image

pixel values was that delta index values were scaled to the
range of observed soil moistures, a marked improvement
in the image difference approach first proposed by Sano et
al. [1998], and the observations, at least in this watershed,
approximated a 1:1 relationship. The proximity of obser-
vations to the 1:1 line may result from cancellation of
time-invariant features that affect backscatter, including
view geometry, polarization, topography, soil type, and
surface roughness because they are the same in the two
images used in the delta index and the only difference in
the image backscatter is due to soil moisture. If this holds
true in other watersheds, empirical calibration may not be
required if reference scene soil moisture is very dry. This
presents an important operational advantage if soil mois-
ture could be predicted by imagery alone without the need
for ground-based measures of surface roughness. However,
if roughness and soil moisture have an interaction effect as
suggested by IEM model simulations, then the delta index
may be no different from other empirical models that must
be reexamined for each new study area.
[46] The delta index may be less affected by surface

roughness, rock fragments, and subtle vegetation influences
than IEM, as indicated by an examination of site-scale
variability in IEM and delta index modeled soil moisture
for September (Figures 4b and 6a). For the range in soil
moisture measured on the ground for the September image
date, there is a larger spread in modeled IEM soil moisture
values (0–0.4) than delta index values (0–0.2). We specu-
late that there are two primary reasons why the delta index
outperformed the IEM model at the site scale. First, for the
IEM model, it is difficult to accurately characterize surface
roughness and other factors such as subsurface rock frag-
ments that may contribute to roughness even over relatively
small areas such as the 35 � 35 m sites used in this study.
The second is due to residual speckle influence that may not
have been entirely removed or minimized at each field site
during the filtering process. All imagery in the study was
filtered the same way, but if residual speckle remained it
served as error in IEM inversion but ‘‘cancelled’’ in the
delta index. The relatively large spread in the delta index
results indicates speckle effects did not entirely cancel,
which may result from very slight shifts in viewing geom-
etry on successive orbits that cannot be practically taken
into account. This is a limitation imposed by the observation
system that will limit the scale at which model results will
be valid.
[47] The delta index is largely determined by two theo-

retical relationships that are illustrated with a dielectric
model [Hallikainen et al., 1985] and IEM [Fung et al.,
1992]. These are the dependency of real dielectric constant

Figure 6. (a) Site-specific relationship between delta
index and field measured soil moisture and averages of
delta index and measured soil moisture. (b) Average delta
index from 44 sites derived from RADARSAT imagery on
three dates and delta index from three sites derived from
ERS imagery on multiple dates versus soil moisture
measured in the field. RMSE was computed as average
difference between observed soil moisture and delta index.
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on volumetric soil moisture (Figure 7a), and the dependency
of backscatter on real dielectric constant (Figure 7b).
Backscatter and soil moisture are linked through these
relationships (Figure 7c). Because imaginary dielectric
constant changes much less than real dielectric constant
with soil moisture, it will not be discussed further.
Increasing backscatter with soil moisture presents the
opportunity to discriminate levels of soil moisture by
exploiting the change in backscatter normalized by the
initial, or ‘‘reference,’’ condition, similar to the way
gravimetric soil moisture content is normalized by dry
soil mass. Because the relationships between soil moisture,
dielectric constant, and backscatter are nonlinear, the delta
index as modeled with IEM is also nonlinear (Figure 7d)
with a shape similar to the backscatter/soil moisture
relationship of Figure 7c. For comparison, a delta index
curve derived by generating backscatter values using IEM
(dashed blue line in Figure 7d) was made for the specific
conditions of surface roughness in the watershed. The
RMSE was less around the observed delta index line
(0.03) than around the IEM-derived delta index curve
(0.12). This indicates that IEM may not be a suitable

model for operational broad-scale soil moisture estimates
in this watershed. However, more data at higher water
contents might indicate a better fit with the IEM-derived
curve.
[48] The linearity of the observed delta index may result

from factors that cannot be accounted for in the IEM
model. It could be related to cumulative effects of surface
features and scale that IEM does not model effectively, or
it could be the IEM model does not account for rock
fragments just below the soil surface that act as roughness
elements affecting backscatter and also act as a limit on
volumetric soil moisture content. In a dry soil the sur-
rounding matrix is as dry as rocks contained therein. As
the soil wets-up the volume occupied by rocks remains
dry, thus suppressing the backscatter influence for that
volume. This has the effect of compressing the entire
backscatter response into a narrower range that may be
more linear than what would be observed over a broader
range of soil moisture if rocks were absent. If the delta
index is capable of handling the cumulative effect of rock
fragments and variable surface factors, it may have poten-
tial to be extended easily to other study sites. For this

Figure 7. (a) Modeled dependence of real dielectric constant on soil moisture. (b) Modeled dependence
of backscatter on dielectric constant. (c) Soil moisture versus backscatter relationship that is exploited by
the delta index. (d) Delta index computed using radar image pixel values from Figure 6 and IEM-
modeled backscatter versus field-measured soil moisture. A volumetric soil moisture content of 0.05 was
used as the dry ‘‘reference’’ soil condition while optimized hrms and Lc (1.13 cm and 1.93 cm,
respectively) served as roughness inputs to develop the IEM-simulated delta index. RMSE was computed
as average difference between observed soil moisture and modeled fit.
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reason, the observed delta index derived from satellite
observations should be evaluated across a wide range of
surfaces types before definitive conclusions are drawn
about its suitability rather than basing its utility on
comparison with IEM-modeled delta index behavior.
[49] Although the delta index versus soil moisture rela-

tionship does not exactly follow the 1:1 line, it is a close
approximation in this watershed and may provide meaning-
ful estimates of soil moisture in some cases even without
calibration.

