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A finite element numerical model is developed for the modeling of coupled
surface-water flow and ground-water flow. The mathematical treatment of subsurface
flows follows the confined aquifer theory or the classical Dupuit approximation for
unconfined aquifers whereas surface-water flows are treated with the kinematic wave
approximation for open channel flow. A detailed discussion of the standard approaches to
represent the coupling term is provided. In this work, a mathematical expression similar
to Ohm's law is used to simulate the interacting term between the two major hydrological
components. Contrary to the standard approach, the coupling term is incorporated
through a boundary flux integral that arises naturally in the weak form of the governing
equations rather than through a source term. It is found that in some cases, a branch cut
needs to be introduced along the internal boundary representing the stream in order to
define a simply connected domain, which is an essential requirement in the derivation of
the weak form of the ground-water flow equation. The fast time scale characteristic of
surface-water flows and the slow time scale characteristic of ground-water flows are
clearly established, leading to the definition of three dimensionless parameters, namely, a
Peclet number that inherits the disparity between both time scales, a flow number that
relates the pumping rate and the streamflow, and a Biot number that relates the
conductance at the river-aquifer interface to the aquifer conductance.

The model, implemented in the Bill Williams River Basin, reproduces the observed
streamflow patterns and the ground-water flow patterns. Fairly good results are obtained

using multiple time steps in the simulation process.
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CHAPTER 1

INTRODUCTION

Riparian ecosystems in the western United States generally consist of mildly

sloping valleys bordered by sharply rising mountain ranges. A river system typically
meanders through the lower elevations of the valley. The streams may be perennial,
ephemeral (flowing only occasionally after a rainy episode), or intermittent (flowing only
through some reaches along their entire length). Higher elevations enjoy higher
precipitation while the valley floor receives less rainfall. Under natural conditions, the
precipitation regime regulates streamflows. However, due to development, many streams
that were once perennial have turned into intermittent or ephemeral along parts of their
length or have seen their flows controlled.

Distinctive to these areas is their oasis-iike appearance, in sharp contrast with the
desert landscape of the surrounding areas. Riparian corridors are habitats of a great
variety of vegetation species as well as animal species, some of them unique to these areas,
which depend on the availability of water in the right amount and at the right time for their
existence. Both, streamflows and shallow water tables provide the necessary source of

water to sustain life in these ecosystems, that is why the conjunctive analysis of surface

waters and ground waters is of primary importance.
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Major hydrologic processes such as open-channel flow, deposition and erosion of
stream sediments, evapotranspiration, seepage into saturated or unsaturated sediments,
and saturated flow under the water table, all vast disciplines in themselves, intervene on
the stream-aquifer interaction phenomenon.

The interaction beiween streams and the adjacent aquifer can be of significant
magnitude to affect the river flow by attenuating peak flows, reducing flood waves celerity
and extending the recession limb of the discharge hydrograph. By the same token, the
subsurface portion of the system can either receive considerable amounts of water to

replenish its storage capacity after the dry season or discharge water to the stream during

low flow periods.

Evapotranspiration from dense vegetation stands is one of the factors affecting the
stream-aquifer interaction process. The water intake by plants depletes the unsaturated
portion of the soil and lowérs the water table reducing, in turn, the water recharge to the
stream and increasing the discharge from the ground-water system. Other natural factors
influencing the transfer of water from or to streams include geologic characteristics,
seasonal variations, changing stream levels, channel dimensions, stream geomorphology,
bed materials, ground-water flow patterns and spatial variability ef sediment hydraulic
roperties.

Anthropogenic factors may interfere with the process as well. Water resources
development as a result of human activities materializes through water diversion and
retention stmcturés and well fields that supply water for various uses. All these man-made

structures affect the stream-aquifer interaction to a degree that will depend on the
magnitude of the development and on the storage and buffering capacity of the system.
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The Lower Bill Williams River Watershed (Figure 1.1), is host to one of the few
remaining riparian areas in the state of Arizona, the Lake Havasu National Wildlife
Refuge, managed by the Fish and Wildlife Service (FWS). Located in west central
Arizona, it is characterized by an arid to semiva.rid climate. Its drainage network is an
intricate arrangement of washes which flow only occasionally and converge to the Bill
Williams River, the main water conduit in the area.

Although categorized as a remote area, the basin did not escape development.
With the construction of Alamo Dam in 1969, streamflows became entirely regulated and
more recently, the establishment of agricultural activities at Planet Ranch, immediately
upstream from the Refuge, added even more stress to the system (Figure 1.2). Therefore,
cultural and natural water uses compete between each other along the 35 miles reach that
separates Alamo Dam from Lake Havasu.

Some field observations indicate that the combined effect of regulated flows and
ground-water withdrawals has adversely affected the hydrologic conditions at the Refuge,
jeopardizing its natural assets. Surface flows have disappeared in places where they used
to be perennial while water tablé declines, though unquantified, have occurred. A recent
ground-water modeling study by Harshman and Maddock (1993) alerted the FWS about
the long term damaging consequences to the river if pumping continues at present rates.
The FWS took immediate action and negotiated with the Planet Ranch owners to
discontinue pumping to put a halt to the Refuge deterioration. Consequently, at the
present time, no ground-water is being extracted from the basin.

With different local characteristics, the above picture repeats in many




Figure 1.1- Bill Williams River Basin (after Wolcott et al. | 956)

e

EXPLANATION

a
Caging station

St © o w——

Drainnge divide

Topock

o Scligman

&
&
?/
~__ ./

- %
?_Sinnal ?:“ﬁ'
AHT\ILLERY i
a PE\AK e

4 Santa 7

o Bagdad

e 0 8
%
W =
Y F
he]
2
™~

o Aguila

113"

]

30 Miles
I 1 J

14




Figure 1.2: Lower Bill Williams Basin - Main features along the river
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riparian areas throughout the western United States. The integral hydrologic study of

| SO

these delicate systems can bring new light into the understanding of their functioning
1 mechanisms which, in turn, may result in water management decisions and protective

, measures more wisely adopted.

Although the legal system in Arizona is still debating about the existence of a clear

link between streams and aquifers, hydrologists are well ahead on this matter and have

long recognized the undoubted relation between these two elements. Conjunctive analysis
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of surface-water flow and ground-water flow in basin planning, development and
management is greatly appreciated by hydrologists, particularly in areas of marginal or
deficient rainfall. Because of that, this issue has been the focus of investigation for a few
decades. However, in recent years the subject has gained strength motivated mainly by a
generalized perception of a deteriorating situation in many riparian areas and a genuine
will to protect them from further damage.

Different methods for assessing the interaction between surface and ground waters
are available. They can be grouped in two major categories: field studies and numerical
studies with distinct degrees of complexity. In addition, early research focused on the
development of analytical techniques to evaluate the depletion of river discharge by
pumping in nearby wells.

Basin scale field studies may be prohibitively expensive and time consuming. For
these reasons, many field investigations are restricted to small areas within a seasonal time
frame. Wilson and De Cook (1968), Cox and Stephens (1988) and Sophocleous et al.
(1988), to name just a few, ventured into experimental stream-aquifer interaction studies.

In terms of streamflow depletion by pumping in nearby wells, sdme widely used
techniques and principles include those by Theis (1941), Glover and Balmer (1954),
Hantush (1959) and Glover (1974). The application of these techniques has been usually
restricted to simple settings composed by a single well and a river section. Common
simplifying assumptions behind some of them include fully penetrating streams, and
isotropic and homogeneous aquifers of semi-infinite extent. In actuality, analytical
solutions can be superimposed to study more complex systems, provided that they are

linear. Recently, Sophocleus ef al. (1995) evaluated the predictive accuracy of Glover's
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(1974) stream-aquifer analytical model against the finite difference ground-water flow
model MODFLOW (McDonald and Harbaugh 1988).

With the development of numerical models, many of the assumptions associated
with stream flow depletion methods were not longer needed. Reduced costs and increased
access to more powerful computers have favored the choice of numerical models. In
general, two different approaches are followed in the mathematical modeling of the
stream-aquifer interaction. The first is the single model approach, in which either a
ground-water flow model or a surface water flow model is used. In general, ground-water
models simulate streams in a simplified way through boundary conditions or source terms,
giving poor or inadequate consideration to stream hydraulics, whereas most surface-water
models treat all infiltrated water into the ground as a loss from the system. Therefore,
neither a ground-water model nor a surface-water model seems to be fully appropriate to
mimic the interaction between surface flows and subsurface flows.

Ground-water flow models such as MODFLOW (McDonald and Harbaugh 1988)

and many others, can be used to simulate large scale systems. In the majority of

" MODFLOW applications, streams are simulated as having a constant stage over the whole

simulation period, which in effect considers rivers as inexhaustible sources of water. With
the introduction of the so called “stream package" (Prudic 1989) to be used with
MODFLOW, a more realistic representation of streams is achieved. This package is not a
true surface-water flow model but rather is a simple accounting routine that keeps track of
flows in one or more streams which interact with the ground-water system. The river

stage is allowed to vary and is calculated using Manning formula under the assumption of
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a rectangular channel and steady flow conditions. Moreover, the amount of leakage
through the streambed is limited to the available water on the stream.

The second approach in stream-aquifer modeling uses a ground-water flow model
coupled with a surface-water flow model. The simultaneous solution of the ground-water
flow equations and the unsteady open-channel flow equations can demand a great
computational effort, which may not be justified in cases where the surface water system
shows little variations. However, in situations where highly variable and dynamic seasonal
effects are present, it is desirable that the stream-aquifer interaction be simulated with an
adequate degree of sophistication and accuracy.

A source of difficulty in coupled modeling is given by the presence of multiple time
scales in the representation of the river-aquifer interaction. In comparison with the
characteristic time response of ground-water flows in the southwestern regions of the
United States, surface-water flows are known to respond in very short times (on the order
of hours or days). Then, it would be natural to assume that runoff processes will be
unnoticed to ground-water systems. However, this is far from the truth in numerous real
situations. In stream-aquifer interaction modeling, neglecting runoff and flood routing
processes may lead to a misrepresentation of the interaction and, therefore, of the system
dynamics. From a mass balance point of view, failure to incorporate runoff volumes can
generate a water deficit that will be offset by other components of the system, namely
baseflows and lower water tables, to satisfy the usually high evapotranspiration demand of
riparian systems. From a mathematical point of view, the standard assumption set forth for
modeling problems with disparate time scales is to drop the fast time scale and solve only
for the slow time scale which, in turn, provides the sought long term behavior of the

1-8
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system. However, in presence of nonlinearities, this aspect depends on whether or not the
fast time scale effects accumulate to produce a cumulative effect that can influence the
solution on the slow time behavior. Most of the stream-aquifer studies either neglect the
fast time scale process (such as MODFLOW) or mainly focus on the passage and
attenuation of a single flood wave through the system. Previous experience has shown
that neglecting the flood routing process, when quantifying the stream-aquifer
interrelationship in the long term, can deprive the system from an important amount of
water that could otherwise satisfy evapotranspiration losses (Vionnet and Maddock 1992).
Problems with streamflow calibration in ground-water modeling studies have been

reported by Kraeger-Rovey (1975) and Vionnet and Maddock (1992). In both cases the

calibration problems were attributed to the lack of runoff simulation in the model.

A survey of prior work on the stream-aquifer relationship can be discouraging, not

because of the lack of material but because of its abundance. From site specific studies to
theoretical studies, from field to modeling studies, from ground-water modeling to
coupled modeling, from perennial to ephemeral streams, from clogging material
characteristics to stream hydraulics and geomorphology, from infiltration under the
streambed to recharge to shallow aquifers, all can be found under the single topic of
stream-aquifer interactions. Because of the extensive volume of material available, this
literature review is mainly restricted to numerical modeling studies. However, in the

course of this work, more literature is analyzed and referenced.



Perhaps ground-water model applications can be counted by the hundreds,
however those emphasizing the stream-aquifer relationship are less numerous. For
instance Kraeger-Rovey (1975) developed a complex finite difference model to solve
three-dimensional unsaturated or saturated flow that could be used in combination with a
two-dimensional ground-water flow model. The model was applied to the Arkansas
Valley in Southeastern Colorado. A negative pressure was considered at the bottom of
the streambed to account for unsaturéfed conditions under the stream, an approach
previously proposed by Bouwer (1964, 1966). Manning's equation was used to track
down streamflows, approach later incorporated into MODFLOW by Prudic (1989).
Kraeger-Rovey reported discrepancies between observed and computed discharges.
Those discrepancies were attributed to a failure of the Kraeger-Rovey model to account
for surface runoff and the lack of a dynamic equation to correctly describe the movement
of a flood wave. More recently, Vionnet and Maddock (1992) implemented a ground-
water flow model (MODFLOW) to study the ground-water system and the stream/aquifer
interactions on the San Pedro River Basin in southeastern Arizona. The streams were-
simulated with the stream package (Prudic 1989) using baseflows as the input streamflow
variable. Calibration problems were also encountered when trying to match simulated and
observed baseflows. Those anomalies were explained by the lack of runoff representation
in the model. Another ground-water flow modeling was reported by Sophocleus and
Perkins (1993), who addressed the problem of declining streamflows in interconnected
stream-aquifer systems in Central Kansas. The simulation model was a modified version
of MODFLOW with the streamflow routing capabilities implemented by Prudic (1989).

In what constitutes the first real application of the finite element ground-water flow model
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MODXX (Jones 1992), Harshman and Maddock ITI (1993) evaluated the ground-water

system and its relation to the stream system in the Bill Williams Basin. In this modeling

activity, streams were represented by a modified version of the stream package.
Coupled modeling is not a new technique, but in the past it has been applied

predominantly to simple cases. Most coupled models are solved with finite difference

‘techniques (Pinder and Sauer 1971, Zitta and Wiggert 1971, Freeze 1972, Kraeger-Rovey

1975, Akan and Yen 1981, Miles and Rushton 1983, Swain and Wexler 1991,1993).
Others are solved with the finite element method (Cunningham and Sinclair 1979, Crebas
et al. 1984, Glover 1988, Defina and Matticchio 1994). In general ali coupled models
share common goals, which are achieving a better understanding of the stream/aquifer
relationship and assessing the impact of man related activities. However, they differ in the
model assumptions, in the numerical techniques employed and in the application cases.

Pinder and Sauer (1971) are usually credited for providing a breakthrough in
stream-aquifer interaction modeling. They coupled a two-dimensional horizontal
unconfined aquifer model mathematically represented by the well known Boussinesq
equation, to a one-dimensional open channel flow model to analyze the systerh in the
context of bank storage effects on flood wave propagation.

Similar lines of investigation to those of Pinder and Sauer were followed by Zitta
and Wiggert (1971). Their model solved the one-dimensional open channel flow
equations and the one-dimensional Boussinesq's equation in a direction perpendicular to
the stream channel flow. Recharge from the stream to the aquifer was determined from

the volume displaced per unit time by the fluctuations of the water table.



Another early contribution to the field of coupled models was made by Freeze in
1972, who quantitatively showed the importance of subsurface response in baseflow
dominated streams and the mechanisms of baseflow generation. Freeze moved one step
forward in the simulation of the subsurface flow component, incorporating unsaturated
flow into the modeling process. T&ee—dimensionﬂ, transient saturated-unsaturated flow,
| represented by the Richards' equation, was coupled with one-dimensional, gradually
varied, unsteady channel flow, mathematically represented by the one-dimensional Saint

Venant equations. The model was applied to a hypothetical basin.

Akan and Yen (1981) presented a conjunctive surface-subsurface flow model
which solved the one-dimensional Saint Venant equations coupled with the saturated-
unsaturated flow equation. The authors emphasized more on some tests run to verify the
individual components of the conjunctive model than on the model itself. The application

of the conjunctive model was restricted to a very simple experimental test.

Another methodology employed in the study of stream-aquifer relations is the
convolution equation. Hall and Moench (1972) used the convolution integral in the
analysis of one-dimensional confined flow in a homogeneous isotropic aquifer of finite or
infinite extent. The discharge into or out of the stream was obtained upon applying
Darcy's law. Through the use of hypothetical examples, the authors succeeded in
demonstrating the ability of the convolution method in the analysis of stream-aquifer
relationships.

The boundary integral equation method (BIEM) has been used by Dillon and
Liggett (1983) to simulate the interaction between an ephemeral stream and an unconfined
aquifer through a semipervious streambed. The model developed by Dillon and Liggett
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handled both, saturated and unsaturated conditions under the streambed, as well as the
transition between these two states. The unsaturated flow portion was represented by a
combination of the Green-Ampt model used to compute the time delay for recharge, and
Darcy's law modified with a negative pressure’ at the bottom of the streambed to compute
recharge. The paper also presents results obtained on a real case study conducted on a 3
km reach along the Little Para River in Australia.

Of the many factors that affect the transfer of water from ephemeral channels to
the sediments under the channel, Reeder ef al. (1980), Freyberg et al. (1980) and later
Freyberg (1983) concentrated in the variability of the stream water levels. On one hand,
Reeder ef al (1980). investigated infiltration rates into initially unsaturated soils by
numerically solving the one dimensional Richards' equation. On the other hand, Freyberg
(1983) studied infiltration through a symmetric triangular cross section with vertical
impermeable sidewalls and no overtopping. Freyberg used the Green and Ampt model to
simulate infiltration into homogeneous sediments. This model, according to previous
work by the same author, produced results that reasonably agree with numerical
approximations to the Richards' equation. These findings agree with the conclusions later
reported by Reid and Dreiss (1990) for their homogeneous fluvial sediments case.

Reid and Dreiss (1990) conducted a modeling study to analyze the effects of
unsaturated, stratified sediments on ground-water recharge from intermittent streams. The
paper concentrated more on alternative ways to represent river leakage. It also intended
to examine how different fluvial stratigraphy may affect the timing and style of channel
loss and ground-water recharge. The model used in the study was the finite element

computer code UNSAT1 (Neuman 1972), which solves the nonlinear Richards' equation,

1-13




Reid and Dreiss also compared simulation results obtained with the two-dimensional
model with results obtained with simplified methods for computing channel losses such as
the Green-Ampt model and Darcy's law.

A recent model development by Swain and Wexler (1991,1993) who combined
two public domain computer codes, MODFLOW and BRANCH, solving the ground-
water flow and surface water flow equations simultaneously. BRANCH is a U.S.
Geological Survey model that solves the one-dimensional Saint Venant equations for
unsteady flow in open channels. The report presents a series of examples aimed at
verifying the model that range from a flood wave propagation with bank storage to a real
case application in Southwestern Florida. The main disadvantage of this model is that it
possesses all the limitations inherent to MODFLOW to represent intricate geometries.

In summary, much of the work done after Pinder and Sauer (1971) and Freeze
(1972) is rather similar with respect to the selection of the type of surface water and
ground-water models and the methodology of their coupling. Subsequent modeling
efforts differ in the character of the specific problems considered, in the modular structure
of the model, and in the numerical algorithms and techniqueé used for their solution. All

these aspects were remarked by Vasiliev(1987) on his review paper on stream-aquifer

interaction modeling.

The primary goal of the present study is the development of a robust finite element

code for the simultaneous representation of ground-water flows and surface-water flows

along with their interaction. The development is accomplished using state-of-the-art
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numerical algorithms based upon well-established physical principles. Comparison with
exact solutions of the proposed mathematical model and with published results, if any, is
made whenever possible. It is shown that the coupled model presented here is able to
capture the observed dynamics of the stﬁdy area, to maintain full coupling between surface
flows and ground-water flows, and to combine the time scales characteristic of both
components. Furthermore, it only requires standard data that is relatively easy to obtain.

Seasonal processes and slow time processes are handled by the ground-water
module. Aerial recharge and discharge, evapotranspiration, point sink/sources, line
sources, prescribed head and prescribed flux boundary conditions are all included in the
ground-water module. Confined flow as well as unconfined flow under the Dupuit
assumption are modeled on a single aquifer system.

