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Estimating soil moisture at the watershed scale
with satellite-based radar and land surface

models
M. Susan Moran, Christa D. Peters-Lidard, Joseph M. Watts, and Stephen McElroy

Abstract. Spatially distributed soil moisture profiles are required for watershed applications such as drought and flood
prediction, crop irrigation scheduling, pest management, and determining mobility with lightweight vehicles. Satellite-based
soil moisture can be obtained from passive microwave, active microwave, and optical sensors, although the coarse spatial
resolution of passive microwave and the inability to obtain vertically resolved information from optical sensors limit their
usefulness for watershed-scale applications. Active microwave sensors such as synthetic aperture radar (SAR) currently
represent the best approach for obtaining spatially distributed surface soil moisture at scales of 10–100 m for watersheds
ranging from 1 000 to 25 000 km2. Although SAR provides surface soil moisture, the applications listed above require
vertically resolved soil moisture profiles. To obtain distributed soil moisture profiles, a combined approach of calibration
and data assimilation in soil vegetation atmosphere transfer (SVAT) models based on recent advances in soil physics is the
most promising avenue of research. This review summarizes the state of the science using current satellite-based sensors to
determine watershed-scale surface soil moisture distribution and the state of combining SVAT models with data assimilation
and calibration approaches for the estimation of profile soil moisture. The basic conclusion of this review is that currently
orbiting SAR sensors combined with available SVAT models could provide distributed profile soil moisture information
with known accuracy at the watershed scale. The priority areas for future research should include image-based approaches
for mapping surface roughness, determination of soil moisture in densely vegetated sites, active and passive microwave data
fusion, and joint calibration and data assimilation approaches for a combined remote sensing – modeling system. For
validation, a worldwide in situ soil moisture monitoring program should be implemented. Finally, to realize the full potential
of satellite-based soil moisture estimation for watershed applications, it will be necessary to continue sensor development,
improve image availability and timely delivery, and reduce image cost.

826
Résumé. Les profils d’humidité du sol spatialement distribués sont nécessaires dans le cadre des applications liées aux
bassins versants telles que la prévision des sécheresses et des inondations, la planification des cédules d’irrigation des
cultures, la gestion des infestations et la détermination de la mobilité des véhicules légers. L’humidité du sol peut être
dérivée des données satellitaires au moyen des capteurs micro-ondes passifs, micro-ondes actifs et des capteurs optiques,
bien que la résolution spatiale grossière des capteurs micro-ondes passifs et l’impossibilité d’obtenir une information
intégrée verticalement avec les capteurs optiques limitent leur utilité pour les applications à l’échelle du bassin versant. Les
capteurs micro-ondes actifs comme le radar à synthèse d’ouverture (RSO) représentent à l’heure actuelle la meilleure
alternative pour l’obtention d’information sur l’humidité de surface qui est spatialement distribuée aux échelles de 10–
100 m pour les bassins variant en superficie de 1 000 à 25 000 km2. Quoique le capteur RSO permette d’obtenir de
l’information sur l’humidité de surface, les applications énumérées ci-dessus font appel à des profils d’humidité du sol
intégrés verticalement. L’avenue la plus prometteuse permettant d’obtenir des profils d’humidité du sol distribués
verticalement consiste à utiliser une approche combinée d’étalonnage et d’assimilation des données basée sur l’utilisation
des modèles SVAT (« soil vegetation atmosphere transfer models ») basés sur les plus récents développements en physique
des sols. Cet article de synthèse résume l’état actuel de la science dans le domaine de l’utilisation des capteurs satellitaires
actuels pour la détermination de la répartition de l’humidité de surface à l’échelle du bassin versant, et fait le bilan de
l’utilisation conjointe des modèles SVAT et des approches d’assimilation et d’étalonnage des données pour l’estimation des
profils d’humidité du sol. La conclusion de base de cette synthèse est à l’effet que les données des capteurs RSO
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présentement en orbite utilisées en combinaison avec les modèles SVAT disponibles peuvent fournir une information sur les
profils d’humidité du sol distribués avec une précision déterminée à l’échelle du bassin versant. Les secteurs prioritaires de
recherche pour le futur devraient inclure des approches basées sur les images pour la cartographie de la rugosité de surface,
la détermination de l’humidité de surface dans les zones de végétation dense, la fusion des données des capteurs micro-
ondes actifs et passifs et des approches conjointes d’étalonnage et d’assimilation des données dans l’optique d’un système
combiné télédétection–modélisation. Pour fins de validation, on devrait mettre sur pied un programme in situ de suivi de
l’humidité du sol à l’échelle du monde. Enfin, pour réaliser pleinement le potentiel de l’estimation de l’humidité du sol à
partir de l’information satellitaire dans le contexte des applications au niveau des bassins versants, il sera nécessaire de
poursuivre le développement des capteurs, d’améliorer la disponibilité des images et la livraison des données en temps
opportun et de réduire le coût des images.
[Traduit par la Rédaction]

Introduction
Information about the distribution of soil moisture has

proven useful for watershed management to determine the
allocation of limited resources during times of drought and help
coordinate relief efforts in times of flooding. Soil moisture
distribution also plays a key role in the prediction of erosion
and sediment loads in watershed streams and ponds. In
cultivated watersheds, soil moisture information has been used
for irrigation scheduling, site-specific management of diseases
and pests, and improving crop yield prediction. In arid and
semiarid watersheds, soil moisture content has been used as a
surrogate indicator of general plant health. A practical
application of soil moisture information is the determination of
mobility with lightweight vehicles.

Such watershed-scale applications have a common set of
requirements that define the desired soil moisture product
(Table 1). The spatial distribution is generally required at a
very fine resolution, from 10 to 100 m. The desired soil
moisture depth includes the subsurface to the entire root zone,
from 15 cm to >1 m, but the uncertainty requirements vary with
application. In most cases, the product accuracy requirement is
moderate (�75%) because such accuracies are acceptable when
the alternative is decision making without any soil moisture
information. On the other hand, the requirement for product
delivery is very restrictive because watershed managers are
often making day-to-day decisions in response to natural and
human-induced influences. Thus, product delivery should be
upon request of the manager and within 3–4 days of the request.
The vast majority of managed watersheds in the United States
have drainage areas of less than 10 000 km2, where the term
river basin is reserved for larger areas (Committee on
Watershed Management, 1999). Thus, the required coverage of

distributed soil moisture information is 1 000 to 25 000 km2.
These requirements lend themselves well to the use of planned
and currently orbiting earth-observation sensors, particularly
synthetic aperture radar (SAR) and optical sensors. In fact, a
great deal of progress has been made in the use of spectral
images from satellite sensors for soil moisture mapping, where
surface soil moisture (ms) is the average moisture (cm3 cm–3) in
the top few centimetres of soil over a heterogeneous volume.

For all orbiting sensors, remote sensing alone can only
provide ms. Most studies agree that the penetration depth for
microwave sensing is between 0.1 and 0.2 times the
wavelength, where the longest wavelengths (L-band) are about
21 cm (Oh, 2000; Ulaby et al., 1996). To fully meet the
requirements for soil moisture information for the watershed-
scale applications described above, it is necessary to combine
the horizontal coverage and spatial resolution of remote
sensing with the vertical coverage and temporal continuity of a
soil moisture simulation model. Such models are generally
called soil vegetation atmosphere transfer (SVAT) models. The
advantage of SVAT models is that profile soil moisture (mp) is
estimated to several metres depth on hourly, daily, or monthly
timesteps. The accuracy depends on the model physics, the
number and configuration of soil layers, the accuracy and
nature of the input data, and the climate conditions and
biophysical and geophysical characteristics of the site. One
disadvantage of SVAT models for monitoring watershed soil
moisture condition is that the models are typically one-
dimensional and, without remotely sensed inputs, are rarely
capable of producing a distributed map of soil moisture. Most
models have been designed for existing point data and do not
account for the spatial variability that is known to exist.

The importance of accounting for soil moisture distribution
at the watershed scale cannot be overstated. Soil moisture
distribution is a complex function of not only soil physical
properties and topography, but also vegetation type, land use,
season, time of day, weather conditions, and initial soil
moisture. The results of some studies have shown that the
coefficient of variation decreases with increasing soil water
content (Archer et al., 1999), and the parametric form of the
soil moisture distribution deviates from the common gamma or
normal distributions with variations in scale (Kothari and
Islam, 1999; Beldring et al., 1999). Consequently, management
decisions made at the watershed scale with an assumption of
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Mapping parameter Requirement

Spatial resolution 10–100 m
Spatial coverage 1 000 to 25 000 km2

Vertical resolution Root zone, 15 cm to >1 m
Quantization 3–4 levels, ranging from dry to very wet
Accuracy Moderate, �75%
Product delivery Upon request, within 3–4 days of request

Table 1. Soil moisture product requirements for application to
watershed management.



uniform soil moisture conditions may result in wasted or
insufficient resources.

