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ABSTRACT to automated dataloggers, however, can record tempo-
rally continuous data with little maintenance over longStudies show that it may be possible to combine satellite-derived
time periods. Like many soil water sensors, ERS requiresoil water maps with soil–vegetation–atmosphere transfer (SVAT)

models to obtain spatially distributed, temporally continuous informa- a calibration to convert a measured signal to volumetric
tion on vadose zone water contents. However, before this method water content. Seyfried (1993) documented two difficul-
can be instituted, it is essential to determine the ability of a SVAT ties with calibrating these sensors: (i) They exhibit large
model to simulate vadose zone soil water contents. A study was de- variability among individual sensors; and (ii) They are
signed to evaluate the simultaneous heat and water (SHAW) model sensitive to variations in soil properties and tempera-
by comparing its soil water predictions with measured soil water ture. This same study, however, demonstrated that a
contents collected by electrical resistance sensors (ERS) during the

field calibration of ERS to TDR sensors accounted forMonsoon ’90 multidisciplinary field experiment. ERS collected hourly
site-specific soil conditions and yielded reasonable esti-soil water measurements at 5-, 15-, and 30-cm depths in a shrub-
mates of soil water (60.05 m3 m23).dominated site [Larrea tridentada (Sessé & Moc. ex DC.) Coville]

Hydrologic models can also be used to estimate soilwith large bare interspace areas. Data collected by the ERS were
calibrated to time domain reflectometer (TDR) sensor measurements water at various spatial and temporal resolutions. In par-
placed adjacent to the ERS using an in situ calibration technique. ticular, soil–vegetation–atmosphere transfer (SVAT)
Results indicated that the SHAW model overestimated soil water at models are gaining attention as a means of better repre-
each depth by 0.02 m3 m23 under bare soil and underestimated soil senting interactions between the soil and atmosphere.
water at each depth under shrub cover by 0.02 m3 m23. The ability One of these SVAT schemes, the simultaneous heat and
of the model to simulate ERS water content values gives it the poten- water (SHAW) model, is a detailed physical-process
tial to be periodically updated with remotely sensed data to predict

model capable of simulating the effects of a multispeciesvadose zone soil water content over large areas at high temporal reso-
plant canopy on heat and water transfer at the soil–lutions.
atmosphere interface (Flerchinger, 1987). Unfortu-
nately, numerous studies have shown that SVAT models
in general are subject to errors as a result of simplifiedSoil water plays a key role in the transfer of energy
model physics and complicated meteorological and site-and mass between land surfaces and the atmo-
characteristic inputs (Houser, 1996; Henderson–Sellers,sphere, rivers, and aquifers (Blyth et al., 1993). In fact,
1996; Desborough et al., 1996; Lau et al., 1996). Conse-the spatial and temporal distribution of soil water is a
quently, SVAT models do not always produce reliablecritical part of many disciplines including agriculture,
soil water estimates. Furthermore, these models usuallyforest ecology, hydroclimatology, civil engineering, wa-
require extensive meteorological and site-characteristicter resources, and ecosystem modeling (Houser, 1996).
input parameters that can be difficult to acquire.Unfortunately, difficulties with soil water measurement

Because both in situ soil measurements and SVATtechniques have made long-term regional data sets diffi-
models are problematic, no large-scale soil water infor-cult to compile. Therefore, it is important to define an
mation exists at the spatial and temporal resolutionsapproach to monitor, characterize, and model soil water
required to investigate how soil water can influenceover a wide range of temporal and spatial scales (Islam
various land and atmospheric processes. Recent studiesand Engman, 1996).
have proposed that images from synthetic aperture ra-Long-term soil water data sets are rare because many
dar (SAR) sensors can be used to map spatially distrib-soil water sampling techniques (e.g., gravimetric, neu-
uted soil water patterns within 5 cm of the surface (En-tron probe, and time domain reflectometry) can be labor
gman and Chauhan, 1995; Sano, 1997). This methodintensive and difficult to learn without appropriate
would provide a way to estimate soil water at large-scaletraining. Gravimetric measurements are simple and ac-
resolutions not achievable with in situ measurements orcurate, but are destructive and require at least 24 h of
modeling methods. Unfortunately, many studies requirepost-processing. Traditional time domain reflectometer
vadose zone soil water measurements rather than sur-(TDR) sensors yield accurate measurements with cali-
face soil water measured by the SAR sensor. Further-bration, but are expensive and take spatially discrete
more, soil water information from orbiting SAR sensorsmeasurements. Neutron probes are nondestructive and
would only be available at the time of the satellite over-can sample over great depths, but are expensive and
pass, which could be as infrequent as once a month.potentially hazardous without appropriate training. Fi-

