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INTRODUCTION

 Knowledge of surface soil moisture at the watershed scale would be useful for such
critical applications as regional resource management during times of drought or flooding. Surface
soil moisture information is also a critical forcing variable in many Soil Vegetation Atmosphere
Transfer (SVAT) models to estimate profile soil moisture at daily time steps. Such applications to
watershed management have a common set of requirements that define the desired soil moisture
product. The spatial distribution is generally required at a very fine resolution (from 10 to 100 m);
the required coverage of distributed soil moisture information is on the order of 1000 to 25,000
km2; and, in most cases, the soil moisture quantization can be coarse, such as three to four levels
ranging from dry to very wet.
 A great deal of progress has been made in the use of spectral images from satellite
sensors for surface soil moisture mapping, where surface soil moisture (ms) is the average
moisture (cm3 cm-3)
Table 7-1. RADARSAT, ERS, ENVISAT, and JERS configurations.
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RADARSAT ERS SAR ERS ENVISAT
ASAR

JERS ALOS PALSAR
(planned)

Incidence Angle 20-50° 23° 15-45° 10-51°
Wavelength (cm) 5.7 5.7 5.7 23
SAR band C C C L
Polarization HH VV HH, VV, VH, HV HH,VV,HH,HV,VV&VH
Resolution (m) 10-100 30 10-100 10-100

in the top few centimeters of soil over a heterogeneous volume. The greatest progress has been
made with passive microwave sensors. These sensors measure the intensity of microwave
emission (at wavelengths λ =1-30 cm) from the soil, which is related to its moisture content
because of the large differences in dielectric constant of dry soil (~3.5) and water (~80). This
emission is proportional to the product of surface temperature and surface emissivity, which is
commonly referred to as the microwave brightness temperature (TB). The relation between TB and
ms varies with differences in surface roughness and vegetation biomass and is further affected by
the changes in dielectric constant related to soil texture. The efficacy of the measurement is a
function of wavelength, where longer wavelengths ( λ >10 cm) probe deeper into the soil and have
the ability to penetrate a vegetated canopy (see review by Njoku and Entekhabi, 1996).
 However, the use of passive microwave measurements for soil moisture mapping at
watershed scales is limited for many reasons. First, the spatial resolution is inherently coarse, on
the order of tens of kilometers. Second, until just recently, the information was available only
from aircraft-based sensors, resulting in limited coverage, infrequent repeat visits, and delays in
product delivery. On the other hand, two satellite-based passive microwave sensors will be
providing imagery later this decade. The Advanced Microwave Scanning Radiometer (AMSR-E)
was successfully deployed on the NASA Aqua platform in 2003 (Njoku et al., 2003), and the Soil
Moisture and Ocean Salinity (SMOS) mission is planned for launch by the European Space
Agency (ESA) in 2007 (Kerr, 2001). The spatial resolution of these sensors is estimated to be 56
and 37 km, respectively.
 The only satellite systems that currently meet the spatial resolution and coverage required
for watershed management are active microwave sensors (see review by Moran et al., 2004). The
most common imaging active microwave configuration is the synthetic aperture radar (SAR),
which transmits a series of pulses as the radar antenna traverses the scene. Then, these pulses are
processed together to simulate a very long aperture capable of high surface resolution (Ulaby et
al., 1996).  There are three operational SAR satellite systems with frequencies suitable for soil
moisture: ESA ERS-1/2 C-band SAR, ESA ENVISAT C-band ASAR, and Canadian C-band
RADARSAT-1/2 (Table 7-1). These SAR systems can provide resolutions from 10 to 100 m over
a swath width of 50 to 500 km, thus meeting most spatial requirements for watershed
management. As with passive microwave sensing, the magnitude of the SAR backscatter
coefficient ( oσ ) is related to ms through the contrast of the dielectric constants of bare soil and
water.  Similarly, the perturbing factors affecting the accuracy of ms estimation are soil surface
roughness and vegetation biomass. Studies, particularly in the past decade, have resulted in a
multitude of methods, algorithms, and models relating satellite-based images of SAR backscatter
to surface soil moisture. However, no operational algorithm exists using SAR data acquired by
existing spaceborne sensors (Borgeaud and Saich, 1999).
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  For all orbiting sensors, including the AMSR-E and SMOS missions, remote sensing
alone can only provide surface soil moisture ms, with stated depths varying from 1 to 5 cm (Ulaby
et al., 1996; Oh, 2000). Most studies agree that the penetration depth for microwave sensing is
between 0.1 to 0.2 times the wavelength, where the longest wavelengths (L-band) are about 21
cm. To fully meet the requirements for soil moisture information for watershed management, it
will be necessary to combine the horizontal coverage and spatial resolution of remote sensing with
the vertical coverage and temporal continuity of a soil moisture simulation model. Such models
are generally called Soil Vegetation Atmosphere Transfer (SVAT). The advantage of SVAT
models is that profile soil moisture (mp) is estimated to several meters depth on hourly, daily or
monthly timesteps. One disadvantage of SVAT models for monitoring regional soil moisture
condition is that they are one-dimensional, and without remotely sensed inputs, they are rarely
capable of producing a distributed map of soil moisture.
 In this review, we will concentrate on approaches for estimating ms at the scale of
managed watersheds ranging in size from 1000 to 25,000 km2. These include physically based
approaches for ms estimation using SAR, with particular emphasis on use of radar backscatter
models and brief mention of SAR for ms change detection and SAR data fusion. The review will
finish with a synthesis of the most important research and development issues related to watershed
management. For convenience, all acronyms and scientific notation are summarized in Tables 7-2
and 7-3, respectively.