In this review, we will concentrate on the approaches that
have the most promise for operational soil moisture mapping at
the scale of managed watersheds (Table 1). First, we offer a
short review of ms estimation using optical and microwave
sensors to make the case that a system based primarily on SAR
sensors represents the best approach for obtaining spatially
distributed surface soil moisture at watershed scales. Based on
that assertion, we then provide a review of approaches for ms

and mp estimation, which includes

(1) Approaches for ms estimation using SAR, with particular
emphasis on the use of microwave scattering model, SAR
for ms change detection, and SAR data fusion

(2) Profile soil moisture (mp) estimation based on a
combination of remote sensing (RS) and SVAT models
through model calibration and data assimilation,
including a short overview of SVAT modeling at the
watershed scale

A key theme is that remote sensing can only measure ms, and
SVAT models are best suited to estimate mp. Consequently, a

combined approach using remotely sensed data for calibration
and data assimilation in SVAT models is the most promising
research direction for satellite-based estimation of soil
moisture profiles at the watershed scale.

The review will finish with a synthesis of the most important
research and development issues related to a truly operational
system for watershed management. Introductory material on
spectral measurements for ms estimation is summarized in
Table 2.

Overview of optical and microwave soil
moisture sensing

This section provides an overview of the progress and
constraints of optical and microwave sensing of ms. The
objective of this overview is to provide sufficient information to
assess the potential of current orbiting systems to map ms at the
watershed scale. As mentioned in the introduction, the coarse
spatial resolution of passive microwave and the inability to
obtain vertically resolved information from optical sensors
limit their usefulness for watershed-scale applications. Thus,
the following sections will focus on the state of the science
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Physics Advantages Limitations

Visible, NIR, SWIR reflectance
Spectral information in visible, NIR, and

SWIR wavelengths is related to ms as a
function of spectral absorption features; for
bare soils, increase in ms generally leads to
a decrease in soil reflectance

Fine spatial resolution

Broad coverage

Multiple satellite sensors available

Hyperspectral sensors show promise

Weak relation to ms

Minimal surface penetration (~1 mm)

Limited ability to penetrate clouds and
vegetation; attenuated by earth’s
atmosphere

Infrequent repeat coverage

Strongly perturbed by vegetation biomass

TIR emittance
Soil moisture directly influences soil

temperatures by increasing both specific
heat and thermal conductivity, thus thermal
inertia of soils; for bare soil, variations in
surface TR primarily due to varying ms

Fine spatial resolution

Broad coverage

Multiple satellite sensors available

Strong relation to ms TR/VI approaches
show promise

Minimal surface penetration (~1 mm)

Limited ability to penetrate clouds and
vegetation; attenuated by earth’s
atmosphere

Infrequent repeat coverage

Strongly perturbed by vegetation biomass

Microwave TB

Intensity of microwave emission (at σ0 =
1–30 cm) from soil is related to ms because
of large differences in dielectric constant of
dry soil (~3.5) and water (~80); for bare
soils, increase in ms generally leads to
increase in TB

Broad coverage

Satellite sensor recently available

Strong relation to ms

Surface penetration up to ~5 cm

Insensitive to clouds and earth’s atmosphere

Perturbed primarily by surface roughness
and vegetation biomass

Coarse spatial resolution (~30 km)

Radar σ0

As with passive microwave sensing,
magnitude of σ0 is related to ms through
contrast of dielectric constants of bare soil
and water; for bare soils, increase in ms

generally leads to increase in σ0

Fine spatial resolution

Multiple satellite sensors available

Strong relation to ms

Surface penetration up to ~5 cm

Insensitive to clouds and earth’s atmosphere

Infrequent repeat coverage

Perturbed primarily by surface roughness
and vegetation biomass

Table 2. Summary of spectral measurements for ms estimation.



using SAR sensors combined with available SVAT models to
provide distributed, profile soil moisture information with
known accuracy at the watershed scale.

Optical sensing of surface soil moisture

Despite the multitude of optical sensors currently in orbit
(Kustas et al., 2003), a limited body of literature exists on the
use of visible, near-infrared (NIR), shortwave infrared (SWIR)
wide-band and (or) hyperspectral sensors for soil moisture
assessment (Muller and Décamps, 2000). This is due partly to
the fact that optical remote sensing measures the reflectance or
emittance from only the top millimetre(s) of the surface.
Furthermore, unlike the longer microwave wavelengths, the
optical signal has limited ability to penetrate clouds and
vegetation canopy, and is highly attenuated by the earth’s
atmosphere. In addition to moisture content, soil reflectance
measurements are also strongly affected by the soil
composition, physical structure, and observation conditions,
resulting in poor predictors of soil moisture on combined soil-
type samples (e.g., Musick and Pelletier, 1988). Because of
these controls, efforts to directly relate soil reflectance to
moisture have achieved success only when models are fit for
specific soil types in the absence of vegetation cover (e.g.,
Muller and Décamps, 2000).

With respect to hyperspectral sensors in the visible, NIR, and
SWIR spectrum, analysis performed by Liu et al. (2002)
showed that while at low moisture levels, increasing moisture
content led to a decrease in soil reflectance, the opposite was
true at higher moisture levels. That is, increasing moisture
content led to an increase in soil reflectance, determined albeit
by much poorer regression results. Ben-Dor et al. (2002)
performed a field study of mapping multiple soil properties
(including soil moisture) using DAIS-7915 hyperspectral
scanner data. The hyperspectral premise is that narrow-band
spectral information in the visible, NIR, and SWIR wavelengths
allows material identification as a function of their spectral
absorption features. Their results were mixed. In all, the use of
optical reflectance as a direct measure of watershed-level soil
moisture is greatly constrained, though reflectance information
has an important indirect role in soil moisture estimation
through data fusion and assimilation in SVAT models (which is
discussed later in this paper). Far better success in direct
measurement of surface soil moisture is achievable when
thermal and microwave measurements are employed.

The estimation of ms using remotely sensed thermal
wavebands is primarily related to the use of radiative
temperature (TR) measurements, either singularly or in
combination with vegetation indexes derived from visible and
NIR wavebands. Variations in TR of bare soils have been found
to be highly correlated with variations in ms (Friedl and Davis,
1994; Schmugge, 1978). Recent studies have explored the
added value of view angle variation on TR measurements to
estimate ms. Chehbouni et al. (2001) found that for a semiarid
grassland site with static vegetation conditions,
multidirectional TR data from field infrared thermometers could

be used to estimate ms. In a study of coupled SVAT-infrared
thermal radiative transfer models, François (2002) could not
determine a universal relationship between surface wetness and
soil temperature, even when using differences between
directional TR, because of the influence of rapidly varying
factors (wind speed, soil texture, incoming solar radiation,
vegetation condition, leaf area index). However, he did report
that directional TR measurements dramatically improved soil
moisture detection. Although the dual view design of the along
track scanning radiometer (ATSR) aboard the European
Remote Sensing (ERS) satellites provides multidirectional TR

measurements, few studies have been published using such
data to estimate surface water fluxes over heterogeneous
surfaces (Chehbouni et al., 2001).

Advanced applications of the dual use of thermal imagery
and spectral vegetation indices employ thermodynamic
principles embodied in surface energy balance models to
estimate surface evapotranspiration rates, and thus improve soil
moisture estimation (Kustas et al., 2003). Such approaches
have the potential to estimate mp by using the transpiration of
vegetation as a surrogate measure of mp. Many such approaches
are based on the consistent negative correlation between TR and
spectral vegetation indices, such as the normalized difference
vegetation index (NDVI). Numerous labels have been given to
variations of this technique including the triangle method
(Carlson et al., 1995), temperature-vegetation contextual
approach (TVX) (Prihodko and Goward, 1997; Czajkowski et
al., 2000), surface temperature-vegetation index (Ts/NDVI)
space (Lambin and Ehrlich, 1996), temperature-vegetation
dryness index (TVDI) (Sandholt et al., 2002), moisture index
(Dupigny-Giroux and Lewis, 1999), and the VI/Trad relation
(Kustas et al., 2003).