Surface flows are simulated using the one dimensional kinematic wave model that
propagates streamflows over a non-erodable stream with rectangular cross-section. It is
shown that this approximation of the fast time scale process is adequate to study channel
flows in the study area. The application of several criteria based on normal flow
conditions reveals that the leading mechanisms of flood waves movement are gravity and
friction, giving rise to kinematic waves (Lighthill and Whitham 1955). Even with today's
controlled flows at Alamo Dam, kinematic mechanisms are shown to capture surface-
water flows adequately. Backwater effects such as those triggered by a downstream lake
are considered negligible. Otherwise, the dynamic wave model should be considered.

The two main components of the integrated model are linked through a coupling
term, mathematically represented by an expression analogous to Ohm's law. In employing

such a relationship, it is assumed that all infiltrated water is instantaneously recharged to
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the aquifer, that channel loss equals recharge to the aquifer, and that the transfer of water
is controlled by saturated flow through low permeability streambed sediments.
Nonetheless, it 1s shown that this formulation provides satisfactory results for a basin scale
application like the one presented in Chapter 7. Needless to say that this approximation
should not be used in cases where unsaturated sediments of considerable thickness
separate the streambed from the water table.

The remaining purpose of this investigation is to provide some answers to some
specific questions concerning wildlife refuges in arid to semi-arid regions. In particular,
the present work concentrates on estimating the impact of ground-water exploitation and
regulated streamflows on the Bill Williams River flows and the water table in the Refuge
and its adjacent areas. Due to the small amounts of precipitation the study area receives,
overland flow is not simulated. Moreover, ephemeral flows from tributaries to the Bill
Williams are unquantified, however their magnitude is believed to be negligible compared
to the main channel flows. Therefore, the single channel representation of the system is
considered appropriate.

In summary, even though the model here discussed is developed with the final
purpose of being implemented in the study area, it is general enough to be applied to many

other cases, provided that its limitations are well understood.

This report is divided into eight chapters and one appendix. Chapter 2 provides an

overview of the study area including its location, topography, climate, geology and

vegetation. Its ground-water hydrology and surface-water hydrology are described in
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more detail. The complete mathematical setting of the ground-water flow and the
coupling term are presented in Chapter 3. In particular, Section 3.3 on the coupling term
covers some of the most interesting aspects of the stream-aquifer interaction. It also deals
with a different interpretation of the classical representation of the interaction. This
chapter concludes with the treatment of sink/source terms. Chapter 4 begins with an
overview of the flood routing process. The unsteady open channel flow governing
equations are given, with particular emphasis on the kinematic wave model and its range
of applicability. The dimensional analysis of the governing equations is presented in
Chapter 5. The next chapter is devoted to the discretization of the governing equations
using the finite element method. The Bubnov-Galerkin method is implemented for the
parabolic ground-water flow equation and the Petrov-Galerkin method is implemented for
the hyperbolic-like behavior of the kinematic wave equation. Flux boundary
computations, mass balance and time stepping algorithms are discussed in detail. Finally,
the global structure of the integrated model is described. Chapter 7 presents the
implementation of the coupled model to the Lower Bill Williams River Basin. The work
includes the conceptualization of the system, the construction of the model grid, the
definition of initial conditions, boundary conditions and aquifer properties, and the
specification of all data related to the stream characterization. This chapter also includes
the model calibration and simulations. Chapter 8 is the closure chapter while Appendix A

details some of the different tests performed to validate both model components.
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CHAPTER?2

DESCRIPTION OF THE STUDY AREA

The Bill Williams River drains portions of La Paz, Mohave and Yavapai counties

in west-central Arizona. Its major tributaries include the Burro Creek, the Big Sandy
River, the Date Creek and the Santa Maria River (Figure 1.1). Alamo Lake captures the
surface flows from all these tributaries and adjacent areas and its releases give rise to the
Bill Williams River. The river flows southwest for about 56 km and for most part
traverses isolated terrain through a narrow channel confined between the rock walls of the
mountains which it cuts. The Bill Williams River also passes through a 9.7 km long flood
plain, the Planet Ranch Valley, located approximately 27-29 km downstream of Alamo
Dam to finally discharge into Lake Havasu on the Colorado River (Figure 1.2).

The drainage area of the entire basin is quite large totaling 13,700 km’ of which
12,250 kmi’ drain to Alamo Lake. The Lower Bill Williams River Basin (LBWRB) is the
watershed that encompasses all the drainage area below Alamo Dam and encloses 1450
km’ (Rivers West 1990). The boundary and the complex drainage network of this
subwatershed are shown in Figure 2.1. This study is particularly concerned with a portion
of the LBWRB whose erders are approximately delineated by the boundary of the

alluvial aquifer underlying the Bill Williams River, covering about 85 km’.




Figure 2.1 - Lower Bill Williams River basin boundary and drainage network

1: Bill Williams River
2: Mineral Washb

3: Mohave Wash

4: Castaneda Wash

5: Centennial Wash

The LBWRB lies within the Basin and Range Phisiographic Province of the

Sonoran Desert (Anderson et al. 1992). This province is generally characterized by broad
gently slopping valleys bordered by steep mountain ranges. The study area shares some of

these phisiographic patterns but also has its own, typified by sharp canyon walls
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constraining the river for several miles downstream of Alamo Dam. The Buckskin
mountains bound the narrow valley from the south, and the Rawhide mountains and the
Little Rock mountains limit the valley to the north (Figure 2.2).

Elevations range from about 1,525 m at the northernmost portion of the lower

basin up to only 137 m at the junction of the Bill Williams River with Lake Havasu just

north of Parker.

Very hot summers and mild winters characterize the severe climate of the area.

Summer temperatures in the lower elevations average 39.4-42.2°C, while winter day
temperatures average 15.56-16.67°C.

The average annual precipitation is 137.2-195.6 mm, ranging between 6.9 mm and
254 mm (Bureau of Land Management 1988). The eastern portion of the watershed
enjoys higher averages, in the order of 312.4-370.8 mm. The annual rainfall distribution
shows two dist'mct rainy seasons which differ from each other in origin and intensity.
Summer rains are often violent and usually last but a short period of time while winter
storms may produce several days of gentle rain of moderate intensity.

Lake evaporation figures in the Bill Williams area have been estimated to be, on

the average, 300 to 315 mm/year (Anderson ef al. 1992).

S e




SN D VU B W T T T T T T

SULDIUNO

2 Yr1ys
> o
S woour] ! ‘ng
3
S
m B8y :
g | £ o
m g v ? ot "
5 g d
g 2 P?
s
g
g
o
&
~ vody
fpmg saLreInquLy, Jofep

PU® JoATY SWIeY[[Iy [Tl

2-4




Three principal units can be defined in basins located within the Basin and Range

province: 1) rocks of the mountains, 2) pre-Basin and Range sediments, and 3) basin fill
deposits (Anderson ef al. 1992).

Igneous, metamorphic and sedimentary rocks of various ages form the rocks of the
mountains, which for all practical purposes do not yield water and act as boundaries to the
ground-water flow in the basin.

The pre-Basin and Range sediments are composed by deposits that range in
composition from silt, clay, and claystone to gravel and conglomerate. Their degree of
consolidation varies from moderate to high. This type of sediment can reach several
thousand meters in depth.

Basin fill deposits are the water bearing unit by excellence. Deposited during the
late Terciary to Quaternary, they consist of weakly to highly consolidated gravel, sand,
silt, and clay. Many investigators have divided the basin fill deposits into three general
units: 1) lower basin fill, 2) upper basin fill, and 3) stream alluvium (Figure 2.3).

Lower basin fill deposits usually contain ﬁﬁe grained materials with a high degree
of cementation, with their major depth development occurring toward the center of the
valley. The upper basin fill materials, which overlie the former unit, are generally more
coarse grained and less cemented than the lower basin fill. Together, both units have a
considerable water storage capacity.

Finally, the stream alluvium, deposited during and afier the establishment of the

present surface drainage system, consists mainly of unconsolidated silt,
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Migrant and resident wildlife species are attracted by the wetland and open waters

of Lake Havasu and the Bill Williams River. The riparian habitat along the river
represents the largest remaining riparian corridor along the highly regulated Lower
Colorado River.

The Lake Havasu National Wildlife Refuge, managed by the U.S. Fish and Wildlife
Service, covers over 2,428 hectares of land and extends approximately 19.3 km east from
Lake Havasu. At its lower end, a cattail dominated marshland serves as the link between
Lake Havasu and the river itself. Upstream of the marshy area the river supports dense
forests of cottonwood (Populus Fremontii) and willow (Salix Gooddingii). Abundant
vegetation stands also develop between the dam and the Planet Ranch, whose aerial extent
is comparable to that of the Wildlife Refuge.

The dominant vegetation species within the riparian stretches along the Bill
Williams River consist mainly of mesquite (Prosopis juliflora), cottonwood, salt cedar
(Tamarix sp.) and willow, all vegetation types common to most southwestern riparian
systems. In addition to these species, the study area sustains a considerable population of
cattail (Typhia spp.) and bulrush (Scripus spp.), located in the marshy area at the
downstream end of the Refuge, and small stands of smoketree (Dalea spinosa) and
inkweed (Suaeda torreyana).

The Bureau of Land Management-BLM (1989) and Rivers West (1990)
documented the area covered by native vegetation, upstream of the Planet Ranch and

within the Refuge, respectively. Table 2.1.a and Table 2.1.5 provide the aerial coverage of

riparian vegetation categorized by composition of species.

i‘\)
~3

S




Migrant and resident wildlife species are attracted by the wetland and open waters

of Lake Havasu and the Bill Williams River. The riparian habitat along the river
represents the largest remaining riparian corridor along the highly regulated Lower
Colorado River.

The Lake Havasu National Wildlife Refuge, managed by the U.S. Fish and Wildlife
Service, covers over 2,428 hectares of land and extends approximately 19.3 km east from
Lake Havasu. At its lower end, a cattail dominated marshland serves as the link between
Lake Havasu and the river itseif. Upstream of the marshy area the river supports dense
forests of cottonwood (Populus Fremontii) and willow (Salix Gooddingii). Abundant
vegetation stands also develop between the dam and the Planet Ranch, whose aerial extent
is comparable to that of the Wildlife Refuge.

The dominant vegetation species within the riparian stretches along the Bill
Williams River consist mainly of mesquite (Prosopis juliflora), cottonwood, salt cedar
(Iamarix sp.) and willow, all vegetation types common to most southwestern riparian
systems. In addition to these specieé, the study area sustains a considerable population of
cattail (7yphia sp.) and bulrush (Scripus sp.), located in the marshy area at the
downstream end of the Refuge, and small stands of smoketree (Dalea spinosa) and
inkweed (Suaeda torreyana).

The Bureau of Land Management-BLM (1989) and Rivers West (1990)
documented the area covered by native vegetation, upstream of the Planet Ranch and
within the Refuge, respectively. Table 2.1.a and Table 2.1.5 provide the aerial coverage of

riparian vegetation categorized by composition of species.
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Table 2.1: Aerial coverage of riparian vegetation

Salt Cedar/Willow

Mesquite/Salt Cedar 231.94
Mesquite/Salt Cedar/Willow 41.61
Mesquite 39.42
Mesquite/Inkweed 16.92
Hymenocleo Sp. 35.31
Cottonwood/Willow 26.57
Inkweed 2.88

Smoke Tree 1.05

(a)" Upstream of the Planet Ranch (after BLM 1989)

ail/Bulrush Marsh 135.55
“Cottonwood/Willow/Salt Cedar 164.31
Willow/Salt Cedar 216.51

Salt Cedar 230.68

(b) Wildlife Refuge (after Rivers West Inc. 1 990)

1 hectare=10,000 ni’

Riparian vegetation within the Refuge has been affected by high Alamo Dam
releases during extended periods of time, causing considerable mortality of cottonwood
and willow. More recent ground-water development may have also adversely impacted on

vegetation development by lowering the water table and reducing soil moisture

availability, both essential for plant survival
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The description of the surface water system, the ground-water system and their

interrelationship will set the framework for the necessary assumptions and simplifications
later introduced in the implementation of the model. Actuality, no real physical
dissociation between ’these two systéms exists. However, for the sake of a better
presentation of the available information, they will be described in separate sections and

their link appropriately established.

2.5.1. Surface water hydroiogy

The drainage network of the basin looks overwhelmingly intricate (Figure 2. 1), but
when it comes to flowing streams, the arrangement of channels reduces to a handful of
washes that drain the entire watershed and discharge into the BWR. They are the Mineral
Wash to the south and the Castaneda, Centennial and Mohave Washes to the north.

Remote as the area is, it comes to no surprise that gaging stations are not
common. None of the above washes has ever been gaged, however their ephemeral flows
are deemed negligible compared to the BWR streamflows.

There is only one gaging station along the BWR with a period of records long
enough for statistical analysis. The station at Alamo (USGS # 09426000) registered daily
flows from 1940 to 1968. With the establishment of Alamo Dam, this station was moved a
short distance downstream to the location that occupies today. Records at this new
location represent daily dam releases and have been measured on a continuous basis since

1969. A second station was operative (USGS # 09426600) near Planet Ranch for a
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number of years (1929-1946) anci was abandoned ever since. In 1989 the Fish and
Wildlife Service relocated this station and reinitiated streamflow recording.

The natural streamflow conditions were first altered in 1932 by Havasu reservoir,
whose waters inundated about 6-8 km of land upstream of the river confluence shaping up
the marsh that exists today. The normal operation elevation for that lake is about 137 m

Alamo Dam, with a normal operation elevation of 335 m, controls upstream flows
modifying, in turn, the morphology of the stream. Up to what extent natural flows have
been altered may be partially quantified by means of a monthly streamflow analysis.
Figures 2.4.a, b, and ¢ represent maximum, minimum, median and mean monthly flows,
respectively, for the period 1940-1968 and the period 1969-1993. After 1969, maximum
dam releases are higher than during the pre-dam era. The most dramatic change caused by
the dam operation is reflected on minimum flows. During the post-dam period, zero flows
are reported for a period of 7 consecutive months, situation that certainly did not occur
prior to 1969. The picture is not that clear for median and mean flows. Median flows,
which better represent seasonal patterns, suffered little modification except for the month
of March, where the influence of high magnitude floods is noticeable. The same effect
repeats on mean flows, with slightly higher flows during the dry months of the post-dam
era. Figures 2.4.c and 2.4.d also show two distinct peaks, the first concentrated during the
months of February, March and April, and the second, of much smaller magnitude, during
August. Upstream flows are greatly depleted before they reach the Refuge. If they are

not of a sufficient magnitude to overcome transmission losses at Planet Ranch, the river

Q

dries out along the 9.7 km reach of the Ranch. ws reappear at the Refuge due
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to the regulating flow effects of the Planet Ranch alluvial. In this area, alluvial deposits are

2 to 3 times deeper than elsewhere forming a bucket with an enormous buffering capacity.

Figure 2.4: Monthly streamflows at Alamo station
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2.6.2. Ground-water hydrology
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A fairly simple aquifer system hides behind a complex geology. The presence of an

underlying regional aquifer interacting with the shallow alluvial aquifer is yet to be

identified. The only assertion about it was made by the Corp of Engineers (1964), who

stated that about 15 %-of dam releases islost to ahighly fractured regional formation

immediately downstream of the dam. Hence, the alluvial aquifer is the prevailing water

bearing unit in the system.




Alluvial deposits range in depth from about 18 m at the canyon below the dam up ‘L:
to a maximum of 60-90 m at the Planet Valley (Wolcott et al. 1956, Turner 1962, CoE r
1964, Wilson 1979).
Recent stream alluvium of unknown thickness, composed primarily of sand, forms -
the alluvial aquifer within the Refuge. Results of aquifer tests have been reported by
several authors (Table 2.2). In all cases, hydraulic conductivity values show great B

disparity and seem to be unusually high, even for clean sand and gravel deposits.

Table 2.2 - Results of aquifer tests

Tumner(1962) Planet Ranch 1,645
Planet Ranch 11,526 44 263
Planet Ranch 16,173 12 1,327

CoE (1964) Below Alamo Dam 1,829

Fogg et al Planet Ranch 61 166-175

(1976)

BLM (1988) (estimated from tables) 2,696

The Planet Ranch alluvial and its flow dynamics provide unique characteristics to
the system. It extents about 9.7 km parallel to the river and 2 km perpendicular to it.
Assuming an average depth of 76 m and a specific yield of 0.20, the storage capacity of

this bucket is estimated to be 2.9488x10® m’. This formation acts as a flow attenuator and

regulator, absorbing a great proportion of upstream and tributaries flows and releasing

baseflows back to the river at a point downstream. During low flow periods the 9.7 km

reach at the Ranch remains dry while during flood events the reach is completely covered

with flood waters. The immense buffering capacity of the Planet Ranch alluvial manifests |

primarily in the streamflows registered at the Refuge, as drastic changes in dam releases

are not proportionally corresponded by equal changes in the Refuge surface flows. L
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Sources of ground-water in the alluvial basin along the BWR include recharge
from flood flows, underflow from tributaries, underflow from Alamo Dam, return flows
from irrigation, and recharge from precipitation on the watershed.

Recharge from flood flows is the major source of ground-water, in particular at the
Planet Valley. Transmission losses in that area are quite high, varying in magnitude with
upstream flows. For instance, BLM (1988) reported that for a 2.97 m’/s dam release,
about 62 % of the streamflow is lost at Planet Valley. Although not necessarily all
infiltrated water will percolate into the aquifer, the high permeability of the sediments and
a shallow water table suggest that a good proportion of it makes its way to the water

table. This point is illustrated in the following section.

Underflow from tributaries is poorly known. Turner (1962) estimated that during
the months of October, November and December, approximately 9.87x10° m° per month
enter Planet Valley from the north, while the Refuge receives about 9.0x10° m’/year of
underflow from Mineral and Mohave washes. More recent studies have not reexamined
these figures.

The loss of flow from Alamo Dam has been estimated at 0.79 m’/s. However, this
underflow is based on high hydraulic conductivity values and assumes no losses to the
regional aquifer, which are likely to take place (Jackson and Summers 1989).

Return flows from irrigation and recharge from precipitation are only potential
sources of ground-water. First of all, a low efficiency irrigation system and very dry
conditions combine to prevent any irrigation water from reaching the water table.

Secondly, there is virtually no recharge from precipitation in this arid region.
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2.6.3. Historic water levels

Water level data in the study area are sparse. Nevertheless, two water level
surveys conducted by the USGS in 1979 and in 1990 provide valuable information to
delineate general ground-water flow patterns in the entire basin. No water level data prior
to 1979 could be traced down. In 1979, a total of 59 wells were monitored. Figure 2.5
illustrates water level contours for that year generated with the inverse distance
interpolation method. The location of the data points used in the interpolation as well as
the boundary of the model area, introduced in Chapter 7, are also indicated in the graph.
The steepest gradients occur in the northernmost portion of the watershed, where ground
elevation reaches over 1500 m and some mountain front recharge is likely to take place.
Hydraulic head gradients smooth down gradually toward the valley floor and are mild
along the Bill Williams River. The water level drop between Alamo Dam and Lake
Havasu is approximately 107 m. A small number and an uneven distribution of
observation points in the 1990 survey introduce fictitious distortions to the ground-water
pattern. Hence, this information is discarded for further analysis.

More valuable to tﬁe goals of this study are water level data obtained in thev Planet
Ranch area, where monthly static water leveis have been recorded in 13 wells since 1985
by Ranch personnel (Hill 1992). Figure 2.6 shows the location of commercial wells within
the irrigation fields. Due to some discrepancies between the well number reported by the
Ranch manager and well records obtained from the Arizona Department of Water

Resources (ADWR), the UTM well coordinates provided in the map were extracted from

USGS topographic maps.
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Figure 2.5: Water level contour map for 1979 conditions




Figure 2.6: Well location at Planet Ranch
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In the presence of highly permeable materials, ground-water levels fluctuate
rapidly in response to water use by riparian vegetation, water use for agricultural
activities, changes in river stage and infiltration of runoff water.