Table 7-2. Summary of Acronyms.

ALOS Advanced Land Observation Satellite
AMSR-E Advanced Microwave Scanning Radiometer on the NASA Aqua satellite
ASAR Advanced Synthetic Aperture Radar
ENVISAT ENVIronment SATellite
ERS SAR European Remote Sensing SAR
ESA European Space Agency
GIS Geographic Information System
HAPEX-Sahel Hydrologic Atmospheric Pilot Experiment in the Sahel (Prince et al., 1995)
HH, VV, HV, VH Horizontal and Vertical co-polarization
HYDROS NASA HYDROsphere State mission
IEM Integral Equation Model (Fung and Chen, 1992)
JERS SAR Japanese Earth Resources Satellite SAR
LAI Leaf area index
NASA National Aeronautics and Space Administration
NBMI Normalized Radar Backscatter soil Moisture Index (Shoshany et al., 2000)
NDVI Normalized Difference Vegetation Index
PALSAR Phased Array type L-band Synthetic Aperture Radar
RADAR Radio Detection and Ranging
RADARSAT RADAR SATellite
RS Remote Sensing
SAR Synthetic Aperture Radar
SGP Southern Great Plains
SMOS Soil Moisture and Ocean Salinity
SSM/I Special Sensor Microwave/Imager
SVAT Soil Vegetation Atmosphere Transfer
WCM Water Cloud Model (Attema and Ulaby, 1978)
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SEMI-EMPIRICAL APPROACHES

 The radar backscatter, oσ , from a vegetated surface is composed of three contributions

oo
dv

o
s

o
int

2 σσστσ ++= ,
[1]

where
o
sσ is the backscatter contribution of the bare soil surface, 2τ is the two-way attenuation of

the vegetation layer, o
dvσ is the direct backscatter contribution of the vegetation layer, and o

intσ
represents multiple scattering involving the vegetation elements and the ground surface (Ulaby et
al., 1996). For densely vegetated targets, 2τ 0 and oσ are determined largely by volumetric
scattering from the vegetation canopy. For sparsely vegetated targets, 2τ 1 and the second and
third terms in Eq. [1] are negligible; in that case, oσ is determined by the soil roughness and
moisture content. For bare soil,

o
sσ has a functional relation with ms, where

),( s
o
s mRf=σ

[2]

Table 7-3. Summary of scientific notation.