Gilles et al. (1997) used the triangle method on airborne
multispectral radiometer data and achieved standard error
estimates of 0.16 for ms relative to field measurements for sites
in Kansas and Arizona. A simpler approach was employed by
Bosworth et al. (1998) in which linear and equally spaced
isopleths of soil moisture were computed under the assumption
that ms varies within the triangle from completely dry to
completely saturated. Sandholt et al. (2002) defined TVDI,
where corners and moisture isolines were completely image-
derived under the assumption that an entire range of surface
moisture contents and vegetation cover was included in the
scene. They reported regression coefficients of 0.70 when
comparing TVDI results for a study site in Senegal to those
from a distributed hydrological model. Goward et al. (2002)
found in a simulation study that while the slope of the TR/NDVI
line was only weakly correlated to ms, the relation endpoints
(closed canopy temperature and bare ground temperature)
along with incident radiation measurements could predict ms

with a residual standard error of 0.04. At continental scales, the
slope of the TR/NDVI relation was strongly correlated with
considerable scatter (regression coefficient of 0.83, standard
error of 0.06) to crop-moisture-index values, and thus by
implication, to surface moisture conditions (Nemani et al.,
1993).

808 © 2004 CASI

Vol. 30, No. 5, October/octobre 2004



Approaches based on either the directional TR or the
complimentary TR-vegetation index are powerful but have
limitations in addition to those common to all optical
techniques (shallow soil penetration, cloud contamination,
infrequent coverage at spatial resolutions suitable for
watershed management). They are often empirical and thus
vary across time and land cover types (Smith and Choudhury,
1991; Czajkowski et al., 2000) and are a function of local
meteorological conditions such as wind speed, air temperature,
and humidity (Nemani et al., 1993), and local relief (Gillies and
Carlson, 1995).

Passive microwave sensing of surface soil moisture

Great progress has been made in mapping regional soil
moisture with passive microwave sensors. These sensors
measure the intensity of microwave emission (at wavelengths
λ = 1–30 cm) from the soil, which is related to its moisture
content because of the large differences in the dielectric
constant of dry soil (�3.5) and water (�80). This emission is
proportional to the product of surface temperature and surface
emissivity, which is commonly referred to as the microwave
brightness temperature (TB). The relationship between TB and
ms varies with the differences in surface roughness and
vegetation biomass and is further affected by the changes in
dielectric constant related to soil texture. The efficacy of the
measurement is a function of wavelength, where longer
wavelengths (λ > 10 cm) probe deeper into the soil and have the
ability to penetrate a vegetated canopy (see Njoku and Entekhabi,
1996). Simplified retrieval methods for the estimation of ms from
observations of microwave emissivity have been validated
through ground-based and aircraft experiments (Schmugge,
1996). Results from these experiments have led to the
development of microwave radiative transfer models that are
designed to retrieve ms from the microwave signal based on
assumptions of scattering albedo, roughness, polarization
response, and surface temperature (e.g., Owe et al., 2001; Oh et
al., 1992). However, the use of passive microwave measurements
for soil moisture mapping at watershed scales is limited for
many reasons. First, the spatial resolution is inherently coarse.
Second, until just recently, the information was available only
from aircraft-based sensors, resulting in limited coverage,
infrequent repeat visits, and delays in product delivery. On the
other hand, three satellite-based passive microwave sensors
will be providing imagery this decade. The advanced
microwave scanning radiometer (AMSR-E) was successfully
deployed on the NASA Aqua platform in 2003, the soil
moisture and ocean salinity (SMOS) mission is planned for
launch by the European Space Agency (ESA) in 2007, and the
NASA hydrospheric states (HYDROS) mission is planned for
launch in 2009.

The AMSR-E sensor measures microwave emissivity in six
frequencies along a sun-synchronous orbit with an equator
crossing at 1330 hours (Njoku et al., 2003). One objective of
AMSR-E is to produce soil moisture products and associated
estimates of vegetation water content and surface temperature

at a spatial resolution of approximately 56 km over a swath
width of thousands of kilometres. The accuracy of the retrieved
AMSR-E soil moisture will be limited by vegetation biomass
since vegetation significantly affects microwave emission from
the soil surface. Nonetheless, the expected accuracy of the
AMSR-E soil moisture product (0.06 g cm–3) will meet the
requirements for watershed management, and the expected
product delivery of 48 h and revisit of 2–4 days should be
timely. Similarly, the SMOS sensor is designed to monitor soil
moisture, vegetation biomass, and surface temperature, using
microwave radiometry at low frequencies (L-band: 1.4 GHz)
with dual polarization. Again the spatial resolution is coarse,
estimated to be 37 km from a low polar orbit platform. The
NASA HYDROS will be an integrated passive and active L-
band system with spatial resolutions of soil moisture products
ranging from 10 to 40 km and a revisit of 2–3 days (http://
hydros.gsfc.nasa.gov/). Consequently, AMSR-E, SMOS, and
HYDROS products will face significant challenges of mixed
pixels over heterogeneous watersheds (Kerr, 2001).

Active microwave sensing of surface soil moisture

The only satellites that can currently meet the spatial
resolution and coverage required for watershed management
are active microwave sensors. The most common imaging
active microwave configuration is the synthetic aperture radar
(SAR), which transmits a series of pulses as the radar antenna
traverses the scene. These pulses are then processed together to
simulate a very long aperture capable of high surface resolution
(Ulaby et al., 1996). Currently, there are three operational SAR
satellite systems with frequencies suitable for soil moisture:
ESA ERS-1/2 C-band SAR, ESA ENVISAT C-band ASAR,
and the Canadian C-band RADARSAT-1/2. These SAR
systems can provide resolutions from 10 to 100 m over a swath
width of 50–500 km, thus meeting most spatial requirements
for watershed-scale applications (Table 1). As with passive
microwave sensing, the magnitude of the SAR backscatter
coefficient (σ0) is related to ms through the contrast of the
dielectric constants of bare soil and water. Similarly, the
perturbing factors affecting the accuracy of ms estimation are
soil surface roughness and vegetation biomass. Studies,
particularly in the past decade, have resulted in a multitude of
methods, algorithms, and models relating satellite-based
images of SAR backscatter to surface soil moisture. However,
no operational algorithm exists using SAR data acquired by
existing spaceborne sensors (Borgeaud and Saich, 1999). A
significant limitation of SAR for watershed-scale applications
is that the sun-synchronous satellites can provide only weekly
repeat coverage and even longer for the same orbital path (e.g.,
ERS-1 has a scheduled repeat pass every 35 days for the same
orbital path).

© 2004 CASI 809

Canadian Journal of Remote Sensing / Journal canadien de télédétection



Surface soil moisture estimation using
SAR

There are numerous examples of the use of multiwavelength
and multipolarization SAR data for soil moisture estimation
(e.g., Dubois et al., 1995; Wever and Henkel, 1995). However,
current satellite-based SAR sensors are configured with only a
single wavelength (C- or L-bands) and, in some cases (ERS
SAR), with a single incidence angle θi. Furthermore,
RADARSAT and ERS SAR sensors offer only single
polarization (either HH or VV). Consequently, this review will
focus, though not exclusively, on approaches suitable for
application with RADARSAT, ERS SAR, ERS ENVISAT
ASAR, and the planned ALOS PALSAR sensors (Table 3).

Semiempirical approaches

The radar backscatter from a vegetated surface is composed
of three contributions.

