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ABSTRACT: A model is presented that can simulate infiltration from rainstorms on areas exhibiting random
variation in saturated hydraulic conductivity K. Heterogeneity in the capillary drive (or length scale) parameter
G can be treated as well. The method is based on a point infiltration model that includes the Green-Ampt or
Smith-Parlange infiltration functions. The runoff area is characterized as an ensemble of infiltrating points or
flow path strips that provides runoff to a receiving channel. The model is developed by simulation of a large
ensemble using Latin hypercube sampling. The infiltration expression is responsive to a changing rainfall rate
r and is easily characterized using the basic infiltration parameters Ky and G, plus a third parameter based only
on the coefficient of variation of K or G. Areal heterogeneity causes a rainfall-dependent change in the areal
effective value for K, called K.(r). The infiltration expression contains rainfall rate as a variable, and observed
storms with temporal rainfall patterns may easily be treated. Moreover, the new expression eliminates the explicit
concept of ponding time as a separate calculation. The effect of heterogeneous infiltration parameters is dem-

onstrated using several field cases.

INTRODUCTION

There is general acknowledgment of the important challenge
in hydrology to make physical process-based models appli-
cable at larger than plot scales. This is often termed upscaling.
It is both difficult and costly to sample an area thoroughly
enough to know what the areal average of a measurable pa-
rameter may be. Also, it is usually misleading and inaccurate
to assume that average parameter values may be used for het-
erogeneous areas, because the processes underlying those pa-
rameters are often highly nonlinear and an average parameter
in a nonlinear function does not behave as does an ensemble
of nonlinear processes. Thus seeking an areal effective value
by fitting a nonlinear infiltration model to large-area data such
as stream runoff is likely to produce misleading results. Per-
haps the most comprehensive recent discussion of the chal-
Ienges involved in upscaling physically based models was that
of Grayson et al. (1992), in which the very idea of using phys-
ically based models at a watershed scale was called into ques-
tion. Infiltration of rainwater into the soil is one of the pro-
cesses known to exhibit significant random spatial variation
(Nielsen et al. 1973; Sharma et al. 1980; Hjelmfelt and Bur-
well 1984).

The soil hydraulic parameter of principle interest in most
studies has been saturated hydraulic conductivity K. The mea-
surements of K have so consistently shown a lognormal ran-
dom variation [Nielsen et al. (1973) and Vieira et al. (1981),
for example] that log(Ky) is now commonly assumed as the
random variable in theorctical studies [Yeh et al. (1985), for
example]. The simulation studies of Bresler and Dagan (1983)
and Chen et al. (1994) treated lognormal variation in K within
the context of a Green-Ampt infiltration model, but in both
cases the distribution properties of the wetting front and the
determination of an ensemble mean the wetting front was the
focus. In contrast, the role of heterogeneous soil properties in
ensemble infiltration rates is the focus of these studies.

Studies of runoff from surfaces with heterogeneous satu-
rated hydraulic conductivity have shown the general effect of
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both random and deterministic variation in K (Smith and Heb-
bert 1979; Goodrich et al. 1988; Woolhiser et al. 1996). Ran-
dom variations in K have greater influence on runoff for lower
rates of rainfall r, where runoff may be significant but is a
small fraction of the total rainfall depth R. For very high rates
of rainfall, infiltration rates and thus their variations have much
less importance. Hawkins and Cundy (1987) showed that there
is a relation between rainfall rate and the areal effective steady
infiltration rate for heterogeneous areas. That relation is one
of the interactions between intensity and the distributed infil-
tration rate, which are quantified below.

