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generally had flat bottoms and depth that varied from 80-120 ft. Structure
at one deep station was abundant while scare at the other.

Factors affecting velocity characteristics in Lower Granite Reservoir
were a function of reserveir location. A model developed to predict channel
and on-site velocities, indicated that the variables river mite/cross
sectional area and total inflow were more significant in predicting upstream
channel velocity (R2 = 0.70), while river mile/cross sectional area and
forebay pool elevation were most significant downstream (R2 = 0.58). On-
site velocities were less predictable than channel velocities.

We found no relationship between river mile and substrate particle size
at deep and mid depth stations. Particles smaller than sand (< 0.061 mm)
and sand dominated the sediment. Percent organic matter ranged from 7-15%
and was significantly higher at one deep station (LG20) than at the other
mid depth and deep stations.

Seasonal differences in abundance in the benthic community were
observed. As in previous surveys of the benthic community in Lower Granite
Reservoir, oligochaetes and chironomids accounted for 99% of the number of
organisms. Highest numbers and standing crops were collected in the summer.
No significant differences in standing crops of benthos were found among
deep and mid depth stations. Variability was similar among stations.
Benthic community structure was generally more diverse at mid depth than
deep stations.

Fish abundance and diversity varied ameng stations and seasons.
Overall, white sturgeon abundance was Tow, especially at mid depth stations.

Sturgeon abundance based upon gill net catches was similar to an earlier
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survey. Northern squawfish abundance was generally low especially predatory
sized fish (> 250 mm).

Catches of northern squawfish at deep stations were consistent with
those from a 1985 survey. Based on our catches residualization of rainbow
trout was high in Lower Granite. During all seasons, rainbow trout provided
high catch rates especially in gill nets. With the exception of rainbow
trout, nongame fish dominated (redside shinérs, northern squawfish, suckers
and carp) the fish community in deep sites. Game fish abundance at mid
depth sites was considerably higher than at deep sites. Largescale suckers
clearly dominated the fish community biomass at all sites.

Fish densities based on hydroacoustical surveys indicated higher fish
abundance at some mid depth sites than others. Fish activity varied by
season. In the spring, higher numbers of fish were recorded at night as
compared to the summer when highest records occurred during the day. Fish
distribution at deep sites was generally in the upper third of the water
column. We found 1ittle correlation (P < 0.05) between target abundance
based on hydroacoustical surveys and catch rates in gill nets, which was
probably a function of fish activity.

Smolts migrating through Lower Granite Reservoir during 1987 were
preyed upon by channel catfish, northern squawfish and smallmouth bass.
Squawfish and bass consumed predominantly chinook salmon, whereas channel
catfish consumed mostly rainbow trout. This may reflect open water foraging
by channel catfish and shoreline foraging by smallmouth bass and squawfish.
Our results suggest a low incidence of predation on salmonid smolts in 1987
similar to results of the 1985 survey. A variety of food items are consumed

in Lower Granite Reservoir, especially crayfish and zooplankton.
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Executive Summary
Deposition of sediment in Lower Granite Reservoir has resulted in a
number of atternatives to lessen the potential threat of flooding in the
Lewiston, Idaho - Clarkston, Washington area. One alternative is to dredge
and then dispose of the dredged materials in the reservoir. This proposal
has caused concern among resource managers over the effects that could
result to fishery resources in Lower Granite Reservoir. As a result this

study was funded with the following objectives:

1. To characterize the physical habitat at six sites in Lower Granite

Reservoir;

2. To assess seasona) dynamics of benthic community biomass in Lower

Granite Reservoir;

3. To assess seasonal importance of selected disposal areas for fishes

in Lower Granite Reservoir; and

4. To assess the occurrence of salmonid predation by resident fishes

in selected habitats in Lower Granite Reservoir.

We established six sampling sites; three were mid depth (20-60 ft), one
was shallow (< 20 ft) and two were in deep water (> 60 ft). The shallow
station was located near RM 127 whereas the remaining stations were located
downstream of RM 120, the location in Lower Granite Reservoir identified as
being significant for dredge disposal. Sampling was initiated in April 1987
and continued through December 1987.

Substantial differences in bathmetry exist between mid depth and deep
sites. Mid depth sites varied in depth from 30-50 ft with typically flat

bottoms. A1l sites were structurally "simple” systems. Deep sites
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Introduction

Sediment dredging and potential in-water disposal in Lower Granite
Reservoir, Washington, has aroused concern among resource managers over
possible deleterjous affacts on aquatic resources. Originally, hydraulic
considerations were focused on shallow and deep water; with further study,
however, the Army Corps of Engineers determined that disposal downstream
from river mile (RM) 120 would not adversely affect flood profile at the
Lewiston Levees. Therefore, emphasis on disposal was shifted to sites
downstream of RM 120. Bennett and Shrier (1986) suggested shallow water
habitat in Lower Granite Reservoir serves as foraging and resting areas for
Juvenile anadromous salmonid fishes and also as spawning and rearing for
resident game fishes. In contrast, deep water habitats supported fewer
fishes, a majority of which were nongame catostomid and c¢yprinid fishes.
The principal species of concern in deep water was the white sturgeon
{Acipenser transmontanys). Sturgeon abundance was deemed low although
presence was documented.

The ecological significance of shallow water habitat and the limited
quantity of shallow water sites below RM 120 shifted the focus to mid depth
and deep water habitats in Lower Granite Reservoir which provided the
impetus for this study. Use of mid depth sites for in-water disposal of
dredge material to create additional shallow water habitat and possibly
benefit the fishery resource was one reason for this study. Thus, possible
beneficial uses could emanate from in-water disposal of dredge material.
However, paucity of information on fish and benthic communities at mid depth
habitats has made managers cautious of this approach without an adequate

data base. Therefore, this study was funded to provide supplemental

O T P o S TTRTV [ U IO S I R B ST 1y,




information to previous research (Bennett and Shrier 1986) and to provide

background information on mid depth habitats.
ObJjectives

1) To characterize physical habitat at six sites in Lower Granite

Reservoir;

2) To assess seasonal dynamics of_benthic community biomass in
Lower Granite Reservoir;

3) To assess seasonal importance of selected disposal areas for
fishes in Lower Granite Reservoir;

4) To assess occurrence of salmonid predation by resident fishes in

selected habitats in Lower Granite Reservoir.

Study Area

Six stations were selected for study in Lower Granite Reservoir
(Figure 1). One shallow, (LG2S) three mid depth and two deep water stations
were selected after thorough consultation with Corps of Engineer personnel
involved with dredging and disposal activities. Sampling locations at deep
and shallow water stations were identical to these previously sampled
(Bennett and Shrier 1986) to provide for continuity of data and provide
information on between year variation. Four additional shallow stations
were sampled as part of another project to evaluate habitat utilization by
salmonid fishes and predation (Bennett et al. 1988). Locations of these
four additional shallow sites are shown in Figure 1. Ecological activity at

the shallow station was believed to be similar to that for shallow water

T A O T T S S T v ke o 4 s




‘weaaysdn ssaaboud Layy

se add] Je)Iqey YIv3 ULY}LM PIIIQENU BJe SUOLIBIS “jejiqey {q) Adjem-

dasp a0 ‘(y) Jarem-prw ‘() JA3J0M-MO| |BYS IJ0U3P S3POD UOLIR]S JO pUd ay)
18 5423337 J10A43SBY d)LURAD UamO] U0 SUOLILIO| UO)les Dut|dwes ysi4 | auanbiy

o€ WY

_ SEODT sejjw y = yowy V

18A1Y o)eug S ejeog N
uojsyi8|) S¢ol |
SY¥Y91
uojisimen) OCINY vLLNY l
SS9 -
— 921 NYd .@01_’ ol L WY w_."

18A1Y 181BMIBOJD S_..wmun_Qva._ aroi

WED >
Si9O1 |
| weq -

ejiuBip 10mo07

110A1883Y d)lueIH 18MO]

2
K
E
=




created by disposal in the lower reservoir; however, direct comparisons

should be made cautiously. General characteristics at each of the sites are

shown in Table 1.

Objective 1: To characterfze physical habitat at six proposed disposal

sites in Lower Granite Reservoir.

Methods

Mapping

Morphometric maps of all six stations were constructed using an Eagle
Mach I fish-finder (single transducer recording echosounder). Resolution of
our mapping procedures is difficult to state explicitly. Our depth
measurements were quite accurate (within | ft). Our main source of
potential error lies in how well we were able to stay exactly on a
designated transect. Our "horizontal” resolution is not perfect, but the
resulting maps concur completely with our working knowledge of each site,
and certainly provide adequate resolution for assessing site morphometry.
Shoreline morphometry and reservoir width was obtained from the National
Oceanic and Atmospheric Administration (NOAA) Nautical Chart 18548
(Washington - Idaho Snake River, Lower Granite Lake). We measured depth
profiles while travelling at constant speed along transects between known
points located using the NOAA nautical chart. Six to twelve transects were
run parallel and perpendicular to the channel at all stations. No attempt
was made to map areas deeper than 60 ft at the mid depth stations, while the

entire width of the reservoir was mapped at the deep stations.
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Station shorelines were redrawn to scale from the NCAA nautical chart
and depths recorded at points along each transect where an appreciable
change in depth occurred. Lines representing 10 ft contour intervals were

drawn by hand and then digitized for final plotting.

Velocity

Velocity measurements were taken during 1987 when discharge ranged from
high to Jow with a Swoffer Model 2100 velocity meter. We measured velocity
at ten stations; four additional shallow stations were included in the
analysis (see Bennett et al. 1988 for details). Because 1987 was a low-
water year, "high" discharges were in the range considered "moderate" in a
typical water year. Three profile Tocations were selected at each station.
The "channel” profile was located at the deepest part of the channel on a
transect perpendicular to the channel across the middle of the sampling
station. Deep sites have only the channel profile which was also the "on-
site” profile. The second location, the "midway” profile, was located where
one half the depth between the "on-site” profile depth and channel profile
depth occurred. The third location, the "on-site" profile was located on
the middle of the site at a depth half way between depths describing the
site (shallow 10 ft; mid depth 40 ft). At shallow stations, velocity
measurements were recorded at the surface and then every 1 m in depth,
whereas measurements at deep and mid depth stations were taken at the
following depths: surface, 1, 5, 10, 15, 20, 25, 30, and 35 m.

We developed equations to predict velocities throughout Lower Granite
Reservoir and to determine which morphometric and dam related activities

influenced reservoir velocities. Predictive equations were derived based on
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two different dependent variables: average channel velocity and average on-
site velocity. Average channel velocity is the mean of all measurements in
the upper 15 m of the channel profile, which ensures an equal number of
measurements (5) from all channel profiles regardless of total depth. Al
deep, mid depth and shallow stations were included in average channel
velocity regressions. Average on-site velocity represents the mean of all
readings taken from shallow and mid depth on-site profiles (i.e. 10 ft and
40 ft). Both deep stations were excluded from on-site equations because
velocity measurements were taken only from the channel profiles.

Variables examined for retationships with channel and on-site
velocities were related to morphometric and regulated characteristics of the
reservoir. Morphometric variables were unique constants associated with
each station including river mile, reservoir width, distance from channel to
on-site profile, maximum depth, depths of channel, midway, and on-site
profiles, and cross-sectional area. Regulated variables were variable as a
result of dam-related activities and included confluence (Snake and
Clearwater Rivers) and forebay pool elevations, total (turbine plus
spillway) discharge at Lower Granite Dam, and inflow at the confluence.
Variables within each category were mutually dependent which restricted us
to use one variable from each category to avoid violating the least squares
regression assumption of independence. When appropriate, we used ratios of
variables (i.e. river mile/cross sectional area) within each category which
incorporated effects of two colinear independent variables as one
independent variable. We also transformed variables as needed to meet

homogeneity of variance and normality assumptions of regression procedures,
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Substrate

Substrate samples were collected with a ponar dredge and analyzed for
particle size distribution and organic matter content. Samples were dried
at 105°C for 32 hours and separated by dry sieving into three categories:
particles Targer than sand (> 2.00 mm), sand (0.061 mm-2.00 mm}, and
particles smaller than sand (< 0.061 mm). Because the fine sediments were
caked, samples were gently crushed manually before sieving. After sieving,
we measured the weight (g) of each substrate size category.

We analyzed organic matter content by drying the sediment in crucibles
at 105°C for 21 hours followed by ignition at 550°C for 3.5 hours (APHA
1980). Samples were then wetted and re-dried at 105°C for 21 hours to re-
hydrate particles smaller than sands. Samples were cooled in a dessicator
after each drying period. Percent organic matter was determined as the

difference between weights prior to and following ignition.

Results

Bathymetric sampling at both deep stations revealed the steep-sided
nature of their southwest shores. At LG2D, this shoreline is actually a
rearly vertical cliff (Figure 2). At LGID, the channel is quite flat and
regular at about 110 ft, with holes over 120 ft deep at either end of the
station (Figure 3). In contrast, the channel at LG2D is wider and Tess
regular, generally ranging from about 80-90 ft deep, with an area over 100
ft deep at the downstream end of the station. An area of shallower depth
occurs just northeast of the channel of LG2D, as well as a 50-60 ft deep

shelf southwest of the channel in the upstream portion of the station.
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1000 ft Contour Interval 10 ft

Figure 2. Morphometric map of station LG2D

(RM 119) in Lower Granite
Reservoir, Washington.
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1000 ft Contour Interval 10 ft

Figure 3. Morphometric map of stations LG2M and LGID (RM 114) in
Lower Granite Reservoir, Washington.
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Depth information at mid depth stations revealed substantiatl
differences among locations. The 60 ft depth contour at LGIM extended about
half the width of the reservoir (~ 1500 ft) at the downstream 1imit but only
about 500 ft at the upstream limit (Figure 4). An underwater ridge between
the 30 and 40 ft contours rises to a depth of 10 ft and parallels the east
shore about 200 ft from the waterline. At station LG2M, the 60 ft depth
contour extended about 300-500 ft offshore; a shelf 40-60 ft deep and about
200 ft wide was the major feature at LG2M (Figure 3). At LG3M, the bottom
was considerably flatter and shallower (Figure 5). Most of the shelf area
occurred between 20 and 40 ft in depth. The 60 ft depth contour closely
paralleled the southwestern shoreline, extending about 1000 ft toward the
channel. Habitat mapping of LG2S is included in a comparison of shallow
stations (Bennett et al. 1988).

Velocity

A graphical analysis of velocity readings from all depths, profiles and
stations preceeded our regression analyses. No consistent depth-related
velocity patterns emerged from plots of velocity profiles overtime (Appendix
A}; profiles at all stations varied widely among sample dates. We observed
no strong relationship of velocity readings with total inflow at the
confluence or total discharge at Lower Granite Dam. Figures 6 and 7
f1lustrate velocity patterns observed over river mile and profile at a depth
of 5 m. River miles 134.7, 132.4, 129.2 and 127.3 (corresponding to
stations LG5S, LS4S, LB3S and LG2S, respectively) show the strongest
positive relationships with both total inflow (Figure 6) and total discharge
(Figure 7) most 1ikely a function of the "riverine” nature of the upper

reservoir. As expected, velocity in up-reservoir areas is more responsive
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to water "inputs" and "outputs" than in downstream areas where water volume
is greater and less responsive to inflow and discharge.

Channel.-Average channel velocity over the Tength of Lower Granite
Reservoir (RM 111 - 134) was best predicted by the ratio of river mile/cross
sectional area and forebay pool elevation (adjusted RZ = 0.78, p = 0.0001;
Figure 8). Both variables were highly significant in contributing to the
model (p <.001). Associated 95% confidence bounds for each predicted
average velocity had a mean of +0.219.

Regressions to predict upstream (RM 120 - 134) and downstream {RM 111 -
120) channel velocities within the reservoir demonstrated the importance of
different variables in the two reservoir sections. The variables river
mile/cross sectional area and total inflow were most important for
predicting upstream channel velocity (adjusted RZ =.70, p =.0001; Figure 9),
while river mile/cross sectional area and forebay pool elevation were most
important in the downstream section (adjusted RZ = 0.58, p = .0001; Figure
10}. We dropped one outlier from the upstream velocity data set because of
its overriding effect on the analysis (R2 with the outlier = 0.64).
Confidence intervals (95%) for predicted values had an overall mean of
$0.242 in the upstream section and +0.194 in the downstream section.

On-site.-We were not able to develop a reservoir-wide (RM 111 to 134)
regression equation to predict average "on-site” velocities (R2 < 0.50).
Equations developed for the upstream and downstream portions of the
reservoir indicate different variables were important in affecting site
velocities. Log transformation of the average site velocities was necessary
for both upstream and downstream sections to Tinearize the relationship.

Polynomial transformations of the independent variables were necessary to

R W g v mesd .4 . L i i T




17

*{oas
612°0 -/+) saniea pajdipaad uo (punog) [eAdalul BDUBPLIUDD %4GE ULAW 8y) ajeaul|ap mwz_FAvmuuww
a3y} pue Ac._umz 3t 9°1) diysuotje|au 1:1 pajdadxs ay)} sjuasaadad aul| pi|os 3yl “SjudLdL}$R0D
uoissalbaa ade [0[°0 pue 8z2°6G2 apLym anjea 1dasuajug Y3 SL €14 ‘uolienba uolssauabau
8AL301paad ay} ul -weq ajtuedg uamo Je (344 ¢14) uotleaata (ood Aeqadoy pue (IISX/WY t,34)
BaJde [BUOL}I3S $S04D / 3|LW 4BALL JO Orjea 3y) 0} (HEI 01 T[T WY) 410A43S84 asLIUa Yy} J43a0 (d3s/1y)

A3100|8A |auuey> abedase Buijejaa (1000°=d wwh.nmxu uoLssaabad woaj sanjea pajyaipaad *sa [enjdy ‘g aanbly4

Ay1oojap sbpuany |pnjoy

“ _ m“o 9'0 ¥'0 z0 0
1 | l 1 1 i
0006
io _ 0

10
T
z0 o
£'0 Q.
O
\I.l
¥0
Q.
S0 3
<
. 9'0 m
o O
Lo ~
_ )]

. 8'0
. <
60
_ O
punog Xcg Jemo] © —_— (@)
- puneg xGg J4eddn v prly
v 7 JUIog PadIPRIY SA PMOY m <

(3d4)101°0 ~ (23SX/NY)BZ'GST + LL1'¥L = 197 fouuoy) ony

(Y€1 0} L1LL WY) sanioojep jsuubyy abosany

N

a e

T .

NP AT

el



18

"(935/1) ov2'0 -/+) saniea pajoipauad wo (punoq)

LeA4D3uL @Juapljuod %56 uedl ay) ajeaul|ap Saulf pajjop a3yj pue (0°1=54 4t "@°1) diysuoijejau

1:1 pajdadxa ayj sjuasaudau aul| pL{os ayj "SIUBLDLJIS0D UOLSSAIBAL aue G6.°1EZ PU® 940°0 3| Lym
an|ea 3daduaur ay} st 80§ [- ‘uoiLjenba uorssaabaa aaL1o1paad ayy ul  “sJaAty JajeMsRA|) pue ayRUS
941 Jo asduan|juod 8yl e (]l ‘S4J)) mo|jur (B30 pue (HISX/WH $,14) B4R |BUOLIDAS SSOUD / 9w
43ALd JO O13ed BY} 0} JLOAJASAY BILUBAY .aamo] j0 uoijdod (pEl 03 m- WY} weauaysdn ayy ur (oDas/34)

A1120|3A (auueyd abeaaae Buijepad {1000 =d “oh.ung uo1ssaabad woxy san{ea pajoipadd “SA [en3dyY ‘6 aJnbiq

A}1D0)aA" @AY |DN)OY

80 90 ¥ A 0
d d . | 1 ol—og0—L olo—0 0
- 10
~ 2°0
— £°0
— ¥°0
- S0
— 9°0
_ v — L0
- _ (1:1) sun payosdxny
- v - 8°0
_ -~ v (¥2'0 —/+) punog semo puo seddp
v ~ o = = .
~ punog Xcg Jamo O — 60
- punog %c6 Jaddn v
— - : julod paaipald EA 1ONPOY = -
v
1l

z \_:oumx\:zummn._nu + (11)9¥0°0 + BOS 1-) = |3 |PUUDY) BAY
A}100j9 |9uuDby) 8bousAy wbasysdn

A}I20|3A "BAY Pa30Ipald

“
e
=




h
—

) *(29s/34 061°0

/+) sangea pajaipaud ue (punog) peasajut 2JUIPLIUOI %56 UBAW ay] 3)eaUL|ap saul] pajjop ay) pue

Ao.~um= 41 r@°1) duysuolyeiau [:[ pajoedxs ayj sjuasauadad aui| pPL|OS BY| SIUILDIL}IB0) uoLSSIAbau

(O4B 4 BL1 pue £01 0 ALLym anjea 3daduajul ay) S| [[2°9/ ‘uolienba uolssaabad aaLjoipaad ayy

Ul ‘weq ajiueay Jamo] e (344 ¢34) uoiljeaala |ood Aeqauoj pue (23SX/WY $,33) eade [eUOL}DDBS SSOKD

/ BLIW ABALA JO OLTed Y] 0] AL10ALBSAL 343 Jo uoildod (021 03 1] W) wBaaysumop ayy up (das/3y)
A3340019a |auuey> abedaae Burie|ad ([000"=d “wm.uwzv uoissaabas wouay sanjea pajdipasd "sA fenydy Q[ aanbiy

Ay100jap abousay [onyoy

20 0 z'0 0
. : 1 o-0—0—1 >—od o—1 0
© -~ O

0

_ 10 N

1'0 @

° o

- —

O

® o — 2'0 —+

q)
o -~ O )
d ;

.7 - £°0 W
-~ » e :
~ ® =
- -

% . _ 40 2
v W ;

» v P v ®
T i < -
v \4\ (1:1) auny pajondxy [ S0 @

d —
~ - (61°0 —/+) punog Jema7 pup seddp w .
d ’ \ - - - - _— — .
v ~ vV punog %G Jemol o |~ 90 r+ -

< punog %Ge toddn v <

v JUIod PaIdIpaid BA DNOY B
v
L0

(03ISX/NY)CHE'8L1L + (3A)COL'0 — 11Z°9L = I8A [BUUDY) Bay

AONP O} LIl WY) Ayo0laA jsuuby) ebouaay woasjsumo(



20

normalize data and to control variance in both reservoir sections. Although
regression coefficients associated with the polynomial transformation were
not significantly different from 0 (p > 0.05), the resulting regressions
were valid for predictive equations (personal communication, Dr. Dale
Everson, Department of Applied Statistics, University of Idaho, Moscow).
Therefore, we believe the equations developed do a reasonable Job at
predicting on-site velocities.

The best regression equation (adjusted R? = 0.52, p = 0.0004;
Figure 11) developed for average on-site velocities for the upstream portion
(RM 120-134) included confluence pool elevation and average midway velocity
(the mean of of al) measurements from the midway profile). Confidence
intervals (95%) for the predicted values had an overall mean of 10.215. The
best regression equation for the downstream portion of the reservoir
(adjusted R2 . 0.80, p = 0.0001; Figure 12) included average channel
velocity and site depth with a mean confidence interval (95%) for the

predicted values of 10.14.

Substrate

We found no relationship between particle size and river mile at deep
and mid depth stations. Bounds on the estimates were relatively narrow.
Particles smaller than sand (< 0.061 mm) dominated the fine sediment from
ponar dredge collections (Figure 13). With the exception of LG2M, little
variation was observed within or among stations. Particles Tess than 0.06]
mm ranged from 66% (LGZM) to 87% (LGIM) of the sediment.

Percentage of sand (0.061 to 2.0 mm} in the fine sediments showed

little variation within or among stations. Sand ranged from 13% (LGIM) to
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Figure 13. Composition of substrate larger than sand (> 2 mm), sand
{0.061 to 2 mm), and less than sand (< 0.061 mm) from ponar
dredge samples at shallow stations, Lower Granite
Reservoir, Washington, 1987.
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17.5% (LG3M) of the sediment. Particles greater than 2.0 mn were non-
existent with the exception of station LG2M which had a mean of 20% of the
sediment larger than 2.0 mm. However, a retatively large variance is
associated with this estimate (Figure 13),

Percent organic matter content of the sediment at the mid depth and
deep stations ranged from 7.4% (LGIM) to 14.9% (LG2D; Figure 14). With the
exception of LG2D, differences among the stations were sTight. Substrate at
LG2D had significantly higher organic matter than at mid depth stations and
LG2S; however, overlap of 95% confidence bounds, although slight, suggest
that organic matter at LG1D and LG2D may not significantly differ.

In addition to other physical habitat measurements, limited information

on temperature and turbidity was collected, and is presented in Appendix
Table Al.

ijgg:jvg 2: To assess seasonal dynamics of benthic community

biomass in Lower Granite Reservoir;

Methods

Eight benthic sampies for statistical replication were collected during
spring, summer and fall at each station using a Ponar dredge (239.25 cmz).
The particular location of sampling was at two sites along each of four
transects at each station. Because of the size and/or the hard-packed
nature of substrate at LGIS, no benthic samples could be taken.

The collected sediment was washed through a 0.595 mm sieve bucket (#30)
and the collected organisms preserved in FAA (Pennak 1978). Organisms were
separated into major taxonomic groups (Pennak 1978), enumerated and weighed,

Wet weights were determined by blotting the organisms in each taxenomic
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Figure 14. Mean organic content (%) at deep and mid depth stations,
and LG2S during June, 1987, from Lower Granite Reservoir,
Washington. Vertical bars delineate 95% confidence
intervals on the means.
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group for 1.0 to 3.0 minutes (depending upon the group size) and weighing in
a tared, water-filled, covered vessel. Mean weights were used to calculate
total weights of taxons which were summed over all taxons present to obtain

a sample weight. Sample numbers and weights were expanded (x 41.8) for

estimates per meter squared.

Results

Benthic community abundance varied among spring, summer and fall
seasons. Oligochaetes and chironomids collectively accounted for more than
99% of the numbers of benthos samples (Tables 2-7). Taxa other than
chironomids and oligochaetes from mid depth, deep, and shallow sites are
enumerated in Appendix Tables A2 and A3. The highest number of taxa
collected (8) was from LG5S and the lowest (2} was collected from four
stations (LG1D, LG2D, LG3S, LG2S). Highest numbers and standing crops of
benthos were collected in the summer (Tables 4 and 5). Oligochaetes
consistently attained highest abundance at LG2D, white chironomids were most
abundant at LG2M and LG3M among mid and deep sites. At shallow sites,
oligochaetes were generally more abundant at LG4S and LG5S, while
chironomids were more abundant at LG3S and LG4S.

Confidence intervals (95%) on mean estimates of standing crops
overlapped among all deep and mid depth stations and among shallow stations
for all seasons (Figures 15 and 16). Mean standing crop of benthos ranged
from about 20 g/m2 in the summer to a low of about 5 g/m2 in the spring. 1In

general, variation was directly proportional to the mean number and biomass.

Objective 3: To assess seasonal importance of selected disposal areas for

fishes in Lower Granite Reservoir,
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Table 2. Number of taxa and estimates of mean number/m2 and mean biomass (g/mz)
of oligochaetes, chironomids, and other taxa from ponar dredge
collections at shallow stations during spring, 1987, at Lower Granite
Reservoir, Washington. Parenthetical numbers represent 95% confidence
intervals (+/- the mean estimates).