σ τ σ σ σ0 2 0 0= + +s dv int
0 , (1)

where σs
0 is the backscatter contribution of the bare soil surface,

τ2 is the two-way attenuation of the vegetation layer, σdv
0 is the

direct backscatter contribution of the vegetation layer, and σ int
0

represents multiple scattering involving the vegetation
elements and the ground surface (Ulaby et al., 1996). For
densely vegetated targets, τ2

� 0 and σ0 is determined largely by
volumetric scattering from the vegetation canopy. For sparsely
vegetated targets, τ2

� 1 and the second and third terms in
Equation (1) are negligible; in that case, σ0 is determined by the
soil roughness and moisture content. For bare soil, σs

0 has a
functional relation with ms, where

σs sf R m0 = ( , ) (2)

and R is a surface roughness term (Engman and Chauhan,
1995). Considering this, many algorithms using single-
wavelength, single-polarization SAR for estimating ms, follow
a standard two-step approach, where the first step is to estimate
and remove the signal owing to backscatter from the vegetation
canopy, and thus σ σ0 0≅ s . The second step is to determine the
relation between σs

0 and ms, based on the assumption that the
surface roughness adds a signal to the backscatter intensity that

can be treated as an offset (Schneider and Oppelt, 1998). Thus,
for a target of uniform R

m a bs s= + σ0, (3)

where a and b are regression coefficients determined primarily
from field experiments, which encompass the target-invariant R
and the scene-invariant SAR λ, θi, polarization, and calibration.
Therefore, Equation (3) is only valid for a given sensor, land
use, and soil type, and for targets when τ2, σdv

0 , and σ int
0 are

known or negligible.
Quesney et al. (2000) resolved Equations (1)–(3) to derive

surface soil moisture information with accuracies of ±0.04–
0.05 (cm3 cm–3) from ERS SAR measurements over an
agricultural watershed in France. Based on an a priori
vegetation classification of the site and some in situ
measurements, Quesney et al. selected sensitive targets where
soil moisture retrieval was possible largely owing to the low
vegetation biomass. For these targets, a first-order radiative
transfer model was used to correct the radar response for the
effect of the vegetation canopy. Then, sensitive targets were
classified into roughness classes based on their furrow direction
as viewed by the radar beam. These classes were assumed to be
homogeneous in terms of large-scale roughness contributions.
Empirical relations between σ0 and corresponding in situ
measurements of ms were determined for each class and applied
to all sensitive targets in the SAR image. Quesney et al.
concluded that the same relation between σ0 and ms could be
used from November to August (except for the months of May
and June) for wheat fields in an agricultural watershed in
France.

Similarly, for a semiarid watershed in Arizona, Moran et al.
(2000) utilized the difference between dry- and wet-season
SAR σ0 (∆σ0) to normalize the effects of surface roughness and
topography on ERS SAR measurements. This required that the
images be acquired with exactly the same sensor configuration,
particularly the same incidence angle. Thoma et al. (2004)
improved upon this approach to minimize empiricism and used
a quantitative form of ∆σ0 to map ms for an entire watershed
with RADARSAT for three dates in 2003 (Figure 1). In these
studies, the effects of sparse vegetation were found to be
negligible and could be ignored, supporting similar findings by
Lin and Wood (1993), Chanzy et al. (1997), Demircan et al.
(1993), Dobson et al. (1992), and Dubois et al. (1995). But for
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RADARSAT ERS SAR
ERS ENVISAT
ASAR

ALOS PALSAR
(planned)

Incidence angle (°) 20–50 23 15–45 10–51
Wavelength (cm) 5.7 5.7 5.7 23
SAR band C C C L
Polarization HH VV HH, VV, VH,

HV
HH, VV, HH, HV,

VV, VH
Resolution (m) 10–100 30 10–100 10–100
Repeat pass (days) 24 35 35 unknown

Table 3. RADARSAT, ERS, ENVISAT, and JERS configurations.



many other study sites, the vegetation has been reported to be
too dense to monitor soil moisture with only a single-
wavelength dataset (Wang et al., 1997; Wever and Henkel,
1995).

A great limitation of all these approaches is that the
sensitivity of radar backscatter to R can be much greater than
the sensitivity to ms. For example, Herold et al. (2001) reported
that the backscatter range from different roughness conditions
was about 17 dB, whereas the variations caused by soil
moisture were about 6 dB. Sano et al. (1998) found that SAR σ0

data were nearly insensitive to soil moisture because of the
stronger influence of soil roughness. Oh et al. (1992) stated that
the primary cause of backscatter variation in radar image
scenes was surface roughness, and secondarily, moisture
content. Thus, it is imperative that surface roughness and
topography be accounted for in any operational approach.

Surface soil moisture (ms) change detection

An approach that may have potential for operational
application is the use of single-wavelength, multipass SAR
images for change detection, rather than absolute ms estimation
(Engman, 1994). This approach is based on the assumption that
the temporal variability of R and vegetation biomass (V) is
generally at a much longer time scale than that of ms, and
therefore, the change in SAR σ0 between repeat passes results
from the change in ms. Thus, a multitemporal SAR dataset
could be used to minimize the influence of R and V, and
maximize the sensitivity of σ0 to changes in ms. Though useful
for many applications, it is notable that the assumptions do not
hold for cultivated crops where R and V change dramatically
over short time periods. Furthermore, images must be acquired

with the same sensor configuration to avoid the need for
topographic corrections due to variations in θi and image
orientation.

Simply applied, a normalized radar backscatter soil moisture
index (NBMI) was derived from σ0 measurements at two times
(t1 and t2) over one location, where

NBMI =
+

−

σ σ

σ σ
t t

t t

1 2

1 2

0 0

0 0
(4)

(Shoshany et al., 2000). By normalizing the effects of R, soil
type, and topography on SAR σ0, such ratio techniques offer a
relative soil moisture index varying from 0 to 1 related to
distributed ms variations.

Using a long backscatter series, it is possible to correlate
changes in σ0 with changes in ms over large areas. For example,
Wickel et al. (2001) used 10 RADARSAT scenes over a 1-
month period to monitor ms change in fields of wheat stubble in
Oklahoma. They corrected all images for the difference in θi

using an empirical approach and a modeling approach (Ulaby
and Dobson, 1989) and then eliminated wheat fields with
“major” temporal roughness changes. They computed a
multitemporal regression of day-to-day differences in σ0 and ms

with a strong correlation of r2 = 0.89.
Wagner and Scipal (2000) offered a variation of this

approach that has been tested with some success in the
Canadian prairies, the Iberian Peninsula, the Ukraine, and
savanna and grasslands in western Africa. Based on a multiyear
series of ERS scatterometer images with a spatial resolution of
50 km, a “knowledge base” about the backscatter behavior of
each pixel was constructed. The behavior of σ0 related to θi over
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Figure 1. A surface soil moisture map of Walnut Gulch Experimental Watershed near Tucson,
Arizona, derived from the time series differences in RADARSAT radar backscatter signals from
wet and dry soils. Reproduced with permission from Thoma et al. (2004).



time was used to determine relative R and V, and to normalize
σ0 to a reference θi of 40° at time t. For pixels of similar R and
V, a relative measure of surface soil moisture (Ims

) was
estimated as

I
t t

t t
mx

=
° − °
° − °

σ σ
σ σ

0 0

0 0

40 40

40 40

( , ) ( , )

( , ) ( ,
dry

wet dry )
(5)

where σdry
0 40( , )° t represents σ0 from vegetated terrain under

completely dry soil surface conditions and σwet
0 40( , )° t

represents σ0 when the soil surface is saturated with water. The
values σdry

0 40( , )° t and σwet
0 40( , )° t were derived from the

lowest and highest values of σ0(40°, t) from 6 years of data.
Thus, in this approach, the normalization of variations in θi, R,
and V, and the estimation of Ims

are all accomplished with only
a frequent-repeat, multiyear backscatter data series. With SAR
data, Lu and Meyer (2002) suggested a similar change
detection approach with a significant variation. That is, they
incorporated information from both SAR backscatter intensity
and phase to perform an initial discrimination of changes in soil
moisture from changes in surface roughness. With that
preprocessing and an image-based estimate of σdry

0 , they were
able to detect changes in ms ranging from 0.05 to 0.20.

Such estimates of temporally and spatially continuous ms

have been used for the estimation of the spatial distribution of
other critical soil properties, including surface and profile soil
hydraulic conductivity (Ksat). Mattikalli et al. (1998) reported
that a 2-day change in soil moisture derived from SAR imagery
was related to surface Ksat, and with a hydrologic model and
geographic information system (GIS), they were able to
estimate profile Ksat. Furthermore, Mattikalli et al. found that it
was possible to estimate the spatial distribution of soil texture
from multiday, SAR-derived images of soil moisture. That is,
soil moisture decreased at different magnitudes and rates that
were related to soil texture.

SAR data fusion

The problem associated with discriminating the multiple
influences of surface properties and sensor characteristics (e.g.,
R, V, θi, λ) on the relation between SAR σ0 and ms has prompted
a number of SAR data fusion studies. The majority of studies
have addressed the complementarity (independent information)
and interchangeability (similar information) of (1) active
(SAR) microwave σ0 and passive microwave TB, and (2) SAR
σ0 and optical measurements, such as infrared radiative
temperature (TR) and surface spectral reflectance (ρλ) in visible
and near-infrared wavelengths.