The method used in this study is to simulate the net infil-
tration behavior of an area characterized by lognormally dis-
tributed values of soil infiltration parameters and to represent
the ensemble behavior by an expression that is simple to apply.
Maller and Sharma (1981) performed a simulation of ensemble
infiltration for steady rainfall rates, and obtained results for
infiltration on a heterogeneous area, assuming a time explicit
point infiltration relation based on the Philip two-parameter
relation. Their method was to numerically integrate complex
probability expressions for ponding time and for subsequent
infiltration, but they reported no relation that could be applied
for practical hydrological purposes. Sivapalan and Wood
(1986) started also with the two-term Philip expression for
point infiltration and made some significant approximations to
derive an expression for areal mean rates, but these expres-
sions were also mathematically formidable, involving error
function evaluations. Their method also assumed a uniform
rainfall rate, and they made no validation of their approxi-
mations. Woolhiser and Goodrich (1988) and Smith et al.
(1990) represented distributed K values using stratified sam-
pling from the lognormal distribution (as described in more
detail below) and applied these values to equal area strips of
a catchment surface. This method, schematically illustrated in
Fig. 1, simulates cross-slope variability in K and is suitable
for variable rainfall intensities but requires all infiltration and
routing computations to be repeated for each strip, which sub-
stantially increases computation. Nachabe et al. (1997) and
Woolhiser et al. (1996) studied a few special cases of variation
along a flow path, which would lend insight into higher order
heterogeneity assumptions.

Here, one assumes random variation of the infiltration be-
havior sampled for noninteractive points or similar flow path
strips, but one seeks an expression for the areal mean infiltra-
tion on such a heterogeneous runoff surface. The expression
should be applicable to storms of variable intensity patterns,
be computationally relatively simple, and match ensemble
simulation results very closely. The use of a simulation in this
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FIG. 1. Runoff Area of Interest Is Divided into Pieces along
Flow Lines for Characterizing Random Spatial Variation, as in
Woolhiser and Goodrich (1988)

case is most appropriate because it represents theoretical (nu-
merical) experiments that cannot be done practically with a
physical experiment. Although the heterogeneous infiltration
relation incorporates a particular mathematical description of
point infiltration, it is not dependent upon it. In the final sec-
tion one considers evidence for the validity of an ensemble or
field-scale infiltration relationship and applies the method to
several cases.

POINT INFILTRATION MODEL

A robust analytically derived infiltration model is used to
represent soil infiltration behavior at any point on an area of
interest. Effective saturated hydraulic conductivity K is one
of two physically related parameters for point infiltration func-
tions, and the second is the intrinsic capillary drive of the soil
G, also called the capillary length scale (White and Sully
1987). The value G can be related to the soil sorptivity S
(Philip 1957) or computed from the soil unsaturated hydraulic
conductivity characteristic K(h)

G LN K(h) dh 1
T2KAG, Ky ). ™ ™

where A0, represents the soil initial condition is the initial
saturation deficit, 6; — 6,; and 6; = saturated water content.
The value G can be thought of as the K-weighted mean cap-
illary potential of the soil and plays an important role in var-
ious quasi-linear analyses of unsaturated flow (Philip 1985).

A simplified description of infiltration functions can be ob-
tained if scaled values are used. To this end one may define
the following dimensionless variables:

f

-
re = Z Je = X. (2a,b)

I 1K
/, = Lot = - 2¢,d
T GAB, * T GAS, (2c.d)

where the variable 7 represents the cumulative depth of infil-
tration [ f dt.

The model used here is the three-parameter model of Par-
lange et al. (1982), which can represent either a Green and
Ampt (1911) or a Smith and Parlange (1978) soil, or any be-
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havior in between. It describes the infilirability of a soil either
in terms of time during a steady rain or in terms of / for a
rain of variable intensity r(r}). The function may be expressed
as follows (Smith et al. 1993):

S FUPR . 3
S = L explaf,] — 1 &

in which f.. = scaled soil infiltration capacity rate, or infiltra-
bility; and o = parameter, from 0 to 1, designating soil be-
havior.

