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Abstract
Rangelands are grasslands, shrublands, and savannas used
by wildlife for habitat and livestock in order to produce
food and fiber. Assessment and monitoring of rangelands
are currently based on comparing the plant species present
in relation to an expected successional end-state defined by
the ecological site. In the future, assessment and monitoring
may be based on indicators of ecosystem health, including
sustainability of soil, sustainability of plant production,
and presence of invasive weed species. USDA Agricultural
Research Service (ARS) scientists are actively engaged in
developing quantitative, repeatable, and low-cost methods
to measure indicators of ecosystem health using remote
sensing. Noxious weed infestations can be determined by
careful selection of the spatial resolution, spectral bands,
and timing of image acquisition. Rangeland productivity
can be estimated with either Landsat or Advanced Very
High Resolution Radiometer data using models of gross
primary production based on radiation use efficiency. Lidar
measurements are useful for canopy structure and soil
roughness, indicating susceptibility to erosion. The value
of remote sensing for rangeland management depends in
part on combining the imagery with other spatial data
within geographic information systems. Finally, ARS scien-
tists are developing the knowledge on which future range-
land assessment and monitoring tools will be developed.

Introduction
Rangelands are a type of land resource, which is character-
ized by non-forest, native vegetation (NRCS, 1997). Land-
cover types of rangelands are grasslands, shrublands, and
savannas, which are determined by climate. Generally, large
year-to-year variability of precipitation make rangelands
unsuitable for crop production, and livestock grazing pre-
sents a sustainable means of food and fiber production.

Drought conditions, which often last years, may drastically
affect plant community composition and may make range-
lands more susceptible to diseases, insect pests, weed in-
vasions, and overgrazing. Healthy rangelands are a national
resource that will sustain soil quality, enhance the avail-
ability of clean water, sequester excess carbon dioxide, main-
tain plant and animal diversity, and support a myriad of
other non-agricultural uses (Follett et al., 2001).

The extent of rangelands is large, both for the United
States and for the world. Different authors use different
criteria for determining these areas. The Natural Resources
Inventory (NRCS, 1994) estimates the extent of privately
owned rangeland in the United States to be 1.62 � 106 km2

for about 21 percent of the total area. Using Landsat The-
matic Mapper data, Vogelmann et al. (2001) determined that
shrublands and grasslands are 34 percent of the total area
in the conterminous USA. Monitoring such large areas at
low cost is the forte of remote sensing.

So why isn’t remote sensing currently applied for range-
land management? Since the beginning of remote sensing
as a discipline, scientists have been studying potential
applications (Tueller, 1982; Carneggie et al., 1983; Tueller,
1989; Tueller, 1992; Tueller, 1995). As discussed in the
next section, there is a mismatch between the information
wanted by range managers and the information provided by
remote sensing. This situation is changing; a report by the
National Research Council suggests that criteria for man-
agement should be related to ecosystem health (NRC, 1994).
With the recent availability of a wide variety of sensors and
platforms, there is considerable research in remote sensing
that is being applied to rangelands. It is the purpose of this
review to show how USDA-ARS research in the field of re-
mote sensing can be used to provide important information
related to ecosystem health for monitoring rangelands.

Rangeland Management and the Potential of Remote Sensing
At the beginning of the 20th Century, studies on plant suc-
cession, the gradual, progressive change of community
types from initial colonizers to climax vegetation, formed
one of the theoretical bases of plant ecology as a scientific
discipline (Clements, 1916; Sampson, 1919). The climax
plant community, determined by climate, was supposed to
have the highest sustainable productivity, to be the most
resistant to weed establishment, and to provide the best
protection against soil erosion. Overgrazing reverses the
direction of plant succession from climax to earlier succes-
sional stages (Sampson, 1919).

The first practical methodology for rangeland monitor-
ing was developed by Dyksterhuis (1949). Basically, the
weight or cover of each species in a plot was determined
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and classified as climax species or not. Range “condition” is
calculated from the percent climax vegetation present: 76 to
100 percent climax vegetation is excellent, 51 to 75 percent
is good, 26 to 50 percent is fair, and 0 to 25 percent is poor.
This method, with minor modifications, was used by the
Natural Resource Conservation Service (NRCS) for private
grazing lands, and by the Bureau of Land Management (BLM)
and the Forest Service (FS) for federally owned grazing lands. 

The current theory on succession for range management
has changed from a single climax community to multiple
end-state communities with “State and Transition Models”
(Friedel, 1991; Laycock, 1991). Furthermore, each part of the
landscape is no longer compared to the same climax; “eco-
logical sites,” which are defined by different potentials for
plant production, are delineated on the basis of soils, topo-
graphy, hydrology, and other factors (SRM, 1995). Whereas
the NRCS and other agencies consider the assessment of
rangeland health to be important and are working on a rating
system, the methodology of comparing the species present
with the presumed successional end-state for a given eco-
logical site (termed a similarity index) is the current basis
of rangeland assessment (NRCS, 1997).

Therefore, many rangeland managers want some method
using remote sensing that would classify an area based on
the successional status of the species present, not a general
land-cover classification. Interpretation of large-scale aerial
photography allows many species to be identified by the
patterns and shapes of the plant clumps and crowns, but
computer algorithms do not yet have the ability to recognize
the different complex patterns. Digital image processing of
satellite data, even with small pixel sizes, can determine
land cover but not individual plant species. The reflectance
spectrum from remotely sensed vegetation contains infor-
mation on the chlorophyll content, water content, and leaf
and canopy structure (Gates et al., 1965; Knipling, 1970).
There is no spectral signature for successional status, and
it is unlikely that satellite data will ever provide managers
with rangeland “condition,” or other indices based on
plant succession.

Another basis for assessment is rangeland ecosystem
health, which is defined “as the degree to which the in-
tegrity of the soil and the ecological processes of rangeland
ecosystems are sustained” (NRC, 1994). The amount and
type of soil erosion are one set of indicators on the degree
of rangeland health; the amount of plant production and
plant residue are other indicators of a healthy ecosystem
(Pellant et al., 2000). More recently, there is an awareness
that presence of noxious invasive species may be an indica-
tor of poor ecosystem health (Vitousek et al., 1996; Sheley
and Petroff, 1999, Pellant et al., 2000). There are valid con-
cerns about how the various potential indicators are quan-
tified and weighted into an overall estimate of ecosystem
health (West and Smith, 1997). In a comparison of 149 in-
ventory points in western Colorado, Spaeth et al. (1999)
found no significant correlation between similarity index
and 17 different indicators of rangeland health. However,
the costs for this survey suggest that assessment for ecosys-
tem health, on the ground, for one randomly selected loca-
tion, would be about $500 (Pellant et al., 1999), so a statis-
tically accurate rangeland survey for the United States
would cost on the order of ten million dollars.

The challenge remains to define cost-effective indicators
and methods for rangeland assessment and monitoring. Re-
mote sensing can provide direct estimates for many of the
indicators proposed for ecosystem health at lower cost.
USDA-ARS scientists involved with remote sensing are ac-
tively conducting research using proven and new technolo-
gies, capable of monitoring key indicators of ecosystem
health, over the vast extent of rangelands. 

Remote Sensing of Noxious Rangeland Plant Species
Noxious brush and weeds dominate the vegetation of many
rangeland plant communities and frequently pose the pri-
mary deterrent to effective management of these areas
(Scifres, 1980). Rangeland areas are generally extensive
and inaccessible; consequently, determining the distribu-
tion and extent of infestations or botanical characteristics
by ground surveys is difficult. More accurate measurements
of area infested and canopy cover are essential to estimat-
ing the amount of damage or ecological impact caused by
invading brush and weeds. Remote sensing techniques
offer rapid acquisition of data with generally short turn-
around time at costs lower than ground surveys (Tueller,
1982; Everitt et al., 1992).

The value of remote sensing for distinguishing some
plant species and communities on rangelands is well estab-
lished (Carneggie et al., 1983; Tueller, 1989; Everitt et al.,
1995; Driscoll et al., 1997; Everitt et al., 2001a). Field re-
flectance measurements have been used to distinguish nox-
ious plant species (Gausman et al., 1977a; Everitt et al.,
1987; Lass and Callihan, 1997). Likewise, aerial photogra-
phy, airborne videography and digital imagery, and satel-
lite data have been used to remotely detect brush and weeds
on rangelands (Gausman et al., 1977b; Richardson et al.,
1981; Carneggie et al., 1983; Strong et al., 1985; Everitt et al.,
1994; Lass et al., 1996; Lass and Callihan, 1997; Everitt
et al., 2001a).

