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ABSTRACT. This study presents a series of algorithms developed to estimate hydraulic roughness coefficients for overland flow.
The algorithms are combinations of neural networks that use surface configuration parameters and the local flow Reynolds
number as inputs, and provide an estimate of the roughness coefficient (Darcy-Weisbach, Manning, or Chezy). Results
presented here show that as new neural aetworks are combined into the stacked algorithm, the estimate errors become
gradually smaller. The Final Prediction Error index has been used to identify the optimum network size. Additionally, the
dataset used to develop the neural networks, developed from measurements taken at approximately equal Reynolds numbe r
intervals, has been found to benefit the algorithms predicting Chezy coefficients. The scarcity of data points in some region.s
of the output space for the Darcy—Weisbach and Manning models caused a reduction in the predictability of the algorithm.s
for these regions and prevented the use of more complex neural networks. The algorithms have been tested for a wide range

of input variables in a detailed sensitivity analysis and have produced reasonable results in all cases.
Keywords. Overland flow, Hydraulic roughness, Mathematical models, Neural networks.

he resistance to overland flow offered by the

surface of a hillslope may be expressed using

hydraulic roughness coefficients. In one of the

earliest studies on overland flow hydraulics,
Emmett (1970) described the roughness coefficients of field
plots as consisting of two components: particle roughness,
associated with the effects of single sand grains, gravel, and
plant sprouts; and form roughness, representing the effect of
microtopographic irregularities. In a laboratory experiment,
Rauws (1988) also described hydraulic roughness
coefficients as the sum of grain and form components, their
contribution to the total friction being strongly variable and
depending upon the Reynolds number and flow depth.
Abrahams et al. (1990) concluded from a series of
experiments on semiarid grassland and shrubland hillslopes
that hydraulic roughness coefficients are related to the
Reynolds number, and that the trend of this relationship
depends on the surface properties and shape.

Overland flow generally occurs as a discontinuous
shallow sheet of water with threads of flow diverging and
converging around microtopographic elevations, rocks, and
vegetation. As a result, flow depths and velocities, as well as
infiltration rates, are highly variable in space and time. In the
past, hillslope and watershed runoff simulations have been
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performed using primarily one~dimensional numerical mod-
els. These models represent complex surfaces as planes with
constant hydraulic properties and do not explicitly account
for microtopography and spatially variable soil properties
within the planes. The model coefficients then become fitting
parameters requiring calibration data, and predictions are
consequently difficult. In recent years, two-dimensional
overland flow models have become common (Fiedler and
Ramirez, 2000; Gandolfi and Savi, 2000; Govindaraju et al.,
1992; Zhang and Cundy, 1989). The detailed scale at which
two—dimensional models work allows them to explicitly
account for spatial variations in hillslope physical character-
istics, including surface roughness, infiltration, and microto-
pography. However, none of these models has yet considered
the spatial and temporal variability of roughness coefficients.

When theoretical modeling is difficult, empirical, data—
driven modeling provides a useful alternative. In recent
years, artificial neural networks have been proposed as
promising tools for developing empirical models in many
disciplines of science and engineering (e.g., Schaap et al.,
1998; Shayya and Sablani, 1999). Lopez—Sabater (2001)
tested different neural-networks to predict hydraulic rough-
ness coefficients using a variety of surface parameters, the
surface slope, and the flow Reynolds number as input
variables. The approach followed in his study was to consider
a number of candidate networks, and to select the network
that best predicted the roughness coefficients. The selected
neural networks were successfully used to reproduce rough-
ness coefficients obtained from a flume experiment. Howey-
er, when the networks were used to estimate roughness
coefficients for input values that were within the range, but
slightly different from those contained in the dataset, the
predicted coefficients were sometimes out of the expected
range.

One of the reasons used to explain the anomalous behavior
of the neural networks was that a single neural network might
not be able to extract all the information from the dataset that
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was used to calibrate it. Using a single optimal model
implicitly assumes that one neural network can extract all the
information available from the dataset and that other
candidate networks are redundant. However, there is no
assurance that any individual network extracts all relevant
information from the dataset. Some authors have suggested
that combining multiple neural networks in stacked models
leads to a higher forecast accuracy (Martin and Morris, 1999;
Sridhar et al., 1996). The idea of combining neural network
models is based on the premise that different neural networks
capture different aspects of the dataset, and that aggregating
this information should reduce uncertainty and provide more
accurate predictions.