When o is 1, (3) becomes the Smith-Parlange equation:

feo =11 = exp(—1 )1 (4

and when o approaches 0, (3) asymptotically approaches the
Green-Ampt expression:

C [+
.f(‘*"‘[ I, ] %)

At small values of [, or at small times, either expression
approaches the fundamental gravity-free or horizontal infiltra-
tion expression:

Jo = (6)

1
1*

The actual infiltration rate during a storm f is the smaller of
f. or intensity r.

Relationships between time and 7 or f may be found from
(3) [and (2)] by substituting either f = dl/dt or I = [ f dr and
solving (Smith et al. 1993). In the latter case, one obtains, in
terms of the dimensionless variables

f, = 1+ )y = 1)]
rpe — 1+ Q)(f, — 1)

(t, — 1,1 — @) =é1n {

i [u} o
rp(fy — 1) 7)
in which subscript p refers to ponding when (3) is satisfied by

fo=r
ASSUMPTIONS AND METHODS
Sampling

A runoff area of a single soil type possessing random het-
erogeneity in soil properties and composed of a number (en-
semble) of runoff paths to the outlet is assumed. Each runoff
path to the outlet is a single sample, the sum of which con-
stitutes the total runoff area, as in Fig. 1. The arguments made
here would equally apply to an area in which runoff was ig-
nored and was assumed composed of an ensemble of repre-
sentative points, each point representing one realization from
the distribution of properties describing the random variation
of the soil.

The ensemble behavior is simulated using a numerical
method known as Latin hypercube (LH) sampling (McKay
et al. 1979), referred to subsequently as the LH method. This
method should be distinguished from Monte Carlo sampling,
which is a statistical method requiring a very large number of
random samples to obtain an accurate representation of the
underlying distribution for a parameter within a system. The
LH sampling is a numerical method and can more efficiently
simulate the effect of random variation of one or a number of
parameters. Fig. 2 illustrates the numerical representation of a
parameter from an arbitrary distribution. The probability den-
sity function (PDF) is divided into n equal subareas, equivalent
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to dividing the ordinate of the cumulative distribution function
(CDF) into n equal parts. The first moment of each of the n
subareas is used to represent that subarea of the PDF in a set
of n simulations of a system, the mean response of which
represents the net effect of the distributed variate within its
system. In Fig. 2, n is 10 and three of the subarea segments
are illustrated.

To obtain a physically meaningful areal mean relation, one
uses (7) to relate areal mean f = f, to areal mean I =/, at each
t through a storm. These are defined as areal expected values
for spatially heterogeneous values of parameters in (3) over an
ensemble of n points

L
£ == 2, £t Kei. G) (8a)

L == | £ K G dr (8b)

in which the values of K and G may both be considered ran-
dom variables. In the demonstrations below, one looks at the
effective areal relation f,(I,) found from combining the parts
of (8) as a direct functional equivalent to the point relation

(3]

Ensemble Effective Infiltration

In the following K, will be treated as a spatially random
variable, having a mean value & = §(K;) and a coefficient of
variation CV,. The variation of K over an area plays a double
role in the effective areal value of the infiltration rate. When
a rainfall of rate r falls on an area with distributed Kj, there
will theoretically be a part of the area that has K > r, within
which the infiltration rate will be r. As first introduced by
Hawkins and Cundy (1987) for the steady infiltration case (f
= Kj), the areal effective value of K, which will be called here
K., can be found from the PDF of K, p/(Kj), and the value
of r

K, =11 - P®Mlr+ f kp (k) dk S

Here P, = CDF of K;; and the integral term is the “‘partial”
expected value of K; (the expected value of K over the area
having K < r). Hawkins and Cundy (1987) pointed out that
(9) can be analytically integrated for the special case of an
exponential distribution of K,. The lognormal distribution
function represents measured data much better, for which p,(-),
with mean . and variance o”, may be expressed
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FIG. 3. Effective Value of Ensemble Saturated Conductivity K,
Is Shown for Variety of Values of Coefficient of Variation of K
(CV,) for Area of Interest, according to Eq. (10)