As mentioned earlier, the greatest advantage of active over
passive microwave sensing for watershed applications is the
fine spatial resolution, where SAR resolution is tens of metres
and passive microwave resolution is tens of kilometres. Similar
passive and active microwave configurations appear to have
similar sensitivities to soil moisture (see Chauhan et al., 1999)
and near-similar sensitivities to roughness (see Du et al., 2000).
Data fusion of passive and active microwave sensing has

generally taken the form of using SAR σ0 for determining fine-
resolution vegetation and roughness parameters and then
combining these with coarse-resolution passive microwave TB

for the estimation of regional soil moisture (e.g., Chauhan,
1997; Lakshmi et al., 2000; Notarnicola and Posa, 2001).
Huang and Jin (1995) used passive and active microwave data
to construct a mesh graph, where any point on the graph could
be used to estimate soil moisture and roughness of bare soil
separately.

There is great potential to determine subpixel variability of
passive-derived soil moisture with the finer resolution active
microwave data. In recent studies, soil moisture maps at coarse
resolutions have been downscaled to finer resolutions by
incorporating information on the spatial structure of soil texture
and vegetation water content (Bindlish and Barros, 2002; Kim
and Barros, 2002a; 2002b). The basic conclusion was that the
integration of active and passive microwave technologies to
monitor watershed-scale soil moisture is an alternative worth
exploring. This approach will likely receive more attention
when the soil moisture products from AMSR-E, SMOS, and
HYDROS become available.

Microwave and optical remote sensing have been used
separately for the estimation of surface properties, and both
measurements have distinct advantages. Several studies have
focused on the definition of the similarities between optical and
SAR data. Basically, the longer λ SAR bands (λ > 6 cm) have
been related to thermal TR measurements through the physical
relationship between surface evaporation and surface soil
moisture content (e.g., Moran et al., 1997). For vegetated
targets, shorter λ SAR bands (e.g., λ � 2 cm) have been related
to optical vegetation indices (e.g., NDVI) because visible, near-
IR and short-λ SAR signals are largely influenced by the crown
layer of branches and foliage in the canopy (e.g., Moran et al.,
1997; Prevot et al., 1993). Other studies have taken advantage
of both the differences between optical and SAR data to
improve simulation model parameterization and inversion.
Theoretical studies have shown that the inverse problem for ms

estimation could be achieved with an optical–SAR dataset, but
a unique solution would not be possible with either observation
alone (Entekhabi et al., 1994; Chanzy et al., 1995). This work
has been supported by field experiments with crops in France
and Poland (Olioso et al., 1998; Taconet et al., 1996; and
Dabrowska-Zielinska et al., 2001) and rangelands in Arizona
(Wang et al., 2003).

SAR plus microwave scattering models

The continuing efforts to disentangle the relative influences
of R, V, and ms on SAR σ0 have ultimately led to the use of
physically based scattering models. These models generally
predict σ0 as a function of sensor configuration and surface
conditions, and can thus be inverted to estimate ms. Empirical,
semiempirical, and theoretical models have been developed for
this purpose. Empirical models are generally derived from
experiments to fit their data and may only apply to surface
conditions and radar parameters at the time of the experiment
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(Wang et al., 1986; Oh et al., 1992; Dobson et al., 1985; Dubois
et al., 1995).

To avoid this limitation, semiempirical models have been
developed based on a theoretical foundation with model
parameters derived from (i.e., fitted to) experimental data. An
example is the widely used water cloud model (WCM) that
represents the canopy as a uniform cloud of spherical droplets
that are held in place structurally by dry matter (Attema and
Ulaby, 1978). In WCM, the canopy can be represented by bulk
variables such as leaf area index (LAI) or vegetation water
content, and the model can be easily inverted. Simply, the
backscatter coefficient (σ0) is represented by Equation (1),
which is simplified to σ0 = τ σ σ2 0 0

s + dv based on the assumption
that σ int

0 is negligible. The attenuation of the vegetation layer
(τ2) and direct backscatter from the vegetation layer (σdv

0 ) are
determined empirically by

τ θ2 2= −exp sec( )BV (6)

σ θ τdv
0 21= −AV cos ( ) (7)

σs sC Dm0 = + (8)

where V could be green LAI, and A, B, C, and D are empirical
parameters dependent upon canopy type and soil roughness
(Prevot et al., 1993; Taconet et al., 1996; Moran et al., 1998).

Some effort has been made to examine microwave scattering
on a strictly theoretical basis, though theoretical models are
difficult to implement using computers, and their validity range
is often limited. For instance, models based on the Kirchoff
formulation are known to be applicable only to gently
undulating surfaces within restrictive R/λ conditions, and those
based on the small perturbation theory were developed for only
slightly rough surfaces, where R << λ (Ulaby et al., 1982). The
integral equation model (IEM) combines the Kirchoff and
small perturbation theories to address a wide range of
roughness for bare soil surfaces, with an expression that is
simpler to calculate and invert (Fung and Chen, 1992; Fung et
al., 1992). For this reason, it has become the most widely used
scattering model and will be the focus of this section.

The IEM model has been found to be particularly suitable for
retrieving ms from single-wavelength, single-pass SAR σ0.
However, in all cases, an a priori measure of R was required
(e.g., Tansey and Millington, 2001). This has led to a number of
suggestions for determining distributed R information from
orbiting SAR sensors. Considering that RADARSAT images
can be acquired at a variety of θi, Colpitts (1998) combined two
or more images of different θi with the IEM model to separate
effects of ms and R for several tillage types. Similarly,
Pasquariello et al. (1997) and Baghdadi et al. (2002a) found
that IEM-retrieved estimates of ms were greatly improved
through inversion with multi-θi SAR imagery. Based on a
theoretical analysis, Fung et al. (1996) reported that not only
could angular SAR measurements be used to determine
roughness parameters for IEM, but also that this approach was
preferable to direct ground measurements owing to considerations

of scale, heterogeneity, and resolution. However, approaches
based on multi-θi SAR imagery are limited because pixel
information is integrated over different spatial domains with
variations in θi. In a different approach, Verhoest et al. (2000)
used multitemporal data rather than multiangular data to
determine an effective roughness parameter. Thus,
multitemporal ERS-1 SAR σ0 was used to invert the IEM
model to retrieve ms from bare soil with reasonable accuracy.

Despite these successes, there are numerous reports that IEM
and other existing models do not provide consistently good
agreement with the data from satellite-based radar sensors even
with excellent in situ measurements of R (e.g., Leconte et al.,
2004; Baghdadi et al., 2002b; Bryant et al., 2003). It has
therefore been suggested that these models be calibrated to
compensate for discrepancies and improve accuracy. For
example, Baghdadi et al. (2004) proposed empirical relations
between several IEM parameters that improved the IEM
inversion to retrieve surface roughness and soil moisture values
from radar images.

There have been numerous other refinements, improvements,
and additions to the IEM that will certainly encourage more use
of the model for ms retrieval. To reduce the complexity of IEM
application, algorithms have been developed based on fitting of
IEM numerical simulations for a wide range of R and ms

conditions (Shi et al., 1997; Chen et al., 1995; van Oevelen and
Hoekman, 1999). The results are a look-up table of IEM
simulations that serve to directly relate SAR σ0 to theoretical
model predictions over bare and sparsely vegetated surfaces
with known radar parameters. These simplified IEM-based
algorithms require fewer parameters and are much easier to use
with remotely sensed data.

Another critical refinement of IEM was the incorporation of
vegetation backscatter effects into the ms inversion algorithm.
The original IEM was developed for bare soil conditions only,
although the retrieval algorithm performed well for sparsely
vegetated areas. Bindlish and Barros (2001) formulated an IEM
vegetation scattering parameterization in the framework of the
WCM (Equations (6)–(8)). They reported that the application
of the modified IEM led to an improvement in the correlation
coefficients between ground-measured and SAR-derived ms

estimates from 0.84 to 0.95. The incorporation of vegetation
scattering will expand IEM applications to moderately
vegetated sites and improve applications in arid and semiarid
regions where ms is so low that the soil contribution may be
equal to the magnitude of the vegetation contribution.

The IEM model has also been refined to include a
penetration depth model. Studies have reported problems in
IEM-based ms retrieval because of an increase in the
penetration depth of the incident wave when the soil moisture
was low (e.g., Weimann, 1998). As a result, modeled ms could
not be compared with ground measurements because IEM did
not account for the fact that SAR beam penetration exceeded
the layer where the soil moisture was measured (Weimann,
1998). Boisvert et al. (1997) offered three approaches to refine
IEM to account for variations in beam penetration depth. They
reported that the correction allowed reliable comparisons
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among different SAR configurations and took into account the
daily variations in the beam penetration with soil moisture.

