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Abstract

Changes in climate and land management practices in the San Pedro River basin have altered the vegetation patterns
and dynamics. Therefore, there is a need to map the spatial and temporal distribution of the vegetation community in order
to understand how climate and human activities affect the ecosystem in the arid and semi-arid region. Remote sensing
provides a means to derive vegetation properties such as fractional green vegetation cover (fc) and green leaf area index
(GLAI). However, to map such vegetation properties using multitemporal remote sensing imagery requires ancillary data for
atmospheric corrections that are often not available. In this study, we developed a new approach to circumvent atmospheric
effects in deriving spatial and temporal distributions offc and GLAI. The proposed approach employed a concept, analogous
to the pseudoinvariant object method that uses objects void of vegetation as a baseline to adjust multitemporal images. Imagery
acquired with Landsat TM, SPOT 4 VEGETATION, and aircraft based sensors was used in this study to map the spatial and
temporal distribution of fractional green vegetation cover and GLAI of the San Pedro River riparian corridor and southwest
United States. The results suggest that remote sensing imagery can provide a reasonable estimate of vegetation dynamics using
multitemporal remote sensing imagery without atmospheric corrections. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Climate change and increasing human activities
have resulted in a substantial change in the vegetation
type and distribution in the southwest United States.
Chihuahuan desert shrubs and mesquite trees increas-
ingly have become dominant and replaced native
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grasses over large areas (Kepner et al., 1998; Watts
et al., 1998). The change in vegetation pattern has a
feedback influence on the local and regional climate
by reducing evaporative water losses from surface
to atmosphere. Therefore, the spatial and temporal
distributions of vegetation characteristics is important
in understanding how climate and human activities
affect the ecosystem in the semi-arid environment.

Estimation of vegetation properties with remotely
sensed imagery has been quite successful. How-
ever, when applied to satellite imagery, tremendous
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processing efforts related to atmospheric and bidirec-
tional corrections are needed. Although procedures
to correct these effects are available, ancillary data
about atmospheric conditions and bidirectional prop-
erties of the surface types are limited in both space
and time. This has prevented satellite data from being
used to quantify vegetation dynamics for practical ap-
plications. A common practical technique to correct
atmospheric effect is dark-object subtraction (Chavez,
1988; Caselles and Garcia, 1989), which subtracts
the minimum pixel values of a dark object found in a
scene with an assumption that no energy is reflected
from that dark object. However, in many cases, it is
impossible to find a dark object within a scene that is
large enough to occupy more than one single pixel,
especially when coarse spatial resolution satellites are
used. An alternative is to use pseudo invariant objects
(PIOs) within a scene to convert digital numbers to
radiance or reflectance values (Schott et al., 1988;
Moran et al., 1996, 1997). PIOs are those objects
whose reflectances are known and remain approxi-
mately constant throughout time and therefore can be
used to “calibrate” multitemporal images.

Reflectance properties of most PIOs, however, vary
with many factors such as surface conditions. When
bare soil fields are used as PIOs, e.g., their reflectances
vary with soil moisture content and surface rough-
ness, which changes throughout the season because
of the impact of rainfall events. Use of either a dark
object or a PIO for atmospheric corrections will not
correct for bidirectional effects. When an image is ac-
quired at an oblique view, the reflectance properties of
most objects including PIOs may vary substantially.
Therefore, oblique viewing will introduce a constant
bias when PIOs are used for atmospheric corrections.
Noise associated with atmospheric and bidirectional
effects will be magnified when calculating derivative
products such as vegetation cover and biomass, es-
pecially over sparsely vegetated surfaces. Thus, it is
critical that methods be developed to circumvent at-
mospheric and bidirectional effects. The objective of
this study is to develop an alternative technique to de-
rive remote sensing products such as fractional green
vegetation cover (fc) and leaf area index (LAI) that are
less sensitive to atmospheric effect. Although viewing
angles may introduce errors in estimatedfc and LAI,
no attempt was made to correct bidirectional effects in
this study.