—[In(x) ~ In(m)] ) (10)

1
Pdx) = exp <
* xs\V 2w 2s?

12, 2

where s = p(w — D" m = p/w'?; and w = exp(c?®). Chen
et al. (1994) used a form of (10) in an expression related to
(9), numerically evaluating a complimentary error function.
Here (9) is directly numerically integrated for a range of rain-
fall intensities and relative variabilities, and the data shown in
Fig. 3 is obtained. For an area with no variation of K, and
for r < Ky, K, equals r and no runoff can occur. Also for CVy
= 0, K, is K for all rain rates >K;. However, for an area with
any significant variation in Kj, the ensemble K, falls below &
Because of this, in certain cases runoff can occur for r < k.
For very large intensities, K, asymptotically approaches &.

The results presented in Fig. 3 can very accurately be de-
scribed by a family of empirical curves as follows:

Kln) _ [1 + <i> ] (11a)
€ Ty

18
- cv'®

where

P 11d)

where r,. is defined as r/ég, similar to (2). Thus K, can easily
be evaluated for any CVy and value of r. The equation holds
for values of CVy even larger than those shown here.

SAMPLING EXPERIMENTS
Distributed K

With the numerical LH method one can evaluate f.(/,) from
the parts of (8) for a distribution of K by using a variety of
values of r,- and CVy. The symbols shown in Figs. 4(a—c)
represent the results of simulations for lognormally distributed
K, with a range of values of CVy and a set of four intensities,
with GA8, = 15 and o = 0.85. The underlying lognormal dis-
tribution of Ky was numerically simulated with 30 divisions
of the p,(-) relation. The variation of the ensemble value K.
obtained by sampling simulation, approached asymptotically
at large I,, matches that obtained from (9). In addition, there
is no longer a discontinuity in dl,/dt at a ponding time. Indeed,
for a distribution of K with limits between 0 and infinity, there
is no longer a single ponding time. For a continuously distrib-
uted Kj, there would theoretically be some infinitesimal area
on which runoff begins almost immediately upon the initiation
of rainfall.

The ensemble infiltration curves such as shown in Fig. 4
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FIG. 4. Areal Effective Infiltration Rate Pattern for Four Values
of Scaled Intensity for Different Degrees of Variation of Satu-
rated Hydraulic Conductivity K (a) CVic= 0.3; (b) CV = 0.6; (¢)
CV, = 1.0 [Dashed Lines Represent Results for Model of Eqgs.
1)-(13)]

can be expressed in terms of the associated values of CVy and
re> as was done above to obtain the relation of K, to r, [(11)].
Employing scaling transformations as well as the underlying
relation of (3), a distributed infiltration expression is formed
to describe the results as follows:

fo=1+ (r. — 1){1 + [%(e“”' - 1)” S re> 1
(12)

in which ensemble scaled r.. = r/K,; ensemble scaled /. =
(f f. dDHI(GAB,); and ensemble scaled f.. = f./K..

A slightly different scaling for r is required in this relation-
ship because of the difference between K, and &;. Parameter
¢ is to be related to CVy below.

It is important to note that (12) describes the variation of
actual (ensemble) infiltration rate £, and not the infiltrability f,,
as do point infiltration equations of Smith-Parlange or Green-
Ampt [(3), or (4) and (5)]. This means (12) can be used
throughout a temporally variable rainfall with changes in r.
as the storm progresses (r,. > 1), using ensemble L. as the
continuous independent variable. Ponding time or depth need
not be separately calculated (there is no single ponding time).
This effectively enables definition of ensemble infiltration
rates for changing rainfall rates, illustrated below, and makes
it applicable for treating a rainfall rate pattern.