Station
1625 (G3S LGas LG5S
Taxon n=12 n=8 n=8 n=7
Total Number 7 4 4 8
0ligochaete 2
number/m 5,584 11,114 6,803 20,154
(4,335) (3,588) (6,284) (11,699)
grams/me 2.8 4.5 4.3 5.9
(1.2) (1.5) (3.4) (4.0)
Chironomidae
number/mé 1,149 512 1,097 1,194
(356) (205) (897) (1,060)
grams/2 3.6 1.1 2.5 0.8
(1.6) (0.5) (2.7) (0.4)
Other
number/mé 21 16 31 107
(18) (26) (61) (104)
grams/m2 Nal NA NA NA

lNA - not available
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Table 3. Number of taxa and estimates of mean number/mz and mean biomass (g/mz) of
oligochaetes, chironomids, and other taxa from ponar dredge collections at
mid depth and deep stations during spring, 1987, at Lower Granite
Reservoir, Washington. Parenthetical numbers represent 95% confidence
intervals (+/- the mean estimates).
Station
LGID LG2D LGIM LG2M LG3M
Taxon n=8 n=8 n=6 n=8 n=8
Total Number 3 2 5 3 4
0ligochaete 2
number/m 1,144 3,339 2,083 2,247 1,327
(538) (987) (1,941) {1,265) (784)
grams/m? 5.3 4.2 2.6 5.3 4.2
(2.9) (1.0) (0.9) {1.7) {2.9)
Chironomidae2
number/m 297 1,217 529 1,474 888
(143) (186) (257) (534) {609)
grams/m2 3.6 2.7 2.2 3.4 1.6
(2.8) (0.7) (1.9) (1.5} (1.4)
Other
number/m2 10.5 - 21 37 21
(16.2) (23) (60) (37)
grams/m? Nal - NA NA NA

lNA- not available
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Table 4. Number of taxa and estimates of mean number/m2 and mean biomass (g/mz)

' of oligochaetes, chironomids, and other taxa from ponar dredge
collections at shallow stations during summer, 1987, at Lower Granite
Reservoir, Washington. Parenthetical numbers represent 95% confidence
intervals (+/- the mean estimates).

Station
LG2S LG3S LG4S LG5S
Taxon n=8 n=8 n=8 n=8
Total Number 3 2 4 5
Oligochaete 5
number/m 18,909 13,888 24,615 17,964
(5,434) (5,428) (4,080) (6,712)
grams/mé 7.4 5.5 8.5 7.4
{2.5) (2.9) (2.7) (2.8)
Chironomidae 2
rumber/m 1,677 1,980 2,085 1,709
(456) (672) (263) (465)
grams/m? 7.5 3.0 9.0 2.1
(4.7) (1.6) (2.5) (1.7)
Other
number/mé 11 - 31 16
(25) - (52) (26)
grams/m? Nal . NA NA

Ina - not available
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Table 5. Number of taxa and estimates of mean number/m2 and mean biomass (g/mz) of
- 0ligochaetes, chironomids, and other taxa from ponar dredge collections at
mid depth and deep stations during the summer, 1987, at Lower Granite
Reservoir, Washington. Parenthetical numbers represent 95% confidence
intervals (+/- the mean estimates).
Station
LG1D LG2D LGIM LG2M LG3M
Taxon n=8 n=8 n=8 n=8 n=8
Total Number 2 3 3 3 3
Oligochaete 2
number/m 4,614 10,560 4,196 6,354 8,627
(1,660) (2,225) (1,492) (1,150) (1,729)
grams/m2 17.1 13.0 15.0 8.4 7.1
(7.8) {3.4) (7.9) (5.6) (2.2)
Chironomidae2
number/m 282 1,202 773 1,197 1,557
(148) {290) (165) (249) (230)
grams/m2 2.8 7.0 4.3 5.1 7.6
(1.5) (1.9) (1.1) (1.5) (1.9)
Other
number/m2 - 5 5 5 5
(12) (12) (12) (12)
grams/m2 - NAl NA NA NA

lNA - pot available
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Table 6. Number of taxa and estimates of mean number/m2 and mean biomass (g/mzj of
oligochaetes, chironomids, and other taxa from ponar dredge collections at
shallow stations during fall, 1987, at Lower Granite Reservoir,

Washington. Parenthetical numbers represent 95% confidence intervals (+/-
the mean estimates).

Station
1625 163S LG4S LG5S
Taxon n=8 n=8 n=8 n=8
Total Number 2 3 4 4
0ligochaete
number/m? 11,923 15,858 19,735 9,065
(3,533) (8,783) (9,131) (1,780)
grams/mé 9.4 4.9 8.0 5.1
(3.6) (2.2) (2.4) (1.6)
Chironomidae
number/m2 1,238 1,980 1,583 998
(482) (944) (443) (515)
grams/m? 2.2 1.5 4.4 1.6
(0.8) (0.8) (2.3) (1.1)
Other
number/m2 - 10 37 16
- (25) (44) (17)
grams/mé _ Nal NA NA

lNA - not available
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Number of taxa and estimates of mean number/m2 and mean biomass (g/mz) of
oligochaetes, chironomids, and other taxa from ponar dredge collections at
mid-depth and deep stations during the fall, 1987, at Lower Granite
Reservoir, Washington. Parenthetical numbers represent 95% confidence
intervals {+/- the mean estimates).
Station
LGID LG2D LGIM LG2M LG3M
Taxon n=8 n=8 n=8 n=8 n=8
Total Number 3 2 4 6 3
0ligochaete
number/m 2,926 5,565 2,001 5,100 3,407
{595) (2,404) (739) (1,733) (1,723)
grams/m? 15.2 13.4 9.8 13.2 9.2
(5.2) (4.0) {4.2) {4.7) (2.5)
Chironomidae
number/m 627 559 412 460 376
(826) (156) (179) (275) (157)
grams/me 2.2 3.2 2.7 2.6 2.2
(1.2) (0.7) (1.1) {2.1) (0.6)
Other
number/m2 31 - 16 26 5
(41) - (18) (35) (12)
grams/m2 NAl - NA NA NA

INA - not available
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Methods

To minimize sampling bias and make collections representative of the
fish community, several gear types were used in Lower Granite Reservoir.
Electrofishing by night and sometimes by day was used at the shallow water
station (LG25). An output of approximately 300 volts and 4-5 amps was found
to adequately stun fish while causing virtually no mortalities or visual
evidence of injury. Electrofishing was conducted by paralleling the
shoreline for one 15 minute pass.

Gillnets were fished at each of the six stations. We used two types of
experimental gillnets:
1. Monofilament - 61 m long x 1.8 m deep, 8 panels each 7.6 m long, at 1.2§

cm, 2.54 cm; 3.81 cm, 5.08 cm, 6.35 cm, 7.62 cm, 8.89 cm. and 10.16 cm

bar measurement.

2. Multifilament - same as horizontal monofilament (61 x 1.8 m).
At most stations, five horizontal gillnets (muiti- and monofilament) were
set perpendicular to the shoreline. Sets were floating, mid water or on the
bottom. The mid water set was a floating met anchored about midway between
the surface and the bottom that created a net "suspended" within the water
cotumn. Floating sets were checked at 1-2 hour intervals over approximately
3 7-8 hour period. Bottom and mid water nets were checked at longer time
intervals because of the difficulty in setting and that considerably fewer
salmonids were collected at these depths. Short term effort in fioating
sets was used to prevent net mortality of anadromous fishes.

In addition to gillnetting, set lines were used at deep water stations.
Each set 1ine consisted of 12 m lines with six (4/0 size) hooks on each.

Hooks were baited with cut bait and were fished for approximately 7-8 hours.
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However, since limited catches were made (2 brown bullheads and 1} northern
squawfish in 84 hours of effort), data collected were not used in this
report.

Standardized beach seine hauls also were used at the shallow water
station. Beach seining was conducted using a 30.5 X 2.4 m seine constructed
of 6.35 mm knotless nylon mesh with a 2.4 x 2.4 X 2.4 m bag. A standard
haul was made by setting the seine paralle] to the shoreline using 15 m
extension ropes. Three hauls were made at each station.

Fish collected with al) gear types were identified to species and total
lengths (mm) were taken (except adult anadromous fishes). A1l adult
anadromous salmonids were released immediately and never removed from the
water,

We used a commercial ‘fish finder’ (an Eagle Mach 1 single transducer
recording echo-sounder made by Lowrance, Inc.) as another means of assessing
overall fish abundance, depth distribution, and die) movements. All sonar
sampling was conducted concurrently with gitinetting.

Sonar records (CPUE’s) were calculated using estimates of total volume
sampled per transect as effort. Although CPUE’s were calculated, we gre not
implying a quantitative interpretation of the data. We realize the
limitations of using an uncalibrated system and so make only qualitative
interpretations. Lowrance, Inc. provided us with estimates of shape and
size of the sonar beam at various depths, enabling us to calculate the
volume sampled per transect as a function of transect length, average depth
of the transect, and depth at which surface noise subsides. Shape of the
sonar beam at any instant in time was assumed to be roughly conical. As a

result of movement along a transect and Toss of sonar readability at the
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surface because of noise, the functional volume sampled becomes a vertica}l
truncated cone extended along the length of the transect.

We followed two strategies for sampling with the echosounder, both
involving sampling while the gilinets were fishing. The first strategy
involved sampling while actually setting each gillnet. During this
procedure the boat was not travelling at a constant speed, but length of the
sonar transect equals the length of the gillnet. The second strategy
invelved randomly driving the boat around our gilinet sets between net-
checking times. Boat speed was standardized at low throttle on a 10
horsepower trolling motor, and every minute a mark was made on the sonar
record, so length of each transect equaled the distance the boat travelled
in one minute. Each transect can then be treated as a separate sample for
CPUE estimates. In addition to providing CPUE information, hydroacoustic
sampling enabled us to assess fish community depth distribution although we
were unable to distinguish among species. Plotting the ratio of fish depth
to total depth against time and average depth of each transect provided the
most meaningful insights into diel and site-specific fish depth
distribution. ‘

Results
Total Catch

A total of 19 species'consisting of 3653 individuals were collected at
deep and mid depth sites and LG2S in Lower Granite Reservoir (Tables 8-11).
Species names and codes used in figures and tables throughout this report
are presented in Table 12. Highest number of fishes were collected in the

spring followed by summer, fall and winter. Approximately equal numbers of
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Table 8. Relative abundance of fishes sampled from stations in Lower Granite
Reservoir, Idaho-Washington in spring 1987,

Species LG1D LG2D LGIM LG2M LG3M  LG2S  TOTAL

American shad
white sturgeon
sockeye salmon

|
W
~n
()]

chinook salmon 4 3 7 11 11 61 97
rainbow trout 3 9 41 53 63 96 265
chiselmouth 2 3 16 6 11 87 125
carp 2 4 20 22 29 35 112
peamouth 2 1 4 7
northern squawfish 2 5 13 19 21 43 103
redside shiner 3 8 6 2 6 48 73
bridgelip sucker 3 7 7 40 57
largescale sucker 2 8 26 77 52 197 362
brown bullhead 1 1 | 3
channel catfish 1 4 18 3 2 28
pumpkinseed 1 1
black crappie 3 18 21
white crappie 1 2 2 5
smalimouth bass 1 2 35 38
yellow perch 21 43 64
TOTALS 20 44 137 223 231 712 1367
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Table 9. Relative abundance of fis
Reservoir, Idaho-Washingt

hes sampled from stations in Lower Granite

on in summer 1987.

Species LGID LG2D LGIM LG2M LG3M LG2S TOTAL
American shad

white sturgeon 8 4 1 5 18
sockeye salmon

chinook salmon 1 1 2
rainbow trout 16 21 47 22 19 10 135
chiselmouth 1 2 2 6 11
carp 10 10 10 16 17 134 197
peamouth 2 2 3 -7
northern squawfish 1 5 6 13 16 6 47
redside shiner 1 1 2
bridgelip sucker 1 1
largescale sucker 7 58 38 87 124 192 506
brown bullhead 1 1 1 3
channel catfish 4 12 3 19
bluegil 1 1
pumpkinseed 1 1 3 5
black crappie 7 1 1 9
white crappie 1 2 2 1
smallmouth bass 1 1 3 13 58 76
yellow perch 40 5 29 13 87
TOTALS 45 101 160 162 231 432 1131
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Table 10. Relative abundance of fishes sampled from stations in Lower Granite
Reservoir, Idaho-Washington in fal] 1987.

Species LGID LG2D LGIM LG2M LG3M  LG2S TOTAL
American shad 1 { 2
white sturgeon 2 3 1 6
sockeye salmon 1 1
chinook salmon 1 1 4 1 6 13
rainbow trout 13 12 52 23 9 23 132
chiselmouth 3 5 3 7 12 30
carp 15 14 19 7 21 11 87
peamouth 5 16 4 2 27
northern squawfish 11 7 17 20 10 31 96
redside shiner 3 1 12 16
bridgelip sucker 1 1 1 2 5
largescale sucker 4 29 37 34 23 85 222
brown bullhead 2 2
channel catfish 3 4 5 8 1 4 25
bluegill 2 2
pumpkinseed 1 1
black crappie 1 15 5 6 2 29
white crappie 1 35 6 39 15 96
smallmouth bass 6 4 3 19 30
yellow perch 17 2 67 18 104
TOTALS 50 75 222 130 191 258 926
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Table 11. Relative abundance of fishes sampled from stations in Lower Granite
Reservoir, Idaho-Washington in winter 1987.

Species LG1D LG2D LGIM LG2M LG3M  LG2S TOTAL

American shad 1 1

white sturgeon 1 1

sockeye salmon

chinook salmon 1 1

rainbow trout 9 3 6 12 3 4 37

chiselmouth 1 1 19 16 2 24 63

carp 4 4 7 7. 22

peamouth 10 2 3 15

northern squawfish 5 1 1 3 2 4 16

redside shiner 1 3 4

bridgelip sucker 2 2

largescale sucker 1 1 2 2 Il 17

brown bullhead

channel catfish

pumpkinseed

black crappie 3 1 4

white crappie 7 9 6 22

smallmouth bass

yellow perch 2 1 5 1 9

TOTALS 21 6 54 44 34 55 216

I
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Table 12. Species codes, and scientific and common names for fish
collected in Lower Granite Reservoir, Washington. Species
codes are used in figures and tables throughout this report.

Codes Scientific Name Common Name
ATR Acipenser transmontanys white sturgeon
ASA Alosa sapidissimg American shad
ONE Oncorhynchus nerka sockeye salmon
0TS Oncorhynchus tshawytscha chinook salmon
PWI Prosopium williamsoni mountain whitefish
SGA Salmo gairgdner rainbow trout
AAL Acrocheilus alutaceus chiselmouth
CCA Cyprinus carpig carp h
MCA Mylocheilus caurinus peamout
POR Ptychocheilys Qregonensis northern squawfish
RBA Richardsonius balteatus redside shiner
cco Catostomus columbjanus bridgelip sucker
CMA Catostomus macrocheilus largescale sucker
INE Ictalurus nebulosus brown bullhead
IPU Ictalurus punctatus channel catfish
LGI Lepomis gibbosus pumpkinseed
LMA Lepomis magrochirus bluegil?
MDO Micropterus dolomieuj smallmouth bass
PAN Pomoxis annularis white crappie
PNI Pomoxis nigromacylatus black crappie
PFL Perca flavescens yellow perch

coT tus sp. sculpin

:
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species were collected at mid depth sites and LG2S but consistently deep

stations.

Relative Abundance

During the spring, rainbow trout were high in abundance while fewer
chinook salmon were collected at all stations except LGID (Figure 17). At
shiner, northern squawfish, carp and largescale sucker. Largescale suckers
and rainbow trout dominated the catch at all mid depth stations. Highest
species diversity in the spring was at station LGZS, possibly reflecting
additional beach seining and electrofishing efforts.

In the summer, species diversity decreased and certain species
dominated the catch {Figure 18). At deep and mid depth stations, largescale
suckers and rainbow trout generally were highest in relative abundance.
Yellow perch were abundant at LGIM and LG3M. Largescale suckers and carp
attained highest relative abundance at LG2S in the summer. White sturgeon
was third highest in relative abundance at LG1D, and present but less
abundant at LG2D and LG2S.

During the fall, species diversity was highest of all seasons, with
largescale suckers and rainbow trout dominating at most stations (Figure
19). Relative abundance of carp and nPrthern squawfish increased at deep
and mid depth stations, while relative abundance of géme fishes (yellow
perch and crappies) increased at mid depth stations.

In winter, rainbow trout dominated the catch with chiselmouth, while
the relative abundance of largescale suckers decreased (Figure 20).

Northern squawfish were common at both deep stations although few fish were
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caught in winter at the deep stations, so high retative abundances may be

deceptive.
Biomass

Largescale suckers dominated the biomass collected during the spring,
summer, fall, and winter at al) stations (Figures 21-24). Highest sucker
biomass was collected at LG2S in all seasons. Sucker biomass peaked in the
summer and was lowest in the winter,

Seasonal comparisons indicated that the highest biomass was cotlected
in the spring at LGIM and at LG2S in the summer, whereas during the fall,
biomass was similar among stations (Figure 25). Fish biomass captured
during the winter was Jess than 10% of that collected during the spring.
The majority of biomass was that of nongame fish (Figure 26).

Size Comparison

Sizes of fish collected ranged from less than 25 mm to over 800 mm
(Figures 27-30), During the spring, sizes of fish sampled at mid depth
stations were similar to, but generally larger than those collected at LG2S.
Large numbers of‘small fish at LG2S reflects relatively intense spring beach
seining and electrofishing efforts. Sizes were similar in the summer at
deep and mid depth statfons but shifted to larger sizes at LG2S. During
fall and winter, size distributions were generally similar among stations

and similar to those observed during the summer.

Catch Per Effort Abundance
Spring.-Fish abundance, based on gillnet catches at all 6 stations,

exhibited differences among seasons, stations, sampling depth, and die)

rnhm,}mamm& i owad d i ke o
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Length frequency distributions of all fishes collected from
various sampling stations in Lower Granite Reservoir,
Washington during August through September, 1987. Gillnets
were used at all stations; beach seining and electrofishing
were also used at LG2S.
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sampling periods. Tables summarizing daily catch rates (catch/hour) from
giilnets for each species by gillinet set types (bottom, mid water, and
floating) and season are presented in Appendix B. Springtime CPUE’s (catch
per hour) were highest in daytime bottom sets, whereas nighttime mid water
and floating sets generally produced higher CPUE’s than daytime sets
(Figures 31-36). Rainbow trout catch rates were consistently high in
nighttime, floating sets at all sites (Figure 32). No mid water sets were
made at LGZS because of its shallow (< 6 m) depth.

Few non-salmonid game fish were captured at any sites in spring.
Chiselmouth, carp, largescale suckers, and redside shiners were non-game
species captured most frequently at all stations. Chiselmouth were captured
both day (mid depth and L62S) and night (all sites), most frequently in
floating followed by mid water sets. Few were captured in bottom sets at
any station. In contrast, carp were caught most frequently in bottom and
mid water sets at all stations; none were caught in floating sets at deep or
mid depth sites, excepting LG3M where large numbers were caught in the day
(Figure 31). Redside shiners, like chiselmouth, were most commonly captured
in floating sets (especially at night at LG2S; Figure 32) and were seldomly
captured at mid depth sites. Largescale suckers were captured in all types
of net sets at all stations. Largescale sucker abundance was highest during
daytime hours at the mid depth stations, where they were captured most
frequently in bottom sets. Large numbers were captured at LG2S in floating
sets (Figure 31).

Summer.-During summer, catches in floating nets were dominated by
rainbow trout captured at night at deep and mid depth stations (Figures 37

and 38). Few rainbow trout were captured at LG2S, where floating sets were
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Figure 31. Mean catch per hour by species for floating gillnets fished
during the day at various sampling stations in Lower
Granite Reservoir, Washington during April through June,
1987. See Table 12 for species codes.
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Figure 32. Mean catch per hour by species for floating gillnets fished
during the night at various sampling stations in Lower
Granite Reservoir, Washington during April through June,
1987. See Table 12 for species codes.
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Figure 33, Mean catch per hour by species for mid water gillnets
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Figure 34. Mean catch per hour by species for mid-water gillnets
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Figure 35. Mean catch per hour by species for bottom gillnets fished
during the day at various sampling stations in Lower
Granite Reservoir, Washington during April through June,
1987. See Table 12 for species codes.
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Figure 36. Mean catch per hour by species for bottom gillnets fished

during the night at various sampling stations in Lower
Granite Reservoir, Washington during April through June,
1987. See Table 12 for species codes.
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Figure 37. Mean catch per hour by species for floating gilinets fished

during the day at various sampling stations in Lower
Granite Reservoir, Washington during August through
September, 1987. See Table 12 for species codes.
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Figure 38. Mean catch per hour by species for floating gillnets fished

during the night at various sampling stations in Lower
Granite Reservoir, Washington during August through
September, 1987. See Table 12 for species codes.
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dominated by carp and largescale suckers, with carp catch rates increasing
nearly 3 times from day to night and largescale sucker catch rates staying
nearly constant (Figures 37 and 38).

As with floating sets, catch rates in mid water sets at deep stations
were low for all species, except during the night for rainbow trout (Figures
39 and 40). Rainbow trout also dominated nighttime, mid water catch rates
while largescale suckers dominated daytime catches at mid depth sites. LG3M
produced relatively large numbers of yellow perch in daytime mid water sets
(Figure 39).

Stations had markedly similar catch rates and species composition in
both day and night bottom sets, excepting LGID which produced few fish
(Figures 41 and 42). Largescale suckers clearly dominated catches at all
other sites both day and night, followed by yellow perch which occurred in
high numbers except at LG2D and LGZM.

Fall.-Catch rates during fall sampling were generally lower than those
from summer. Nighttime catch rates were generally higher than during the
day in floating and mid water sets (Figures 43-46). Daytime, floating sets
caught few fish, although large numbers of rainbow trout were caught at LGIM
(Figure 43). Dominant species in nighttime, floating sets were rainbow
trout and northern squawfish at all stations (Figure 44). Rainbow trout
dominated nighttime, mid water sets as well, along with peamouth and
northern squawfish (Figure 46).

Bottom sets during the day generally yielded more fish than night sets
(Figure 47), with largescale suckers and carp accounting for most deep
station fish, and largescale suckers, yellow perch, and centrarchids

dominating catches from mid depth stations. Carp were caught more
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Figure 39. Mean catch per hour by species for mid water gilinets

fished during the day at various sampling stations in Lower
Granite Reservoir, Washington during August through
September, 1987. See Table 12 for species codes. Bezause
of depth limitations, no mid water sets were made at LG2S.
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Figure 41. Mean catch per hour by species for bottom gillnets fished

during the day at various sampling stations in Lower
Granite Reservoir, Washington during August through
September, 1987. See Table 12 for species codes.
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Figure 44. Mean catch per hour by species for floating gillnets fished
during the night at various sampling stations in Lower
Granite Reservoir, Washington during October through
November, 1987. See Table 12 for species codes,
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fished during the day at various sampling stations in Lower
Granite Reservoir, Washington during October through
November, 1987. See Table 12 for species codes. Because
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frequently than other fish in nighttime bottom sets at deep stations, while
crappies, largescale suckers, and carp dominated mid depth stations (Figure
48).

Winter.-Highest catch rates occurred in bottom sets followed by mid
water and floating. Night catches in floating sets were dominated by
rainbow trout and were higher than in the day (Figures 49 and 50). No fish
were captured in daytime mid water sets; nighttime sets were dominated by
rainbow trout and chiselmouth (Figure §1). Daytime, bottom set catch rates
generally surpassed night rates, with carp, chiselmouth, and non-salmonid
game fish forming the bulk of the daytime catch at mid depth sites (Figure
52). Crappies and yellow perch were captured at reasonably high rates day
and night at the mid depth stations (Figures 52 and 53).

Seasonal Catches of Key Species

Certain species present in Lower Granite Reservoir are of special
interest: chinook salmon and rainbow trout (steelhead) and their potentia)
predators northern squawfish, channel catfish, and smallmouth bass, as well
as white sturgeon. We prepared graphical analyses of gill-netting catch
results specific to these key species to detect important relationships
among species and habitat. Since predation on anadromous salmonid smolts is
of interest, only subadult chinook salmon and rainbow trout were included in
the following analysis.

Rainbow trout were captured at all stations in the spring, summer, and
fall (Figures 54-59). Rainbow trout were captured much more frequently at
night at all stations than during the day. Catch rates were highest at the
three mid depth_sites, with LGIM producing the most, followed by LG2D, LGID,
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Figure 48.

Mean catch per hour by species for bottom gillnets fished
during the night at various sampling stations in Lower
Granite Reservoir, Washington during October through
November, 1987. See Table 12 for species codes.
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Figure 49. Mean catch per hour by species for floating gillnets fished
during the day at various sampling stations in Lower
Granite Reservoir, Washington during December, 1987. See
Table 12 for species codes.
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Figure 50. Mean catch per hour by species for floating gillnets fished
during the night at various sampling stations in Lower
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Figure 51. Mean catch per hour by species for mid water gillnets
fished during the night at various sampling stations in
Lower Granite Reservoir, Washington during December, 1987,
See Table 12 for species codes. Because of depth
limitations, no mid water sets were made at LG2s.
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Figure 54. Catch rates for white sturgeon (ATR), chinook salmon {0OTS),

rainbow trout (SGA), northern squawfish (POR), channel
catfish {IPU), and smalimouth bass (MDO) in gillnets fished
at LGID during 1987 in Lower Granite Reserveir, Washington.
Seasonal catch rates were daily mean catch per hour summed
over each season.
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at LG2D during 1987 in Lower Granite Reservoir, Washington.
Seasonal catch rates were daily mean catch per hour summed
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Figure 56. Catch rates for white sturgeon (ATR), chinook salmon {OTS),

rainbow trout (SGA), northern squawfish (POR), channel
catfish (IPU), and smalimouth bass (MDO) in gillnets fished
at LGIM during 1987 in Lower Granite Reservoir, Washinaton.
Seasonal catch rates were daily mean catch per hour summed
over each season.
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Figure 57. Catch rates for white sturgeon (ATR), chinook salmon (0TS),
rainbow trout (SGA), northern squawfish (POR), channel
catfish (IPU), and smalimouth bass (MDO) in gillnets fished
at LG2M during 1987 in Lower Granite Reservoir, Washington,
Seasonal catch rates were daily mean catch per hour summed
over each season.
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Figure 58. Catch rates for white sturgeon (ATR), chinook salmon (071S),

rainbow trout (SGA), northern squawfish (POR), channel
catfish (IPU), and smallmouth bass (MDO) in gillnets fished
at LG3M during 1987 in Lower Granite Reservoir, Washington.
Seasonal catch rates were daily mean catch per hour summed
over each season.
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Figure 59. Catch rates for white sturgeon (ATR), chinook salmon (OTS),
rainbow trout (SGA), northern squawfish (POR}, channel
catfish (IPU), and smalimouth bass (MDO) in gillnets fished
at LG2S during 1987 in Lower Granite Reservoir, Washington.
Seasonal catch rates were daily mean catch per hour summed
dver each season.
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and LG2S. Catch rates were highest in the spring and decreasing season by
season thereafter except at LG1D, where they were highest in summer for
rainbow trout . Chinook salmon were captured only at night, and at much
lTower rates than rainbow trout. Chinook salmon occurred in low numbers at
all stations (except LG2S).

Northern squawfish was the only key species to be captured every season
at each site. Squawfish were generally caught both day and night at similar
rates, although nighttime catch rates clearly dominated at LG2S, and daytime
rates at LGID (in the winter). Cafch rates were highest in the fall at
LGIM, LG2M, LGID, and LG2S, while catch rates at LG2D and LG3M showed no
substantial increase in the fall. No clear positive relationship between
squawfish and rainbow trout catch rates existed. Squawfish catch rates were
highest when catch rates of rainbow trout were low at several stations.

Catch rates of channel catfish were similar to those of northern
squawfish. Catfish were captured both night and day, except at LG2S where
they occurred mostly at night. At LG2S, catch rates of channel catfish were
the highest of the key species in the summer (Figure 59). Unlike northern
squawfish, catfish displayed no clear seasonal pattern, except for being
totally absent from winter samples.