Over the past decade remote sensing, geographic infor-
mation system (GIS), and Global Positioning System (GPS)
technologies have been integrated for detecting and map-
ping the distribution of noxious rangeland plants (Dewey
et al., 1991; Anderson et al., 1996; Everitt et al., 1996;
Everitt et al., 2001a). Remote observations in georeferenced
formats help to assess the extent of infestations, track
changes, develop management strategies, and evaluate con-
trol measures on noxious plant populations.

Airborne Methods for Noxious Weed Detection
Scientists at the ARS Kika de la Garza Subtropical Agricul-
tural Research Center (Weslaco, Texas) have conducted ex-
tensive research on using remote sensing technology for
distinguishing noxious plant species on rangelands. Re-
search has focused on describing the light reflectance char-
acteristics of weed and brush species and utilizing remotely
sensed imagery for their detection. Aerial photography has
been the most used remote sensing technique for detecting
plant species. Aerial photographs provide the finest spatial
resolution and capture the spatial and textural essence of
the scene with greater fidelity than any other procedure
(Tueller, 1989).

Initial research at Weslaco on the utilization of remote
sensing technology for detecting noxious plants was con-
ducted by Gausman et al. (1977b). They described the light
reflectance of silverleaf sunflower [Helianthus argophyllus
Torr. & A. Gray] and demonstrated that aerial color-infrared
(CIR) (0.50- to 0.90-�m) photography could be used to dis-
tinguish this annual weed on south Texas rangelands. The
ability to remotely distinguish silverleaf sunflower was
attributed to its white pubescent foliage that gave it higher
visible (0.45- to 0.75-mm) reflectance than did other associ-
ated species. 

The study on silverleaf sunflower stimulated further
research using CIR aerial photography to detect false
broomweed [Xylothamia palmeri (A. Gray) G. L. Nesom],
broom snakeweed [Gutierrezia sarothrae (Pursh.) Britton &
Rusby], and spiny aster [Chloracantha spinosa (Benth.) G. L.
Nesom] (Everitt et al., 1984; Everitt et al., 1987; Anderson
et al., 1993). These three weedy sub-shrubs have erec-
tophile (erect-leaf) canopy structures that produce various
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dark brown to black image responses on CIR photographs
that can be distinguished from the various shades of ma-
genta, red, and light brown of other plant species (Plate 1).
Figure 1 shows canopy reflectance data obtained for broom
snakeweed and eight associated plant species and mixtures
over the 0.45- to 0.90-mm spectral region. The visible (0.4-
to 0.7-mm) reflectance of broom snakeweed was similar to
that of several other associated species, but its near-infrared
(NIR; 0.77- to 0.90-mm) reflectance was lower than that of
the other species. The low NIR reflectance of broom snake-
weed was due to it erectophile canopy structure (Everitt
et al., 1987).

One of the most important factors for distinguishing
noxious species is obtaining the aerial photographs at the
proper phenological stage, usual during flowering. Black-
brush [Acacia rigidula Benth.] and huisache [Acacia farne-
siana (L.) Willd.] are two woody legumes that often create
brush problems on Texas rangelands (Scifres, 1980). Both
blackbrush and huisache flower concurrently in late Febru-
ary or March, producing a profusion of small cream to light
yellow flowers and orange-yellow flowers, respectively, that
encompass their entire canopies, giving each species a
striking appearance. Aerial conventional color (0.40- to
0.70-mm) photography was used to distinguish blackbrush
and huisache infestations. Plant canopy reflectance mea-
surements on flowering blackbrush and huisache showed
that they had higher visible reflectance than did other asso-
ciated species (Everitt, 1985; Everitt and Villarreal, 1987).
Conventional color photography has also been used suc-
cessfully to distinguish common goldenweed [Isocoma
coronopifolia (A. Gray) Greene] and Drummond golden-
weed [Isocoma drummondii (T. & G.) Greene] during their
flowering stages in the fall (Everitt et al., 1992). These two
weedy shrubs infest rangelands in southern Texas and
northeast Mexico (Mayeux and Scifres, 1978; Mayeux and
Scifres, 1981).

More recent research at Weslaco has shown that some
noxious rangeland species can be remotely distinguished
best in winter. Redberry juniper [Juniperus pinchotii Sudw.]

is a troublesome evergreen shrub or small tree that invades
rangelands in the southwestern United States. Everitt et al.
(2001b) used CIR aerial photography for distinguishing red-
berry juniper infestations on the Texas Rolling Plains in
winter due to its evergreen foliage. Other associated species
that are confused with redberry juniper during the growing
season are dormant in winter. Ground reflectance measure-
ments supported these findings. Computer image analyses
of a CIR photograph showed that redberry juniper infesta-
tions could be quantified, and an accuracy assessment of
the classification had an overall accuracy of 89 percent.

In the past several years, videography has emerged as
a remote sensing tool for natural resource assessment
(Mausel, 1995; King, 1995). Videography has many attrib-
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Plate 1. Color-infared photograph (original scale
1:10,000) of broom snakeweed near Tatum, New Mex-
ico, in August 1984. The arrow points to the typical
dark brown to black image of broom snakeweed. 

Figure 1. Field reflectance over the 0.45- to 0.90-mm
waveband interval for broom snakeweed and eight other
associated rangeland species or mixtures on south
Texas rangelands in August 1984.

Plate 2. Conventional color video image of an infesta-
tion of saltcedar on the Rio Grande River near Candel-
laria, Texas. The image was obtained at an altitude
above ground level of 1500 m in November 1994.
Saltcedar has a conspicuous yellow-orange image tone.
The GPS data appear at the bottom of the image.
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utes that are attractive for remote sensing, including the
timely availability of imagery, its electronic format that
allows for the digital processing of the signal and its inte-
gration with GPS devices, and its low cost (Everitt et al.,
1995b). The main disadvantage of video is its low resolution
relative to aerial photographs.

Researchers at Weslaco have focused on the integration
of aerial video, GPS, and GIS technologies for detecting and
mapping noxious rangeland plant species. Initial research
in this area was on the woody legumes blackbrush and
huisache (Everitt et al., 1993b). Conventional color video-
graphy was used to detect blackbrush and huisache during
their flowering stages in March. The GPS latitude-longitude
data provided on the video imagery was integrated with
GIS technology to georeference populations of blackbrush
and huisache on a regional map of south Texas. 

Airborne multispectral video, GPS, and GIS technologies
have also been integrated to detect and map Big Bend lo-
coweed [Astragalus mollissimus var. earlei (Greene x Rydb.)
Tidestr.] populations on west Texas rangelands (Everitt
et al., 1994). Big Bend locoweed is a toxic, perennial weed
that causes widespread poisoning of cattle, horses, and
sheep (Sperry et al., 1964; James et al., 1980). This toxic
weed could be easily detected on CIR and black-and-white
NIR video imagery. 

Weslaco scientists conducted a project using conven-
tional color videography, GPS, and GIS technologies to de-
tect and map saltcedar [Tamarix chinensis Lour.] infesta-
tions in the southwestern United States (Everitt et al., 1996).
Saltcedar, also known as Chinese tamarisk, is an invader of
riparian areas in the southwestern United States and north-
ern Mexico. Plate 2 shows a conventional color video
image of a saltcedar infestation along the Rio Grande river
in west Texas. The GPS data appear on the bottom of the
image. Saltcedar has a conspicuous orange-brown image
that is easily distinguished from other associated vegetation,
soils, and water. The distinct signature of saltcedar was
due to its foliage turning a yellow-orange to orange-brown
color in late fall prior to leaf drop.

