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INTRODUCTION

A kinematic wave was described by Lighthill and Whitham (8) as a wave
whose properties can be described by an equation of continuity and a stage-
discharge relation. This implies that momentum changes are negligible. Re-
views of recent applications of the kinematic approximation in open channel
hydraulics were given by Woolhiser and Liggett (16) and Kibler and Woolhiser
(5). Smithand Woolhiser (11) described the hydrologic response of an elemen-
tary watershed by a kinematic wave, using a theoretical solution of porous
media flow for an infiltration model. The spatial variation in interaction of
surface-subsurface flow was only approximated, however,

Described herein is a method of predicting advance rate, surface profiles,
and modifications with time to kinematic wave flow over an initially dry in-
filtrating plane. Interaction of surface flow and infiltration loss is treated
explicitly with point infiltration rate considered to be a function of time since
wetting (opportunity time). This technique is applicable for flood wave move-
ment and attenuation in dry alluvial channels such as commonly occur in the
Southwestern United States. A special case of this model, where upstream
flow is a step function, describes the much studied border irrigation advance
problem.

KINEMATIC FLOW ON INITIALLY DRY PLANE

Continuity for unsteady open channel flow in any channel may be expressed
as

8A 8 (uA)

5t Ty = PG, B) o (1a)
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in which 4 = channel cross-sectional area; / = time; u = local velocity; x =
distance along channel; p = wetted perimeter; and ¢ (x,/) = local inflow (+)
or outflow (-) rate. For wide channels or surface flow, the continuity equation
is similar:

oh 3 (uh)

57t e = GO, 1) e (L)

in which & = depth. For simplicity, the following comments will refer only to

plane flow.
To complete the kinematic description, the stage~discharge relation:

@ = ol L e e e e e e e (2a)

is taken from a laminar flow or a Chezy or Manning turbulent flow friction
slope relation, all of which may be expressed as

W= O e e e e e e e e e (2b)

in which o and m are constant coefficient and exponent parameters, respec-
tively. The Darcy-Weisbach expression can be used to unify friction slope ex-

FIG. 1.—DEFINITION SKETCH FOR KINEMATIC SHOCK WAVE ADVANCE ON IN-
FILTRATING PLANE

pressions for laminar and turbulent flow. For laminar flow, m would be 2, and
a could be expressed as (;S in which C; = a laminar resistance coefficient,
and S = slope. Likewise in turbulent flow, m is 1/2 for a Chezy relation and
2/3 for a Manning relation. Then o would be a function of a turbulent resis-
tance coefficient Cy, and V5.
Eqgs. 16 and 25 may be combined as
ah m O _
R I S I (3)
Fig. 1 shows the problem to which this kinematic description of surface
flow will be applied. A flow of @, (Z) begins atx = 0 at time 7 = 0. The wave
front is assumed to travel as a kinematic shock or flow discontinuity (5) which
moves with a velocity
A
9 (4)

US(X) = Kh— ....................................

inwhich AQ and A% are change indischarge and depth, respectively, across the
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shock. This reduces to @/ /i, when the initial depth and flow are zero, as in
this case, where hg and @, are depth and flow rate immediately behind the
shock. Pointinfiltrationis a function of time since the shock passed the point,
and thus is dependent on time and shock velocity.

Although the goodness of the kinematic assumption can be tested by order
of magnitude analysis of the terms of the complete energy equations for un~
steady flows (4), it is sufficient for this discussion to refer to a nondimensional
parameter which Woolhiser and Liggett (16) derived to rate the kinematic as-
sumption for plane response to rainfall:

S,L
= 209
k 2 (5)
inwhich S, = plane slope; L, = plane length; H, = normal depth for equilib-
rium flow at the plane outlet; and F, = normal depth Froude number.
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FIG. 2.—ESTIMATED ERROR IN WAVE ADVANCE PREDICTION FROM KINEMATIC
SHOCK ASSUMPTION, BASED ON DATA FROM TINNEY AND BASSETT (11)

It can be seenfrom Fig, 1 that some question arises as to how this param-
eter should be applied to indicate validity of kinematic assumptions for the
present case. The flow described by Fig. 1 is both similar and dissimilar to
the overland flow from rainfall on an impervious plane, Term k was derived
in the process of normalizing the complete dynamic equations. Similar nor-
malization can be carried out for the case of Fig. 1, but normalizing length
should be variable to reflect flow length:
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in which 7 ¢ (x) = time when the shock reaches point x.