2. Methodology

By definition, a PIO is an object whose reflectance
properties are invariant throughout time. Examples
of such objects are bare soil fields, airstrips, and
highways. Therefore, multitemporal remote sensing
images can be converted to surface reflectances by us-
ing a linear relationship between raw digital numbers
on the image and the known reflectances of the PIOs
found within the scene. The key assumption is that
the object is invariant in terms of surface reflectance.
This assumption, however, is not valid for most nat-
ural land surfaces because their reflectance properties
are known to vary with many external factors such
as surface conditions and sensor’s viewing angles.
Therefore, the fundamental assumption of invariance
in reflectance fails in most cases, resulting in uncer-
tainties in surface reflectance and its derived products.

There are other physical properties besides reflec-
tances that are indeed invariant with time and surface
conditions. Such physical properties include the pres-
ence of vegetation or green biomass. For example, a
bare soil field, which is often used as a PIO, changes
in surface reflectance with surface moisture condition,
roughness, and sensor/sun-viewing angles. However,
the fractional green vegetation cover (fc) or green leaf
area index (GLAI) does not vary with these factors.
Therefore, the bare soil field is variant in surface re-
flectances but invariant in green vegetation cover or
green biomass, allowing one to use this truly invari-
ant property to calibrate the green cover product rather
than to calibrate reflectance.

We thus designed an adjustment approach (Fig. 1),
using true invariant properties of most land surfaces,
to circumvent the atmospheric effect in the deriva-
tion of biophysical properties of land surfaces. The
adjustment approach (Fig. 1) consists of three steps.
The first step is to identify surface targets void of
vegetation, analogous to PIOs, whose physical sizes
are at least twice larger than the spatial resolution
of the remotely sensed imagery used. Such objects
may be areas of bare soil fields, airport runways,
and highways. To differentiate these objects from
traditional pseudo reflectance-invariant objects, these
objects are termed here as objects void of vegetation
(OVV). By definition, the fractional green cover and
GLAI values of OVVs should be zero. However, due
to atmospheric effect, the derivedfc and GLAI values
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Fig. 1. Flow chart of the approach to compute green vegetation
cover (fc) and GLAI using OVVs.

of OVVs may not be zero and need to be adjusted.
The second step is to compute this non-zero adjust-
ment factor in terms of fractional cover and GLAI
(algorithms for computing these two variables are de-
scribed below). The third and final step is to compute
the fc and GLAI spatial distribution by subtracting
the adjustment factor from the entire image.

In this study, we focused on the derivation of tem-
poral dynamics of vegetation in the San Pedro River
basin where the semi-arid land-surface-atmosphere
(SALSA) program is currently focusing its effort
(Goodrich et al., 2000). In particular, we used the
proposed adjustment approach to derive spatial and
temporal distributions of the fractional green vegeta-
tion cover (fc) and GLAI of the study area. The se-
lected OVVs in this study included the Wilcox playa,
Arizona for all TM images and White Sands, New
Mexico for the VEGETATION images. These OVVs
can also be used as PIOs. Thefc and GLAI values
of the Wilcox playa and White Sands were computed
and subtracted from the entirefc and GLAI images.
The fc and GLAI values of these OVVs provided
baselines for each image to allow an automatic adjust-
ment of thefc and GLAI values from multitemporal
remote sensing imagery.

2.1. Green vegetation cover estimate

Fractional green vegetation cover (fc) in arid and
semi-arid regions is an important variable in hydrolog-

ical and ecological modeling studies. Their temporal
dynamics and spatial distributions are often needed in
global circulation models (GCMs) in order to compute
the energy or water fluxes. Estimation of fractional
green vegetation cover,fc, from remotely sensed data
is often associated with computation of spectral veg-
etation indices and their empirical relationships with
fractional green vegetation cover. In this study, we
used a linear mixing model to relatefc with spectral
vegetation indices.