Smallmouth bass occurred only at mid depth and shallow stations. Catch
rates were generally highest during daytime samples in the fall although few

were captured in the spring, and none during winter.
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Vertical Distribution of Key Species

In the spring, rainbow trout were caught mostly at the surface during
the night at deep stations, whereas they were distributed throughout the
water column at mid depth and 1G2S (Figures 60-62). Northern squawfish were
also distributed throughout the water column, while channel catfish were
caught in mid water and bottom sets only. White sturgeon were captured in
mid water or bottom sets.

As in the spring, rainbow trout were caught throughout the water column
at mid depth and shallow stations during summer sampling, although they were
more concentrated near the surface than in the spring (Figures 64 and 65).
At deep stations, rainbows were also distributed at all net depths, which
was different from springQ Northern squawfish were again caught throughout
the water column, but seemed less frequent in surface sets than in the
spring (Figure 63). Squawfish, channel catfish, and smallmouth bass did not
seem to be keying on the same depth zones as rainbow trout. Both catfish
and smallmouth were captured in mid water or bottom sets only. White
sturgeon were captured in mid water or bottom sets at all stations but LGIM
and LG2S.

Fall Sampling showed no rainbow trout in bottom sets at deep stations
(as in spring), although captures in mid water and floating nets suggest a
wide distribution throughout the water column at the other stations (Figures
66-68). A1l predators showed generally increased catch rates in the fall at
all stations, especially northern squawfish. Squawfish were more abundant
at the surface than at other depths, although several stations showed high
concentrations at the bottom also. Thus, rainbow trout and squawfish both

showed highest catch rates at the surface, suggesting that the potential for
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Figure 60. Mean catch per hour for white sturgeon (ATR), chinook
salmon (0TS), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU), and smallmouth bass (MDO)
from gillnets fished at surface, mid water, and bottom at
LG1D and LG2D during spring, 1987 in Lower Granite
Reservoir, Washington.
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Figure 61. Mean catch per hour for white sturgeon (ATR), chinook
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salmon (OTS), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU), and smalimouth bass (MDO)
from gilinets fished at surface, mid water, and bottom at
LGIM and LG2M during spring, 1987 in Lower Granite
Reservoir, Washington.
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Figure 62. Mean catch per hour for white sturgeon (ATR)}, chinook
salmon. (OTS), rainbow trout (SGA), northern squawfish
(POR},. channel catfish (IPU), and smallmouth bass (MDO)
from gil1nets fished at surface, mid water, and bottom at
LG3M and LG2S during spring, 1987 in Lower Granite
Reservoir, Washington.
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salmon (OTS), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU), and smallimouth bass (MDO)
from gilinets fished at surface, mid water, and bottom at
LG1D and LG2D during summer, 1987 in Lower Granite

Reservoir, Washington.
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Figure 64. Mean catch per hour for white sturgeon (ATR), chinook

salmon (OTS), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU), and smallmouth bass {MDO)
from gilinets fished at surface, mid water, and bottom at
LGIM and LG2M during summer, 1987 in Lower Granite

Reservoir, Washington.
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salmon (07S), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU), and smallmouth bass (MDO)
from gillnets fished at surface, mid water, and bottom at
LG3M and LG2S during summer, 1987 in Lower Granite

Reservoir, Washington.
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Figure 66. Mean catch per hour for white sturgeon (ATR), chinook

salmon (OTS), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU), and smallmouth bass (MDO)
from gillnets fished at surface, mid water, and bottom at
LGID and LG2D during fall, 1987 in Lower Granite Reservoir,
Washington.
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salmon (OTS), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU}, and smallmouth bass {MDO)
from gilinets fished at surface, mid water, and bottom at

LGIM and LG2M during fall, 1987 in Lower Granite Reservoir,

Washington,
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Figure 68. Mean catch per hour for white sturgeon {ATR), chinook

salmon (OTS), rainbow trout (SGA), northern squawfish
{POR), channel catfish (IPU), and smallmouth bass (MDO)
from gilinets fished at surface, mid water, and bottom at
LG3M and LG2S during fall, 1987 in Lower Granite Reservoir,
Washington.
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the potential for predation may be greater in the fall tham in otﬁer
seasons. As in other seasons, channel catfish, smallmouth bass, and white
sturgeon were captured almost exclusively in bottom sets.

The only key species caught in the winter were rainbow trout and
northern squawfish (Figures 69-71). Northern squawfish were far more
commonly caught at LG1D than other sites, with most of the fish cﬁught
during the daytime at the bottom and at the surface during the nighttime.

Hydroacoustics _

Spring.-We weighted the total number of fish detected {catch) per
transect by the volume sampled per transect which yielded a catch per unit
effort (CPUE) in terms of fish numbers per cubic foot. As indicated
earlier, because of gear limitations, our comparisons are purely qualitative
and not meant to be quantitative. Roughly four times as many fish were
recorded at LG3M (248) than LGIM (58), although only twice as many transects
were sampled (102 compared to 48 transects; Table 13). Because volume
sampled by hydroacoustic gear is directly related to depth (LG3M - 30 ft
vs, LGIM - 35 ft), the magnitude of the difference between total numbers of
fish recorded is even greater. Also, we found a large number of fish at
LG3M at night (160) relative to the day (88), even though only half as much
effort was expended during the night (34 out of 68 transects).

CPUE plots show considerably higher catch rates at LG3M than at LGIM
(Figure 72). Night catch rates per transect were higher than day catch
rates at LG3M. The difference may be attributable to multiple fish records
per transect which offset the large number of zero CPUE transects recorded

during the day. At LGIM, however, lower and roughly equal catch rates
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Figure 69. Mean catch per hour for white sturgeon (ATR), chinook
salmon {OTS), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU), and smallmouth bass (MDO)
from gilinets fished at surface, mid water, and bottom at
LGID and LG2D during winter, 1987 in Lower Granite
Reservoir, Washington.
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Figure 70. Mean catch per hour for white sturgeon (ATR), chinook
salmon (OTS), rainbow trout (SGA), northern squawfish
POR), channel catfish (IPU), and smalimouth bass (MDO)
rom gilinets fished at surface, mid water, and bottom at
LGIM and LG2M during winter, 1987 in Lower Granite
Reservoir, Washington.
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Figure 71. Mean catch per hour for white sturgeon (ATR), chinook

salmon (OTS), rainbow trout (SGA), northern squawfish
(POR), channel catfish (IPU), and smalilmouth bass {MDO)
from gillnets fished at surface, mid water, and bottom at
LG3M and LG2S during winter, 1987 in Lower Granite
Reservoir, Washington.
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-
Table 13. Number of transacts, average transegt depth, and rumber of fish recorded
during spring, sumer, and fall (195?) hydroacoustic sampling on Lower Granite
Reserveir, Washington. A trsnsect represents the distance travelled by the
boat In 60 seconda while travellinglat a constant speed.

SPRING SUMMER FALL

w2 M 24 3M i 2 M 2% 3In h 2 M 2 3

No. of dey trensects 5 0 10 7 &8 232 113 217 12 127 207 59 162 B8 116
Ro. of night transects 1 3 38 16 3 107 73 150 7 123 7 16 101 o 72
Total ne. of transects & 3 48 23 102 339 185 367 246 250 285 75 263 183 188

Average transect depth (ft) .. 5 45 30 105 82 43 4B 35 107 &1 4 55 34

No. of day fish records 3.0 29 11 B8 423495 WB29BAXT 121 51 172 60 29
No. of night fish records 0 7 2% 21160 133 56 130126 30 106 5 100 152 52

Total no. of fish records 3 7 58 32 248 556 551 278 424 327 225 sS4 272 212 81

"
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occurred between day and night periods, although the number of zero CPUE
transects was less in the day. Fish recorded on transects 20 to 50 ft deep
at LGIM were observed most frequently in areas off the bottom during day and
night (Figure 73).

Fish depth distribution at LG3M (Figure 74) showed a higher tendency to
use the bottom during the day compared to an open water distribution.
Although fish depth distribution at night Tooks fairly uniform, the smaller
volume sampled in the upper portion of the water column probably means fish
were actually more common higher in the water column. Fish at LG3M do not
seem to be selecting areas of specific depth.

Too few transects were sampled during the spring at deep stations to
conclude much regarding fish distribution or density. As can be seen in
Table 13, the number of fish records was less than 10,

Summer.-Mid depth stations received more effort during the summer than
in spring as each station received more than 240 transects (Table 13). Day-
time catch rates at LG3M were higher (as in the spring) than other mid depth
stations, in contrast to the night catch rates which were the lowest of all
the stations (Figure 75). Catch rates at LG3M were distinctly highest
during the day, in contrast with the higher night catch rates observed in
the spring. Stations LGIM and LG2M show roughly similar catch rates,
although LGZ2M catch rates exhibited wider variation than at LGIN.

Diel fish depth distribution at LGIM was generally similar to that in
the spring (Figure 76). Fish were more concentrated in the upper half of
the water column day and night. The only notable difference between day and

night periods at LGIM was that fish seem to be avoiding the area between the
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(diel depth distribution) are subdivided into comparisons
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horizontal black bars denote nighttime periods.




111

Mid Depth Stations
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Figure 75. Diel fish density from summer, 1987 hydroacoustical samples

at mid depth stations in Lower

Washington.
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periods, and each point represents a single transect.
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Fish depth distribution (fish depth / total depth) from
summer, 1987 hydroacoustical samples on station LGIM at
Lower Granite Reservoir, Washington. Observations in A
(diel depth distribution) are subdivided into comparisons
of fish depth / total depth with average transect depth
(ft) during day (B) and night (C) periods. Histograms show
sampling frequency for transects of varying depths during
day (B) and night (C). Each point represents one fish;
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bottom and upper water column during the day. As in the spring, fish show
no preference for areas of specific depth.

Fish depth distribution at LG2M showed a strong diel pattern as fish
were highly concentrated in the upper portion of the water column at night
(Figure 77). Fish were more common in the upper water column also during
the day but to a lesser extent than at night. As at LGIM, fish were
detected infrequently between bottom and upper water column regions day and
night, although the pattern was most pronounced at night.

The strongest diel pattern of fish abundance at the mid depth stations
was observed at station LG3M. Many more fish were recorded in the day,
although nearly equal effort was expended at night (Figure 78). Fish were
densely scattered throughout the water column during the day, although they
were again more concentrated in the upper water column. Apparently, fish
were selecting areas of specific depth, avoiding the lTower water column when
depths exceeded 35 ft.

We sampled 339 transects at LGID and 186 transects at LG2D during
summer sampling (Table 13). Fish totals from deep stations were nearly
identical, even though LGID received over twice the effort. The most
dramatic diel difference was observed at L82D where only 56 out of 551 fish
were recorded at night. Daytime catch rates were higher than nighttime
rates at both deep stations (Figure 79), while catch rates at LGID were
higher than those at LG2D during both day and night.

Although catch rates differed between day and night at the deep
stations, fish depth distribution did not. Fish recorded on transects €0 to
120 ft deep at LGID were generally concentrated in the upper water column

(Figure 80). Lack of fish records between the bottom and the upper half of
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Figure 77. Fish depth distribution (fish depth / total depth) from
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Lower Granite Reservoir, Washington. Observations in A
(diel depth distribution) are subdivided into comparisons
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summer, 1987 hydroacoustical samples on station LG1D at

Lower Granite Reservoir, Washington.
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the water column reflects a true absence of fish. As at LG1D, fish at LG2D
were concentrated in the upper third of the water column during the day and
night (Figure 81). Few fish records were observed on or near the bottom.

Fall.-Number of transects conducted in the fall ranged from 75-285
(Table 13). Catch rates at LGIM and LG2M were approximately equal, while
catch rates at LG3M were the lowest of the mid depth stations (Figure 82).
Catch rates at LG2M and LG3M were slightly higher at night.

Fish at LGIM exhibited different diel depth distributions (Figure 83).
During the day, fish were distributed approximately evggly throughout the
water column. At night, fish were more concentrated in the upper water
column than during the day, although the difference between fish occurrence
in upper and lower portions of the water column at night was slight. As in
the summer, fish showed no clear preference for areas of specific depth,

Fish records at LG2M were most abundant at night, and showed non-
uniform diel depth distributions (Figure 84). Depth preference of fishes at
night appeared to be inversely related to depth. Relatively few fish were
recorded during the day, but those recorded indicated activity was within
the upper water column. Fish at LG2M displayed no obvious preference for
specific depth.

In contrast with the summer, fall transects at LG3M yielded the lowest
catch rates of all mid depth stations, and showed a strong diel pattern in
abundance and depth distribution (Figure 85). Fish were most abundant at
night, and seemingly showed a strong preference for the upper water column.
During the day, fish were concentrated near the bottom, although not in high
abundance. Bottom fish did not seem to avoid the deeper shelf areas (35 -

45 ft) as strongly as in the summer.
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Average Transect Depth (ft)

Fish depth distribution (fish depth / total depth) from
summer, 1987 hydroacoustical samples on station LG2D at
Lower Granite Reservoir, Washington. Observations in A
(diel depth distribution) are subdivided into comparisons
of fish depth / total depth with average transect depth
(ft) during day (B) and night (C) periods. Histograms show
sampling frequency for transects of varying depths during
day (B) and night (C). Each point represents one fish;
horizontal black bars denote nighttime periods.
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Fish depth distribution (fish depth / total depth) from

fall, 1987 hydroacoustical samples on station LGIM at Lower

Granite Reservoir, Washington.

Observations in A (diel

depth distribution) are subdivided into comparisons of fish
depth / total depth with average transect depth {ft) during
day (B) and night {(C) periods. Histograms show sampling
frequency for transects of varying depths during day (B)
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Figure 85.

Fish depth distribution (fish depth / total depth) from
fall, 1987 hydroacoustical samples on station LG3M at Lower
Granite Reservoir, Washington. Observations in A (diel
depth distribution) are subdivided into comparisons of fish
depth / total depth with average transect depth (ft) during
day (B) and night (C) periods. Histograms show sampling
frequency for transects of varying depths during day (B)
and night (C). Each point represents one fish: horizonta)
black bars denote nighttime periods.
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Station LGID was sampled more heavily than was £G2D in the fall (285
vs. 75 transects; Table 13). Fish totals, however, followed the same
pattern, with LG1D producing 225 records compared to 56 records from LG2D.
Catch rates for the two deep stations were similar (Figure 86). Deep
stations differed in that nighttime catch rates at LG1D were higher than
daytime, whereas at LG2D, daytime catch rates were greater than nighttime
rates. |

Fall sampling at the deep stations suggested that fish depth
distribution patterns were similar to those in the summer. Fish were
concentrated in the upper portion of the water columm at both LGID (Figure

87) and LG2D (Figure 88) and to a lesser extent near the bottom, leaving an

unoccupied region between these two areas.

Objective 4: To assess occurrence of salmonid predation by resident fishes

at various sampling stations in Lower Granite Reservoir.

Methods

Seasonal food habits were determined by sampling fish stomachs at each
of the six stations. In addition, fishes for food habits information were
collected at four additional shallow stations {see Bennett et al. 1988 for
specifics). Fishes were collected by beach seining, night and day
electrofishing, and gillnetting. Diel food habits were determined from
stomachs collected from both day and night sampling efforts as fish were
available.

Lengths chosen for predator stomach analysis were based on previous

smolt predation research conducted in John Day Reservoir. Gray et al.
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Figure 87. Fish depth distribution (fish depth / total depth) from
fall, 1987 hydroacoustical samples on station LGID at Lower
Granite Reservoir, Washington. Observations in A (diel
depth distribution) are subdivided into comparisons of fish
depth / total depth with average transect depth (ft) during
day (B) and night (C) periods. Histograms show sampling
frequency for transects of varying depths during day (B)
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(1984) reported that salmonids were found in the stomachs of 150 to 343 mm
smallimouth bass; as a result our minimum length for smalimouth was 150 mm.
Gray et al. (1984) further reported the high importance of fish in the diet
of northern squawfish steadily increased with size after 300 mm. They found
salmonids in squawfish as small as 324 mm. Based on this information, we
imposed a minimum size of 250 mm for squawfish stomach collections.
Salmonids were found in channel catfish ranging in size from 350-600 mm
(Gray et al. 1985). An arbitrary size limit of 250 mm was imposed for
analysis of both incidence of predation and a general food habits
description.

Smallmouth bass, largemouth bass, crappies, and yellow perch were
drugged using tricaine methylsulfonate (MS-222) and their stomach contents
sampled. We used a lavage technique similar to that used by Light et al.
(1983) and Seaberg (1957) except for the pump apparatus. We adapted a boat
bilge pump (750 gph) to a pistol type garden hose shut-off and attached a
modified flexible copper tube (1/4") that was inserted into the stomach of
the fish through the esophagus. Stomach contents were flushed into a
bucket, strained through plankton mesh (80 micron), and preserved in FAA.
Stomachs of northern squawfish and channel catfish were surgically removed
as a result of the inadequacies of the lavage technique to sample food
habits from these species.

Stomach contents of fish were identified with dissecting and compound
microscopes. A1l food items other than fish were identified to order. The
origin of the organism (terrestrial or aquatic) also was noted. Keys used
in identification were Pennak (1978), Merritt and Cummins (1978), and Borror
et al. (1976). Fish were keyed to the lowest possible taxon. Bone
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identification keys and fish length/bone length regressions {unpublished
data; USFWS, National Fishery Research Center - Willard Field Station) were
used to identify and estimate lengths of heavily digested fish.

An index of relative importance (IRI; Pinkas et al. 1971; Bennett and
Dunsmoor 1986) was used to compare seasonal and diel importance of prey
items for each species and sampling station.

IRI = (N + W) x F, where

N = composition (%) of a food item by number

W = composition (%) of a food item by weight

F = frequency of occurrence
Weights used in the IRI were estimated live weights. A1l organisms (other
than fish) that were visibly alike and in good condition were grouped and an
average wet weight used to estimate the 1ive weight for that group.
Organisms were blotted dry for a standard drying time of 60 seconds, and
then weighed. Fish weights were estimated by length-weight regfessions

developed for all fish species in Lower Granite Reservoir (Bennett and
Shrier 1986).

Results
Contents of 326 smallmouth bass, 197 northern squawfish, and 55 channel
catfish stomachs from Lower Granite Reservoir were analyzed over spring,

summer, fall, and winter sampling periods.

Smallmouth Bass
Spring.-Contents of 261 smallmouth bass stomachs were analyzed. Most

stomachs were from fish from shallow stations with the exception of three
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that were collected at stations LGIM and LG2M. The majority of the stomachs
(48.6%) were collected from LG1S. Of the shallow stations, LG5S had the
lowest number of bass represented (3.1%). Twenty-five percent {66) of the
stomachs were empty. Bass examined for stomach contents during the spring
season ranged from 127 to 475 mm (mean = 215 mm). The largest mean length
of bass came from station LG2S (mean = 252 mm), whereas station LG4S had the
smallest mean length (206 mm; Appendix Table C).

Chironomids, crayfish, and fish were the prey items of highest relative
importance for smallmouth bass in Lower Granite Reservoir (Figure 89).
Respective importance of chironomid 1ife stages was pupae (73%), followed by
adults (20%), and larvae (7%). Miscellaneous items (aquatic insects
[Ephemeroptera, Trichoptera, and Plecopteral, microcrustaceans [Amphipoda
Lorophium spp.], Isopoda, Cladocera [(Raphnia], and Copepoda, Hydracarina,
fish eggs, and one rodent) were of 1ittle importance (Table 14),

Crayfish was the second most important prey item for bass during the
spring season (Figure 89). Crayfish accounted for 26.2% of the total weight
of food items, 5% of the total number, and occurred in 43% of the bass
stomachs (Table 14).

Fish observed in the diet during the spring season included (in order
of increasing relative importance): catostomids (species not
distinguished), cyprinids (chiselmouth, northern squaﬁfish, redside shiner,
and peamouth), salmonids (chinook salmon, mountain whitefish, and rainbow
trout [steelhead]), centrarchids, and cottids (Figure 89; Table 14).
Catostomids accounted for 12.8% of the total weight of food items, 1.07% of

the total number, and occurred in 8.7% of the stomachs which contained food
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Table 14. Humber, weight, frequency of occurrance, snd Index of Relative loportance (IRI) of food
itess of smallmouth bass (n = 195) from Lowsr Granite Raservoir, Washington, during spring

1587
NHumber Weight Frequemcy Total
Prey of of of Wupbar Weight Frequency IRI
Itea Prey Prey Prey (%) (1} (x) (1)
OSTEICRIRYES
Salmonidas
Unktiown Salmonidae 2 70.11 2 0.0% 6,20 1.02 0.13
Salmo gaipdnezi 1 AB.55 1 6.05 4.29 0.51 0.05
Ongorhwnchus tshewytscha 7 193.84 & 0.33 17.11 2,04 0.85
£rosoplvp willispyoni 7 6.68 5 0.33 0.59 2.55 0.06
Catostomidas 23 145.98 17 1.07 12.90 8.87 2.8
Cyprinidas
Unknown 3 6.07 2 0.14 0.54 1.02 0,02
Ptychocheilus orszonensis 19 20,43 13 0.89 2.4 7.85 0.39
Acrocheiluy alutsceus 14 93,30 13 0.65 B.29 5.683 1.41
Mvlocheilus caurinys 1 0.31 1 0.05 0.03 0.51 0.00
Richacdsonius baltestus & 3.48 3 0.19 0.31 1.53 0.02
Cantrarchidas
Micropterus dolomieul z  79.00 1 0.08 6.98 0.51 0.09
Cottidas 3 4.50 3 0.14 0.40 1.53 0.02
Unknowns Larval Fisgh 68 0.886 "] j.08 0.08 &.59 0.3
Unknown Fish 22 121.08 15 1.03 10.70 8.16 2.28
INSECTA
Unknown Inssct g 0.08 1) 0.42 0.01 3.08 0.023
Ephemsroptera &1 1.02 as 2.85 0.08 17.88 1.25
Trichoptera 7 0,11 ] 0.33 0.01 .08 0.02
Placoptera 1 0,01 1 0.0S 0.00 0.51 0.00
Coleoptera 2 0.01 2 0.09 0.00 1.02 0.00
Diptera
Unknown Diptera 1 0.29 B 2.31 0.03 3.08 D.0&
Chironomidae (Adult) 200 1.36 11 13,538 0.12 3.61 1.82
Chirenomidas (Pupas) 1083 17.68 .1} 49.85 1.36 42,86 52.19
Chironomidas (Larvae) 9 0.82 27 4,62 0.07 13.78 1.5
Hemiptera
Corixidas 1 0.00 1 0.05 0.00 0.5 0.00
HSomoptera
Cicadellidse 10 0.02 7 0.47 0.00 .57 0.04
ARACANIDA &5 0.03 1 3.04 0.00 0.51 - 0,04
CRUSTACEA
Decapoda
Pacifestycus lenivsculus 108 296.99 1 5.04 26.24 43.88 32.85
Amphi pods
Cozophiun spp. 45 0.17 32 2.10 0.01 18,3 0.82
Othar 24 0.25 13 1.12 0.02 9.18 0.23
Isopoda 1 0.01 1 0.0% b.00 0.3 0.00
Cladocara
Davhnis spp. 18 0.01 12 0.84 0.00 6.12 0.12
Copspoda 9 0.00 2 0,42 0.00 1.02 0.01
BYDRACARINA 71 0.00 & 3.3z 0.00 2.04 0,18

MISCELLARECUS 72 10,88 3 3.38 0.98 2,55 0.28
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items. Chiselmouth was the most common cyprinid ingested by weight (8.3%),
0.65% of the total number, and occurred in 6.6% of the bass stomachs.

Salmonids contributed the most to the overall total weight of food
items (28.2%) although their contribution to total number was low (0.8%).
Collectively, anadromous salmonids occurred in 3.6% of bass with food. Of
the bass stomachs containing salmonids, an average of 1.75 chinook salmon
per stomach was observed. Only one rainbow trout was observed.
Unidentifiable salmonids comprised 6.2% of the total weight of all prey
items and 1% of bass stomachs with food (Table 14).

summer.-Contents of 48 smallmouth bass were analyzed from the summer‘
season. Nine (19.6%) stomachs were collected from the mid depth stations
while the remaining were from shallow stations. Five {10.4%) of the 48
stomachs were empty. Total lengths of bass in the sample ranged from 145 to
351 mm. The overall mean length was 205 mm (Appendix Table C).

Summer diet composition was similar to that in the spring although the
order of importance differed. Crayfish, chironomids, and fish were more
abundant, followed by miscellaneous ftems (Figure 89). Crayfish accounted
for 58% of the total weight of food items, 1.7% of the total number, and
occurred in 32.5% of the stomachs {Table 15). Pupae dominated the
chironomids in relative importance and percent total weight, although pupae
and larval stages were equal in presence based on total number (13.6%).
Chironomid pupae occurred in 20.2% of the stomachs containing food.
Miscellaneous items (Ephemeroptera, Trichoptera, Amphipoda, Isopoda,
Cladocera, and Hydracarina) accounted for less than 12% of the total IRI.

The relative importance of fish eaten by smallmouth bass in the summer

sample increased to 26.3% of the total IRI from 8.6% in the spring season
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Table 15. Mumber, welght, frequency of occutremce, and Index of Relative Importance (IRI) of
food items of smallmouth base (n = 43) from Lower Granite Ressrvoir, Washington,

during summer 1587

Runber Weight

Fragquency Total

Prey of of of Humber Weight Frequency IRI
Item Prey Frey (g) prey (z) (2) (2 ()
OSTEICHTEYRS
Salmonides
Catostomidae 1s 19.89 13 1.07 18.00 n.23 10,82
Cyprinidas
Biychocheilus oresonensis 3 l.08 3 0.23 o.s7 5.98 0.15
Acrocheilus slutaceus 1 3.20 1 0.08 2.92 z.33 ¢.12
Mriocheilus csurinug 2 0.18 2 0.15 0.15 4,65 0.03
Ceantrarchidas
Micropterus dolomjeui & 7.22 2 8.31 5.58 4,65 0.5%
Unknown: Larval Fish 220 3.8 14 18,79 3.35 32.58 12.20
Unkncown Fish 9 9.72 [ 0.9 8.88 13.85 2.48
INSECTA
Unknown Insect ] 0.0& [} 0. .48 0.03 9.30 0.08
Ephsmezoptera L1 0,52 ? 3,05 0.48 15.28 1.06
Trichoptera 15 0.25%5 7 1.15 0.22 16,28 0,41
Diptera
Chironomidae (Adult} 7 0.03 1 0.53 0.03 2.33 0,02
Chirenomidas (Pupas) 178 2,98 29 13.59 2.70 67.44 20,24
Chironowidas (Larvas) 178 1.47 14 13.59 1.3% 32.56 L]
Hexipters
Notonectidase 2 o.00 2 0.15 0.00 &.B5 0.01
Corixidas 13 0.02 & 0.88 0.02 2.30 0.17
Homoptara
Aphididae 2 0.00 1 0.15 0.00 2.33 0.01
ARACHRIDA
CRUSTACEA
Decapoda
Encifastacus lenivusculus 22 39.12 14 1.88 54.02 32.56 33.41
Amphipoda
Corophium spp. 1 0.04 5 .04 0.0k 5.98 0.34
Isopoda 1 ¢.01 1 0.08 6.01 4,85 0.03
Cladocera
Leptodors kindtd 538 0.02 5 41.07 0.02 11.€63 8.80
Daphnia sop. 3 0.01 3 2.%0 0.01 &.98 0.34
Copapoda & 0.00 2 0.31 0.00 4.85 0.03
HYDRACARTNA 1 0.00 1 0.o08 0.00 2.2 0.00
BT FTPTr TR Y G T TRTE A T 1
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(Figure 89). Catostomids and larval fish dominated the diet during the
summer season. Catostomids accounted for 18% of the tota?l weight of all
items and 44% of the total fish weight. Catostomids occurred in 30.2% of
the bass stomachs which contained food. Larval fish accounted for 16.8% of
the total number of food jtems and 3.3% of the total weight. Larval fish
occurred in 32.5% of bass stomachs that contained food. Fish of lesser
importance in the diet of bass during the summer months included (in order
of IRI): centrarchids, northern squawfish, chiselmouth, and peamouth
(Table 15). No salmonids were observed in bass stomachs during the summer
months.

