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The hot rainy season marked by local scattered thunderstorms from June to September
is typical of most of the lower elevations of the Sonoran and Chihuahuan regions of south-
western North America. This rainy season is analyzed by using long-term historical daily
records to obtain insight concerning the underlying stochastic process. By using historical
data from three scattered points in this region, we computed the discrete series of daily
Bernoulli parameters and daily first-order Markov transition probabilities. The hypothesis
of sequential independence versus a first-order Markov dependence hypothesis is tested by
comparison of analytically derived distributions for dependent random variables generated
by the nonstationary processes. These include wet and dry run lengths, occurrence of the
first wet day in the season, number of runs per season, and total number of rainfall days per
season. The comparative analysis of historical data indicates that (1) the Markov chain
model is generally significantly superior to the Bernoulli model (which extends results of
similar analyses by others from regions of largely frontal-type storms) and (2) year-to-year
variations in the process require additional probabilistic descriptions, indicated by annual
variance In number of rain days and significant annual changes in autocorrelation properties.

AUGUST 1973

A hot rainy season marked by local scattered
thunderstorms from June to September is an
important hydrologic period in the lower eleva-
tions of southeastern Arizona and other parts of
the Sonoran and Chihuahuan regions. This is
also the growth period for most of the local
plant species. In a previous paper [Schreiber
and Sutter, 1972], rainfall in this area was ana-
lyzed to develop a model predicting hypotheti-
cal periods of ‘available’ soil water on the
assumption of knowledge of several coneurrent
processess: infiltration, time of rain within a
day, depth of plant rooting, and evaporation.
Basically, it was an accounting process with no
special characterization or examination of rain-
fall itself. The same records of daily precipita-
tion are used in this paper to study in detail
the stochastic mput of water isolated from
other aspects of the hydrology. A subsequent
paper {part 2) will present the distribution
of daily rainfall amounts, the distribution of
rainfall amounts within arbitrary periods, and
the effect of depth truncation on the stochastic
process.

Copyright © 1973 by the American Geophysical Union.
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Rainfall 1s governed by physical laws and
complex atmospheric processes. The fact that
these causative processes are extremely complex
and spatially and temporally dependent makes
prediction of rainfall practically impossible. The
complexity of the process, however, allows a
probabilistic description of a local variable such
as rainfall depth, and statistical analysis of this
random variable provides a prediction of statis-
tical properties of future rainfall.

The construction of a probabilistic rainfall
model should reflect how the model will be used.
Varations in small rainfall amounts are neces-
sarily important to most rangeland plant spe-
cies, whereas these variations might be unim-
portant In a model designed to predict large
basin water yield or a stochastic model of run-
off. The ‘threshold’ of ‘significant’ rains used by
some [Lane and Osborn, 1972; Duckstein et al.,
1972] eliminates many plant important rains
and presents an incomplete picture of rainfall
distribution (discussged in part 2).

In this work we will treat thunderstorm
rainfall probabilistically by proposing an under-
lving stochastic process and deriving several
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872 SMITH AND SCHREIBER

dependent random variables that are conse-
quences of the process, such as number of
crossings (dry and wet runs) and number of
events per season. The distribution of each
dependent random variable will be tested
against historical records, and the underlying
stochastic model will thereby be evaluated.

StocHasTic PrROCESS OF RAINY
Day OCCURRENCES

Previous studies of rainfall in the semiarid
region indicated above [e.g., Fogel and Duck-
stein, 1969] have been concerned primarily
with rainfall associated with observed runoff
(a parameter only partially dependent on the
rainfall process) and have dealt with areal dis-
tribution, storm center location, and other areal
properties. These investigations have been based
on relatively short (12 to 15 year) records from
dense point samples within an isolated area.

: RaiNraLL DISTRIBUTION

unpublished data for the Walnut Gulch water-
shed at Tombstone (D. L. Chery, personal
communication, 1972), multiple-storm days ap-
parently constitute only 10-159, of the ‘rainy’
days. Nevertheless, one should not consider this
study to apply in all details to individual storm
events. Because summer storms oceur almost
exclusively 1n the afternoon or late evening, a
daily gage read in the morning cannot be con-
sidered to divide one storm into 2 days.