The parameter ¢ in (12) describes the curvature of the en-
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semble f..(J,) relation in the region of ponding development.
As CVy approaches 0, parameter ¢ becomes large and K, ap-
proaches &, and as r,. becomes large (12) approaches the be-
havior of (3). Simulation of a range of r,. and CVy values was
used to assess the influence of each of these variables on the
ensemble effective relation f,.(/,). From these results, for log-
normal distribution of K, parameter ¢ is related to r,- and C'Vy,
as illustrated in Figs. 5 and 6. Fig. 5 shows that at larger values
of r,. the value of ¢ becomes independent of r,. and only
related to CVy. Reported values of CVy > 2 are unusual [Elec-
trical Power Research Institute (EPPRI) 1985], but the model
behaves asymptotically, so extension to CVy > 2 is straight-
forward. Fig. 6 illustrates this asymptotic relation of ¢ to CVy.
A single empirical equation was developed to describe the re-
lations between ¢, ., and CVy in the simulation results

—~—8f [1 ~ exp(—0.85(r,- — 1))] (13)

The dashed lines in Figs. 4(a—c) represent the application
of (11)-(13) to the ensemble cases numerically simulated. The
fit is in all cases quite accurate.

In addition to the change in ¢ due to r and CVyg, there is a
slight bias in the effective areal value of G evidenced by the
simulation results. This is demonstrated best in Fig. 4(c); note
that, in the middle sloping portion of the function, each line
falls somewhat below the line of (1). This bias results from
the nonlinear nature of the averaging process of (8) in which
f. and I, are nonlinear functions of K. This biasing for log-
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normal Ky also may be represented using the curve shown in
Fig. 7. In this figure spatial effective G is represented by G.

Distributed G

Variations in capillary parameter G result from variations in
a larger number of soil properties than for K, including pore-
size distribution, soil texture, organic matter, and aggregation.
There is much less published data to indicate the relative ran-
dom variability of G. Smith and Diekkriiger (1992) found G
distributed approximately lognormally, with values of the co-
efficient of variation of G, CVg, from 0.4 to slightly >1, which
are about half the range of variation of K.

From (6), it is clear that a distribution of parameter G would
have the same effect on f, at early times (or at small I) as a
distribution of K;. In fact, for infiltration from ponded upper
boundary conditions rather than rainfall (where all points on
the random K surface are producing runoff), there is no dis-
tinction in the effects of randomization of the two parameters
and they can be considered to act in tandem. For rainfall how-
ever, the effects will diverge at larger times, because the func-
tion K (r,.) [(11)] is not dependent on G. The effect of a range
of CV; on f.(1,) is illustrated in Fig. 8, which exhibits behavior
similar to that which would be expected for variable K.

The joint distribution of K and G is relevant to simulating
ensemble infiltration, and its simulation is straightforward with
the I.LH method. Joint variation would result in additive effects
on f, at early times, to the extent that these two variables were
randomly independent. However, in the relative absence of
field data for the interrelation of the distribution of these var-
iables, this topic is left for future studies.

Patterns of r(f)

The LH simulation of a randomized infiltration surface can
be compared with use of the model proposed here to demon-
strate that early time variations in r are accurately simulated
by application of (11)~(13). For the heterogeneous as well as
uniform surfaces, use of f,(/,) rather than f.(¢) is important to
represent the effect of variations in rainfall intensity on pond-
ing and runoff. An example for a simple case is presented in
Fig. 9 for a soil with CVy = 1, and o = 0.85. Results are shown
in dimensioned form. Rain-rate changes from 0.3 to 0.6 cm/
min at 6 min {/, = 1.8 cm) and back to 0.3 cm/min at 25 min.
The model simulation is essentially undistinguishable from the
ensemble performance. Note that the slight drop in infiltration
rate due to reduction in r at 25 min (about [, = 7.5) is repro-
duced by both model [(12)] and numerical LH sampling sim-
ulation.