By combining SAR-derived surface soil water mapsberglass electrical resistance sensors (ERS) connected
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with a SVAT scheme, it may be possible to obtain spa-
tially distributed, temporally continuous information on
vadose zone soil water measurements. That is, using
techniques described by Sano (1997) and Moran et al.
(1998), SAR images may be converted into surface soil
water maps suitable for SVAT processing. Using these
data along with required model inputs (meteorological,
initialization, and site parameters), one may utilize the
SVAT scheme to model soil water at depth, between
and during satellite overpasses. At each subsequent sat-
ellite overpass, model parameters may be reinitialized
according to the newly acquired SAR-derived soil water
data, ultimately yielding a large-scale, temporally con-
tinuous soil water data set. In theory, this synthesis
should result in less error than with remotely sensed
data or the SVAT model used alone.

The first step in developing such a combined approach
is to investigate the accuracy and precision of a SVAT
model to estimate surface and vadose zone soil water
over time. In this study, we calibrated a network of in
situ ERS to create a long-term, temporally continuous
soil water data set that could be used to study the SHAW
model. Two objectives of this research were to (i) de-
velop a 12-mo, hourly soil water data set at 5-, 15-, and
30-cm depths under three bare and three shrub-cover
surfaces, and (ii) study the relationship between mea-
sured and predicted soil water contents.

Fig. 1. Map of the Walnut Gulch Experimental Watershed showing
MATERIALS AND METHODS its geographical location in the state of Arizona.

Site Description
this study were similar to those described by Colman and

Soil water data were collected from the Lucky Hills subwa- Hendrix (1949) and identical to those of Amer et al. (1994).
tershed in the Walnut Gulch Experimental Watershed located Each 4- by 4-cm ERS contains several fiberglass layers
in the vicinity of Tombstone, AZ (Renard et al., 1993). The wrapped around stainless-steel screens that are connected by
Lucky Hills subwatershed was instrumented in 1990 by the wire leads to an automated datalogger. Original laboratory-
USDA–ARS as part of the interdisciplinary Monsoon ’90 field and site-calibration procedures for ERS used in the experi-
campaign for continuous measurement of local energy condi- ment were described by Amer et al. (1994). Three-pronged
tions and surface energy balance (Kustas and Goodrich, 1994) TDR probes constructed by the USDA–ARS were placed
(Fig. 1). Standard measurements included soil water, soil tem- adjacent to the ERS at each depth in the trenches (Bach,
perature, soil heat flux, relative humidity, incoming solar radi- 1991). Dataloggers recorded hourly ERS values and ARS
ation, net radiation, wind speed, and wind direction (Stannard scientists collected TDR samples in the field at time intervals
et al., 1994). varying from daily to biweekly between August 1990 and July

The Lucky Hills subwatershed is at a 1371-m elevation and 1991. ERS readings were stored as a series of resistances (V)
has an average annual precipitation of 300 mm, 70% of which while TDR readings were calibrated to yield the volumetric
falls during the summer monsoon between July and September water content (uv) of the soil. ERS readings were averaged,
(Tiscareno–Lopez, 1991). This 1.46-ha area is dominated by respectively, using data collected from three trenches under
creosote bush (Larrea tridentada) at 2- to 5-m spacing (26% bare soil and three trenches under creosote cover. In this
cover) with surface rock percentages ranging from 0 to 46% study, it was assumed that TDR measurements represent the
(Kustas and Goodrich, 1994). Larger creosote shrubs are actual water content of the soil.
about 1-m tall and can be characterized by a spatially averaged
leaf-area index value of 0.4 (Flerchinger et al., 1998). The Calibration
dominant soil type in the subwatershed is the Lucky Hills

Seyfried (1993) found a nonlinear relationship betweenseries with a very gravelly sandy-loam texture (Table 1). Rock
TDR-measured uv and ERS resistance values, as did Amercontent of the soil profile is 28% by volume between 0 and
et al. (1994). Based on these analyses, a modified nonlinear5 cm and then decreases with depth.
calibration equation (Eq. [1]) was developed with the form