The period of summer thunderstorms in the
study area typically includes June, July, and
August. Most of the analyses disenssed in the
following section could apply to the entire year,
but since approximately 709 of the average
annual rainfall at Tombstone occurs in these
months (and produces most of the forage), a
122-day period beginning June I will be the
subject of our discussion.

Consider the sample frequency f. of point

The analysis reported here is concerned solely  rainfall event occurrence e on a day ¢, ¢ = I,
with properties of point rainfall, which is the 2, --- 122, defined as

erspective of a plant or small plot, and takes

per ! fi=Plec=1w =1—Ple. = d) (1)

advantage of relatively long point records (55—
73 vears) available through U.S. Weather Bu-
reau data. The location of the three gages used
is indicated in Figure 1. Table 1 lists other
descriptive data for these three locations.

Daily total rainfall of 0.01 inch or more is
consicdered here as a rainfall event; distinction
is not made between two storms in 1 day. From

in which w represents a wet day and d a dry
day. Figure 2 illustrates the variation in f. for
the 122-day period for Tombstone from 73
years of record. If rainy days are assumed to
oceur independently in time, the daily value of
f: from Figure 2 will describe the parameter
for a nonstationary binomial process or uncondi-
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Fig. 1. Location of sampling sites (solid dots) of daily precipitation records used.
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TABLE 1. Data for Sampling Stations

Elevation, Years of
Station Latitude Longitude feet Record Used
Fairbank, Ariz. 31°43 110°11 3862 55
Tombstone, Ariz. 31°43° 110°04/ 4540 73
: Douglas, Ariz. (smelter) 31°2V 109°35° 3973 68
tional (Bernoulli) probability model for rainy fa. = Ple; = d e,y = d)

day occurrence.

This is perhaps the simplest stochastic model
that one might conceive for this process, but it
remains to be shown if it is an accurate model.
The simplest alternative is a simple Markov | —————
chain, in which the probability of a rainy day e, w d
is a function of the occurrence or nonoccurrence
of rain on the previous day. This is expressed wi fu 1 —f.
by transition probabilities il =1 i

These values form a matrix of transition proba-
bilities:

(2)

fur = Ples = w | ey = w) Feller [1959] discusses Markov chains in detail.
and Various writers, including Weiss [1964], Gabriel
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Fig. 3. Seasonal pattern of wet transition
probability f,; of simple Markov chains for all
three stations studied.

and Neumann [1962], and Hershfield [1970],
have found that what may be called frontal
storm rainfall may be described by a Markov
chain. It has not been established how well such
a chain applies to air mass thunderstorm rainfall.
The f,,, in matrix 2 is determined from historical
records as

foo = Yo/ Yo, (3)

where 1',., ,_, is the number of years both day ¢
and day 7 — 1 were wet and V,,,_, is the number
of years day 7 — 1 was wet. Likewise, for transi-
tions from dry day to dry day,

fd( = Yd:yi—x/de'A; (4)

where Y,, ,_, is the number of years both day ¢
and day ¢ — 1 were dry and Y,,_, is the number
of years day 7 — 1 was dry. The sequences
fa, and f,,, 1 = 1,2, -+, 122 are presented in
Figures 3 and 4 for the three sampling sites used.

StocirasTic ProcESsS—DEPENDENT RANDOM
VARIABLES

Distribution of wet and dry run lengths.
The alternative models (sequentially indepen-
dent and dependent) for rainy day occurrence
are first compared by deriving distributions for
wet run lengths and dry run (drought) lengths
under each assumption and comparing these
predictions with historical data. Yevjevich
[1972] suggests such a method of investigation
and presents several references regarding run
length statistics.

On the assumption of sequential independence
of events (the Bernoulli model) it is easily
shown that the probability of occurrence of a
wet run w of length & days under constant f,
from (1) for the period beginning at day 7 is

pi(w = k) = ffk_l(l ~ 1) (5)
Likewise, for a drought d of length % given a
constant f. beginning at day 7, the probability
of occurrence would be

]),(d = k) = f;(l - fx)k—l (6)
For significantly changing f over the & days

following day 7 the wet run probability would be

ik k-]

plw="k=00~f.) 175 @

i=i+1
and the drought probability would be expressed
as

T+ k=1
pd=0 =1 [l =1 ©
I=i+1
An equation analogous to (5) presented by
Gabriel and Neumann [1962] applies to the
Markov model:

pow =18 =1 = [0 (9

and, similarly for droughts,

Pd.(d =k = (1~ fd,u)fd.k»! (]O)

When signtficant chanees i f, and f. over the
4 s
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period k are considered, (9) and (10) become  that thunderstorm rainfall is a sequentially
independent phenomenon.