Figure 2 (upper right) shows a regional GIS map of ex-
treme west Texas. The bold symbols along the left margin
of the map represent GPS latitude-longitude coordinates ob-
tained from video images of saltcedar populations along a
portion of the Rio Grande. Areas with stars represent high
populations of saltcedar, those with triangles have medium
populations, and those represented by a plus sign have low
populations. Population levels were assigned after a quali-
tative analysis of the video imagery of the area. Criteria for
population levels were: greater than 50 percent cover, high;
25 to 50 percent cover, medium; and less than 25 percent
cover, low. Each symbol represents a composite of two to
three video scenes because of the small map scale. A de-
tailed GIS map of an area with several high saltcedar popu-
lations is shown in the center left portion of Figure 2. The
map in the lower left portion of Figure 2 provides more de-
tail of roads and hydrography associated with the saltcedar
populations.

Satellite Methods for Noxious Weed Detection
Although satellite imagery has been available for nearly
30 years, relatively few studies have reported its use for
detecting noxious plants. The relatively coarse spatial reso-
lution of satellite sensor data, as compared to aerial photog-
raphy and videography, has limited its usefulness for this
application. Nonetheless, satellite sensors have shown
potential for detecting relatively large stands of weeds.
Richardson et al. (1981), at ARS Weslaco, conducted a pilot
study to assess Landsat multispectral scanner satellite data
for detecting silverleaf sunflower infestations on Texas

rangelands. They reported that this annual weed could be
distinguished on CIR (bands 4, 3, and 2) Landsat imagery,
which agreed with an earlier study using CIR film (Gausman
et al., 1977b). The geographic occurrence of silverleaf sun-
flower areas on a line-printer map generated from the Land-
sat image were in good agreement with their known aerial
photographic locations.

Additional research at Weslaco in the 1990s showed
the application of the French satellite SPOT (System Pour
d’Observation de la Terre) for detecting noxious weeds.
Anderson et al. (1993a) demonstrated that SPOT data could
be used to detect major stands of false broomweed on south
Texas rangelands. They also showed that infestations could
be mapped, permitting acreage estimates of this weed over
large areas. In another study, SPOT imagery was used to
distinguish and quantify shin oak [Quercus havardii Rydb.]
on northwest Texas rangelands (Everitt et al. 1993a). They
also used low altitude videography to assist in interpreting
the satellite data.

The Ecological Area-Wide Management (TEAM) of Leafy Spurge 
In the 1990s, research began at the Northern Plains Agricul-
tural Research Laboratory (Sidney, Montana) to evaluate
the potential of using remote sensing technology for detect-
ing leafy spurge [Euphorbia esula L.]. This research is part
of the TEAM Leafy Spurge program, which is managed co-
operatively with the USDA Animal and Plant Health Inspec-

Figure 2. Regional GIS map (upper right) of extreme
west Texas depicting GPS locations where saltcedar in-
festations occur along a portion of the Rio Grande River.
The stars represent high populations of saltcedar, trian-
gles are medium populations, and plus signs have low
populations. Each symbol represents a composite of
two to three video scenes because of the small detail
of the map. A detailed map (left center) depicts an area
with generally high populations of saltcedar. The lower
left map shows even greater detail of the highly popu-
lated area.
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tion Service (APHIS). Leafy spurge is an exotic weed that
has created a severe range management problem in the
Northern Great Plains of the United States and in the Prairie
Provinces of Canada (Rees and Spencer, 1991). It infests
approximately two million hectares of land in North Amer-
ica (Quimby and Wendel, 1997; Anderson et al., 2003). 

Initial research established that leafy spurge had higher
visible reflectance than other associated species in early
summer when it develops conspicuous yellow-green bracts.
Leafy spurge could be remotely distinguished on both con-
ventional color and CIR aerial photographs during this phe-
nological stage (Everitt et al., 1995a). Anderson et al. (1996)
used high altitude conventional color aerial photography
and GIS to map and quantify the extent of leafy spurge
within the South Unit of Theodore Roosevelt National Park
in southwestern North Dakota. The joint use of GIS and re-
mote sensing provided previously unavailable information
about the extent and spatial dynamics of leafy spurge within
the park. More recently, Anderson et al. (1999) used aerial
photography and GIS technologies to map and quantify the
extent, distribution, and spatial-temporal dynamics of leafy
spurge within a portion of the South Unit of Theodore
Roosevelt National Park between 1993 and 1998. Anderson
et al. (1999) found that leafy spurge had doubled in extent
in five years, and the spatial distribution of the invasion
over the landscape was highly predictable.

Because of the distinctive yellow-green bracts, current
research from the Hydrology and Remote Sensing Labora-
tory (Beltsville, Maryland) on detection and mapping leafy
spurge is focusing on the use of hyperspectral imagery
(Figure 3). Parker Williams and Hunt (2002) showed that
Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
data and new techniques for the analysis of hyperspectral
data can be used to accurately map the amount of leafy
spurge cover. These techniques, particularly mixture-tuned
matched filtering, separate a single unique spectrum (called
an endmember) from the background spectra based on sig-
nal processing technologies. One of the reasons for the ex-
citement about using hyperspectral analysis is that small
cover amounts (about 5 percent) can be detected even in
community types such as woodlands, which is difficult be-

cause of the mixture of understory, shadows, and bright
tree crowns (Parker Williams and Hunt, 2002). Additional
work is being continued by TEAM Leafy Spurge at the North-
ern Plains Agricultural Research Laboratory with another
hyperspectral sensor, the Compact Airborne Spectro-
graphic Imager, CASI (Kokaly et al., in press). Preliminary
analyses of the data indicate that the use of hyperspectral
imagery extends the period of time for detection of leafy
spurge infestations beyond the two- to three-week window
of maximum flowering required for detection by aerial
photography. 

In conclusion, hyperspectral remote sensing is an ex-
tremely powerful method for detection of leafy spurge, but
what about other invasive weeds? Ustin et al. (2002) show
that hyperspectral remote sensing can pick up a spectrally
unique iceplant (Carpobrotus edulis) as well as some other
invasive weeds such as jubata grass (Cordateria jubata), fen-
nel (Foeniculum vulgare), and giant reed (Arundo donax).
The economic benefits from detection of invasive weeds is
a compelling justification for an operational hyperspectral
satellite.

Rangeland Productivity
Estimation of standing dry mass and yields was one of the
earliest applications of satellite remote sensing for agricul-
tural crops, and the developed techniques were applied
early on to rangelands (Tucker et al., 1975; Richardson
et al., 1983; Everitt et al., 1986; Aase et al., 1987; Anderson
et al., 1993b). At the time, field techniques for estimating
productivity were based on measuring peak biomass, so es-
timation of productivity for rangelands was based on remote
sensing peak biomass (Tucker et al., 1983; Everitt et al.,
1989). Leaf area index (LAI) is related to mass of the foliage;
the ratio between leaf area and leaf mass is the specific leaf
area. Many studies examined the use of remote sensing for
estimating LAI (Curran, 1983; Hatfield et al., 1985; Price,
1993; Price and Bausch, 1995; Qi et al., 2000c). 

Some trends emerged, but also problems became appar-
ent, which limits the usefulness of these approaches. One
of the major limitations is that relationships between re-
motely sensed vegetation indices and either biomass and
LAI are site specific, indicating that the soil background
has strong effects on remotely sensed data (Ezra et al., 1984;
Huete et al, 1985; Huete, 1988; Price, 1993; Qi et al., 1994;
Price and Bausch, 1995). Multitemporal remote sensing
(multiple acquisitions of the same target on different dates)
is powerful because, in part, the soil background is con-
stant. However, multitemporal data also allow more mech-
anistic models of plant production to be used. 

Radiation Use Efficiency Models of Gross Primary Production
Radiation use efficiency is generally the amount of photo-
synthetic production per unit of radiation absorbed, with
different operational definitions depending on specific sit-
uations and research objectives (Montieth, 1977; Kumar and
Montieth, 1981; Sinclair and Horie, 1989; Sinclair and
Muchow, 1999; Kiniry et al., 1999). The efficiency of radia-
tion use is defined as the mass of carbon uptake per absorbed
photosynthetically active radiation (APAR; MJ�2 day�1). Fol-
lowing Ruimy et al. (1995), gross primary production (GPP;
g C m�2 time�1) is summed over some time period from
weekly to yearly: i.e., 

GPP � � � APAR (1)

where � is the efficiency of radiation use (g C MJ�1). Often
APAR is approximated by either intercepted photosyntheti-
cally active radiation (PAR) or intercepted solar radiation
(Prince, 1991; Running and Hunt, 1993; Gower et al., 1999).