Without infiltration, kinematic shock depth equals normal depth, and ex-
perimental agreement with such a step wave can indicate goodness of the
kinematic assumption for shock movement. Tinney and Bassett (12) performed
experiments measuring shock front shape under a few variations in slope,
roughness, and flow rate. The normalizing parameter they derived for ex-
pression of their results was S,L,/H,, here termed k,, which is remarkably
similar to k. From their results, the error in prediction of front location by
a kinematic shock can be derived, and Fig. 2 is such a prediction. As would
be expected, the kinematic shock has a sizeable error for small values of &,
but the approximation is quite good for all values of k, greater than 2 to 3.
Momentum change and gravity have their greatest effects at small distances
from the front. On the other hand, the kinematic profile cannot be far in error,
if continuity is preserved, for long relatively shallow flows. Additional un-
certainties arise for description of large flood waves where @, ({) varies over
a wide range. Woolhiser and Liggett’s results indicate good kinematic approxi-
mationfork > 50 (approximately), anda similar order of approximation should
apply for most values of F, for shock flow, according to Fig. 2,as k = ky/F 2.
F, for these data range from 0.22 to 0.95.

POINT INFILTRATION FROM PONDED SURFACE

Work of various investigators (2,9,14), as well as numerical solutions for
theoretical equations by the writer (10) indicate that perhaps the best algebraic
formula for infiltration from a ponded surface is

wgx) = () = K78 4 [ o )
in which 7is defined as the time since ponding of the surface; K and ¢ = soil
specific constants; and f, = asymptotic long-time infiltration rate, theoret-
ically equal to saturated conductivity for very deep water tables. This is es-
sentially the Kostiakov infiltration formula, plus a constant final rate. This
equation will be used in this work to describe infiltration at any point x < xg
sothat 7= ¢ -~ [gforall > 7.

SOLUTION BY METHOD OF CHARACTERISTICS

Charactevistic Net Construction.—The partial differential Eq. 3 can be re-
duced to two ordinary differential equations in x, 7, and k, known as charac-
teristic equations (16):

DX (8)

di
in which 8 = (m + 1) @, and

%:(]:—f(T) ................................. (9)

In addition, from Eq. 4 shock velocity can be specified as

dx g
Ug = ahl = O I R (10)
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The basis of the method of solution by characteristics was suggested in a
discussionby Woolhiser (15) of a paper by Chen (1). The characteristic solution
in the x, / plane is shown in Fig. 3.

Construction of the characteristic path proceeds from the upstream bound~
ary, where @, (f) is specified, to the shock and forward in time. Two cases
in the solution for new points on the characteristic surface arise: one for ex~
tension of characteristics behind and independent of the shock, and another

(4) OBTAINED BY INTERPOLATION

i
[hz,ta,xz]
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FIG. 3.—DEFINITION SKETCH FOR GRID CONSTRUCTION FOR SOLUTION OF WAVE
ADVANCE BY METHOD OF CHARACTERISTICS

for location of an intersection of a characteristic and the new shock location.
Thefirst case requires simultaneous solution of two equations (Egs. 8 and 9),
and the latter requires three equations (Egs. 8, 9, and 10). For simple charac-
teristic extension, either Ax or Af may be specified. For this problem, Ax
increments are specified.

Firstconsider simple extension of a characteristic across a given Ax from
point »# to » + 1 in which x = (» - 1) Ax. Egs. 8 and 9 may be rewritten as
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follows, using superscripts to indicate characteristic number and subscripts
for distance, From Eq. 8

H = Pl < 0] L (11)

and from Eq. 9

W, - B

H = - ]T[T-j” 7%4,1] ......................... (1_2)
inwhich J(n, 7,) = —— [ ()l .o (13)

Egs. 11 and 12 are reduced to one equation in hZ,ﬂ which is solved by Newton
iteration. For f (/) as defined by Eq. 7, (0 < «¢ < 1) Eq. 13 becomes

_ 1—a _ Ll—a
f(n,rz)=fo+<1’fa> <TZT . Tri > ................ (14)

2

Definition of shock movement is somewhat more complicated;first, referring
to Fig. 3, the point 4%, /] is defined for the location x{™* by the technique de-
fined previously, moving along the characteristic from the last net point be-
hind the shock. Then, information at point /., /. and x§™%, ¢4, and F2{™* is
used in finite difference forms of Eqs. 8—10:

% Y Lo . .

i S Nalg ﬁ; [BD™ « BI] oo (15)
s " C

i oni .