Sensor Placement and Description Y 5 aX b [1]
Eighteen pairs of ERS and TDR probes were installed where Y is TDR measured uv, a and b are parameters to

horizontally into trench faces under three bare and three be optimized, and X is ERS-measured resistance (V). This
shrub-covered surfaces at 5-, 15-, and 30-cm depths according expression (Eq. [1]) was modified from the original calibration
to procedures outlined by Bach (1991). Detailed descriptions expression used by Amer et al. (1994) by eliminating an addi-
of each trench location and its respective surface vegetation tive coefficient so that each parameter, when optimized, was

significantly different from zero. This transformation was de-and profile characteristics are also presented. ERS used in
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Table 2. Original† and revised‡ soil textural and hydrologic pa-Table 1. Description of physical characteristics of the Lucky Hills
soil unit.† rameters at the Lucky Hills soil unit.

Simulation Bulk density Saturated uv Sand Silt ClayParameter Lucky Hills unit

Soil classification Coarse-loamy, mixed, kg m23 m3 m23 %
thermic Ustochreptic Calciorthid Original 1253 0.53 68.8 19.7 11.4

Slope 0–15% Revised 1640 0.38 66.0 24.0 10.0
Landform Fan terraces
Particle size class Very gravelly sandy loam † Flerchinger (1998).

‡ Kustas and Goodrich (1994).Drainage class Well drained

† Breckenfeld (1995) and Bach (1991).
The SHAW model uses a modified form of Richards equa-

tion to calculate uv at each node, based on water-content valuessigned so that the model would be more sensitive to water
defined at the lower boundary (Flerchinger, 1987). At anycontent changes at lower resistance values. Individual in situ
frequency, user-defined uv values may be used to update lowerfield calibrations were completed for all 18 ERS–TDR pairs
boundary conditions to improve simulation accuracy. In eachby optimizing a and b parameters using nonlinear curve fitting
case, linear interpolation is used to predict uv values betweentechniques with a statistical software package. TDR and ERS
lower boundary uv intermediate values.measurements collected at identical times between August

1990 and July 1991 were used in each calibration. The average
Model Testingsample size used in each calibration was 78, but ranged from

46 to 103, due to instrumentation problems and measurement Two separate trials were used to simulate hourly uv under
errors. Statistical tests were used to show that the a and b bare and shrub surface cover at 5-, 15-, and 30-cm depths. In
parameter values were significantly different from zero (a 5 both cases, many site parameters were used that were identical
0.05 and a 5 0.10). to those used in previous simulations completed by Fler-

In this analysis, it was assumed that the variability in uv chinger et al. (1998). Specific textural and hydraulic soil param-
measurements could be attributed to the calibration errors of eters, however, were modified to match trench data measured
the TDR and ERS. Bach (1991) described the installation directly at the location of the soil water sensors under bare
and calibration procedures of the TDR probes used in this soil and shrub cover (Table 2). Surface and root plant parame-
experiment. These calibrations did not account for tempera- ters were used in shrub-cover simulations only and were de-
ture fluctuations that could affect TDR readings. Halbertsma fined by Flerchinger et al. (1998). Bare-soil simulations did
et al. (1994) found that TDR readings are only slightly influ- not include root-distribution parameters because no discrete
enced by changing temperature and salinity conditions; and measurements could be included. Hourly meteorological data
Dalton (1992) found that TDR readings are independent of inputs were collected from meteorological-energy flux (MET-
temperature in soil textures finer than sand. Without consider- FLUX) towers located in the subwatershed (Kustas and Good-
ing these limitations, calibrations revealed that for the 95% rich, 1994). Initial and final soil temperature readings for the
confidence interval (95% CI), the root mean square error simulation period were recorded by thermocouples installed
(RMSE) of the TDR measurements was 0.02 m3 m23. Ulti- adjacent to ERS and TDR probes in the soil at 5-, 15-, and
mately, the total error in each calibration was quantitatively 30-cm depths. Because soil temperature values have only a
defined as the square root of the sum of squares for the TDR minor effect on modeled soil water content values, intermedi-
and ERS RMSE values (Eq. [2]). Quantile plots indicate that ate temperature values were not used in these simulations.
residuals for the TDR and ERS showed no serious departure Finally, uv values taken by TDR probes at the same depths
from normality. were used as initial and intermediate model inputs. Specifi-

cally, 13 intermediate lower-boundary (30 cm) uv values atTotal calibration error
approximately 30-d intervals were used to update model simu-