£ Further comparison can be made by consider-

po(w =k = (1 = for) IT 1., 1y ing the mean number of runs (wet or dry) in a

pak—1

e season as predicted by each model, and the
and results are again striking. For a sequentially
ek independent binomial process the expected value :
pa(d = k) = (1 — fa.,) II fa; (12) for the number of wet runs r,, for uniform
i=ivl probability f is

A simple average over the total season was ) )
used to compute f, f., and f, for each day of the E(r..) = J(1 — N (13)
period. These values were used in (5), (6), (9),
and (10) for a simple comparison of the two
stochastic models. Results are shown in Figures

in which N is the sample size (days of season).
By considering the probability of transition, one

5 and 6 for wet and dry run lengths, respec-
tively. [P ——

The same equations were used, the season L TEN L L e
being divided into more closely homogeneous osh S T o Tt
periods, and run length distributions were com- L N L
pared for runs whose center fell in each period. o6k RV ah
Goodness of fit to historical data was tested by L -
using a x* test; results of these tests are shown o4l

in Table 2 for both wet and dry runs. Varation i

in wet run length distribution during the season o2t

. . . TOMBSTONE

is naturally somewhat opposite to that in dry L T3 vEARS

run length distribution, the longest observed IR S A S R R
5 - 25 5 25 5 25 3 -3 25

lengths of drought occurring in the early part
of the season and the longest wet runs occurring
in the middle of the season.

Table 2 shows first that the x? test comparing
historical dry run length distributions to pre-
dictions is insufficiently sensitive to diseriminate

s
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between the two models tested. This problem is osk ~Z rIvEToRY oG svERASE
due primarily to the small values for 1 — [,; and i o e

the resulting more extended distribution as well o2k

as to the often comparable values for f, and | ,Df"i‘éi:f

I — f; in (6) and (10). In most cases the sta- N R S U T R
tistical test accepted both distributions for dry S o N s
runs at the 19 level. Comparison of wet run - |

length distributions is quite conclusive, however. osl

In all but two cases (Tombstone) the Markov ]

chain was accepted and the Bernoulli model osk

rejected at the 19, level. Furthermore, since the i

x? parameter is the normalized sum of the squares oab

of the deviations, one can compare magnitudes of |

this parameter with some meaning. In all but a sl

few cases the x* parameter is smaller for the 1 Pl

Markov chain than for the Bernoulli (indepen- B
dent) model by an order of magnitude or more. Some s o mr BT e
These comparisons leave little doubt about the Fig. 4. Seasonal pattern of dry day transition

general inadequacy of the assumption [e.g.,  probability fy, for a simple Markov chain for all
Duckstein et al., 1972; Lane and Osborn, 1972]  three stations studied.
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Fig. 5. Distribution of wet day run lengths

from record and as predicted by (5) and (9) by
using seasonal average values of f; and f,,. Circles
represent frequency from historical data. The
season-averaged models are represented by squares
(probability predicted by a sequentially indepen-
dent, or Bernoulli, model) and triangles (probability
predicted by a simple Markov chain).

may estimate the expected values of run numbers
for a simple Markov chain for dry runs Ta m and
wet runs r, .., whose value should be asymptoti-
cally equal, as follows:

EQi.) = J(1 — [N (14)
E(rvv.rn) = (1 _ ]7)(1 - ]d)N (15)

As an example, for the Tombstone gage, f is
0.25, f,is 0.795, and J, is 0.424. Thus (13) predicts
F. = 23 runs per year. Equations 14 and 15
predict 17 and 18 runs/year, respectively. The
value of 7, for the historical data is 16.2.