Figure 3. Spectral reflectance of various plants in north-
eastern Wyoming: Leafy spurge (Euphorbia esula L.)
flowering and green non-flowering shoots, Curly dock
(Rumex crispus L.), Yellow sweetclover (Melilotus offici-
nalis Lam.) flowering shoots, and alfalfa (Medicago
sativa L.) non-flowering shoots.
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Frequently, radiation use efficiency may be defined using
the mass of dry matter rather than the mass of carbon, in-
corporating ash weight into the value of �. Furthermore,
radiation use efficiency is often determined using either net
primary production (NPP) or above-ground net primary pro-
duction (ANPP); thus, autotrophic respiration and carbon
allocation are incorporated in the value of � (Prince, 1991;
Hunt and Running, 1992; Running and Hunt, 1993; Hunt,
1994; Ruimy et al., 1994; Gower et al., 1999; Goetz and
Prince, 1999). 

For ideal growth conditions, differences of � will be
related to the maximum photosynthetic rates of vegetation,
which can be estimated from land-cover type. For actual
growth conditions, � will be reduced from the maximum
because (1) stomatal closure caused by drought, high vapor
pressure differences between leaf and air, night-time tem-
peratures falling below freezing, and ozone pollution; and
(2) stresses affecting photosynthetic rate. Furthermore,
Ruimy et al. (1995) concluded that � is reduced, usually by
about 50 percent, from the photosynthetic capacity of the
foliage being light saturated (cf. Goetz and Prince, 1999).

The direct physical quantity estimated from the nor-
malized difference vegetation index (NDVI) is the fraction of
absorbed to incident photosynthetically active radiation
(fAPAR, dimensionless). The NDVI is defined as

NDVI � (NIR � Red)/(NIR � Red) (2)

where NIR is the spectral radiance from a near-infrared band
and Red is the spectral radiance from a red band. Origi-
nally, NDVI was developed to enhance the signal from veg-
etation and to reduce the effects of atmospheric transmit-
tance, topography, and solar elevation and azimuth (Rouse
et al., 1974). Subsequently, Asrar et al. (1984), Hatfield
et al. (1984), and others showed that NDVI was approxi-
mately equal to fAPAR, so APAR is estimated by the product
of NDVI and daily incident PAR. Corrections are made to
more accurately estimate fAPAR from NDVI (Goward and
Huemmrich, 1992; Myneni and Williams, 1994).

Advanced Very High Resolution Radiometer (AVHRR)
NDVI are most often used because these data are collected
daily and composited over a short period, weekly or bi-
weekly, to generate a mostly cloud-free image, so the change
in fAPAR over a season may be determined. AVHRR NDVI
shows the spatial distribution of vegetation response to
changes in precipitation over large areas (Millington et al.,
1994; Liu and Kogan, 1996; Yang et al., 1998). With the
launches of the National Aeronautics and Space Administra-
tion’s (NASA) Terra satellite in December 1999 and Aqua
satellite in May 2002, the Moderate-Resolution Imaging
Spectroradiometer (MODIS) is now providing improved esti-
mates of fAPAR (Reeves et al., 2001). More importantly,
AVHRR data have been archived for a long period by the
United States Geological Survey EROS Data Center (Sioux
Falls, South Dakota), so the effects of the large year-to-year
variability of rainfall can be averaged.

Scientists with the Hydrology and Remote Sensing
Laboratory (Beltsville, Maryland) have shown that AVHRR
NDVI data are useful for policy and economic analyses, be-
cause large areas are covered with large 1-km2 pixels. On
the other hand, these data are at too coarse a scale for stock-
ing individual grazing allotments. Scientists with the South-
west Watershed Research Center (Tucson, Arizona) are ap-
plying radiation use efficiency models with Landsat Thematic
Mapper data (30-m by 30-m pixels) for site-specific or pre-
cision ranching.

Estimation of Stocking Rate from High-Temporal-Resolution Satellites
One of the most important decisions of rangeland managers
is setting the stocking rate for various kinds of livestock

(cattle, sheep, goats, horses, etc.) with consideration for
the requirements of coexisting wildlife (Holecheck, 1988;
Briske and Heitschmidt, 1991). Holecheck (1988) set out an
algorithm that can be used to determine the stocking rate
based on ANPP. Remotely sensed GPP, determined from ra-
diation use efficiency models, serves as the starting point
for spatially distributed estimates of ANPP (Figure 4). 

AVHRR data for the state of Wyoming were acquired
from the EROS Data Center for 1990 through 1999. These
data are similar to the Conterminous U.S. AVHRR Data Sets
(Eidenshink, 1992), with the exception that the composites
for 1998 and 1999 were done weekly instead of biweekly.
Daily solar irradiances (MJ�2 day�1) were calculated from
National Weather Service meteorological data using a model
by Winslow et al. (2001). Incident PAR were calculated
from the weekly-average of solar irradiance multiplied by
the fraction of PAR to solar radiation (measured to be 0.44 �
0.04). Incident PAR was multiplied by fAPAR calculated from
the NDVI data to calculate APAR; when NDVI data were not
available, GPP was assumed to be zero. 

Other data are needed as well, which are incorporated
into a GIS: land-cover type, digital elevation data, climate
data (incident PAR, temperature, and precipitation), and
distance to water (Figure 4). Land cover was from the U.S.
Geological Survey (USGS) EROS Data Center’s Seasonal Land-
cover dataset (Eidenshink and Fuandeen, 1994). Auto-
trophic respiration was assumed to be 50 percent of GPP
(Landsberg and Waring, 1997); allocation above ground
was 50 percent for agriculture, shrubs, and forests and
20 percent for grasslands. The ANPP estimates by the method
are shown in Plate 3. 

Digital elevation model (30-m by 30-m) data were used
to calculate slope for each pixel. The median value calcu-
lated for each 1-km2 was determined and used to define
the slope class. Slope class reductions are none for median
slopes 	10 percent, 30 percent for slopes from 11 to 30
percent, 60 percent for slopes from 31 to 60 percent, and
100 percent for slopes 
61 percent. Utilization of ANPP
was set at 5 percent for forests, 25 percent for shrubs, and
40 percent for grasslands and agriculture. After the reduc-
tions for slope and utilization, ANPP is converted to stock-

Figure 4. Flow diagram using Advanced Very High Reso-
lution Radiometer (AVHRR) Normalized Difference Vegeta-
tion Index (NDVI), simple ecosystem models, and geo-
graphic theme data to calculate stocking rates based
on algorithm of Holecheck (1988).
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ing rates in Animal Unit Months or AUMs (Plate 4) based
on the conversion in Holecheck (1988). 

The problem of using such large pixels, such as with
AVHRR or MODIS, is that each pixel is a mixture of sites with

good forage and sites with little or no forage. It will be ex-
tremely difficult to test calculations of stocking rate based
on such large pixels. If the relationship between NDVI and
fAPAR is approximately linear (Goward and Huemmrich,

Plate 3. Above-ground net primary production (ANPP) for the state of Wyoming.
AVHRR NDVI data from 1990 to 1999 were used to calculate the mean gross pri-
mary production (GPP), based on land-cover type and climate. Autotrophic respi-
ration and allocation above ground were estimated as fractions of GPP deter-
mined from land-cover type. Dry matter is about 45 percent carbon. 

Plate 4. Stocking rates in Animal Unit Months (AUM) for the state of Wyoming. The AUM
is based on a dry matter intake of 20 lbs (9.1 kg) per day for one mature cow
(Holecheck, 1988). ANPP was reduced according to slope class and the utilization was
set by land-cover type.
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available forage within pasture boundaries or polygons of
interest to plan the intensity and timing of grazing. If there
is sufficient interest, a second layer of data could be pro-
vided just before the next summer rainy season to estimate
utilization. 

