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Abstract  
 
The thunderstorm rainfall in southeast Arizona has 
high spatial and temporal variation. Using areal-
averaged rainfall for watershed modeling had caused 
over or under estimations in erosion and runoff peak. 
This is a common problem usually faced by 
watershed researchers. This study had presented a 
series of analyses to identify spatial characteristics of 
thunderstorm rainfall based on statistical analyses on 
Walnut Gulch Experimental Watershed (WGEW) 
rainfall records. A stochastic daily summer rainfall 
generator was constructed and calibrated based on 
derived statistical characteristics and selected events. 
This rainfall generator can be used for advanced 
hydrological modeling. 
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Introduction 
 
Thunderstorm rainfall in semi-arid area has very high 
spatial and temporal variability (Osborn et al. 1993). 
Knowledge of the spatial characteristics of 
thunderstorm rainfall is important for the increasing 
demands of distributed hydrological modeling. 
Rainfall data from the semiarid USDA-ARS WGEW 
are used to investigate the spatial characteristics of 
thunderstorm rainfall in southeast Arizona and to  
develop a daily thunderstorm rainfall generator. 
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Methods 
 
This study was involved in two major tasks: the first 
part was the characterization of the spatial patterns of 
thunderstorm rainfall, which were derived form the 
statistical analyses on the 40-year WGEW summer 
rainfall records. The second part was the 
developments and calibrations of a daily 
thunderstorm rainfall generator based on the 
statistical characteristics derived from previous step. 
The following sections describe the methods in more 
details. 
  
Characterization of the thunderstorm rainfall 
patterns 
 
The first objective of this research is to identify the 
spatial characteristics of the daily summer 
thunderstorm rainfall on WGEW and TW in order to 
provide information for the construction of the 
thunderstorm generator. The spatial characteristics of 
the thunderstorm rainfall were clarified through the 
analyses of the historical rainfall events recorded by a 
dense rain gage network on WGEW and TW. Several 
distinct characteristics of thunderstorm rainfall were 
examined, which include: distribution of storm center 
location, distribution of maximum rainfall depth 
within a storm cell, shapes and orientations of storms, 
relation between maximum rainfall depth and storm 
coverage, and transition probability. 
 
Developments and calibrations of the daily 
thunderstorm rainfall generator 
 
A stochastic daily thunderstorm rainfall generator 
was constructed based on the statistical 
characteristics derived from the previous analysis. 
The rainfall generator involved the following steps: 
1) Generation of a dry/wet sequences using the 
transition probability derived above, 2) Generation of 
locations of storm center using derived distribution, 
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3) Generation of maximum rainfall depth within a 
storm cell using derived distribution 4) Generation of 
storm coverage using relation of maximum depth and 
storm coverage derived above, and 5) Computations 
of rainfall depth on rain gage location using 
exponential spread function spreading outward from 
the storm center. 
 
The simulated results were compared with 
observations and several adjustments of parameters 
were made to reduce the differences between 
simulations and observations. 
 
Events and Data Characteristics 
 
WGEW is located in southeast Arizona and has an 
area of 148 km2. It ranges in elevation from 1650 m 
in the east to 1200 m in the west. The rain gage 
network consists of 93 weighing bucket recording 
gages, which record cumulative depth of precipitation 
on a continuous time base. Location of WGEW and 
the rain gage network on WGEW are shown in 
Figures 1 and 2. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Location of WGEW. 

Figure 2. Rain gage network on WGEW. 
 
 
The comparison study is limited to single events that 
only one storm event was recorded during a day by 
event related rain gages. The rain gage network 

consisted of 93 weighting recording type gages that 
recorded cumulative depth of precipitation on a 
continuous time base. The summer (July - 
September) rainfall records from 1960-95 were 
converted into an Access database and the selected 
events were retrieved from the database 
 
Results 
 
Results from this research consist of two parts: the 
first part is the statistical characteristics of the 
thunderstorm rainfall in southeast Arizona from the 
analyses of the rainfall data and the second part is the 
results of the simulations from the constructed daily 
rainfall generator. The following articles discuss the 
results separately. 
 
Statistical characteristics of thunderstorm 
rainfall 
 
In order to construct a stochastic daily thunderstorm 
generator, the statistical characteristics of 
thunderstorm rainfall are examined to provide 
information for the generator. This study examined 
several properties of the thunderstorm rainfall, which 
include: storm occurrence, spatial patterns of storm 
centers, distribution of maximum rainfall depth 
within a storm cell, storm shapes and orientations, 
and relationships between storm coverage and 
maximum rainfall depth. The following sections 
describe the approach applied to identify these 
characteristics. 
 