oσ Radar backscatter coefficient
o
intσ Multiple scattering involving the vegetation elements and the ground surface
o
sσ Backscatter contribution of the bare soil surface
o
dvσ Direct backscatter contribution of the vegetation layer
o
dryσ Backscatter from vegetated terrain under completely dry soil surface conditions
o
wetσ Backscatter when the soil surface is saturated with water

oσ∆  Difference between dry- and wet-season oσ

smI Relative measure of surface soil moisture

iθ Incidence angle
Ksat Soil hydraulic conductivity
mp Profile soil moisture
ms Surface soil moisture.
ρλ Surface spectral reflectance in optical wavelengths
R Surface roughness term
TB Microwave brightness temperature
TR Infrared radiative temperature

2τ Two-way attenuation of the vegetation layer
V Vegetation biomass
λ Wavelength
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and R is a surface roughness term (Engman and Chauhan, 1995). Considering this, many
algorithms using single-wavelength, single-polarization SAR for estimating ms follow a standard
two-step approach, where the first step is to estimate and remove the signal due to backscatter
from the vegetation canopy. Thus, o

s
o σσ ≅ . The second step is to determine the relation

between
o
sσ  and ms, based on the assumption that the surface roughness adds a signal to the

backscatter intensity that can be treated as an offset (Schneider and Oppelt, 1998). Thus, for a
target of uniform R,

o
ss bam σ+= ,

[3]

where a and b are regression coefficients determined primarily from field experiments, which
encompass the target-invariant R and the scene-invariant SAR λ , iθ , polarization, and
calibration.  Therefore, Eq. [3] is only valid for a given sensor, landuse, and soil type, and for
targets when 2τ , o

dvσ and o
intσ  are known or negligible. Nonetheless, in some cases, it is a

reasonable approach and provides an operational method for regional estimation of ms.
 For example, Quesney et al. (2000) resolved Eq.[1] to [3] to derive soil moisture
information with accuracies of ±0.04-0.05 (cm3 cm-3) from ERS SAR measurements over an
agricultural watershed in France.  Based on an a priori vegetation classification of the site and
some in-situ measurements, they selected sensitive targets where soil moisture retrieval was
possible due largely to the low vegetation biomass. For these targets, a first-order radiative transfer
model was used to correct the radar response for the effect of the vegetation canopy. Then,
sensitive targets were classified into roughness classes based on their furrow direction as viewed
by the radar beam. These classes were assumed to be homogeneous in terms of large-scale
roughness contributions.  Empirical relations between oσ and corresponding in-situ
measurements of ms were determined for each class and applied to all sensitive targets in the SAR
image.  They concluded that the same relation between oσ and ms could be used from November
to August (excepting the months of May and June) for wheat fields in an agricultural watershed in
France.
 Similarly, for a semi-arid watershed in Arizona, Moran et al. (2000) utilized the
difference between dry- and wet-season SAR oσ  ( oσ∆ ) to normalize the effects of surface
roughness and topography on ERS SAR measurements. This required that the images be acquired
with exactly the same sensor configuration, particularly the same incidence angle. Thoma et al.
(2005) improved upon this approach to minimize empiricism and used a quantitative form of

oσ∆ to map ms for an entire watershed with RADARSAT for three dates in 2003.  In these
studies, the effects of vegetation were found to be negligible and could be ignored, supporting
similar findings by Dobson et al. (1992), Lin and Wood (1993), Demircan et al. (1993), Dubois et
al. (1995), and Chanzy et al. (1997).  But for many locations, the vegetation was simply too dense
to monitor soil moisture with only a single-wavelength data set (Wever and Henkel, 1995; Wang
et al., 1996).
 A great limitation of all these approaches is that the sensitivity of radar backscatter to R
can be much greater than the sensitivity to ms. For example, Herold et al. (2001) reported that the
backscatter range from different roughness conditions was about 17 dB, whereas the variations
caused by soil moisture were about 6 dB. Sano et al. (1998) found that SAR oσ data were nearly



RADAR REMOTE SENSING FOR ESTIMATION OF SURFACE SOIL MOISTURE AT THE WATERSHED SCALE 6

insensitive to soil moisture due to the stronger influence of soil roughness. Oh et al. (1992) stated
that the primary cause of backscatter variation in radar image scenes was surface roughness, and
secondarily, moisture content. Thus, it is imperative that surface roughness and topography be
accounted for in any operational approach.