The primary technical problem RANGES faced was the
difficulty of estimating the biomass of senescent grass. Im-
ages collected during the summer rainy season are often
obscured by clouds, and the grasses senesce soon after the
rains stop. A normalized difference senescent vegetation
index, or NDSVI, was developed that used a shortwave-
infrared band rather than NIR as in the NDVI (Qi et al., 2000a).
Canopy cover is calculated from NDVI (Qi et al., 2000b).
Empirical relationships based on field data are used to esti-
mate height and to adjust biomass estimates made by multi-
plying the cover and the height. To date, the focus of the
project has been on grasslands, but methods of estimating
forage in areas with significant shrub or tree canopies are
also needed. Commercialization of the RANGES products
will depend on demand; the cost of the products would
vary on the order of 5 to 10 cents per hectare in 2002.

Airborne Lidar Technology for Measuring Rangeland Properties 
Land surface features (i.e., vegetation, topography, surface
roughness) influence the functions of rangeland landscapes.
Measuring these features and their spatial distribution using
conventional ground-based technologies provides limited
temporal and spatial data. Lidar technology from airborne
platforms provides rapid and accurate data of land surface
topography, roughness, vegetation features, and patterns.
Airborne lidar has been used to measure vegetation proper-
ties (Ritchie et al., 1992; Ritchie et al., 1993a), erosion fea-
tures (Ritchie et al., 1993b), topography (Krabill et al., 1984),
and aerodynamic roughness (Menenti and Ritchie, 1994).

Airborne lidar data have been collected over rangelands
in the western United States by the Hydrology and Remote
Sensing Laboratory (Beltsville, Maryland), in cooperation
with ARS rangeland research locations and various Long-
Term Ecological Research (LTER) research sites (Ritchie et al.,
2001). Examples are given of applications of airborne lidar
data for measuring rangeland properties.

Landscape and vegetation patterns associated with a
100-m lidar profile from the ARS Reynolds Creek Watershed
(Boise, Idaho) are shown in Figure 5. Topography, rough-
ness, and gaps between the vegetation elements are shown
in Figure 5a. The elevation of the ground surface under the
vegetation is estimated by assuming that minimum eleva-
tion measurements along the profile represent lidar mea-
surements that reached the ground surface. If the topogra-
phy (oriented roughness) is removed by calculating the
difference between the estimated ground surface and the
actual lidar measurements, vegetation heights and distribu-
tion and surface roughness can be calculated (Figure 5b).
These measurements are used for estimates of vegetation
canopy height. This height data can be used to calculate
canopy cover. Using all data, the average vegetation height
for this 100-m segment is 0.47 � 0.73 m. Using measure-
ments greater than 0.5 m, the average vegetation height is
1.77 � 0.99 m.

Lidar profiles and ground data were collected from five
different vegetation types in the ARS Reynolds Creek Water-
shed (Clark et al., 2001): mountain big sagebrush [Artemisia
tridentata Nutt. subsp. vaseyana (Rydb.) Beetle], low sage-
brush [Artemisia arbuscula Nutt.], Wyoming big sagebrush
[Artemisia tridentata Nutt. subsp. wyomingensis Beetle &
A. L. Young], bitterbush [Purshia tridentata (Pursh) DC.],
and greasewood [Sarcobatus vermiculatus (Hook.) Torr.]
(Table 1). The ground data are an average of six 30-m tran-
sects along an approximate 1-km line using the line inter-

1992; Myneni and Williams, 1994), and � is determined
primarily by climate, then pixel GPP and ANPP are spatial
averages of the GPP and ANPP on the ground. If a pixel shows
that the number of AUMs is 1.0, but the rancher or range
conservationist know that the sustainable AUMs for a spe-
cific allotment in that pixel is say 3.0, then the other allot-
ments in that pixel must have a much lower number of
AUMs to obtain the pixel average. 

Rangeland Productivity from Landsat Data
Radiation use efficiency models are essentially scale inde-
pendent; the spatial scale of the output is dependent on the
spatial scale of the inputs. Scientists at the Southwest Wa-
tershed Research Center (Tucson, Arizona) have developed
radiation use efficiency models for use with Landsat data
(Nouvellon et al., 2000; Nouvellon et al., 2001). The pixel
size is 30 meters, or 900 m2, about 0.1 percent of an AVHRR
pixel. Data from the Thematic Mapper (TM; Landsats 4 and 5)
and the Enhanced Thematic Mapper Plus (ETM�; Landsat 7)
are suitable for rangeland management because the 20-year
time series of these data can be averaged to overcome the
high year-to-year variation from rainfall. With Landsat Multi-
spectral Scanner (MSS; Landsats 1 through 5) data, the time
series of data extends to 30 years. Washington-Allen et al.
(1999) is using the long time series to examine plant com-
munity changes in relation to climatic variability. 

At the ARS Walnut Gulch Experimental Watershed in
southeastern Arizona, high-spatial, low-temporal scale, vis-
ible remote sensing data were used to calibrate an ecosys-
tem model for semi-arid perennial grasslands (Nouvellon
et al., 2000; Nouvellon et al., 2001). The model was driven
by daily meteorological data and simulated plant growth
and water budget on the same time step. The model was
coupled with a canopy reflectance model to yield the time
course of shortwave radiometric profiles. Landsat TM and
ETM� images from ten consecutive years were used to re-
fine the model on a spatially distributed basis over a semi-
arid grassland watershed (Plate 5). The lower elevations of
the watershed (western side) are desert shrubs and were
excluded from the analyses. The higher elevations of the
watershed (eastern side) are comprised of C4 warm-season
grasses: black grama [Bouteloua eriopoda (Torr.) Torr.], curly
mesquite [Hilaria belangeri (Steud.) Nash], hairy grama
[Bouteloua hirsuta Lag.], blue grama [Bouteloua gracilis
(Kunth) Lag. ex Griffiths], and sideoats grama [Bouteloua
curtipendula (Michx.) Torr.] (Weltz et al., 1994). The pre-
dicted aboveground biomass (Plate 5) was compared to the
measured biomass; generally, the model predicted within a
root-mean-square error of 12.2 g dwt m�2 (Nouvellon et al.,
2001). Results showed that this approach could provide
spatially distributed information about both vegetation and
soil conditions for day-to-day grassland management. Fur-
thermore, only one or two images per year were required
to calibrate the model, thus overcoming the common limi-
tation of infrequent and/or cloudy image acquisitions.

The Rangeland Analysis utilizing Geospatial informa-
tion Science (RANGES) project is another effort to estimate
productivity on grasslands using Landsat data, centered at
the Southwest Watershed Research Center. Collaborators
are the ARS Great Plains Systems Research Unit (Fort
Collins, Colorado), Michigan State University (East Lansing,
Michigan), and Veridian (Ann Arbor, Michigan). NASA’s
Commercialization Remote Sensing Program funds the pro-
ject, with the objective of prototyping and commercializing
operational tools from remote sensing for rangeland man-
agement. After the summer rainy season, rangeland man-
agers are provided with layers of data showing mesquite
and evergreen canopy cover, herbaceous cover, height, and
biomass. Software provided with the data can calculate
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cept method. The lidar data are an average of three 1-km
transects over the same area. The difference in the average
heights between the ground and lidar measurements of the
transects ranged from 2.0 to 8.7 cm with the lidar measured
heights always being lower. There was no statistical differ-
ence between the ground and lidar height measurements at
the 5 percent level of probability.

Studies in a south Texas mesquite [Prosopis glandulosa
Torr.] stand at the ARS Kika de la Garza Subtropical Agri-
cultural Research Center (Ritchie et al., 1992) and a desert
rangeland in the ARS Walnut Gulch Experimental Water-
shed (Weltz et al., 1994) have shown that the lidar measure-
ments of vegetation heights and cover were highly corre-
lated with ground measurements made with standard line
intercept techniques.

Large landscape features can also be quantified to esti-
mate their effects on water flow and quality across the
landscape. The valley and channel associated with Reynolds
Creek near the outlet of the ARS Reynolds Creek Experimen-
tal Watershed (Figure 6) were measured using two seconds
of airborne lidar data. The profile shows a 140-m cross
section of the valley with the channel. The channel cross
section under the lower dashed line was calculated to be
48.9 m2. Other stages for water flow could be assumed

Figure 5. Airborne laser measurements of (a) landscape
features and (b) vegetation heights for a 100-meter sec-
tion of Reynolds Creek Watershed, near Boise, Idaho.

TABLE 1. COMPARISON OF GROUND AND LASER PROFILER MEASUREMENTS OF COVER AND HEIGHT FOR FIVE PLANT COMMUNITIES

IN THE ARS REYNOLDS CREEK WATERSHED.