Storm occurrence 
Monthly and bi-weekly transition probabilities 
(P(D/D) and P(W/W)) and probability of wet (P(W)) 
at each gage location were calculated. Table 1 
presents the average probabilities of 93 gages. The 
average monthly P(D/D) and P(W) of July and 
August have no significant differences. On the other 
hand, the average bi-weekly P(W/W) and P(W) have 
significant higher values comparing to other periods. 
The bi-weekly probabilities suggested that the second 
half of July (July 16-31) is the wettest period in 
summer. Hence, transition probability was computed 
on a bi-weekly basis. 
 
Since a bi-weekly simulation period is appropriate, 
the bi-weekly transition probabilities and probability 
of wet of the entire watershed were calculated. Table 
2 presents the bi-weekly transition probabilities and 
probability of wet for the entire watershed. The 
results indicate the storm occurrence has a higher 
frequency during the last two weeks of July and first 
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two weeks of August than other wet periods, which is 
consistent with previous studies (Rodriguez et al. 
1987). 
 
Table 1. Average monthly and bi-weekly transition 
probabilities and probability of wet (in percentage) 
from 93 gages. 
 
Period Jul Aug Sep Jul 1-15 Jul 16-31 
P(D/D) 76.10  76.78  86.63  79.86  68.67  
P(W/W) 47.29  40.14  36.48  45.27  51.86  
P(W) 23.90  23.22  13.37  25.05  39.06  
 
Period Aug 1-15 Aug 16-31 Sep 1-15 Sep 15-30
P(D/D) 75.59 80 83 93 
P(W/W) 42.98 36 35 35 
P(W) 31.28 24 22 11 
 
 
Table 2. Bi-weekly transition probabilities and 
probability of wet (in percentage) for the entire 
watershed. 

 
 
Spatial patterns of storm centers on WGEW 
In order to identify the spatial patterns of storm 
centers on WGEW, the locations of storm centers 
from each selected events were derived and 
aggregated to a map, which is shown in Figure 3. The 
nearest-neighbor analysis (NNA) (Davis 1986) was 
performed to identify the spatial patterns of points on 
a map. 
 
The NNA compares characteristics of the observed 
set of distances between pairs of closest points with 
those that would be expected if the points were 
randomly placed. The characteristics of a theoretical 
random pattern can be derived from the Poisson 
distribution. If the edge effect of the map is ignored, 
the expected mean distance between nearest 
neighbors is  
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Figure 3. Storm centers derived from single events 
(374 events from 1970-90). 
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where A is the area of the map and n is the number of 
points. 
 
The expected and observed mean nearest-neighbor 
distances can be used to construct an index R to 
identify the spatial patterns of points on a map 
(Davis, 1986). 
 

δ= /dR        (2) 
 
where d  is the observed mean distance between 
nearest neighbors and R is the near-neighbor statistic, 
range from 0 for a distribution where all points 
coincide and are separated by distances of zero to 1.0 
for a random distribution of points to a maximum 
value of 2.15 for a uniform distribution. Table 3 
presents the results of the nearest-neighbor test. The 
results show all the R indices fall in the second 
category that is between 1 to 2.15 and represents a 
spatial pattern of random distribution, which is a 
spatial Poisson distribution.  
 
Table 3. Nearest-neighbor analysis for WGEW storm 
centers. 

Period P(W) P(W/W) P(D/D)
Jul 1-15 56 69 61
Jul 16-31 79 82 35
Aug 1-15 67 76 51
Aug 16-31 55 65 61
Sept 1-15 51 67 66
Sept 16-29 25 56 86

× 10
4 

Area(sq. km) n delta dbar R

gages 153 93 640.38 1101.93 1.72

1970-75 162 107 614.47 826.70 1.35

1977-78 154 43 947.48 1285.22 1.36

1980-84 153 120 563.75 706.24 1.25

1985-90 152 104 604.55 881.60 1.46
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Distribution of maximum rainfall depth within 
a storm cell 
The rainfall depths are partitioned into several 
categories according to the amount of the depth. The 
count of each sub-category is calculated accordingly. 
The histogram of the depth in each sub-category 
verses the relative count is made to visualize the 
possible distributions and the Kolmogorov-Smirnov 
(K-S) test (Wilks 1995) is performed to test for the 
possible distributions. The maximum rainfall depth of 
each event was estimated as the maximum rainfall 
depth of each event from the observation. Table 4 
presents the K-S test for maximum rainfall depth 
within a storm cell. The tests accepted both 
lognormal and Gamma distributions. Since the 
lognormal distribution requires less parameter 
estimations, hence was used for the generations of the 
maximum rainfall depth within a storm cell. 
 