ms CHANGE DETECTION

 An approach that may have potential for operational application is the use of single-
wavelength, multi-pass SAR images for change detection, rather than absolute ms estimation
(Engman 1994). This approach is based on the assumption that the temporal variability of R and
vegetation biomass (V) is generally at a much longer time scale than that of ms, and therefore, the
change in SAR oσ between repeat passes results from the change in ms. Thus, a multi-temporal
SAR data set could be used to minimize the influence of R and V, and maximize the sensitivity of

oσ to changes in ms. Though useful for many applications, it is notable that the assumptions do
not hold for cultivated crops where R and V change dramatically over short time periods.
Furthermore, images must be acquired with the same sensor configuration to avoid the need for
topographic corrections due to variations in θi  and image orientation.
 Simply applied, a Normalized Radar Backscatter soil Moisture Index (NBMI) was
derived from oσ measurements at two times (t1 and t2) over one location where,

o
t

o
t

o
t

o
tNBMI

21

21

σσ

σσ

−

+
=

[4]

(Shoshany et al., 2000). By normalizing the effects of R, soil type, and topography on SAR oσ ,
such ratio techniques offer a relative soil moisture index varying from 0 to 1 related to distributed
ms variations.
 Using a long backscatter series, it is possible to correlate changes in oσ  with changes in
ms over large areas. For example, Wickel et al. (2001) used 10 RADARSAT scenes over a one-
month period to monitor ms change in fields of wheat stubble in Oklahoma. They corrected all
images for the difference in θi using an empirical approach and a modeling approach (Ulaby and
Dobson, 1989), and then eliminated wheat fields with “major” temporal roughness changes. They
computed a multitemporal regression of day-to-day differences in oσ  and ms with a strong
correlation of r2=0.89.
 Wagner and Scipal (2000) offered a variation on this approach that has been tested with
some success in Canadian prairies, the Iberian Peninsula, the Ukraine, and savanna and grasslands
in western Africa. Based on a multi-year series of ERS scatterometer images with spatial
resolution of 50 km, a “knowledge base” about the backscatter behavior of each pixel was
constructed. The behavior of oσ related to θi over time was used to determine relative R and V,
and to normalize oσ to a reference θi of  40° at time t. For pixels of similar R and V, a relative
measure of surface soil moisture (

smI ) was estimated as

),40(),40(
),40(),40(
tt
tt

I o
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o
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o
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[5]
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where ),40( to
dry °σ  represents oσ from vegetated terrain under completely dry soil surface

conditions and ),40( to
wet °σ  represents oσ when the soil surface is saturated with water. The values

),40( to
dry °σ and ),40( to

wet °σ  were derived from the lowest and highest values of oσ (40°,t) from six
years of data. Thus, in this approach, the normalization of variations in θi , R and V and the
estimation of

smI are all accomplished with a frequent-repeat, multi-year backscatter data series.
With SAR data, Lu and Meyer (2002) suggested a similar change detection approach with a
significant variation. That is, they incorporated information from both SAR backscatter intensity
and phase to perform an initial discrimination of changes in soil moisture from changes in surface
roughness. With that preprocessing and an image-based estimate of o

dryσ , they were able to
detect changes in ms ranging from 0.05 to 0.20 cm3 cm-3.

SAR DATA FUSION

 The problem associated with discriminating the multiple influences of surface properties
and sensor characteristics (e.g., R, V, θi, λ) on the relation between SAR oσ and ms has prompted
a number of SAR data fusion studies. The majority of studies have addressed the complementarity
and interchangeability of 1) active (SAR) microwave oσ and passive microwave TB, and 2) SAR