Fall.-Contents of 17 smallmouth bass were analyzed during the fall
sampling season. Six of the stomachs were from mid depth stations; four
(23.5%) stomachs were empty. The remaining stomachs were collected from
shallow stations. Bass total length averaged 308 mm and ranged from 192 to
456 mm (Appendix Table C).

Crayfish dominated the relative importance (83.1%) of food items of
smallmouth bass during the fall season (Figure 89). Crayfish accounted for
78.3% of the total weight of all food items, 43.6% of the total number and
occurred in 77% of the bass stomachs (Table 16).

Relative importance of fish decreased in the fa]? to a Tevel similar to
the spring season (8.9%; Figure 89). Catostomids were the dominant fish,
comprising 80% of the total fish weight and were present in 30.7% of the
bass stomachs. Cottids occurred in two stomachs and accounted for 1.3% of
the total IRI. Both bass which consumed cottids were captured at station
LG1S. No salmonids were observed in bass stomachs examined during the fall

season.
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Table 15. Runber, weight, fraguency of occurrence, and Index of Relative lmportance (IRI)
of food items of smallmouth bass (o = 13} from Lower Granits Resarvoir,
Washington, during fall 1987,
Fumber Weight Frequency Total
Frey of of of Fumber Weight Freguency IRI
Itea Pray Frey (g) Prey (1) (I} (£ 4 [£ &)
CSTEICHIHYES
Catostomidas L] 17.49 & 10.28 17.11 30.77 T.47
Cottidae 2 4.50 2 5.1» 4.40 15.38 1.30
INSECTA a.00 0.00 0.00 0.o00
Chironowidas (Pupase) 10 0.17 & 25,84 0.18 an. 77 7.04
Chironomidas (Larvas) 2 0.02 1 3.13 0.02 7.58 0.35%
Homoptera 0.00 0.00 o.00 0.00
Cicadellidae 1 0.00 1 2.56 a.00 7.69 0.18
ARACERIDA 1 0.01 1 Z.58 0.01 7.69 0.18
CRUSTACEA 0.00 0.00 Q.00 .00
Dacapoda 6.00 0.00 0.00 0.00
Eagifsatacus lenlusculus 17 a0.00 10 43,59 78.30 76.82 83.14
Copapoda 1 0.00 1 2.58 0.00 7.68 0.17
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Relative importance of chironomids decreased substantially from spring
and summer seasons to 7.4% in the fall (Figure 89). Chironomid pupae
dominated, accounting for 83.3% of the tota) number of chironomids and 25.6%
of all food items (Table 16). Miscellaneous items (Homoptera

[Cicadel1idae], Arachnida and Copepoda) collectively accounted for less than
1% of the total IRI.

Northern Squawfish

Spring.-Contents of 80 northern squawfish stomachs were analyzed during
the spring season. Squawfish from all ten stations were represented in the
analysis. Station LG2S had the largest number of stomachs collected (24),
whereas the least represented station (LG3S) had one (Appendix Table D).
Twenty one (26.3%) of the stomachs were empty. Total Tengths of squawfish
ranged from 137 to 550 mm; mean total length was 337 mm. Station LG1D had
the longest mean length (414 mm; n = 2) while those from station LG4S had
the smallest mean (242 mm; n = 2).

Chironomids, fish, miscellaneous insects, and crayfish comprised prey
items of major importance to northern squawfish (Figure 90). Chironomids
were the moSt important items accounting for 35.7% of the total number and
oceurring in 35.6% of all squawfish examined, although chironomids
contributed only 0.6% of the total weight of all food items consumed (Table
17). Pupal instars comprised the majority of chironomids (94%) .
Miscellaneous insects (unknown dipterans, Coleoptera, Ephemeroptera,
Trichoptera and Hymenoptera) were of minor importance.

Fish were the second most important group of prey for northern

squawfish during the spring season (Figure 90). Fish eaten (in order of
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Table 17. Number, weight, fregquency of occurrence, and Index of Relative Importance (IR)I of food
items of northern squawfish (n = 59) from Lower Granits Reservoir, Washington, during

apring 1687,
Nuxber Weight Frequency Total
Prey of of of Number Weight Fregquency IRI
Itea Frey Prey (3) Prey {I) (2) {2 (2)
OSTEICHTEYES
Salmonidae
Unknown: Salmonidas 2 70.12 2 0.35 a.82 3.3¢ 1,00
Salmo xairdnezi 7 2731 ? 0.88 34.76 11.88 13.54
Ongorhwnchus Lahgwytsche B 172.64 3 0.74 21.97 B.47 8.17
Catostomidas 5 11.89 5 0.82 1.49 8,47 0.57
Unknewn- Fish 3 77.91 a 0.237 .91 5.08 1.88
INSECTA .
Unknown Insect 5 0.07 5 0.62 0.01 8.47 0.17
Ephsteroptera 30 0.38 3 .80 0.05 5.08 0.81
Trichopters 2 0.03 2 0.25 0.00 3.3 0.03
Coleoptara 29 0.18 15 3.57 0.02 27.12 3.12
Dipters
Unknown Dipteza ane 7.081 ] 40.71 0.09 10.17 16,20
Chironomidae {Pupae) 273 & .54 21 33.58 0.38 as5.59 35,88
Chironomidas {Larvaa) 1?7 0.14 3 2.08 0.02 3.08 0.34
Hymsnioptera
Misc. Hymenoptera 1 0.00 1 0.12 0.00 1.6868 0.08
Formicidae 3 0.00 3 0.37 Q.00 3.08 0.01
CRUSTACEA
Dacapada
Pacifestacus lepiugculus 10 156,73 14 2.3% 19.95  23.73  16.85
Amphipoda
Corophium spp. 13 0.05 5 1.80 0.01 8.47 0.44
MISCELLANEOUS 2 10.40 2 0.25 1.32 3.349 0.17
EE T P P L
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relative importance) included: salmonids (rainbow trout [steelhead],
chinook salmon) and catostomids. Salmonids comprised 65.7% of the total
weight of a1l food items, and 1.9% of the tota) number (Table 17).

Steelhead occurred in 10.2% of stomachs containing food items, and accounted
for 61% of the total salmonid weight. Chinook salmon occurred in 8.5% of
the stomachs with food. Collectively, salmonids occurred in 22% of all
squawfish stomachs that contained food. Unknown salmonids occurred in 3.4%
of squawfish stomachs. Catostomids accounted for 9.9% of the total weight
and 0.37% of total number of all food items and occurred in 5% of squawfish
stomachs with food. Unknown fish were of lesser importance.

Crayfish comprised 19.9% of the total weight, and 2.3% of the total
number. Frequency of crayfish occurrence was 23.3% during the spring season

(Table 17). Miscellaneous food items (Amphipod and Corophium Spp.) occurred
in 8.5% of the stomachs. |

Summer.-Stomachs from 34 northern squawfish were collected during
summer 1987. Nine (26.5%) of the stomachs collected were empty. Twenty-
eight (82.4%) of the stomachs examined were from mid depth stations.
Squawfish total lengths ranged from 230 to 495 mm and had a mean of 329 mm
(Appendix Table D).

Summer food habits of northern squawfish differed dramatically from
those during spring. Food items with higher relative-importance were the
cladoceran, Leptodora kindti, followed by crayfish, chironomids, and fish
(Figure 90).

Leptodora kindti dominated food items during the summer season and
accounted for 55.4% of the total number of prey items and 17.7% of the total

T ;.-.-ius-i"l-j:iélé;zih'ili.iimiimi DT S S S ST N IR R S R
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weight (Table 18). This cladoceran occurred in 32% of all squawfish
examined in the summer.

Relative importance of crayfish was similar between spring and summer
seasons (Figure 90). In the summer, crayfish accounted for 45.5% of the
total weight of food items and occurred in 7.3% of the stomachs (Table 18).

Fish and chironomids decreased sharply in relative importance between
spring and summer (Figure 90). Fish observed in stomachs during summer were
catostomids, centrarchids, and unidentified individuals (Table 18).

Miscellaneous items in the summer were primarily cladocerans,
(Daphnia), Hymenoptera (Formicidae), Coleoptera, Trichoptera, and Amphipoda.
Daphnia occurred in 4.5% of the stomachs and accounted for 36.7% of the
total number of prey ftems.

Fall.-Contents of 68 northern squawfish stomachs were examined;
nineteen (27.9%) stomachs were empty. Fish from LG2S accounted for 27.9% of
the stomachs while 33 (48.5%) were from mid depth stations. Total Tengths
of squawfish represented in the samples ranged from 252 to 532 mm, with an
overall mean total length of 301 mm (Appendix Table D).

Relative importance of major food items during fall was similar to that
of the spring season (Figure 91). Chironomids dominated, followed by
crayfish, fish, and miscellaneous insects. The major difference between
fall and summer seasons was the composition of fish prey. During the fall,
catostomids comprised 99% of all fish observed in the stomachs, 39.1% of the
total weight of prey items, and occurred in 6.4% of stomachs (Table 19).

The miscellaneous category was comprised primarily of Daphnia spp. and

Leptodora kindti (5.1%), and Coleoptera, Hemiptera, Homoptera, and
Amphipoda.
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Table 18. Humber, weight, freguency of ocourrence, and Index of Relative Impertance (IRI) of
Zood itams of northern squawfish (p = 23) from Lowar Granite Reservoir, Washington,
during summer 1987,

Numberz Waight Frequency Total
Frey of of of Mumber Weight Fresqueney IRI
Item Prey Frey (g} Fray [ €3] x) (%) (1)
OSTEICHTEYES
Catostemidae 11 10.82 2 0.19 12,42 ] 2,47
Centrarchidae
Unknown 1 iD.00 1l 0.02 11.47 & 1.13
Unknosn Fish 5 5.41 3 0.09 68.21 12 1.85
INSECTA
Unknown Insect 1 0.01 1 0.02 0.01 & 0.00
Trichoptara 1 0.00 1 0.02 0.00 & 6.00
Colscpteca 2 0.01 ¢  D.04 0.01 - .01
Diptera
Unknown Diptera 1 0.013 1 0.02 0.01 4 0.00
Chircnomidas (Adult) 3 0.01 1 0.05 0.02 & 0.01
Chironomidas {Pupas) 141 2.34 13 2.47 2.69 32 5,57
Chironcmidae (Larvae) 2 0.02 2 0.04 0.02 8 0.01
Homoptera i
Aphididae 1 0.00 1 0.02 0.00 & 0.00 :
Bymencptera
Formimides » 0.05 5 0.58 0.06 20 0.38 f
CRUSTACEA '
Decapoda
Pacifastscus letiusculus 5 39.69 4 0.08 45,53 16 17.87
Amphipoda
Corovhium app. 1 2.00 1 0.02 9.00 L] 0.00
Othaz 238 2.48 2 4,14 2.85 8 1.3?
Cladocera
Leptodors kindti s 15,42 ] 55.38 17.89 az 57.2%

Dsphnis spp. 2082 0.88 3 %.7N 1.0 12 11,08
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Table 18. Mumber, waight, fresquency of occurrence, and Index of Relative Importance (IRI) of
food items of northern squawfish (n = 49) from Lower Granits Reservolir, Washington,
during fall 1887.

Hupbsr Weight Prequency

Frey of of of Humbsr Weight Frequency IRI
It Prey Pray Prey (I) (x) 1) (%)
OSTEICHTHYES
Catosotomidae 9 86.01 8 0.11 29.15 16.33 17.07
Centrarchidas
Micropterus dolomisyl 14 10.32 2 0.18 §,70 4,08 0.53
Unknown Fish 3 12.54 1 0.04 3.71 2.04 0.31
INSECYA
Unknown Insect 3s 0.2% a 0.4b 0.12 16.23 0.24
Trichoptera 1 .00 1 0.01 Q.00 2.04 0.00
Colecpters 71 0.39 11 0.90 0.18 22.45 0.64
Dipteza
Unknown Dipteras 5 0,04 3 0.08 0.02 §.12 0.01
Chironomidas {Adult) 3 0,01 2 0.04 0.01 4.08 0.0¢
Chiromonidas (Pupaa) 1197 19.89 at 15.15 9.05 63.27 4037
Chironomidas (Larvas) 1 0.01 1 0.01 Q.00 2.04 0,00
Heaiptara
Mesoveliidas &7 0.09 11 0.85 Q.04 22.45 0.53
Homopters
Cicadellidas 531 0._86 15 5.72 0.39 30.61 5.80
Aphididae 1087 1.28 11 13.78 0.57 22.45 8.57
Eymsnoptarcsa
Forcimidas 172 0.22 -] 2.18 0.10 16.32 0,89
ARACENIDA 31 0.17 L] 4.39 0.08 3.16 0.10
CRUSTACEA
Decapoda
Pacifestacus leniysculus 14 716,11 10 0.18 34 .85 20.41 18,92
Amphipoda
Cozophiun spp. 1] 0.25 -] G.88 0.12 12.24 0.32
Cladocera
Leptodoze kindtd 2178 8.72 1 27.s3 3.97 2.04 1.71
Rachnia spp. 2408 1.01 2 30.49 0.46 4.08 3.38
HYDRACARINA 1 0.00 1 0.01 2.00 2.04 .00
K] 0.04 .68 8.12 0.12

MISCELLANEOUS 3 1,50
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Winter.-Contents of 15 northern squawfish were collected. Ten (66.7%)
of the stomachs were empty. Total lengths of fish examined ranged from 245
to 370 mm with a mean of 293 mm (Appendix Table D).

The three major food items were fish, crayfish, and chironomids (Figure
91). Crayfish importance, as in other seasons, was high; crayfish comprised
14.8% of the total weight, 16.7% of the total number, and occurred in two
(40%) of the squawfish (Table 20). Fish importance (centrarchids,
catostomids, and an unidentified fish) in winter increased although only”
five squawfish contained food.

Channel Catfish

Spring.-Contents of 20 channel catfish stomachs were analyzed duriﬁg
the spring season; two stomachs were empty. The highest number of catfish
stomachs examined came from LG2M (70%). Only one catfish stomach was
collected at the shallow stations (LG2S). Total lengths of catfish
represénted in the stomach sample ranged from 356 to 612 mm with a mean of
465 mm (Appendix Table E),

Food items of highest relative importance were fish, chironomids, and
crayfish (Figure 92). Salmonids were the most important fishes present in
the catfish diet. Rainbow trout (steelhead) accounted for 73.2% of the
total weight of all food items, 1.5% of the total number of items, and
occurred in 27.8% of the stomachs that contained food.(Table 21}. Only one
chinook salmon was observed in catfish stomach samples. Collectively,
salmonids contributed 38.9% of the total weight of all food items, 1.8% of
the total number of prey items, and occurred in 38.9% of the stomachs

sampled. Unknown fish contributed 2.7% of the total IRI.
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Table 20. HRumber, weight, fraquency of occurrence, and Index of Relative Importancs (IRI) of
food items of northers squawfish (n = 5) from Lowsr Granits Ressrvoir, Washington,
during winter 1987.

Hunber Weight Frequency Total

Prey of of of Number Weight Frsquency IRI
Item Prey Prey (g) Frey {2) (x) (%) (T
OSTREICETHYES
Catostomidase 2 5.89 2 18.87 10.87 &0 18.35
Centrarchidae
Unknown 1 10.00 i 8.3 18,82 20 .05
Pomoxis app. 2 7.8 1 - 16.87  33.32 20 16.78
Unknewn Fish 2 11.89 2 18.87 22.15 40 26.0%
INSECTA
Dipteza -
Chironomidae (Pupae) a 0.05 1 25.00 ¢.09 29 8.42
CRUSTACEA
Decapoda

Pasifastycus Lepiusculys 2 7.97 2 16.67  14.84 40 21.1%5
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Table 21. Humber, weight, frequency of occurrence, and Index of Relative Importance (IRI) of food
itams of channel catfish (n = 18) from Lower Granits Reservoir, Washingtoen, during apring

1987,
Number Weight Frequency Tetal
Prey of ot 1 4 Fumbher Weight Frequency IRI
Item Prey FPrey (5) FPrey (2) (x) [+ 3] (2
OSTEICETNYES
Salmonidae
Unkrown Salmenidas 1 98.24 1 .18 6.78 5.56 0.73
Salywo ssirdoeri 2 1039.32 5 1.43 73.23 27.78 39.01
oncerkynchus tshawytychy 1 30.04 1 0.18 2.12 4,38 0.24
Catosotomidas 1 3.88 1 6.18 0.28 5.%8 0.04
Unknown Fish 2 175.85 2 0.32 12.32 11.11 2.865
INSECTA
Unknown Insact 1 0.24 1 0.18 0.02 5.58 0.02
Trichoptera 2 Q.03 1 0.32 0.00 5.586 0.03
Coleoptera & 0.02 1 0.85 0.00 5.56 0.07
Diptera
Chironomidas (Pupaas) 239 3.97 7 3a.55 0.28 38.88 28,39
Chironomidas (Larvae) 17 0.1s 3 2.74 0.01 16.87 0.86
CRUSTACEA
Decapodas
Bacifastecus culu 17 A7, 48 a 2.74 3.35 44 ke 5.09
Amphipoda
Cozophium app. 20 0.07 5 3.22 0.01 27.74 1.6%
Other 1 0.01 0.18 0.00 5.56 0.02

MISCELLANECUS 05 22.42 3 49.19 1.58 27.78 21.16
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Chironomids were the second most important group of prey (Figure 92),
with chironomid pupae comprising 93% of the chironomids examined. Crayfish
occurred in 44.4% of the stomachs sampled, contributing 3.4% of the total
weight, and 2.74% of the total number (Table 21). Miscellaneous items

included fish eggs, a Pacific lamprey (Lampetra tridentata), a rodent, and
organic matter.

Summer.-Contents of 17 channel catfish from four stations were analyzed
from the summer season; one stomach was empty. Total lengths ranged from
259 to 528 mm with an overall mean length of 359 mm (Appendix Table E).

Major food items of importance were similar to the spring season
(Figure 92). The major difference was a significant decrease in fish as an
important food item during the summer season. Catostomids were the only
identifiable fish observed (16.4% of the total weight, and less than 1% of
the total number) and occurred in 1 (6.3%) stomach (Table 22). The
remaining fish were unidentifiable, and occurred in two (12.5%) stomachs.

Crayfish increased in importance between the spring and summer seasons
(Figure 92). Crayfish accounted for 33.3% of the total weight, 1.3% of the
total number, and occurred in 50% of the stomachs in the sample (Table 22}.

Miscellaneous items inciuded Cladocera, Hymenoptera, Homoptera,
Coleoptera, and Amphipoda. Of the Cladocera, Daphnia accounted for 12.7% of
the total IRI, 42.6% of the total number, and occurred in 25% of the
stomachs (Figure 92; Table 22).

Fall.-Three of the 18 (16.7%) channel catfish stomachs analyzed were
empty. Fish were represented from all mid depth and deep stations and one
shallow station (LG2S). Total lengths ranged from 208 to 583 mm with an
overall mean of 355 mm (Appendix Table E).




Table 22. Number, weight, frsquency of occurrence, and Index of Relative Importance (IRI)
of food items of channel catfish (n = 16) from Lower Granite Resarvoir,
Washington, during summer 1987,

Number Waight Frequancy Total

Prey of of of Number Weight Frequency IRI
Itam Prey Prey () prey (2 (I 2 (2)
OSTEICHTHYES
Catostomidas 1 41.50 1 0.02 16,43 5,25 1.22
Unknown Fish 2 83.00 2 0.03 32.85 12,50 & 87
INSECTA
Trichoptera 1 0.02 b 0.02 6.01 6.25 0.00
Colscptera 41 0.22 1 0.65 0.09 §.25 0.0%
Diptara
Chironomidas (Pupae) 1892 33.10 13 31.66 13,10 81.25 43.07
Chironomidaa (Larvas) 975 8.08 12 15.50 3.20 75.00 16.60
Homoptecs
Cicadellidas 1 0.00 1 0.02 Q.90 6,25 0.00
Aphididae 14 0.02 1 0.22 0.01 5.25 b.02
ARACHNIDA 3 6.02 3 0.05 0.01 18.7% 0.0l
CRUSTACEA
Dacapoda
Pacifagtacus leniusculus a 84,25 8 0.13 33.3%5 50.00 19.82
Amphipoda
Corophium spp. 29 0.11 0.48 0.04 37.50 0.22
Isopeda 2 0.03 1 0.03 0.01 6.25 0.00
Cladocera 0.00 0.00 0.00 0.0a
Leptodors kindti 5 0.01 8,44 0.00  12.50 1.25
Daphnjs spp. 2580 1.12 4 42.80 0.45  25.00 12.74
MISCELLANEOUS k| 1.10 ] 0.05 O.44 18.75 0,11
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Chironomids dominated the relative importance of food items during the
fall months followed by fish and crayfish {Figure 92). Chironomids
accounted for 88.7% of the total weight of food items and 4.1% of the total
number. Chironomid pupae occurred in 60% of the stomachs and chironomid
larvae occurred in 14.5% of the stomachs (Table 23).

Salmonids (unidentified) comprised the majority of the fish, and
accounted for 54.9% of the total weight, but 1ess than one percent of the
total number (occurred in one stomach). Catostomids and unknown fish _
comprised the remaining fish in the sample (Figure 92; Table 23).

Crayfish accounted for 14.2% of the total weight of prey items, 1.3% of
the total number and occurred in 26.7% of the stomachs. Miscellaneous items

(2.4% of IRI) in the fall diet included Homoptera, Ephemeroptera,
Hymenoptera, Amphipoda, and Cladocera (Figure 92; Table 23).

Discussion

At the beginning of this research, participants at the scoping workshop
{Webb et al. 1987) expressed interest in determining if "complex" mid depth
habitat exists. Based on our soundings, none of the mid depth stations
sampled were structurally complex. Although potential cover objects on the
bottom were not specifically quanitified at mid depth stations, frequency
was low and varied 1ittle among stations. A submerged ridge 200 ft from and
parallel to the shoreline at LGIM was probably the most significant
structural feature of all the mid depth sites. Station LG3M had a wide
shelf sloping gradually from the 20 to 40 ft depth contours and a steep
slope between 40-60 ft depth contours. Station LG2M had a moderately sharp
drop-off and then also flattened somewhat at 40-60 ft depths. Shelf width
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Table 23. Kumber, ni.;ht._. frequancy of occurrsnce, and Index of Relative Inmportance (IRI) of
food items of channel catfish (n = 15) from Lower Granits Reservoir, Washington,
during fall 1547,

Huxber Weight Frequency Total

Prey aof of of Number Weight Frequency IRL
Item Preoy Prey (g) Prey (X) (1) %) (2}
COSTEICHTHYES
Salmcnidae
Unknown Salmonidae 2 70.11 1. 0.50 54,90 B.87 &_43
Catostomidas 1 7.98 1 0.23 8.23 6.67 0.52
Unknewm Fish 1 26.02 1 0.25 20.37 6.67 1.85
INSECTA .
Ephameroptera 1 0.01 1 0.25 6.01 5.67 0.02
Colscpteza 2 0.01 2 a.50 0.01 13.33 0.08
Diptera
Unknown Diptera 1 0.02 1 0.25 0,01 B_57 °.02
Chironcmidas (Pupas} 282 4. .89 1z 71.03 3.67 &0.00 71.65
Chironcaidas (Larvas) 70 ¢.58 10 17.82 0,45 E6.67 14 .48
Homoptars
Cicadellidae 12 0.02 5 3.02 0.82 13,133 1.21
Aphididaa 2 Q.00 2 0.50 Q.00 13.33 0.08
ARACENIDA 3 0.02 3 078 0.21 20.00 G.148
CRUSTACEA
Decapoda
Pacifastacug lenju -] 18.11 & 1,26 14,18 26.67 &.94
Amphipoda
Coyephium spp. L] 0.02 4 1.26 0.01  26.67 .41
Other 1 0.01 1 0.25% 0.01 &.587 0.02
Isopoda 1 0.14 1 0.25 0.11 5.67 0.03
Cladocera

Daghnis =pp. 7 0.00 2 1.76 0.00  13.33 0.28
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differed considerably among mid depth stations as the shelf extended further
into the channel at LG3M than at the other two mid depth stations.

While none of the mid depth stations provided structurally complex
habitat, soundings at station LGID showed a lot of bottom structure. Large
rock sTides form the shoreline at LE10, and extend to the reservoir bottom.
Soundings show an uneven bottom where boulders have accumulated as the
gradient lessens at depths around 80 ft. Soundings in flat areas away from
the base of the slope, however, showed no structure at all. Soundings at
station LG2D showed no structure.

Water temperatures, dissolved oxygen (except during the summer), and
substrate were all similar between mid depth and deep stations. Substrate
was generally similar among sites as the majority of the bottom consisted of
sand and particles smaller than sand. Substrate at LG2M was different in
that only this site had a small percentage of substrate that was larger than
sand. One difference between mid depth stations and deep station LG2D was
the significantly higher proportion of organic matter in the substrate.
Otherwise, the proportion of organic matter was similar among mid depth
sites and LG1D.

Models developed to predict channel and on-site velocities indicated
that different factors affect velocity in the upper reservoir than in the
lower reservoir. Based on the coefficient of determination (Rz), more
factors affect channel velocity in the lower reservoir than upstream. In
both sections, however, an expression of reservoir "size" as a function of
Tocation on the reservoir (the ratio of river mile to cross sectional area) .
was important. Downstream (RM 111-120), forebay pool elevation was

significant as compared to total inflow upstream (RM 120 to 134).
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Logically, total discharge from Lower Granite Dam must be important in
determining velocity patterns in the lower reservoir. However, discharge
from the dam experiences Targe, shortterm flucuations. Velocity of the
large mass of water in the lower reservoir cannot respond quickly to each
change in discharge, resuiting in obscured discharge-velocity relationships.
Apparently, forebay pool elevations, which are also logically linked to
discharge, smooth out discharge fluctuation effects enough to provide better
predictive ability than discharge.

On-site velocities were less predictable than channel velocities when
using predictor variables other than expressions of velocity from other
profiles. On-site profiles were always near shore, generally a relatively
large distance from the channel. As in a riverine environment, most water
moving through Lower Granite travels downstream along the old river channel,
while water along the shorelines frequently forms back-eddies and random
currents. Velocity in such near shore areas shows no clear relationship to
"inputs" or "outputs” of water into or from the reservoir. Instead, near
shore areas are most strongly related to velocities in nearby deeper areas,
suggesting a relatively predictable degree of velocity dissipation as
distance from the channel increases and depth decreases.

In addition to similarities in physical habitat, the benthic community
also was similar among sites. Similarities in composition and standing
crops were found among all deep and mid depth stations. Standing crops were
variable among the three seasons sampled but seasonal changes in abundance
were similar among mid depth and deep stations. Also interesting was the
finding that community structure was similar among mid depth stations. We

did not see any trends in the abundance of different taxa at any one
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station, although mid depth.stations were generally more diverse than deep
stations. Benthic communities consisted predominantly of chironomids and
oligochaetes, as was found in previous studies (Bennett and Shrier 1986;
Bennett and Shrier 1987).