Table 4. K-S test for distribution of maximum rainfall 
depth within a storm cell. 
 

Distribution Jul 1-15 Jul 16-31 Aug 1-15 

Gamma  >0.15 >0.15 >0.15 

Lognormal >0.15 >0.15 >0.15 

Exponential >=0.025&<=0.01 >=0.025&<=0.01 <0.01 
 

Distribution Aug 16-31 Sept 1-15 Sept 16-30 

Gamma  >0.15 >0.15 >0.15 

Lognormal >0.15 >0.15 >0.15 

Exponential <0.01 <0.01 >=0.025&<=0.01
 

Storm orientations and shapes 
The lengths of the major (a) and minor (b) axes and 
orientations were measured directly from the derived 
rainfall surfaces. Forty-eight events from the derived 
rainfall surfaces that had storm centers inside the 
watershed boundary were selected for the analysis. 
The ratio r = a/b. Table 5 presents the summary 
statistics of storm orientation and ratio of the lengths 
of the major to the minor axes. The mean of the ratio 
of the major to the minor axes is 1.54, which 
indicates the shape of storm on WGEW is elliptical 
rather than circular (consistent with Fogel and 
Duckstein 1969). As for orientations, the K-S test 
was performed to test for the possible distributions 
(Table 6). 

Table 5. Summary statistics of storm orientation and 
ratio of the lengths of the major to the minor axes. 
 
 
 
 
 
 
 
 
 
 
Table 6. K-S test results for the distribution of the 
storm orientations on WGEW. 
 

Distribution of null hypothesis P-value 
Gamma distribution >0.15 

Lognormal distribution >0.15 
Normal distribution >0.15 

 

Relation of the maximum rainfall depth 
within a storm cell and storm coverage 
A scatter plot of the storm coverage verses 
corresponding maximum storm depth using 
logarithmic scale (Figure 4). The plot shows a linear 
trend between the depth and coverage after a 
logarithmic transformation. A regression analysis was 
performed to obtain the linear relationship between 
the depth and storm coverage. The R2 is 0.46 and the 
slope is 0.93. From the regression, the storm 
coverage was expressed as A = 3.18dmax

0.93 + ε ,  
where A is the storm coverage in km2, dmax is the 
maximum rainfall depth within a storm cell in mm 
and ε is the error term. The error term is obtained 
from the error between the prediction from the 
regression and observation. 
 
Stochastic daily thunderstorm generation 
 
The following section describes the models and 
algorithms for the various components of the rainfall 
generator based on the derived statistical 
characteristics. 
 
Precipitation occurrence 
The method uses a two-state Markov chain to 
generate the number and distribution of precipitation 
events. The six bi-weekly transition probabilities 
were calculated and used to provide a transition from 
one period to another. Random sampling of the bi-
weekly distribution is then used to determine the 
occurrence of a wet or dry day probabilities. 

ratio orientation
mean 1.54 91.40
Std 0.37 38.27
skewness 0.96 0.06
min. 1.08 0
max 2.50 170
count 39 48
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Figure 2. Maximum rainfall depth within a storm cell 
vs. storm coverage in logarithmic scale. 
 
Precipitation depth 
A lognormal distribution is used to represent the 
maximum precipitation depth within a storm cell. The 
form of this equation is 
 

s
Xlogx µ−

=       (3) 

 
where x is the standard normal deviate, X is the raw 
deviate, and µ and s are the mean, standard deviation 
of the raw deviate after a logarithmic transformation, 
respectively. The mean and standard deviation of the 
logarithmic daily depths were calculated for each two 
weeks. Then, to generate a daily depth for each wet 
day occurrence, a random normal deviate is drawn 
and the raw variate, X (daily depth), is calculated 
using Eq. 3. 
 
Storm coverage 
The storm coverage is calculated using the 
corresponding precipitation depth and a random error 
term. The form of this equation is 
 

ε±= 93.0X18.3A      (4) 
 

where A is the storm coverage in km2, X is the 
generated precipitation depth in the storm center 
(mm) and ε is the random error introduced from the 
predicted errors of regression of storm coverage and 
precipitation depth. A uniform variate between 0 and 
1 is generated to introduce the random error. The 
random error is added to the deterministic equation if 
the random variate is greater than 0.5, otherwise the 

random error is subtracted from the equation. Then, 
the storm coverage is calculated using Eq. 4. 
 