Riparian vegetation, once present at the Planet Valley, was cleared out to allow for
agricultural development, then ground-water level fluctuations are mainly due to the last
three of the aforementioned factors.

Figures 2.7 to 2.9 show well hydrographs. Water level data cannot be fairly
interpreted without regarding at simultaneous dam releases, graphed on Figure 2.10.
Some relevant remarks can be drawn from the conjunctive evaluation of this set of graphs.
First of all, the quick response of the ground-water system is worth noting. Depending on
the magnitude of streamflow peaks, a one month lag between streamflow peaks and water
level peaks is observed. This may just reflect the measurement interval, in which case the
actual response could be either quicker or slower. This short term cause-effect behavior
provides strong evidence of the close interrelationship between the two systems in this
area, supporting the use of a coupled model to simulate the whole system dynamics.

Over time, dramatic water table recoveries occur after peak flows. Moreover, steady
ground-water levels correlate with prolonged periods of high dam releases, as occurred
from June 1985 to October 1986. A progressive water table decline is observed during

long low-flow periods. Wells #3 and #4, the closest to the Refuge entrance, are subject to
less drastic fluctuations, response that can be associated with geologic controls existing in
that area. With the exception of these two wells, a general ground-water level decline

trend is noticeable over the years. No matter how distant from the river, and
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Figure 2.7: Well 42, #3 and #4 hydrographs - Period 1985-1992
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Figure 2.8: Well #5 and #6 hydrographs - Period 1985-1992
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Figure 2.9: Well #8 and #9 hydrographs
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Figure 2.10: Streamflow at Alamo Station - Period 1985-1992
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assuming an equal pumping regime, all wells seem 10 respond in a very similar and quick

manner. This indicates the existence of 2 highly permeable aquifer.

2.6.4. Stream aquifer interactions

This description of the close relationship between stream and aquifer in the study
area is largely based on interpretations of field data provided by Rivers West (1990) and
on a site visit by the authors. At the present time, the system is no longer in a state of
dynamic equilibrium and even though pumping activities have declined, a full recovery
towards pre-development conditions will never occur as long as streamflows continue to
be controlled.

Dry, losing and gaining stream reaches all occur along the Bill Wwilliams River.
During low flow periods, the river reach at Planet Ranch is completely dry, but is
inundated during high flow periods. The stream is also dry within the Refuge along 6.5
km upstream from its confluence with 1ake Havasu. Gaining conditions are observed two
to three kilometers downstream from the Planet Ranch, where groundwater emerges from
the alluvium converting the dry stream into a gaining one.

Two transmission losses studies were done on the site. The first was conducted by
BLM (1988), and encompasses almost the entire jength of the river from Alamo reservoir
to Kohen Ranch. The study reports that for a 2.98 m’/s dam release, 62 %, of the water is
lost on a 19 km reach that includes the Planet Ranch alluvium. This confirms the

attenuating character and the buffering capacity of the alluvium at this location. The data

reporied by BLM is used to calculate transmission losses per unit length of channel (Table
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2.3). The numbers in the table indicate that upstream from the Planet Ranch area the
stream/aquifer system is also quite variable. Of much smaller dimensions than the Planet
Ranch alluvial, the shallow aquifer at Lincoln Ranch (between kilometers 55.5 and 51 7) is
also able to store water that is later released downstream where the stream gains water
from the aquifer. For this particular flow release, 28 % of the water has infiltrated through

the streambed between Alamo and Centennial Wash at the upstream end of the Planet

Table 2.3: Transmission losses

7.76 -0.40 -0.05155
55.5 2.58
3.85 -0.14 -0.03636
51.7 2.44
7.40 +0.22 +0.02973
443 2.66
1.61 0 0.00
42.6 2.66
2.25 -0.22 -0.9778
40.4 2.44
Centennial Wash 821 -0.29 -0.03532
32.2 2.15
12.87 i -1.84 -0.14287
19.3 0.31
: 5.96 -0.14 -0.02349
Kohen Ranch 13.4 0.17

Ranch. This distribution of gains and losses along the river may vary for different inflows,
however it provides a good indication of the general behavior of the stream/aquifer
system. Except at the Planet Ranch area, transmission losses are smaller than losses
reported in other places of Arizona. For example, transmission losses for a steady inflow

of 2.98 m’/s computed at certain stream reaches of the Walnut Gulch Watershed in
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Southeastern Arizona are around 0.5 m’/s/km. Those calculations were performed
following the methodology proposed by Lane (1980).

The second transmission losses study was performed by Rivers West (1990), but it
only considered the stream reach within the Wildlife Refuge. They found that within the
Refuge the rate of seepage from the stream varies from about 7.04x107 m”/s/km to about
6.34x102 m’/s/km, depending on the location. This increase was attributed to a lack of
hydraulic connection between the stream and the aquifer. In such a case the hydraulic
gradient that drives the seepage becomes independent of the water table elevation and
depends only on the water depth in the stream. Rivers West does not report what the dam
release was at the time of their study. Consequently, the two studies are not readily
comparable as different dam releases may yield different transmission losses.

Likewise, Rivers West (1990) conducted laboratory analyses of streambed material
and material from the underlying stream alluvium. Their goal was to determine the
hydraulic properties of both materials and characterize seepage under the presence of a
restricting silt layer in the streambed. Grain size distributions for both samples are
practically identical, however Rivers West claims that the arrangement of the fine portion
of both samples differs substantially. A hydraulic conductivity of 0.0039 cm/s is reported
for the alluvium, and a value of 0.00012 cm/s is given for the streambed sample. Results
of this nature are really valuable, nevertheless, the manipulation, sieving and subsequent
rearrangement of samples on the experimental device affect hydraulic conductivity values.
In-situ measurements at various locations are highly recommended to confirm these
findings. Lacher (1995) has determined in-situ hydraulic conductivity (K) at various sites

on the Santa Cruz River. As expected, her results show variability of hydraulic
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conductivity with depth and with test location. She also found that at some locations
hydraulic conductivity values stayed fairly constant at ground level, 30 cm and 60 cm
deep, at other sites the ground level value was one order of magnitude less than the X
values at 30 cm and 60 cm, while at some other locations the lowest X was detected at 60
cm revealing the presence of clayed fenses within the coarser alluvium. Although every
river system behaves differently, these findings reveal that, in actuality, the streambed is
not uniformly carpeted by a constant thickness silty layer but rather is an heterogeneous
array of surficial and interbeded low permeability lenses created during subsequent flood
events. Streambed configurations of this kind were also identified in the San Pedro River,

and the Bill Williams River is likely to be characterized by a similar streambed-underlying

alluvium complex.

2.6.5. Natural and cultural water uses

Natural water uses refer to water requirements by riparian vegetation while

cultural water uses represent water requirements for human activities development. In the

following two sections, estimates of both uses are provided.

2.6.5.1. Natural water uses

Evapotranspiration (ET) losses due to phreatophytes and evaporation from bare
soils are the main natural depletions of water supplies in the Bill Williams River Basin.
Estimating its magnitude is then of primary importance whether for mass balance

computations or for modeling purposes.
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The terms consumptive use and ET are often used interchangeably. Consumptive
use is defined as the sum of the volume of water evaporated from an area and that used
directly in building plant tissue (Singh 1989). The evapotranspiration process is affected
by climatic factors such as air temperature, wind, atmospheric pressure, humidity, and soil
properties such as moisture and hydraulic conductivity.

A rigorous field study that assesses the factors affecting ET and precisely
quantifies vegetation species in the study area is not available. However, due to their
similar riparian vegetation, information gathered in nearby basins and throughout other
basins in Arizona can be used in the Bill Williams River Basin.

The dominant vegetation species within the riparian stretches along the Bill
Williams River consist mainly of mesquite, cottonwood, salt cedar and seep willow, all
vegetation types common to most southwestern riparian systems. In addition to these
species, the study area sustains a considerable population of cattail/bulrush, located in the

marshy area at the downstream end of the Refuge, and small stands of smoketree and

_inkweed.

The Bureau of Land Management (1989) and Rivers West (1990) surveyed the
acreage of native vegetation, upstream of the Planet Ranch and within the Refuge,
respectively (see Tables 2.1.a and 2.1.5). Not reported in either one of these documents is
the vegetation density. Turner (1962) provided some vegetation density figures, but they
are considered outdated as the total acreage and distribution of riparian vegetation has
changed over the last 30 years.

Seasonal consumptive use estimates were generated using the Blaney-Criddle
method (Blaney and Criddle 1950):
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where Er is the consumptive use in inches of water during the growing season, ¥ is an
empirical consumptive use coefficient applicable to a particular vegetation species, F'is
the sum of monthly consumptive use factors f;, T; is the i mean monthly air temperature
in °F, p; is the mean percentage of annual daytime hours for the i month, and 4 is a
monthly consumptive use coefficient. Although empirically derived, this formula has been
widely used in the western United States. Moreover, it includes both meteorological and
vegetation effects, represented by variables relatively easy to obtain.

Putman et al. (1988) computed “X”values for phreatophytes species using data
taken from Safford, AZ. It has been argued that such values may not be fully appropriate
in the Bill Williams area because of the more stringent climatic conditions existing in that
basin. However, “X” estimates in nearby areas (Turner 1962) are practically identical to

those reported by Putman ef al. (1988). Table 2.4 provides the ¥ values used in this

analysis.

Table 2.4: X values

Salt Cedar 1.357
Willow 0.886
Cottonwood 1.131
Mesquite 0.622
Salt Cedar 1.400
Cattail 0.569
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Temperature data collected at Alamo Dam and at Lake Havasu weather stations

have been used to compute the «f factors upstream and downstream of the Planet Ranch,

respectively. Tables 2.5.a and 2.5.b show monthly values of i, T, and f; as well as F for

these two stations.

Annual consumptive use figures calculated with expression (2-1) are tabulated in
metric units in Table 2.6.a and Table 5 6.b. A X value for cattail/bulruch was unavailable,
consequently a consumptive use of 1 .61 m/year was adopted (Stromberg, personal
communication, 1994). A vegetation density of 75 %o was assumed for vegetation stands
along the river upstream of Planet Ranch and 65 % density is set for riparian vegetation at
the Refuge. These density figures arc only estimates and should be verified by means of
field vegetation surveys and aerial photographs. The estimated annual consumptive use by
vegetation within the Refuge turned out to be 1.5328%10" m’ or 12,426 ac-ft, about 6 %
higher than the 11,712 ac-ft reported by Rivers West (1990). Precipitation can make up

for some of the water consumed by native vegetation. However, due to minor amounts of

rainfall falling in the area, its effect on ET losses s considered negligible.

2.6.5.2. Cultural water uses

Until recently ground-water pumping for irrigation of alfalfa at Planet Ranch was
the primary anthropogenic water use in the BWR basin. In the past, irrigation has also
occurred on cultivated fields upstream and downstream of the Ranch. Other uses have

included ground-water extraction for domestic and stock water and surface water

diversions. The 13 commercial wells supplying Planet Ranch (Figure 2.6) withdrew water
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Table 2.5.a: Meteorological data Jor Alamo station

Latitude: 34° 14’
(Temperature reported in Celsius but calculation performed in Fahrenheit)

Longitude: 113° 28’ Elevation: 451.1 m

January 1.05
February 12.72 10.98 1.40
March 15.36 11.95 1.84
April 20.06 13.04 2.62
May 24.86 13.94 3.47
June 30.59 14.41 441
July 33.59 14.22 4.78
August 32.44 13.44 4.36
September 28.59 12.41 3.54
October 22.38 11.35 2.54
November 15.06 10.40 1.57
December 10.59 9.91 1.05
X 32.62

Table 2.5.b: Meteorological data Jor Lake Havasu station
Latitude: 34° 27° Longitude: 114° 22’ Elevation: 146.3 m

(Temperature reported in Celsius but calculation performed in Fahrenheit)

January 11.90 10.14 1.21
February 14,61 10.98 1.60
March 18.17 11.95 2.17
April 22.80 13.04 2.97
May 27.68 13.94 3.86
June 33.01 14.41 4.76
July 35.88 14,22 5.10
August 34.82 13.44 4.68
September 30.86 12.41 3.83
October 2428 11.35 2.76
November 16.78 10.40 1.75
December 12.04 9.91 1.19
xf 35.88




Table 2.6: Annual consumptive use (CU)

Mesquite/Salt Cedar/Willow

(a) Upstream of the Planet Ranch (after BLM 1989)

¥

1 hectare=10,000 e
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from the alluvial aquifer at an annual rate of 1.8503x10” m’. This volume was used to

irrigate 971.3 hectares (9.713 ki’ ) of alfalfa. Return flows from irrigated fields were
likely to be very small or non-existent. The reasons for this are twofold: on one hand, the
sprinkling irrigation system used in one of thé driest spots in Arizona has a very low
irrigation efficiency compared to other irrigation methods. On the other hand, assuming a
1.98 ha-m/ha of consumptive use for alfalfa, the reported total amount of ground-water

withdrawn would be barely enough to meet crop demands.
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CHAPTER 3

GROUND-WATER FLOW MODEL

The objective of this chapter is to derive a proper ground-water flow equation

along with the appropriate set of assumptions for the problem at hand. Particular
attention is given to the boundary conditions as a means to define a well-posed problem.
In the sense of Haddamard, a problem is well-posed when (i) the solution exists, (i) the
solution is unique, and (777 the solution is stable. This means that the solution must
depend continuously on the data and any perturbations on the parameters, boundary
conditions or initial conditions produce small changes in the solution. The specification of
data along any part of the boundary is of fundamental importance, and depends on the
nature of the governing equations -- elliptic, parabolic, hyperbolic. In general, the
boundary conditions are well established by the physics when the governing equations are

derived from conservation laws. As it will be established in this chapter, the present

problem is a case in point.

The stream-aquifer interaction process occurs between a stream and its adjacent

floodplain aquifer. In the latter, the flow is generally unconfined with the phreatic surface

as its upper boundary. Actually, above the phreatic surface there is a capillary fringe

N —




S



whose thickness is much smaller than that of the saturated domain below the water table.
Hence, this fringe is commonly neglected in the derivation of the governing flow equations
(Bear 1972).

In general, flow through porous media is a three-dimensional process. However,
uinder special circumstances, geometric considerations allow to introduce a simpler and
more advantageous approach. Most aquifers are thin compared to their horizontal
dimensions, then the flow in the aquifer can be assumed as being mostly horizontal. The
horizontal flow hypothesis implies that the flow velocities are horizontal and parallel to
each other along any vertical line, this is the so-called Dupuit's hypothesis (Freeze and
Cherry 1979). An obvious and a tremendous simplification is gained by using the Dupuit
assumptions, which is the reduction of a three-dimensional problem to a two-dimensional
one. Ifthere is no vertical component, there is no vertical hydraulic gradient and,
therefore, the hydraulic head A = h(x,y,?) is independent of z. A word of caution should
be brought up at this point since it is well known that the horizontal flow hypothesis fails
in the vicinity of partially penetrating wells, springs, rivers or water divides (Bear and
Verruijt 1987). Nevertheless, at some distance from sinks or sources, the hypothesis may
again be valid. For example, according to Verma and Brutsaert (1971), the horizontal
flow hypothesis is valid at a distance approximately equal to four times the aquifer
thickness. Whenever justified on the basis of flow patterns and aquifer geometry, the
assumption of horizontal flow greatly simplifies the mathematical formulation, and the

error introduced by this assumption is indeed small in many practical cases (Bear and

Verruijt 1987).
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The mathematical details for the derivation of the two-dimensional flow equation
for phreatic aquifers are omitted in this section, and only assumptions and final results are
presented. For more details, the reader may consult the work of Bear (1 972), De Marsily
(1986) and Bear and Verruijt (1987). Following an Eulerian approach, the mass balance

equation for confined aquifers is expressed as,

V-(KV¢)+W=S,52¢1 (3-1)

where V is the gradient operator, K is the hydraulic conductivity tensor, @ is the
piezometric head, W is a source/sink term, # is the time, and S, is the specific storage
(Freeze and Cherry 1979),
S, =pgla+np,) (3-2)
In Equation 3-2, # denotes the porosity, p the water density, g the acceleration due
to gravity, /3, the compressibility coefficient of the water and ¢ the compressibility

coefficient of the porous medium. Depending on the precise definition of & (Bear 1972),
the o above may need to be replaced by (1-n)ar.

In order to develop the governing equation for a leaky-phreatic aquifer, the three-

dimensional diffusion Equation 3-1 is first integrated over the vertical,

h{x,p.t §¢
| [V-(KV¢)+W—-S;§]dz=O (3-3)

H=y)

where A(x,y,2) indicates the elevation of points on the phreatic surface above some datum

and 7)(x, y) denotes the aquifer bottom elevation above the same datum (see F igure 3-1).
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By employing the Leibnitz rule, the Dupuit's assumptions and the appropriate boundary

conditions over z = 77 and z = A (Bear 1972), Equation 3-3 reduces to,

Vo (K)h= )V + S, +[V, G2 [,y 5,19 = 0 (-4)

1 y
where,
(K) is the vertically average hydraulic conductivity tensor,
Sy is specific yield
Sris the integrated source/sink terms

#,(x,y,1) is the piezometric head of the underlying confined aquifer

% is the coefficient of leakage
1

F =z—h(x,y,t) =0 is the phreatic surface

vV, = (gx—’g) is the gradient operator defined on the (x,y) plane

~ Figure 3.1: Aquifer cross section

aquifer bottom
/_’\_//\MW/T
n

— datum
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It turns out that, for all practical purposes, it suffices to consider S, >> S (h -~ 7)
. i . Gh
(Bear 1972), in which case the transient term becomes S S Moreover, whenever

fluctuations in / are much smaller than the saturated thickness 4 — 77, a less stringent
simplification can be introduced. Under these circumstances, it is possible to approximate

hby h, where i represents the temporal mean value of A (Cunningham and Sinclair
1979). It follows that,

S, +Sh-m=~S, +S(h-n=3 (3-5)

where S is a constant independent of time. A deeper analysis on the significance of the
aquifer material elasticity and the water compressibility in the context of unconfined flow

can be found in Neuman (1972, 1973b), Streltsova (1975) and Neuman (1982). In any

<Oh . .
case, the term S, g}tz (or eventually .S ;”7) 1s used in the subsequent analysis.

For a non-leaky unconfined aquifer, Equation 3-4 can be written,

Vs (K)h= Vb5, 52 - (3-6)

The first part of this section discusses the physical and the mathematical aspects of

the stream-aquifer interaction followed by a literature review on the topic. The third part

intends to examine the classic representation of the coupling term.
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Figure 3.2: Stream-aquifer interface conditions in western streams
a) gaining stream; b) losing stream; c) perched stream; d) dry stream
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3.3.1. Introduction

The prevailing conditions in stream-aquifer systems in southwestern regions of the

United States are sketched in Figure 3.2. Figure 3.2.a illustrates the situation of a gaining

stream, Figure 3.2.b and Figure 3.2.c illustrate the case of a losing stream and Figure 3.2.d
represents a dry stream.

By analogy to Ohm's law, the exchange of water between an aquifer and a stream

may be formulated as (Bouwer 1978)

(h—h,)

exchange =
& R

P
= -E;(’Vh,) G-7

where R is the flow resistance factor, Ryis the resistivity factor, P is the wetted perimeter
of the channel and 4, is the stream stage (see Figure 3.4.b)

Equation 3-7 has been and still is widely used in stream-aquifer modeling. The
debate centers around two issues, first on how to determine the value of the resistance

factor R;; and second on how appropriate the expression is when non-saturated sediments

underlay the streambed.