Benthic organisms were considerably more abundant in 1987 than in 1985,
although seasonal trends were similar. In the 1985 surveys (Bennett and
Shrier 1986), benthos abundance was several orders of magnitude lower at
shallow stations and about one half as abundant at deep stations than in
1987. Unfortunately, 1985 benthos analyses did not include measures of
standing crop. Counts of oligochaetes can vary widely because they often
break into several pieces during sampling and sorting. However, chirenomid
abundance increased proportionally to oligochaetes which suggests that
higher numbers of benthos in 1987 reflected actual increases in abundance.
Based on the above discussion, clumped distributions, and widely variable
abundances, benthic community abundance might not be an acceptable
evaluation criterion for mid depth disposal activities. However, benthic
community standing crops merit further investigation before a definitive
assessment can be made.

Fish sampling at mid depth and deep stations was conducted principally
by horizontal gillnets. At the inception of this project, we contemplated
using vertical gilinets and set lines in addition to Horizonta1 gillnets,
After examination of catch rates from previous studies that utilized
vertical nets on Lower Granite Reservoir (Bennett and Shrier 1986) and
Little Goose Reservoir (Bennett et al. 1983), we concluded that higher catch
rates and probably more information would be obtained from using horizontal

nets exclusively. Although we did fish set Tines in this project and
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throughout the earlier study (Bennett and Shrier 1986), we failed to catch
any of the principal target spectes, the white sturgeon. Since catch rates
in set Tines were so low (only 2 bullheads and 1 squawfish were captured) we
choose to omit this information from this report.

Gillnets seemed to provide an adequate assessment of fish habitation
and activity at mid depth and deep stations. We attempted to use similar
amounts of effort with mono and multifilament nets at each of the stations
and, as a result, combined our captures between the two nets. As reported
by Jester (1973) each of the nets are more effective at different times.

Fish collections at the deep and mid depth stations indicated that the
abundance of white sturgeon was Tow at all of these stations. Highest catch
rates for white sturgeon occurred at LGID, where 11 fish were caught. Catch
rates for white sturgeon were low at LG2D; none were collected at LGINM,
while catch rates at LG2M and LG3M were lower than those at the deep
stations. We tagged sturgeon throughout this project and recaptured none,
suggesting a minimum population of 19 fish. 1In comparison, seven sturgeon
were captured in 1985 (Bennett and Shrier 1986). Sturgeon collected in 1985
and 1987 were generally small (2-5 ft), suggesting possible recruitment from
upstream lotic portions of the Snake River. Regardless of the source of
recruitment, low catch rates suggest a low population density in Lower
Granite Reservoir.

Catch rates were Tow for northern squawfish during spring and summer at
all stations but increased at all stations during the fall. Increased catch
rates could indicate greater activity and/or recruitment from shallow sites.
Catches of northern squawfish at deep stations were low but consistent with

those made in 1985 (Bennett and Shrier 1986). However, in 1987 sampling at
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mid depth stations, squawfish comprised a greater proportion of the fish
community than at deep stations. Our sampling in 1987 and earlier (Bennett
and Shrier 1987) has consistently shown that the majority of squawfish in
Lower Granite Reservoir are juveniles and few are captured larger than 250
mm.

Juvenile rainbow trout that residualized in the reservoir as a result
of low flows during spring 1987 provided the highest catch rates of all the
key species. Unfortunately, we do not have sufficient data from previous
years to compare catch rates to 1987. Only 1 rainbow trout uas'captured at
a deep station during the 1985 survey (Bennett and Shrier 1986). Catch
rates for rainbow trout were generally similar between LG2M and LGE3M which
were higher than those at LG2S. Highest catch rates of rainbow trout
occurred at LGIM. Catch rates for rainbow at the deep stations differed as
more rainbow were collected at LG2D. Catch rates for rainbow trout were
similar between LG2S and LGID. With the onset of the out-migration, we
captured rainbow trout frequently in shallow waters and then, as the season
progressed, continued collecting them predominantly at mid and deep
stations. ODuring the spring, many smolts had fungus infections. Trout that
avoided the significant sport fishery in the reservoir generally improved in
appearance and were collected in the summer, fall and into the winter season
in reasonably good condition.

Our use of hydroacoustics greatly expanded our opportunity to "sample"
mid and deep waters concurrently with gilinetting. A major drawback to the
utility of sonar data was the inability to distinguish among different
spectes and sizes of fish. Also, fish on the bottom were difficult to

distinguish from the substrate. Another slight problem occurred when water
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disturbances and debris obliterated surface readings; this probably was not
significant, however, because of the small sonar volume involved and the
probable avoidance of the boat by fish at the surface. For these reasons,
we are limited to drawing conclusions based on the entire fish community. A
bias in sonar samples reflects the conical shape of the sonar beam. More
volume is sampled per unit length along the transect at greater depths
because sonar beam diameter increases with increasing depth. We adjusted
for the bias by weighting total catch as a volumetric expression of effort
(ft3). We wish to emphasize that we do not equate this "catch rate" with a
density estimate for the fish community. Our interpretations were
exclusively qualitative and relative. Also, when we attempt to compare
results from high in the water column to those near the bottom, or between
stations, it is important to remember that more volume per transect is
sampled in deeper areas.

Comparison of catch rates for gillnets and hydroacoustics indicated
Tittle correlation between methods at both mid depth and deep stations
(Figures 93 and 94). In general, when gilinet catch rates were high, catch
rates were low on the sonar. When catch rates were high on the echograms,
gtllnet catch rates were Tow. A number of possibilities could explain this
disparity. First, fish could be distributed within the water column
although their activity levels were low. Gill nets require fish movement to
be effective. Also, fish could be changing Tevels quickly and, as a result,
not be caught in the mid or deep nets although their signal is recorded on
the echogram. Regardless of the reasons for the disparity, hydroacoustics
provided a good technique to assess vertical distribution and differential

activity patterns.
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Figure 93. Comparisgn of 3111 net CPE {catch per hour) with sonar CPE

{fish/ft> x 107) for day and night samples over all seasons
in mid water and bottom regions of the mid depth stations
in Lower Granite Reservoir, Washington.
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DEEP STATIONS
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(fish/ft> x 10%) for day and night samples over all seasons
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Lower Granite Reservoir, Washington.
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One factor that affects fish distribution is morphometry. Morphometry
at LG2M consists of a gently sloping shelf ending in an old river terrace
which drops off rapidly at about 40 ft in depth. Fish occupying the deeper
portions of the shelf were concentrated in the upper water column. Observed
paucity of bottom fish at LGID may reflect morphometry as well as fish
habitat preference. LGID slopes steeply down to depths around 80 ft, where
the river channel bottom flattens. Large rock slides exist above full pool
level, and a lot of this structure occurs at the base of the sTope.
Structure in such areas made fish record identification difficult; what
appears to be structure on the bottom could also be fish. Bottom fish and
structure records are probably intermingled, making it 1ikely that the
observed paucity of bottom fish could have been related to our inability to
identify the records properly. However, density of fish in the upper water
column at LG1D was so high that density off the bottom greatly exceeded that
on the bottom even if all potential bottom fish records were counted.

Morphometry of LG2D consists of vertical cliffs down to 70 ft, where it
flattens to the river channel. Little bottom structure was present; cliffs
are old basaltic lava flows which decompose into relatively small pieces and
fall right at the foot of the c1iff. Thus, we were much more confident of
detecting bottom fish records at LG2D than at LGID, although few were
present, with most fish occupying the upper water column at LG2D.

Food habits of potential smolt predators is always of interest in a
reservoir 1ike Lower Granite that receives millions of smolts annually. We
found that smalimouth bass, northern squawfish, and channel catfish all
contained salmonid smolts. MHighest incidence occurred in channel catfish in

the spring followed by northern squawfish and smallmouth bass. Crayfish and
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chironomids were major food items of smallmouth bass, channel catfish and
northern squawfish throughout the year. Food habits of smallmouth bass and
northern squawfish differed between 1985 and 1987. Based on the Index of
Relative Importance, in the spring of 1987 chironomids comprised over 50% of
the smalimouth bass diet, while in 1985 crayfish and fish were more common
(Bennett and Shrier 1986). Crayfish dominated bass diets during the summers
of 1985 and 1987, although fish were more prevalent in 1987 than in 1985.
Northern squawfish diets were more diverse in 1987 than in 1985; in 1985
crayfish dominated squawfish diets (Bennett and Shrier 1986), while
chironomids, insects, and zooplankton were important dietary items in 1987.
Of the fish found in stomach samples, smallmouth bass and squawfish
contained predominantly chinook salmon, whereas channel catfish consumed
mostly rainbow trout. This difference may reflect a difference where the
predation occurred, or smaller chinook may be easier to consume for
squawfish and bass, whose mouth size is smaller than channel catfish.
During the summer, Leptodora was the dominant prey item of squawfish
sampled. This probably indicates a paucity of available fish prey, since
all squawfish sampled were larger than 250 mm, sizes at which they are
generally piscivorous. Because northern squawfish from Lower Granite
Reservoir are fairly small, they probably have trouble successfully
attacking the 1arge rainbow trout. Except at LG2S, channel catfish were
always captured at mid or bottom depths, where rainbow trout catches were
lowest. Seventy percent of the catfish caught for stomach sampling in the
spring came from LG2M, where catfish were always caught on the bottom and
trout catch rates at the surface were 4-5 times higher than on the bottom.

Catfish are probably not altering their foraging. patterns to coincide with
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the surface preference of trout, but are foraging on trout that venture into
deeper areas, whereas northern squawfish and smallmouth may be foraging on
the shoreline oriented chinook salmon. Our results suggest that the
incidence of predation on salmonids was low in 1987, which agrees with

previous reports on smolt predation in Lower Granite Reservoir during 1985
(Bennett and Shrier 1986).
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Appendix A. Velocity (ft/sec) profiles from June and December, 1987
sampling at all stations (deep, mid depth, and shallow)} in
Lower Granite Reservoir, Washington.
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LG1S (RM 111)
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Appendix Figure 1. Velocity (ft/sec) profiles from June and December, 1987
sampling at station LG1S on Lower Granite Reservoir, Washington.
Lines connect mean velocities for different depths (note depth scale
differences). Profiles were dropped from a transect running
perpendicular to the channel; profile 1 (channel profile) was at the
deepest point along the transect, profile 3 (on-site profile) was
near shore in 10 ft of water, and profile 2 (midway profile) was at a
depth equal to half the difference in depths between profiles 1 and
3. Velocities were measured every 1 m along profile 3, and at O m, 1
m, and 5 m, then every 5 m to the bottom along profiles 1 and 2.
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LG2S (RM 127.3)
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Appendix Figure 2. Velocity (ft/sec) profiles from June and December, 1987
sampling at station LG2S on Lower Granite Reservoir, Washington.
Lines connect mean velocities for different depths (note depth scale
differences). Profiles were dropped from a transect running
perpendicular to the channel; profile 1 (channel profile) was at the
deepest point along the transect, profile 3 (on-site profile) was
near shore in 10 ft of water, and profile 2 {midway profile) was at a
depth equal to half the difference in depths between profiles 1 and
3. Velocities were measured every 1 m along profile 3, and at O m, 1
m, and 5 m, then every 5 m to the bottom along profiles 1 and 2.
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Appendix Figure 3. Velocity (ft/sec) profiles from June and December, 1987
sampling at station LG3S on Lower Granite Reservoir, Washington.
Lines connect mean velocities for different depths {note depth scale
differences). Profiles were dropped from a transect running _
perpendicular to the channel; profile 1 (channel profile) was at the
deepest point along the transect, profile 3 (on-site profile) was
near shore in 10 ft of water, and profile 2 (midway profile) was at a
depth equal to half the difference in depths between profiles 1 and
3. Velocities were measured every 1 m along profile 3, and at O m, 1
m, and 5 m, then every 5 m to the bottom along profiles 1 and 2.
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Appendix Figure 4.

Velocity (ft/sec) profiles from June and December, 1987
sampling at station LG4S on Lower Granite Reservoir, Washington.
Lines connect mean velocities for different depths {note depth scale
differences). Profiles were dropped from a transect running

perpendicular to the channel;
deepest point along the transe
near shore in 10 ft of water,
depth equal to half the differ
3. Velocities were measured e
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LG5S (RM 134.7)
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Appendix Figure 5. Velocity (ft/sec) profiles from June and December, 1987

sampling at station LGSS on Lower Granite Reservoir, Washington.
Lines connect mean velocities for different depths (note depth scale
differences). Profiles were dropped from a transect running
perpendicular to the channel; profile 1 (channel profile) was at the
deepest point along the transect, profile 3 (on-site profile) was
near shore in 10 ft of water, and profile 2 (midway profile) was at a
depth equal to half the difference in depths between profiles 1 and
3. Velocities were measured every 1 m along profile 3, and at O m, 1
m, and 5 m, then every 5 m to the bottom along profiles 1 and 2.




LGIM (RM 111.7)

172
Profile 1 Velocity (ft/sec)
0 0 0_15 1 ] ‘0 0:5 ] 0 ?:5 1 ‘LO 0.15 1 ‘0 0:5 1
101 - .
20 .
JUJ

Profile 2

Profile 3

0 0.5 1 0 0.3 1 0 0.5 t 0 0.5 t & 0.3 1 0 0.5 1

o A
PI -r(
s 1 -_—
'o L
’ 4
5—02—37_ . 8=-11=87 8—17-47 —-19-87 8—22-87 12—15--87

Appendix Figure 6. Velocity (ft/sec) profiles from June and December, 1987
sampling at station LGIM on Lower Granite Reservoir, Washington.
Lines connect mean velocities for different depths (note depth scale
differences). Profiles were dropped from a transect running
perpendicular to the channel; profile 1 {channel profile) was at the
deepest point along the transect, profile 3 (on-site profile) was
near shore in 10 ft of water, and profile 2 (midway profile) was at a
depth equal to half the difference in depths between profiles 1 and
3. Velocities were measured every 1 m along profile 3, and at 0 m, 1
m, and 5 m, then every 5 m to the bottom along profiles 1 and 2.
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Appendix Figure 7. Velocity (ft/sec) profiles from June and December, 1987
sampling at stations LG2M and LG1D on Lower Granite Reservoir,
Washington. Lines connect mean velocities for different depths {note
depth scale differences). Profiles were dropped from a transect
running perpendicular to the channel; profile 1 (channel profile) was
at the deepest point along the transect, profile 3 (on-site profile)
was near shore in 10 ft of water, and profile 2 (midway profile) was
at a depth equal to half the difference in depths between profiles 1
and 3. Velocities were measured every 1 m along profile 3, and at O
m, 1 m, and 5 m, then every 5 m to the bottom along profiles 1 and 2.
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Appendix Figure 8. Velocity (ft/sec) profiles from June, 1987 sampling at
station LG3M on Lower Granite Reservoir, Washington. Lines connect
mean velocities for different depths (note depth scale differences).
Profiles were dropped from a transect running perpendicular to the
channel; profile 1 (channel profile) was at the deepest point along
the transect, profile 3 (on-site profile) was near shore in 10 ft of
water, and profile 2 (midway profile) was at a depth equal to half
the difference in depths between profiles 1 and 3. Velocities were
measured every 1 m along profile 3, and at 0 m, 1 m, and 5 m, then
every 5 m to the bottom along profiles 1 and 2.
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LG2D (RM 119)

Profile 1 Velocity (ft/sec)
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Appendix Figure 10. Velocity (ft/sec) profiles from June, 1987 sampling at
station LG2D on Lower Granite Reservoir, Washington. Lines connect
mean velocities for different depths. Profiles were dropped from a
transect running perpendicular to the channel; profile 1 (channel
profile) was at the deepest point along the transect, and because
LG2D is a deep station, no other profiles were dropped.
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Appendix Table Al. Temperatures (C) and turbidities (NTU) from all
statfons measured throughout 1987 in Lower Granite Reservoir,

Washington. Stations are presented in order based on river mile
upstream to downstream.

Day _ Night
Site Date  Temperature Turbidity Date Temperature Turbidity
LG2S 5/11 15.5 3.1 5/17 14
5/20 15 2.3 5/28 15.5 2.5
7/21 1 8/10 22.5 2.9
8/10 24 3.3 8/18 22 3.5
8/18 22 2.5 10/4 18 1.1
10/3 16 2.6 10/14 1.6
10/14 16 1.8 10/24 13 1.4
10/24 14 12/6 8 0.8
12/16 6
LG3M 5/4 11 4.5 4,27 13 2.3
5/14 14.5 1.8 5/8 13 2.3
5/21 15 2.3 5/16 2.5
5/26 16 2.3 5/20 14 1.9
7/24 3 5/26 1.6
8/4 23 1.8 8/4 23
8/12 23 2.5 8/12 1.7
8/24 23.5 1.5 8/24 23 1.5
10/7 17 1.1 10/7 17 1.1
10/12 17 2 10/12 16
10/21 15 1.9 10/21 15 1.7
12/2 8 2.2 11/30 8 2.7
12/17 6 2.2
LG2D 5/14 14.5 2.3 4/27 13 2.8
7/28 2 5/16 13.5 2
1/29 1.9 5/26 15.5 1.8
8/7 25 1.3 8/7 24 1.4
8/19 22 1.8 8/19 22 1.2
10/2 15.5 1.6 10/2 1
10/17 16.5 1.5 10/17 15
10/23 14.5 1.5 10/23 14
12/4 8 1.1 12/3 7 1.9
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Day Night
Site Date Temperature Turbidity Date Temperature Turbidity
LG1D 4/27 15 3.9 4/24 12 2.8
5/1 14 2.2 5/15 14 1.8
5/5 13 3.4 5/27 15 2
5/27 15. 1.5 7/30 1.9
7/30 23 2.2 8/6 23 1.8
8/6 24 1.9 8/21 23
8/21 24 1.8 10/6 16 1
10/6 16 1.4 10/13 16 1.8
10/13 17 1.6 10/22 14 1.4
10/22 15 2 12/4 8
12/7 8 12/16 6
LG2M 4/27 15.5 3.8 4/24 12 2.8
5/5 12 2.6 5/14 13 1.3
5/12 15.5 2.1 5/15 14 2.1
5/29 17 1.1 5/27 1.5
7/23 1.5 8/3 23
8/3 23 I.5 8/13 23
8/13 24 2.2 8/17 23
8/17 23 2.6 10/5 17 1.3
10/5 16.5 1.3 10/16 1.3
10/16 17 2.6 10/20 15
10/20 16 2 12/5 8 2.2
12/8 8
LGIM 4/26 3.6 4/23 13 2.3
5/7 14 2.2 5/7 13 3
5/18 13 2.5 5/19 14 3
1/22 1.5 8/5 1.7
8/5 23 1.8 8/14 22 2.4
8/14 23 1.6 8/20 23 1.5
8/20 24 1.6 10/8 17 1.2
10/8 1 10/15 17 2.2
10/15 16 2 10/19 1o 1.5
10/19 16 1.9 12/2 9
12/3 8 1.2 12/19 5.5




180

Appendix Table A2. Numbers of benthic organisms other than oligochaetes and
chironomids from ponar dredge collections at mid-depth and deep
stations during spring, summer, and fall, 1987, at Lower Granite
Reservoir, Washington.

Station

Taxon LGID 1620 LGIM LG2M __ LG3M
Spring n=8 n=8 n=8 n=8 n=8

Nematoda 2 - - - -

Mollusca '
Lamellibranchiata
Pelecypoda - - - 7 1

Arthropoda
Aracnoidea
Hydracarina - - 2 - 3
Insecta

— . Ephemeroptera - - 1 - -

Summer n=8 n=8 n=8 n=8 n=8
Nematoda - ] - - 5

Annelida
Hirudinea - - - 1 -

Arthropoda
Arachnoidea

Hydracarina - - 1 - -

Fall n=8 n=8 n=8 n=8 n=8
Nematoda 6 - - - -

Annelida
Hirudinea - - - ] -

Mollusca
Lamellibranchiata
Pelecypoda - - 1 2 -

Arthropoda
Arachnoidea
Hydracarina - - - 1 1
Insecta
Culicidae

Chaoborus - - 2 1 -
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Appendix Table A3. Numbers of benthic organisms other than o]igochéetes and
chironomids from ponar dredge collections at shallow stations
during spring, summer, and fall, 1987, at Lower Granite Reservoir,

Washington. Coarse substrate prevented us from effectively

dredging LG1S with the ponar dredge.
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Station
Taxon 1G2S LG3S LG4S LGSS
Spring n=i2 n=8 n=8 n=7
Tardigrada - - - 2
Nematoda 1 2 5 6
Anrnelida
Polychaeta 2 - 1 3
Mollusca
Lamellibranchiata
Petecypoda 1 - - 2
Arthropoda
Aracnoidea
Hydracarina 1 1 - 2
Insecta
Trichoptera - - - 1
-Colegptera 1 - - -
Summer n=8 n=8 n=8 n=8
Nematoda 2 - - -
Annelida
Polychaeta - - - 1
Arthropoda
Arachnoidea
Hydracarina - - 2 1
Fall n=8 n=8 n=8 n=8
Nematoda - - 1 -
Arthropoda
Arachnoidea
Hydracarina - 2 6 2
Insecta
Trichoptera - - - 1
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Appendix B. Mean diel catch rates (catch per hour) from gillnetting for
all species, gillnet types (bottom, mid water, and
floating), stations, and seasons in Lower Granite
Reservoir, Washington, 1987. Catch rates were calculated
within length classes which differed among species. Length
class 1 represents sub-adults for key species {ATR < 500
mm, ONE and OTS < 200 mm, SGA < 350 mm, POR and IPU < 250
mm, and MDO < 150 mm) and young-of-the-year {YOY) for all
other species (< 100 mm). Length class 2 represents adults
for key species and non-YOY for all other species. See
Table 12 for species codes.
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Appendix Table C. Summary of smallimouth bass stomachs analyzed for
food habits from Lower Granite Reservoir,
Washington, 1987.

Total Total Total ' 1
Number Number Number Range Mean

Season Station Collected Empty Stomachs (mm) (mm)

Spring LG1S 127 38 89 127-356 205.5
LG2S 25 3 22 161-4758 251.7
LG3S 71 17 - 54 150-460 217.6
LG4S 27 7 20 171-280 212.5
LG5S 8 1 7 178-320 220.5
LGIM 1 1 270.0.
LG2M 2 2 189-296 239.0
LG3M
LG1D
LG2D

Summer LG1S 5 5 145-251 196.0
LG2S 9 2 7 174-287 205.0
LG3S il 2 9 164-353 205.7
LG4S 9 9 162-256 201.0
LG5S 5 5 154-234 187.8
LGIM 1 1 293.0
LG2M 3 1 2 189-351 249.3
LG3M 5 5 174-206 189.0
LGID -
LG2D

Fall LG1S 1 | 192.0
LG2S 8 8 260-297 281.3
LG3S
LG4S 2 2 438-441 439.5
LG5S
LGIM 4 3 1 210-456 307.8
LG2M
LG3M 2 1 1 270-413 341.5
LG1D

LG2D

T S L Ry T Y S S TP NEN R P
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Appendix Table D. Summary of northern squawfish stomachs analyzed
for food habits from Lower Granite Reservoir,
Washington, 1987.
Total Total Total
Number Number Number Range Mean
Season Station Collected Empty Stomachs (mm) {mm})
Spring LG1S 3 2 1 310-359 333.0
LG2S 24 5 19 137-550 323.8
LG3S 1 1 347.0
LG4S 5 3 2 154-381 241.8
LGSS
LGIM 9 3 6 253-499 356.0
LG2M 17 5 12 230-510 366.5
LG3M . 14 2 12 243-472 343.9
LG1D 2 1 1 335-493 414.0
LG2D 5 5 233-365 310.6
Summer LG1S
LG2S 1 1 360.0
LG3S
LG4S
LG5S
LGIM 3 1 2 355-49] 435.3
LG2M 11 4 7 255-495 348.2
LG3M 14 3 11 230-356 274.4
LG1D 1 1 362.0
LG2D 4 1 3 325-432 373.3
Falil LG1S 1 1 331.0
LG2S 19 8 11 261-420 269.5
LG3S
LG4S 2 1 1 331-337 334.0
LGSS
LGIM 15 1 14 260-532 316.9
LG2M 11 4 7 252-427 324.2
LG3M 7 1 6 256-498 314.9
LG1D 7 7 255-375 293.6
LG2D 6 3 3 255-358 294.2
Winter LG1S
LG2S 3 2 1 273-370 336.7
LG3S
LG4S
LG5S
LGIM 1 | 369.0
LG2M 4 3 1 250-367 289.0
LG3M 1 1 342.0
LG1D 5 3 2 245-358 303.2
LG2D 1 1 348.0
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Summary of channel catfish stomachs analyzed for
food habits from Lower Granite Reservoir,
Washington, 1987.

Total Total Total Total lLenath

Number Number Number Range Mean
Season Station Collected Empty Stomachs (mm) (mm)
Spring LG1S
LG2S 1 | 493.0
LG3S
LG4S
LG5S
LGIM
LG2M 14 2 12 356-612 466.0
LG3M 3 3 430-526 492.0
LG1D 1 1 305.0
LG2D 1 1 493.0
Summer LG1S
LG2S 5 5 299-473 362.4
LG3S
LG4S
LG5S
LGIM 2 2 259-528 394.0
LG2M 8 1 7  268-435 345.5
LG3M 2 2 323-409 366.0
LGID
LG2D
Fall LG1S
LG2S 1 1 302.0
LG3S
LG4S
LG5S
LGIM 4 4 208-510 390.8
LG2M 8 3 5 243-389 308.1
LG3M 1 1 285.0
LG1D 2 2 324-515 419.5
LG2D 2 2 359-583 471.0
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Executive Summary

Annual dredging and in-water disposal of dredge material has been
proposed as an alternative to alleviate high sedimentation rates in Lower
Granite Reservoir, Washington. This alternative may result in creation or
destruction of shallow water habitats. The potential alteration in habitat
has caused concern among resource managers as to the importance of shallow
water habitats to native and introduced resident fishes as well as
anadromous fishes residing in and moving through Lower Granite Reservoir.
As a result of these concerns, this study was funded with the following
objectives:

1. To characterize physical habitat conditions at

selected shallow water sites;

2. To assess use of shallow water habitat by salmonid fishes and

their potential predators; and

3. To evaluate incidence of predation on juvenile salmonid fishes in

shallow water habitat.

Five shallow water (< 20 ft) stations were selected representing a
wide divergence in habitat types especially substrate. Stations were
scattered throughout the reservoir from RM 135 to RM 111. Sampling
commenced April 1987 and continued through December 1987.

Intensive habitat sampling confirmed speculations from earlier studies
about the characteristics of the physical habitat in Lower Granite
Reservoir. Temperature, turbidity and water velocities were similar among
the five shallow stations. Low velocities probably have 1ittle influence
on resident fish distribution and habitat use. A systematic sample using
snorkeling revealed significant differences in substrate, cover, mean

depth, gradient, and shoreline diversity among the five stations. The
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downstream station, LGIS, typically had gravel sized particles and highest
amounts of organic and inorganic cover, while upstream stations had sandy
substrate and 1ittle cover. Aquatic macrophyte abundance was low at all
stations during the time of the survey.

Boat electrofishing and beach seining showed substantial differences
in fish abundance among stations and seasons. During the spring, chinook
salmon and rainbow trout (steelhead) were collected at all stations.
Stations with primarily low gradient, fine substrate and negligible cover
had higher abundances of fa11 chinook salmon (< 7S mm) in beach seine
catches. In contrast, chinook salmon larger than 75 mm had highest
abundanée at the station with the most diverse physical habitat. Beach
seine catches of rainbow trout were also highest at the station with the
most diverse habitat. Significant Spearman rank correlations were found
for abundance of chinook (< 75 mm) and wild rainbow trout and the
proportions of inorganic cover,'substrate, gradient, and no cover. The
station with the highest diversity of physical habitat also was the most
downstream station. Thus, fish distribution could have been related to
habitat characteristics and/or reservoir location.