The general consensus of studies using SAR σ0 with
microwave scattering models is that the retrieval of ms with
single-wavelength, single-θi, single-pass SAR data is not
possible without information about the surface roughness. The
results also demonstrate the need for continuous measurement
of surface roughness and fine-resolution information about
surface topography, if soil moisture is to be monitored
accurately with single-wavelength SAR data. When SAR data
with consistent ground truth information are available, it will be
possible to test the many existing retrieval algorithms.

Modeling watershed soil moisture
Modeling mp from the surface to 1 m or more over a

watershed requires the solution of a form of the Richards’
equation (as reviewed by Sposito, 1995), including
representation of parameters and processes controlling the
evolution of soil moisture such as infiltration, evapotranspiration,
percolation, and drainage. Models for simulating these processes
are generally called soil vegetation atmosphere transfer
(SVAT), land surface models (LSM), or unsaturated zone
models (for convenience, all will be referred to as SVAT models
in this discussion). SVAT models have been developed for the
distinct applications of weather and climate modeling, and
hydrological, agricultural, watershed management, and soils
modeling.

Examples of SVAT models developed for weather and
climate modeling applications (all of which are 1-d vertical)
include the biosphere-atmosphere transfer scheme (BATS)
(Dickinson et al., 1986; 1993), the simple biosphere model
(SiB1 and SiB2) (Sellers et al., 1986; 1996a; 1996b), and its
successor the simplified simple biosphere model (SSiB) (Xue
et al., 1991), the coupled atmosphere-plant soil model (CAPS)
(Mahrt and Pan, 1984; Pan and Mahrt, 1987), and its successor
NOAH (Chen et al., 1996; 1997), TOPMODEL-based land
atmosphere land surface transfer scheme (TOPLATS)
(Famiglietti and Wood, 1994a; 1994b; Peters-Lidard et al.,
1997), soil-water-atmosphere-plant systems (SWAPS) (Ashby,
1999), and the variable infiltration capacity model (VIC)
(Liang et al., 1994; 1996). Some SVAT models in this
community do not solve the 1-d Richards’ equation, but instead
use a bulk (or bucket) representation of mp, e.g., the simple
SVAT (Boulet et al., 2000). Many models in this category have
been involved in large international comparison projects,
including the project for intercomparison of land-surface
parameterization schemes (PILPS) (Henderson-Sellers et al.,
1993; 1995), and the global soil wetness project (GSWP)
(Dirmeyer et al., 1999). Excellent overviews of SVAT
performance and behavior with respect to the estimation of mp

are given by Shao and Henderson-Sellers (1996) and Koster
and Milly (1997).

NASA’s collaborative land data assimilation systems
(LDAS), including the North American NLDAS (Mitchell et
al., 2004), global GLDAS (Rodell et al., 2004), and new land

information system (LIS) (Peters-Lidard et al., 2004) have
provided more recent soil moisture intercomparison
opportunities from pseudo-operational systems that could serve
as prototypes for watershed management applications. Results
from an ensemble of SVAT models in NLDAS (including
NOAH and VIC) suggest that simulated and observed total
water storage at 17 sites in Illinois are highly correlated and
that simulated values from the NOAH model compare well
with the measured values (Schaake et al., 2004). Further, these
results reinforce the earlier conclusions of the PILPS and
GSWP studies that various SVAT models respond differently
to the same input data owing to differences in physics and the
meaning of parameters in a particular model.

Examples of models developed for hydrological,
agricultural, watershed management, and soils modeling
applications include the HYDRUS 1D and 2D models
(Simunek et al., 1998; Simunek and van Genuchten, 1999),
MIKE-SHE (Refsgaard and Storm, 1995; Christiaens and
Feyen, 2002), fast all-seasons soil state model (FASST) (Albert
et al., 2000), crop SVAT (Sharma et al., 1997), soil and water
assessment tool (SWAT) (Srinivasan and Arnold, 1994; Arnold
et al., 1998), and WASH123D model (Yeh et al., 1998).
Although most of these models are based on the theory of soil
moisture and heat transport and have been extensively tested
with detailed observational data, they have generally had
limited use for operational applications because of the great
difficulties associated with the specification of parameters,
initial and boundary conditions. A notable exception to this is
the SWAT model, which has been integrated with a GIS
interface for use in watershed management applications.
Scanlon et al. (2002) provided a recent review of the abilities of
seven different codes, including the HYDRUS 1D model, to
predict the near-surface water balance in warm (Texas) and
cold (Idaho) semiarid regions. Their results indicated that the
predicted soil water profiles down to 3 m from most codes were
similar and reasonably approximated measured water balance
components. Simulation of infiltration-excess runoff was a
problem for all codes, and differences in results (for those that
solve Richards’ equation) are attributed primarily to infiltration
formulation and soil water retention formulation.

Profile soil moisture estimation by
combining RS and SVAT models

Many investigators have demonstrated the feasibility of
estimating soil moisture profiles by assimilating remote
sensing data into SVAT models. Most examples have focused
on passive microwave TB in synthetic and data-based studies
from local to global scales (Entekhabi et al., 1994; Houser et
al., 1998; Calvet et al., 1998; Galantowicz et al., 1999; Calvet
and Noilhan, 2000; Walker and Houser, 2001; Walker et al.,
2001a; 2001b; Reichle et al., 2001a; 2002a; 2002b; Reichle and
Koster, 2002; Crow and Wood, 2002a; 2002b; 2003; Margulis
et al., 2002). Hoeben and Troch (2000) provided the first
comparable study based on SAR. Other projects have used soil
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temperature assimilation for the estimation of surface energy
balance components or soil wetness indices (Boni et al., 2001a;
2001b; Castelli et al., 1999; Lakshmi et al., 2000), while others
have combined thermal imagery and spectral vegetation indices
with a SVAT-type model to estimate soil moisture, including
Bastiaanssen et al. (1997), Diak et al. (1995), and Gillies and
Carlson (1995). Some of these approaches have been evaluated
by Kustas et al. (2003) in a recent review of coupled modeling –
remote sensing approaches for evaluating the spatial
distribution of evapotranspiration.

Mathematical approaches to data assimilation range from
simplistic weighting schemes to filtering and variational
approaches, as reviewed by McLaughlin (1995; 2002) and van
Loon and Troch (2001). One of the earliest examples of
watershed-scale soil moisture estimation was presented by
Houser et al. (1998), who applied five different suboptimal
estimation algorithms, from simple to more complex using the
SVAT model TOPLATS and 6 days of passive microwave-

based ms products. Houser et al. found that all methods, with
the exception of direct insertion, significantly improved the
estimation of ms as compared to the TOPLATS simulations
without data assimilation. They also found that Newtonian
nudging produced the most desirable results in terms of the
spatial and temporal propagation of information. As shown in
Figure 2, Walker et al. (2001a) found that Kalman filter
assimilation is superior to direct insertion for retrieving mp

from hourly ms observations, with the Kalman filter taking 12 h
compared with 8 days or more for direct insertion, depending
on observation depth. The extended Kalman filter (EKF) has
been applied by many investigators (e.g., Entekhabi et al.,
1994; Galantowicz et al., 1999; Hoeben and Troch, 2000),
although its application to watershed scales is somewhat
difficult because of the high computational demand associated
with the error covariance integration. An alternative approach,
called the ensemble Kalman filter (EnKF) reduces the
computational demand relative to the EKF by integrating an
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Figure 2. Intercomparison of approaches to map retrieval from hourly observations of ms at
different effective depths. (a) Hourly direct insertion of ms observations into a SVAT model takes
a week or more to retrieve the true mp compared with (b) the Kalman filter approach, which takes
less than 12 h. Curves with open circles represent modeled soil moisture profiles without
assimilation; curves with closed circles represent the “true” soil moisture profiles. Dashed
curves represent the modeled mp with assimilation of ms at various effective depths (0, 1, 4, and
10 cm). The deeper the effective depth of the observed ms, the faster the profile reaches the true
profile, although for the Kalman filter, all cases reach the true profile within 12 h. Reproduced
with permission from Walker et al. (2001a).



ensemble of states from which the covariances are obtained at
each update, thereby avoiding the need to linearize. Work by
Reichle et al. (2002b) indicates that the EnKF approach can be
marginally superior to the EKF for soil moisture data
assimilation, owing to the EnKF’s ability to represent
nonadditive model errors with fewer members, as well to its
flexibility in covariance modeling (including horizontal error
correlations). However, the EnKF converges to the solution of
a linear problem, and therefore does not fully represent the
nonlinear soil physics in a SVAT model. The nonrecursive
optimal estimation algorithm is often called the variational
approach (e.g., Reichle et al., 2000; 2001a; 2001b). Variational
approaches for modeling mp at the watershed scale are
generally not available, as they require the adjoint of the SVAT
model, which is extremely difficult to derive.