3.3.2. Background

Based on some field observations, Rushton and Tomlinson (1979) tested
alternative non-linear relationships to Equation 3-7 of the exponential type and a
combination of exponential and linear functions, but their results were not conclusive.
Miles (1985) also experimented with non-linear relationships, and compared the results

with those obtained with the Equation 3.7. Seepage calculated with both relationships
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In her study of flow resistance, Strelsova (1974) proposed the method of
additional seepage resistance in which the length of the flow path is increased to account
for partially penetrating streams. Other authors (Miles and Rushton 1983) used an
heuristic approach to determine the resistance coefficient. Crebas e al. (1984) borrowed
some ideas from the drainage design theory and the method of additional resistances to
develop expressions for R. In essence, they distinguished two major components in the
resistance factor R, a horizontal resistance and a radial resistance. The horizontal
resistance is due to the Dupuit-Forchheiner assumption of horizontal flow and the radial
resistance is the additional resistance caused by the deformation of the flow pattern due to
the geometry of thé water conduit and inhomogeneities of the ground. Crebas er al.
(1984) concluded that, because open channel seepage describes the water exchange per
unit length of the channel in terms of local cross sections, the horizontal resistance is

negligible and so the coefficient can be expressed as,

1 aDY [

where K| is the hydraulic conductivity of the aquifer below the channel, D is the thickness
of the aquifer below the channel, a is a geometrical shape factor, and / is the hydraulic

impedance.

In natural channels, evidence exists about the reduction of the hydraulic
conductivity of the outermost layer of channel bed material due to biological activity as
well as inorganic sedimentary processes. This phenomenon is referred to as clogging.
Settling of sediments and straining of suspended material as water moves through the soil,

microbial transport and colonization, precipitation of chemical, can all cause such clogging
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effect (Cunningham et al. 1987). In order to represent that effect mathematically, it is
assumed that these materials form a thin layer of thickness e whose hydraulic conductivity
K. is usually one or two orders of magnitude smaller than that of the underlying sediments

(Madlock 1965). Frequently, the magnitude of e is unknown, so e is combined with K. in

a single parameter R = Ki =/, the hydraulic impedance or resistivity introduced before.

e

Under the presence of such a silty layer, the first term in Equation 3-8 can be one or two
orders of magnitude smaller than the second one. Consequently, for all practical purposes
no much is gained in retaining it.

Generally, the resistivity factor R, or the conductance P/Ryis treated as a
calibration parameter whose uncertainty is partially circumvented by means of a sensitivity
analysis. Rushton and Tomlinson ( 1979) argued that this approach provides no insight
into the physical processes involved, and the value obtained may disguise the influence of
other aquifer or surface-water flow properties. Nevertheless, calibration is still a valid and
widely used procedure.

Some of the assumptions behind expression Equation 3-7 are that the water is
instantaneously recharged to the water table, that channel loss equals recharge to the
aquifer, and that the transfer is controlled by saturated flow through low permeability
streambed sediments. Therefore, the appropriateness of Equation 3-7 to handle the case
portrayed in Figure 3.3.c needs to be reviewed. The presence of unsaturated materials,
situation generally associated with ephemeral or intermittent streams, may invalidate some
of the above assumptions. A distinction should be drawn between an unsaturated zone

overlying deep groundwater and that overlying shallow groundwater. In the former, a
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significant vadose zone separates the stream from the water table while in the latter the
unsaturated portion of the soil is thin or absent. Then, an alternative mathematical
formulation for the interaction may be selected. However, the advantages of such a
selection must be weighted by considering the overall objectives of the study, the
additional computational burden ana, most important of all, the spatial and temporal scales
being used.

Freeze (1972) and Kraeger-Rovey (1975) solved the three-dimensional Richards'
equation at high computational cost. Pikul er al. (1974) followed a simplified approach
coupling a one-dimensional saturated flow model to several one-dimensional vertical
unsaturated column models. Even assuming that the downward flow under a stream is
mainly a one-dimensional process, the solution to the Richards' equation would still be
impractical to incorporate in basin-wide ground-water or coupled management models.
Then, one may resort to more simple models such as infiltration formulas and infiltration-
recharge transfer functions or the Bouwer's method. For example, the Smith and Parlange
(1978) infiltration formula, implemented m the kinematic runoff and erosion model
KINEROS (Woolhiser ef al. 1990), or the Green-Ampt (GA) model, can be used to
calculate channel losses. The well known GA model has been utilized, among others, by
Freyberg et al. (1980), Freyberg (1983) and Reid and Dreiss (1990) to simulate stream-
aquifer interactions. Reid and Dreiss (1990) demonstrated that the GA model performs
well for settings with homogeneous sediments. However, it performs poorly for settings
with low permeability streambed sediments or low permeability lenses under the

streambed. This comes to no surprise as the GA model was conceived under the

assumption of homogeneous sediments.
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The delay and smoothing of infiltrated water that occurs in the unsaturated zone
can be represented by a transfer function (Morel-Seytoux 1984, Besbes and De Marsily
1984). Linearity is the main assumption behind this procedure, i.e. the unsaturated
hydraulic conductivity is assumed not to vary significantly. The recharge to the aquifer
and the infiltration at a point are related by a convolution integral with a linear transfer
function of the infiltration into the unsaturated zone. Besbes and De Marsily (1984) found
that the linear transfer function of the infiltration into the unsaturated zone can be
approximated by a gamma function depending on two parameters: k, a time constant to
characterize the percolation velocity, and 7, the number of linear reservoirs the
unsaturated zone is divided into. At first glance, the transfer function method may be
appealing. However, it has a few drawbacks. Without discussing the obvious non-
linearity aspects, perhaps the most critical point of this approach is the need for data at a
reasonable number of observation wells at small time intervals, data not readily available in

many situations. Moreover, the method identifies only the temporal mean of the transfer
function and does not account for its seasonal character. This problem was discussed by
Morel-Seytoux (1984), who also addresséd the issue of implementing the convolution
equation in large scale problems, pointing that the use and saving of the past history of
excess infiltration rates may be too costly.

Bouwer (1964, 1966) indicated that, in some cases, the flow occurring at negative
pressure is only a small fraction of the total flow in a system which may be dominated by
saturated flow conditions. This raises the question to whether or not the inclusion of the
flow in negative pressure zones is always justified. Bouwer (1964, 1966) proposed to

analyze the flow in negative pressure regions on the basis of saturated hydraulic
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conductivity, setting the pressure head at the bottom of the streambed equal to a negative
value ¢, instead of zero. The critical pressure @, 1s given by,

. j:Kd¢

bo="

where K, is the saturated hydraulic conductivity of the sediments under the streambed. In

(3-9)

essence, the K — ¢ relationship of these sediments is replaced by a step function through
the integrated center ¢, with the same area as that under the actual curve of ¢ versus K.

Ignoring interfacial head losses in the contact area, Equation 3-7 is redefined as,

URIAYA 310

exchange =
where A, is the elevation of the top of the streambed sediments. Bouwer (1964, 1966)
found that this method adequately reproduced laboratory and numerical results of seepage
across a low permeability layer. Likewise, Reid and Dreiss (1990) showed that the

Bouwer's method compared well with results obtained with a two-dimensional unsaturated

model.

3.3.3. Boundary condition to simulate river-aquifer interactions

Practically all the mathematical formulations used in integrated ground-
water/surface water models include the coupling term explicitly as a source term in the
governing ground-water flow equation. This is the standard approach, however many
models based on finite element approximations (e.g. Cunningham and Sinclair 1979,
Glover 1988) do not take full advantage of one of the nicest properties of the method,

which is the natural incorporation of boundary fluxes into the finite element equations.
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In this work, the coupling term is not explicitly included in Equations 3-4 but
rather is treated through a boundary flux integral. As it will become clear in Chapter 6,
this integral arises naturally in the weak form of the governing equation.

To further illustrate this aspect, let the region {2 be bounded by a closed contour

&2 (Figure 3.3). Along this contour the necessary boundary conditions (BC) to
supplement Equation 3-4 must be given in the form of known ground-water head (BC of
the first kind or Dirichlet-I), or known ground-water flow through the boundary (BC of
the second kind or Neumann-II), or a linear combination of both (BC of the third kind or
Robin-III).

Figure 3.3 - Domain and boundaries showing the branch cut
along the internal boundary

(5:0 n

In order to develop a variational statement corresponding to Equation 3-4, the

Green's first identity must be used (see Chapter 6, Section 6.2. 1). It follows that a

. h )
boundary term of the form LQ WK(h- n)gds appears in the weak form of the equation.
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Since K(h—1) Y represents the outgomg flux normal to the boundary, this term is

naturally associated with the exchange of water between the aquifer and the river along
the river portion Tz of the boﬁndaryo’ﬂ. This rather simple observation has profound
meaning in the finite element approximation of the whole hydrologic system, as it will be
seen in the following discussion.

Figure 3.4 shows the cases of a fully penetrating stream (@)and a partially
penetrating stream (b). The application of the Green's first identity requires that QQbea
simply connected domain. When the stream fully penetrates the aquifer, it is necessary to
introduce a branch cut in the domain along the internal boundary T’ representing the
stream (Figure 3.3) t0 avoid the possibility of a multi-valued function / along this
boundary. Then, and regardless of the degree of penetration of the stream, the natural
inflow per unit length of channel is given by the sum of groundwater inflow from the left
and the right channel banks (Vasiliev 1987). For case (@), the flow is essentially horizontal
and continuity of flux through the thin layer of fine materials requires that (De Marsily

1986)
a1 K
[—K(h -nS } == (h=h )b =)

=C (h—-h,) (3-11)
and similarly for the opposite side of the stream. The superscript minus is associated with

the unit normal vector A pointing outwards from & in negative direction, here assumed

to the left (see Figure 3.5.0).




For the definition of the boundary condition along the interface between the stream
and the aquifer, éonsider the control volume depicted in Figure 3.5.5. Mass conservation
requires that, per unit length of channel,

= Flux in + Flux out =Rate of change of storage within the control volume

If the horizontal scale L is large enough to accept that the incoming flow is approximately

Figure 3.4.a: Schematic of a fully penetrating stream

T
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Figure 3.5.a: Semipervious boundary along a fuily penetrating stream
(modified after Bear and Verruijt 1987)

I's.

h -

1

Figure 3.5.b: Control surface for a partially penetrating stream
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horizontal (see e.g. Verma and Brutsaert 1971), but small enough in comparison with the
penetration depth (Carslaw and Jagger 1959), the storage effects are negligible and the
mass balance reduces to,

—Flux in+ Flux out ~ 0

which written in terms of Darcy's law and Equation 3-7 becomes,

+) )
[~K(h~n)§:—] +[—K<h-n>%] =200 (3-12)

, & AT
It must be pointed out that the slopes .a:hh} and 5} above are evaluated at sections A

and B, respectively (see Figure 3.5.5). Letting L go formally to zero, the necessary
boundary condition to Tepresent an interacting river-aquifer system for the case of a
partially penetrating stream is given by,

cr‘r+or+ =C(h-h) (3-13)
where o, later revised in Chapter 6, denotes the flux normal to the boundary contourI” -
Finally, for a non-interacting or hydraulically disconnected stream (Figure 3.2.¢), the flux
becomes independent of the head in the aquifer and is given by

o=C(h,~h,) (3-14)

which remains constant as long as A, remains constant. In a more realistic setting,

Equation 3-10 should be used instead to account for unsaturated conditions,
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In the previous section, the equation that governs two dimensional ground-water

flow through a porous medium was established. For a parabolic equation like Equation 3-
4, the boundary conditions must be prescribed at all points along the boundary of the flow
domain. Consider the idealized simi)ly connected region Q sketched in Figure 3.3,

bounded by a close contour X2. Along this contour either Dirichlet (), Neumann (ZZ), or

mixed (ZI]) boundary conditions are prescribed as follows,

h=h on cd )]
h=h, onef )
o =0, on ab dn
c=0 on bc, de and fg {n
c'+0” =C(h—-h,) along I' (m

if a partially penetrating stream is assumed and the stream is hydraulically connected to the

aquifer or,
ot =C"(h* -h,) ‘ on ia 917
o =C(h -h,) on gi i

if a fully penetrating stream is considered instead. For a perched stream these conditions

must be replaced by,

o=C(h, —h,) along T, i
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For this study, the source/sink term, Sr, of Equations 3-4 and 3-6 is composed of

three components. The first is point sinks or sources represent discharging and recharging

wells, respectively. They are treated in the usual way by means of a finite summation,
N, .
0=2.0, (x,,y;08(x-x,y-y,) (3-15)
F=1

where

N, is the number of wells,

QWJ is the pumping or injection rate of well j located at {(x;,y,), and

6 is the Dirac Delta function.

The second is the head dependent evapotranspiration. Quantification of water
losses due to evapotranspiration in the floodplain alluvial requires knowledge of the
relationship between the evapotranspiration rate £ and the water table elevation 4. The
general nature of this relationship is shown in Figure 3.6 (Bouwer 1975). The deeper the
roots, the greater the water table depth at which the vegetation can evapotranspire at
potential rate. This is represented By the horizontal portion of the curves. When the
water table drops below the root zone, the evapotranspiration rate reduces practically to
zero. Actually, water uptake from the water table may cease but the plants make take up
water from rain or water stored in the soil above the water table, process not taken into

account in the present analysis. In mathematical terms, the E-# relationship can be

approximated as (Trescott ef al. 1976),
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h<h,

0
E= ETm(h—hg+d)/d hgd<h<hg
ET, h, <h
expression

where ET, /disthe slope of the E-h relationship shown in Figure 3.7. This

can be written in @ more compact form by simply introducing appropriately chosen step

unit functions.

Figure 3.6: Evapotranspiration rate-aquifer head relationship
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The third is the areally distributed recharge that most commonly occurs as a result
of precipitation or irrigation that percolates to the ground-water system. Rgis the
recharge influx in units of length per unit time. Like the pumping from a well, R; is

independent of head.
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CHAPTER 4

SURFACE WATER MODEL

Multiple time scale problems arise in a variety of physical situations, and the

problem at hand is one example. Whereas the time variations in the surface water flow are
in the order of hours or days, the ground-water time variations are in the order of weeks
or even months. In situations such as this, when the time scales are very disparate, one
may hope to be able to drop the fast time scale and solve only for the slow time scale
which, in turn, will provide the sought long term behavior of the system. However, in
presence of nonlinearities, this aspect depends on whether or not the fast time scale effects
accumulate to produce a net effect that can influence the solution on the slow time
behavior. Most of the stream-aquifer studies either neglect the fast time scale process or
mainly focus on the passage and attenuation of a single flood wave through the system.
Previous experience has shown that neglecting the flood routing process, when
quantifying the stream-aquifer interrelationship in the long term, can deprive the system
from an important amount of water that could otherwise satisfy evapotranspiration losses.
This water deficit can be of fundamental importance in fragile riparian areas. The present
goal is then to find the simplest representation of the fast time scale behavior preserving

the true dynamics of the interaction between streams and aquifers.
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Commonly, overland flow and flood wave propagation are modeled conjunctively. —
However, due to scanty precipitation and extremely hot conditions in the study area
overland flow does not play a relevant role in the basin hydrology. The controlled flows B
of the main channel and their traveling downstream remain the dominant features of the
surface water system. Compared to tﬁe main channel streamflows, tributary surface flows

“are also insignificant. This chapter is then devoted to the mathematical treatment of the _

one-dimensional unsteady channel flow as the only relevant mechanism of surface water

flow. L

Flow routing is a procedure to determine the flow hydrograph at a point of a

waterway given a known hydrograph at one or more points upstream, independently of

the hydrograph generating process. When a flood is propagated, the changing magnitude,

speed and shape of the flood wave as a function of time and distance are predicted. The

" method is not restricted to the propagation of waves along rivers or streams, it can be

extended to reservoirs, canals, drainage ditches or storm sewers as well. The present

work is strictly concerned with propagation of waves along streams.

Generally speaking there are two methods to trace a flow hydrograph through a

hydrologic system, named “lumped" and “distributed” routing. Alternative names for

these two approaches given in the literature are hydrologic routing and hydraulic routing,

respectively.

Lumped system routing is based on the solution of the spatially lumped form of the Es

continuity equation (Singh 1988), g\'
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== 10)-00) (4-1)

where /(7) is the input, O(7) is the output, and S(7) is the storage. This equation is
coupled with an appropriate storage function, which can be represented as an arbitrary

function of 7, O and their time derivatives as follows

dl d*J do d*o
=fl]==22 ...p% ey -
§ f(’dt’dtz’ e dr ) (4-2)

The specific form of this function depends on the system being analyzed. This fact gives
rise to dﬁerent methods, among them the Jeve/ pool method for reservoir routing and the
well known Muskingum method for flow routing in channels (Chow et a/. 1988).

The flow of water through channels is a distributed process. Actually, channel
flow is three-dimensional as the flow velocity varies along the river, across it and with
depth. However, in many practical applications, the velocity variations across the channel
and with depth can be ignored and, for all practical purposes, the flow process may be
considered one dimensional in the flow direction. With the contribution of Barre de Saint-
Venant in 1871, the basic theory of one-dimensional analysis of flood wave propagation
was formulated. The Saint-Venant equations are intrinsically complex and a profusion of
simplified routing methods appeared in the literature thereafter. In the next sections, the
Saint-Venant equations are set forth to later introduce the well-known kinematic wave
simplified model used in this work. Available practical methodologies to establish the

range of its applicability are reviewed and applied to the study case,
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As it was previously stated, when the velocity variations on the channel cross

section are neglected, the flow process on a channel can be treated as one dimensional.
This kind of unsteady flow is mathematically governed by the one dimensional Saint-
Venant equations, one for mass conservation and one for momentum conservation, that
can be derived upon applying the Reynolds transport theorem to a fluid flowing through a
control volume (Chow et al. 1988). The continuity and the momentum equations for an

unsteady variable-density flow through a control volume and surface are written as,

2 [ otv + f ov-an=0 43)
> =< [[[vav + ffvov-aa (4-4)

where,

p is the density of the water,

v is the velocity vector,

dV is the elementary volume,

dA is the elementary area, and

¢ is time.

Equation 4-4 is Newton's second law written in the form of the Reynolds transport
theorem, and states that the sum of the forces acting on the control volume is equal to the

rate of change of momentum stored within the control volume plus the net outflow of

momentum across the control surface. Choosing an appropriate control volume (Figure
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4.1) and considering an incompressible fluid, Equations 4-3 and 4-4 are transformed as

follows,
2% Y
—_—t = 4-5)
a & 7 @
1 &0 e(0? u q,
——=, - Y1Y = —S)=2y 4-6
where,

4 is the cross-sectional area,
Q=0(A) is the discharge,
9, = q,(s,?) is the lateral inflow per unit length of channel,

s is the arc-length along the channel,
g is the acceleration due to gravity,
u is the water depth in the channel,
§, is the streambed slope,

S, is the friction slope,
9, =4,(?) is the uniform lateral inflow from tributaries,
V= % is the average velocity in the s-direction, and

v, is the velocity component in -direction of lateral flow from tributaries.

Equations 4-5 and 4-6 are the full Saint-Venant equations written in conservation

form. The source term q,(s,7) in the continuity equation is the sum of the rainfall rate
7,(#), the uniform lateral inflow from tributaries q,(?) and the flux through the streambed

o(s,t). The amount of precipitation fallen directly over stream channels is




Figure 4.1: Stream section
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usually small and is neglected for calculation purposes. In the momentum equation, the
first term represents local acceleration, the second convective acceleration, the third
pressure, the fourth gravity, the fifth friction and the right hand side the momentum
induced by the lateral inflow from tributaries g,. This term is dropped from now on.
Neither the shear force produced by the frictional resistance of wind against the free
surface of the waﬁer nor the drag force caused by eddy losses in abrupt contractions or

expansions of the channel has been considered in the momentum equation,
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When all intervening forces are significant, the full Saint-Venant equations must be
used, and the model is called the dynamic wave model. However, the relative magnitude
of those terms with respect to one another allows to define simplified forms of the full
system of equations, each giving rise to different one-dimensional distributed routing
models. In some cases, inertia terms can be neglected and hence dropped from the
momentum equation leaving the diffusion wave or zero-inertia model. If gravity and
friction effects dominate balancing each other, the kinematic wave model is obtained. An
important distinction between dynamic and kinematic waves is that dynamic waves
possess at least two wave celerities, one for a wave moving forward, one for a wave
moving backward. Kinematic waves move only forward with a single celerity. What this
implies is that backwater effects such as tailing water from dam reservoirs can not be

incorporated into the kinematic wave model.