The objective of this research was to develop improved
algorithms to predict hydraulic roughness coefficients. The
algorithms are based on the concept of stacked neural
networks and use selected surface configuration parameters
and the local flow Reynolds number as input variables. The
algorithms can then be used, in conjunction with two—dimen-
sional overland flow models, to estimate roughness parame-
ters for each computation node and time step in a numerical
simulation. The procedure can also be useful for one-dimen-
sional applications in which conditions across the flow
direction are approximately homogeneous, as in the case of
border irrigation.

MATERIALS AND METHODS
EXPERIMENT

A laboratory experiment was performed to produce a large
dataset that could be used to train neural networks in the
prediction of hydraulic roughness coefficients. A detailed
description of the experimental setup and the methods
employed to create the dataset is provided by Lopez-Sabater
(2001). The experiment was designed so that the resulting
database would be representative of overland flow occurring
under a wide variety of conditions: different microtopo-
graphic configurations, a broad range of slopes, and an
extensive selection of flow rates. Five artificial surfaces, 1 m
long and 0.5 m wide, with different microtopographic
configurations, were constructed using concrete. The sur-
faces were shaped by hand simulating five different surface
conditions, from a smooth plane to a dense network of rills.
The goal was not to reproduce natural or man—made surfaces,
but to create a collection of appreciably different surfaces.
The surfaces were successively coated with sand four times,
each time using a larger grain size, thus producing twenty
combinations of surface shape and sand cover. The sand was
carefully glued to the surface, and when the glue dried, the
excess sand was removed.

After the application of a sand cover, each surface was
scanned using a laser scanner (Huang and Bradford, 1990) to
produce a digital model of the surface microtopography. The
scanner was set to record 200 longitudinal profiles 2 mm
apart, each one having 900 measurements I mm apart. The
experimental variogram was computed for each one of the
200 profiles, and later the 200 experimental variograms were
pooled together to create an ensemble average. An exponen-
tial model was then adjusted using least squares to the
variogram ensemble average (y\), and the values of the two
model parameters, o% [L?] (variance of the elevation
measurements) and L [L] (correlation length), were obtained.

The variogram exponential model was (Huang and Bradford,
1992):

Y, =62 (—e M) (D

DATASET

Three parameters were thus used to describe the configu-
ration of the surfaces: the diameter d of the sand used to coat
the surfaces, 02, and L. After the characterization of the
microtopography, the surfaces were placed on a flume with
a removable central section. The surfaces were positioned so
that the flume bed coincided with the surface main plane. The
slope of the flume was allowed to vary between 0.5% and
21.1%, and the surfaces were tested for a range of discharges
between 0.03 and 0.43 L m~! s~1. Measurements taken from
the flume permitted the computation of hydraulic roughness
coefficients for different conditions of slope and discharge.
Darcy-Weisbach, Manning, and Chezy roughness coefti~
cients were computed from the flume data using the
following expressions:
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where
f = dimensionless Darcy—Weisbach roughness
coefficient

n [T L-3] = Manning’s roughness coefficient

C [L¥2T-1] = Chezy’s roughness coefficient

R [L} = hydraulic radius

S{L L1 = flume slope

VIL T-1] = average flow velocity.

The average flow velocity was estimated from measure-
ments of dye clouds. The hydraulic radius was computed by
dividing the flow discharge by the average velocity, thus
equaling the average depth. Therefore, the roughness
coefficients so computed implicitly accounted for the
deviation of the actual hydraulic radius from the average
depth. Reynolds numbers were computed as:
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where v [L.2 T-1] = kinematic viscosity.

Eventually, a dataset containing 1827 data records was
created. Each record contained a value for each of the
following variables: ¢ (in mm), 0% (in mm?2), L (in mm),
Reynolds number (dimensionless), flume slope (%), Darcy—
Weisbach roughness coefficient (dimensionless), Manning
roughness coefficient (in s m~3), and Chezy roughness
coefficient (in m!/2 s-1).