5 (TDR RMSE2 1 ERS RMSE2)1/2 [2] lations.
Regression analysis was used as a tool to evaluate the ability

of the SHAW model to simulate the respective averages ofTHEORY
calibrated, hourly ERS uv values at 5-, 15-, and 30-cm depthsThe Simultaneous Heat and Water Model under bare soil and shrub cover. Furthermore, statistical dis-
crepancies between measured and simulated hourly uv valuesThe SHAW model is a detailed process model that simu-

lates heat and water movement through a plant residue–soil were evaluated by calculating the mean bias error (MBE),
mean percentage difference (MPD) and RMSE. Definitionssystem (Flerchinger, 1987). A vertical, one-dimensional profile

extending from the vegetation canopy to a specified depth for each are given in Table 3. Finally, hourly measured and
within the soil is represented by this model. At various points

Table 3. Description and definition of model performancein this vertical profile, user-defined nodes represent various
measures.†canopy and soil layers. For each of these nodes, interrelated

water, water vapor, heat, and solute fluxes are calculated. Measure Description Mathematical definition
Daily or hourly weather conditions above the upper bound-

MBE Mean bias error of modelary and soil conditions at the lower boundary define heat and 1
n o

N

i51
(Ŷi 2 Yi)predictions compared to

water fluxes into the system (Flerchinger, 1987). Specifically, observed values.
RMSE Root mean square error measuresair temperature, wind speed, relative humidity, and solar radi- !noy2 2 (oy)2

n(n 2 1)how widely model predictionsation define upper-boundary conditions while temperature
are dispersed from the averageand water contents at the bottom of the soil profile define value.

lower-boundary conditions. Other inputs required by the MPD Mean percentage difference 311no
n

i51
uŶi 2 Yiu2@Ŷ4 · 100indicates the deviation ofmodel include general site parameters, textural and physical

modeled predictions fromproperties of the soil, and initial temperature and water-con-
observed values as a percentage.tent values. Model outputs include a summary of water bal-

ance, in addition to temperature, water, and solute profiles. † Y 5 simulated values, Y 5 mean of observed values, n 5 sample size.
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Table 5. Estimated calibration error for individual electrical resis-Table 4. Optimized parameter (a and b ) and coefficient of deter-
mination (R2) values for individual electrical resistance sensors. tance sensors (ERS).

Sensor trench–depth (cm) Calibration errorSensor t statistic† t statistic†
trench–depth (cm) a a parameter b b parameter R2

%
1–5 15.62 19.39 20.45 29.37 0.58 1–5 3.0
1–15 27.88 16.70 20.17 210.87 0.66 1–15 3.6
1–30 27.59 21.36 20.11 211.37 0.61 1–30 3.4
2–5 26.32 11.36 20.21 29.80 0.65 2–5 3.0
2–15 19.88 28.79 20.19 216.80 0.80 2–15 2.8
2–30 15.67 38.62 20.14 219.90 0.81 2–30 2.4
3–5 29.43 12.94 20.21 211.37 0.72 3–5 2.6
3–15 23.63 31.91 20.13 217.71 0.84 3–15 2.4
3–30 20.35 12.24 20.11 25.57 0.33 3–30 3.9
4–5 18.99 19.80 20.40 211.39 0.71 4–5 2.9
4–15 22.15 21.69 20.21 213.53 0.82 4–15 2.3
4–30 15.27 22.50 20.65 29.33 0.58 4–30 3.6
5–5 17.87 37.09 20.10 212.56 0.74 5–5 2.3
5–15 16.97 47.09 20.27 212.39 0.70 5–15 2.5
5–30 15.07 35.95 20.08 211.26 0.62 5–30 2.6
6–5 27.89 12.43 20.24 211.19 0.67 6–5 3.0
6–15 25.34 19.52 20.18 213.03 0.73 6–15 2.6
6–30 25.34 39.17 20.15 223.39 0.88 6–30 2.4

Avg. (18 sensors) 2.9† t tests at a 5 0.05 and a 5 0.10.

