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Abstract: A method to quickly compute the range of values from the most optimistic and the
most pessimistic viewpoint (best to worst) for a hierarchically arranged multiattribute problem under the
assumption of an additive value function is presented. The method is an analysis tool to be applied after
commensurate attribute values have been determined for each alternative but without the need to specify
or determine weights on the attributes explicitly. The decision maker can change the priority order of the
criteria or attributes at any tier in the hierarchy and quickly recompute the range from best to worst of
the overall value measurement. A simple algorithmic method is presented that requires no linear
programming solver. This solution method makes it easy to determine the result of modifying priorities
in portions of the hierarchical architecture without recalculating the contributions of unaffected branches.
The simple calculations are illustrated and generalization to any hierarchical structure is readily apparent.

Introduction

This work is prompted by the need for tools that can be quickly understood and applied as encouraged in Dyer et
al. (1992) to multi-attribute decision making situations. In particular we consider a problem that has been
formulated as a hierarchical multi-attribute decision problem. The development here is an extension of the work
in Salo and Hémaldinen (1992) and Yakowitz, Lane and Szidarovszky (1993) that considers the impact on an
addutive value function caused by allowing the weights to vary subject to a priority ordering of the criteria. These
works fall under the category of partial information in multi-attribute utility theory (Fishburn, 1965; Kirkwood and
Sarin, 1985; or see Hazen, 1986 for a discussion and numerous references). Most techniques proposed in the
literature for assessing weights, either solicit weights directly, or seek to discern them indirectly, from the decision
maker (DM) (Goicoechea, Hansen and Duckstein, 1982; Keeney and Raiffa, 1976, Saaty, 1980 are examples). The
resultant ranking of the alternatives can be very sensitive to the importance order of the attributes, and therefore
the weights. The caleulations for examining this sensitivity are very straightforward in the case of a simple ordinal
priority ranking of the attributes (Salo and Hamailsinen, 1992; Yakowitz, Lane and Szidarovszky , 1993).
However, the complexity imposed by a hierarchical architecture on examining the range of values of an additive
Value function, at first appears to be difficult to overcome.

Under a hierarchy, the structure of the decision priorities does not necessarily imply an ordinal ranking of each
individual attribute. Therefore, examining the solutions of the linear programs in Salo and Hamaldinen (1992) and
Yakowitz, Lane and Szidarovszky (1993), given an ordinal ranking of the attributes, without considering the
added freedom (or relaxation of the weights) possible due to the hierarchical structure, does not provide a complete
picture of weight vector sensitivity or the range of the additive value function. A method to quickly compute the
range of values from best to worst for a hierarchically arranged multiattribute problem under the assumption of an
additive value function is presented here. The method allows the decision maker to quickly assess the most
opurustic and most pessumistic decision maker viewpoint given alternative preference orders of the attributes at
any tier in the hierarchy. It is assumed that attribute values for each alternative have been determined by some
method such as the Analytic Hierarchy Process (Saatv, 1930).

Computing the range of value of an additive value function makes it possible for various stakeholders to determine
the sensitivity of the ranking of alternatives to the hierarchical order. Often this order is a compromise between
various objectives. Quickly examining the range of the value function under other hierarchical scenarios may reveal
an alternative choice that is favored by each and eliminates the need to discern weights explicitly.




We begin by defining the hierarchy followed by a brief descriptions of the algorithm for computing the range of
the value function. Algorithmic details are then developed followed by detailed description of the calculations
needed for a specific hierarchical structure. The generalization is readily apparent.

Defining the Hierarchy

Figure 1 illustrates a generic hierarchical architecture for a multi-attribute decision problem. Note that branches
or subgraphs of the hierarchy may terminate at different tiers or levels. Dummy elements may of course be added
at intermediate levels if equal depth branches are desired. At the highest level (Tier 1) is the Major Goal. This
could be Sustainable Agricultural System in the case of a problem to determine the best farm management system
from a finite number of alternatives for a given farm or region, or Traffic Plan for a problem to define a traffic
policy from among several alternative plans. The subsequent levels (Tier 2 through N) contain sub-elements of the
parent or previous levels. Thus, for example in the sustainable agriculture problem, Tier 2 could include
environmental, economic, and social sub-goals. Subsequent levels of the environmental branch could then include
surface water, sub-surface water, and soil, followed by criteria including fertilizer and pesticide impacts, and
erosion under the proper parent category. Of interest in this work is the effect of changing the priority (importance
or preference) order of the elements of the hierarchy. In all figures, it is assumed that the priority order is from left
to right. That is, for elements emanating from a common branch, an element to the left of another element in the
same tier has a higher priority and therefore more "weight" in the decision making process at that level. No
assumption is made regarding the priority relationship between elements on different branches.