Start of season. Given the defined 122-day
period with nonhomogeneous unconditional and
transition probabilities, the day 1,7 = 1,2, -+ - |
122, on which the first rain falls will define a
start of season. The day on which the season
starts (and the amount of rain involved) could
have significance to those plants depending on
the thunderstorm season for their growth. It
has been observed (Southwest Watershed Re-
search Center, Agricultural Research Service,
unpublished data, 1959-1972) that failure to
receive rain in Tombstone until early August,
or about the 70th day of the defined period, can
mean that perenmal grass plants die. The data
indicate a small probability for this catastrophe.
An interaction between first rains and their
amounts can be presumed to exist because a
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TABLE 2. Computed x? Values for Assumed Distributions of Run Lengths
Fairbank Douglas Tombstone

Season Dry Wet Dry Wet Dry Wet

Day

Period Ind. Dep. df. Ind Dep. d.f.  Ind Dep. df. Ind. Dep. d.f Ind. Dep. d.f. Ind. Dep. df

2-21 0.405% 0.780% 3 0.194 0.0206 1 0.337* 0.582*% 5 0.709 0.000027 1 0.922 1.49% 5 1.506 0.0076 1
22-31 0.155 0.312 5 1.15 0.0204 2 0.225 0.211 6 0.372 0.0404 2 0.190 0.213 8 2.66 0.00071 2
32-41 0.085  0.102 6 0.033 0.0064 1 0.0198 0.0426 4 0.0603 0.0296 2 0.183 0.106 5 0.227 0.0164 2
42-51 0.0339 0.0690 3 0.031 0.0000074 2 0.118 0.0420 3 0.162 0.0262 2  0.0256 0.0413 3 0.0638 0.0032 3
52-61 0.0667 0.0590 4 0.062 0.0078 2 0.0723 0.0033 3 0.122 0.0090 3 0.0438 0.0030 3 0.1346 0.0091 3
62-71 0.106  0.074 4  0.054 0.006 2 0.0270 0.0822 3 0.0456 0.0199 2 0.0361 0.0160 3 0.0934 0.0263 3
72-81 0.103 0.063 4 0.122 0.0112 2 0.089 0.0839 4 0.0797 0.00071 2 0.106 0.0181 5 0.118 0.0023 2
82-91 0.080 0.107 4 0.0011 0.024 1 0.0465 0.0334 5 0.1768 0.0109 2 0.198 0.0798 4 0.0317 0.0054 2
92-101  0.045  0.064 9 0.601 0.0144 2 0.0804 0.0631 6 0.123 0.0167 2 0.0684 0.0417 6 0.216 0.0065 2
102-111  0.108 0.145 7 0.180 0.000056 1 0.035 0.0501 6 0.212 0.00032 2 0.280 0.115 8 1.151 0.0194 2
112-121  0.654* 1.08* 3 0.213  0.0284 1 0.116% 0.424* 5 2.69 0.0026 2 0.201* 0.591* 4 0.634 0.0216 2

Ind. represents daily sequential independence.
Dep. represents daily dependence of a simple Markov chain.

The italic data indicate tests with less than 19, chance of random correspondence.
© p

* Data include a significant number of truncated run lengths resulting from the limits of the season.
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Fig. 7. Predicted and observed cumulative distribution of the first wet day of the season
at Fairbank.

threshold minimum amount probably must be
received to initiate cell differentiation and
growth. :

The probability of the first rainfall day is
directly dependent on the model assumed for
the underlving stochastic process. On the as-
sumption of sequential independence the proba-
bility of starting day s = n, n = 1, 2, --- ,
122, can be expressed as

n—1

pls =n) =1, [T (1 — 1)

i=1

(16)

The cumulative distribution for this random
variable is

et

P(s < n) = Li; fu II -1y a7

=1
One may easily show that the corresponding
probability of the first wet day in the season
from a Markov chain, given that day 7 = 0 is
dry, 1z

n—1

pis = n) = (1 — f.,) H oo (18)

and the cumulative distribution function is

n k-1
Pe<m) = 2 (1~ 1) IT (0= 1) (19
k=1 i=1
Application of these functions using the series
f. and f,, for each of the three locations is illus-
trated in Figures 7-9. Prediction by the Markov
chain 1s in good agreement with measured starts
for most of the range of observed starting days
on all stations. Some deviation occurs for all

station predictions near the late-start range. By
contrast, the independent model consistently
overpredicts probabilities of starting day by
several days.