When friction and gravity effects dominate over inertia and pressure forces, the

momentum Equation 4-6 reduces to,

S, =8 ’ -7
From Equation 4-7 it is obvious that the friction slope does not change with flow
conditions. The discharge Q is then calculated by means of a constitutive relationship,
replacing Sy by Sy, of the form,

Q=" (4-8)
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where y and m are parameters related to the bottom slope, the surface roughness and to
whether the Manning or Che’zy relationship is used. Table (4.1) provides values of m and
expressions for ¥ for either case. In the table, C; is the Chézy coefficient, P is the wetted

perimeter of the channel, 7 is the Manning roughness coefficient, and @ is a conversion

factor ( @ = 149 for English ﬁnits, a =1 for metric units).

Table 4.1: Geometric parameters

3
2

Equation 4-5 can now be expressed in terms of the cross sectional area as,

24,4

a aaa oD (4-9)

where holding s fixed, % is the wave celerity ¢(4), and o = C(h—h, —u) represents the

coupling term defined in Section 3.3.3, with A; replaced by h, +u (see Figure 3.4.b).
With the use of the constitutive relationship given by Equation 4-8, the wave

celerity can now be related to the flow velocity v as follows,

3

Chézy - c= Ev (4-10)
5

Manning - c= 37 (4-11)

If Manning's relationship is adopted, Equation 4-9 becomes,
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O4 5 24
—+—-V—= L1 4-
3V % o(s,1) (4-12)

This implies that a kinematic flood wave travels faster than the mean flow. In the
derivation of the wave celerity it was assumed that the wetted perimeter P remains
constant as 4 varies, when in actuality, P changes as the cross-sectional area does. This
situation is usually overlooked or not reported in the literature. If the variation of the

wetted perimeter is taken into account, the wave speed is modified by a reducing factor as

follows,
opP
Ch’Z! —> C=§'V(I"%Ra) (4-'13)
Manning — c= gv(l —%R%) 4-14)

which reduce to Equations 4-10 and 4-1 1, respectively when P is assumed constant.
Here, R is the hydraulic radius of the channel (R= %) . For the particular case of a

triangular shaped channel, the second terms in Equations 4-13 and 4-14 can be easily

evaluated (Lighthill and Witham 1955). The wave celerity reduces to gv for Chézy and

to -gv for Manning. Although interesting from a theoretical point of view, the variation

of P in the celerity term is seldom considered in practical applications. The common
approach is to assume the wave speed to be represented by either Equation 4-10 or
Equation 4-11. In the present work the second equation is adopted.

A few final comments about the nature of kinematic waves are pertinent at this
point. These waves are not dispersive, but due to the non-linearity of the governing

equations, they may undergo some amplitude dispersion. Accordingly, continuous wave
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forms can generate discontinuities. This phenomenon is described in the literature as
shock waves, name first introduced by Lighthill and Whitham (1955). Shock formation is
intrinsic to the hyperbolic nature of the equation governing kinematic wave theory.
Moreover, shocks may be the manifestations of higher-order effects such as formation of
monoclinal flood waves, bores, etc. Kinematic wave routing incorporating shock fitting
‘has Been pursued, among others, by Borah ef al. (1980). However, whether the kinematic
shock is as common in practice as calculations would seem to indicate is a matter of
debate. According to Ponce (1991), the shock could occur under some highly selective
conditions: 1) the wave is kinematic as opposed to diffusive or dynamic; 2) there is a low
base-to-peak flow ratio; 3) there is a hydraulically wide and sufficiently long channel; and
4) there is a high Froude number, defined as the ratio between inertial and gravitational |
forces. These four physical conditions contribute to shock development. However, if
only one or two of them occur simultaneously, the shock may not develop. Researchers
seem to agree upon the fact that the formation of kinematic shocks is more a property of

the mathematical equations and the methods adopted for their solution rather than an

observable feature in natural processes.

The applicability of the kinematic wave as an approximation to the dynamic wave

has been studied by many authors, among them Lighthill and Liggett (1967), Ponce et al.
(1978), Mene'ndez and Norscini (1982), Fread (1983) and Ponce (1990).

Lighthill and Witham (1955) were the first to describe the competition between

kinematic and dynamic waves in river flow under various flow conditions. On one hand
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they showed how dynamic waves are subordinated when the mean flow velocity v, is well

subcritical (F<1) and, on the other hand, how both kinematic and dynamic waves can play
equally relevant roles in supercritical flow situaﬁons (#'s> 1). The Froude number 7 518
defined as the ratio between the inertia force and the gravity force and is mathematically
expressed as F; = v, / \/Eu_o , Where g is the acceleration due to gravity and u, is the

normal flow depth.

Henderson (1963) provided a qualitative criterion based on the bed slope.
According to his analysis, the complete dynamic wave equations better describe flood
waves in intermediate slopes, the diffusion wave model is more suited for gentle slopes,
and the kinematic wave model better represents flood waves on steep slopes. This
categorization should be considered with caution as steep slopes may result in supercritical

flows and vice versa, contradicting criteria set by Lighthill and Witham (1955) and other

authors.

In 1967, Woolhiser and Liggett defined a kinematic wave number % for overland
flow problems. This parameter k = SL,/ u,F} , where L, is the length of the overland
flow plane or channel, reflects the effects of the length and slope of the plane or channel as
well as the normal flow variables. As & becomes large, usually greater than 10, the

kinematic wave model can be used.

The criterion developed by Fread (1983) is based on estimating the magnitude of -

the terms in the conservation of momentum equation which are neglected by the kinematic

and diffusion models.




Several investigators applied linear approximations to the Saint Venant equations
to establish some applicability criterion. These approximations can be severe, nevertheless
they are compensated by the advantage of obtaining a complete solution containing
information about both, kinematic and dynamic waves. The application of linear stability
theory to the governing equaﬁons led Ponce and Simons (1977) to an analytical solution
of the linearized Saint Venant equations for a sinusoidal shaped wave propagating in a
wide channel. Ponce et al. (1978) used this information to define a practical criterion for
the applicability of kinematic and diffusion type models. They stated that for routing
errors at a 5 % level, the following relationship must hold,

sy,

=171 -
", (4-15)

where 7 is the duration of the inflow hydrograph and vy, #, and S are as

previously defined. If only a 1 % error is desired,

(A}

> 873 i
» (4-16)

0
Menendez and Norscini (1982) incorporated a phase-lag 8 between the A-wave
and the v-wave and introduced a harmonic oscillation of the form,
h = nexpli(ke— A1) (4-17)
v = gexpli(ke - ft - 5)] (4-18)
into the linearized Saint Venant equations. Above, k = 27/A is the wave number, A is the

wavelength, 77 (7 <<d,) and ¢ (¢ <<v,) are the initial amplitudes of the waves, &is the

phase between both waves, and Bis a propagation factor, generally a complex number.

After some algebra, two solutions are obtained, one for a wave moving forward and one
4-12




for a wave moving backward. Ultimately, these waves depend on two dimensionless

numbers, namely, the Froude number and the dimensionless wave number,
~  ku,
o=—2 4-19
S (+-19)

Because of its similarity with the kinematic flood wave, Menéndez and Norscini analyzed
the behavior of the forward wave, defining the wave spectrum shown in Figure 4-2. Their
criterion consists of finding the point that represents the case under study within the wave
spectrum. To this aim, a series of steps must be followed, which are explained in the next

section for the Bill Williams River study case.

In spite of the abundant evidence in favor of the kinematic wave model for flood

routing in southwestern streams, some of the criteria presented in the previous section are
applied to the study case to substantiate the use of such a model.

The analysis is carried over for pre-dam conditions simply because natural flood
waves can be characterized with ease. If water discharge at Alamo is 1.13 m’/s (40 cfs),
§ =0.003, n= 0035 and 5 (the width of a rectangular channel) is equal to 10 m,

Manning's formula yields u, = 021m and v, = 054 m/s. Hence, the normal flow Froude
number F; is equal to 0.38. Without any further analysis and according to Lighthill and
Witham, subcritical flow conditions favor the kinematic wave theory.

Following Ponce et al. (1978) criterion, an accuracy of at least 95 % in the wave

amplitude after one propagation period requires that,



171 171x0.21
ry o ITIX021 oo iays
Sv, 0.003 x 0.54
or for a 99 % accuracy,
87 ' .
. 3u,  873x021 ~ 13days

Sv, 0003 x 054

Thus the wave period, analogous to the duration of the inflow hydrograph, has to be at
least longer than 1.3 days to satisfy the kinematic flow assumption.
Finally, use of the wave spectrum (Figure 4.2) developed by Menéndez and

Norscini (1982) is as follows:

7) Draw a vertical line through Fj_that intercepts the different wave zones

delineated in the spectrum and obtain values of &, at interception points;

if) Use Figure 4.3 to get values of Cs, , the relative celerity, corresponding to F, 5

and the &, obtained in i.
i) Calculate the wave period by means of the relationships

c, -V A
Y | 0 —
Cs, = , ¢ =—+
Vo Z;

which are combined to yield a relationship for 7,

;= 27u,
L6,5v(1+C;)

(4-20)

For the case under analysis, it is enough to consider the first two intercepts. From the

graphs,

4-14




Figure 4.2: Wave spectrum
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&, = 0005 C; =05 T, =126days

&, =044 Cs =05 7, =0.014 days

These results indicate that the Bill Williams River flood waves fall within the kinematic
wave band if the wave period is greater than 1.26 days, a conclusion analogous to that
previously obtained for a 95 % accuracy. Figure 4.4. shows two typical flood waves in

the Bill Williams River whose duration exceeds both lower bounds calculated above.

The results of kinematic wave applicability c;riteﬁa used in the BWR confirm the
adequacy of such a model for flood routing purposes. This conclusion holds true for pre-
dam conditions. During the post-dam period, the distribution of dam releases makes the
definition of a wave period more difficult. However, it is assumed that the streambed
characteristics and the channel slope, parameters that define the kinematic wave celerity,
remain unchanged under controlled flow conditions.

As stated in Section 4.3, the kinematic wave model can not accommodate
backwater effects such as tailing water from dam reservoirs. Consequently, in using this
model any influence from Lake Havasu into the Bill Williams River is neglected. In the
event such an effect becomes a modeling issue, the dynamic wave model should be used

instead.




Figure 4.4: Flood waves in the Bill Williams River (pre-dam period)
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CHAPTERS

DIMENSIONLESS FORM OF THE
GOVERNING EQUATIONS

In general, the variables in a physical phenomenon are known while the functional

link among them are unknown. In some cases, analytical solutions of the governing
equations can provide relationships among a set of groups of the intervening variables.
Then, instead of altering the value of each variable in order to study the relationship
between any pair of them, it is sufficient to explore the relationships among the groups. A
good example is the Botzman's transformation that reduces the diffusion equation to an
ordinary differential equation that can be readily solved in terms of the error function
(Carslaw and Jaeger 1959). Another example is provided by the Theis' solution that
relates the groups s, = 477/Q , which is a dimensionless drawdown, and ¢, = 47y /8r?,
which is a dimensionless time, through the so called well function (for variables déﬁnition,
see De Marsily 1986). However, most analytical techniques are available for very simple
geometries. Oftentimes it is difficult to interpret the results in a physical context, specially
when the solution is in the form of an infinite series of certain form of integral complicated

function.

One way to circumvent the shortcomings of a pure mathematical approach is by

means of numerical methods. When solving a problem numerically, it is customary to start

Aanwltatsy
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the analysis by employing a scaling process. Scaling reduces the likelihood of computing
very small numbers and very large numbers during the solution procedure, an event that
otherwise can greatly diminish accuracy. Actually, the technique of reproducing the
behavior of a phenomenon on a different and more convenient scale is known as modeling,
Any solution for a problem that has been worked out in a reduced formulation holds true
for an infinite variety of actual systems which, although they differ physically, are simply
scale models of each other. Then, the task is to express the governing equations in terms
of non-dimensional variables. Perhaps the most critical aspect of the adimensionalization
process is the choice of appropriate scales. If the scales are correctly chosen, the
normalized variables and their derivatives should indeed be of order one. However, in
certain cases, the solution of the problem exhibits a behavior that violates the original
assumptions on the order of magnitude and new scales must be sought.

One of the main advantages of the nondimentionalization procedure is that the
number of parameters which appear in a problem is reduced when dimensionless variables
are employed. A word of caution is needed here; no parameters disappear, but they occur
only in certain dimensionless combinations. It will be established in this.chapter that the
introduction of intrinsic reference quantities (scales) will render a properly

nondimensionalized problem, which is better suited for its numerical treatment.

The adimensionalization of the KWM proceeds in the usual manner by defining the

following normalized variables,
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where u, is the normal flow depth, b, is a characteristic river width, 7, is a characteristic

Manning's coefficient, and S, is a mean slope such that,

T L
3 0 -
S, Vo o VoS,

L, =

defines the characteristic horizontal length scale L, and the characteristic time scale T,

respectively. Using the above dimensionless variables with Equation 4-8 and the

geometric parameters for Manning’s equation (Table 4.1), Equation 4-12 is rewritten as,

ut SS'R'% 64"
bSvo———-+bS\/—— 3 & =% (5-1

0

where R' = A’/P’ is the dimensionless hydraulic radius. The velocity scale v, is naturally

defined as +/Su’ /n, and

,_SVS(R)®
Ve 3 n' (5-2)
thus Equation 5-1 reduces to,
o4’ 5 CA" _ , o,L
— = =o'—00 (5-3)

a3 a5 byuyv,
where oy is the flux scale at the interface I%, yet to be determined, and o = o'o, is given

by the relationship C(h - h).




In order to adimensionalize the ground-water flow equation, the following

normalized variables are used,

KI=__K__ Q’: Q‘ R':ii‘
X, 0 R
H
x,y)=(x,»/L, :—T~ 8'=16
0
h n E
h == i =T B =
3 (s E

where K; and Ay are a characteristic hydraulic conductivity and a characteristic hydraulic
head, respectively, and £", Q" and R;, are scales to be determined. Rewritten in terms of
dimensionless variables, the non-leaky unconfined aquifer flow equation [see Equations 3-

5 and 3-6] results,

OTOhO ’ YN INCTI L RG‘TO ¢ Q‘To ET 072'
——— V" K'(h -7k + 6% o — S Er =27 -
S RS v XL LB

The surface water system imposes the selection of the time scale Ty = L, /v, , where v, is

the mean velocity of the stream. This selection should not lead to the conclusion that
ground-water flows and surface-water flows respond at the same rate. Multiplying both
sides of Equation 5-4 by S, L /K 7oh, and introducing the selected time scale 7, the
definitions of R, Q" and E” are immediate,
. B B2 .
B A S (5-5)

Now, the coupling term is adimensionalized as foliows,
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Then,
K h:
Ty =— (5-6)

is the flux scale.

Grouping Equations 5-3, 5-4, and using Equation 5-6, the final form of the

governing equations are,

V-K(h—-q)vaG—fgja(f—fj)—Ezg-g’. (5-7)
OA 5 OA L
§+EVE_Q“B’(h h, —eu) (5-8)

where primes have been dropped for simplicity of notation.
Above, the P, is a sort of Peclet number (Bear 1972) defined as,

Ly, v, convective volumetric flux per unit area inthe Stream

¢ K, /S, - xo/L, ~ diffusive volumetric flux per unit area of aquifer
with the thermal diffusivity being replaced by the aquifer diffusivity x, = K A, / S, . For
instance, assuming L, = 150 m, v, = 0.5 m/s and x, = 0.05 m’/s, this parameter can be

of O(1000), showing the disparity of the response of both systems.

The dimensionless group (., termed here the flow number, is defined as,

_ Khl volumetric pumping rate

Qa

vobou, volumetric flowinthe stream




The B; is the Biot number or dimensionless conductance,

CI, C

3 N _ conductance at the river—aquifer interface
Kohy KoH,/L,  conductance of aquifer across length L,

I

Finally,

&=

is a vertical scale distortion parameter.




Exact solutions to the governing equations of hydrologic processes can only be

obtained in a limited number of cases. Those are likely posed on a simplified geometry,
with boundary conditions easy to impose into the solution. In problems such as the
simultaneous analysis of the ground-water system and the surface water system on a real
watershed, numerical methods provide alternative means of finding solutions. The finite
difference method, the Bubnov-Galerkin method and the Petrov-Galerkin method (Reddy
1993) are some of the techniques most frequently used by hydrologists and scientists in
general to determine approximate solutions.

The finite element method (FEM) owes part of its popularity to its flexibility to
handle complex geometries. Moreover, it incorporates boundary conditions of the second
and third type into the governing equations very easily. These assets make the fnite
element method the method of choice to solve 2 broad family of hydrological problems.

In the following sections, the Bubnov-Galerkin method and the Petrov- Galerkin
method are implemented for the parabolic ground-water flow equation and the hyperbolic

o Ty
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cmatic wave equation, respectively. Flux boundary computations, mass balance and
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time stepping algorithms are discussed in detail. Finally, the global structure of the

integrated model is described.

In the following sub-sections the Bubnov-Galerkin method is implemented for the

parabolic ground-water flow equation.

6.2.1. Finite element formulation

Using Einstein tensor notation and lumping the source terms, Equation 5-6 is now

rewritten in conservation form as,

h &,
Ii'gy—-F‘ng—ST:O (6-1)
where the flux is given by
h
==T —— -
9, =-T; ar, (6-2)

and 7; = K (h—17) is the transmissivity tensor.

The method of weighted residuals is used to obtain a System of algebraic equationg

that can be solved for the state variable /. Let the domain 2 with boundary &) be

discretized into M elements and N’ nodes, and 4 be represented by the approximation,

hshy =3 0@y, (x,y) (6-2)
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over the partition 42, of the domain 42, h;(f) are the unknown nodal hydraulic head

values, and v (x,y) are appropriate interpolation functions. Substitution of Equation 6-

3 into Equation 6-1 produces a residual or approximation error. An integral formulation is

then obtained by forcing the weighted average of the residual be equal to zero, i.e.
H Q-”:”A+@—ST dQ =0 (6-4)
Q ] ax.i

where W(x, y) is some weighting function. Upon applying Green's first identity over the

simply connected domain Q with boundary &2, and dropping the subscript A from now

on with the understanding that 4 is the approximation, Equation 6-4 becomes,

H[P -W+7;ﬁm~srw]dn+§am=o -5)
dx, Ox EA
where
. h
=n-g=-nT, Y (6-6)

is the flux through the boundary &, 7 = n; = (Cosv,Sinv) is the outward unit vector
normal to &2, and v is the angle between # and the horizontal positive axis measured
counterclockwise. Equation 6-6 implies that inflows are considered negative and outflows
positive, in agreement with the Gauss divergence theorem. The weak form Equation 6-5
has two desirable characteristics. First, it requires weaker continuity of the state variable
h, and second, flux boundary conditions are automatically incorporated in the integral
equation. Therefore, the approximate solution of / is required to satisfy only Dirichlet

boundary conditions. Taking advantage of such a property, the coupling term is treated




through a boundary integral over the internal boundary I',,, as it will become clear later

on.
Different choices of the weighting function W give rise to different methods. In
the context of the method of weighted residﬁals, the Galerkin's procedure is the method
most frequently used to solve grouhd~water flow problems. In this method, the weighting
function W is set equal to the approximation functions, i.e.
W= {Wi}::x (6-7)
where by varying the subindex i from 1 to N, a system of N algebraic equations in the state

variable 4 is obtained as follows,
Pl Gy [ 2 Fean= [y a0 [[($05. v ao

w ds i=1- N  (6-8)

h
—_gEt//,.dQ-t»in,J; —

J

N"
where the term Sr has been replaced by R- Z 0,6, — E . Equation 6-8 written in matrix

k=1

notation is
b (6-9)
Above, R. is the capacitance matrix or mass matrix, A is equal to M+M, + M, where

M is the conductance matrix, M, is the stream-aquifer contribution matrix, and M., is the

evapotranspiration contribution matrix, b isaload vector, and A = (h, ,---,hN) is the

vector of unknown nodal hydraulic heads.