In addition to the assimilation approach, it is important to
note that the ability to retrieve mp, given observations of ms, is a
strong function of the SVAT model physics and parameters, and
the model-observation error specifications. For example,
Houser et al. (1998) found that nudging and statistical
interpolation resulted in more significant root zone moisture
changes than statistical correction and direct insertion. Hoeben
and Troch (2000) found that the initial error covariance matrix
and the presence of off-diagonal elements in this matrix
strongly control the magnitude and speed with which ms

information is propagated vertically. If the observation error is
too high, then the limiting behavior of filter techniques is such
that mp will converge to the case where the model is run without
data assimilation. Recently, Reichle and Koster (2003)
compared 1D- and 3D-EnKFs and found that the 3D-EnKF
produces more accurate soil moisture estimates than the 1D-
EnKF, because of the 3D filter’s ability to propagate observation
information from observed to unobserved locations. Their study
suggests that if measurements of ms could be obtained in only
part of a watershed, then a 3D-filter approach would be
preferable to a 1D approach to obtain the best possible estimate
of mp everywhere in the watershed. However, their study also
shows that the 3D versus 1D filter are essentially equivalent if
observations of ms are available throughout the watershed.

As discussed by Peters-Lidard et al. (2001), the ability of a
model to produce a spatially distributed map of soil moisture
over time is strongly related to the physical parameterizations
of the model in addition to the parameters of that model. Errors
caused by imperfect physics and parameters will adversely
impact the ability of a model to estimate mp even with perfect
information about ms. Therefore, a promising avenue of
research is to explore simultaneously calibrating SVAT model
parameters and assimilation of RS data. Earlier attempts at this
approach have focused on adjusting soil moisture initial
conditions and sensitive input parameters via standard
calibration methodologies (e.g., Giacomelli et al., 1995;
Nouvellon et al., 2001). There has been a large body of work
devoted to automatic calibration of hydrologic model
parameters, including the shuffled complex evolution algorithm
(SCE-UA) (Duan et al., 1992) and the multi-objective complex
evolution algorithm (MOCOM-UA) (Yapo et al., 1998). Recent

work by Liu et al. (2004) has shown that optimal SVAT
parameters estimated in uncoupled (i.e., with prescribed
atmospheric meteorological inputs) versus coupled (i.e., with
an interactive atmospheric meteorological model) differ
substantially, particularly for vegetation-related parameters.
However, their study did not consider ms or mp as calibration
variables, so a future area of research would be to explore the
coupled system behavior in the context of soil moisture profile
estimation. A major contribution to the area of joint
calibration–estimation is the work of Moradkhani et al. (2004),
who have formulated a dual state-parameter estimation
approach that unifies data assimilation and calibration using an
EnKF approach described previously. Although this work is
applied to the problem of streamflow forecasting, their
approach represents an exciting future direction for soil
moisture profile estimation.

Combining RS and SVAT modeling using data assimilation
enables mp estimation at watershed management scales by
using RS data from a variety of methods outlined previously in
this paper. The ability to retrieve the profile through the root
zone is determined largely by the specifications of the error
covariances in the data assimilation framework, and the errors
in both the observations and the model must be sufficiently
small for the combination approach to be successful.

Synthesis
Soil moisture distribution at the watershed scale is a highly

nonlinear function of soil, topography, vegetation, land use, and
weather. Despite this complexity, there are a multitude of
opportunities for satellite-based estimation of soil moisture for
critical watershed applications (see summary in Tables 4 and
5). The basic conclusion of this review is that currently orbiting
sensors combined with available SVAT models could provide
distributed, profile soil moisture information with known
accuracy at the watershed scale. The most robust, adaptable
system will likely be based primarily on SAR images. It may
include optical, thermal, or passive microwave data for
ancillary information, and it will require a radar backscatter
model for determining ms, a SVAT model for determining mp,
and ground information for validation. Ideally, such a system
could provide distributed soil moisture data on a daily timestep,
at a variety of depths with known accuracy, all-weather
capability, and global applicability. Given that, there are particular
opportunities for research, validation, and development to support
a truly operational application for watershed management.

Research

The primary perturbing factors affecting the accuracy of
SAR-derived ms estimations are soil surface roughness and
vegetation biomass. A great limitation of all these approaches is
that the sensitivity of radar backscatter to R can be much greater
than the sensitivity to ms. Furthermore, vegetation biomass
significantly influences surface reflectance, thermal emission,
microwave emission, and radar backscatter from the soil
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surface. This review presents several approaches to derive
roughness from satellite imagery and to minimize the effects of
vegetation. Despite these attempts, there is no operational
algorithm or model using existing spaceborne sensors to map
roughness or determine the soil moisture of densely vegetated
sites. These should be considered priority research areas.

Another area of research that could greatly increase the
accuracy of estimated soil properties (i.e., both soil moisture
and texture) is the normalization of differences in SAR
scattering due to sensor configuration. The SAR backscatter
signal from a given target is highly sensitive to the multitude of
wavelengths, incidence angles, polarizations, resolutions and
overpass times described in Table 3. This sensitivity has proven
advantageous for studies based on the multidimensional
information resulting from multi-λ, multi-θi, and (or)
multipolarization data; however, variations in sensor
configuration can be devastating to studies based on the
assumption that a change in σ0 is due exclusively to a change in
surface condition. The most promising approach for this
normalization is through further development of theoretical
backscattering models.

There is great potential to determine subpixel variability of
passive-derived soil moisture with the finer resolution active
microwave data. This approach will likely receive more
attention when the soil moisture products from AMSR-E,
SMOS, and HYDROS become available.

Further research could have great impact on data
assimilation of remote sensing information in SVAT models for
the estimation of mp at watershed scale. First, the
computational demand of modeling soil moisture profiles at
hillslope scales requires simplifications of the governing
equations, as exemplified by the 1-d SVAT models discussed in
this review. Second, the accuracy of mp is affected by the
complexity (e.g., weighting versus filtering) and dimensionality
(e.g., 1D- versus 3D-EnKF) of the data assimilation approach.
The third issue is the representation of errors in the model,
including its parameters, observations, and the relationships
between model and observation errors. A major opportunity in
this area is to jointly optimize the parameters of the model in
addition to assimilating the observations.

Validation

A common lament in nearly all soil moisture studies at the
watershed scale is that consistent ground information about ms

and mp is rarely available at the scale and frequency required
for model calibration and validation. Though it is
technologically feasible (e.g., Borgeaud and Floury, 2000), no
worldwide in situ soil moisture monitoring program is
currently in place. Consequently, most studies have been
undertaken in conjunction with interdisciplinary field
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Approach Examples

Multi-angle TIR
Multidirectional TR measurements now available from satellite; results for ms

estimation promising, but mixed

Chehbouni et al. (2001); François (2002)

TIR-vegetation index
Both empirical and analytical approaches are used; promising site-specific

results; many limitations related to site heterogeneity, meteorological
conditions, and image processing

Bosworth et al. (1998); Gilles et al. (1997); Goward et al.
(2002); Nemani et al. (1993); Sandholt et al. (2002)

Semiempirical SAR algorithm
Generally uses SAR images of single λ, θi, and polarization; requires multiple

passes and (or) ancillary information; often scene- or site-dependent

Moran et al. (2000); Quesney et al. (2000); Thoma et al.
(2004)

SAR for ms change detection
Requires multiple identical passes; assumes temporal variability of R and V is

at longer time scale than that of ms; high potential for operational
application

Lu and Meyer (2002); Shoshany et al. (2000); Wagner
and Scipal (2000); Wickel et al. (2001)

SAR data fusion – passive and active microwave
Generally uses active σ0 to determine fine resolution V and R, and passive TB

to estimate ms, or downscales passive-derived ms with fine resolution σ0

Bindlish and Barros (2002); Kim and Barros (2002a;
2002b); Chauhan (1997); Huang and Jin (1995);
Lakshmi et al. (2000); Notarnicola and Posa (2001)

SAR data fusion – microwave and optical
Based on complementarity (independent information) and interchangeability

(similar information) of optical and SAR data; simplifies the inverse
modeling problem for ms estimation

Chanzy et al. (1995); Dabrowska-Zielinska et al. (2001);
Entekhabi et al. (1994); Moran et al. (1997); Olioso et
al. (1998); Taconet et al. (1996); Wang et al. (2003)

SAR plus microwave scattering model
Empirical, semiempirical, and theoretical models available; models are

inverted to estimate ms from σ0; advantage — high accuracy;
disadvantage — difficult model parameterization

Baghdadi et al. (2004); Colpitts (1998); Fung et al.
(1996); Pasquariello et al. (1997); Tansey and
Millington (2001); Verhoest et al. (2000); Weimann
(1998)

Table 4. Promising approaches using SAR and optical sensors for ms estimation.



campaigns coordinated with multiple aircraft and satellite
overpasses.