Smallmouth bass were the most abundant predator in beach seine and
electrofishing catches. Predator size northern squawfish (> 250 mm)
exhibited Tow catches at all shallow stations. No channel catfish were
captured by beach seine or electrofishing at the shallow water stations.

The majority of fishes collected at the shallow water stations were
young-of-the-year (YOY) or yearling. Summer beach seine catches at
stations with fine substrates and low physical diversity had extreme1y'high
catches in YOY fish, predominantly largescale sucker, chiselmouth, northernl

squawfish, and smallmouth bass.
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Stomach contents of the three major predators, northern squawfish,
smallmouth bass and channel catfish, were collected to assess the incidence
of predation. Channel catfish (n = 18) had the highest incidence of
salmonids present in the stomach (38.9%), most of which were steelhead.
Incidence of predation by northern squawfish was 22% (n = 59). An average
of 1.2 rainbow trout and chinook salmon were observed per squawfish stomach
which contained salmonids. Despite their apparent high abundance, only
3.6% of the bass contained salmonids, the majority of which were chinook.
Bass predation on juvenile salmonids appears minor in shallow waters and
channel catfish prefer deeper waters. Northern squawfish seem to be the
dominant predators on salmonids in Lower Granite Reservoir although

abundance of predator sized squawfish is low at shallow water stations.




Introduction

Since completion in 1975, Lower Granite Reservoir has been
experiencing high rates of sedimentation. Without some action to alleviate
the high sedimentation rates, flood control capabilities and navigational
uses of the reservoir are threatened. Annual dredging and in-water
disposal of about 800,000 cubic yards of sediment has been proposed as an
alternative to alleviate high sedimentation rates. One disposal
alternative currently being examined is in-water disposal of dredge
material in one or more of the three major habitat types in Lower Granite
Reservoir: deep water (> 60 feet), mid water {> 20-60 feet), and shallow
water (< 20 feet). Much concern has been expressed by fishery managers as
to the importance of these habitat types to both resident native and
introduced fishes, as well as anadromous salmonids residing in and moving
through the reservoir.

Knowledge of the importance of shallow water habitats for resident and
anadromous fishes in Lower Granite Reservoir, Washington, is limited.
Research by Bennett and Shrier (1986) showed that catches of juvenile
chinook salmon (Oncorhynchuys tshawytscha) and rainbow (steelhead) trout
(Salmo gairdneri) in shallow water habitats in Lower Granite Reservoir were
high during the winter and spring seasons. This research also demonstrated
the presence of predators in shallow water habitatg, principally northern
squawfish (E;xgngghgily; gregonensis), smallmouth bass (Micropterus
dolomieyi), and to a lesser extent channel catfish (Ictalurys punctatus).
Thus, the potential for predation on Juvenile salmonids exists in shallow
water habitat.

Predation losses are often exaggerated in areas where migration is

restricted at the dams or below turbines, where injured and disoriented




fish are often highly susceptible to concentrations of predators. However,
predation also occurs intensively throughout the body of a reservoir (Gray
et al. 1984, Bennett et al. 1983). Reduced flows of a reservoir
environment have been estimated to increase exposure of juvenile salmonids
to predators as much as three times their original availability in a
riverine environment (Ebel 1977). Exposure to high water temperatures as a
result of extended out-migrations, and increase in slack water habitats
that may be preferred by native and introduced potential predators also
have been attributed causes of increased predation in impoundments (Gray et
al. 1984).

With decreased flows and subsequent delays in migration through a
reservoir, it s plausible that juvenile anadromous salmonids seek out
preferred habitat. Bennett and Shrier (1986) suggest that shallow water
habitat may be important for foraging and resting for juvenile salmonids.
Areas with no apparent cover had high abundance of juvenile salmonids.

They hypothesized that potential predators were less successful in capture
of salmonids in areas of no cover.

A paucity of information exists on habitat use and preference of
migrating juvenile anadromous salmonids and the causal mechanism of the
habitat preference (i.e. food, cover, lack of cover, etc.). An
understanding of the dynamics of predation, foraging, and preferred habitat
characteristics may provide better insight for fishery managers to reduce
predation by means of habitat alterations. This information may be
especially important for the Lower Granite pool in view of the potential to
create or fill shallow water areas as stated in the proposed in-water
disposal plans. In theory, newly created shallow water areas may be

beneficial for juvenile salmonids, if they provide areas with a Tow risk of
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predation. Conversely, the new areas could be a detriment if they attract
potential predators and juvenile salmonids, and actually increase
predation. The shallow areas may serve as rearing areas-for Juvenile
predators and actually increase production of potential predators. Because
certain aspects of these shallow water sites may be attractive to potential
predators, it is equally important to determine habitat preferences of
these fishes in Lower Granite Reservoir.

The current proposal by the U.S. Army Corps of Engineers to enhance
habitat for salmonid fishes by disposing of dredge material at mid depth
(20-60 ft) sites needs to be further evaluated. Their proposal would be to
fi11 mid depth sites downstream of RM 120 and elevate the depth of these
sites to create shallow water. One question that needs to be addressed is
whether the habitat attributes at the elevated mid-depth sites would be
attractive to salmonids and their predators. To adequately evaluate this
question, more comprehensive data on shallow water sites were required.

Specific objectives of this project were:
Obhjectives

1} To characterize physical habitat conditions at selected shallow water
sites;

2) To assess use of shallow water habitat by salmonid fishes and their
potential predators; and

3) To evaluate incidence of predation on Juvepi1e salmonid fishes in

shallow water habitat.




Study Area

Lower Granite Reservoir is the first in a series of four impoundments
of the lower Snake River located in southeastern Washington (Figure 1).
Lower Granite Reservoir is the Tongest of the four impoundments, with a
total length of 39.2 miles (62.8 km). Total surface area of the reservoir
is 8,900 acres (3;602 ha), with a maximum depth of 138 ft (42.1 m) and a
mean depth of 55 ft (16.6 m). The Clearwater River ts the only major
tributary, which enters the reservoir near Lewiston, Idaho.

We sampled five (5) shallow water sites in Lower Granite Reservoir.

Station Tocations were as follows {previous designation refers to Bennett
and Shrier 1986):

Location Coding Previous Designation

RM 111 LG1S SR1S
RM 127 LG2S SR28
RM 129 LG3S --
RM 132 LG4S --
RM 134 LG5S SR3S

Station selection was based on habitat attributes at each of these sites
and represents a wide divergence in habitat types with emphasis on
substrate. A number of other habitat attributes also differ (e.q.
shoreline gradient, depth and velocity) among stations but substrate
differences were the most obvious. Specific characteristics of each

station are shown in Appendix Table A.
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Objective 1: To characterize physical habitat conditions at selected

shallow water sites.

Methods
We characterized habitat at each shallow water site by quantifying
selected habitat attributes. Habitat variables used to characterize each
shallow water site were: turbidity, temperature, gradient, mean depth,

velocity, shoreline diversity, total cover and cover type, substrate, and

aquatic macrophyte distribution.

Temperature and Turbidity

Temperature (°C) was taken with a hand held thermometer at the surface
following each fish sampling effort. Turbidity sampies were collected at
the surface in a 1 1 bottle following each fish sampling effort. Water
samples were transported to the University of Idaho where turbidity (NTU’s)

was measured using a Hach model 2100A Turbidimeter.

Velocity

Velocity measurements were taken during 1987 when discharge ranged
from high to low with a Swoffer Model 2100 ve]ocity meter. We measured
velocity at ten stations; three additional mid depth and two deep stations
were included in the analysis (see Bennett et al. 1988 for details).
Because 1987 was a low-water year, "high" discharges were in the range
considered "moderate” in a typical water year. Three profile locations
were selected at each station. The "channel® profile was located at the
deepest part of the channel on a transect perpendicular to the channel

across the middle of the sampling station. Deep sites have only the
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channel profile which was also the "on-site” profile. The second location,
the “midway® profile, was located where one half the depth between the "on-
site” profile depth and channel profile depth occurred. The third
location, the "on-site” profile, was located on the middle of the site at a
depth half way between depths describing the site (shallow 10 ft; mid depth
40 ft). At shallow stations, velocity measurements were recorded at the
surface and then every 1 m in depth, whereas measurements at deep and mid
depth stations (Bennett et al. 1988) were taken at the following depths:
surface, 1, 5, 10, 15, 20, 25, 30, and 35 m.

We developed equations to predict velocities throughout Lower Granite
Reservoir and to determine which morphometric and dam-related activities
influenced reservoir velocities. Predictive equations were derived based
on two different dependent variables: average channel velocity and average
on-site velocity. Average channel velocity is the mean of all measurements
in the upper 15 m of the channel profile, which ensures an equal number of
measurements (5) from all channel profiles regardless of total depth. All
deep, mid depth and shallow stations were included in average channel
velocity regressions. Average on-site velocity represents the mean of all
readings taken from shallow and mid depth on-site profiles (i.e. 10 ft and
40 ft). Both deep stations were excluded from on-site equations because
velocity measurements were taken only from the channel profiles.

Variables examined for relationships with channel and on-site
velocities were related to morphometric and regulated characteristics of
the reservoir. Morphometric variables were unique constants associated
with each station including river mile, reservoir width, distance from
channel to on-site profile, maximum depth, depths of channel, midway, and

on-site profiles, and cross-sectional area. Regulated variables were




variable as a result of dam-related activities and included confluence
(Snake and Clearwater Rivers) and forebay poo? elevations, total (turbine
plus spillway) discharge at Lower Granite Dam, and inflow at the
confluence. Variables within each category were mutually dependent which
restricted us to use one variable from each category to avoid violating the
least squares regression assumption of independence. When appropriate, we
used ratios of variables within each category which incorporated effects of
two colinear independent variables as one independent variable. We also
transformed variables as needed to meet homogeneity of variance and

normality assumptions of regression procedures.

Mapping

We constructed morphometric site maps which we used as a basis for
systematically sampling physical attributes of the shallow stations. We
mapped each shallow station using a transit and level rod to measure
bearings and distances (estimated by stadia) between survey points along
the full pool water line. Mean depth and bottom gradient calculations, and
2m contour 1ines on our maps were based on depths measured at 10 m
intervals along 10 parallel transects oriented nearly perpendicular to the
shoreline. Depth determinations were made 0.5 ft. Each station was
divided into 10 equally spaced transects. Because stations were of
different length, transects were unevenly spaced among stations. Transects
extended 200 m from shore or to the 20 ft (6.1 m) depth contour, and were
the same transects used for cover and substrate inventories.

Shoreline diversity was‘determined using an index simitar to the

shoreline development index described by Wetzel (1975). Total length of




the shoreline was measured with a cartometer and then divided by the length

of a straight Tine distance between the two most widely separated points.

Cover and Substrate

Diving.-We used the substrate classification system from Bovee (1982)
ranging from fine particles (< 2 mm) to large boulders (> 600 mm; Appendix
Table B) to invenfory substrate at the shallow water sites. We established
two main cover categories: organic and inorganic. Each cover category was
broken into 6 stze classes (Appendix Table B). Cover was defined as any
object a fish could hide under or behind (Bovee 1982). Therefore, cover
size classes did not necessarily reflect the absolute size of an object,
but rather those dimensions of an object usable by a fish for cover.
Because this survey was not specific in terms of what constitutes cover for
different fish species, size classes in Appendix Table B were arbitrarily
selected with the intent of bracketing any size of fish that could
potentially use an object for cover.

Cover and substrate inventories were made along the same transects
used for shallow station mapping. Transects were actually floating ropes
with floats attached at 10 m intervals. Divers equipped with snorkeling
gear dropped a 1 m? square plot every 10 m along each transect, then swam
down to the bottom and made ocular estimates of cover and substrate
attributes within the square plot. Ocular estimates consisted of
estimating percent of the 1 m? area covered by dominant substrate and cover
types and sizes. To facilitate estimates of percent coverage of dominant
substrate and cover types within the 1 m? plot, a quartile ranking system
was used and percent coverage expressed as: 1 (0-25% ), 2 (26-50%), 3 (51-
75%), and 4 (76-100%).

U PO . U [, ool e e
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If a dominant substrate or cover size in a 1 me plot was assigned a
fourth quartile coverage (i.e. 76-100%), then a corresponding frequency of
1 was assigned. If the dominant substrate or cover size in a plot was
assigned a third quartile coverage (i.e. 51-75%), then a frequency of .75
was assigned, etc.. The total proportion for each substrate size and cover
size per cover type was then estimated for each station as the total
frequency divided by the total number of plots in a station. Confidence
intervals (95%) for each substrate and cover size were calculated as
described by Schaeffer et al. (1986).

A Pearson’s chi-square statistic for testing homogeneous proportions
was used to identify significant differences among stations for proportions
of no cover and inorganic cover. As a result of low frequencies of any one
inorganic cover size, all inorganic cover sizes were pooled together to
test for differences. Low observed frequencies precluded testing
differences in organic cover among stations.

Grab Sampling.-Substrate samples were collected with a ponar dredge
and analyzed for particle size distribution and organic matter content.
Samples were dried at 105°C for 32 hours and separated by dry sieving into
three categories: particles larger than sand (> 2.00 mm), sand (0.061 mm-
2.00 mm}, and particles smaller than sand (< 0.06] mm). Because the fine
sediments were caked, samples were gently crushed manually before sfeving.
After sieving, we measured the weight (g) of each substrate size category.

We analyzed organic matter content by drying the sediment in crucibles
at 105°C for 21 hours followed by ignition at 550°C for 3.5 hours (APHA
1980). Samples were then wetted and re-dried at 105°C for 21 hours to re-

hydrate particles smaller than sands. Samples were cooled in a dessicator
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after each drying period. Percent organic matter was determined as the

difference between weights prior to and following ignition.

Aquatic Macrophytes

Aquatic macrophyte distribution was only of interest for the summer
sample period as a result of their absence during other seasons. Their
presence or absence was noted during the habitat survey, and the

approximate area of coverage and average depth of their presence

determined.

Results

Contour maps developed for each of the shallow water stations from the
systematic survey showed LG1S was the narrowest of all shallow stations to
a depth of 20 m (Figure 2). The southern part of the station was rip rap
and provided the steepest gradient. In contrast, at LG2S a depth of 6 m
begins approximately 200 m from shore. The largest area of habitat at LG2S
was from 2-6 m deep (Figure 3). The shelf at depths Jess than 6 m at LG3S
extended about 100 m from shore. Like LG2S, the Targest amount of habitat
at LG3S was from 2-6 m in depth (Figure 4). Depths less than 6 m extended
offshore approximately 200 m at LG4S (Figure 5). Low shoreline gradient
was obvious from the habitat mapping. At LG5S, the largest amount of
habitat was from 2-4 m (Figure 6). As at LG4S, low shoreline gradient was
apparent from the bathymetric surveys.

Temperature and Turbidity
Water temperature was similar among the five shallow stations (Table

1). Spring temperatures ranged from 11°C (April 15) to 23°C (June 13).
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Station LG3S had the highest overall mean spring seasonal temperature of
15.2°C. Temperatures ranged from 22 to 24°C throughout the summer period.
Fall surface temperatures ranged from 17.5°C (October 11) to 11.5°C
(November 11). The overall mean temperature in the fall also was similar
among stations. Winter water temperatures during mid-December stayed
relatively constant at S°C.

Turbidity also was similar among the five shallow stations (Table 2).
Mean surface turbidities (NTU) for the spring ranged from 2.5 (LG5S) to 4.2
(LG4S). The highest turbidity of 68 NTU’S was observed at LG2S during a
gillnetting sample. However, because the other shallow stations were not
sampled for turbidity that same day, this value was omitted from the mean
and range determinations. Summer turbidities ranged from 1.8 (LG1S) to 3.0
(LG4S). Fall turbidities also were Jow, with no significant differences
between stations; mean surface turbidities ranged from 1.2 (LG3S) to 1.4
(LG4S). Although no turbidity samples were collected during the winter

sampling period, Tow inflows resulted in turbidities that were similar to

the fall peried.

Velocity

A graphical analysis of velocity readings from all depths, profiles
and stations preceeded our regression analyses. No consistent depth-
related velocity patterns emerged from plots of velocity profiles over
time; profiles at all stations showed wide daily variation. We observed no
strong relationship of velocity readings with total inflow at the
confluence or total discharge at Lower Granite Dam. Figures 7 and 8
illustrate velocity patterns observed over river mile and profile at a

depth of 5 m. River miles 134.7, 132.4, 129.2 and 127.3 (corresponding to
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Total inflow into Lower Graonite Reservoir (KCFS)

Relationship between velocity (ft/sec) at a depth of 5 m
with river mile, profile location, and total inflow (KCFS)

at the Snake and Clearwater River confluence.

Profiles

were located along a transect perpendicular to the channel;
profile 1 was at the deepest point along the transect
(channel profile), profile 3 was nearest to shore at 10 ft
(shallow sites) or 40 ft (mid depth sites) in depth {on-
site profile), and profile 2 was located at a depth which
was half the difference in depths between profiles 1 and 3
(midway profile).
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Total Discharge from Lower Granite Dam (KCFS)

Relationship between velocity (ft/sec) at a depth of 5 m
with river mile, profile location, and total discharge
(KCFS) at Lower Granite Dam.
transect perpendicular to the channel; profile ! was at the
deepest point along the transect (channel profile), profile
3 was nearest to shore at 10 ft {shallow sites) or 40 ft
(mid depth sites) in depth (on-site profile}, and profile 2
was located at a depth which was half the difference in
depths between profiles 1 and 3 (midway profile).

Profiles were located along a
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stations LG5S, LS4S, LG3S and LG2S, respectively) show the strongest
positive relationships with both total inflow (Figure 7) and total
discharge (Figure 8), most likely a function of the "riverine" nature of
the upper reservoir. As a result, velocity in up-reservoir areas is more
responstve to'uater “inputs" and “outputs” than in downstream areas where
water volume is greater and less responsive to inflow and discharge.

Channel . -Average channel velocity over the length of Lower Granite
Reservoir (RM 111 - 134) was best predicted by the ratio of river
mile/cross sectional area and forebay pool elevation {adjusted RZ = 0.78,
p = 0.0001; Figure 9). Both variables were highly significant in
contributing to the model (p <.001). Associated 95% confidence bounds for
each predicted average velocity had a mean of #0.219.

Regressions to predict upstream (RM 120 - 134) and downstream (RM 111
- 120} channel velocities within the reservoir demonstrated the importance
of different variables in the two reservoir sections. The variables river
mile/cross sectional.area and total inflow were most important for
predicting upstream channel velocity (adjusted R? =.70, p =.0001;
Figure 10), while river mile/cross sectional area and forebay pool
elevation were most important in the downstream section (adjusted RZ =
0.58, p = .0001; Figure 11). We dropped one outlier from the upstream
velocity data set because of its overriding effect on the analysis (Rz with
the outlier = 0.64). Confidence intervals (95%) for predicted values had
an overall mean of 10.242 in the upstream section and $0.194 in the
downstream section.

On-site.-We were not able to develop a reservoir-wide (RM 111 to 134)

regression equation to predict average "on-site” velocities (Rz < 0.50).
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Equations developed for the upstream and downstream portions of the
reservoir indicate different variables were important in affecting site
velocities. Log transformation of the average site velocities was
necessary for both upstream and downstream sections to linearize the
relationship. Polynomial transformations of the independent variables were
necessary to normalize data and to control variance in both reservoir
sections. Although regression coefficients associated with the polynomial
transformation were not significant (p > 0.05), the resulting regressions
were valid for predictions (personal communication, Dr. Dale'Everson,
ODepartment of Applied Statistics, University of Idaho, Moscow).

The best regression equation {adjusted RZ - 0.52, p = 0.0004;
Figure 12) developed for average on-site velocities for the upstream
portion (RM 120-134) included confluence pool elevation and average midway
velocity (the mean of of all measurements from the midway profile).
Confidence intervals (95%) for the predicted values had an overall mean of
10.215. The best regression equation for the downstream portion of the
reserveir {(adjusted RZ = 0.80, p = 0.0001; Figure 13) included average

channel velocity and site depth with a mean confidence interval (95%) for

the predicted values of 10.14.

Substrate

Diving.-A Pearson chi-square statistic for testing homogeneous
proportions of all substrate size classes indicated significant differences
among the five shallow water stations (p < 0.005). Station LGS had a
significantly lower proportion of finer (< 2 mm) substrates (p < 0.005)
than the other four shallow stations (Figure 14; Table 3). No sighificant

differences among the other four stations were found in the proportion of

T T Sy T e I VR A U T To I T T A
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Figure 14. Substrate size composition estimated from an underwater
systematic survey of all five shallow stations, Lower
Granite Reservoir, Washington, 1987.
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Table 3. Comparison of cover and substrate sizes based on snorkel
surveys of shallow water stations, September 1987, Lower
Granite Reservoir, Washington. Stations underlined indicate
no significant differences (P > 0.05).

Inorganic Cover

LGIS LG2S LG3S LG4S LG5S

No Cover

LG1S LG2S LG3S LG4S LG5S

Substrate Size Fines (< 2 mm)

LG5S LG4S LG2S LG3S LG1S

Substrate Size 2-25 mm

LG1S LG2S LG3S LG4S LG5S

Substrate Size 26-50 mm

LGIS LG2S LG3S LG4S LGSS

Substrate Size 51-75, 76-150, 151-225, 226-300, 301-600, >600 (pooled)

LG1S LG2S LG3S LG4S LGSS

30
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fine substrate. Proportion of substrate from 2 to 25 mm was.significantly
higher at LG1S (p < 0.01; Table 3) than at the other four stations. No
significant differences were found in the proportions of substrate 2 - 25
mm between stations LG62S and LG3S (p > 0.10) or between stations LG4S and
LGSS (both 0). No differences in proportions were found among LG1S, LG2S,
and LG3S (0.10 > p > 0.05) for size class 26 to 50 mm, whereas the
proportional estimates in this class at stations LG4S and LGSS was 0O
(Figure 14; Table 3).

The remaining six substrate size classes {51 »m to > 600 mm) were
pooled for comparisons between the stations as a result of the overall low
frequency of occurrence of individual size classes. Station LGIS had a
significantly higher proportion (p < 0.005) of the combined substrate size
classes. Stations LG2S vs. LG3S, LG3S vs. LG4S, and LGAS vs. LG5S were
not significantly different (p < 0.05) in the quantity of the combined
substrates (Table 3).

Our data for the pooled substrate size classes (51 - >600 mm)
indicates that LG1S differs in the magnitude of proportions for each size
class, as well as the high proportion of larger Substrates not found at
other stations (Figure 14). Stations LG2S and LG3S, though not
significantly different in the 51 - >600 mm size classes appeared different
in the proportions of larger substrate size. Station LG3S had no larger
size classes represented in the survey, whereas most of the larger
substrate observed at LG2S was near shore and around the alluvial fan
present in the middle of the station (Figure 3).

Stations LG3S and LG4S were significantly different (P < 0.10) for the

pooled comparisons of substrate (Table 3). This difference was primarily
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a result of the substrate from $1 to 75 mm being present at LG3S while
absent at LG4S.

A relatively high degree of embeddedness was observed at all shallow
water stations for smaller substrate sizes to 150 mm (Table 4). However,
larger substrate sizes at LGIS and LG2S had relatively Tow embeddedness.

Dredging.-Fine sediment at the shallow stations was comprised
primarily of particles smaller than sand (<0.061 mm; Figure 15). The
proportion of particle sizes less than 0.061 mm show an apparent increase
from upstream to downstream stations, ranging from 37.8% (LGSS) to 91.3%
(LG2S). Relatively large variances are associated with the estimates for
stations LG3S, LG4S, and LG5S, and therefore do not appear significantly
different. However, LG2S shows a significantly higher percentage of
sediments Tess than 0.061 mm than the other stations. A ponar dredge
proved ineffective for sampling fine sediments at LG1S. Based on
snorkeling observations, fine sediment at LGIS consisted of very fine hard
packed material.

Percentage of_sand (0.061 to 2.0 mm) in the fine sediments ranged from
10% (LG2S) to 56.7% (LG5S). Fine particle sizes greater than 2.0 mm were
absent from LG2S, and ranged from 2.6 to 13.2% at the other stations
(Figure 15).

Percent organic matter content of the sediments at the shallow water
stations ranged from 5.2% (LG5S) to 8.8% (LG3S; Figure 16). Confidence
bounds on the estimates suggest 1ittle significant difference among the
shallow stations, with the possible exception of LG2S and LG5S being
significantly different.

T T - [ T e N e S S
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Table 4. Percent embeddedness of each substrate size observed at shallow water
stations, September 1987, Lower Granite Reservoir, Washington.

Station Embeddedness Substrate Size (mm)

2-25 26-50 51-75 76-150 151-225 226-300 301-600 >600

1G1S
0-25% 43 40 29 20 100 100
26-50% 28.5 40 :
51-75% 20 57 60
76-100% 28.5 14 20
1G2s
0-25% 36.4 71 50 100 50 100
26-50% 27.2 50 100
51-75% 18.2
76-100% 18.2 29 50
LG3S
0-25% 66.7 33.3
26-50% 22.2 33.3
51-75% 33.3 33.3
76-100% 33.3 44,4 100
LG4s
0-25% 100
26-50%
51-75%
76-100%
LG5S
0-25%
26-50% 100
51-75%
76-100%
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Figure 15. Composition of substrate larger than sand (> 2 mm), sand
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(0.061 to 2 mm), and less than sand (<0.061 mm) from ponar
dredge samples at shallow stations, Lower Granite Reservoir,
Washington, 1987.
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Cover

The pooled comparison for inorganic cover showed significant
differences among stations (p < 0.005; Table 3). Multiple comparisons
indicated that LGIS had a significantly higher proportion of inorganic
cover than other shallow stations (p < 0.005). Comparisons of inorganic
cover between stations LG2S and LG3S and stations LGS and LGSS were not
significantly different (p > 0.10; Table 3)}. The most obvious difference
among size groups is the high proportion of larger inorganic cover at LG1S
which are absent from other stations (Figure 17). Stations LG2S and LG3S
were similar in the sizes of inorganic cover represented, whereas stations
LG4S and LG5S have virtually no inorganic cover.

Station LG1S had the highest proportion of organic cover in the size
range 51 to 100 mm. Al11 remaining stations had less than 1% organic cover,

Significant differences were observed in the proportion of area with
cover among stations (p < 0.005). LG1S had a significantly higher
proportion of area with cover than other remaining stations (p < 0.005).

No differences were observed in the proportion of area with cover among the

remaining stations (p > 0.05; Table 3).

Morphometrics

Mean depths of the shallow water stations ranged from 2.4 (LG4S) to
3.7 m (LG2S; Appendix Table A). Shoreline lengths ranged from 0.5 km
(LG1S) to 1.0 km (LG2S). The shoreline diversity index ranged from a high
diversity of 1.35 (LG3S) to a low of 1.03 (LG5S). Total surface area of
the stations at full pool ranged from 14,089 m? at LE1S to 136,187 m’ at
LG2S (based on either 200 m off-shore or a depth of 6.1 m; Figure 18).
Total volumes at full pool ranged from 48,776 m3 (LGIS) to 136,187 m3

] { Ty H H - . e H I.. - P e o -
b b e e R0 E VN (TR S S - 4
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Figure 17.

- N T

Proportions of cover sizes {inorganic) estimated from a
systematic survey of all five shallow stations, Lower
Granite Reservoir, Washington, 1987. The number of bottom
observations for estimating cover is indicated (n).




44

Hypsographic Curves
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Figure 18,

Hypsographic curves and depth-volume curves of all five
shallow stations, Lower Granite Reservoir, Washington, 1987.