Randomly Varied G:
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FIG. 8. Variation in G Has Effect on Areal Effective Infiltration
Relation (/) Very Similar to That of Variation in K
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FIG. 8. Using Relation f(/) Rather Than f(t) Allows Simulation
of Effect of Changing Value of r Quite Accurately with Eq. (12),
as lllustrated Here on Soil with CV, = 1 (r = 0.3 cm/m for 6 min
and 0.6 cm/min for 19 min) [Open Circles Are Ensembie Simu-
lation with LH Sampling; Results for Use of Eq. (12) Are Shown
with Solid Dots]

FIELD EVIDENCE AND MODEL APPLICATION

The two most distinguishing features of the pattern of in-
filtration from heterogeneous ensembles are the gradual ap-
pearance of runoff (no sudden ponding time) and the interac-
tion between effective final infiltration rate and rainfall
intensity. Thus for field evidence one looks for these two char-
acteristics in experimental data. Although extensive evidence
exists illustrating the highly variable nature of soil hydraulic
properties and infiltration [e.g., Nielsen et al. (1973), Bresler
and Dagan (1983), Grah et al. (1983), EPRI (1985), and
Loague (1986)], there are no carefully designed experimental
studies with extensive measurements to determine both the
spatial variation of infiltration parameters and the runoff be-
havior of an area. Such experiments also would require knowi-
edge of the microtopography and organization of rills in re-
lation to the variations in infiltrability due to the interaction
of runoff—run-on effects that are likely to interact with the
independent sampling that is assumed in the model presented
above.

Given the lack of this type of detailed experimental data,
one proceeds as follows. First, several modeling studies are
discussed in which the results indicate a bias in comparison
to observed data that are indicative of heterogenous infiltration
impacts on asymptotic infiltration rate. Second, the model pre-
sented here will be applied and contrasted to a nonvariable
infiltration case and compared to observations that exhibit
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some of the characteristics of runoff generated from a heter-
ogeneously infiltrating surface noted above.

The first case is drawn from extensive application of the
KINEROS rainfall-runoff-erosion model (Woolhiser et al. 1990)
to several of the Lucky Hills subcatchments in the USDA-Ag-
ricultural Research Service Walnut Gulch Experimental Water-
shed, Tombstone, Ariz. (Renard et al. 1993). KINERQOS is a
distributed kinematic wave model that represents the catchment
as a series of cascading overland planes and trapezoidal chan-
nels. Within each overland flow plane, infiltration parameters
are assumed uniform, and the 1D continuity equation is solved
interactively with infiltration [(3)] using finite-difference meth-
ods (Woolhiser et al. 1990; Smith et al. 1995). In the application
of the model all simulations with uniform K assumptions have
shown that model predictions are biased higher for larger rain-
fall intensities (and depths) and relatively lower for small rain-
fall rates (Goodrich 1990; Goodrich et al. 1993, 1994; Smith et
al. 1995). This is the expected behavior of a catchment with
small-scale heterogeneity of infiltration rates, as shown above.
Fig. 10 illustrates the bias for a set of observed runoff events
on Lucky Hills subcatchments 102 (1.4 ha) and 104 (4.4 ha).
The value of K used for each catchment was found by cali-
bration on one data set and applied to an independent data set
(Goodrich 1990). The calibration objective function favors the
fit of larger events, and in all cases there was a bias such that
small events were almost always underpredicted. This is exactly
the expected result for surfaces with small-scale heterogeneities
in K, based on the results in Fig. 3.

Another study in New Mexico by Gotti (1996) was dramatic
in demonstrating the effect of storm size on larger heteroge-
neous areas. A large number of storm runoff events for a 1 ha
catchment were simulated with the KINEROS model [using
(3)). She found that a considerable bias in fitted values of Kj,
based on storm size, was necessary to match storm runoff re-
sults. To obtain reasonable simulations of measured data, Gotti
separated the storms into smaller and larger intensity events
and assigned a much smaller value of K to the smaller inten-
sity events than to the more intense events. This is again con-
sistent with the expected effects of significant heterogeneity in
K, over the catchment.