4. Conclusions

[50] A generalization apparent from all model results is
that spatial averaging can be used to improve predictive
capability regardless of model used by focusing on central
tendencies. Wide ranges in backscatter over short distances
are caused by high degrees of spatial variability in surface
roughness, soil moisture, and speckle. However, at broader
scales the central tendency of backscatter due to roughness
and speckle tends to stabilize while large differences in
soil moisture through time shift the central tendency. For
this reason, it is more likely that soil moisture relation-
ships using any of these models will be stronger when
evaluated at broader scales and across larger moisture
gradients, either spatial or temporal. The minimum spatial
scale for meaningful radar-based soil moisture estimates is
still undetermined, but clearly estimates near the scale of
image resolution are not appropriate. Additional research
is now being focused on determining the minimum
spatial scale where central tendencies are clearly discern-
able from noise that confounds backscatter/soil moisture
relationships.
[51] Empirical models were strongest when data were

averaged across study sites, but finer-scale relationships
were possible for specific vegetation types and radar
geometry. Inversion of the IEM model using field mea-
sures of surface roughness had poor agreement with
observed soil moisture even at the watershed scale when
all sites were averaged. Considerable improvement was
made by empirically adjusting surface roughness inputs to
the inversion model. However, the semiempirical model
required much field data and limited the inversion of the
physical model to a specific geographic area of similar
roughness characteristics. The newly proposed delta index
was presented in context with other commonly used
models for comparison. The delta index model was as
good or better than the other models at the watershed
scale, indicating it may have much potential as a tool for
estimating soil moisture from radar imagery, especially in
an operational context where imagery alone could be used
to predict soil moisture if the 1:1 relationship found in this
study holds for other areas.

[52] Acknowledgment. The authors appreciate the support of the
U.S. Army Engineer Research and Development Center, Topographic
Engineering Center, and the staff at the Walnut Gulch Experimental
Watershed.

References
Baghdadi, N., C. King, A. Chanzy, and J. P. Wigneron (2002), An empirical
calibration of the integral equation model based on SAR data, soil moist-
ure and surface roughness measurement over bare soils, Int. J. Remote
Sens., 23(20), 4325–4340.

Baghdadi, N., I. Gherboudj, M. Zirbi, M. Sahebi, C. King, and F. Bonn
(2004), Semi-empirical calibration of the IEM backscattering model
using radar images and moisture and roughness field measurements,
Int. J. Remote Sens., 25(18), 3593–3623.

Bindlish, R., and A. P. Barros (2000), Multifrequency soil moisture inver-
sion from SAR measurements with the use of IEM, Remote Sens.
Environ., 71, 61–88.

Bindlish, R., and A. P. Barros (2001), Parameterization of vegetation back-
scatter in radar-based, soil moisture estimation, Remote Sens. Environ.,
76, 130–137.

Callens, M., and N. E. C. Verhoest (2004), Description and analysis of the
soil roughness field campaign conducted at the experimental farm of
Ghent University during the winter period 2002–2003, internal report,
Lab. of Hydrol. and Water Manage., Ghent Univ., Ghent, Belgium.

Colpitts, B. G. (1998), The integral equation model and surface roughness
signatures in soil moisture and tillage type determination, IEEE Trans.
Geosci. Remote Sens., 36(3), 833–837.

Davidson, M. W. J., T. Le Toan, F. Mattia, G. Satalino, T. Manninen, and
M. Borgeuad (2000), On the characterization of agricultural soil rough-
ness for radar remote sensing studies, IEEE Trans. Geosci. Remote Sens.,
38(2), 630–640.

Dubois, P. C., U. J. Van Zyl, and T. Engman (1995), Measuring soil moist-
ure with imaging radars, IEEE Trans. Geosci. Remote Sens., 33(4), 915–
926.

Fung, A. K., Z. Li, and K. S. Chen (1992), Backscattering from a randomly
rough dielectric surface, IEEE Trans. Geosci. Remote Sens., 30(2), 356–
369.

Hallikainen, M. T., F. T. Ulaby, M. C. Dobson, M. A. El-Rayes, and L. Wu
(1985), Microwave dielectric behavior of wet soil: 1. Empirical models
and experimental observations, IEEE Trans. Geosci. Remote Sens., 23(1),
25–34.

Henderson, F. M., and A. J. Lewis (Eds.) (1998), Manual of Remote Sen-
sing, vol. 2, Principles and Applications of Imaging Radar, 3rd ed., John
Wiley, Hoboken, N. J.