Assume that a pixel signal consists of the contri-
bution from two components: soil and vegetation. Let
the fractional green vegetation cover befc and, there-
fore, the fractional soil cover would be 1− fc. The
resulting signal,S, as observed by a remote sensor can
be expressed as

S = fc Sv + (1 − fc)Ss (1)

whereSv is the signal contribution from the green veg-
etation component andSs from the soil component.
For pixels consisting of more than two components,
Eq. (1) needs to be modified. This analysis assumed
that a pixel consisted of only vegetation and soils.
Eq. (1) can be applied to remotely sensed data in the
reflectance domain (Maas, 1998) and in the spectral
vegetation index domain (Zeng et al., 2000). When ap-
plied with a spectral vegetation index such as the nor-
malized difference vegetation index (NDVI), Eq. (1)
may be approximated by

NDVI = fc × NDVIveg + (1 − fc)NDVIsoil (2)

which can be re-written as

fc = NDVI − NDVIsoil

NDVIveg − NDVIsoil
(3)

where NDVIsoil is the NDVI value of an area of bare
soil or OVV, and NDVIveg is the NDVI value of a pure
vegetation pixel.

Although many vegetation indices are available, we
selected NDVI because of its traditional use in deriv-
ing vegetation variables. The NDVIsoil values should
be constant throughout time and close to zero in theory
for most type of bare soil surfaces. However, due to at-
mospheric effect, and changes in surface moisture con-
ditions, NDVIsoil values vary substantially with time.
In addition, they also vary from location to location
because of difference in soil types and colors. There-
fore, using a single value of NDVIsoil as a baseline
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for the entire image may not be valid unless the area
of interest consists of uniform soil types. For this rea-
son, we selected surfaces near the center of an image
to minimize errors associated with variations in NDVI
values of OVVs. To use the proposed adjustment ap-
proach, it is not necessary to know the exact values
of NDVIsoil because this value will be computed from
each image. The NDVIsoil values from each image
were used to compute the associatedfc and GLAI
adjustment factors.

As previously stated, the spatial variation of bare
soil surfaces may also be related to the sensor’s
observation angles. Therefore, depending on the
sun-viewing geometry of each pixel, the selected
NDVIsoil may be different and thus result in uncer-
tainties in fc and GLAI estimation. To minimize the
bidirectional effect, it is suggested to avoid large view
angle data when nadir-looking images are available.
In this study, the nadir-viewing TM images were used
in the analysis. The proposed adjustment approach
was designed to circumvent primarily the atmospheric
effect, aiming at analyzing vegetation dynamics from
multitemporal images. Uncertainties were expected
when using images acquired with large viewing angle
sensors.

The value for NDVIveg represents the maximum
value of a fully vegetated pixel. Because of the tem-
porally dynamic nature of green vegetation cover, this
value needs to be empirically determined. In selecting
such a value, we examined all images and selected an
image acquired during the peak-growing season within
the area of interest. The NDVIveg was determined in
this study to be 0.8 from high spatial resolution data.
During the selection process, surfaces of known to be
100% green cover were identified and the correspond-
ing NDVI values were computed from multitempo-
ral images, and then the highest value (0.8) was used
for all image. This empirically determined value may
also vary with atmospheric conditions (Kaufman and
Tanre, 1992; Qi et al., 1994), which may cause some
errors in the fractional cover computation in Eq. (3).

Because the NDVI is a ratio vegetation index, it can
be directly computed with digital numbers, or with
top of atmosphere radiance or reflectance, or surface
reflectance. In this analysis, NDVIveg of 0.8 was de-
termined using surface reflectances derived from TM
images. When used with radiance, or digital num-
bers, or top-of-atmosphere reflectance or radiance, the

NDVIveg may be different. However, once the data
type (radiance, raw digital numbers, or top-of-atmos-
phere reflectance or radiance) is determined, the
NDVIveg should be constant.

2.2. GLAI estimate

Another important vegetation characteristic is the
GLAI. Unlike the fractional green vegetation cover,
which is a two-dimensional horizontal variable, the
GLAI is a variable describing the density of green
vegetation. It is defined here as the total single-side
area of green leaves per unit ground area. Therefore,
its values can theoretically range from 0 to∞, whereas
fc ranges from 0 to 1.