oσ and optical measurements, such as infrared radiative temperature (TR) and surface spectral
reflectance in visible and near-infrared wavelengths (ρλ).
 As mentioned earlier, the greatest advantage of active over passive microwave sensing
for watershed applications is the fine spatial resolution, where SAR resolution is on the order of
tens of meters and passive microwave resolution is tens of kilometers. Similar passive and active
microwave configurations appear to have similar sensitivities to soil moisture (Chauhan et al.,
1999) and near-similar sensitivities to roughness (Du et al., 2000). Data fusion of passive and
active microwave sensing has generally taken the form of using SAR oσ for determining fine-
resolution vegetation and roughness parameters and then combining these with coarse-resolution
passive microwave TB for estimation of regional soil moisture (e.g., Chauhan, 1997; Lakshmi et
al., 2000). In other approaches, complementary passive microwave emissivity and SAR
backscatter were fused through Bayesian logic to improve estimates of soil moisture condition
(Notarnicola and Posa, 2001). Huang and Jin (1995) used passive and active microwave data to
construct a mesh graph, where any point on the graph could be used to estimate soil moisture and
roughness of bare soil separately.
 There is great potential to determine subpixel variability of passive-derived soil moisture
with the finer resolution active microwave data. In a recent study, Bindlish and Barros (2002)
downscaled soil moisture estimates from a passive microwave sensor from 200 m to 40 m using a
single polarization, single wavelength L-band SAR system. They concluded that integration of
active and passive microwave technologies to monitor watershed scale soil moisture is an
alternative worth exploring. This approach will likely receive more attention when the soil
moisture products from AMSR-E and SMOS become available. Further support will be provided
by the NASA HYDROsphere State (HYDROS) mission with a satellite-based, integrated passive
and active L-band system with spatial resolutions of 3 to 40 km.
 Microwave and optical remote sensing have been used separately for estimation of
surface properties, and both measurements have distinct advantages. Several studies have focused
on definition of the complementarity (independent information) and interchangeability (similar
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information) of optical and SAR data. Basically, the longer λ  SAR bands ( λ >6 cm) have been
related to thermal TR measurements through the physical relation between surface evaporation and
surface soil moisture content (e.g., Moran et al., 1997). For vegetated targets, shorter λ  SAR
bands (e.g. λ 2 cm) have been related to optical vegetation indices (e.g., Normalized Difference
Vegetation Index, NDVI) because visible, near-IR, and short- λ  SAR signals are largely
influenced by the crown layer of branches and foliage in the canopy (e.g., Prevot et al., 1993;
Moran et al., 1997). Other studies have taken advantage of both the complementarity and
interchangeability of optical and SAR data to improve simulation model parameterization and
inversion. Theoretical studies have shown that the inverse problem for ms estimation could be
achieved with an optical/SAR data set, but a unique solution would not be possible with either
observation alone (Entekhabi et al., 1994; Chanzy et al., 1995). This work has been supported by
field experiments with crops in France and Poland (Taconet et al., 1996; Olioso et al., 1998; and
Dabrowska-Zielinska et al., 2001) and rangelands in Arizona (Wang et al., 2003).

SAR PLUS RADAR BACKSCATTER MODELS

 The continuing efforts to disentangle the relative influences of R, V, and ms on SAR
oσ have ultimately led to the use of physically based backscatter models. These models generally

predict oσ as a function of sensor configuration and surface conditions, and can thus be inverted
to estimate ms. Empirical, semi-empirical, and theoretical models have been developed for this
purpose. Empirical models are generally derived from experiments to fit their data and may only
apply to surface conditions and radar parameters at the time of the experiment (Dobson et al.,
1985; Oh et al., 1992; Dubois et al., 1995; Wang et al., 1996).
 To avoid this limitation, semi-empirical models have been developed based on a
theoretical foundation with model parameters derived from (i.e., fitted to) experimental data. An
example is the widely used Water Cloud Model (WCM) that represents the canopy as a uniform
cloud of spherical droplets that are held in place structurally by dry matter (Attema and Ulaby,
1978). In WCM, the canopy can be represented by bulk variables such as leaf area index (LAI) or
vegetation water content, and the model can be easily inverted.  Simply, the backscatter coefficient
is represented by Eq. [1], which is simplified to o

dv
o
s

o σστσ += 2  based on the assumption that
o
intσ is negligible. The attenuation of the vegetation layer ( 2τ ) and direct backscatter from the

vegetation layer ( o
dvσ ) are determined empirically by

)sec2exp(2 θτ BV−= ,
[6]