For example, the HAPEX-Sahel campaign in 1992 provided
multi-scale soil moisture measurements up to a regional area of
12 100 km2 (Prince et al., 1995). Microwave images were
acquired by the ERS SAR and SSM/I satellite sensors, and
detailed project information can be obtained at http://www.
ird.fr/hapex/. The Washita experiment conducted in 1992 and
the southern Great Plains (SGP) experiments undertaken in
1997 and 1999 employed a wide range of microwave
instrumentation that provided useful soil moisture measurement
techniques at numerous scales appropriate for watershed
management (LeVine et al., 1994; Jackson et al., 1995; 2002a;
2002b; Jackson, 1999; O’Neill et al., 1998; Jackson and Hsu,
2001). Microwave images were acquired with aircraft- and
satellite-based systems, as well as with the Priroda sensors on
the Mir Space Station. Information regarding these remote
sensing soil moisture experiments including data, images, and
reports is available at http://hydrolab.arsusda.gov/rsbarc/
RSofSM.htm. Though such place-based campaigns have
expanded the science of soil moisture estimation, it will be
necessary to have spatially and temporally consistent ground
truth information coincident with SAR overpasses to test the
many existing retrieval algorithms.

The US has several soil moisture networks currently
available, including the USDA–NRCS Soil Climate Analysis
Network (SCAN) (http://www.wcc.nrcs.usda.gov/scan/), the
DOE Atmospheric Radiation Measurement (ARM) – Cloud
and Radiation Testbed (CART) facility in Oklahoma and Kansas
(http://www.arm.gov/docs/sites/sgp/sgp.html), the Illinois State
Water Survey soil moisture network (Hollinger and Isard,
1994), the Oklahoma Mesonet (http://www.mesonet. ou.edu/),
and the High Plains Regional Climate Center network in
Nebraska (http://hprcc.unl.edu/soilm/home.html). Recent
satellite soil moisture campaigns, such as the soil moisture
experiments (SMEX 2002, 2003, 2004) associated with
AMSR-E validation, have provided a variety of gravimetric and
in situ (Vitel) networks at several USDA/ARS watersheds

(http://www.nsidc.org/data/amsr_validation/soil_moisture/).
Currently, there is no coordinated global soil moisture network,
but the Global Soil Moisture Data Bank at Rutgers University
(Robock et al., 2000; http://climate.envsci.rutgers.edu/soil_
moisture/) is gathering and distributing worldwide soil
moisture data. The design of in situ networks to validate
satellite-based estimates of soil moisture is problematic,
because many authors have shown that soil moisture varies
over multiple scales (e.g., Peters-Lidard et al., 2001).
Moreover, recent work by Krajewski et al. (2003) suggests that
rain gauge networks should be designed or augmented to
include a cluster of two or more stations to characterize small-
scale (<5 km2) variability in rainfall. Given that soil moisture
variability results from the superposition of rainfall variability
and soil variability, soil moisture networks should similarly be
designed or augmented to include a cluster of more collocated
stations.

Development

The most promising approaches described in this review are
based on multiple, single-wavelength, multipass SAR images
for ms estimation. It should be recognized and emphasized that
these will not be reasonable at the watershed scale until the
price of SAR imagery decreases from current levels.

On the other hand, three passive microwave satellite systems
are now in development with the explicit mission of measuring
global soil moisture. The AMSR-E sensor, now in orbit aboard
the NASA Aqua platform, was designed to provide soil
moisture mapping at 56 km and generally demonstrate
technology feasibility. The SMOS sensor, to be launched this
decade by ESA, would provide improved soil moisture
mapping at a spatial resolution of potentially 37 km. The
NASA HYDROS will combine passive and active sensors to
improve both sensitivity to soil moisture and spatial resolution
(estimated to be 10 km). Through international cooperation,
these missions have been designed to complement and build
upon each other. Though none of these missions meets the
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Model plus remote sensing Examples

Data assimilation: forward approaches
Assimilation focuses on merging RS-derived estimates of ms with

ms predicted by SVAT model

Margulis et al. (2002); Houser et al. (1998); Calvet et al. (1998);
Calvet and Noilhan (2000); Walker and Houser (2001); Walker et
al. (2001a; 2001b); Reichle et al. (2001a; 2002b); Reichle and
Koster (2002; 2003); Crow and Wood (2002a; 2002b; 2003)

Data assimilation: inverse approaches
Satellite observable quantities (e.g., σ0, ρλ, TB) assimilated and mp

derived as a byproduct

Entekhabi et al. (1994); Galantowicz et al. (1999); Hoeben and
Troch (2000)

Model calibration
SVAT model initial conditions and sensitive input parameters

calibrated by minimizing difference between modeled ms and ms

retrieved from RS measurements

Giacomelli et al. (1995); Nouvellon et al. (2001); Liu et al. (2004)

Dual state-parameter estimation
SVAT model states and sensitive input parameters jointly estimated

using data assimilation approach

Moradkhani et al. (2004)

Table 5. Promising approaches using models and remote sensing for mp estimation.



spatial resolution requirements for watershed applications
(Table 1), the technology development and demonstration will
certainly benefit the science of soil moisture mapping at all
scales.

Once all the pieces are in place, a primary obstacle to
operational application will be the sheer technological
complexity involved in the implementation of a remote
sensing/backscatter model/SVAT system by hydrologists,
geospatial analysts, and watershed managers. This could be
accomplished by a commercial venture or government space
agency dedicated to providing information of the resolution,
coverage, and frequency required by watershed managers,
though no such operation currently exists. If decentralized, a
given watershed manager would need to employ computer-
savvy personnel who could make the high-technology, high-
science components work smoothly with minimal technical
support. This is not currently the profile of most watershed
management units.
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IEM integral equation model

JERS SAR Japanese earth resources satellite SAR

LAI leaf area index

LDAS land data assimilation systems

MIKE-SHE unification of the MIKE river simula-
tion code and the Système hydro-
logique Européen

NASA National Aeronautics and Space Ad-
ministration

NBMI normalized radar backscatter soil
moisture index

NDVI normalized difference vegetation in-
dex

NIR near infrared

NOAA National Oceanic and Atmospheric
Administration

NOAHSVAT developed jointly by NOAA NCEP,
Oregon State University, Air Force
Weather Agency, and NWS Office of
Hydrology

PALSAR phased array type L-band synthetic
aperture radar

PILPS project for intercomparison of land-
surface parameterization schemes

RADAR radio detection and ranging

RADARSAT radar satellite

RS remote sensing

SAR synthetic aperture radar

SGP southern Great Plains

SiB1, SiB2 simple biosphere model

SMOS soil moisture and ocean salinity

SSiB simplified simple biosphere model

SSM/I special sensor microwave/imager

SVAT soil vegetation atmosphere transfer

SWAPS soil-water-atmosphere-plant systems

SWIR shortwave infrared
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TIR thermal infrared

TOPLATS TOPMODEL-based land atmosphere
land surface transfer scheme

TVDI temperature-vegetation dryness index

TVX temperature-vegetation contextual ap-
proach

VIC variable infiltration capacity scheme

WASH123D watershed modeling system for 1-D
stream-river network, 2-D overland
regime, and 3-D subsurface media

WCM water cloud model

List of symbols
σ0 radar backscatter coefficient

σ int
0 multiple scattering involving the vegetation elements

and the ground surface

σs
0 backscatter contribution of the bare soil surface

σdv
0 direct backscatter contribution of the vegetation layer

σdry
0 backscatter from vegetated terrain under completely

dry soil surface conditions

σwet
0 backscatter when the soil surface is saturated with

water

∆σ0 difference between dry- and wet-season σ0

Ims
relative measure of surface soil moisture

ρλ surface spectral reflectance

θi incidence angle

Ksat soil hydraulic conductivity

mp profile soil moisture

ms surface soil moisture

R surface roughness term

TB microwave brightness temperature

TR thermal infrared radiative temperature

τ2 two-way attenuation of the vegetation layer

V vegetation biomass

λ wavelength

826 © 2004 CASI

Vol. 30, No. 5, October/octobre 2004