H e FUE,0) (16)

and from Eq. 10:

xf - xft

Ty - % [(RL)™ o+ (RO oo (17)
s S

This system of equationsis reduced to one equation in hJs by algebraic sub-
stitution, and this implicit equation is solved by Newton iteration. Although the
system could equally well be solved for t{;, it was found that solution in hg pro-
vided superior convergence properties and therefore speed of solution. Terims
t{ and x} are then found by back substitution.

Computation Procedure.— The characteristic net may be extended to a spec-
ified limit in both x and /. Intersection of the shock front with an x limmit (x )
does not affect solutions for # > 74 (x). To define accurately the shock path
between x grid points, ¢ at x = 0 is chosen so that the shock location xJ is
foundfor2 = j = 5between x, and x,,,. Time / ; anddepth 4 when the shock
passes x,,, is found by interpolating between x% and x4™* where x]7! < x,, 4,
< x%. The surface profile atany time t 4 is found by interpolatingfrom adjacent
points (Fig. 3) throughout the grid to determine h(lp, x) for 0 < x < x, Like-
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wise, a flow hydrograph @ (/) for a point Xp is found by computing ¢ from Eq.
2a for interpolated values of (¢, x,) for £ > /.

SOLUTION BY RECTANGULAR GRID FINITE
DIFFERENCE APPROXIMATION

There are practical advantages to obtaining a solution to Eq. 3 directly,
rather thanby the system of Eqs. 8—10. Although this has been done by several
investigators for plane response to rainfall, the question arises of dealing with
the region of discontinuity at the shock. Unfortunately, ordinary finite dif-
ference methods cannot follow a moving discontinuity such as a shock. Any
scheme which solves Eq. 3 in the region of the shock will necessarily smooth
out and diffuse the front. The accuracy with which such a rapid change can be
described by finite difference formulations will depend on the order of ap-

— h
- Ve
\(\_\.\(\

i1 i i+

FIG. 4.~DEFINITION SKETCH FOR RECTANGULAR GRID FINITE DIFFERENCE
SOLUTION OF KINEMATIC WAVE ADVANCE

proximation, or the number of terms of a Taylor expansion retained in the
difference approximation.

Herein, a second-order explicitdifference scheme was tested using several
methods of defining (A#™*1/ Ax) to test the finite difference solutions by com-
parison with the characteristic solution and determining which definition best
represented the shock movement. The basic formulation, developed by Kibler
and Woolhiser (5) is repeated here, using definitions shown in Fig. 4:

ki o= RiTY - At { B [(hg:i)rnﬂ - (h%‘:i)m“} - qi—l}

m + 1 20x ¢
. - . ' _B (hf7Lym+r B (hi—1ym+1
+ AZ )R [(=5)" &« (W7)™] |m+ 1 Tt m+ L °
2 2 Ax Ax




i

2986 June, 1972 IR 2
14
(.43)
TIME IN MINUTES
L2
(.37)
EQUATION {i8)
@
2 o4
79
-
(7%}
=
5 oo
w31 \/@nzss
z
p
p
o
1wt
o
\
\
(.24) +
SHOCK -/ 1 t‘
LOCATION 1 \
L
1
||
6 L Ll 1 | !
(.18) 150 200 250
(46) (61) (76)

DISTANCE IN FEET (METERS)

FIG, 5, —EXAMPLES OF CONTINUITY ERROR AND INSTABILITY IN VARIOUS

FINITE DIFFERENCE SCHEMES FOR EQ. 18 ACROSS SHOCK
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(@34 + (1%'”)]

ool =

. . B j— L+ ﬂ F Y\ 99+
B [y 4 (™) [m R
2 Ax AX
1 - . i _ gi—t
-5 (gi o+ q%*i)j! + —(-q%—%)} ........................ (18)

Here j represents successive points in time, and ¢ represents the centered
point in distance about which the difference equation is constructed. Three
adjacent points are required for the second-order scheme. The solution pro-
ceeds from { = 2 to past the point of farthest front advance.

When these three points encompass a severe change in slope, such as ata
shock, the definition of AZ™*1/Ax becomes critical. Two problems result:
one concerns preservation of mass balance, and the other concerns ensuring
numerical stability. A brief summary of the numerical results of several of
the definitions used will illustrate the problem.