Plant Cover2 Plant Cover3 Plant Height2 Plant Height3

Site Plant Name1 Ground (%) Laser (%) Ground (cm) Laser (cm)

Mountain Big Total Vegetation 86.3 76.04 37.5 � 17.8 34.2 � 18.4
Sagebrush ARTRV 56.0 69.75

SYOR 4.0
Forbs 20.3
Grass 6.0

Ground 13.7
Low Sagebrush Total Vegetation 54.3 60.4 19.7 � 13.2 17.7 � 15.2

ARAR 38.0 49.7
Forbs-Other 4.3
Grass 12.0

Ground 45.7
Wyoming Big Total Vegetation 32.3 79.5 38.1 � 21.1 32.1 � 13.9

Sagebrush ATTRW 23.5 74.0
SAVE 2.2
Forbs-other 3.9
Grass 2.7

Ground 67.7
Bitterbrush Total Vegetation 75.9 79.8 45.5 � 30.1 36.8 � 18.3

ARTTW 25.0 74.4
PUTR 15.5
Forbs-other 14.2
Grass 21.2

Ground 24.1
Greasewood Total Vegetation 51.5 69.1 40.5 � 22.3 32.35 � 11.9

SAVE 16.8 61.8
ARTRW 12.8
Forbs-other 14.4
Grass 7.5

Ground 48.5

1 Vegetation
ARTRV-Mountain Big Sagebrush-[Artemisia tridentata subsp. vaseyana (Rydb.) Beetle] 
SYOR-Snow Berry-[Symphoricarpos oreophilus A. Gray] 
ARAR-Low Sagebrush-[Artemisia arbuscula Nutt.] 
ATTRW-Wyoming Big Sagebrush-[Artemisia tridentata subsp. wyomingensis Beetle & A. L. Young] 
SAVE-Greasewood-[Sarcobatus vermiculatus (Hook.) Torr.] 
PUTR-Bitterbrush-[Purshia tridentata (Pursh) DC.]

2 Average of six 30-m ground transects along an approximate 1-km line
3 Average of three 1-km laser transects over approximately the same line as the ground transects
4 Percent cover for all laser measurements
5 Percent cover for laser measurements greater than 15 cm above the ground surface
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(Figure 6, upper dashed line) and their cross sections mea-
sured to estimate channel/flood plain capacity. Channel/
flood plain roughness can be measured to help calculate
resistance to flow and potential flood area at different
stages. Cross sections of channels and gullies have been
measured at rangeland sites in Arizona and Oklahoma
(Ritchie et al., 1993b; Ritchie et al., 1995) to quantify gully,
channel, and flood plain roughness, and cross sections.
Data on gully, channel, and flood plain cross sections,
roughness, and degradation provide valuable data for the
design and development of physical structures to control
flow, reduce bank erosion, and to calculate flows and areal
extent of floods.

Airborne lidar altimeters can be used to measure
longer topographic profiles quickly and efficiently. At an
airplane ground speed of 75 m per second, 4.5-km pro-
files are measured each minute (240,000 lidar measure-
ments) with the same detail as shown for short profiles.
An example of a topographic profile of a mesquite cop-
pice dune area at the ARS Jornada Experimental Range
(Las Cruces, New Mexico) is shown in Figure 7 using ap-
proximately 25 seconds of the lidar altimeter data. The
profile is from an area with mesquite shrubs on top of the
dunes and almost no vegetation between the dunes (Ritchie
et al., 1998). The insert in Figure 7 is the full resolution
lidar data (no averaging) showing 1- to 3-m tall dunes
with vegetation on them.

The profile shown in Figure 7 illustrates the topo-
graphic data that can be collected with the lidar. While the
length of the profile shown is 1.8 km, profiles can be mea-
sured and analyzed for any length. Greater spatial and ver-

tical detail on such profiles can be measured by using
smaller block averages or all data points (Figure 7, insert).
Ease and speed of data collection allow measurement of
several profiles over the same area with a minimum of extra
survey cost. Such measurements of topography provide
data for estimating aerodynamic roughness for understand-
ing water and wind flow across the landscape (Menenti and
Ritchie, 1994).

While profiling lidars provide two-dimensional cross
sections of topographic and vegetation features which
allow quantification of the landscape morphology, scan-
ning lidars can provide measurements of three-dimen-
sional shapes and areal distributions of landscape fea-
tures. Scanning lidar data of a shrub-coppice dune area in
the desert grasslands of the ARS Jornada Experimental

Figure 6. Cross section measured by a laser altimeter
of Reynolds Creek. The dotted line represents the top
of the channel and the dashed line represents the flood
plain. Area of the channel under the lower dotted line is
48.94 m2.

Figure 7. Topographic profile measured using an air-
borne laser altimeter of dunes at the Jornada Experi-
mental Range near Las Cruces, New Mexico. The long
profile was made by block averaging 12 laser measure-
ments; the short profile is not averaged.

Plate 5. Annual net primary production (g dwt m�2

year�1) of grasslands at the ARS Walnut Gulch Experi-
mental Watershed. Remote sensing inputs from the
Landsat (4 and 5) Thematic Mapper and Landsat 7 En-
hanced Thematic Mapper Plus are coupled with climate
and other data in an ecosystem model based on radia-
tion use efficiency. 
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Range was used to measure the morphological characteris-
tics (height, perimeter, distribution) of coppice dunes
with acceptable accuracy and precision for a range of
uses. Comparable ground-based measurements would be
time-consuming if not impossible to collect. Scanning
lidar data used in conjunction with land-cover classifica-
tion from multispectral aerial videography or spectral
scanners provide improved information on both the areal
and the vertical variability of these dunes. The use of
such systems together is highly synergistic (Rango et al.,
2000), and provides data on the spatial distribution of the
dunes that is necessary for understanding the patterns of
dune development and movement.

Fractal analysis of 100,000 lidar measurements (~2 km
in distance) for 15 lidar transects at the ARS Reynolds
Creek Experimental Watershed (three transects for each of
the five vegetation types in Table 1) were used to calculate
the root-mean-square (RMS) roughness known to display
fractal scaling along the cross sections of self-affine sur-
faces (Pachepsky et al., 1997; Pachepsky and Ritchie,
1998). Root-mean-square roughness is the RMS value of
residuals of a linear trend fitted to the sampled points in
an interval. The interval is called a “window.” Construc-
tion of the fractal models for a line includes (1) the selec-
tion of a property to be calculated on different scales,
(2) the selection of a procedure to define ranges of scales
within which the self-affinity exists, and (3) the selection
of a method to calculate fractal dimensions for each range
of the self-affinity. To define ranges of scales over which
self-affinity exists, the linearity measure introduced in
fractal modeling by Yokoya et al. (1989) was calculated.

Results of applying the linearity measure to separate
different ranges of fractal scaling on roughness plots are
shown in Figure 8. Each vegetation type (Table 1) had a
unique fractal pattern. Fractal dimensions between 0.80
and 1.30 correspond to low irregularity. The low sage-
brush, the shortest community, had the lowest fractal di-
mension, indicating a relatively uniform ground pattern.
The greasewood and Wyoming big sagebrush had the
higher fractal dimensions, indicating more irregularity and

clumped patterns. These analyses indicate that separation
of different vegetation types may be possible using fractal
analysis of lidar data.

Airborne lidar altimetry can provide rapid quantifica-
tion of landscape topography, gully and stream cross sec-
tions, and roughness and vegetation canopy properties of
rangelands. Land surface roughness due to the physical and
biological properties and features can be separated and
quantified. These properties and features are integral parts
of the landscape and have to be evaluated at large scales to
understand the hydrology of rangeland systems. Measure-
ments of these micro and macro surface features contribute
to quantification of water retention, infiltration, evaporation,
and movement from landscape surfaces and in channels and
across flood plains. Channel and gully development, degra-
dation, and roughness can be measured and used to esti-
mate soil loss and explain water quality and flow patterns.
Measurements of canopy properties and distribution across
the landscape and their effect on water movement and aero-
dynamic roughness allow better understanding of evapora-
tive loss, infiltration, and surface water movement. Scaling
properties of lidar data provide compact indexes to compare
and discriminate landscapes, as well as to summarize
roughness properties for further applications. Airborne lidar
altimeters offer the potential to measure rangeland proper-
ties over large areas quickly and easily. Such measurements
will improve our understanding of the effects of these fac-
tors on hydrological systems of rangelands so that improved
management practices and structures can be developed to
manage our natural resources better.