† Equation 2: calibration error 5 time domain reflectometry RMSE2 1simulated uv values were plotted as a time series to analyze how ERS RMSE2).1/2

well the SHAW model could simulate water profile dynamics.
Coefficient of determination (R2) values for individ-

ual sensor calibrations at all three depths ranged fromRESULTS AND DISCUSSION
0.33 to 0.88 (mean R2 5 0.69) (Table 4). Wide ranges

Calibration Statistics of R2 values at each depth and in various trenches indi-
cate that calibration variability was the result of individ-Optimized parameter (Eq.[1]) and coefficient of de-
ual sensors and not soil differences. These findings aretermination (R2) values for all 18 ERS–TDR probes are
consistent with the calibration results reported by Sey-given in Table 4. In all cases, t tests (a 5 0.05 and a 5
fried (1993). Calibration parameters were applied to0.10) indicated that optimized a and b parameters were
each of the 18 individual ERS. In all cases, estimatedsignificantly different from zero, demonstrating that the
uv values below the calculated residual water content ofcalibration function effectively translated resistance val-
the soil were adjusted to a threshold value of 3.4%ues into uv without yielding an average water content.
(Woolhiser et al., 1990).Data presented in Fig. 2 show a calibration curve with

matched TDR and ERS values (R2 5 0.88). Clearly,
Calibration Errorresistance values approach zero as uv increases. In some

cases, the calibration functions showed considerable Individual sensor calibration errors were estimated
scatter, especially at higher resistance values (.1000 V). as the square root of the sum of the squares for the
Each calibration function, however, accounted for this TDR and ERS RMSE values (95% CI) (Table 5) (Eq.
scatter at high resistances by yielding a constant uv value [2]). The total average calibration error for all 18 sensors
above 1000 V. was 60.029 m3 m23 and ranged between 0.023 and

0.039 m3 m23 for individual sensors. These findings are
similar to those of Seyfried (1993), who found an aver-
age error of 0.05 m3 m23 in a similar calibration ex-
periment.

Model Evaluation: Bare Soil
Data presented in Table 6 summarize the results of

statistical analyses used to evaluate the performance of

Table 6. Calculated mean bias error (MBE), mean percentage
difference (MPD), root mean square error (RMSE), and coeffi-
cient of determination (R 2) statistics for electrical resistance
sensors and Simultaneous Heat and Water model water content
values under bare soil and shrub cover.

Location MBE MPD RMSE R2

m3 m23 % m3 m23

Bare 5 cm 10.04 39.13 0.02 0.77
Bare 15 cm 10.02 15.93 0.01 0.77
Bare 30 cm 10.01 8.83 0.01 0.82Fig. 2. Calibration curve for electrical resistance sensors (R2 5 0.88).
Shrub 5 cm 20.01 23.61 0.02 0.79Points represent matched time domain reflectometer and electrical
Shrub 15 cm 20.02 26.30 0.01 0.89resistance sensor measurements used to derive the calibration curve
Shrub 30 cm 10.01 4.52 0.01 0.92represented by the solid line.
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Fig. 3. Scatterplot of predicted Simultaneous Heat and Water model
volumetric water content values vs. calibrated electrical resistance
sensor volumetric water content measurements at 5- and 15-cm

Fig. 4. Predicted Simultaneous Heat and Water model volumetricdepths under bare soil.
water content values and calibrated electrical resistance sensor
volumetric water content measurements at 5- and 15-cm depths
under bare soil plotted as an hourly time series (August 1990–the SHAW model under bare soil. In this case, the MBE
July 1991).between measured and simulated uv gradually decreased

from 0.04 m3 m23 at a 5-cm depth to 0.01 m3 m23 at a
bare soil reveal that the SHAW model overestimates30-cm depth. This trend, however, was expected because
uv throughout the entire simulation period.it was consistent with the SHAW model structure. That