One method tried was to define Ah™*1/Ax between points ¢ and { - 1, or
justbehind the point 7. This proved unstable at the peak of a hydrograph where
depth is less at both 7 - 1 and 7 + 1 than at . The instability is shown by
curve A in Fig. 5.

Another definition used a weighted slope between k;_, and a point some-
where between %; and %;.,. The weighting scheme depended on the change in
slope across the three points, or the second difference. The results were
stable but conserved mass very poorly, as curve B in Fig. 5 shows.

A method which proved both unstable and erroneous in continuity used
definitions of A(R™*1)/ Ax as (m + 1)h™ (Ah)/ Ax. Results of this formulation
are shown in Fig. 5as curve C. A peak developed near the shock which travelled
and grew.

The best system tested employed a mix of the scheme given as Eq. 18, and
a 2-point definition of A(A”*1!)/Ax between ¢ and ¢ - 1 for cases where
h}7! < hiZ!. Results of this scheme are indicated by curve D in Fig. 5. This
method was used in all sample cases reviewed in the next section.

EXPERIMENTAL RESULTS AND ANALYSIS

Experiments reviewed herein consist of a comparison of available field
data with computed results from both characteristic and finite difference solu-
tions. The lack of published results from carefully controlled experiments is
most evident., Much work needs to be done where infiltration and hydraulic
variables are well determined to enable one to study the interaction of surface
and porous media flow and to compare theoretical predictions with accurately
measured results.

Q, = Constant: Bovder Irrigation Problem.—Many interesting approaches
to the description of the advance of the front wave under border irrigation
have appeared in recent literature. A variety of assumptions have been made
regardingboth surface and porous media hydraulics. Only a few may be men-
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tioned herein. Most have suffered from inadequate data for comparisons.

In one of the earliestanalytical approaches, Lewis and Milne (7), by simple
continuity, derivedan integral convolution expression to describe front move-
ment by assuming constant average surface depth, with infiltration dependent
on time since first wetting., Several other authors have followed this pattern,
assuming all water surface profiles to be similar, with volume equal to some
proportion of upstream (normal) depth times length of front (xg). Most of these
papers are coveredby Hart, et al., (3), and some have compared their methods
with available published data such as that of Criddle (2). Note that although a
few of these papers refer to a kinematic approach, this is often used to mean
an assumption of constant depth, or a similarity solution, rather than a true
kinematic approach. Surface hydraulics are neglected.

Recently, Kincaid (68) attempted a characteristic solution of the complete
equations for unsteady surface flow to describe border irrigation advance.
Some difficulty was experienced, however, in the region of the wave front
where 8h/dx becomes large, Kincaid found it necessary to adjust predicted
wave shapes in the tip region to satisfy continuity. Field comparisons were
crippled by the nonuniformity of slope and inconsistency of infiltration data
of the plots where comparison was made.

A kinematic shock can describe the border irrigation problem where & is
sufficiently large, and where x; = £, in which £ is defined by

Qo = £ Fo o e (19)

Inthe limit,as x, — &,k and U, willapproach 0,and the flow becomes steady.
Near the limit &, however, f(x, /) varies extremely rapidly with x near x; as
shown in Fig. 6.

Wave profiles for a hypothetical border irrigation case computed by charac-
teristic andfinite difference methods are shown for comparison in Fig. 7. The
numerical diffusion at the shock front in the finite difference method does not
seem to increase perceptibly with time, although initial volume balance error
because of movement from » = 1 ton = 2 is carried forward. This error re-
sults from initiation of the solution by defining a surface slope between the
first grid points. Term k for the example shown is 1.3 L.

Comparison of the kinematic solutionand Kincaid’s result for one field case
is shown in Fig. 8. The results are biased by the fact that slope varied con-
siderably over the reach shown, and infiltrationand roughness parameters were
estimated by calculations dependent on a power law advance rate assumption.
Values for the same plot from different tests were somewhat inconsistent.
Although the kinematic solution appears to be better for large times, a fair
comparisonof the two methods awaits more accurately controlled experi ments
on more uniform plots. Nevertheless, this comparison indicates that solution
of the complete dynamic equations, rather than the more simple kinematic
equations, may not be justified for this border irrigation case.

Comparison of the kinematic shock solution with field data from Criddie
(2) and the method of Wilke and Smerdon (14) is shown in Fig. 9. As Criddle
gave no data on hydraulic roughness, and Wilke and Smerdon used a mean
rather than normal depth, it was necessary to estimate roughness.