Storm orientation  
A normal distribution is used to represent the 
orientation of the major axis of the elliptical shape of 
the cell. The form of this equation is 
 

o

oo
o s

X
x

µ−
=       (5) 

 
where xo is the standard normal variate, Xo is the raw 
variate, and µo and so are the mean, standard 
deviation of the raw deviate, respectively. The mean 
and standard deviation of orientations were 
calculated in previous chapter. To generate an 
orientation for each wet day occurrence, a random 
deviate xo is drawn and the raw variate, Xo 
(orientation), is calculated using Eq. 5. 
 
Storm cell axes 
The lengths of a generated elliptical storm cell axes 
(a and b) can be calculated from the storm coverage 
A. Assuming the ratio of the major to minor axes is r, 
the form of this equation is 
 

2rbA π=        (6) 
 
where A is the storm coverage of a wet day event in 
m2 and b is the length of the minor axes in m, 
respectively. A uniform distribution is used to 
represent the ratio. The form of the equation is 
 

r

r

s
R

r
µ−

=       (7) 

 
where r is the standard uniform deviate, R is the raw 
variate, µr and sr are the mean, and standard deviation 
of the raw variate, respectively. The mean and 
standard deviation of the ratio were calculated in the 
previous chapter. Then, to generate  ratio for each 
storm, a random uniform deviate is drawn and the 
raw variate, R (ratio), is calculated using Eq. 7. Since 
a = Rb, a and b can be calculated using Eq. 6. 
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Storm center 
A uniform distribution is used to represent the wet 
day event storm center locations. The form of the 
equation is 
 

33750
Zz =        (8) 

 
where z is the standard uniform deviate between 0 
and 1, Z is the location of storm center. A rectangle 
simulation space covering the study area (WGEW) 
which consisted of 33,750 square cells with a 
resolution of 100m is used for simulations. An index 
ranges from 1~33,750 is assigned to each cell. To 
generate the location for each wet day occurrence, a 
random uniform deviate is drawn and the raw variate, 
Z (storm center location) is calculated using Eq. 8. 
 
Precipitation depths within storm coverage 
The precipitation depth at any location within a storm 
cell is calculated using a spread function. The spread 
function is a relation of relative precipitation depth at 
an arbitrary location with respect to the depth at the 
storm center and is usually related to the absolute 
distance between those two points. Two types of 
spread functions are evaluated in the model: linear 
and exponential (Fogel and Duckstein 1969) spread 
functions. The forms of the equations are 
 

maxP
d
xdPz

−
=  (linear)   (9) 

))P0264.0exp(
1600

d27.0exp(PP max

2

maxz −





π−=

 (exponential)     (10) 
 
where Pz is the precipitation depth (mm) at z, x is the 
distance between the storm center and z, d is the 
distance (m) between the boundary of the storm 
coverage and the storm center along the direction of z 
and storm center and Pmax is the precipitation depth 
(mm) at storm center. Parameters used in equation 
4.1.8 are adapted from Fogel and Duckstein (1969). 
To calculate the precipitation depth at any location 
within a storm cell, the distance between x and z is 
obtained, and the precipitation depth Pz is calculated 
using Eqs. 9 and 10, respectively. 
 
A Fortran code was developed to facilitate the 
thunderstorm generation. Due to page limitation, the 
results are summarized in the following sections. For 
more details, please contact the authors. 

Summary and Conclusion 
 
Summary 
 
This research study examined the spatial 
characteristics of the daily summer thunderstorm 
rainfall in the southeast Arizona. The following 
statistical characteristics of daily thunderstorm 
rainfalls have been identified from an analysis of the 
WGEW data: the storm center locations on WGEW 
have a Poisson distribution, the maximum depth 
within a storm cell has a lognormal distribution, the 
shape of a storm cell is elliptical with an average 
major axis length to the minor axis length ratio of 
1.55 and the orientation of a storm cell is primarily 
NW or NE. The storm coverage and the maximum 
rainfall depth within a storm cell have a linear 
relationship after a logarithmic transformation. Storm 
occurrences have higher frequencies during the last 
two weeks of July and the first two weeks of August 
than other wet periods and there was no significant 
trend of transition probability with elevation. The 
stochastic daily thunderstorm generator is able to 
produce the statistical daily thunderstorm rainfall 
characteristics on WGEW. 
 
Conclusion 
 
The daily thunderstorm rainfall generator provides a 
distributed thunderstorm generator for southeast 
Arizona. The research of the temporal variation 
during storms can be further studied. 
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