As is the case in most multi-attribute solution methods, the goal of the methodology is to determine the value of

an additive value function that can be used to rank the set of alternatives. An additive value function in the
following form is assumed:

Viwv) =3 wy,

Where / ranges over the terminal elements of each branch and the weights, w, are consistent with the hierarchy and
normalized so that they sum to 1. We emphasize that V' is a function of both the individual criterion values
determined for each alternative and the weights determined for each attribute or criteria. Since we are primarily
concerned with the effects on the above function caused by changing hierarchical element pricrities, we will assume

that for each alternative, V; is fixed for all i. We refer to the above as ¥, or subscripted, ¥, when wishing to
distinguish between alternatives.
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Figure 1. Generic Decision Hierarchy
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Algorithm Outline for Computing the Range of Values Under a Hierarchy

The algorithm for assessing the full range from best to worst under our assumptions begins at the lowest tier of each
branch of the hierarchy. Best and worst additive values are computed for each element using closed form solutions
to two simple linear programs that maximize and minimize ¥ at the parent element over all weights consistent with
the priority order of the decision elements. These same programs are used at intermediate elements, substituting
the maximum (or minimum) values previously computed as the values for those elements that have descendent
elements, until the main or first tier is reached. Altering the priority at any level requires redoing only those
calculations that occur after that point to the main or first tier. This fact makes it easy to examine the effects of

changing priorities or decision maker preferences, which may be especially useful if there are more than one
decision maker or affected parties involved.

Algorithmic Details:
Details of the algorithm will now be described. Please refer to the annotated portion of Figure 1.

Computing Best and Worst Subvalues for the Lowest Tier of each Subgraph

Given the importance order of the criteria at the lowest tier of each subgraph, best and worst additive values can

be found without requiring the decision maker to set specific weights for each of the criteria (Salo and
Hamalainen,1992; Yakowitz, Lane and Szidarovszky,1993).

Referring to the notated branch or subgraph at Tier N of Figure 1, it is assumed that if i < J then criterion i has a
higher priority than criterion / (i.e. criterion 1 has higher priority than criterion 2 and so forth). Since there are m
criteria, the priority order suggests that we should require that the weights, w,, i=1,m, have the following relation:

Wy 2w, 2.0 2w,

Therefore, given the priority order and the criteria values for alternative j, the best (worst) composite score that

alternative / can achieve is determined by solving the following linear programs (LPs) (Yakowitz, Lane and
Szidarovszky, 1993):

Best (Worst) Additive Value:

. m
max (min), V- Moo Wy,

) st Y0 w =1

w.zw.>..2w =20,
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The best additive value is found by maximizing the objective function while the worst additive value is found by
munimizing the objective function. The first constraint is a normalizing constraint. The second, fixes the importance

order and restricts the weights to be positive. The above linear programs are solvable in closed form according to
Yakowitz, Lane and Szidarovszky (1993): For k=1,... ,m, let

Sy=1k)i 1 & Vs

Then, the best or maximum additive value (Max V") for alternative j is given by :

(Max V), = max, {S,g}‘ )
The worst or minimum additive value (Min V) for alternative / is given by :

Min V)= min {S,}. @)
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In the case of equal importance of some criteria, there are strict equalities in the importance order constraint set,
e W=, for;in a subset, / of the integers 1 through m. If we define X' = (Y /, 2, ..., m}\ J}, then the above

formulas for Max and Min V apply if k is restricted to the set X (ie. ke X). Calculations for other variations,
including cases in which it is desired to specify the level of preference between criteria, criterion 1 is to have a

weight at least twice that of criterion 2, for example, are given in Yakowitz, Lane and Szidarovszky (1993)*.

For each alternative, the above solutions determine the maximum and minimum additive value possible for any
combination of weights that are consistent with the hierarchial order of the criteria/attributes. Having these two
objective values available immediately alerts the DM to the sensitivity of each alternative to the weights possible
with the current priority order of the criteria. These values can be displayed graphically (illustrated later) in the

form of side by side bar graphs with the best value for each alternative at the top of each bar and the worst value
at the bottom.

An alternative that exhibits little difference between the best and worst values indicates that this alternative is
relatively msensitive to any vector of weights consistent with the importance order. Additionally, if the worst value
of one alternative is greater than the best value of another alternative, then that alternative strongly dominates

(Yakowitz, Lane and Szidarovszky, 1993) or absolutely dominates (Salo and Hamadldinen, 1992) the other
alternative.

Computing Best and Worst Values for a Multi-level Hierarchy

Additional constraints can easily be added to the LPs to account for a hierarchy of the criteria and still provide the
range from best to worst composite scores. For example, suppose we have a three tier hierarchy, and each element
i 1n Tier 2 is composed of £; sub-criteria in Tier 3, the terminating level. Let V., jand Wy, k=1, . t; indicate the
values (scores) for altemative j, and sub-weights (unspecified), respectively, associated with sub-criteria k& of
criteria /. Then, the following two constraints for each i are added to best/worst LPs to account for this hierarchy:

WeEW m Wit wi,ti
w.zw = . ..x2w 20
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The objective functions of the best/worst LPs for alternative j are then replaced by:

max(min) Zi,k WikVik,j -

Again, there is no need to specify weights or sub-weights to obtain the range from maximum to minimum. Linear
modifications due to more general hierarchical considerations are easily made in this manner. Therefore, an explicit
-linear program for computing the maximum and minimum ¥ for any hierarchy can be formulated and solved
explicitly. The notation needed to indicate each level of the hierarchy, however, becomes very cumbersome.
Solving these programs explicitly is not necessary since an algorithm that considers each portion of the hierarchy
in an optimal manner is much more amenable to examining the effects of changing priorities. Calculating min and
max V'is an intuitively simple procedure when performed from the lowest tier up. To illustrate this fact, the solution
procedure will be described for the four tier decision hierarchy of Figure 2.