The infiltration function used in these comparisons is that reported by
Criddle (2), based ona ring infiltrometer test. Occurrence of three-dimensional
infiltration from suchinfiltrometers causes inaccuracies, especially at longer
times (13), and the difference between predicted and measured advance rates
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is in the direction of errors from such misestimation of infiltration. Small
changes in K and a dramatically improve advance prediction as shown in Fig.
9.

Given that the ring infiltrometer results of Criddle are a somewhat biased
estimate of ponded-surface infiltration, the predictions of Wilke and Smerdon,
also shown in Fig. 9, must contain a counter-balancing overestimate of front
velocity at larger times. Study of their method reveals that, in numerically
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o

evaluating the continuity convolution expression of Philip and Farrell (9),
nearly linear results over a very limited range of time were exirapolated
many times the range in which the results were obtained. The results of Hart,
et al. (3) demonstrate the difference between the Wilke-Smerdon predictions
by extrapolation and a more accurate evaluation of the same expression.
Surface water profiles obtained by the characteristic kinematic method
may be integrated numerically to obtain a value for mean depth of flow. The
results, for two values of k,, are shown in Fig. 10. From these results it

R
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appears that for many cases, the assumption of constant mean depth may be
quite justified provided infiltration can be accurately predicted. The data of
Fig. 2 predict that, for the example shown with 2, = 0.025L,, the kinematic
assumption alone should cause only 3 % error, for xg = 200 ft (62 m).

The preceding observations suggest an experimental method of determining
an infiltration function: with a border irrigation plot of uniform slope and
roughness, advance rate data and an accurate measure of upstream (normal)
depth could be used with a kinematic model to predict the appropriate infil-
tration parameters by optimization.
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FIG. 11.—SAMPLE RESULTS FOR FLOOD ROUTING ON INITIALLY DRY INFILTRA-
TING BED BY CHARACTERISTIC KINEMATIC METHOD

Both the kinematic finite difference and the characteristic methods appear
to represent the data well, given the bias of the infiltration data. The charac-
teristic method begins to demonstrate the effect on solution by segments as
used in Eqs. 15—17 of the case where the limit £ is approached. Some slight
instability in computed kg occurred when A%k/Ax? behind the shock became
quite largeas d(f(¢))/dx became large. This difficulty could no doubt be over-
come by changing to a fixed A/ and variable Ax scheme at these large times.
Here the finite difference method shows practical advantages over the charac-
teristic solution.

Q, Variable: Routing Ephemeral Flood Waves.—A perhaps more interesting




IR 2 BORDER IRRIGATION ADVANCE 303

and unique application of the methods developed above concerns routing of in-
tense local thunderstorm flood waves in dry sand channels such as occur
commonly in many parts of the Southwest. In border irrigation, distribution
of infiltrated water is the important variable, but for ephemeral flash floods,
movement and attenuation of the surface wave is the primary concern. The
equations developed above are applicable where channel width is sufficient to
approximate R, the hydraulic radius, by k. However, nothing in the technique
is altered if the channel is narrow enough so that Eqs. la and 2a are used in
the development rather than Egs. 1b and 2b. The algebra, of course, is some-
what more complex,
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FIG. 12.—COMPARISON OF SOLUTIONS FOR FLOOD WAVE ROUTING IN INFILTRA~
TING CHANNEL BY CHARACTERISTIC AND FINITE DIFFERENCE METHODS

The principal features of shock-type flood wave movement over an in-
filtrating bed can be shown by the example shown in Fig. 11. The hypothetical
input hydrograph is shown in the inset. Shock height grows as the wave moves
until the peak is reached because velocity behind the shock exceeds shock
velocity; e.g., 8Q/0x for this region is negative. At the same time, the peak
flow is decreasing due to infiltration, and the slope of the hydrograph behind
the peak is decreasing because 98¢/ 3x is positive in this region. Infiltration
accentuates the increase in slope of the flow profile behind the shock, and
also the decrease in slope behind the peak because the loss rate increases at
an increasing rate from the rear to the front of the profile.
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The accuracy with which the kinematic wave can be defined by a {finite
difference solutionisindicated by the results shown in Fig. 12. A slight error
is shown in predicting peak flow, and some diffusion occurs in the shock front
as well, but the difference between finite difference solution and characteris-
tic solution is in the direction of the momentum effects which the kinematic
model neglects.