STACKED NEURAL METWORK ALGORITHMS

There is no assurance that a single neural network can
extract all relevant information from a dataset (Sridhar et al.,
1996). It is possible that different neural networks may
capture different aspects of the information contained in the:
dataset, and that aggregating these networks can improve the:
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estimation of roughness coefficients. Stacked neural network
algorithms were created as combinations of 100 neural
networks, with the overall output being the average of the
individual network outputs. The outputs of the individual
networks were restricted to the range of roughness coeffi-
cients measured in the flume experiment. Network outputs
outside that range were set equal to the maximum or
minimum of the measured values.

In order to develop the neural networks, the dataset was
divided in three subsets. First, 20% of the dataset records
were randomly selected and separated from the rest. This
subset constituted the testing set and eventually was used to
test the predictive capabilities of the algorithms. The
remaining 80% of the dataset was divided into a training set,
consisting of 60% of the records and used to calibrate the
neural networks, and a validation set. The purpose of the
validation set was to stop the calibration process soon enough
to avoid overfitting. Overfitting occurs when the network
being calibrated attempts to account for features in the input
variables that are of progressively lesser significance, and
which indeed may represent information unrelated to the
investigated relationship. Such features can be considered to
be noise in the context of the pattern being sought. When
overfitting occurs, the error on the training set is driven to a
very small value, but when new data is presented to the
network, the error is large. In this case, the network has
memorized the training examples, but it has not learned to
generalize to new situations (Rzempoluck, 1998).

Training and validation sets were randomly resampled for
each of the neural networks, thus ensuring that the dataset
used to calibrate each network was somewhat different from
the sets used to calibrate the rest of the networks in the stack.
The parameters of each neural network (weights and biases)
were obtained in an iterative calibration procedure based on
the Levenber-Marquardt algorithm (Demuth and Beale,
1998) and the minimization of the mean squared error (MSE)
objective function. The procedure was repeated 100 times to
generate 100 networks. Each network was then evaluated in
terms of the MSE for both the training and validation sets.
Those networks with an MSE larger than two times the
average of the 100 networks were discarded and replaced
with new networks.

In modeling neural networks, it is difficult to specify
a priori the optimum network architecture. Demuth and
Beale (1998) suggested that a feed—forward back—propaga-
tion neural network, with one nonlinear hidden layer and a
linear output layer, can approximate any unknown relation-
ship with a finite number of discontinuities, given sufficient
neurons in the hidden layer. The number of nodes in the
hidden layer depends on the complexity of the underlying
problem and is determined empirically by calibrating and
testing different architectures. In this study, five network
architectures were tested using, as recommended by Demuth
and Beale (1998), a single sigmoidal hidden layer and a linear
output layer as the basic scheme. The network architectures
differed only in the number of nodes in the hidden layer (4,
8, 12, 16, or 20), which in turn determined the total number
of parameters that the calibration procedure would have to
adjust (29, 57, 85, 113, or 141). Large network architectures
cause the training process to last significantly longer and can
induce overfitting, which transiates into a loss of generaliza-
tion ability and an increase in estimate errors for records not
included in the training set.
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EVALUATION CRITERIA

The purpose of evaluation is to verify that the identified
models fulfill a series of requirements according to objective
criteria for good model approximation. It is usually a major
objective to obtain a model of least possible complexity
within the limits of required model accuracy. The residuals
of a model represent the misfit between measured data and
model outputs. The presence of any information remaining
in the residuals is an indication that the model might be
insufficiently complex or otherwise inappropriate (Martin
and Morris, 1999).