Algorithm for Computing the Range of Values Under a Given Hierarchy

The following procedure is described for solving for the range from best to worst of additive values under the

hierarchy illustrated in Figure 2. The procedure for other hierarchial variations is handled in a similar manner and
will become transparent.

“The formula for S 5 on page 175 of Yakowitz, Lane and Szidarovszky (1993) for this case is in error, please
contact the lead author for correction.
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Figure 2. Decision Hierarchy for Algorithmic Explanation

For each alternative under consideration, we assume that the associated value for the terminal elements has been
determined by some means. Thus, for Figure 2, the values indicated by v(2.2), v(3.1.2), v(3.1.3), v(3.1.4), v(3.3.2),
Vv(4.1.1.1) ..., v(4.1.1.m), v(4.3.1.1) ,..., v(4.3.1.n), are known for each alternative. All indices are with respect to
the huerarchy of Figure 2, which indicates the inputs and calculations required.

Calculations start at the lowest Tier in the hierarchy. In this case, Tier 4.

| | Tier 4.
= Compute for each alternative J,
S(4']'])Ig’= ]/kg'z.:]m_k VJ(J.].].Z), k=1,... m,
- and S(4.3. )= Vk J,_; o v(43.11), k=1, n
= Then according to (1) and (2),

max (min) v(3.1.1) = max (min), {S(—//.].])k}}, and
mex (min) v,(3.3.1) = max (min); {S(4.3.1),,}.
B Tier 3.
= Compute the following for each alternative j:

Smax(j"])kj: Vk}iop 2 v(3.1.0), fork=1,. 4
with v(3.1.1)= max (111(3.].])), and

Smm(il),g.: Uk} pv(3.11), fork=1,. 4
with v(3.1.1)= min (\3(3.].])).

Sl 33y = 1k 5~y 4 v(3.3.0), k=12,
with v(3.3.1)= max (\6(3.3.])), and

Spnl3.3)ig= 1k S 4 v(3.3.0), k=12
with v(3.3.1)= min (v(3.3.1)).
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w Then:
max (min) VJ(Z 1) = max (min)k {Smax(min) (3 ])kj}> and
marx (min) v(2.3) = max (min),, {5(3.3),‘7}

B Tier 2.
= Compute the following for each alternative ;:
Swal Dy =1k Loy o v(2.0), fork=1,... 3,
with v(2.1)= max (Vj(.?.])), and
v(2.3)= max (v(2.3)), and
Sm,-,,(Z),q: J/kg;':l,..,k v(2.1), fork=1,. 3,
v(2.1)= min (v(2.1)), and
V(2.3)= min (v(2.3)).
= Then:

Best (WOT‘Sf) V/ = max (min)k {Smax(min) (2)/6}}

A bar graph with a bar for each alternative that ranges from the Best I, at the top of each bar to the Worst V. atthe

bottom of each bar would aid the decision maker by indicating domination and the sensitivity of each alternative
to the priorities in the hierarchy.

Changing a priority ordering in any tier in the hierarchy, requires only recalculating appropriate max and min
values in the tiers above. For example, assume Figure 3a is the bar graph obtained under the present priority order
of Figure 2 for four alternatives. Clearly, Alternative 2 dominates Alternative 3 and is preferred to Alternative 1
which is very sensitive to the weights given the existing priority orders. Now, suppose one wishes to consider the
scenario in which the elements previously ordered in Tier 2 are reversed. Then, only those calculations indicated
under Tier 2 given above, need to be computed again. If Figure 3b is the result of the this new evaluation, then it
can be argued that Alternative 2 does well with respect to both of the priority orderings and is preferred over all
other Alternatives for the latter ordering. As described in Yakowitz, Lane and Szidarovszky (1993), the alternatives
can be ranked based on the average of the Besr and Horss V. In both of the example cases Alternative | would
be ranked first. Other scenarios that reflect the ditfering priorities of interested parties or multiple decision makers
could be quickly examined. If, as in this example, one or two Alternatives stand out as doing well under multiple

decision scenarios, one would have a strong basis for supporting these alternatives and avoid unnecessary
argument.
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Conclusions

A method to explicitly calculate the full range values possible for an additive value function subject to the priorities
of a hierarchical decision structure was developed. The method involves the solutions to simple linear programs.
A solution method that does not require that LPs be solved explicitly was presented. This procedure also
minimizes the number of calculations needed to examine the effects of changes to the hierarchical structure. As
illustrated in the example above, the method could be a valuable aid to decision makers especially in the case of
multiple decision makers or stakeholders. In this case, the ability to take into account other viewpoints and examine
the impact on the ranking of altemnatives by the method described above could be a strong negotiation tool.
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