Hsieh, C., A. K. Fung, G. Nesti, A. J. Sieber, and P. Coppo (1997), A
further study of the IEM surface scattering model, IEEE Trans. Geosci.
Remote Sens., 35(4), 901–909.

Hutchinson, J. M. S. (2003), Estimating near-surface soil moisture using
active microwave satellite imagery and optical sensor inputs, Trans. Am.
Soc. Agric. Eng., 46(2), 225–236.

Jackson, T. J., K. G. Kostov, and S. S. Saatchi (1992), Rock fraction effects
on the interpretation of microwave emission from soils, IEEE Trans.
Geosci. Remote Sens., 30(3), 610–616.

Kelly, R. E. J., T. J. A. David, and P. M. Atkinson (2003), Explaining
temporal and spatial variation in soil moisture in a bare field using
SAR imagery, Int. J. Remote Sens., 24(15), 3059–3074.

Leconte, R., F. Brissette, M. Galarneau, and J. Rousselle (2004), Map-
ping near-surface soil moisture with RADARSAT-1 synthetic aperture
radar data, Water Resour. Res., 40 , W01515, doi:10.1029/
2003WR002312.

Licheri, M., N. Floury, M. Borgeaud, and M. Migliaccio (2001), On the
scattering from natural surfaces: The IEM and the improved IEM, Int.
Geosci . Remote Sens. Symp. , 6 , 2911 – 2913, doi:10.1109/
IGARSS.2001.978203.

Macelloni, G., G. Nesti, P. Pampaloni, S. Sigismond, D. Tarchi, and S. Lolli
(2000), Experimental validation of surface scattering and emission mod-
els, IEEE Trans. Geosci. Remote Sens., 38(1), 459–469.

Moran, M. S., D. C. Hymer, J. Qi, and E. E. Sano (2000), Soil moisture
evaluation using multi-temporal synthetic aperture radar (SAR) in semi-
arid rangeland, Agric. For. Meteorol., 105, 69–80.

Nolan, M., and D. R. Fatland (2003), Penetration depth as a DInSAR
observable and proxy for soil moisture, IEEE Trans. Geosci. Remote
Sens., 41(3), 532–537.

Oh, Y., and Y. C. Kay (1998), Condition for precise measurement of soil
surface roughness, IEEE Trans. Geosci. Remote Sens., 36(2), 691–
695.

Oldak, A., T. J. Jackson, P. Starks, and R. Elliott (2003), Mapping near-
surface soil moisture on regional scale using ERS-2 SAR data, Int. J.
Remote Sens., 24(22), 4579–4598.

Sano, E. E., A. R. Huete, D. Troufleau, M. S. Moran, and A. Vidal (1998),
Relation between ERS-1 synthetic aperture radar data and measurements
of surface roughness and moisture content of rocky soils in a semiarid
rangeland, Water Resour. Res., 34(6), 1491–1498.

Shoshany, M., T. Svoray, P. J. Curran, G. M. Foody, and A. Perevolotsky
(2000), The relationship between ERS-2 SAR backscatter and soil moist-
ure: Generalization from a humid to semi-arid transec, Int. J. Remote
Sens., 21(11), 2337–2343.

W01418 THOMA ET AL.: COMPARISON OF FOUR SURFACE SOIL MOISTURE MODELS

11 of 12

W01418



Staples, G., and W. Branson (1998), RADARSAT Illuminated: Your
Guide to Products and Services, RADARSAT Int., Richmond, B. C.,
Canada.

U.S. Department of Agriculture (2002), Soil Survey of Cochise County,
Arizona, Douglas-Tombstone Part, Nat. Resour. Conserv. Serv.,
Washington, D. C.

Van Oevelen, P., and D. H. Hoekman (1999), Radar backscatter inversion
techniques for estimation of surface soil moisture: EFEDA-Spain and
HAPEX-Sahel case studies, IEEE Trans. Geosci. Remote Sens., 37(1),
113–123.

Verhoest, N. E. C., R. Hoeben, F. P. De Troch, and P. A. Troch (2000), Soil
moisture inversion from ERS and SIR-C imagery at the Zwalm
catchment, Belgium, IEEE Proc. Int. Geosci. Remote Sens. Symp., 5,
2041–2043.

Zribi, M., and M. Dechambre (2002), A new empirical model to retrieve
soil moisture and roughness from C-band radar data, Remote Sens.
Environ., 84, 42–52.

����������������������������
R. Bryant, C. D. Holifield-Collins, M. S. Moran, M. Rahman, S. Skirvin,

and D. P. Thoma, U.S. Department of Agriculture ARS Southwest
Watershed Research Center, 2000 East Allen Road, Tucson, AZ 85719,
USA. (dthoma@tucson.ars.ag.gov)

E. E. Sano, Embrapa Cerrados, EMBRAPA/CPAC BR-20 Km 18 Cx.,
Postal 08223 CEP 73301-970 Planaltina, Brazil.

K. Slocum, U.S. Army Engineer Research and Development Center,
Topographic Engineering Center, 7701 Telegraph Road, Alexandria, VA
22315-3864, USA.

12 of 12

W01418 THOMA ET AL.: COMPARISON OF FOUR SURFACE SOIL MOISTURE MODELS W01418