Approaches to derive GLAI exist using either em-
pirical relationships with spectral vegetation indices
or model inversion techniques. For arid and semi-arid
regions such as the San Pedro River basin, we adapted
the approach by Qi et al. (2000), which was de-
rived using a combination of modeling and empirical
approaches

GLAI = a NDVI3 + b NDVI2 + c NDVI + d (4)

wherea, b, c, andd are empirical coefficients and were
found to bea = 18.99, b = −15.24, c = 6.124, and
d = −0.352 for arid and semi-arid regions. The GLAI
values derived from these coefficients were validated
using TM imagery data over a desert grassland, and
therefore, the use of them over a large area of diverse
vegetation remains to be further validated. Since the
TM imagery used in this study covered the same geo-
graphic areas, it is expected that uncertainty in GLAI
estimation from these coefficients would not be signif-
icantly different from the original study. Furthermore,
if adjusted NDVI was used in Eq. (4), the coefficient
d should be adjusted to zero to ensure that the GLAI
values of OVV were zeros for all seasonal images.

3. Data description

3.1. Remote sensing data

Multitemporal images were acquired with Land-
sat TM, French SPOT 4 VEGETATION, and airborne
sensors over the study area. They were geometrically
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Table 1
Remote sensing images acquired in 1992, 1997, and 1998 over the study area in the southwest United States on different dates and DOY

Airborne TMS Landsat TM SPOT 4 VEGETATION

Date DOY Date DOY

16 February 1997 46 Daily from 30 April to 30 December 1998
20 March 1997 79
21 April 1997 111
24 April 1992 114
8 June 1997 159
11 June 1992 162

12 August 1997 224 27 June 1992 178
13 July 1992 194
10 July 1997 222
14 July 1992 226
12 September 1997 255
1 October 1992 274
14 October 1997 287
2 November 1992 306
18 November 1992 322

Spatial resolution: 3 m Spatial resolution: 30 m Spatial resolution: 1000 m

registered to UTM coordinates. A total of 15 Land-
sat TM images were acquired in 1992 and 1997 over
the San Pedro basin area (Table 1). Thematic mapper
simulator (TMS) was deployed on an aircraft during
the SALSA intensive field campaign in August 1997
(Goodrich et al., 2000) to acquire images at a 3 m spa-
tial resolution. Daily SPOT 4 VEGETATION images
were acquired over this study area at a spatial resolu-
tion of 1000 m. Therefore, the remotely sensed images
had a range of spatial resolution from 3 m to 1 km. In
addition to these satellite- and aircraft-based remote
sensing data, surface reflectances were also measured
at the Audubon ranch near Elgin, AZ, in 1998, us-
ing an MMR radiometer in the same spectral bands as
Landsat TM sensor.

3.2. Vegetation data

Ground vegetation properties were recorded in
1992, 1997 and 1998 using both destructive sampling
technique and Li-Cor’s LAI-2000 instrument. Vege-
tation samples were collected at three study sites. The
first site was located in the center of Walnut Gulch
Experimental Watershed and the site was dominated
by tobosa grasses (Hilaria mutica) with some desert
shrubs. The second site was near the Lewis Springs
within the San Pedro River basin and the dominant
grass was sacaton (Sporobolus wrightii). The third site

was at the Audubon research ranch near Elgin, AZ,
and the dominant vegetation types were native upland
grasses, Lehmann’s lovegrass, and sacaton grasses.

Both destructive and non-destructive methods were
used to measure the GLAI. For the destructive method,
vegetation samples were collected in the field and
brought back to the lab and separated into green vege-
tation, senescent vegetation, and litter. The single side
leaf areas were measured by passing them through an
LAI-3000 area meter for each component and GLAI
was then computed. For the non-destructive method,
LAI-2000 instrument was used to measure total LAI,
and the lab-based ratio of green to total leaf areas was
used to compute the GLAI. Measurements of the to-
tal fractional vegetation cover were made by visual
estimate on site during each field visit. Detailed de-
scriptions of this data set can be found in Moran et al.
(1998). The ground in situ measurements were then
used in this study to examine the effectiveness of the
proposed approach.