Application of this model topredict flood waves, and comparison with actual
events using measured hydraulic and infiltration parameters, is currently
being undertaken at the Southwest Watershed Research Center, Tucson, Ariz,
Infiltration relationships and channel shape changes will be determined. Flow
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FIG. 13.—SAMPLE OF FLASH FLOOD MOVEMENT AND ATTENUATION IN WALNUT
GULCH EXPERIMENTAL WATERSHED, SOUTHEASTERN ARIZONA

measurement structures are still undergoing rating investigations. Fig. 13,
however, taken from data on the Walnut Gulch Experimental Watershed, shows
how well the kinematic wave characteristics predicted in the example of Fig.
11 are verifiedbyactual hydrographs; obviously infiltration losses are severe.
Although rating relations on which this figure is based are somewhat in error,
the decay over the reach shown follows quite well those shape change charac-
teristics predicted by the mathematical model.

CONCLUSIONS

A mathematical model of the movementand attenuation of a kinematic shock
over an infiltrating plane has been developed, based on a suggestion by Wool-
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hiser (1971). The partial differential equations for kinematic wave movement
under time-varying and space-varying lateral losses were reduced to two
characteristic ordinary differential equations, and combined with a third equa-
tion for shock movement. This system of equations was solved numerically,
and the model applied to two interesting and important cases of wave flow—
border irrigation and ephemeral flood routing.

A rectangular gridfinite difference solution of the same partial differential
equationwas also developed which best modeled the extreme variations at the
shock front, by comparison with the characteristic solution.

Results of comparison with available data indicate that for many cases at
least, it is unnecessary to solve the complete dynamic equations for this par-
ticular unsteady flow case. The constant mean depth used by several previous
investigators appears to be a good first approximation; advance rates appear
to be much more sensitive to the infiltration function used. The results of
Tinney and Bassett (12) indicate at least general guidelines for goodness of
the kinematic assumption. The model provides a means for a theoretical des-
cription of border irrigation hydraulics where, in the past, gross assumptions
were used for surface profile shape. Moreover, it provides a promising means
for study of ephemeral flood routing and attenuation from channel losses.
Further field research will better establish the accuracy of the model as a
descriptive and predictive tool.
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APPENDIX II.~NOTATION

The following symbols are used in this paper:

A = channel cross-sectional area;

a = exponent of time in infiltration equation;
C, = laminar resistance coefficient;
C; = turbulent resistance coefficient;

F, = Froude number;
f = infiltration rate;
fo=fat ~ w;
H, = normal depth of water;
h = depth of water;

¢ = depth of water at intermediate point (Fig. 3);
¢ = depth of shock;
7 = node number in x direction finite difference grid;
j = node number in ¢/ direction finite difference grid;
K = time coefficient in infiltration equation;
k = S,L,/H,F? = LiggettandWoolhiser parameter for goodness of kinematic
assumption;
k, = SyoL,/H, = parameter from Tinney and Bassett;
o = normalizing (plane) length;
m = exponent to depth in friction relation;
n = node number in x direction on characteristic grid;
p = wetted perimeter;
¢ = discharge;
@, = constant upstream input for border irrigation;
@¢ = discharge immediately behind shock;
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g = local inflow or outflow rate from surface flow;
S, = bed slope;

t = time;
t, = time defined at an intermediate point oncharacteristic grid
(Fig. 3);

t ¢ = time for shock to reach point x;
Ug = shock velocity;
u = local velocity;
x = distance along plane;
xg = distance to shock at time 7 g;
o = coefficient in stage-discharge relation;
g = alm+ 1);
£ = &4/fp; and

7= - ts = time since initial wetting.
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ABSTRACT: Movement and modification of an advancing front on an initially dry
infiltrating surface is modelled mathematically by a kinematic descripition of surface
flow and a kinematic shock. Criteria for the goodness of approximation are presented,
and the model is shown to describe two common hydraulic problems; border irrigation
advance and dry channel flood wave movement. Two numerical methods for solution
of the equations involved are developed and compared. Results from the kinematic
model ‘are compared with published data and other methods of predicting border
irrigation advance. Sensitivity of advance rate to the infiltration relations is
demonstrated, and a constant mean depth is shown to be a reasonable assumption as a
first approximation. The model may also be used to route floods through a dry
infiltrating channel, and correspondence of properties of measured floods with
kinematic shock waves is demonstrated.
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