)1(cos 2τθσ −= AVo
dv , and

[7]

s
o
s DmC +=σ ,

[8]

where V could be green LAI, and A, B, C, and D are empirical parameters dependent upon canopy
type and soil roughness (Prevot et al., 1993; Taconet et al., 1996; Moran et al., 1998).
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 Some effort has been made to examine radar backscatter on a strictly theoretical basis,
though theoretical models are difficult to implement using computers, and their validity range is
often limited. For instance, models based on the Kirchoff formulation are known to be applicable
only to gently undulating surfaces within restrictive R/ λ  conditions, and those based on the small
perturbation theory were developed for only slightly rough surfaces where R<λ  (Ulaby et al.,
1982). The Integral Equation Model (IEM) combines the Kirchoff and small perturbation theories
to address a wide range of roughness for bare soil surfaces, with an expression that is simpler to
calculate and invert (Fung and Chen, 1992; Fung et al., 1992). For this reason, it has become the
most widely used radar backscatter model and will be the focus of this section.
 The IEM model has been found to be particularly suitable for retrieving ms from single-
wavelength, single-pass SAR oσ . However, in all cases, an a priori measure of R was required
(e.g., Tansey and Millington, 2001). This has led to a number of suggestions for determining
distributed R information from orbiting SAR sensors. Considering that RADARSAT images can
be acquired at a variety of θi, Colpitts (1998) combined two or more images of different θi with the
IEM model to separate effects of ms and R for several tillage types. Similarly, Pasquariello et al.
(1997) found that IEM-retrieved estimates of ms were greatly improved through inversion with
multi-θi SAR imagery.  Based on a theoretical analysis, Fung et al. (1996) reported that not only
could angular SAR measurements be used to determine roughness parameters for IEM, this
approach was preferable to direct ground measurements due to considerations of scale,
heterogeneity and resolution. However, approaches based on multi-θi SAR imagery are limited
because pixel information is integrated over different spatial domains with variations in θi. In a
different approach, Verhoest et al. (2000) used multi-temporal data rather than multi-angular data
to determine an effective roughness parameter. Thus, multi-temporal ERS-1 SAR oσ was used to
invert the IEM model to retrieve ms from bare soil with reasonable accuracy.
 As a result of these successes, there have been numerous refinements, improvements, and
additions to the IEM that will certainly encourage more use of the model for ms retrieval. To
reduce the complexity of IEM application, algorithms have been developed based on fitting of
IEM numerical simulations for a wide range of R and ms conditions (Chen et al., 1995; Shi et al.,
1997). The results are a look-up table of IEM simulations that serve to directly relate SAR oσ  to
theoretical model predictions over bare and sparsely vegetated surfaces with known radar
parameters. These simplified IEM-based algorithms require fewer parameters and are much easier
to use with remotely sensed data.
 Another critical refinement of IEM was the incorporation of vegetation backscatter
effects into the ms inversion algorithm. The original IEM was developed for bare soil conditions
only, although the retrieval algorithm performed well for sparsely vegetated areas. Bindlish and
Barros (2001) formulated an IEM vegetation scattering parameterization in the framework of the
WCM (Eq. [6]-[8]). They reported that the application of the modified IEM led to an improvement
in the correlation coefficients between ground-measured and SAR-derived ms estimates from 0.84
to 0.95. The incorporation of vegetation scattering will expand IEM applications to moderately
vegetated sites and improve applications in arid and semiarid regions where ms is so low that the
soil contribution may be equal to the magnitude of the vegetation contribution.
 The IEM model has also been refined to include a penetration depth model.  Studies have
reported problems in IEM-based ms retrieval due to an increase in the penetration depth of the
incident wave when the soil moisture was low (e.g., Wiemann, 1998). As a result, modeled ms

could not be compared with ground measurements because IEM did not account for the fact that
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SAR beam penetration exceeded the layer where the soil moisture was measured (Wiemann,
1998). Boisvert et al. (1997) offered three approaches to refine IEM to account for variations in
beam penetration depth. They reported that the correction allowed reliable comparisons among
different SAR configurations and took into account the daily variations in the beam penetration
with soil moisture.
 The general consensus of studies using SAR oσ with radar backscatter models is that the
retrieval of ms with single-wavelength, single- iθ , single-pass SAR data is not possible without
information about the surface roughness. The results also demonstrate the need for continuous
measurement  of  surface  roughness  and  fine-resolution information about surface topography, if
Table 7-4. Promising approaches using SAR sensors for ms estimation.