6-4
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For linear triangular elements, the element matrices can be evaluated exactly (see

e.g. Istok 1989). The capacitance matrix is then expanded into,

Ae
R, =ff)fw,-wjds2= —(1+5,) (6-10)

for the consistent formulation, where & ; 18 the Kronecker delta tensor and 4° is the area

ofthe element, or

Ae
=%, (6-11)

Re, =

for the lumped formulation, where the superscript e indicates element number.

As seen before, the matrix A is the sum of the conductance matrix plus the
contributions from non-linear sources. For an inhomogenous anisotropic aquifer with

7.+ T,, and ( x,y) principal directions (ie. T, =T, =0),

% (6-12)
Then,

(6-13)

3 1
where ~ means the average (Z (1.),) /3. Analytical expressions to evaluate the
k=]

derivatives of the approximation functions &; and ¢; are well known and can be found in

Istok (1989). Equation 6-13 is valid not only for the linear case but also for the non-linear

case, the

he non-linearity being embedded in the transmissivity values.
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The matrix M., has components,

ET: _EID &
M, =~ !}jy/%dg_ S48, (6-14)

where E7,, and d are defined in Section 3 4.

The stream is represented by one-dimensional elements along which A, is

approximated using one dimensional linear interpolation functions {g, (D}, where

NSR stands for the number of stream reaches determined by the finite element partition.

Then M, has components,

As
s s As
M, =C’[¢,p,ds=C <@ +D (6-15)
0

Here the superscript s indicates a stream element, As is the length of the stream element
and C is the average conductance coefficient over the element.
Finally, the vector b contains all those contributions from boundary terms and

source terms that do not depend on the solution.

6.2.2. Time integration

The time integration scheme is based on the theta method with either lumped or
consistent formulation. Equation 6-8 is valid for either a confined or an unconfined
aquifer, with the understanding that a non-linear system of equations results in the latter

case. Then, the set of equations to be solved is,

R+ A" ™ =[R, +0,A"h" +0,5" + 0,5 (6-16)
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where the superscript 2 denotes the time leve] L =nAt, @, = 6At/P and
®, =(1-60)At/P, . Steady state solutions are obtained with #=1, corresponding to the

Backward Euler or fully implicit algorithm, and transient solutions are obtained with

6= %, which corresponds to the well-known Crank-Nicolson-Galerkin,

In general, A depends on % in some non-linear fashion, and so does the load vector

—~

& . Inthis case, a Picard iteration is used to advance the solution one time step where the
coefficient matrix A™ - A(A") and the vector b are updated at each iteration to reflect
the most recent estimate of head and thereby saturated thickness (Pinder and Gray 1977).
The scheme is first rewritten as,

R, +o,A" ™ <[R, ~0,A" " 0,5 4 5 (6-17)
where A” = A(h"), b° =5k °), and wis the iteration level, Then, the Picard iteration

proceeds as follows,
Step I: Assume that at time # = 1" the head 4" is known.
Step 2: Compute the modified matrix R = R, -w,A".
Step 3. Compute the constant vector z = R = R, - ng ?
Step 4. TInitialize iteration v =0, 4° = j”
Step 5. Form A :A(/;”)
Step 6. Compute A* =R +2 A"
Step 7. Evaluate 5° and form right hand side vector 5’ — z+ a)IbA ©
Step 8. Apply boundary conditions and store 4"

Step 9 Solve A°h" = 5

Step 10: Check if the desired accuracy has been reached, i.e.

67

T S ———




Step 11

i

e < £

a8

no — v=uv+l, returnto Step 5

es — Advance the solution A" = j°*! , then continue
B4

l};rﬂl _ };n
}};;ﬂl

yes — steady state solution has been reached

<&,

no — t"™ =1"+ Ar . If t™' <t return to Step 1,

Otherwise end time integration.

6.2.3. Accurate boundary flux calculation

There are many practical situations, particularly in the mass-balance computation,

been determined.

in which the flux is desired at nodes or part of the boundary where Dirichlet data are
prescribed. However, these fluxes are not given directly by the finite element solution and

must be obtained a-posteriori once the values of the unknown dependent variable have

Full credit of the analysis that follows must be given to Carey (1982) and Carey et

al. (1985). Carey detailed a technique to obtain very accurate fluxes from finite element
solutions. This technique, implemented on the model, is illustrated with the help of

Carey's example. Let a one-dimensional problem be posed as,

~u"+u=x on O<x<l (6-18)
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Sinhx

subject to #(0) = u(1) = 0, whose exact solution is % = x — — .
Sinhl

The weak form

statement reads,
1 1
j(—u"«!»u)vdx:fxvdx (6-19)
o 0
for all admissible test functions v. Integrating the above expression by parts,

1 1

f(u’v’+uv)dx-—u’vl; =fxva€r (6-20)

0 0

If u is restricted to satisfy the homogeneous boundary conditions #(0) = u(1) = 0, the test
function v must be zero at both ends. However, if v is allowed to take the values

v(0) = v(1) =1, two expressions for the boundary fluxes are obtained. To be specific,
introducing a finite element basis {g,} " of piecewise linear fimnctions on the interval

[0,1], with compact support on the node 7, where X; =iAx, and Ax = 1/N for

i=0,---,N and choosing v = §, the Galerkin procedure yields,
1 1
[@g;+ug e+ (@9, - w4, =[xt i=0 N (s21)
0 0

Setting =0 and 7 = N, the two formulas to estimate the fluxes at both boundaries are,

Oy = jx¢odx - j‘(u'¢(') +ugp, )dx (6-22)

0

Oy = jX¢Nak = j W'y +up, )dx (6-23)

0

where the one-dimensional fluxes are defined as o = -1, Pt in agreement with Equation

A

H

6-6 (the transmissivity is here trivially set equal to one). Expanding the dependent variable

6-9




 in the standard fashion, v~ u, = Z uy (x), where A (= Ax) is the partition norm of
J

the interval [0,1], and #, is the approximation function to u(x), Equations 6-22 and 6-23

become,
Ax* 1, Ax
O'OA = 6 ——Z‘;(uo —ul)-—?(Zuo +ul) (6"24)
Ax 1 Ax
O’f, = _6—(3_ Ax)_E(uN —uN-l)_?(zuN +y ) (6-25)

where o is the discrete approximation to ¢ at the boundaries /=0 and i = N . The
performance of this technique is now assessed by means of the estimation of the flux
calculation error at node i = N . First, a way to measure the error must be introduced.

It is customary to seek asymptotic estimates of the error in the finite element
approximation, where the error is a function defined as the difference between the exact
and the approximate solution. Ordinarily, these estimates will be of the form,

Je] < ca? (6-26)
where ¢ is the asymptotic error constant, p is the rate of convergence and [e] is a

nonnegative number called norm (Dahlquist and Bjorck 1974). Equation 6-26 will plot as

a straight line of slope p and intercept log(c) ona log-log plot,

log“e“ = log(c) + p log(A) (6-27)
For example, let |, | = l-—u’(l) - cr;,l be the error when the flux is computed differentiating
the resulting finite element solution, where o, = —u} (1). Let [, ] = |-u'(1) - o' | be the

error when the flux is computed using Equation 6-25. In both expressions —u'(1) is the
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Figure 6.1: Rate of convergence for flux calculations using the derivative
method and the accurate method - 1D problem

One-dimensional example

eO
i2 ~
e

e2

o N
Slope = 2
Slope = 2
; 1

1
—8
I
L]
&
=
:
s e
v Slope =1
2
r
o;h i 1 . i L i > I i " 3
] 1
llog Axl|

exact flux. Figure 6.1 shows !log”e, m and llcyg”e2 m plotted against [logA|. The error
committed in the numerical solution of equation 6-18 at point x = 05,

llog”eo “’ = ,u(O.S) —u, (0.5)[ is also plotted. The graph shows that the rate of convergence
for both, the technique just described and the solution itself is equal to two. Meanwhile,
the differentiation of the finite element solution method yields a rate of convergence of

order one.

The foregoing ideas can be extended to two-dimensional problems as well (Carey
et al. 1985). However, the procedure is less direct. The flux NOw appears on a contour
integral along the boundary of the domain rather than explicitly as a point value. The

procedure starts with the weighted residual statement of Equation 6-1, i.e. Equation 6-5
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iaquzg{STW—[gEW+ T, Ex‘}?”” -ﬁ-y-—é}-ﬂdn (6-28)

This expression and the computed solution can be used to obtain an approximation to the

normal flux. To do so, the expansion h = h, = Zhjz// ; (%) is introduced in the right hand

side of Equation 6-28 and the weight function /¥ is set equal to y/,, the global basis
function for the boundary node i. It is understood that y; is only non-zero on those

elements immediately adjacent to node 7, and in particular, on those parts of the boundary

&2 adjacent to node /. Equation 6-28 becomes,

§§m//,ds jj[ v, - [ SV Tﬁ%% Twéyif;ﬂdg (6-29)

This can be expressed directly in terms of the finite element spatial discretization as,
§aw,ds b — Z(RC P ———+A/[,}hj) i=1--,NEC (6-30)

where NEC is the number of nodes with prescribed essential boundary conditions along

&2 and the R are given by Equations 6-10 and 6-11, and the A by Equation 6-13.

Let now ¢,(s) be the restriction of y, to the boundary &2, i.e. ¢,(s) = y,(X) whenever
% e &), s being the arc-length along &2). Expanding the flux in the usual form,

o~y 0,8,(s), the left hand side of Equation 6-30 becomes,

(j¢¢ ds)cr ——}: "o, i=1-, NEC (6-31)

where T is the tridiagonal banded matrix, tridiag [%(1,4,1)], symmetric and strictly
diagonally dominant, with leading coefficients As/3 in the first and the last rows. The

6-12
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- solved using two differen

(for more detajls see Carey ez g/ 1985).

In order to illustrate the capabilities of the algorithm, the following test problem is

. . i |
it dxscret1zanons, A :81 and A=




Viu=4  in Q=[(0)u(0,)]

with
o=0onx=0and y=0, o=-2on y=1,and u=1+y’on x=1,
whose solution is # = x> + y* . The absolute value of the logarithm of the error in the

calculated flux is plotted against the logarithm of the mesh size (Figure 6.2). A marked
improvement on the convergence rate is observed for the accurate method given by
Equation 6-33, with a rate of approximately 3.4, in comparison with the asymptotic rate

O(A) obtained by differentiating the finite element solution. The numerical finite element
solution u,, computed at (x =05, y = 1), converges with the expected optimal rate
O(A%). For more details see Carey ef al. (1985). These ideas are now applied to the

estimation of the closure error on the water budget. _

Figure 6.2 - Rate of convergence for flux calculations using the derivative method
and the accurate method - 2D problem

Sap-w‘

log lielt |
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6.24. Mass balance

The water budget, here called mass balance, is generally a summary of all inflows
and outflows to the region. It can be done with volumes of water and/or volumetric flow
rates. The model mass balance not only provides a hydrologic budget analysis but also
furnish an indication of the accuracy of the numerical solution.

The following analysis deals with volumes of water. However, it can be easily

extended to volumetric rates. Equation 6-1 is integrated over the domain 2 1o yield a

global mass balance equation of the form,

P g %d@+ j; | %d@ = g S, d0 (6-34)

Applying the Divergence theorem and making use of Equation 6-6, the above equation
transforms into,
I
PZ fkd@+§@—dwﬁ§7d@ (6-35)
Q

@ Q 79}
Now, the introduction of a few definitions will render Equation 6-35 into a more familiar

water-budget expression. Let,

()= [[hx,y,0a0 (6-36)
Q

be the amount of water stored in Q at any time 7,

0@ = fods (6-37)
2

g
1

be the rate at which water enters or leaves © through the boundary A of the domain

s
Lo

&
i



be the rate at which water is added or withdrawn from Q through source terms Then,

introducing Equations 6-36 through 6-38 into Equation 6-35 yields

(@) 1 1
+—0(t) =— F(¢ -
Py EQ() P (0 (6-39)
Time integration of Equation 6-39 provides a way to calculate a masg balance at 3
particular time interval, i.e.
m+l W(i) 1 tlh‘l 1 ’Ml ) -—
dt +— Ndt =— | F(\dr
[ 7 oo 7 [FO (6-40)

Ar Arf
VH]:I/:n__ n+1+ n%_‘_ F"“-{—F"ﬁ _
(©Q Q)Ni ( )211 (6-41)
where V" is calculated integrating the solution over the domain Q| ie.
V2@ = [[hx,y,m a0 (6-42)

Q

and Az = (1" — ") A local truncation error or the numerica €rror committed in one

time step, can be estimated as (Dahlquist and Bjorck 1974),
L]E — Vn+l __V:nﬂ

where V! = f f h(x, y,t"’”)dQ. Then, the absolute error 4, is computed as follows,
Q
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6-43
A1 2P, 2P, (6-43)

Mass balance computations are verified rnder steady-state as well as transient conditions.
The following test serves to check the mass balance for steady-state conditions, and at the
same time, it allows to compare the two algorithms for flux calculations previously
described. The problem, originally implemented with MODFLOW (EPA 1993), consists
of a two-dimensional coastal unconfined aquifer with a hydraulic conductivity of 1,340
Jt/day. The aquifer is recharged at a rate of 25 in/4r. The maximum evapotranspiration
rate for the area is 50 in/yr, the extinction depth is 8 f#, and the ET surface, coincident
with the topographic surface, ranges from 18 Jt at the low southwest corner to 0 Jt at the
coast. No flow boundaries surround the area to the north, south and west. The coastline,
located along the entire east boundary is represented by a Dirichlet boundary (4 = 0 ).
More details can be found in EPA (1993). F igure 6.3 shows the potentiometric surface
obtained, which matches the reported results remarkably well. Once the steady state is
reached , the simulated evapotranspiration is 78 %, the discharge through the Dirichlet
boundary calculated by differentiating the solution and using Equation 6-33 is 22 % and
24 %, respectively (Figure 6.4). Part of the disparity in the results obtained with the
method discussed in Section 6.2.3 is due to the presence of multiple sharp corners on the
Dirichlet boundary. As mentioned earlier (Carey et al. 1985), the normal and hence the

flux at those points is not uniquely defined. In any case, this test shows the reliability of
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Figure 6.3: Mass balance test: problem boundary and potentiometric surface
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Figure 6.4: Mass balance test: flux components
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derivative method is robust. The mass balance for the problem was satisfied, with closure

error of less than 1 %,

For the purpose of testing the mass balance under transient conditions, the
following oscillatory problem is solved. A one dimensional, linear, semi-infinjte
homogeneous aquifer was subject to a no flow boundary condition at x — oo and a

periodic head-dependent boundary condition at x = 0. The problem has the following

analytical solution (Carslaw and Jaeger 1959),

h=h, + ETC;EL? BCos(ax — ax) - a Sin(ax — wt))e ™ (6-44)

where 4 is the initial state; C is the conductance coefficient as previously defined; a, is the
amplitude of the stream stage oscillation; a = \/g with @ = 27/T, the frequency of the
oscillation, 7, is the period of the oscillation and x the aquifer diffusivity; f#=C+¢q ;

a = 2wk is a damping coefficient and w/a is the celerity of the wave within the aquifer.

The set of parameters used in the test is shown in Table 6-1.

Table 6.1: Parameters Jor oscillation model

0.05 m/s

A, 10.0 m
}_ a, 1.5m

7, i...21days
L C 0% e

Figure 6.5.a shows the numerical solution and the analytical solution as a function
of time at three fixed locations. In absence of any other sources, the change in storage

equals the flux from the stream (Figure 6.5.b), both exhibiting the oscillatory nature of the
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Figure 6.5.a: Oscillatory problem: numerical solution (symbols) and analytical
solution (line segments) at different locations as a function of time
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Figure 6.5.b: Oscillatory problem: river flux (Qg) and storage (& ja )
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and the remarkable accuracy of the trapezoidal method. Indeed, for periodic

problems this method is exact (Dahlquist and Bjorck 1974).

IIn the following sub-sections, the Petrov- Galerldn method is implemented for the

hyperbolic kinematic wave equation.

8.3.1. Finite element fermulation

Dupont (1973) stated that the classical Galerkin formulation produces very poor
results when applied to propagation problems. The use of discontinous weighting
functions that produce “upwind” effects but at the same time maintain the accuracy of the
central difference scheme is a viable alternative to the traditional Galerkin scheme
(Katopodes 1984). Many authors have contributed to the development of the technique
and have been trying to establish the proper dissipation level, among them Raymond and
Garder (1976), Baker and Soliman (1981), Hughés and Brooks (1982), Mufioz Carpena er
al. (1994). Asit is shown in Appendix A and later in this Chapter, the Petrov-Galerkin or
the dissipative Galerkin method used in this work is able to dissipate any parasitic waves
that may appear around flow discontinuities. Moreover, the scheme does not introduce

smearing effects, and is able to cope with advection-diffusion problems with high

The finite element formulation of the kinematic wave model (KWM) starts with

3 sohted oo i 4 3 A [ PO S A {
t weighted residuals (MWR) to obtain 2 system of

VL B L

-
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algebraic equations that can be solved for the variable 4. Let the internal boundary T, be
discretized into VSR elements and NSR +1 nodes, and 4 be represented by the
approximation,

NZR+}

A~ 4,3 a,(,(s) (6-45)

over the partition A of the domain T',. The a ; (1) are the unknown nodal area values, and

the ¢, (s) are appropriate interpolation functions, being s the arc-length along T',. It is
understood that ¢,(s) =y ;(¥) whenever £ eI',. Substitution of Equation 6-45 into

Equation 5-7 generates a residual that, according to the MWR, must vanish on a weighted

average sense, i.e.

G4y 5 04, A
;[W{—__ﬁ +§}'AA -__a”sA —-v—-—~—aszA -G(AA)JG'J:O (6-46)

where W(s) is some weighting function, G is the coupling term, ¥ is the channel
parameters ratio given by /.5, / nP% and v is the coefficient of added diffusion, introduced

for comparison purposes with known solutions of the generalized Burger's equation

(Fletcher 1989).

The weak or variational form of Equation 6-46 is obtained with the aid of the

standard integration by parts formula,

J‘ 5AA—+—5—yAf?—4‘l~G(AA) +véﬂﬂ e
o 3 os a8 Os os

=0 (6-47)

0

T

where L is the total length of the internal boundary T, .
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Galerkin's procedure is used o solve the ground-water flow problem. Given the
quasi-hyperbolic nature of the equation, a consistent Petrov-Galerkin is employed to solve
Equation 6-47 (Carey and Oden 1986). In this method, the weighting function W is set
equal to the approximation function plus a perturbation term that is a function of the

derivative of the approximation function, i.e.

As dg,

=g, + + 6-48
wéép@@zm (6-48)

The vpwinding coefficient & is usually set equal to its optimum value 2/ J15 (Raymond

and Garder 1976). Usually, the determination of the optimum dissipation level requires

some numerical experimentation. Replacing 4, in Equation 6-47 according to Equation

6-45 vields,

du,
[@.+p) Zj&—’%%?[Z@j@,} Z@

"ZG@

j’ 55 ﬂs a, ds F=1NSR+1 (6.49)

Since W{0)=0 ( A(0, 1) is prescribed) and the natural boundary condition 54 [O5=0 is
chosenat s= L, the boundary term in Equation 6-47 has been dropped. By varying the

subindex 7 from 1 to NSR+ 1, the following matrix equation is obtained,

aa
a

z@»%%é(@)awa@g@@ (6-50)
[

For one-dimensional elemenis, the above matrices and vectors are given as follows,

4-35 3 - 3&7]
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%

¢ :’35'7_’2:%51;& 2!((251' +pi)(zj:aj¢j) ds (6-52)

_L[%.%
Yy —v! Os Os ds (6-53)
G =Q,B,(h~h, —eu,) (6-54)

where y is computed using average values within the element.