Probability of number of rainfall days per
season. As given by Gabriel and Neumann
[1962] and Todorovic and Woolhiser [1973], a
probability description of the number of wet
days n in any period of length i = m can be
derived from the period-averaged Markov chain
transition probabilities f., fs, and a value for f
at the start of the period (day 0). For each
value of period length m, separate probabilities
are caleulated for the event that day 0 was dry

(co = d) and the event that day 0 was wet
(e, = w).
Given a dry initial condition ¢, = 0, definc

[Gabriel and Newmann, 1962]

o = m+ 5 — |2n — n >0

(20)

|
co = 0

and further define

a= {infk; k> Lc — 1))

(21)

il

b= {iltk;k > e}

The probability of having n wet day in an m
day sequence given a previous dry day is

armen o= (0= 1\fm — n
poln, m) = "1, Z <b _ 1)( )

=1

(22)
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Fig. 8. Predicted and observed cumulative distribution of the first wet day of the season
at Tombstone.

The other possibility, eo = w, requires a sum-
mation limit somewhat different from that given
by (20):

n < m

(23)

¢ =m-+ % — |2n — m 4+ §

¢, = 0 n

By use of @ and & from (21) the probability
of n wet days in a sequence of m days after an
initial wet day (e, = w) Is given as

R —n—1
pl(ny m) = fwnfdm Z <n>(m b _7_l_ 1 )

c=1 a

. l;h)"(}_:_ﬁ)"
< f d [ w (2 4)

From (22) and (24) the unconditional probahil-

ity of n wet days out of an m-day sequence is

p(n; 771) = fo[Px(n; m‘)]
+ (1 = fo)lpo(n, m]  (29)

The above probability functions require a
period m in which f. and f; are relatively un-
changing. Application of this relation was first
attempted, however, by using a 122-day (sea-
sonal) average for f, and f; at all three test
stations to predict the distribution of the num-
ber of rainy day events per season, f, being
taken as f,. Figures 10-12 demonstrate the
inadequacy of such averaging in a significantly
nonhomogeneous period.

It 1s not difficult, however, to divide the
season into small increments in which the f,

o8

[eX3 o8
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1
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Fig. 9. Predicted and observed cumulative distribution of the first wet day of the season
at Douglas.
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Fig. 10. Predicted and observed cumulative
distribution of the number of wet days per season
at Fairbank.

and [, are much more uniform. Equation 25
may be applied to predict the probability of
the number of events in each period. From this
the probabilitv of season total events may be
derived by diserete convolution as follows.

Assume that the season is divided into N
periods, each period j having a length [ = I(j)
and a diserete probability density p;(n, {) for
the number of events (n = 0, 1, , L.
The probability for the total number of events
n in two periods a and & of lengths {(a) and
[(b) involves convolution as follows [Feller,
19597

Posin, (@) + L(B)] = pa[0, Ua)]ps[n, UD)]
+ p[1, U)po[n — 1, U(D)]
+ pl2, Ud)]peln — 2, U] + - -
1 paln, Ua)]pu[0, U(D)]

This operation may be indicated simply as

Panln, (la 4 B)] = pin, )] * pln, U(b)]

Thus the distribution for the season divided

mnto N parts may be calculated as

p(n, m) = pifn, (D] * paofn, U] * -

* puln, UN)]  (26)
in which m = 2,.,%(j).

In this manner the theoretical distribution of
the number of wet days per season was calcu-
lated for each location, the season being divided
into 11 parts. Results are presented in Figures
10-12 along with the historic sample frequency
and the distribution predicted by using (26),
in which (25) is replaced by the appropriate
expression for the Bernoulli model, which is a
simple binomial distribution.

This comparison basically involves a test of
annual variability, since the information used
i (25) and (26) assumes an average year. Thus
it 1s no surprise that the sample variance in
Figures 10-12 is greater than that predicted by
(26). The theory predicts distribution, implic-
itly assuming that all years have an equal
pattern of f, f,, and f.. Obviously, the meteoro-
logical conditions vary from year to year, and
some inadequacy in such a uniform stochastic
model would be expected. An additional descrip-
tion for annual variance seems required.

One way to represent annual variance is to
consider that each year the mean pattern of
transition probabilities (Figures 3 and 4) is
multiplied by a scale factor that is a random
variable with a specified variance and zero
mean value. A second method, more intuitively
consistent  with observed weather patterns,
would be to specify

fw; = f‘l'x(]‘ + 6(L) 0 < jv:.’ <1

and

fdi = f(l.‘(l + 6(’)

in which f,, and f,, are daily mean values ob-
tained from Figures 3 and 4, a is a scale factor,
and e is a random variable with zero mean and
high daily serial correlation.