A newer version of the KINEROS model [KINEROS2,
Smith et al. (1995)] was modified to incorporate the spatially
variable infiltration method presented in (12). Examples of ap-
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plication of the model to several cases follows. In the first case
the model was applied to the 0.36-ha Lucky Hills 106 sub-
catchment of Walnut Gulch. The selected event occurred on
Aug. 31, 1966, and produced a double-peaked hydrograph
with a small amount of runoff occurring in the ecarliest peak.
Parameters for the model were derived strictly from field ob-
servations and were not optimized to match the observed hy-
drograph. Geometric model parameters were derived from a
1:480, 0.3048-m (1-ft) contour interval orthophoto map. The
watershed was discretized into 23 overland flow elements con-
tributing to a network of seven channels. The area of each
overland flow element as well as a representative flow length
was digitized. This length became the length of the overland
flow plane. By dividing the area by the flow length, the width
of the plane was obtained. During the flow length digitization,
the slope of the flow element also was determined using
Gray’s method (1961). Channel slope and length were ob-
tained in the same manner. Trapezoidal channel geometry for
each channel was measured in the field. Hydraulic roughness
estimates for each modeling element also were field estimated
using guidelines from Engman (1986). Seventeen soil samples
were obtained and analyzed to determine their textural prop-
erties. From this data, estimates of K; and G for each sample
were obtained from Rawls et al. (1982), with adjustments for
rock (>2 mm) using the relationship of Bouwer and Rice
(1984). The average K; from the 17 samples is 13.3 mm/h,
with a coefficient of variation CVy of 0.56. Prestorm estimates
of initial soil water content were estimated using the CREAMS
water balance model (Knisel 1980). The simulation also was
repeated assuming a uniform K on each overland flow plane
(CV, = 0.0), without altering the mean K for each overland
flow plane. Results of the simulations are illustrated in Fig.
11. The simulation is clearly improved by incorporating spatial
variation of infiltration within the model elements (CV, = 0.56
case).

Two other examples are drawn from rainfall simulator plot
studies. The first case uses data from an April 16, 1992, sim-
ulator run on a 10.67-m-long by 3.05-m-wide (35 X 10 ft) plot
in the Bernardino (thermic Ustollic Haplargid) soil complex of
the USDA-ARS Walnut Gulch Experimental Watershed (Si-
manton et al. 1986). The plot contains naturally occurring veg-
etation cover with 40.9% canopy cover at the time of the sim-
ulator run, with a range of surface cover (21.3% rock, 18.2%
gravel, 31.5% soil, 18.6% litter, and 10.4% basal vegetation;
J. R. Simanton, personal communication, June 26, 1997). Im-
mediately adjacent to the plot and just prior to the simulator
run, three ponded disk permeameter measurements were made
with a 7-mm head. The average of the steady infiltration rates
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for three measurements was 128.4 mm/h with a coefficient of
variation of 0.37. A rotating boom rainfall simulator (Weliz et
al. 1992) was then used to apply rainfall with a nearly constant
intensity of 61 mm/h for 23 min. KINEROS2 was run for this
plot, and rainfall input using K and CVy was derived from the
disk permeameter measurements. Measured and simulated re-
sults are illustrated in Fig. 12. Note that using the CV derived
from the three disk measurements produces a simulated runoff
hydrograph that grossly underestimates the observed data.
However it should be noted that the disk permeameter [20.2-
cm (8-in.) diameter] requires a bare soil area without rock
cover for the measurements. Given the variability of both sur-
face and canopy cover in the larger simulator plot, it is rea-
sonable to assume the CVy would be larger than obtained from
the three disk measurements. When the KINEROS?2 simulation
is repeated with CVy increased to 1.0, the resulting simulated
hydrograph closely resembles the observations. Simulation us-
ing the average of the disk data for K (CVy = 0.0) produces
no runoff. Admittedly, CVy was selected based on the obser-
vations, but it falls well within realistic values based on field
observations (Nielsen et al. 1973; EPRI 1985).