4. Results

4.1. Spatial dynamics of green vegetation

The spatial distribution of the estimated green veg-
etation cover and GLAI was derived from the 3 m
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Fig. 2. Spatial distribution of green vegetation cover (a) and GLAI (b) derived from TMS images (3 m resolution) over a portion of the
San Pedro basin near the Lewis Springs, AZ.

resolution TMS data (Fig. 2). The spatial extent cov-
ered the riparian corridor of the San Pedro River from
Hereford to Fairbanks (see Fig. 2 in Goodrich et al.,
2000). Dense green vegetation cover was distributed
along the river where the cottonwood–willow riparian
forest gallery was located. Away from the riverbanks
toward the upland areas, the green vegetation cover
diminished. There was also a vegetation cover gradi-
ent from Fairbanks to Hereford or from north to south
of the study area. This gradient was most likely due to
water availability from the river and weather pattern
variation due to elevation changes. Along the river
were cottonwood and willow trees, which require

easy access to water. They were the major vegetation
community of this riparian corridor that caused evap-
otranspirative water loss to the atmosphere (Schaeffer
et al., 2000; Scott et al., 1999). Away from the river
were sacaton grasses and mesquite trees. Although the
sacaton grasses were denser than mesquite trees, they
did not appear as green as the mesquite trees. This was
due to the fact that the senescent sacaton grasses lim-
ited the new growth by blocking solar radiation from
reaching to the lower layers of the clumps. Therefore,
even in the rainy wet season, the sacaton grasses
did not appear as green as the cottonwood–willow
community and mesquite trees. The fractional green
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vegetation cover of the sacaton was thus less than the
cottonwood–willow community and mesquite trees.

4.2. Temporal dynamics

To examine the temporal dynamics of vegetation
in the San Pedro River basin, a portion of the basin
was extracted from two Landsat TM images acquired
on 21 April (DOY 111) in the dry season and on 12
September (DOY 255) in the wet season of 1997. The
spatial distribution of green vegetation cover (Fig. 3)
and GLAI (Fig. 4) of the two seasons covered a
portion of the San Pedro River basin. Note the scale
difference between Figs. 3 and 4. The Huachuca
mountains are located at the lower left corner of the
images. The spotty areas with yellow color on the
left-hand side of Figs. 3b and 4b were clouds. The dry
season was characterized with little green vegetation
while the wet season, due to increased precipitation,
produced more green vegetation cover. In the dry sea-
son, only the river and mountainous areas had green
vegetation. In the wet season, cottonwood, willows
and mesquite trees were green. The sacaton, in spite

Fig. 3. Green vegetation cover maps derived from TM imagery of: (a) 21 April 1997, DOY 111; (b) 12 September 1997, DOY 255.

of possible new growth underneath the canopy, did
not appear green. Due to increased precipitation dur-
ing the monsoon season, the wet season (Figs. 3b and
4b) had more green vegetation than the dry season
(Figs. 3a and 4a).

4.3. Large scale vegetation cover and GLAI

The proposed adjustment approach was applied
with SPOT 4 VEGETATION data over a large area
that encompassed the San Pedro River basin to demon-
strate the application of the approach at different
spatial scales. The imagery covered southwest United
States and the northern part of Mexico. Eqs. (3) and
(4) were applied to the VEGETATION images ac-
quired in both the dry (April) and wet (September)
seasons of 1998, and the results are presented in
Figs. 5 and 6. Fig. 5 is a map of green vegetation
cover derived from SPOT 4 VEGETATION sensor on
21 April and on 12 September 1998, whereas Fig. 6
is the GLAI maps of the two dates. These two maps
(Figs. 5 and 6) showed the vegetation patterns of large
scales. The coarse spatial resolutionfc maps showed
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Fig. 4. GLAI maps derived from TM imagery of: (a) 21 April 1997, DOY 111; 12 September 1997, DOY 255.

Fig. 5. Green vegetation cover maps derived from SPOT 4 VEGETATION imagery of: (a) 21 April 1998, DOY 111; (b) 12 September
1998, DOY 255.
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Fig. 6. GLAI maps derived from SPOT 4 VEGETATION imagery of: (a) 21 April 1998, DOY 111; (b) 12 September 1998, DOY 255.

little detailed structures (Figs. 5 and 6) in comparison
with those derived from TM images (Figs. 3 and 4).
Clearly, the San Pedro River can be seen with TM
derived maps (Figs. 3 and 4), but can barely be seen
on VEGETATION derived maps in Figs. 5 and 6.