Approach Examples

Semi-empirical algorithm
Generally uses SAR images of single λ, θI, and polarization.
Requires multiple passes and/or ancillary information. Often scene-
or site-dependent.

Moran et al. (2000); Quesney et al.
(2000)

SAR for ms change detection
Requires multiple passes. Assumes temporal variability of R and V
is at longer time scale than that of ms. High potential for operational
application.

Lu and Meyer (2002); Shoshany et
al. (2000); Wagner and Scipal
(2000); Wickel et al. (2001)

SAR data fusion – passive and active microwave
Generally, uses active oσ to determine fine resolution V and R, and
passive TB to estimate ms OR downscales passive-derived ms with
fine resolution oσ .

Bindlish and Barros (2002);
Chauhan (1997); Huang and Jin
(1995); Lakshmi et al. (2000);
Notarnicola and Posa (2001)

SAR data fusion – microwave and optical
Based on complementarity or interchangeability of optical and SAR
data.  Simplifies the inverse problem for ms estimation.

Chanzy et al. (1995); Dabrowska-
Zielinksa et al. (2001); Entekhabi et
al. (1994); Moran et al. (1997);
Olioso et al. (1998); Taconet et al.
(1996); Wang et al. (2003)

SAR plus microwave scattering model
Empirical, semi-empirical and theoretical models available. Models
are inverted to estimate ms from oσ . Advantage: high accuracy.
Disadvantage: difficult model parameterization.

Colpitts (1998); Fung et al. (1996);
Pasquariello et al. (1997); Tansey
and Millington (2001); Verhoest et
al. (2000); Wiemann (1998)

soil moisture is to be monitored accurately with single-wavelength SAR data. When SAR data
with consistent ground truth information are available, it will be possible to test the many existing
retrieval algorithms.

CONCLUSIONS
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 The basic conclusion of this review is that currently orbiting SAR sensors can provide
surface soil moisture information with known accuracy at the watershed scale. Future research
should be dedicated to refining the approaches that meet the requirements for watershed
application and have the most potential for operational estimation of ms (Table 7-4). The most
robust, adaptable system will likely be based primarily on SAR images, and it will require a radar
backscatter model for determining ms and ground information for validation. However, there are
many obstacles yet to be overcome for a truly operational application for watershed management.