At the lower-boundary layer (30 cm), the SHAWis, the SHAW model calculates surface and intermediate
model simulated uv values well. However, uv values atuv values based on lower-boundary measurements up-
the lower boundary were calculated by using linear in-dated in the simulation. MPD and RMSE values re-
terpolation between intermediate uv values used asflected this same trend, indicating that the model did
model inputs, and therefore, are expected to be nearlynot simulate uv well at shallower depths.
identical to measured uv values.The scatterplot of measured and simulated uv values

at 5 cm under bare soil produced a bimodal distribution
Model Evaluation: Shrub Cover(Fig. 3). The bimodal distribution in this plot can be

characterized by temporal association. That is, the lower The results of statistical analyses used to evaluate the
group of matched points falls below the 1:1 line because performance of the SHAW model under shrub cover are
it shows a period in the driest part of the summer season summarized in Table 6. At each depth, SHAW model uv
where the SHAW model is underestimating uv. Con- values underestimated calibrated ERS uv values. MBE,
versely, the highest cluster on the scatterplot indicates MPD, and RMSE values were lower, on average, than
that the model consistently overestimates uv in moist those calculated in the bare-soil simulations but were
conditions. This trend is evident when the data are plot- distributed differently. In this case, MBE and MPD
ted on a time series (Fig. 4). values at the 15-cm depth were higher than those at

Statistical analysis indicates that model simulations 5 cm. Similar to the results for bare-soil simulations,
improved at 15 cm. MBE, MPD and RMSE values were MBE and MPD values were lowest at the lower-bound-
approximately half as large as those at the 5-cm depth. ary layer. A possible explanation for the differences
The scatterplot (Fig. 3) and time series (Fig. 4) of the between measured and simulated uv at 5 and 15 cm may

be related to root distribution parameters defined ascalibrated ERS and SHAW uv values at 15 cm under
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Fig. 6. Predicted Simultaneous Heat and Water model volumetricFig. 5. Scatterplot of predicted Simultaneous Heat and Water model
water content values and calibrated electrical resistance sensorvolumetric water content values vs. calibrated electrical resistance
volumetric water content measurements at 5- and 15-cm depthssensor volumetric water content measurements at 5- and 15-cm
under creosote cover plotted as an hourly time series (Augustdepths under creosote cover.
1990–July 1991).

model inputs. That is, root extraction of soil water at At the lower-boundary layer (30 cm), the SHAW
both depths may have been too high, ultimately causing model simulated uv values well. However, just as in the
the model to underestimate uv. A second possible expla- bare-soil simulations, uv values at the lower boundary
nation for the discrepancy between simulated and mea- are calculated by using linear interpolation between in-
sured uv may be due to a positive bias in transpiration termediate uv values used as model inputs and are ex-
demand (Jones, 1983). Model estimates of transpiration pected to be nearly identical.
may have been too high, causing the model profile to
lose water, ultimately yielding low uv values.

Model UncertaintyData presented in Fig. 5 show the scatterplot between
measured and simulated uv values at 5 cm under shrub Simulations under bare soil and shrub cover both
cover. In this case, at higher values, the SHAW model indicate that parameter calibrations would improve
overestimated uv, while at lower values, the SHAW model estimations of uv. Therefore, a sensitivity analysis
model underestimated uv. When these data are plotted was performed to examine the response of simulated uv

as a time series, the high peaks in this graph show where with respect to 10% parameter adjustments. That is, by
SHAW overestimated uv, while the driest periods varying individual parameters while holding all others

constant, the sensitivity of the SHAW model to individual(DDOY 440–530) indicate where SHAW underesti-
mated uv (Fig. 6). parameters was determined. In particular, bulk density,

saturated hydraulic conductivity, surface roughness, sat-The scatterplot and time series of measured and simu-
lated uv values at the 15-cm depth under shrub cover urated water content, root distribution percentages, and

porosity were analyzed. Data presented in Tables 7 andare presented in Fig. 5 and 6, respectively. These data
indicate that during inter-storm periods throughout the 8 show the change in uv for the entire simulation, based

upon parameter adjustments under bare soil and shrubyear, SHAW uv estimates were substantially lower than
measured uv values. Once again, inaccurate root distri- cover, respectively.

In both simulations, distinct peaks that overestimatedbution, a positive bias in transpiration demand, and
soil hydraulic properties may be responsible for these measured uv were apparent immediately after rainstorm

events (Fig. 4 and 6). These peaks suggest that parame-discrepant results.
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Table 7. Model parameter sensitivity analysis for simulations completed under bare soil. D Input is the change in the input value
expressed as a percentage of the actual value. The Change from actual value 5 | new value 2 original value |.