5. Validation

Because of only limited ground-based data avail-
able for this study, it was difficult to fully validate
the proposed adjustment approach. However, inter-
comparison of results from different data sets was
made in three ways to verify the adjustment approach:
(1) intercomparison across atmospheric corrections,
(2) intercomparison across spatial scales, and (3)
comparison against ground in situ data.

5.1. Across-atmosphere comparison

For this analysis, we selected 1992 TM images
because of availability of ancillary data for atmo-
spheric corrections. A window of 9× 9 pixels, a size
of approximately 270× 270 m2 area near Tombstone

within the Walnut Gulch Experimental Watershed,
was extracted from all 1992 TM images. The mean
values of reflectance at the surface (with atmospheric
correction) and at the top of atmosphere (without
atmospheric correction) were used to compute multi-
temporal NDVI values. These values were then used
in Eqs. (3) and (4) to compute temporal dynamics of
fc and GLAI values without any adjustment. The data
without atmospheric correction was then applied to
the adjustment approach to investigate its effective-
ness on reducing atmospheric effects. The results were
plotted as a function of day of year (DOY) in Fig. 7.
Without atmospheric correction and OVV adjustment,
the temporal dynamics of fractional green cover var-
ied substantially with time and showed little seasonal
patterns of vegetation dynamics of the region. After
atmospheric corrections, the temporal pattern showed
two seasonal variations, with peak-growing season
being around DOY of 226 and dry season for the rest
of the year. The results obtained with the adjustment
approach were similar to the results derived from the
atmospherically corrected data and represented the
vegetation dynamics of the study area more realis-
tically. The results suggested that the use of OVV
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Fig. 7. Comparison of fractional cover values derived with data before and after atmospheric correction, and with the proposed approach
using the data without atmospheric correction.

approach could reduce the atmosphere-induced noise
in the temporal vegetation dynamics estimated from
TM images even though no atmospheric correction
was made.

5.2. Across-scale comparison

The remotely sensed data used in this analysis had a
range of spatial scales from 3 to 1000 m (Table 1). To
compare results across spatial resolutions, a common
area (5× 1 km2) found in both TMS (3 m) and TM
(30 m) images was extracted and the statistical means
were computed. This could not be done with VEGE-
TATION images because the TMS coverage was not
enough to cover even a single pixel of the VEGETA-
TION data. To compare spatial scales between TM and
VEGETATION, a separate common area (5× 5 km2)
was extracted and statistical means were used for
intercomparison. Due to limited TMS data, we could
only compare TMS with TM for the wet season,
while comparison between TM and VEGETATION
was made for both dry and wet season. The results
were plotted in Fig. 8. Although the spatial scales
were different, the mean values of the fractional green
cover estimated at three spatial scales agreed well.
Because the TMS image was acquired over the inten-
sive study site at the Lewis Springs site of SALSA

program and had a spatial resolution of 3 m, we felt
quite confident about thefc estimate with this image.
Therefore, the estimatedfc from the fine resolution
TMS image could be used to assess the accuracy of
fc estimates by the coarser resolution TM and VEG-
ETATION images. The good agreement among all
three scales (Fig. 8) suggest that the estimatedfc with
TM and VEGETATION images had approximately
the same accuracy of that estimated by TMS image.

5.3. Comparison with in situ measurements

In this analysis, we selected 1997 TM images be-
cause of availability of ground in situ measurements of
fractional cover and GLAI from the SALSA program
and other research projects at the three study sites de-
scribed previously. The estimatedfc and GLAI values
for this analysis were all derived from 1997 TM im-
ages without atmospheric corrections to demonstrate
the effectiveness of the adjustment approach for reduc-
ing atmospheric perturbation. Because of rigid Land-
sat satellite overpass schedules over the study sites,
the ground in situ measurements were not always co-
incident with the satellite overpass dates.

The results from the Lewis Springs (sacaton
grasses) in the San Pedro River basin and the Walnut
Gulch Experimental Watershed (tobosa grasses) were
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Fig. 8. Comparison of fractional green cover estimated using the proposed approach at different spatial scales: 3 m (TMS), 30 m (TM) and
1000 m (VEGETATION).

presented in Fig. 9. The in situfc values agreed rea-
sonably well with those derived from TM images. The
seasonal trends of the estimatedfc were reasonably
well in agreement with those observed on the ground.
In spite of the fact that there was a good agreement
between estimatedfc values and in situ measure-
ments, no conclusive statements could be made, due
to limited number of data available for this analysis.