The stacked neural network algorithms were evaluated
using the subset reserved for testing purposes, which
consisted of 20% of the records in the original dataset that
were not used in the development and calibration of the
neural networks. The input variables of each testing record
were presented to the stacked algorithms and used to estimate
a roughness coefficient. The performance of the algorithms
was then evaluated in terms of the root mean square of the
residuals (RMSR) and the correlation coefficient (r) between
observed and predicted roughness coefficients. The root
mean square of the residuals was computed using the
expression:

RMSR=

(6)

where
O = “observed” roughness coefficients (calculated from
the flume measurements)
P = predicted values (neural network algorithm outputs)
N = number of observations in the testing subset.
Another index used in evaluating the models was the final
prediction error (FPE) (Martin and Morris, 1999), which was
computed using the formula:

FPE:_E__ MW. (7)
2N| N-N,,

where

E = average squared error over the N data points

N,, = number of adjustable parameters or weights in each

network.

To compute the index FPE, the value of E was substituted
with the squared value of the RMSR. The objective of the
modeling approach is to reach a balance between the
accuracy of model fit and the number of parameters, and
minimization of this test function leads to networks that are
neither under— nor over—complex.

If the model 1s correct, then the residuals should be
structureless. In particular, they should be uncorrelated with
any other variables, including inputs and outputs. A simple
check is to plot the residuals versus the output values. Such
a plot should not reveal any obvious pattern. Another
valuable diagram is the histogram of the residual amplitudes,
which reveals distributions that differ from the normal
distribution.

Finally, a sensitivity analysis was performed to test the
prediction ability of the stacked models within the whole
range of variability of the input variables. A base data record
was created averaging the maximum and minimum values of
the input variables. Then two of the input variables were
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allowed to vary between their minimum and maximum
values, while the other three were kept constant at their base
values. The new combinations of input variables were
presented to the stacked network models to predict the
roughness coefficients associated with the new records. For
each model, the procedure was repeated ten times to allow all
possible pairs of input variables to vary at a time. Model
estimates were assembled in surface plots with the two
horizontal axes corresponding to the two input variables that
were allowed to change in the analysis.

RESULTS AND DISCUSSION

Figure | presents the values of the RMSR for each of the
100 neural networks that make up three of the algorithms
developed, as well as the evolution of the RMSR when the
networks were added one at a time to create the stacked
models. The figure depicts the case of networks with
12 hidden nodes. Plots a, ¢, and e show the RMSR for the
individual networks, while b, d, and f show the effect of
progressively combining the networks in stacked models. It
is apparent that the predictive ability of each network is
different from the rest, and that combining the networks in a
single model reduces the overall RMSR (e.g., fig. 1b) and
integrates all the learning done by the individual networks.
The selected number of networks (100) looks reasonable and
is similar to the number of networks selected in other studies
(Schaap et al., 1998). Evidence from this study suggests that
increasing the number above 100 does not significantly alter
the overall RMSR. Results presented in the following
sections refer to the stacked neural network algorithms.
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Figure 1. RMSR (root mean square of the residuals) of single neural net-
works for Darcy-Weisbach’s f, Manning’s n, and Chezy’s C with 12 hid-
den nodes and the stacked algorithms for records in the testing data
subset.
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PREDICTIONS VS. OBSERVATIONS: CORRELATION
COEFFICIENTS

Estimates based on the input variables of the testing
records were compared to their corresponding flume mea-
surements. Correlation coefficients between observations
and estimates were computed and are shown in figure 2. In
all cases, the values of r are above 0.90, which gives an idea
of the quality of the model predictions for input data obtained
from the laboratory experiment. It is also apparent from
figure 2 that increasing the complexity of the neural networks
(i.e., the number of neurons in the hidden layer) causes an
improvement in model predictions. The rate of improvement
is larger for models of low complexity. As complexity
increases (12 neurons or more in the hidden layer), the
performance evaluated as the correlation coefficient does not
improve much more.

There is also a clear ranking in model performance that
responds to the type of roughness coefficient predicted.
Models predicting Chezy roughness coefficients produced
the highest correlation coefficients for network algorithms
with any number of hidden nodes. In addition, algorithms
predicting Manning roughness coefficients produced cor-
relation coefficients higher than algorithms predicting
Darcy-Weisbach coefficients. This difference in perfor-
mance might be associated with the different relationship that
the roughness coefficients display with the Reynolds number.