Change from
Input variable (depth) Input value D Input actual value

m3 m23

Bulk density (5 cm) 1640 kg m23 110% 0.003
210% 0.002

Bulk density (15 cm) 1640 kg m23 110% 0.006
210% 0.001

Saturated hydraulic conductivity (5 cm) 3.8 cm hr21 110% 0.001
210% 0.001

Saturated hydraulic conductivity (15 cm) 3.8 cm hr21 110% 0.001
210% 0.001

Roughness (surface) 0.12 cm 110% NC†
210% NC

Saturated water content (5 cm) 0.38 m3 m23 110% NC
210% 0.003

Saturated water content (15 cm) 0.38 m3 m23 110% NC
210% 0.005

Porosity index value (5 cm) 4.35 110% 0.003
210% 0.003

Porosity index value (15 cm) 4.35 110% 0.003
210% 0.002

† NC, no change.

ters identifying soil porosity, saturated conductivity, or ments to root-distribution parameters will significantly
affect modeled uv.saturated water content may have been too high. In each

case, with sufficiently large precipitation, the model will As one may surmise, changing a combination of hy-
draulic and physical parameters, rather than a singlesaturate the soil layers to the saturated surface porosity,

ultimately yielding peaks that overestimate uv. Sensitiv- parameter, would be the best way to calibrate the
SHAW model. It is clear from these analyses that peaksity analyses indicated that a 10% increase in the porosity

index value could change uv for the simulation by as and drying rates would be influenced by a combination
of many hydrologic parameters including porosity, satu-much as 0.005 m3 m23 (Table 8).

Shrub-cover simulations underestimated uv values at rated hydraulic conductivity, root distribution, and
bulk density.5- and 15-cm depths during inter-storm periods. A possi-

ble source of these discrepancies may be attributed to
root-distribution parameters rather than the soil- DISCUSSIONhydraulic properties highlighted in Tables 7 and 8. If
the root-distribution values were too high, water extrac- In future studies, it will be critical to examine the

physical structure of the SHAW model to determine iftion by the plant roots would be too large, ultimately
producing unrealistically low uv values. Sensitivity analy- it could be linked with remotely sensed data. That is,

one must determine if the model could be modified toses indicate, however, that a 10% adjustment will change
uv by only 0.001 m3 m23. Therefore, only major adjust- use remotely sensed soil water values to update and

Table 8. Model parameter sensitivity analysis for simulations completed under shrub cover. D Input is the change in the input value
expressed as a percentage of the actual value. The Change from actual value 5 | new value 2 original value |.

Change from
Input variable (depth) Input value D Input actual value

m3 m23

Bulk density (5 cm) 1640 kg m23 110% 0.002
210% 0.002

Bulk density (15 cm) 1640 kg m23 110% 0.003
210% 0.001

Saturated hydraulic conductivity (5 cm) 3.8 cm hr21 110% NC
210% 0.001

Saturated hydraulic conductivity (15 cm) 3.8 cm hr21 110% 0.001
210% 0.001

Roughness (surface) 0.12 cm 110% NC†
210% NC

Saturated water content (5 cm) 0.38 m3 m23 110% NC
210% NC

Saturated water content (15 cm) 0.38 m3 m23 110% NC
210% 0.001

Porosity index value (5 cm) 4.35 110% 0.005
210% 0.004

Porosity index value (15 cm) 4.35 110% 0.005
210% 0.004

Root distribution percentage 20% 110% 0.001
210% 0.001

† NC, no change.
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Bach, L. 1991. Time domain reflectometry (TDR) for field waterpredict uv at various depths. Currently, the model struc-
content measurements. USDA–Agricultural Research Service In-ture is designed so that uv values calculated at nodes in
ternal Memo. Southwest Watershed Res. Ctr., Tucson.

the user-defined soil profile are directly influenced by Blyth, E.M., A.J. Dolman, and N. Wood. 1993. Effective resistance
water content changes at the lower boundary. There- to sensible and latent heat flux in heterogeneous terrain. Q.J.R.