6.3.2. Time integration

Given the nonlinearity of the problem, intrinsically represented in the vector é(a)
of Equation 6-50, an iterative technique must be used to advance the solution in time. The
Newton's method, implemented here, is a powerful technique with a quadratic rate of
convergence when close to the solution (Fletcher 1989). The application of the Crank-

Nicolson-Galerkin method to Equation 6-50 leads to the following system of equations,

D-g*! ~%’[D-G"“ ~é(@"")-v-a*']=p-4* +%’-[D-G" —8@")-v-at|  (6-55)
Calling é(@") the right hand side of Equation 6-55, the above equation can be rewritten

as,

f@ =0 (6-56)
where

f(&k+l) — D .&k-ﬂ _~A2_I[D . Gk"H _ é(akH) — V-aAkH]—— é(ék) (6"57)

Then, Newton's method can be expressed as,

A =4+ AdT = G- N E ) f(@) (6-58)

6-24




In Equation 6-58, 7 is the iteration level and J (@) is the Jacobian matrix with entries

Jim = 0f, /A, . Expression (6-58) represents a linear system of equations that is to be

4

solved for the correction vector AG” at each iteration.

The time stepping algorithm proceeds as follows:

Step I:  Assume that at time 7 = * , the area @* is known

Step 2:  Compute the vector éar)

Step 3: Apply inflow boundary condition at first node 4* (D =ak?
Step 4 Initialize iteration loop, set r =0 with " = 4*

Step 5. Compute — /(@) and J(&")

Step 6:  Solve J(@)HAG" = -f(@)

Step 7. Compute &' = & + AS”

Step & Has the desired accuracy been reached? i e. HAL?'N / [é'“ ” <¢&,, where

NSR+3

=3 |x|is the chosen norm for any vector .
p=
0 = r=r+1, return to Step 5
yes — Advance the solution 4**!' = 47! , obtain #**'  and then

continue with the ground-water model

Step 9: 1 =1* 4 Ar, If 1" <t + Az, retumn to Step 1,

otherwise end kinematic wave

propagation phase, go to GWM

The coupled model containg a multiple time stepping structure. The concept of

multiple time steps stems from the fact that surface water flows occur in a matter of hours

..........

or days while ground-water phenomena occur in days or months. Even though this
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disparity has been recognized by researchers (Yen and Riggins 1991), it is not until

recently (Swain and Wexler 1993) that it has been incorporated into integrated modeling.
Because of its intrinsic complexity, many modelers preferred the computationally cheaper
single time step approach. However, the choice of a single time step is usually to the
expense of a shorter simulation tixﬁe, a poor representation of rapid occurring phenomena
or a waste of resources when a small time step is used for slowly varying phenomena.

The disparity of time scales make jt necessary to allow the model to run multiple
time steps for the surface water portion for each time step of the ground-water portion.
The scheme requires that the size of the kinematic wave interval be less or equal to the
size of the ground-water time interval, Moreover, the ground-water time step must be an
integral multiple of the kinematic wave time step. A third time interval is needed to
Tepresent a stress period, whose length is likely to be one month or four months. This
allows one to model the seasonal character of processes such as pumping,
evapotranspiration and recharge. The scheme requires that the ground-water time interval
be less or equal to the stress period. In additidn, the length of a stress period must be an
integral multiple of the ground-water time interval,

The coupling term is implicitly incorporated in both, the kinematic wave modulus
and the ground-water flow modulus. During the multiple kinematic-wave time intervals
within a ground-water time interval, the head in the aquifer is held constant and equal to
the value obtained in the previous ground-water interval. In order to advance the solution
one ground-water time step while preserving the mass conservation constraint, a temporal
stream-stage average is calculated and passed on to the ground-water portion to compute

leakage. The new aquifer hydraulic head is then used to run the multiple kinematic-waye
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intervals within the next ground-water interval. This process continues until the desired
simulation time is reached. For a better understanding of the time stepping structure, see

Figure 6-6 below.

Figure 6.6: Time stepping sivucture of the coupled model
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As it was previously mentioned, the surface water phase evolves in time according

to the fully implicit Crank-Nicolson-Galerkin (CNG) algorithm, whereas 4 is held fixed

during 2 complete GWM time step. Then, the GWM is also advanced with the CNG

scheme. Therefore the interacting flux for the kinematic wave propagation phase is

for the ground-water phase as,




o = Bi[h(s,1,) - (b (s) + & (s))] (6-60)
where 7 is the temporal stream stage average over the entire time interval of the GWM ,
Le.
PeAr,

J’ u(s, 1) dt (6-61)

a t

u=

At

which is easily computed once the KWM was propagated one full GWM time step Az .
In order to evaluate the performance of the coupled model developed in this work,
a study case similar to the one analyzed by Pinder and Sauer (1971) is now discussed. For
a rectangular domain 9,144 m long and 2,438 m wide, the finite element mesh is generated
with uniform stepsize Ax = Ay =3048 m yielding 279 nodes and 480 linear triangular
elements. The characteristic values of the parameters are: L, =100m, V, =2 m/s,

S, =0001, b, =10 m, K, =001 m/s, b, =100 m, S, =01. A resistance factor

R, =5%10° sis used.

The final configuration is obtained by running the model for a sufficiently long time
with a steady flow of 41.21 m’/s (4 =30 m’) until equilibrium is reached. As it can be
seen in Figure 6.7.a and Figure 6.7.b, the river switches from a loosing condition upstream
to a gaining condition downstream. This situation is represented not only by the change of
the sign in the flux (Figure 6.7.b) but also by the mound and the depression on the water
table configuration of Figure 6 8,

Now, the configuration depicted in Figure 6.8 is used as initial condition to route

the input hydrograph shown in Figure 6.9 (a(0,7)). The time structure of the simulation

is as follows,

e

7 3 5
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ime structures
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At is the aquifer modulus time step

ATy is the kinematic wave modulus time step
The model is run 20 ground-water time stéps and 472 kinematic wave time steps.

As the wave moves through the channel, interaction with the underlying aquifer
takes place and the hydrograph shows bank storage effects. Figure 6.9. depicts the flood
hydrograph with leakage and without leakage at a point located 8,229.6 m from the
upstream boundary, the latter obtained with the method of characteristics (MOC). Figure
6.10 contains three-dimensional views of the water table surface at different times. The
graphs follow the passage of the wave through the system and the magnitude of its effect
on the aquifer. If the hydrograph rises so does the head in the aquifer, and vice versa. It
is worth noting that bank storage effects decrease rapidly with distance from the channel.
Another way to visualize the results is by means of a plot of the aquifer head at river nodes

and stream stage at the same times as the three-dimensional views previously discussed

(Figure 6.11).
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Figure 6.7.a: Stream stage hy(s), area a(s) and aquifer head h(s) at river nodes
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Figure 6.8: Aquifer head initial condition
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quifer at different times

Figure 6.10: Three-dimensional views of the a
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CHAPTER 7

MODEL SIMULATIONS

The four previous chapters deal with the formulation of the ground-water flow
governing equation, the kinematic wave governing equation, the dimensionless form of the
governing equations and their discretizations with the finite element method. In this
chapter, the implementation of the coupled model in the Lower Bill Williams River Basin
is presented. The work includes the conceptualization of the System, the definition of
initial conditions, boundary conditions and aquifer properties, and the specification of all

data related to the stream characterization. Results from two steady state runs and a 7

year transient simulation are discussed.

The coupled model is not sjte specific and, within its capabilities and limitations,
could be applied to a variety of situations. Reproducing past and present hydrologic

conditions and predicting future stresses are all goals within the modeling process.

Consequently, it is crucial to assess the degree of confidence that can be placed on mode]

predictions. The confidence level will depend largely on the calibration, sensitivity
analysis, and verification of the model. Matching model results to field data is a validation L

process per-se. However, the lack of field data in the study area limits the comparison

7-1



between model results and observed values. It follows that any matching can only be
established on a qualitative basis.

The validation of the mathematical model mostly relies on a series of study cases
specially developed to verify the two main components of the model, i.e. the ground-water
flow modulus and the kinematic wave modulus, and its interacting capability as well. All

tests are fully documented on Chapter 6 and Appendix A.

The discretization of the physical domain represents an important stage in the finite

element modeling process. In discretizing a domain, consideration must be given to an
accurate representation of the boundaries, point sources, distributed sources, and material
and geometric properties. Therefore, the basic idea is to choose a discretization that will
be general enough to model the irregular domain at hand with elements simple enough
such that computational error and cost are minimized. Computational cost means here
computer time and storage requirements. Judgment should be used in discretizing the area
of interest into sufficiently small elements so that steep gradients of the solution can be
accurately calculated. Triangular and/or quadrilateral elements can be used for this
purpose. In particular, triangles are attractive because there is a natural correspondence
beﬁveen the number and location of nodal points in an element and the number of terms
used in the local polynomial approximation (Reddy 1993). Perhaps the most appealing
feature of the FEM is the generality and ease with which very irregular meshes and
boundary conditions are treated. However, while uniform meshes are simple to generate

by simple algorithms, very general meshes are not. A description of the available
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techniques for mesh generation is beyond the scope of this work. For an in-depth
explanation on the subject the reader may consult the article by Eiseman (1985). In the
following paragraphs the mesh generation procedure used in this work is explained.

The approximate boundary of the alluvial aquifer underlying the Bill Williams
River and portions of its major tributaries, digitized from topographic maps, defines the
boundary of the physical domain. The mesh is carefully refined within the Refuge, is
shown in Figure 7.1. Overall it contains 387 nodes and 604 triangular elements. The
boundary of the mesh encloses an area of 84.6 km’. Physical boundaries are followed as
closely as possible, preserving an adequate ratio between areas of contiguous elements.
On a west-east direction the domain extends for about 55 km. Lateral development of the
mesh ranges from about 500 2 at the eastern boundary up to about 9,000 m in the Planet
Ranch area. This extension represents the flattened saddle area bounded by the Rawhide
Mountains to the east and the Little Black mountains to the west. The northern boundary
of the alluvial aquifer is located far enough from the stream and the pumping center to

minimize boundary effects. The river is discretized into 70 nodes approximately 600 7

apart within the Refiige and 900 apart elsewhere. As shown in Figure 7.1, river nodes

follow the actual river path very closely.

In this section, the aquifer parameters and characteristic, boundary conditions,

€vapotranspiration characteristics, and pumping withdrawals are presented and discussed.
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7.4.1. Aquifer characteristics

According to the information presented in Chapter 2, Section 2.4, the aquifer

system is modeled as a single unconfined layer whose bottom was reconstructed from

scattered thickness information. The lowest point, located in the Planet Ranch area,

reaches 100 a.m.s.l., and the highest point, close to the dam site, is at 282 a.m.s.l. Figure

7.2 shows a three-dimensional view of the aquifer bottom along with a contour level

projection. A cross-sectional view of the aquifer along river nodes is plotted in Figure 7.3.

The elevation of the top of the aquifer was defined by the elevation of the stream bottom,

R
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Figure 7.2: Aquifer bottom
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originally interpolated from Digital Elevation Models (DEM) of the study area and later
smoothed out for mpdeling purposes.

Hydraulic conductivity values reported for the area are very disparate and
exceedingly high, even for a clean sand aquifef, and greatly differ from aquifer properties

estimated in nearby areas and around other alluvial basins throughout Arizona. Therefore,

a mean hydraulic conductivity value of 1x 107 m/s is adopted. The specific yield S, of

the aquifer is assumed constant and equal to 0.2.

7.4.2. Boundary conditions

Although the geology of the basin is relatively complex, the boundary conditions
for the model are fairly simple. For the most part, the aquifer is bounded by fractured hard
rock with little or none leakage to a regional aquifer system. The southern boundary of
the model is bounded by the Buckskin Mountains and is considered a no-flow boundary.
No flow boundaries also occur along the northern boundary of the model, except at the
edge of the flattened saddle area. A prescribed flux boundary condition is set at this
location whose magnitude is estimated through a solution obtained with a prescribed head
boundary. Precipitation occurs in very small amounts, therefore, mountain front recharge
plays a minor role in the overall hydrologic budget. Sporadic rainy episode may provide
some runoff waters through the main washes to feed the shallow alluvial aquifer.
Nevertheless, the amount of recha}ge is considered “meager” (Rivers West 1990).

Lake Havasu, 1océted at the western boundary, is first represented by a prescribed

head condition of 136.5 m, which is approximately equal to the normal level operation of
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Parker Dam. The outflow at this boundary turns out to be equal to 0.01712 n’°/s and is

later used as a prescribed flux at this location. Likewise, the effect of Alamo Reservoir at

the eastern end of the model is represented by a constant head of 300 m.

7.4.3. Evapotranspiration

In the model, evapotranspiration losses (ET) are simulated upstream of the Planet
Ranch and at the Refuge. In accordance with the aerial coverage of riparian vegetation
and the ET estimates given in Chapter 2, three ET zones are defined. Table 7.1 includes
the parameters used in the steady state simulations. F ollowing the common practice in
ground-water flow modeling, the extinction depth is set equal to 4.57 m in all three areas.
Each ET element is assigned an average ground surface elevation computed using the

ground surface elevation at the each corner node extracted from digital elevation models

of the study area.

Upstream of

Planet Ranch i
Wildlife Refuge 72
excluding marsh |

Marsh 18

For the transient simulation, the ET average annual rates are broken down into monthly
rates. Monthly values are determined by multiplying the annual ET rate by the scaling

factors presented in Figure 7.4. Those scaling factors are defined ag the monthly ET loss




by volume, calculated by means of the Blaney-Criddle method, divided by the annual ET _

loss by volume.
Figure 7.4: Scaling factors for monthly evapotranspiration rate
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7.4.4. Pumping

Ground-water is extracted at an annual rate of 1.8503x10” m’ (see Section

2.6.4.2). For the steady state simulation this figure is divided evenly over the 13
commercial wells in operation at the Planet Ranch. Each well yields an average annual

pumping rate of 0.0453 m°/s. Figure 7.5 shows the location of the wells on the finite

element grid.

The monthly pumping distribution for transient simulations is determined from the
seasonal pumping schedule given by Harshman and Maddock (1993). As it can be seen in

Figure 7.6, monthly pumping rates range from a minimum of 4.73x10™* m’/s per well
during the months of November through February up to a maximum of 9.2x107 /s per

well during the months of May through August.
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Figure 7.5 - Location of wells on the finite element grid
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The stream is discretized into 70 nodes and 69 reaches. Parameters such as stream

width 5, Manning's roughness coefficient », resistivity factor Rrand streambed slope S are
all defined by river reach while streambed ele\}ations are given by river node. The
calibrated values for all these parameters appear on Appendix B.

Not much field data exists on localized transects. Downstream from Alamo Dam
the Bill Williams river traverses through a narrow channel confined between canyon walls.
It also passes through the 9.7 km reach at the Planet Ranch where it widens substantially.
When the river enters the refuge its width reduces considerably. Consequently, given the
information available, the rectangular cross-section assumption seems be appropriate

except during periods of high floods when overbanking occurs.

According to the dimensional analysis presented in Chapter 5, the model requires

the definition of a set of appropriate scales. There is one group of fundamental scéles that
must be specified by the model user; these are Ly, Sy, S, bo, vo, Kp and hy. Those scales
associated with the surface-water system are chosen to represent normal flow conditions
while those associated with the ground-water system are such that they typify aquifer
conditions. The second group, composed by 7, Ay, 1y, up, E*, R* and T automatically

defined once the first group is selected.

The fundamental sbales used in this work are L, =100 m, S, = 0.002, §,=02,

b, =10 m, v, =05 mvs, K, =002 m/s and h, =10 m. Then, the scales of the second
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Model simulations include two steady-state runs for average annual conditions angd
one transient run for a period of seven consecutive years running from 1984 io 1990,

The two steady-state simulations differ from each other in that one simulates
ground-water development and the other does not. These two runs intend 1o evaluate the
model performance in reproducing the general dynamics of the system. The lack of
extensive field data allows only for a qualitative calibration of the model. Nevertheless
ground-water level data presented in Section 2.6.3 and field observations by the Fish and
Wildlife Service and the author are used during the calibration process. Some of the
aspects considered are: 1) the general ground-water flow patterns as reproduced from
1979 data; 2) the disappearance of surface flows in the region of Planet Ranch and in the
region immediately upstream of the river confluence with Lake Havasu under fually

developed conditions; 3) the magnitude of the sireamflows within the Refuge before and
after ground-water pumping at Planet Ranch; 4) estimates of the consumptive use by
riparian vegetation in the whole study area.

The transient run intends to s show the behavior of the I drologic system when all
the processes are modeled using the time scale at which they actually occur. This is

ished using month hly pumping rates and monthly evapoiranspiration rates and daily

P




7.7.1. Steady state simulations

The first steady-sfate simulation does not incorporate pumping, therefore, results
from this run are comparable to the conditions prevailing in the system prior to 1985,
when no major ground-water development existed. Boundary conditions for this run
include a constant head of 300.13 m at the eastern model boundary, a constant flux of
0.01712 m’/s evenly distributed along the downstream boundary, and a constant head of
198 m at the northern boundary limiting the saddle area at the Planet Ranch. A constant
streamflow of 1.287 m’'/s representing an average dam release is used for the simulation.

The second steady-state run is aimed at examining the influence of pumping over
downstream flows. Total annual pumping is distributed as explained in Section 7.4.4 and
the surface inflow is maintained at 1.287 m°/s. The prescribed head boundary condition to
the north is switched to a prescribed flux boundary whose magnitude is determined from
the previous steady state run when a prescribed head and no wells are present. The
magnitude of that flux calculated by the model is equal to 0.7579 m’/s.

Figure 7.7 shows the simulated stream discharge and the simulated flux through
the streambed along the river for both steady state runs. The model successfully
reproduces the streamflow patterns observed in the Bill Williams. When all the wells are
in operation downstream flows are reduced from a maximum of 0 5-0 6 m’/sto a
maximum of 0.32-0.36 m’/s. For this pumping scenario the river dries up before joining
Lake Havasu. These results are in agreement with the results previously reported by
Harshman and Maddock (1993). The graph showing fluxes through the streambed
highlights the fact that most of the stream-aquifer interaction is circumscribed to the

Planet Ranch area and a few kilometers downstream, where water resurfaces.
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Figure 7.7: Simulated stream discharge and simulated Slux through the streambed
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Water-level contours for both scenarios are depicted in Figure 7.8. As it can be
seen, the model is able to reproduce the general ground-water flow pattern in the system
(see F igure 2.5). Moreover, the distortion of the contour lines pattern in the Planet Ranch
area clearly show the starting of pumping,

Most of the hydrologic components in the study area are not quantified.
Evapotransporation losses is perhaps the only estimate readily available for comparison
purposes. The steady-state run with no pumping yields the volumetric rates shown in

Table 7.2 . In this table, QD; is the flow at the eastern boundary, QDs is the flow at the
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Table 7.2: Volumetric rates for steady-state run with no pumping

Figure 7.8: Water level contours Jor both steady-state runs
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Figure 7.9: Input hydrograph
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interesting to note that after two years of pumping, there are flows all along the Refuge
(December 86 curve). In December 1986 and June 1989 the upstream inflow is quite
similar, however the June 89 curve shows the effects of four and a half years of
continuous pumping with the resulting disappearance of surface flows before the river
reaches Lake Havasu. This result would indicate that the most severe impact to the

Refuge is caused by the pumping at the Planet Ranch,




Figure 7.10:  Simulated discharge along the stream Jor various times
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Along the first 4.5 km, transmission losses are relatively small to moderate. This

reflected on the top hydrograph, which resembles the input hydrograph (see F igure 7.9),

dry most of the time tflowing sporadically in response

i
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to high upsiream streamflows. Within the Refuge an im@r@gﬁng phenomenon occurs,
Streamflows clearly respond 10 the frequency of the input hydrograph, however, they also
show an additional frequency imposed by the annual cycle of evapolranspiration and
pumping. This effect manifests jtself as a smooth modulation op the bottom graph. Also
noticeable is the decrease in streamflows aﬁvth@ Refuge as a Consequence of the combined

effect of pumping and low dam releases since 1989

points, however floods of smaller magnitude reach downsiream locations withip 5 lag
time. The wave celerity is a function of the stream area, and as ih@‘area increases, so does
the wave celerity.