Figure 3 shows how different the distributions of the three
roughness coefficients were based on flume measurements at
approximately constant Reynolds number (Re) intervals.
Chezy coefficients obtained from the flume experiment were
linearly related to Re, while Manning and especially
Darcy—Weisbach coefficients were linearly related to the
logarithm of Re. The logarithmic relation to Re caused most
of the Darcy—Weisbach roughness coefficients obtained from
the flume experiment, and many of the Manning coefficients,
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ness coefficients versus neural network complexity (number of nodes in
the hidden layer).
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Figure 3. Performance of stacked models of neural networks with 12 nodes in the hidden layer. R? is the coefficient of determination of the best linear

fit.

to be relatively small (see fig. 3), therefore creating an
asymmetric dataset. Trained with this dataset, the neural
networks learned to predict small coefficients better than
large coefficients, and consequently, the errors associated
with prediction of large coefficients in the testing dataset are
larger for Darcy—Weisbach networks than for Manning
networks, and larger for Manning networks than for Chezy
networks.

RMSR anp FPE

The second index used to compare model performance
was the root mean square of the residuals, which was
computed using equation 6. Figure 4 shows the same
tendencies observed in figure 2, that is, RMSR decreases
monotonically with increasing model complexity, and the
rate of improvement declines with the number of nodes in the
hidden layer.

The final prediction error (FPE) index balances the
accuracy of the model estimates and the algorithm complex—
ity, and therefore can be used to identify the optimal model

Performance of Stacked Network Algorithms

architecture. Figure 5 shows the FPE values produced by the
different models versus complexity (i.e., the number of
hidden nodes). The decreasing tendency previously observed
for the RMSR has been counterweighted by the effect of the
number of parameters. All three models seem to show a
minimum FPE value, and therefore an optimum architecture,
within the range of hidden nodes tested. The Darcy—Weis-
bach algorithms have a minimum FPE for networks with 4 to
12 nodes, the Manning algorithms have a minimum FPE for
networks with 12 nodes, and the Chezy algorithms appear to
have a minimum FPE for networks with 12 to 20 nodes.

Again, the difference in optimum network architecture might
be connected to the relationship of the roughness coefficients

to the Reynolds number.

All Darcy-Weisbach networks learned to reproduce small
roughness coefficients better than large roughness coeffi-
cients. Simple networks learned to reproduce small coeffi-
cients to a high degree of accuracy because records in this
class were abundant in the training dataset, but not even the
most complex networks (i.e., with 20 hidden nodes) were
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Figure 4. RMSR versus model complexity (number of nodes in the hidden
layer of the networks used to create the stacked algorithm) for the testing
data subset.
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Number of Nodes

Figure 5. FPE (final prediction error) versus model complexity (number
of nodes in the hidden layer of the networks used to create the stacked al-
gorithm) for the testing data subset.
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able to accurately reproduce large coefficients because of the
lack of records from which to learn the relationship.
Consequently, all the networks produce large errors when
they are used to reproduce large coefficients, and therefore
little improvement is achieved when the network complexity
is increased. On the other hand, Chezy networks learned to
reproduce roughness coefficients of all magnitudes because
all were equally abundant in the training dataset. Increasing
the complexity of the networks was worthwhile in this case
because it was compensated by a significant improvement in
information extraction. Manning networks clearly represent
an intermediate situation.

RESIDUALS

Results from the analysis of residuals for the algorithms
based on 12-node networks are shown in figure 6. Plots a, c,
and e are histograms of the residuals, while plots b, d, and e
show the residuals versus the measured roughness coeffi-
cients. In all cases, the histograms of the residuals were
centered at zero and displayed a normal-shaped distribution.
The residuals did not show any pattern when plotted against
the measured roughness coefficients, although the magnitude
of the residuals did increase with the values of the
coefficients for Darcy—Weisbach and Manning. These results
reflect again the high degree of accuracy of the stacked
models when they were used to predict the roughness
coefficients measured from the laboratory experiment.