Io-d e s b e e e

38




39

(LG2S). Mean bottom gradient between the 0 and 2 m contours ranged from a
relatively steep slope (36.7%; L61S) to a gentle slope (5.3%; LGSS). The
mean bottom gradient between 2-4 m contours was lower than the 0-2 m

gradient at each station and ranged from 29.1% (LGIS) to 2.7% (LG4S).

Aquatic Macrophytes

Aquatic macfophytes were observed at three (LG1S, LG3S, and LG5S) of
the five shallow water stations in September. However, tota) area covered
at each of the stations was relatively small. Station LGIS had the highest
estimate of 3.4% of the area covered, followed by LG3S and LGSS at 2.6% and
2.0%. The depths at which aquatic macrophytes were observed ranged from
0.14 to 3.3 m, with an overall mean depth of 1.3 m. Species of macrophytes
were predominantly Potamogeton crispys and Ivpha latifolia.

Objective 2. To assess use of shallow water habitat by salmonid fishes

and their potential predators.

Methods

Fish were sampled during all four seasons in 1987. Ffish sampling at
the five shallow-water sites consisted of beach seining and boat
electroshocking. The beach seine (30.5 x 2.4 m, 6.35 mm knotless mesh with
a 2.4 x 2.4 m bag) was set approximately 50 feet from and parallel to the
shoreline and pulled to shore. One unit of effort was one haul; three
hauls per station were made each sampling day. The boat electroshocker was
used both day night in the spring season and only at night in the fall.
Spring daytime shocking was discontinued due to low catch rates and poor

visibility. The boat electroshocker was equipped with a Coffelt model VVP-
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15 attached to a- 5 h.p. generator. One unit of electrofishing effort was a
transect following the shoreline with current on for 15 minutes. Distances
from shore varied with shoreline gradient, but shocking was conducted as
close to the shoreline as possible.

In addition, gillnets were fished at LG2S as part of an overall
assessment of the fish community at shallow, mid, and deep stations
{(Bennett et al. 1988). Fish collected by gilinet were included in the
comparison of total fish catches, percent relative abundance, biomass, and
size comparisons.

Weekly sampling efforts extended throughout the smolt out-migration in
the spring, monthly during the summer, winter, and bi-weekly during the
fall. Logistical problems and varying weather conditions precluded
randomizing the order of sampling.

A Pearson’'s chi-square goodness of fit test was used to identify
differences in catches of beach seine hauls and night electrofishing at the
five shallow stations during the spring season. To evaluate the
relationship between salmonid abundance and habitat characteristics we
ranked the data and calculated Spearmans’s rank correlation coefficient
(Spearman’s Rho). Specific habitat characteristics used included cover,
gradient and substrate. Significant correlation for n=5 (p=0.95) are

obtained if Spearman’s Rho (r) exceeds 0.8 {(Conover 1980).

Results
A total of 9,545 fish representing 22 species were collected from
shallow stations in Lower Granite Reservoir (Tables 5-8). A list of
scientific names and species codes used throughout this report is shown in

Table 9. Highest numbers of fish were to]lécted in the summer followed by
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Table 5. Relative abundance of fishes sampled from statfons in Lower Granite
Reservoir, Washington in spring 1987.

Species LGIS LG2S LG3S LG4S LG5S TOTAL

Pacific lamprey 2 2
American shad
white sturgeon

sockeye salmon 1 1
chinook salmon 477 61 74 153 107 872
mountain whitefish 2 69 71
rainbow trout 142 96 108 97 : 50 493
chiselmouth 63 87 55 144 10 359
carp 14 35 38 10 -3 100
peamouth 3 4 34 17 10 68
northern squawfish 47 43 154 161 - 18 423
redside shiner 8 48 21 75 4 156
bridgelip sucker 24 40 13 18 6 101
Targescale sucker 332 197 128 110 36 803
brown bullhead 1 1
channel catfish 2 2
bluegitl 1 1
pumpkinseed 1 2 1 4
black crappie 17 3 2 22
white crappie 2 4 6
smallmouth bass 309 35 105 39 10 498
yellow perch 11 - 43 1 7 2 64
TOTALS 1449 692 740 906 260 4047
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Table 6. Relative abundance of fishes sampled from stations in Lower Granite
Reservoir, Washington in summer 1987.

Species LG1S LG2S LG3S LG4S LG5S TOTAL

Pacific lamprey
American shad

white sturgeon 5 5
sockeye salmon

chinook salmon 1 1
mountain whitefish

rainbow trout 18 10 8 36
chiselmouth 6 12 8 623 649
carp 134 14 8 156
peamouth 3 4 4 233 244
northern squawfish 2 6 118 53 547 726
redside shiner 1 33 34
bridgelip sucker - 1 1
largescale sucker 22 192 130 30 1495 1369

brown bullhead
channel catfish

bluegill 1 80 25 18 124
pumpkinseed 1 1 . 2 4
black crappie 1 . 1
white crappie 2 2
smalimouth bass 32 58 125 100 260 575
yellow perch 13 5 18

TOTALS 75 432 493 226 3219 4445
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Table 7. Relative abundance of fishes sampled from stations in Lower Granite

Reservoir, Washington in fall 1987.

43

Species LG1S LG2S - LG3S LG4S LG5S TOTAL
Pacific lamprey

American shad 1 1 2
white sturgeon

sockeye salmon

chinook salmon 6 6
mountain whitefish 1 5 6
rainbow trout 70 23 14 8 1 116
chiselmouth 2 12 2 4 2 22
carp 11 4 1 16
peamouth 1 2 3 6
northern squawfish 18 31 15 26 65 155
redside shiner 5 12 5 1 7 30
bridgelip sucker 21 2 2 3 28
largescale sucker 161 95 85 45 32 428
brown bullhead 2 2
channel catfish 4 4
bluegilil 4 2 21 2 1 30
pumpkinseed 2 1 3
btack crappie 2 7 1 2. 12
white crappie 6 15 3 24
smalimouth bass 16 19 4 39
yellow perch 18 )| 19
TOTALS 307 258 169 101 113 948
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Table 8. Relative abundance of fishes sampled from stations in Lower Granite
Reservoir, Washington in winter 1987.

Species LG1S LG2S LG3S LG4S LG5S TOTAL

Pacific lamprey

American shad

white sturgeon

sockeye salmon

chinook salmon

mountain whitefish

rainbow trout ' 3 4 7
chiselmouth 24 24
carp

peamouth

northern squawfish 4
redside shiner 3
bridgelip sucker 2
largescale sucker 6 11
brown bullhead

channel catfish

bluegill

pumpkinseed

black crappie

white crappie - 6 1 7
smallmouth bass

yellow perch 1 1

TOTALS 9 55 3 0 3 56
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Table 9. Species codes, and scientific and common names for fish
coliected in Lower Granite Reservoir, Washington. Species
codes are used in figures and tables throughout this report.

Codes Scientific Name Common Name
:}'ﬁ m&gjpgnsgr iransmontanuys white sturgeon
sapidissima American shad
g#g Oncorhynchus nerka sockeyi sa}mon
Oncorhynchys tshawytscha chinook salmon
PWI Prosopium williamsoni ' mountain whitefish
SGA Salmo gairdneri rainbow trout
AAL Acrocheilys alytaceys chiselmouth
CCA Cyprinus carpio carp
I;CA Mylocheilys cayrinus peamouth
OR Ptychocheilus oregonensis northern squawfish
Egg Richardsoniys balteatus Eedsid;. shiner
Catostomus columbjanys ridgelip sucker
CMA Catostomus macrocheilus largescale sucker
INE lctalurus nebylosus brown bulTlhead
IPU Ictalurus punctatus channel catfish
tﬁi Lepomis gibbosus pumpkinseed
Lepomis m3ycrochirys bluegill
MDO Micropterus dolomieyi smalimouth bass
PAN Pomoxis annularis - white crappie
PNI Pomoxis nigromacylatus black crappie
PFL Perca flavescens yellow perch
coT Cottus sp. sculpin
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the spring, fall and winter. Highest numbers of fish collected in the
spring and fall were from LG1S and LGSS during the summer. The highest
number of fish collected in the winter were from LG2S, probably because

gillnets also were fished (Bennett et al. 1988).

Seasonal Abundance

During the spring, chinook salmon and rainbow trout {steelhead) were
collected at all shallow stations (Figure 19). These species, along with
smallmouth bass, were the most abundant game species. Highe#t salmon
relative abundance was at LG5S and LG1S, while rainbow trout were about
equally abundant at all shallow stations. Of the nongame species,
largescale sucker, northern squawfish and chiselmouth were more abundant.

During the summer, smailmouth bass was the most abundant game species
(Figure 20). Rainbow trout were most abundant at LG1S although present at
LG2S and LG3S. As in the spring largescale suckers were abundant at all
stations. Other nongame fish included high catches of carp at L&2S,
northern squawfish at LG3S, LG4S, and LG5S, and chiselmouth at LGSS.

Relative abundance of rainbow trout during the fall season was similar
to that of the summer season, with LGIS having the highest abundance.
Nongame species were dominated by largescale sucker at all stations except
LG5S, where northern squawfish dominated (Figure 21).

Fewer species were collected during the winter months. The only game
fish represented in the winter months were rainbow trout at stations LG1S
and LG2S and white crappie at LG5S and LG2S. Largescale suckers dominated
the abundance at LGIS and LG3S. Chiselmouth dominated abundance at LG2S

and northern squawfish were dominant at LGSS (Figure 22).
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Figure 19. Percent relative abundance of all fish collected by beach
seining and electrofishing during spring, 1987, Lower
Granite Reservoir. Station LG2S includes catches from night
and day gillnetting. See Table 9 for species codes.
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gilinetting. See Table 9 for species codes.
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Biomass

Seasonal comparison by station indicates that the highest biomass of
fish flesh was collected during the summer at LG2S (Figure 23). Biomass
sampled during the spring and fall was highest at LG1S. Subdividing fish
biomass into game and nongame categories, however, indicates a dominance of
nongame fish biomass (Figure 24). Game fish biomass was higher at all
stations during the spring and summer but less than 10% of the biomass of
nongame fish.

Of the species collected during all four seasons, 1arge§ca1e suckers
clearly dominated the biomass (Figures 25-28). In the spring and fall,
bridgelip suckers were followed by rainbow trout in biomass sampled. 1In
the winter, suckers and chiselmouth were dominant atthough their biomass

was about 10% of that during the spring.

Size Comparison

Individual daily catch per effort summaries for daytime and nighttime
electrofising and beach seining are presented in Appendices C and D,
respectively. Individual daily catch per effort summaries for g9illnetting
at LG2S are presented in Appendix B in Bennett et al. (1988).

Widest distribution of fish lengths was collected at station LGIS
during the spring, and at LG2S during summer, fall, and winter (Figures
29-32). In general, the majority of fish collected during the summer were
smaller than 100 mm except at LG2S where some fishes were larger than 500
mm. During fall and winter, fish collected at LG2S often exceeded 300 mm
in length. However, gillnet captures included in this analysis shifted
the size distribution to larger-sized fish. The majority of fish collected
at LG3S, LG4S, and LGSS were less than 300 mm.
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Figure 23. Total biomass (kilograms x 1000) of fish flesh collected by

beach seining and electrofishing during all seasons, 1987,
Lower Granite Reservoir, Washington. Station LG2S includes
catches from night and day gillnetting.
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Total biomass (kilograms x 1000) of game and nongame fish
collected by beach seining and electrofishing during all
seasons, 1987, Lower Granite Reservoir, Washington. Station
LG2S also includes catches from night and day gillnetting.
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Figure 25. Total biomass (kilograms x 1000) of all species collected by

beach seining and electrofishing during spring, 1987, Lower
Granite Reservoir, Washington. Station LG2S also includes
catches from night and day gilinetting. See Table 9 for
species codes.
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Total biomass (kilograms x 1000} of all species collected by
beach seining and electrofishing during summer, 1987, Lower
Granite Reservoir, Washington. Station LG2S also includes
catches from night and day gillnetting. See Table 9 for
species codes.
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1987, Lower Granite Reservoir, Washington. Station LG2S
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—
B R S T T Ty [ T BT A T L O T N N S0 TN I PPy P




450
350 - LG1S
250 -
150 -

50 -
450
350 - Lezs
250 -
150 -

50 7 A .?—gkmﬂzﬂﬂ-ﬂ.—qu—-.—.ﬁT

450
350 LG3S
230 =
130 -

30 -~
430
350 — L°4$
250 -
130 —
30 -
430
350 -
250 -
150 ~
50

NUMBER OF FISH
A
SaNan
Y
1
]

=

LGSS

N
TENNNNSY

100 200 300 400 500 600 700 800

25 mm SIZE GROUPS

o

Figure 30. Len?th frequencies in 25 mm size groups of all fish
collected by beach seining and electrofishing during summer,
1887, Lower Granite Reservoir, Washington. Station LG2S
2lso includes catches from night and day gillnetting.




LG1S

NUMBER OF FISH

60 -
40 -
20 -

80

LG4S

60 -
40
20 -

Figure 31.

r

A qhdi kg an ke pn Aoyt o b 4 e 8 b L M 1 g b e b e s e

v y— —l LR e, oy

100 200 300 400 SO0 600

25 mm SIZE GROUPS

700 800

Length frequencies in 25 mm size groups of all fish
collected by beach seining and electrofishing during fall,

1987, Lower Granite Reservoir, Washington.

Station LG2S

also includes catches from night and day gilinetting.

60




M r.Talv.

LG1S

A Yad

LG2S

A

LG3S

NUMBER OF FISH

LG4S

Ao

LG5S

e

Figure 32.

o sE i -k . L

Sl o, o

100

200

25 MM SIZE GROUPS

300 400 500

600

700

800

Length frequencies in 25 mm size groups of all fish
collected by beach seining and electrofishing during winter,

1987, Lower Granite Reservoir, Washington. Station LG2S

also includes catches from night and day gillnetting.

T T L L T 1 PO S e P

61




62
~ General CPUE Abundance

Abundance of various species at shallow stations based on
electrofishing indicated a few dominant species were present in the spring.
Daytime electroshocking in the spring yielded large catches of smallmouth
bass per 15 minute transect at LGIS (Figure 33). Catch rates of salmonid
fishes were relatively low at all stations. Station LG2S had the highest
catch rates of rainbow trout and LG1S had the highest catch of chinook
salmon. Largescale suckers dominated the nongame fish catches at all
stations except LGS5S.

Nighttime electrofishing in the spring yielded similar catch rates for
smalimouth bass at LEIS as during the day (Figure 34), However, catch
rates of bass at the other four stations were considerably higher at night
than during the day. Rainbow trout catches were highest at LG3S and LGSS.
Station LG2S had the highest catches of chinook salmon.

Abundance based on beach seining during the spring indicated high
abundance of chinook salmon at shallow stations, especially LG1S, LG4S, and
LG5S (Figure 35). Of the nongame species present, largescale suckers
dominated at LG1S and LG2S, and northern squawfish dominated at LG3S and
LG4S. Catch rates at LG5S were relatively low and no species was clearly
dominant.

Summer beach seine catches were highest at LG5S and LG3S with fish
in highest abundance being largescale suckers, northern squawfish, and
chiselmouth (Figure 36). Catches at LG1S, tG2S, and LG4S were low in
comparison to those at LG3S and LG5S.

Night electrofishing during the fall indicated that largescale suckers

were the most abundant species (Figure 37). Catch rates for largescale
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Figure 33. Catch per 15 minute transect of all species collected by
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daytime electrofishing during spring, 1987, Lower Granite
Reservoir. See Table 9 for species codes.
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Reservoir, Washington. See Table 9 for species codes.
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during spring; 1987, Lower Granite Reservoir, Washington.
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See Table 9 species codes.
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nighttime electrofishing during fall, 1987, Lower Granite
Reservoir, Washington. See Table 9 for species codes.
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suckers were similar between LG1S and LG2S but lower at the other stations.
Catch rates of residual rainbow trout, bluegill and smallmouth bass were
next in abundance at those stations in the fall.

During fall and winter, catches from seining were tow. Fall seine
samples indicated rainbow trout and largescale suckers were abundant during
the day at LG1S and northern squawfish were abundant at LG5S {Figure 38).
Mean catch per haul was considerably lower at the other stations in the
fall. During the winter, largescale suckers and rainbow trout were more
abundant at LG1S, while white crappie and northern squawfish were also
frequently caught at LG5S (Figure 39),

The majority of fishes collected at the shallow stations were young-
of-the-year (YOY) or yearlings. For ease of separation, we considered
anything Tess than 100 mm to be YOY, except for smallmouth bass (< 150 mm)
and northern squawfjsh (< 250 mm). 1In the spring, YOY species abundance
varied considerably by station. At LG1S, smallmouth bass and northern
squawfish were more abundant (Figure 40). Northern squawfish yearlings
were abundant at LG3S and LG4S. Chiselmouth and mountain whitefish also
had relatively high catches at LG3S. In the summer, catch rates at LG5S
relative to other stations were extremely high (Figure 41). Largescale
sucker, chiselmouth, northern squawfish and smalimouth bass YOY
predominated the catches. Although considerably lower than the summer,
catches in the fall were highest at LG5S (Figure 42). Catches of black
crappie, bluegil) and smallmouth bass increased at LGI1S, and 1G3S compared
to summer catches. At LE5S, northern squawfish and bridgelip suckers
provided the highest catch rates. During the winter, catch rates were about

half of that during the fall (Figure 43). Largescale suckers were abundant
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Figure 38. Mean catch per haul of all species collected by beach seine
during fall, 1987, Lower Granite Reservoir, Washington. See
Table 9 for species codes.
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Figure 39. Mean catch per haul of all s

pecies collected by beach seine

during winter, 1987, Lower Granite Reservoir, Washington,

See Table 9 for species codes.
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Figure 40. Mean catch per haul of resident species less than 100 mm
total length, except MDO (< 150 mm} and POR (<250 mm),
collected by beach seine during spring season, Lower Granite
Reservoir, Washington. See Table 9 for species codes.
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Figure 41, Mean catch per haul of resident species less than 100 mm
total length, except MDO (< 150 mm) and POR (<250 mm),
collected by beach seine during summer season, Lower Granite
Reservoir, Washington. See Table 9 for species codes.
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Figure 42,

Mean catch per haul of resident species less than 100 mm
total length, except MDO (< 150 mm) and POR (<250 mm),
collected by beach seine during fall season, Lower Granite
Reservoir, Washington. See Table 9 for species codes.
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Figure 43. Mean catch per haul of resident species less than 100 mm
total length, except MDO (< 150 mn) and POR (<250 mm),
collected by beach seine during winter season, Lower Granite
Reservoir, Washington. See Table 9 for species codes.
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at LGIS and LG3S and northern squawfish were abundant at LG3S and LGSS.
White crappie YOY also were abundant at LGSS.

CPUE Abundance - Key Species

Abundance of chinook salmon, rainbow trout, northern squawfish and
smallmouth bass all differed throughout the spring beach seine collections.
Chinook salmon peaked in abundance at LG1S the end of April to early May
but were not abundant at the other stations (Figure 44). Later in the
spring, fall chinook salmon ranging in length from 40 to 75 mm increased in
abundance at the other stations with higher catch rates at LG4S and LGSS.
Mean catch per haul for rainbow trout increased through early May and
remained generally high at LG1S through mid June (Figure 45). Catch rates
for rainbow trout at other stations were generally low during May but
increased in early June. Northern squawfish were caught at LGIS and LG2S
through early May (Figure 46). In contrast, catch rates of smallmouth bass
generally increased at LG1S and LG3S but remained Tow at LG5S and LG2S
throughout the spring (Figure 47).

In the summer, seine catches of rainbow trout and smallimouth bass were
variable among stations. Rainbow trout were collected at LG1S in July and
August and also at LG3S during July. Captures of smallmouth bass were
simitar among stations in mid July and predominantly at LG3S and LG4S the
end of August (Figure 48).

In thé fall, seine catch rates of rainbow trout generally increased
from late October and peaked in late November at LG1S (Figure 49).
Comparatively, catch rates were low at other stations at this time.
Electrofishing provided information on nighttime use of shallow stations by

chinook salmon, rainbow trout, northern squawfish and
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CHINOOK SALMON
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Figure 44. Mean catch per haul of chinook saimon less than 200 mm for
each day of beach seining during spring, 1987, Lower Granite
Reservoir, Washington.
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RAINBOW TROUT

15
JLG1S
:
5-.
e V20 2 m_m%_m_’/
_ _JLG2s
< - W
i 15J==_ Z m—
z _JLe3s 7
x %
I
pd
Z _|LG4s 7/
= - %
15-l==== oyl /A //
LG5S
10 -
.

\

= o oo T T
4/20 4/25 s/02 5/09 5/18 5/23 S/30 6/06 6/13

Figure 45. Mean catch per haul of rainbow trout less than 350 mm for
each day of beach seining during spring, 1987, Lower Granite
Reservoir, Washington.
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Figure 46. Mean catch per haul of northern squawfish greater than 250
mm for each day of beach seining during spring, 1987, Lower
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RAINBOW TROUT
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Figure 48. Mean catch per haul of rainbow trout less than 350 mm and
smallmouth bass greater than 150 mm for each day of beach
seining during summer, 1987, Lower Granite Reservoir,
Washington.
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Figure 49. Mean catch per haul of rainbow trout less than 350 mm for
each day of beach seining during fall, 1987, Lower Granite
Reservoir, Washington.
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smalimouth bass. During the spring, electrofishing indicated highest
abundance of chinook salmon at L62S followed by LG4S and LG3S (Figure 50).
In contrast to day sampling, chinook salmon were not abundant at night at
LG1S. Capture rates were highest in late April and early May and then
decreased. Abundance of rainbow trout was highest at night at Lg3s and
LG5S and peaked during early June (Figure 51), Night abundance of northern
squawfish varied widely among statfons (Figure 52). The high abundance of
smallmouth bass at LG]s was demonstrated by the highest catch rates in

April, May and June of any station followed by catches at LG3S (Figure 53).

We compared total numbers of chinook salmon and rainbow trout captured
at shallow stations throughout the spring to assess statistical differences
(Table 10). This information indicates that fall chinook salmon (< 75 mm)
were most abundant at LG4S and LG5S based on beach seining. In contrast,
chinook salmon (> 75 mm) were most abundant at LGIS followed by LG4, Lg3s
and LG2S. During the night, electrofishing captures indicated that rainbow
trout were at similar levels of abundance at Lg3$ and LGSS followed by the
other stations. During the day, however, beach seine catches were highest
at LG1S,

Significant Spearman rank correlations were found between abundances
of chinook salmon (< 75 mm; Figure 54) and wild rainbow trout (Figure 55}
and the proportions of inorganic cover (r=-0.9), substrate (> 50 mm; r=-
0.9), gradient (r=-1.0), and no cover (r=0.9). In contrast, no significant
rank correlations were found for abundances of hatchery rainbows (Figure

56) or chinook (> 75 mm; Figure 57) with any of the habitat measurements.
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Catch per 15 minute transect of chinook salmon less than 200
mm for each night of electrofishing during spring, 1987,
Lower Granite Reservoir, Washington.
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RAINBOW TROUT
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Figure 51. Catch per 15 minute transect of rainbow trout less than 350
mm for each night of electrofishing during spring, 1987,
Lower Granite Reservoir, Washington.
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NORTHERN SQUAWFISH
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Figure 52. Catch per 15 minute transect of northern
squawfish greater
than 250 mm for each night of electrofishing duringgspring.
1987, Lower Granite Reservoir, Washington.
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SMALLMOUTH BASS
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Figure 53. Catch per 15 minute transect of smallmouth bass greater than
150 mm for each night of electrofishing during spring, 1987,
Lower Granite Reservoir, Washington.
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Table 10. Statisical comparisons of abundance for chinook salmon {OTS) and
rainbow trout (SGA) from the shallow stations in Lower Granite
Reservoir, Washington during 1987. Stations underlined are not
significantly different at P < 0.05. Day abundance was based on
beach seining and night abundance based on electrofishing.

Spscies Stastical Difference
0TS < 75 mm LG4S LG5S LG3S LG2S LGIS
0TS > 75 mm LGIS LG4S L63S 1G2S LG5S
SGA - night L53S LG5S LG4S LGS 1G2S
SGA - day LG1S LG4S LG3S 1625 LGSS
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Objective 3. To evaluate incidence of predation on juvenile salmonid

fishes in shallow water habitat.

Methods

Food habit information was collected seasonally. Fish collection in
the five shallow water sites consisted of daytime beach seining, night and
day electrofishing, and 1imited gillinetting at L62S. Stomachs were sampled
with a stomach lavage apparatus similar to that described by Seaberg
{1957). This method had been proven effective for juvenile salmonids
greater than 100 mm (Bennett and Shrier 1986), as well as smallimouth bass
(Bennett and Dunsmoor 1986; Bennett et al. 1983; Gray et al. 1984). The
apparatus flushes stomach contents out of the mouth where they were
strained through a fine meshed net and preserved in FAA (10% Formalin, 40%
Alcohol, 2% Acetic Acid, 48% Distilled Water). This apparatus is not
effective for northern squawfish or channel catfish (Bennett et af. 1983,
Gray et al. 1984), Digestive tracts of these fish were removed and
preserved in FAA for later laboratory dissection.

Lengths chosen for predator stomach analysis were decided on from
research conducted on John Day Reservoir. For smallmouth bass, Gray et
al. (1984) reported that salmonids were found in the stomachs of smallimouth
bass from 150 mm to 343 mm 1in length, so only fish greater than 150 mm were
sampTed. Gray et al. (1984) also reported that the importance of fish in
the diet of northern squawfish steadily increases with size for squawfish
exceeding 300 mm in length and found salmonids in squawfish as small as 324
mm. Based on this information, a size Vimit of 250 mm was tmposed for
sampling northern squawfish. Salmonids were found in channel catfish

ranging in size from 350-600 mm (Gray et al. 1985). An arbitrary size
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limit of 250 mm was imposed on channel catfish collection for analysis of
both incidence of predation and a general food habits description.
An index of relative importance (IRI; Pinkas et al. 1971; Bennett and

Dunsmoor 1986) was used for each species to compare seasonal importance of
prey items between fish species.

IRI=(N + W) x F, where

N = composition (X) of a food item by number;

W ~ composition (%) of a food item by weight; and
F = frequency of occurrence.

A1l food items other than fish were identified to order. The origin
of the organism (terrestrial or aquatic) also was noted. Fish were keyed
to the lowest possible taxon. Bone identification keys and fish
length/bone length regressions. (Unpublished data; USFWS, National Fishery
Research Center - Willard Field Station) were used when appropriate to
identify and estimate lengths of heavily digested fish.

Weights used in the IRI were estimated live weights. Al organisms
(other than fish) that were visibly alike and in good condition were
grouped and an average wet weight was used to estimate the 1ive weight for
that group. Organisms were blotted dry for a standard drying time of 60
seconds. Fresh fish weights were estimated by length-weight regressions on
fish species from John Day Reservoir on the Columbia River (Palmer et al.
1986). Weights of partially digested fish were estimated by using length
estimates from fish Jength/bone length regressions in length-weight

regressions.
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Results
Information on predation and general food habits is covered under

Objective 4 in the report by Bennett et al. (1988).

Resident Predation on Juvenile Salmonids

During the spring smolt out-migration, stomachs of 261 smalimouth
bass, 80 northern squawfish, and 20 channel catfish were examined to assess
the incidence of predation on Juvenile anadromous salmonids. Discarding
the empty stomachs from the analysis, sample sizes were reduced to 195
smallmouth bass, 59 northern squawfish, and 18 channel catfish (Appendix
Tables F-H).

Smallmouth Bass.-Seven (3.6%) of the bass contained salmonids. One
bass contained rainbow trout, four (2.1%) contained chinook salmon, and two
contained unidentifiable salmonids. An average of 1.75 chinook per stomach
was observed for bass containing chinook, although this number was inflated
as & result of one 475 mm bass which contained four chinook salmon smolts.
Total lengths of bass contatning salmonids ranged from 165 to 475 mm
(Figure 58).