Soil, Residue, and Plant Cover
One of the most important factors affecting soil erosion is
the amount of exposed bare soil, which is negatively re-
lated to the cover of vegetation and residue. Vegetation
indices, such as NDVI (Equation 2), not only are correlated
with LAI, biomass, and fAPAR, but are also highly corre-
lated to plant cover. However, differences in soil back-
ground can cause a large variation in vegetation indices
for the same amount of cover or biomass, necessitating
corrections in vegetation indices (Huete et al., 1985;
Huete, 1988; Qi et al., 1994; Qi et al., 2000c). Because
cover and productivity are different and separate indica-
tors of rangeland health, one vegetation index is insuffi-
cient. ARS scientists are examining sensors with better
spatial and spectral detail, so that remote sensing can pro-
vide the necessary data for rangeland assessment and
monitoring.

Hyperspectral Image Analysis
Hyperspectral data refers to imagery with a large number
of contiguous, narrow wavebands so that each pixel of an
image has its own reflectance spectrum; the premiere hy-
perspectral sensor is the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS) (Green et al., 1998). The advantage of
these data are that the cover of plants, litter, and soils can
be separated with a technique of spectral endmember un-
mixing (Roberts et al., 1998; McGwire et al., 2000). 

At the ARS Central Plains Experimental Range, operated
by the ARS Rangeland Resources Research Unit (Fort Collins,
Colorado and Cheyenne, Wyoming), AVIRIS imagery was ac-
quired over a long-term grazing study (Hunt, 2003). Plant
cover, primarily blue grama grass [Bouteloua gracilis (Kunth)
Lag. ex Griffiths], estimated by spectral endmember unmix-
ing was equal among treatments (Figure 9) and equal to mea-
sured plant cover on the ground for light, medium, and
heavy grazed half-section pastures. Furthermore, the cover
of shadow was proportional to the cover of shrubs.

Figure 8. Intervals of linearity and fractal dimensions
estimated by applying the linearity measure of Yokoya
et al. (1989) to the dependencies of root-mean-square
roughness on the window size for the airborne laser
profiler data collected over the five different vegetation
communities at the Reynolds Creek Watershed.
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At red and near-infrared wavelengths, plant residue or
litter is hard to separate from soil and does not interfere
with vegetation indices for living plant biomass (Frank and
Aase, 1994). During senescence, foliage loses water, expos-
ing the chemical absorption features of leaf chemical con-
stituents, which are detectable in the shortwave infrared
region. The cellulose absorption index was developed to
estimate residue cover using hyperspectral remote sensing
(Daughtry, 2001; Daughtry et al., 2002). Thus, full spectral
unmixing is not necessary if additional wavebands are
added to multispectral sensors, in order to create new in-
dices which separate bare soil from residue.

Very Large Scale Aerial Imagery
Scientists at the High Plains Grassland Laboratory
(Cheyenne, Wyoming), are measuring the amount of bare
ground as a potential key attribute of rangeland health.
Very large scale aerial (VLSA) imagery is being investigated
as a means for inexpensive acquisition of statistically ade-
quate, unbiased, high spatial resolution imagery from
which to make accurate ground-cover measurements. The
goal is the capture and interpretation of 1:50- to 1:200-
scale imagery. The remote-sensing platform is an ultra-
light, three-axis airplane (Figure 10) with a laser altimeter
for precise, instantaneous measurements of altitude. The
sensors are high-shutter-speed film and digital cameras,
which are automatically triggered by a computer using pre-
programed coordinates with an interfaced GPS receiver.

The system also provides the pilot with navigational infor-
mation including ground speed, a critical parameter for
close-to-the-earth photography.

Methods for making bare-ground measurements include
manual photogrammetry and digital image processing (color
density slicing image analysis). The latter effort is coopera-
tive with the ARS Kika de la Garza Subtropical Agricultural
Research Center (Weslaco, Texas). Ground data collected
for comparison with aerial images includes cover data col-
lected using laser-bar point frames (paper in preparation)
and overhead, stereo, photography from 2 m above ground
level. This ground photography is being analyzed using the
same methods as for aerial imagery with the addition that
stereo viewing is being tested for incorporation into super-
vised classification procedures for image analysis.

Algorithm Development 
Research into remote sensing provides the knowledge base
for future applications. However, research in remote sens-
ing often requires extensive ground validation data (“ground
truth”), which are expensive to obtain over large areas.
Field experiments are generally conducted with multiple
objectives so that synergistic interactions among different
remotely sensed datasets may be studied. ARS scientists
have been involved in initiating, planning, and conducting
field experiments, usually with extensive collaboration
among universities and other federal agencies (i.e., NRCS,
NASA, USGS, the National Oceanographic and Atmospheric
Administration, and the Department of Energy).

Many of these field experiments have been conducted
in rangelands, and may point out future methods for range-
land monitoring, even though the development of practical
remote sensing applications was not an experimental ob-
jective. The ARS Walnut Gulch Experimental Watershed,
operated by the Southwest Watershed Research Center
(Tucson, Arizona), was the site of the Monsoon ’90
(Schmugge et al., 1993; Kustas and Goodrich, 1994; Moran
et al., 1994), Walnut Gulch ’92 (Moran et al., 1996), and
SALSA experiments (Goodrich et al., 2000). The ARS Jor-
nada Experimental Range (Las Cruces, New Mexico) hosted
the Jornada Experiment, JORNEX (Rango et al., 1998; Havs-
tad et al., 2000). Finally, the ARS Grazing Land Research
Laboratory (El Reno, Oklahoma), which operates the Little
Washita River Watershed, was the host for Washita ’92
(Jackson et al., 1995), Washita ’94, Southern Great Plains
Experiment ’97 (Jackson et al., 1999), and the Southern
Great Plains Experiment ’99. Other ARS experimental wa-
tersheds and rangeland experimental sites have also been
used for remote sensing research, but not for such exten-
sive multidisciplinary experiments. 

Figure 9. Fraction of the vegetation endmember from
Airborne Visible Infrared Imaging Spectrometer (AVIRIS)
acquired at the ARS Central Plains Experimental Range
(CPER), near Nunn, Colorado. There are three long-term,
continuous grazing treatments covering 0.5 square-mile
half sections: heavy, medium, and light. Furthermore,
there are large 50-m by 50-m exclosures to prevent
grazing by large herbivores and livestock. There are no
differences in mean plant cover among the treatments,
and no difference in mean fraction of the vegetation
endmember.

Figure 10. Ultralight airplane used for very-large-scale
aerial photography. The sensors are high-shutter-speed
film and digital cameras, which are automatically trig-
gered by a computer with an interfaced GPS receiver.
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Most of the research previously conducted for remote
sensing applications is based on reflected solar radiation,
with bands in the visible, near-infrared, and shortwave in-
frared wavelength regions. Two other wavelength regions
are used in remote sensing, thermal infrared and mi-
crowave. Thermal infrared is used to determine land sur-
face temperature, which is affected by the loss of latent
heat by transpiration and evaporation. Microwave wave-
lengths can be remotely sensed by either passive or active
sensors; water has a very strong dielectric constant, and
therefore affects strongly the emission or backscatter, re-
spectively, of microwaves.

Microwave Imagery for Soil Moisture Content
Microwave remote sensing provides information on water
content of the target. By selecting the wavelength, it is pos-
sible to define the moisture condition of the atmosphere
(short wavelengths), vegetation (middle range), and soil
(long wavelengths). Research over the past decade has fo-
cused on developing methods and algorithms for soil mois-
ture measurement. Much of the research was conducted in
rangelands at the ARS Walnut Gulch Experimental Water-
shed in Arizona (Jackson et al., 1993; Moran et al., 1993;
Schmugge et al., 1993) and the ARS Little Washita River
Watershed in Oklahoma (Jackson et al., 1995; Jackson et al.,
1999; Starks and Jackson, 2002). Plate 6 shows a sequence
of the changes in soil moisture over the 1997 Southern
Great Plains Experiment (SGP ’97). 