The analysis of the mass balance Components provides ap additional mean ¢o
interpret model results. Figure 7.13 shows the inflow hy@ir@graph once again, the net flyy
through the streambed, the change in storage, pumping and evapotranspiration ag a
function of time, Both, the flux through the streambed and the change in storage reflect
he fast effect of streamflows on the ground-water system. In addition to this high

oq o s e ~ 2 -
Ocy response, the stors ge also exhibits the Influence of seagona] processes v

.
er the syt




Figure 7.12 - Simulated wetted area at three locations
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CHAPTER 8

CONCLUSIONS

A fairly complete survey of the different approaches available currently to model
the interaction between surface-water and ground-water has been presented. In general,
such modeling is accomplished by means of either a single model or a coupled model.
However, in situations where highly variable and dynamic seasonal effects are present, it is
vital that the stream-aquifer interaction be simulated with an adequate degree of accuracy
and a coupled model can provide such degree of adequacy.

The primary goal of the present work was the development of a robust finite
element code for the simultaneous representation of ground-water flows and surface-water
flows along with their interaction. The coupled model developed is able to capture the
observed dynamics of the study area, to maintain full coupling between surface ﬂowsvand
ground-water flows, and to éombine the time scales characteristic of both components.

An overview of the main features involved in wave propagation in open channels
has been provided. It was shown that the kinematic wave assumption simulates open
channel flow in the study site remarkably well, making the coupling between the two flow
components extremely easy to implement with the finite element method.

The two components of the integrated model are linked through a coupling term,
mathematically represented by an expression analogous to Ohm's law. In employing such

a relationship, it has been assumed that all infiltrated water is instantaneously recharged to
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the aquifer, that channel loss equals recharge to the aquifer, and that the transfer of water
is controlled by saturated flow through low permeability streambed sediments.
Nonetheless, this formulation provided satisfactory results for a basin scale application Jike
the Bill Williams case.

The surface-water comp;)nent was solved using a Petrov-Galerkin formulation
while the ground-water Component was treated with a Bubnov-Galerkin approximation.
In this work, the coupling term is not explicitly included in the ground-water flow
equation, but ratter is treated through a boundary flux integral that arises naturally in the
weak form of the governing equations. It has been shown that, in order to have a single
connected domain for the case of a fully penetrating stream, it is necessary to introduce g
branch cut in the domain along the internal boundary that represents the stream.

On the other hand, the characteristic time-scales of the transient response for both
Systems were clearly established, leading to the definition of three dimensionless
parameters, namely, a Peclet number that inherits the disparity between both tlme scales, a
flow number that relates the pumping rate and the streamflow, and a Biot number that
relates the conductance at the river-aquifer interface to the aquifer conductance. [t was
shown that when modeling transient interconnected surface-water and ground-water
systems, the rapid unsteady open channel motion can affect the ground-water regime. In
this sense, encouraging results have been obtained using multiple time-steps in the
simulation process.

Finally, a reasonable qualitative approximation to the sparse field data available in
the study site was obtained During the steady state simulations the mode] successfully

reproduced the streamflow patterns observed in the Bill Williamsg River and the overal]
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ground-water flow pattern reconstructed from 1979 data. Results from these runs
confirmed the relative impact that pumping at the Planet Ranch had on downstream
streamflows. Upstream ground-water development seemed to have more pronounced
adverse effects on flows at downstream locations than controlled flows, It was also
shown that the system responded to the vatious frequencies imposed to it. This result
could not be obtained with a traditional single model approach.

Even though the model successfully reproduced the general hydrologic
characteristics of the study area, a finer calibration and a sensitivity analysis are
recommended before any future prediction is undertaken, Particular attention should be
given to the resistivity factor, perhaps the parameter that carries the greatest uncertainty
and whose influence in computing fluxes through the streambed is undoubtedly important.

It is desirable that the results obtained from this study and a previous modeling
effort in the same area be combined to develop a comprehensive monitoring plan to
measure water table elevations and surface flows and to survey vegetation species and
densities. Continuous recording of surface flows has already started, however ground-
water level data and vegetation densities are lacking. Such a plan would serve multiple
purposes. On one hand, water table data collected at strategic locations within the Refuge
would provide the Fish and Wildlife Service with information on the water table evolution,
so critical for vegetation development. On the other hand, such information would

contribute o improve the present calibration of the model, which was basically done on a

qualitative basis.
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MODEL VALIDATION

A good agreement between numerical results and field data would support the

validity and reliability of the model to replicate the overall hydrologic conditions within the
study area. Nevertheless, each component of the coupled model is validated separately by
performing simple tests for which either an analytical solution is known or some published
results are available to compare with. This appendix documents the series of tests
performed, first on the ground-water flow model and second, on the kinematic wave

model.

Six ground-water test problems are presented to demonstrate the applicability of the

ground-water flow model.

A.2.1. Homogeneous, anisotropic confined aquifer with two wells and a losing stream
The case of a two-dimensional homogeneous, anisotropic, confined aquifer defined

over the domain 0<x <3000 m, 0< y <1500 m is integrated forward in time until steady



state conditions are achieved. To this aim, an initial condition h(x,y,0) =200 m is set.

The boundary conditions for the problem are,
h(0,y,1) = h(3000, y,1) = 200 m

h(x,0,1) _ h(x,1500,1) ~0
oy oy

The values of K, and K, are set to 40 m/day and 20 m/day, respectively.

Additional data for the test include the presence of two wells, one located at (1000,670)
and pumping at a rate of 1200 m’ /day and another one located at (1900,900) pumping at
a rate of 2400 m’ /day. A river traverses the region from point (2000,0) to point
(1000,1500), introducing a constant infiltration rate of 0.24 m’ /day/m’

A mesh of 64 triangular elements and 45 nodes is used to represent the domain and
the river is modeled as an internal line source, Figure A.1 portrays the hydraulic head

contour lines, which agree very closely with the results reported by Reddy (1993).

Figure A.1: Hydraulic head contour lines
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A-2.2. Homegeneous, isotropic confined

N
-

aquitier over a square domain
This test solves the case of a two-dimensional confined, isotropic and

homogeneous aquifer under transient conditions defined over the domain 0 < x<1,

0 =<y <1 and subject to the following boundary conditions (Neuman 1992),
h(L,y,8) = h(x,1,1)

‘5%(07},9 i) — ﬁ}ﬁ(xsﬁs ZZ) — 0
S &

both for 7> 0, and the initial codition,

h(x,y,0) =0

The exact solution to the problem is given by,

=1 m=1

hix,p,0)=1- i i C,., @@{g- @n- E)m’} @O{é @m-~ D@/]

@@{Z”&m%my+@m_nj} (A-1)
with
C _ 16(‘"’ D};ﬁ»l (,_ E)mﬂ
7% (2n - 1)(2m - 1)
T

I'he rectangular domain is discretized into a 200 iriangular element mesh with 121

nodes, with uniform stepsize Ax = Ay =01. The test is run with a Af = 0.0025 until the
relative change between two successive time steps solution is less than some prescribed

tolerance, i.e. the stopping criteria is set as follows,

h;ﬂ! “‘hﬁf

;?yzﬂ }

I
2ol ![&

oLy




where [ = jz:;h, )|

Figure A.2 compares numerical results obtained with the Crank-Nicolson-Galerkin
time steping algorithm versus the analytical values obtained with (A-1) at point (0.9, 0.1)

over the whole simulation interval. The agreement between both computations is quite

‘remarkable.
Figure A.2: Numerical and analytical solution
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A.2.3. Homogeneous, isotropic aquifer with a uniform recharge - Dirichlet conditions

The third test deals with a one-dimensional homogeneous, isotropic aquifer under
steady state conditions which receives a uniform recharge from the top. Both cases,
confined and unconfined are analyzed. Assuming boundary conditions of the Dirichlet

type at both ends of the domain of length L, the exact solution for the problem takes the

form (Bear 1972),

A4

L=

B



h=hy+ (b, - ODZTWM %) (A-3)

for the linear case, and

W+ (A - hg) + (zl x)x (A-4)

for the non-linear case. In the above expressions, , and is an uniform recharge rate. The
following set of parameters is used in the simulation,

k=10  T=10 h,=05 K=10 [

]
o0

R=05

Figures A.3a. and A.35. depict the results obtained. The graphs show an excellent

agreement between numerical and analytical results.

Figure A.3.a: Linear case
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Figure A.3.b: Non-linear case

A.2.4. Stream-aquifer interaction with a constant stage stream

The fourth test maintains the characteristics of the third one except the boundary
conditions. In this case, a no flux boundary conditionis set at x = 7, and a mixed
boundary condition of the type h(0)/Ox = f(h—h,) is setat x =0 ,with #, =2 . The

exact solution for the linear and non-linear case are,

h:hs+——-(—l—+x~—xi) (A-5)

and

sz
K

2
h*=h - +—%R£x(A-6)

with

A6




A Y R?
2 2 BK
respectively. The values 7, R, K and I, are as in the previous case, with f=1. A

comparison between numerical results and exact solutions can be seen in Figure A 4.0 and

Figure A4.).

Figure A.4.a: Non-linear case
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A.2.5. Homogeneous, isotropic, steady state, confined aquifer with a line source
A line source of constant intensity ¢ is introduced in the problem set up of test
A.1.4. for the linear case. The source is located at a distance Xo from the left boundary of

the domain. The exact solution is given by

-q RL q R 2
h=h +——L 4~y 2, 2, x< A-7
s T~ T 2r o (A7)
h=n+Rq R g R, (A-8)

BT T T ar 0
The values of the parameters for this test are identical to those used in tests A.1.3
and A.1.4, with the addition of q =3, located at x, =2.8. Results from numerical and

analytical computations are depicted in Figure A.5.

Figure A.5: Numerical and analytical solutions
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A.2.8. Isctropic, homogeneous, unconfined aquifer with uniform recharge

The test here described is conducted to validate the transient response of the
model for the non-linear case (Li 1972, Bear 1972). A weakly non-linear equation of the

form,

FH 2R
5 t==
&K

: (49

subject to boundary conditions,

(0,1
—;%lzo, h(L,5)=h,

and initial condition A(x,0) = h, is solved over the domain [0,L]. The recharge is equal to

Rfor 0<x <L, and equal to zero for Ly <x < L. Parameters for the simulations include

L=20,L,=5, K=1and R=002 Upon applymg the Laplace Transform method to

equation (A-9), the approximate analytlcal solution is,

> RTr a’ a -a*
h(x,t)=d* + K[Z (H— ) (2\/-) \/_exp(4t)

~1+22— erfc I ex b for 0O<x<[ (A-10)
2t W) Vm P w TR

and

, RTt ci c) ¢ ~c?
e =d [EWL(HZJCI&(?.\/?) \/EeXp( 4t}
b2 b -b?
_[ )exfc(zf) ———— ( pp )J for LR Sxfw (A°1 1)

" where a:LR-x/J;, b:LR+x/\/t— and x:x—LR/x/;.

A-9




Expressions A-10 and A-11 are valid depending on how well the following two
assumptions are met: 1) R is small compared to 7; 2) A should not depart greatly from #,,
otherwise the hypothesis of 7" constant ceases to hold.

Figures A.6 and A 7 illustrate the results obtained for =1 and 7'=1] ,

respectively, for 7= 5, 10, and 15. It can be noticed that, as 4 departs from h, =1, the

discrepancy between numerical and analytical values starts to increase (Figure A.6). A
higher value of 7" (Figure A. 7) causes the numerical solution to improve for larger . The

values of 7 obtained under such conditions are listed in Table A.1. Identical results are

reproduced for A7 =1 and Af =05

Table A.1: Table of higher t values obtained for larger T

5 | 1.025
10 | 1.050
15 | 1.075

Figure A.6: Numerical results Jor T=1
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Figure A.7: Numerical resuits for T=1.1
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Two surface-water test problems are presented to demonstrate the applicability of the

surface-water flow model,

A.3.1. Forced noniinear convection

In this test, the following nonlinear problem is solved (Raymond and Garder

1976),

%+u%=g(x,t) for O<x </, >0 (A-12)

subject to u(x,0) = f(x), u(0,) = f(~1)
where f(x)= @xp[-{x~ 10)*/ 4] -

The solution of Equation (A-12)is u(x,?) = J(z—1), provided tha,




g(x,t):-;—(x—t~10)f(x—t)[x-—f(x~t)]

The system of nonlinear ordinary differential equations derived from the
application of the method of weighted residuals and the Petrov-Galerkin method to
equation A-12 is solved by the Crank Nicolson method utilizing a Newton iterative
technique. The nonlinear Gaussian wave, initially centered at x = 10, is allowed to
propagate through a computational domain 50 units long, with Ax =05, and Ar=0] :
All the scales for the problem are set equal to one. Numerical results along with the exact
solution and the initial condition are plotted in Figure A 8 as time goes on. Numerica]
calculations match the exact solution very closely, showing neither numerical dispersion
nor numerical attenuation. In addition, the result of the computations show no undesired
reflections as the wave leaves the computational domain, where the natural boundary

condition Su(x =50)/Sx is imposed.

Figure A.8: Numerical and analytical results at various times
(Dashed line is numerical solution, solid line is exact solution)
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A.3.2. Triangular kinematic wave

A triangular shaped wave is routed through a rectangular channel 9,144 i long.

The general set up for the test is obtained from Chow et al. (1989), however some

parameter values are slightly changed. The channel characteristics are: Manning's

coefficient = 0.035, slope = 1%, and width = 60 7. There is no lateral flow and the initial

condition is a uniform area of 30 n7°, equivalent to a discharge of 53.4 m’/s. The input

area hydrograph is given by,

a=30 m’

a= —5—-“——‘1—— 30+
4 2880

( 1
-t
4

! so
2880)

0<¢<12 min

12 min <t < 60 min

60min <t < 108 min

1> 108min min

The test is performed over a 30 evenly spaced element size of Ax =304.8 m, and with a

Az =30 5. Two different sets of appropriate scales are chosen for this problem as shown

in Table A2,

Table A.2: Scale sets

Lo 1219.2 m

177 - 1m

Vo 4064 m/s : 2m/s

S 0.01 0.01
..... bo 60 m : 580 m

and the remaining scales are immediately derived and are shown in Table A4,




Table A.3: Remaining scales

Uo | 1219m | -
T, 300 s 60 s
ne | 0.13 0.05

Figure A.9.a and Figure A.9.b depict the wave amplitude as a function of time at
different locations, and the wave profile as a function of at different times, respectively,
obtained when the first set of scales is used. Numerical results are compared with
analytical values obtained by means of the method of characteristics (Figure A.S.a). The
agreement between the simulated values and the exact solution is remarkable. This test
shows that the Petrov-Galerkin scheme implemented here is perfectly able to eliminate the
typical and unwelcome numerical oscillations of the traditional Galerkin method. Besides
that, the scheme introduces virtually no artificial diffusion, characteristic commonly
associated with finite difference solutions.

In order to detect any model sensibility to the selection of the proper set of scales,
a second run is performed with a second set of scales (see above). Although not shown
here, the results obtained are identical to those presented in Figure A 9.4 and Figure
A.9.b. This demonstrates the model independence to the choice of scales.

Finally, the use of Az =60 s (maximum Courant number = 0.93) still produces
good results, however when Af is tripled, i.e. At =3 min, some wiggles develop on the
numerical solution. In this later case, the maximum Courant number is 2.78. Although
the scheme is unconditionally stable, the use of values greater than one for the Courant

number is unadvisable because of an excessive loss of accuracy. Note that when peak

A-14



&d, the kinematic wave applicability criterium stated in Equation (4-15) is
violated, as well as the criterium set forth by Lighthill and Witham (1955) as the Froude
number F; =/, / V&4, is close to one. Therefore, this example represents a marginal

condition as far as the kinematic wave model applicability is concemed, contrary (o the

belief of the authors (Chow et al. 1989).

Figure 4.9.a: Wave amplitude as a function of time at different locations
(Solid line: numerical solution, Dashed fine: analytical solution)

0.080 L
a

0.070 x=0

[ x=] 524 m
0.080 [ - x=5,181.6 m
L’ x=7,000.4 m

0.050 L

0.680 Ll A, A L i 2 s 2 i 2 5 4 L

Figure A.9.b: Wave profile as a function of at different times
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2.252E2
2.218E2
2.196E2
2.169E2
2.142E2
2.123E2
2.102E2
2.083E2
2.065E2
2.,046E2
2,025E2

(*)



Reach width Rf n Slope Elevation
(m) (s) (m) (%)
37 7.455F1 3.67E3 3.00E-2 2.66E-3 2.002E2
38 8.377E1 1.14E4 3.00E-~2 2.77E-3 1.978Ek2
3% 9.168E1 3.20E4 3.00E-2 2.86E-3 1.952E>2
40 9.621E1 1.45E5 3.00E-2 2.93E-3 1.926E2
41 9.927E1 13.51E5 3.00E-2 2.998-3 1.899g>2
42 1.001E2 18.07E5 3.00E-2 3.05E-3 1.872E2
43 1.005E2 11.32E6 3.00E-2 2.97E-3 1.845E2
44 9.983r1 11.96E6 3.00E~-2 2.81E-3 1.817r2
45 9.834E1 12.42k6 3.00E-2 2.32E-3 1.790E2
46 9.522E1 2.79E6 3.03E-2 1.85g~-3 1.761E2
47 S9.100Er1 2.93E6 3.10E-2 1.29E-3 1.731E2
48 8.546EK1 3.00E6 3.26E~-2 9.29E-4 1.702E2
49 7.967E1 2.94E6 3.41E-2 7.56E-4 1.674EF>2
50 7.230E1 2.84E¢6 3.60E-2 6.48E-4 1.656E2
51 6.241RF1 2.55E6 3.76E-2 5.93E-4 1.639g>2
52 5.188Er1 2.17E6 3.98E-2 5.32E~4 1.622E2
53 4.177E1 1.60E6 4.13E-2 5.06E-4 1.605E2
54 3.402E1 1.13E6 4.35E-2 4.83E~4 1.587E2
55 2.987E1 7.16E5 4,.42E-2 4.55E~4 1.569E>2
56 2.706E1 4.39E5 4.50E~2 4,24E-4 1.552E2
57 2.568E1 2.26E5 4.50E-2 3.72E-4 1.533E>2
58 2.427R1 1.17E5 4
59 2.291EF1 4.47E4 4.45g~2 2.70E~-4 1.493E2
60 2.149E1 1.50E4 4.38E-2 2.30E~-4 1.47282
61 2.029r1 3.79E3 4.30E-2 1.75E-4 1.451F2
62 1.921Fr1 1.23E3 4.20E-2 1.46E-4 1.431F2
63 1.837r1 1.00E3 4,11E-2 1.16E-4 1.414EF2
64 1.776E1 1.00E3 4.04E-2 1.06E~4 1.399E2
65 1.736E1 1.00E3 4.01E-2 1.00E-4 1.387E2
66 1.709m1 1.00E3 4.00E-~2 1.00E-4 1.378E2
67 1.690E1 1.00E3 4.00E-2 1.00E-4 1.372E2
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w
w
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[faN
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68 1.673E1 1.00E3 4.00E-2 1.00E~-4 368E2
69 1.662E1 1.00E3 4.00E-2 1.00E-4 1.364E2
1.360E2

(*) elevation given by river node