A second case involves plot data on a heavier, fine-textured
loam soil at Chickasaw, Okla. The plot has a 5% slope and a
62% cover of grazed grass, with a Manning’s n of 0.54 esti-
mated by Weltz et al. (1992). Experiments were done with the
same equipment as for the previous plot. Simulations with K;
= 3 mm/h do not match the later part of the runoff, and sim-
ulations with Ky = 4 mm/h do not start at the right time. In-
cluding a distribution of K, with CVy = 1.0, however, improves
the simulation in both regions, as illustrated in Fig. 13.

Several items are worth noting in the above examples. There
is a compensating interaction between the mean K and CVy
for overall runoff volume production (excess rainfall). A lower
mean K will produce more runoff, as will increasing the spa-
tial variability of infiltration via increasing CVy. However, the
dynamic behavior of the simulated hydrograph cannot be eas-
ily matched by altering one or other of the parameters. In the
Lucky Hills 106 simulation example in Fig. 11, if K is de-
creased to match the second peak and CVy is set to zero, the
first peak is overestimated. This is further illustrated in the
simulator plot example of Fig. 13. In this case the peak rate
can be matched by decreasing K, but both the initial start-up
of runoff and peak cannot be simulated without incorporation
of infiltration variability. The point that an additional param-
eter or degree of freedom is added to the model to enhance

10
-~ rain fate/10
= - simulation, CV = 0.37
8 — simulation, CVy =1.0
(3 measured points
< [m] i
& ]
e T
&
[@)]
@
- 4 !
Q It
0 :
0 :
2 E
0 —Lr e ot L dep
0 5 10 15 20 25 30

Time in minutes
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lated when Infiltration Model Includes Effect of Significant Het-
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Soil near Chickashaw, Okla., Demonstrates Additional lmeprove-
ment in Accuracy Afforded by Inclusion of Distribution of K,
Obtaining Simulation Accuracy that Could Not Be Achieved by
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model fitting capability also should be noted. Although the
addition of a parameter does inherently increase the fitting
degrees of freedom, it should not be expected that spatial het-
erogeneity could be treated without any additional pararneters.
The model developed to treat infiltration variability extends a
physically based, parsimonious function. It adds only one ad-
ditional parameter and is numerically efficient. The examples
above, albeit with limited measurements of heterogeneity, il-
lustrate the ability to more realistically simulate observations
of runoff generation on heterogeneous watersheds or hill-
slopes. Further physical model discretization of a hillslope or
watershed to treat small-scale infiltration variation is irmprac-
tical and for each new model element would add a full suite
of both hydraulic and infiltration model parameters, whereas
the model presented herein accomplishes this with a single
additional parameter.

SUMMARY AND CONCLUSIONS

Large, extreme runoff events are dominated by rainfall, and
infiltration plays a smaller role in such cases. However, as
demonstrated here and in previous studies, the inclusion of
infiltraton heterogeneity is valuable for treating the total range
of runoff events representing the general water resources pic-
ture of a catchment. Developed and demonstrated here is a
model for field-scale infiltration, which can reflect the degree
of random variation of infiltration parameters over an area.
Unlike previous such models, (12) does not require extensive
numerical or Monte-Carlo procedures to represent heteroge-
neity, making it more suitable for hydrologic practice. The
random variation of either of the two basic infiltration param-
eters can be easily represented by a single additional param-
eter. The model is presented in normalized form and is appli-
cable to infiltration/runoff for any soil and any pattern of
rainfall.

Field measurements from both plots and small watersheds
suggest that inclusion of the effect of distributed K in simu-
lations using this model can significantly improve runoff es-
timation. Application of the model described here improves
the accuracy of simulation over a range of storms and catch-
ment sizes.
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