Fig. 9. Comparison of ground-based green vegetation covers (as indicated with a suffix g) with those estimated using satellite imagery (as
indicated with suffix s) for tobosa and sacaton grasses using the proposed approach.

For the Audubon study site, both fractional green
cover (fc) and GLAI values were derived using
ground-based reflectance measurements with the ad-
justment approach. The computedfc and GLAI values
were compared with in situ measurements in Fig. 10.
The estimated fractional green cover agreed reason-
ably well with ground measurements in the early
growing season. On DOY 216, the fractional green
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Fig. 10. Comparison of in situ fractional green cover (a) and GLAI (b) measurement with those derived using the proposed approach and
ground-based reflectance measurements at Audubon site, where native grasses and Lehmann lovegrass were dominant species.

vegetation cover,fc, was underestimated by approx-
imately 50%. This unexpected discrepancy on this
date could be due to several factors. One was the het-
erogeneous nature of the study areas. Since ground
sampling was made within several 2× 2 m2 blocks,
the averaged values may not represent what a sen-
sor would ‘see’ with a footprint of 30× 30 m2 area.
The estimated GLAI, agreed reasonably well with
in situ measurements. It should be pointed out that
there were uncertainties associated with ground GLAI
measurements. The uncertainty in the in situ GLAI
measurements could result from spatial variation of
the vegetation density, random errors of the equip-
ment used, and measurement condition variations
when using LAI-2000 instrument, resulting in dis-
crepancies between in situ measurements and remote
estimates.

6. Discussion

The results presented here are preliminary. The re-
motely estimatedfc and GLAI were compared with
ground-based measurements using a limited data set.
Further validation of the results from this study is
needed in order to assess the accuracy of the adjust-
ment approach. This would require carrying out ex-
tensive ground measurements at varying spatial and
temporal scales with coincident satellite overpasses.
Furthermore, a scaling up scheme forfc and GLAI
variables needs to be developed in order to conduct a
thorough validation of the proposed approach.

The use of the NDVIveg = 0.8 in Eq. (3) was
specific to the research area and was independent of
vegetation types. This upper boundary may vary with
vegetation types within the area of interest. Use of
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this approach for other vegetation types may require
knowledge of this boundary condition. Furthermore,
the equation used to compute GLAI was developed for
desert grasslands in arid and semi-arid regions. The
use of this equation for other vegetation types such as
dense agricultural crops needs further investigation.

The OVVs selected for this study were the bare soils
of Wilcox playa in southern Arizona and White Sands,
New Mexico, which resulted in a valid assumption that
no vegetation was present all year round. When work-
ing with other data sets of different spatial resolution,
one may find other invariant objects to be more suit-
able. However, it should be pointed out that the OVVs
should be large enough to encompass at least a few
pixels. For remotely sensed imagery such as Landsat
TM, a field of bare soil may prove to be sufficient for
this purpose.

Although a dynamic baseline adjustment factor,
derived from OVV, was used to circumvent atmo-
spheric effects found in most remotely sensed, no
consideration was given to the effect of atmosphere on
the dynamic range of NDVI values. As shown in other
studies, the atmosphere could reduce NDVI dynamics
by as much as 10% (Qi et al., 1994), which would re-
sult in errors infc and GLAI estimation. Quantitative
assessment of atmospheric and bidirectional effects
on the dynamics of vegetation indices, and on thefc
and GLAI estimation need to be further investigated.

Finally, Eqs. (3) and (4) did not specify the vegeta-
tion types. Because different types of vegetation tend
to result in variable NDVI dynamics, use of these equa-
tions for remotely sensed imagery of multi-vegetation
types may result in a constant bias towards some veg-
etation types. Therefore, uncertainties in estimatedfc
and GLAI associated with multiple vegetation types
needs to be quantified. When applying these two
equations for large-scale remote sensing images, it
may be a good exercise to classify the imagery first
and then use variable upper boundaries for different
classes.
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