 First, the primary perturbing factors affecting the accuracy of SAR-derived ms

estimations are soil surface roughness and vegetation biomass. These, along with soil texture, are
also primary inputs to SVAT models. In this review, several promising approaches for estimating
these surface properties with satellite imagery were mentioned (e.g., Pasquariello et al., 1997;
Colpitts, 1998; Mattikali et al., 1998; Verhoest et al., 2000). Not only are these approaches
feasible, they are preferable to direct ground measurements because they offer flexibility of
coverage and resolution required at the watershed scale.
 Second, the accuracy of ms retrieved from remote sensing in all wavelengths is limited by
the non-linear effects of vegetation change. Vegetation biomass significantly influences surface
reflectance, thermal emission, microwave emission, and radar backscatter from the soil surface.
This review presents several approaches designed to minimize this effect, for example, limiting
analysis to sparsely vegetated sites (Quesney et al., 2000), monitoring signal differences when
vegetation is known to be static (Wickel et al., 2001), and by combining optical and SAR data
(Chanzy et al., 1995). Alternatively, there are models designed to determine SAR backscatter from
vegetation that have the potential to discriminate surface soil moisture (e.g., Ulaby et al., 1990;
Bindlish and Barros, 2001). Despite these attempts, there is no operational algorithm or model
using existing spaceborne sensors to determine the soil moisture of densely vegetated sites. This
should be considered a priority research area.
 Third, a common lament in nearly all soil moisture studies at the watershed scale is that
consistent ground information about ms and mp is rarely available at the scale and frequency
required for model calibration and validation. Though it is technologically feasible (Borgeaud and
Floury, 2000), no worldwide in situ soil moisture monitoring program is currently in place.
Consequently, most studies have been undertaken in conjunction with inter-disciplinary field
campaigns coordinated with multiple aircraft and satellite overpasses. For example, the HAPEX-
Sahel campaign in 1992 provided multi-scale soil moisture measurements up to a regional area of
12,100 km2 (Prince et al., 1995). Microwave images were acquired by the ERS SAR and SSM/I
satellite sensors, and detailed project information can be obtained at http://www.ird.fr/hapex/.  The
Washita experiment conducted in 1992 and the Southern Great Plains (SGP) experiments
undertaken in 1997 and 1999 employed a wide range of microwave instrumentation that provided
useful soil moisture measurement techniques at numerous scales appropriate for watershed
management (LeVine et al., 1994; Jackson et al., 1995, 2002a, 2002b; O’Neill et al., 1998;
Jackson, 1999; Jackson and Hsu, 2001). Microwave images were acquired with aircraft- and
satellite-based systems, as well as the Priroda sensors on the Mir Space Station. Links to these
remote sensing soil moisture experiments, including data, images, and reports, are available at
http://hydrolab.arsusda.gov/rsbarc/RSofSM.htm. Though such place-based campaigns have
expanded the science of soil moisture estimation, it will be necessary to have spatially and

http://www.ird.fr/hapex/.
http://hydrolab.arsusda.gov/rsbarc/RSofSM.htm.
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temporally consistent ground truth information coincident with SAR overpasses to test the many
existing retrieval algorithms.
 Fourth, as described in Table 7-1, current SAR sensor configurations include a multitude
of wavelengths, incidence angles, polarizations, resolutions, and overpass times. The SAR
backscatter signal from a given target is highly sensitive to sensor configuration. This sensitivity
has proven advantageous for studies based on the multi-dimensional information resulting from
multi-λ, multi-θi, and/or multi-polarization data (e.g., Dubois et al., 1995; Wever and Henkel,
1995; Pasquariello et al., 1997; Colpitts, 1998). However, variations in sensor configuration can
be devastating to studies based on the assumption that a change in oσ  is due exclusively to a
change in surface condition (e.g., Mattikalli et al., 1998; Wagner and Scipal, 2000). As a result,
most studies of change detection have been limited to the use of a single SAR sensor with a fixed
configuration. The accuracy of estimating soil properties (i.e., both soil moisture and texture)
could be greatly increased if the differences in scattering due to sensor configuration could be
normalized. In some cases, this has been resolved through the use of existing theoretical
backscatter models (e.g., Wickel et al., 2001).
 Fifth, an approach that has great potential for immediate operational application is the use
of single-wavelength, multi-pass SAR images for change detection, rather than absolute ms

estimation. Many multi-pass approaches for estimating ms were identified in this review (e.g.,
Shoshany et al., 2000; Wagner and Scipal, 2000; Wickel et al., 2001; Lu and Meyer, 2002).
Though useful, these will not be reasonable at the watershed scale until the price of SAR imagery
decreases from current levels.
 Finally, in this review, three satellite systems were described with the explicit mission of
measuring global soil moisture. The AMSR-E sensor, now in orbit aboard the NASA Aqua
platform, was designed to provide soil moisture mapping at 56 km and generally demonstrate
technology feasibility. The SMOS sensor, to be launched this decade by ESA, will provide
improved soil moisture mapping at a spatial resolution of potentially 37 km. The NASA HYDROS
will combine passive and active sensors to improve both sensitivity to soil moisture and spatial
resolution (estimated to be 10 km). Through international cooperation, these missions have been
designed to complement and build upon each other. Though none of these missions meets the
spatial resolution requirements for watershed applications (10 to 100 m), the technology
development and demonstration will certainly benefit the science of soil moisture mapping at all
scales.
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