SENSITIVITY ANALYSIS

A base data record was created as the average of the
maximum and minimum values of the input variables in the
dataset. The base values of the input variables were: d =
1.78 mm, 0% = 40.4 mm?2, L = 100 mm, Re = 710, and § =
11.5%. Figure 7 shows the response surfaces generated with
the Darcy—Weisbach algorithm based on networks with
8 neurons in the hidden layer as an example. These surfaces
have been created by restricting the output of the individual
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Figure 6. Evaluation of the residuals for algorithms with networks with 12
hidden nodes.
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neural networks to a limited range of f values (0.36 to 90.8).
This artifact prevents outliers but does not affect the overall
shape of the surface.

One important characteristic of the surfaces is their
smoothness. None of the surfaces show sudden changes of
magnitude or trend for small changes of the input variables,
as can be the case for single neural networks. This suggests
that the stacked network algorithm has been able to learn the
underlying relationship between input variables and rough-
ness coefficients. Furthermore, the stacked models were able
to generalize what was learned from the training records to
other combinations of input variables.

Interpretation of the response surfaces is difficult and can
be done only to a limited extent. In general, friction tends to
decrease both with slope and with Reynolds number.
Increasing slopes cause flow concentration in microtopo-
graphic depressions and a consequent reduction of friction.
Increasing discharge, and therefore Reynolds number, pro-
duces an increase in hydraulic radius and submergence of
roughness particles, thus causing a decline in roughness
coefficients. The effect of the sand diameter is small
compared with the other variables, and its contribution to the
roughness coefficients is generally masked by the other
factors.

The contributions of 6 and L are the most difficult to
interpret. Both factors appear to have a large influence in
roughness coefficients for small slope and Reynolds number.
When slope or Reynolds number increase, the effects of both
o? and L are damped out and friction losses decrease.
Significantly, both variables cause the predicted roughness
coefficient to peak within their range of variability. The peak
occurs for a 02 of about 30 mm? and L of about 100 mm. For
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Figure 7. Sensitivity analysis of the Darcy-Weisbach algorithm based on
networks with 8 hidden nodes.
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the surfaces tested in the flume experiment, the value of a2,
the variance of the elevation measurements, was small for
flat surfaces and increased with larger microtopography. The
larger values corresponded to the rilled surfaces, which
restricted flow to the bottom of the microtopographic
depressions. This can explain the initial rise and subsequent
decrease of roughness coefficients for o2. However, the
values of L are related to the spatial correlation of the
elevation measurements, rather than to the degree or size of
the roughness elements. This fact makes the interpretation of
the influence of L more difficult.

Similar response surfaces were generated with the Man-
ning and Chezy algorithms, with network outputs limited to
the range 0.027 to 0.48 s m~13 for Manning networks and to
the range 0.20 to 4.69 m!2 s~ for Chezy networks.

CONCLUSIONS
This study presents a method for combining relatively

simple neural networks into a stacked algorithm to generate
reliable estimates of hydraulic roughness coefficients from
measurable data. The following conclusions can be drawn
based on the development of the neural network algorithms
and testing results:

o Combining neural networks in a stacked algorithm
reduced the RMSR of the predictions. As networks are
combined into the stacked algorithm, the RMSR becomes
increasingly smaller. The RMSR of the stacked algorithm
was always similar to (slightly larger or slightly smaller
than) the RMSR of the best neural network.

e The experimental sampling scheme created an
asymmetric dataset of Darcy-Weisbach and Manning
coefficients that prevented the neural networks from
adequately learning the relationship between input and
output variables.

= Increasing network complexity (i.e., number of nodes in
the hidden layer) caused the RMSR of the stacked
algorithm to decrease and the correlation between
predictions and observations to increase. However, the
rate of improvement diminished when the network
complexity increased. The FPE index can be used to
identify the optimum neural network architecture, which
is dependent on the complexity of the underlying
relationship and the quality of the dataset.

¢ Residuals from the stacked neural network algorithms
were normally distributed and no clear trend between
residuals and estimated roughness coefficients was
observed.

o The response surfaces generated in the sensitivity analysis
were smooth. The stacked algorithms were able to
reproduce the relationships between input variables and
roughness coefficients in the training dataset, and learned
to generalize these relationships to other combinations of
input variables.
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