Over the next five years, satellite microwave remote
sensing will enter an era of vastly improved capabilities
that will make it a more attractive source of information
for rangeland applications. This era will begin with the
launch of the Advanced Microwave Scanning Radiometer
(AMSR) onboard NASA’s Aqua satellite, followed by the Eu-
ropean Space Agency’s Envisat Advanced Synthetic Aper-
ture Radar. NASA’s Aqua satellite has an afternoon over-
pass, so Japan will soon launch a second AMSR onboard
the ADEOS-II satellite with a morning overpass. Canada and
Japan are planning to have additional satellite-borne mi-
crowave sensors in orbit in the next five years. 

Thermal Infrared Imagery for Moisture Fluxes
With the launch of the Advanced Spaceborne Thermal
Emission and Reflection radiometer (ASTER) on NASA’s
Terra satellite in December 1999, a new tool for studying
the land surface from space became available (Yamaguchi
et al., 1998). This tool provides multispectral thermal in-
frared data; the airborne equivalent is the Thermal Infrared
Multispectral Scanner (TIMS) which has six thermal infrared
channels between 7 and 13 mm, as seen in Figure 11. These
data can be used to estimate the spectral variation of the
surface emissivity. The Temperature Emissivity Separation
(TES) algorithm (Gillespie et al., 1998) is used to extract the
temperature and emissivities from either the TIMS or the
ASTER data. The TES algorithm makes use of an empirical
relation between the range of observed emissivities and
their minimum value. The spectral emissivity data can be
used as an additional tool to distinguish bare soil from
vegetation, especially dry vegetation which has a similar
spectral response to some soils in the visible and near-in-
frared portions of the spectrum. Because of their SiO2 con-
tent, bare soils have a particularly strong emissivity feature
between 8 and 9.5 mm, which is not present in the emis-
sivity spectrum of vegetation. This feature was used by sci-
entists with the Hydrology and Remote Sensing Laboratory
(Beltsville, Maryland) to distinguish bare soil from senes-
cent vegetation in their study of the El Reno area during
the Southern Great Plains experiments in 1997 (French
et al., 2000) and in JORNEX (Schmugge et al., 2002). 

Combining Visible and Infrared Imagery for Plant Water Assessment
The combination of visible and infrared measurements
made with Landsat TM and ETM� is a powerful source of
information for temporal studies of natural resources. Sci-
entists at the ARS Southwest Watershed Research Center
derived a Water Deficit Index (WDI) from Landsat visible,
near-infrared, and thermal-infrared imagery to detect tem-
poral and spatial changes in grassland transpiration
(Holifield et al., in press). The WDI, which estimates rela-
tive evapotranspiration rates based on meteorological data
and the relation between surface reflectance and tempera-
ture, has been successfully applied over heterogeneous ter-
rain with little a priori information (Moran et al., 1996).
For the ARS Walnut Gulch Experimental Watershed during
the summer monsoon period, the WDI was sensitive to both
temporal and spatial changes in plant transpiration, as
well as differences in transpiration caused by topography.
The WDI was compared with a measure of plant available
soil moisture (the Antecedent Retention Index, ARI), which
was derived from an hourly record of precipitation and
runoff, obtained from rain gauges and flumes located in the
watershed. Results showed that there was a non-linear re-
lation between the WDI and ARI, and implied that the WDI
was the more sensitive indicator of vegetation health. Ulti-
mately, the WDI approach may be used as a viable tool to
monitor grassland health over heterogeneous regions. 

Merging Imagery and other Geospatial Data
In most applications, remotely sensed imagery must be
merged with other images or geospatial data within a GIS.
Images and geospatial data have different map scales, ori-
entations, pixel sizes, and other differences that make
merging different data problematic. A good example is
from the work of Peleg and Anderson (2002) shown in Fig-
ure 12. When two datasets are simply registered and resam-
pled, with the same datum and map projection, the images
can visually appear to be similar (Figures 12a and 12d).
However, a scatterplot of the values for the different pixels
from the first image with the value of the same pixel from
the second image shows poor correlation (Figure 12c). 

Because both images (Figures 12a and 12d) were ac-
quired over the same experimental field, the two images
should be the same; Peleg and Anderson (2002) developed
a series of preprocessing steps for comparing images from

Figure 11. Relative spectral response of the Thermal In-
frared Multispectral Scanner (TIMS) and the emissivities
of a grass site and a light sandy site at the ARS Jornada
Experimental Range. The emissivity data were obtained
in September as the sites were drying during JORNEX.
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different sources. The preprocessing steps employ ad-
vanced mathematical procedures: a wavelet based trans-
form, a pixel block transform, and an image rotation trans-
form. These transforms were applied to the data to reduce
sensor-specific noise to obtain Figures 12b and 12e. The
scatterplot of pixel values from 12b and 12e show a much
stronger correlation (Figure 12f). Pelleg and Anderson
(2002) performed additional steps using Fast-Fourier-
Transformation regression which reduced the amount of
noise, and increased the correlation coefficient between
the two images from 0.785 (in Figure 12f) to 0.963 (data
not shown). 

This example shows that low, simple correlations be-
tween the two images result from spatial errors, which
occur even with small pixel sizes. Applications to range-
land management will require many different data sets
merged within a GIS, each with its own amount of spatial
error. With the advances in computing power that occur
each year, it is feasible that these advanced algorithms will
be incorporated into image processing software similar to
the manner in which atmospheric, geometric, and radio-
metric algorithms are implemented today. In all likelihood,

individual managers will be isolated from these processing
steps, but will rely on the outputs, in much the same man-
ner as people rely on weather reports from the National
Weather Service without understanding the increasingly
sophisticated algorithms used for weather prediction. And
like the weather reports, there will be errors in determin-
ing rangeland health from remote sensing, but the size of
the errors will be diminished with the increasing power
and robustness of the analytical tools being developed.

Conclusions
Some techniques of remote sensing can be operational for
rangeland health assessments, because first, the sensors are
available, and second, the algorithms are well tested. These
algorithms were not just developed by ARS scientists, even
though the focus of this review was on the contribution by
the ARS. Operational techniques are the use of large scale
photographs and videography for noxious weeds, and soil
and plant cover, and the use of Landsat, AVHRR, and MODIS
for rangeland productivity. The user communities associ-
ated with these sensors will help ensure that similar data
will continue to be available in the future.

Figure 12. (a) Image Y before preprocessing and (b) image Y after preprocessing. (d) Image X before pre-
processing and (e) image X after preprocessing. (c) The scatterplot between Y and X before preprocess-
ing (r � 0.368) and (f) the scatterplot between Y and X after preprocessing (r � 0.785). Image Y was
created from yield monitor data and image X is an NDVI image from airborne videography. These tech-
niques are applicable to any situation where two images are required to be merged.
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Lidar and hyperspectral sensors are experimental.
There is considerable scientific support for these sensors,
and the results show how direct indicators of rangeland
health can be remotely sensed. However, there is a consid-
erable jump from experimental to operational satellites,
due to the costs of launching satellites and maintaining
data facilities. The costs are not cheap, but the extent of
rangelands in the United States is large so that the cost per
area is low compared to other methods. The economic ben-
efits of healthy rangelands are difficult to quantify with
reasonable accuracy.

Thermal and microwave sensors are much farther
along the continuum from experimental to operational, in
part because the economic impact of meteorological fore-
casts emphasizes the benefits in relation to the costs.
Maintenance of hydrological functioning is another large
class of rangeland ecosystem health indicators. The prob-
lem is that thermal and microwave data are not yet useful
for direct indicators of ecosystem health. It will take more
research to develop useful tools for assessment and moni-
toring with these sensors.

Remote sensing can measure the whole spatial extent,
not just sample individual plots and assume these plots
are representative. Every allotment has some areas that are
better and some areas that are worse, so that the statistical
errors from sampling individual plots can be large. Re-
motely sensed imagery, therefore, provides a balanced and
fair approach to rangeland management. However, the
adoption of remote sensing for rangeland management will
depend on the widespread adoption of the ecosystem
health paradigm. Even remote sensing techniques that “can
be operational,” will not be used if assessment and moni-
toring is based on rangeland “condition,” determined from
plant community succession. 
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