It is significant to note that the Markov
chain model 1s consistently better than the
Bernoulli model in this derived distribution, as
1t 1¢ in other tests, although neither can prop-
erly predict annual variance in parameters of
the stochastic process. The apparent greater
degree of agreement between independent and
dependent models in this distribution than in

0 < fo, <1
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Fig. 11. Predicted and observed cumulative distribution of the number of wet days per
season at Tombstone.

other distributions is expected in that the
asymptotic law of large numbers applies. Ga-
briel and Neumann [1962] indicated that (22)
and (24) are in fact asymptotic to a normal
distribution. It 1s also interesting to note the
geographical correspondence to the increasing
number of rainy days per year, indicating that
on the average the more southeastern gage re-
celves rain more often.

Cyclicity and annual variations. A purely
subjective hypothesis prompted a cursory in-
vestigation into the existence of short-term
cyclicity within the seasonal stochastic process.
In this area of the Southwest, summer thunder-
storm oceurrence is dependent on the input of
tropical moist air from either the Gulf of Mex-
ico or the Gulf of California. From study of
Figures 3 and 4 1t was questioned whether the
movement of such moist air into the region
involves wave phenomena with a dominant
frequency or significant periodicities.

Lag autocorrelation coefficients were deter-

mined for all three stations for lags up to 12
days. The results demonstrated more than any-
thing else the variation in weather patterns
from year to vear, already shown above in the
analysis of rainy days per season. Some sample
results are shown in Figure 13, indicating a
great variation in sample autocorrelations from
year to year. Also shown are the results using
all seasons of data in a continuous trace. No
significant dominant frequency was found.

Stmilar negative results were obtained in a
harmonic analysis of the trace in Figure 4 for
fo and fo. Tests of significance [Hartley, 1949]
are dublous at best under nonhomogeneous
conditions. Several harmonies (variable between
4 and 11 days) other than the very dominant
season period were indicated to be significant in
an I test on each gage. However, no one return
period appeared statistically significant in all
gages.

The degree of variation nr rainfall day pat-
terns from year to year is perhaps best demon-
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strated by a presentation of the basic data. DiscussioNn AND CONCLUSIONS

Figure 14 represents data from the Fairbank The several comparisons reported here appear
gage; 0 represents dry days, and 1 represents conclusive in demonstrating the relative inade-
rainfall days. quacy of Bernoulli, or independent, event
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assumption for the stochastic deseription of
rainfall in the thunderstorm season of the
semiarid Southwest. The probability distribu-
tions for run lengths, drought lengths, starting
day or first-season rainfall, and the number of
rainy days per season have been derived from
stochastic models based on a nonhomogeneous
independent (Bernoulli) process and on a non-
homogeneous first-order dependent (Markov
chain) process. In each case the dependent
model is a far superior prediction of the sample
distribution for three test stations with long-
term records.

We do not wish to conclude that thunder-
storm season daily rainfall occurs as a simple
Markov chain. It has not been demonstrated,
for example, that the order of dependency may
not change within the season (as defined) or
that a second- or higher-order chain may not
be superior to a simple chain. Since lengths of
successive runs are independent [Gabriel and

883

Neumann, 19621, it is additionally possible that
dry sequences oceur more or less as an indepen-
dent daily occurrence process but that wet
sequences may best be described by a depen-
dent stochastic process. Furthermore, it has
been shown that the Markov chain model, to
be accurate from year to vear, requires an an-
nual variance applied to the nonhomogeneous
transition probabilities, whose sample mean is
given in Figures 3 and 4.

It should be emphasized, however, that the
simple Markov chain dependence model appears
to be quite good for describing many if not
most, of the stochastic dependent properties of
the southwestern thunderstorm rainfall process.
This finding provides an extension of the posi-
tive results using a Markov chain obtained for
several types of climatic locations across the
United States by Hershfield [1970] as well as
others, including Feyerherm and Bark [1965]
in the Midwest, Gabriel and Newumann [1962]
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for Tel Aviv, Caskey [1963] for Denver, and
Woolhiser et al. [1972] for northeastern Colo-
rado.
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