Meteorol. Soc. 19:423–442.fore, major modifications must be completed so that the
Breckenfeld, D.J., W.A. Svetlik, and C.E. McGuire. 1995. Soil surveySHAW model will calculate the soil water profile based

of Walnut Gulch Experimental Watershed, Arizona. USDA-on uv values defined at the surface by remotely SCS, Tucson.
sensed inputs. Colman, E.A., and T.M. Hendrix. 1949. The fiberglass electrical soil-

moisture instrument. Soil Sci. 67:425–438.
Dalton, F.N. 1992. Development of time-domain-reflectometry forCONCLUSIONS

measuring soil water content and bulk soil electrical conductivity.
The dual objectives of this study were to produce a p. 153–159. In G.C. Topp et al. (ed.) Advances in measurements

of soil physical properties: Bringing theory into practice. SSSAcomplete, 12-mo soil water data set at three depths,
Spec. Publ. 30. SSSA, Madison, WI.and to use these data to investigate the accuracy and

Desborough, C.E., A.J. Pitman, and P. Irannejad. 1996. Analysis ofprecision of SHAW model surface and vadose zone soil the relationship between bare soil evaporation and soil moisture
water estimates. simulated by 13 land surface schemes for a simple non-vegetated

Individual, in situ calibrations of ERS resistance val- site. J. Global Planetary Change 13:47–56.
Engman, E.T., and N. Chauhan. 1995. Status of microwave soil mois-ues with TDR uv measurements worked well. An hourly

ture measurements with remote sensing. Remote Sens. Environ.soil water data set for a 12-mo period was composed
51:189–198.for six replicate sites at three different depths. This Flerchinger, G.N. 1987. Simultaneous heat and water model of a snow-

simple calibration procedure demonstrated the utility residue-soil system. Ph.D. diss. Washington State Univ., Pullman.
of the ERS for use in future soil water studies. That is, Flerchinger, G.N., W.P. Kustas, and M.A. Weltz. 1998. Simulating

surface energy fluxes and radiometric surface temperatures for twohigh-frequency ERS measurements, although inaccu-
arid vegetation communities using the SHAW model. J. Appl.rate, were easily calibrated with accurate, low-frequency
Meteorol. 37:449–460.TDR measurements to yield a large, temporally continu- Halbertsma, J., E.V. den Elsen, H. Bohl, and W. Skierucha. 1994.

ous uv data set. Temperature effects on TDR determined soil water content. p.
In general, the SHAW model simulated annual and 35–37. In L.W. Petersen and O.H. Jacobsen (ed.) Proc. symp.:

Time domain reflectometry applications in soil science, Res. Cent.diurnal uv patterns well (Fig. 4 and 6). However, under
Foulum, Tjele, Denmark. 16 Sept. 1994. Danish Inst. of Plant andbare soil, uv values were consistently overestimated
Soil Sci., Lyngby, Denmark.while under shrub cover, uv values were consistently Henderson-Sellers, A. 1996. Soil moisture simulation: Achievements

underestimated. These simulation errors may be attrib- of the RICE and PILPS intercomparison workshop and future
uted to errors in model dynamics, model parameters, directions. J. Global Planetary Change 13:99–115.

Houser, P.R. 1996. Remote sensing of soil moisture using four dimen-or error in sensor calibration. In any case, model calibra-
sional data assimilation. Ph.D. diss. Univ. of Arizona, Tucson.tion and modification will be required so that remotely

Islam, S., and T. Engman. 1996. Why bother for 0.0001% of Earth’ssensed uv values may be assimilated as primary inputs. water? Challenges for soil moisture research. p. 420. Earth Observ.
With appropriate modifications, the SHAW model Syst. Newsp. 22 Sept. 1996.

may be used to model soil water at depth, between Jones, H.G. 1983. Plants and microclimate. Cambridge Univ. Press,
New York.and during satellite overpasses. Ideally, SHAW-model

Kustas, W.P., and D.C. Goodrich. 1994. Monsoon ’90 preface. Waterparameters could be initialized by SAR-derived surface
Resour. Res. 30:1211–1225.soil water estimates to yield a large-scale, temporally Lau, K.M., J.H. Kim, and Y. Sud. 1996. Intercomparison of hydrologic

continuous soil water data set. Ultimately, this synthesis processes in AMIP GCMs. Bull. Am. Meteorol. Soc. 77:2209–2227.
would provide an effective way to monitor, characterize, Moran, M.S., D.C. Hymer, J. Qi, R.C. Marsett, M.K. Helfert, and

E.E. Sano. 1998. Soil moisture evaluation using synthetic apertureand model soil water over a wide range of temporal and
radar (SAR) and optical remote sensing in semiarid rangeland. p.spatial scales.
199–203. In Special Symp. on Hydrol., Am. Meteorol. Soc. Meet-
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