The bass containing rainbow trout was 297 mm total length and the
ingested rainbow was 188 mm tota] Tength (Table 11). When compared to
trout lengths captured by all sampling gear during‘the spring season, the
ingested trout was smaller than the average length (Figure 59).

Ingested chinook salmon averaged 108 mm, ranged from 51 to 125 mm
fork length, and were smaller than the average length of all chinook
sampled during our survey (Figure 60). Bass ingesting chinook salmon had

total lengths ranging from 185 to 475 mm (Table 11).
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Table 11. Swmary of sglmenid Predation obasrved in the s
Station, predator langth, and ingested saloemid

pring stodach samples by predator,
length.

Dats Predator Ingested Ingeated Ingestad
Predator Length Chinocek Steelhsad Unknown
Predator Station Captured Day/Night (mm) Langth Length Length
(mm) {om) (o }
Spallacuth Bass
LG1s &Jungd? N 330 *
LG2s 15Apr8? D ase 125
b 475 121
101
131
128
EJuns? 297 182
n 165 .
LG3s 2)Aprs? D 30 129
LGS SMays? 183
L ]
Northearn Squawfish
LG2S IMayB? L1 131
an? 138
123
2] *
- 183
LG1M MAPT Y7 R 361 131
138
Mays? b L3-] 210
19May8? ] 415 132
LG2M 27Apra? 485 1)
15May8? 347
ZAMaydY g 145
x| Mays? 332 hd
16Mays? 472 192
LG1D 15Maya7 493 85
Channe] Catfish
Lo2M 24May? 402 b
612 242
12Mayd? D 800 228
29Mayh? 538 240
228
LG “Mayd? N 430 120
521 245
ETT
-
LG2D SMaye? 493 199
a6

* po length available

1 LGIM, LG2M, LGWM (mid depth),

P

LG1D,1G2D (deep) Stations (Bennett ot al. 19as)
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Northern Squawfish.-Thirteen (22%) northern squawfish contained one
or more salmonids; 6 squawfish contained steelhead, 5 contained chinook
salmon, and 2 contained unidentifiable salmonids. An average of 1.2
rainbow trout and chinook salmon were observed per stomach from squawfish
containing salmonids. No squawfish with salmonids in their stomachs
contained both salmonid species. In general, squawfish containing
salmonids were large (331 to 499 mm; Figure 58).

Northern squawfish consuming rainbow trout ranged in Tength from 331
to 499 mm (Table 11). Trout ingested by squawfish averaged 155 mm and
ranged from 89 to 214 mm in fork tength and were below the overall average
size of steelhead sampled during the spring {Figure 59).

Northern squawfish containing chinook salmon ranged in total length
from 361 to 485 mm (Table 11}. Ingested chinook averaged 120 mm and ranged
from 67 to 132 mm in fork length, and were similar to the length
distribution of chinook captured during spring sampling (Figure 60).

Channel catfish.-Seven (38.9%) channel catfish contafned salmonids.
Five (27.8%) contained rainbow trout, one (5.5%) contained a chinook, and
one (5.5%) an unidentifiable salmonid. Lengths of channel catfish |
ingesting salmonids ranged from 402 to 612 mm (Figure §8). We observed an
average of 1.8 trout per stomach in catfish containing rainbows.

Catfish containing rainbows ranged in total length from 493 to 612 mm
(Table 11). Ingested trout averaged 232 mm and ranged from 138 to 328 mm
in fork length (Figure 59); one was not measurable. The single chinook

salmon (115 mm) was ingested by a 430 mm catfish (Table 11).
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Discussion

Intensive habitat sampling of shallow stations during 1987 confirmed
earlier speculations about the characterisfics of the physical habitat in
Lower Granite Reservoir. Use of snorkeling provided valuable information
about the qualitative and quantitative aspects of cover and substrate.

On-site velocity profiles were always near shore, and generally a
relatively Targe distance from the channel. As in a riverine environment,
most water moving through Lower Granite travels downstream along the old
river channel, while water along the shorelines frequently forms back-
eddies and random currents. Velocity in such-near shore areas shows no
clear relationship to *inputs” or "outputs" of water into or from the
reservoir; rather, these areas show a clear relationship to velocities in
nearby deeper areas (1.e. midway and channel velocity profiles) suggesting
a relatively predictable degree of velocity dissipation as distance from
the channel increases, coincident with a decreasg in depth. Regardless of
the regulating factors, observed velocities in Lower Granite Reservoir were
relatively low. Such low velocities probably have 1ittle influence on
resident fish distribution and habitat use. However, low velocities can
significantly delay smolt out-migrations as well as increase exposure of
Juvenile salmonids to predators as much as three times their original
availabiiity in a riverine environment (Ebel 1977). We did not measure
water velocities during the peak of the smolt outmigration. However, due
to the nature of the."1ow water® year of 1987, we suspect lower than
"normal® velocities occurred.

Substrate sampling with the Ponar dredge provided information on
substrate characteristics of the various shallow stations, Substrate was

similar among LG2S, LG3S, LG4S and LGSS but rather different at LGIS.
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Specifically, the proportion of sand decreased downstream to LG2S, while
the proportibn of particles smaller than sand increased from upstream to
downstream. At LG1S, the predominance of gravel sized particles and hard
packed fines explained our inability to sample effectively with a ponar
dredge. LG1S had more inorganic and organic cover than any of the other
shallow stations. Another feature of LGIS that possibly affected fish
abundance was the'relative1y steep shoreline gradient. Proximity of deep
water at LG1S, as demonstrated by morphometric maps and the hypsographic
curves, possibly affected utilization by certain species of fish. Other
features such as temperature, dissolved oxygen and turbidity were similar
among stations.

Biologically, the shallow stations were similar in some respects and
very different in others. Benthic community standing crops and composition
were very similar among shallow stations as well as mid depth and deep
stations in Lower Granite Reservoir (Bennett et al. 1988). However,
because of substrate characteristics, we were unable to effectively sample
LGIS. Substrate differences should affect benthic abundance and community
structure (Wetzel 1975), Large substrates typically support attached
organismé while the finer substrates support burrowing forms. Attached
organisms are more readily available for consumption than burrowing forms.

Fish community differences among stations were significant. Fal
chinook salmon (< 75 mn) seemed to prefer low gradient sandy shorelines,
and attained highest abundance at statfons that provided such habitat (LG4S
and LGSS). The only significant positive correlation between abundance of
fall chinook salmon (< 75 mm) and shallow station habitat attributes was
provided by the proportion of no cover. Bennett and Shrier (1986) also

noted that areas with no apparent cover had high abundances of juvenile
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chinook salmon. They hypothesized that predators were less successful in
capturing salmonids in areas with no cover. Although we cannot make
definitive statements about predator success, our collections of adult

predators were lowest at stations with the least cover (LG4S and LG5S) in

the spring when fall chinook Juveniles are using these areas.

In contrast, spring and summer chinook salmon (> 75 mm) attained

highest abundance at LG1S, the station with the greatest amount and
diversity of cover. Bennett and Shrier (1986) also found spring and summer
chinook to concentrate at LGIS. A question that neads further examination
is why LG1S s such an attractive area for spring and symmer chinook

salmon. One possibility is that larger salmon are more able to evade

predators and are available to fewer predators because of their size. As a
result, larger chinook smolts may be willing to use more complex habitats
where detection of predators may be less efficient.

Although we found significant correlations between habitat attributes
of substrate, cover, and gradient and fall chinook salmon abundance, the
question of factors affecting fish abundance remains. Is location in the
lTower reservoir the major factor affecting abundance of spring and summer
chinook salmon in shallow water areas, or is it habitat? Because we do not
have other shallow habitat types represented in the lower reservoir we can
not answer this question. It was interesting, however, that day captures
of chinook salmon were very high at LGIS but night captures were low. This
could indicate that the lower reservoir {s functioning as a staging area
for out-migration and the majority of fish in this section leave in the
evening. Chinook salmon at other stations may hold more at night until

their motivation for out-migration increases. Regardless of why spring and
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summer chinook salmon inhabit LGIS, the important point is that the habitat
appears to be attractive and fish are abundant,

We found several similarities in patterns of abundance between chinook
salmon (>75 mm) and rainbow trout. Rainbow trout at station LGIS were
significantly more abundant than at the remaining stations, whereas LG5S
had the lowest abundance. However, differences observed for rainbow trout
were not as dramatic as those for chinook salmon. Another simi]arity-was
that of apparent nighttime use of these areas. Stations LG1S dropped from
the highest in chinook and trout abundance to fourth in abundance in
nighttime catches. As with chinook salmon, s location in the reservoir
the major factor determining abundance in shallow water areas, or is it
habitat? Without a series of shallow stations in the lower reservoir, we
can only speculate about habitat. We found no significant correlations
(Spearman’s Rho)‘between individual habitat parameters and hatchery
steelhead abundance, although significant positive correlations were found
for wild steelhead and proportions of inorganic cover and relatively large
(> 50 mm) substrate. Again, decreased availability to predators may be one
reason why the larger wild steelhead occupy more complex habitats as
opposed to the tendency for smaller fall chinook to occupy areas with
Tittle cover.

A high number of rainbow trout residualized during the spring 1987
out-migration. Fish that survived into the summer provided highest catches
at LG1S. At stations LG4S and LG5S, two stations with relatively low
habitat diversity, residual rainbows were absent. This pattern of
distribution was similar during the fall months as in the summer with LE1S

also providing the highest catch rates of residual rainbow trout.
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One rather different finding during 1987 was the lack of chinook
salmon in the late fall and winter catches in Lower Granite Reservoir. In
the 1985 survey, Bennett and Shrier (1986) reported that salmon pre-smolts
were abundant in Lower Granite. In contrast, we captured only one chinook
salmon (LG2S) in the fall and winter, although we only sampled into
January. Flow differences or different hatchery release strategies may
have accounted for the differences. |

Predator abundance varied among the shallow stations. Of the three
potential predator species on salmonids, only northern squawfish and
smallmouth bass were present in shallow waters except at LG2S where channel
catfish were caught in gillnets (Bennett et al. 1988). Bennett and Shrier
(1986) also found channel catfish only at LG2S (SR2S), despite sampling
with gilinets at four other shallow statjons.

Smalimouth bass longer than 150 mm were captured at all shallow
stations during the spring and summer seasons. During spring, stations
LG1S consistently had the highest catches of bass followed by LG3S for both
day and night. Abundance of riprap at LG1S provides attractive habitat for
smalimouth. Numerous authors have feported that smalimouth bass prefer
habitat with relatively large substrate, ample cover and near steep
gradients (Coble 1975; Edwards et al. 1983; Scott and Crossman 1973; Becker
1983). Higher abundance of smallmouth bass at L63§ than at LG2S, LG4S, and
LG5S during the spring was also probably related to habitat. Although
habitat at LG3S was notably less diverse than LG1S, a moderate proportion
of substrates between 2 to 75 mm occurred (Figure 14). These substrates
were typically near shore between the 0-2 m contours. Abundance of
smalImouths gradua11y increased from the middle of May to the middle of

June at LG3S. During this time, water temperature were approaching 16°C, a
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temperature suitable for spawning (Scott and Crossman 1973). Bass prefer
the type of substrate that occurs at LG3S for nest building (Coble 1975).
Although LG2S also has similar proportions of substrate from 2 to 75 mm,
lower bass abundance may be a result of the relatively steep gradient
(14.6%}, about double that at LG3S (7.8%). Paucity of gravel substrate at
LG4S and LG5S may explain the relatively low numbers of Jarger bass at
these stations.

Our catches of larger bass at shallow stations during the summer were
similar. Highest captures were at LG3S (Figure 48). Based on available
habitat, we expected higher abundance of larger bass at LG1S; however,
catches at LGIS were lowest of all stations. Fishing mortality at LGIS may
be responsible for this low number. LG1S is adjacent to a park and boat
ramp that receives heavy fishing during the summer. Also, higher numbers
of bass at upriver stattons may reflect a foraging strategy on YOY forage
fish. For example, catostomids contributed 26.3% of the total importance
of prey items in the smalimouth bass diet (Bennett et al. 1988). Stations
LG4S and LG5S have the highest abundance of YOY fishes.

Catches of smalimouth bass in the fall and winter were low at all
shallow stations. Coble (1975) reported that bass typically move to deeper
water as temperatures decrease below 15°C. Lower catches at this time are
probably the result of reduced bass activity while in deeper waters.

Catches of adult northern squawfish (>250 mm) by beach seining and
electrofishing were relatively low and variable at shallow stations during
all seasons. However, gillnet catch rates at LG2S indicated that squawfish
maintained relatively high species abundance in the offshore areas and
catch rates were comparable to gilinet catches at mid depth stations

(Bennett et al. 1988). Larger squawfish also were found in offshore areas
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of shallow stations in previous studies (Bennett and Shrier 1986, 1987)
based on gilinet catches. Adult squawfish at shallow water stations may
prefer offshore areas. However, except at LG2S, gear we used did not
effectively sample offshore areas of the shallow stations, so definitive
statements about habitat preferences are not possible.

Smallmouth bass was the dominant predator captured at shallow water
stations. Highest numbers of smallmouth bass and salmonids during the
spring season were both at LGIS. However, bass predation was apparently
low as few salmonids appeared in stomachs from this or any other shallow
station. Our findings showed a frequency of occurrence of 3.6% Juvenile
salmonids in stomachs that contained food. In Little Goose Reservoir,
Bennett et al. (1983) reported a frequency of occurrence of juvenile
salmonids in bass stomachs of 2.0%. Bennett and Shrier (1986) found that
26% of the weight of all prey items in bass stomachs were salmonids which
was comparable to our findings (27.6%). Researchers at John Day Reservoir
(1ower Columbia River) reported variation in frequency of occurrences from
2.2% (April through December; Gray et al. 1984) to 3.7% (April through
September; Gray et al. 1985). Although the weight of salmonids relative to
other food items appears significant, our findings suggest that smalimouth
bass do not appear to be a major predator on Juvenile salmonid fishes in
Lower Granite Reservoir.

Few predator-sized northern squawfish (>250 mm) were captured at
shallow stations. Although LE2S was the only shallow station at which
Juvenile salmonids were observed in squawfish stomachs, this was also the
only station where we gillnetted. Several larger squawfish captured at mid

depth stations contained salmonids.
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Frequency of occurrence of salmonids in stomachs of northern squawfish
containing food items was 22% compared to 19% reported for Little Goose
Reservoir (Bennett et al. 1933). Bennett and Shrier (1986) reported that
13.8% of the weight of prey items found in northern squawfish was
salmonids, considerably lower than our findings (65.6%). Findings from
John Day Reservoir reported that weight of salmonids in squawfish diets
ranged from 30.9% (April through December; Gray et al. 1984) to 68.8%
(April through September: Gray et al. 1986). Frequencies of occurrence for
these years were 9.8% and 27% respectively. They also reported that
salmonid predation increased with squawfish length. Squawfish longer than
400 mm consumed 4 to 5 times more salmonids than squawfish less than 400
mm.

Channel catfish predation on juvenile salmonids was not observed at
shallow stations but was high at both mid depth and deep stations (Bennett
et al. 1988). Frequency of occurrence (38.9%) was high relative to
northern squawfish and smallmouth bass. Although our sample sizes were
small, results are comparable to those in Little Goose reservoirs. Bennett
et al. (1983) reported the frequency of occurrence of salmonids was 41% in
Little Goose Reservoir. Reported percent frequencies of occurrence of
salmonids in channel catfish from John Day Reservoir vary from a low of
1.5% (June through October; Gray et al. 1984) to 12.4% (April through
September; Gray et al. 1986). Palmer et al. (1986) reported that only
catfish Targer than 400 mm were found to contain salmonids, which is
similar to our data; the smallest catfish from Lower Granite Reservoir
which contained a salmonid was 402 mm.

Measures of habitat and fish abundance at shallow stations may provide

insight into the nature of shallow areas created by dredge fill. Due to
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the nature of the dredge material (i.e. sand and other fines), we expect
the physical habitat (i.e. substrate and cover) of created shallow areas to
resemble stations LG4S and LGSS. A few subtle difference may exist such as
gradient and overall mean depth. Stations LG4S and LG5S appear to be
valuable habitat for fall chinook salmon and resident YOY fish. Observed
abundances of rainbow trout and spring and summer chinook sa1ﬁon indicate a
possible preference for a more complex habitat similar to LGIS. Careful
monitoring of the created shallow areas in lower portions of the reservoir
may help evaluate importance of habitat attributes vs. location in the
reservoir in determining habitat use by salmonids.

Bass predation on juvenile salmonids appears minor in shallow areas,
and channel catfish seem to prefer habitat provided by mid depth and deep
stations (Bennett et al. 1988). Northern squawfish seem to be the dominant
predator on salmonids in Lower Granite Reservoir. However, predation on
Jjuvenile salmonids and habitat use by northern squawfish in shallow water
habitats is not fully understood. Careful monitoring may provide important

insights into squawfish predation dynamics and habitat use in created

shallow water habitats.
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Apperddix Table A . A surmary of the sorphomstric varisbles messured ”t

the shallow stations, Lower Granite Reservoir,

washington.

Morphometric Station

Yarisbies LG1s LG2s LG3S LGAS LG5S
$horeline Length (km) 6.5 1.0 0.6 0.8 0.7
Shoreline Diversity Index 1.1% 1.18 1.3% 1.%% 1.08
Maan Depth (m) 3.46 3.% 3.14 2.40 3.04
Total Surface Ares (m2) 14,009 136,187 51,764 101,691 110,51
Total Velume (m3) 48,770 509,143 162,278 243,945 336,299
Yolume (0-2 a; m3) 24,741 252,620 88,822 169,606 191,375
Volume (2-4 »; m3) 16,289 190,299 54,797 67,326 105,214
Mean Percent Gradient (0-2 m) 34.7 14.6 7.2 6.2 5.3
Naan Percent Gradient {2-4 m) 29.1 1.8 4.2 2.7 4.2




Appendix Table B.

Size delineations used 1§
survey to quantify cover
characteristics of shallo
Reservoir, Washington,

1987.

n underwater systematic
and substrate
w stations, Lower Granite

112

Substrate

Cover (Organic and Inorganic)

No. Description Size (mm) No. ~ Size(mm)
1 Fines < 2 1 5- 25
2 Small Gravel 2 - 28 2 26 - 50
3 Medium Gravel 26 - 50 3 51 - 100
4 Large Grave! 51 - 75 4 101 - 200
5 Small Cobble 76 - 150 5 201 - 400
6 Medium Cobble 151 - 225 6 > 400
7 Large Cobble 226 - 300

8 Small Boulder 301 - 600

9 Large Boulder >600
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Appendix C. Catch per 15 minute transect from daytime electrofishing
during spring, for all species and stations, in Lower
Granite Reservoir, Washington, 1987. Catch rates were
calculated within length classes which differed among
species. Length class 1 represents sub-aduits for key
species (ATR < 500 mm, ONE and OTS < 200 mm, SGA < 350 mm,
POR and IPU < 250 mm, and MDO < 150 mm) and young-of-the-
year (YOY) for all other species (< 100 mm). Length class
2 represents adults for key species and non-YOY for all
other species. See Table 9 for species codes.
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Apperdix Teble 1. Catech / 15 Minute Transect
Gear - Day Electrofishing Station - LG1S Seaton - Spring
Species
Length
Cate Class OTS SGA AAL CCA MCA POR  RBA CCO oA mpO  PNI
4715 1 5.00
2 8.00 6.00
Total 8.00 11.00
423 1 2.00 9.00
1.00 1.00 6.00
Total 2.00 1.00 1.00 15.00
4128 1 4.00 2.00 16.00
4 2.00 ¥.00 10.00 1B.00
Total 4.00 2.00 2.00 1.00 10.00 34.00
Spring Mean 1.33 1.33 1.00 0.33 6.33 20.00
Appendix Table 2. Catch / 15 Minute Transect
Gear - Day Electrofishing Station - LG2S Season - Spring
Species
Length
Date Class OTS SGA AAL CCA POR RBA CCD CMA MOO PNl PFL
&/15 1 1.00 1.00
2 7.00 3.00
Total 1.00 1.00 7.00 3.00
&£/23 1 2.00 4.00 1.00
2 11.00 1.00
Total 2.00 6.00 11.00 1.00 1.00
4728 %
2 1.00
Total 1.00

Spring Mean 1.00 2.40 6.30 13.33 3.53
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Appendix Table 3. Cateh / 15 Minute Transect 115
Gear - Day Electrofishing Station - LGSS Season - Spring
Spacies
Langth
Date Class OTS SGA AAL CCA MCA POR REBA CCO WA LGl MDD PAN PN! PFRL
4723 1.00
3.00 5.00 2.00
Total 1.00 3.00 5.00 2.00
4728
3.00 4.00 1.00
Total 3.00 & .00 1.00
Spring Msan 0.50 3.00 £.50 1.50

et b0 & ko s b

Appendix Table &.

Gear - Day Electrofishing

Catech / 15 Minute Transect

Station - LG4S

Season - Spring

Species
Length
Date Class o7s SGA  AAL CCA MCA POR  RBA CMA MOD PAN PFL
4/15 1 1.00 1.00
2 &.00 2.00
Total 1.00 1.00 4.00 2.00
4123 1
F-4 £2.00 2.00
Total 2.00 2.00
¥y 1
2 1.00
Total 1.00
Spring Mesn 0.33 0.3% 2.00 1.33 0.33




Appendix Table 5. Cotch / 15 Minuts Trarmect 116

Gear - Day Elsctrofishing Station - LGSS Season - Spring
Species
Length
Dste Claas OTS SGA AAL CCA NCA POR  RBA O o MOD PN
4115 1
2 1.0G 1.00
Total 1.00 1.00
&23 1
2.00
Total 2.00
4/28 1
1.00
Total 1.00
Spring Mesn 0.33 1.00 0.33
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Appendix D.

U Bt i b osis el e G st vevebe caed - el b ke L

Catch per 15 minute transect from nighttime electrofishing
during spring and fall, for all species and stations, in
Lower Granite Reservoir, Washington, 1987. Catch rates
were calculated within length classes which differed among
species. Length class 1 represents sub-adults for key
species (ATR < 500 mm, ONE and OTS < 200 mm, SGA < 350 mm,
POR and IPU < 250 mm, and MDO < 150 mm) and young-of-the-
year (YOY) for all other species (< 100 mm). Length class
2 represents adults for key species and non-YOY for all
other species. See Table 9 for species codes.
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Appendix Table 1. Catch /7 15 Minute Transect 118

Gear - Might Electrofishing Station - LG1S Season - Spring
Species
Length
Date Class 01§ SGA AAL CCA MCA POR RBA CCO  OMA MDO  Pul
&r21 ) 1.00 2.00 6.00
2 8.00 1.00 1.00 27.0C 11.00
Total 1.00 2.00 3.00 1.00 1.00 27.00 17.00
4728 1 1.00 2.00
10.00 1.00 2.00 5.00 39.00 4.00
Total 1.00 10.00 1.00 2.00 5.00 39.00 &.00
5705 1 6.00 2.00
7.00 21.00 17.00 t.00
Total 6.00 7.00 21.00 27.00 1.00
5212 1 4.00 11.00
12.00 7.00
Total 4.00 12.00 18.00
5/2% 1 5.00
F4 2.00 2.00 &.00 11.00
Total 2.00 2.00 &4.00 16.00
&/N 1 2.00 22.00
2 _ 5.00 11.00 11.00
Total 2.00 : 5.00 11.00 3%.00
&8/09 1 1.00 1.00
. 2.00 1.00 4.00 1%.00 2,00
Total 1.00 2.00 1.00 4,00 14.00 3.00

Spring Mean 0.14 2.29 5.9 0.3 D14 0.43 2.43 18.29 17,4 0.14




Appendix Table 2. Catch 7 15 Minute Transact 119
Gear - Night Elactrofishing Station - LG238 Season - Spring
Species
Length
Date Class OTF SGA AAL CCA POR RBA CCO CMA MDD  PNI PFL
LYF] 1 15.00 5.00 3.00 1.00
.00 11.00 3.00
Total 15.0¢ 5.00 ©.00 3.00 11.00 1.00 3.00
&/28 3 12.00 2.00 2.00 3.00
6.00 1.00 &.00 2.00
Totat 12.00 2.00 B.00 3.00 1.00 4.00 2.00
5/05 1 2.00 © 2.00 1.00
2 5.00 5.00
Total 2.00 5.00 2.00 6.00
5712 1 1.00 2.00 3.00 1.00 2.00 1.00
10.00 1.0 1.00 8.00 1.00
Total 1.00 2,00 13.00 1.00 1.00 1.00 10.00 2.00
5/21 1 1.00 1.00 1.00
6.00 2.00 1.00 3.00
Total 1.00 1.00 6.00 3.00 1.00 3.600
6701 1 1.00 1.00
2 3.00 4.00 1.00
Total 3.00 1.00 4,00 2.00
6/0% 1 1.00 2.00
2 1.00 2.00 5.00
Total 1.00 1.00 2.00 B.00
Spring Mesn 4.0 171 6.43 0.1 1.85 0.% 0.29 5.43 2.29 0.43 0.29
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Appendix Table 3. Catch / 15 Minute Transect 120
Gear - Night Elactrofishing $tation - LG3S Season - Spring
Species
Ltength
Date Class OT8 SGA AAL CCA MCA POR RBA CCO OCMA LGl MO PAN PNIL  PFL
&2 ] 5.00 10,00
&.00 6.00 1.00 1.0¢
Total 5.0 10.00 4.00 : 6.00 1.06 1.00
4/28 1 3.00 2.00 1.00 1.00
2 1.00 5.00 2.00 1.00
Total 3.00 2.00 1.00 1.00 6.00 2.00 1.00
$/05 t 2.00 2.00 1.00
2.00 4,00 C .00
Total 2.00 2.00 3.00 6.00 1.00
5712 1 2.00 1.00 1.00 3.00 1.00
2 2.00 1.00 1.00 8,00 1.00 8.00
Total 2.00 2.00 2.00 1.00 1.00 11.00 1.00 9.00 “1.00
s I 7.00 1.00 5.00
2 1.00 7.00 7.00 1.00
Total 7.00 1.00 1.00 12.00 7.00 1.00
6701 1 1.00 22.00 2.00 1.00
4 3.00 £.00 14.00 1.00
Total 1.00 22.0¢ 3.00 6.00 15.00 1.00
6/09 1 1.00
2.00 1.00 &.00 &8.00
Total 1.00 2.00 1.00 4.00 8.00

Spring Mean 1.8 8.30 1.7 0.1 0.57 0.71 0.1% 7.29 0.1 6.164 0.20 0.20 0.14




Appendix Table 4,

Gear - Wight Electrofishing

Catch 7 15 Minute Trensect

Station - LGLE Season - Spring

Specias
Length
Dats Class 0TS SGA AAL CCA MCA POR REBA OMA MDO PAN  PFL
21 1 6.00 18,00 2.00
2 1.00 1.00 9.0
Total 6.00 18,00 3.00 1.00 9.00
h/28 1 3.00 2.00
FJ 1.00 1.00 3.00 3.00 1.00
Total 3.00 1.00 1.0¢ 5.00 3.00 1.00
5705 3 10.00
2 1.00 1.00 1.00
Total 10.00 . .00 1.00
5/12 1 1.00 1.00 1.00
Fd c.00 1.00
Total 1.00 3.00 1.00 1.00
5721 1 5.00 1.00 1.60 2.00 1.00
2 3.00 1.00 2.00 5.00 4.00
Totsl 3.00 4.00 2.00 2.00 2.00 5.00 5.00
&/701 1 1.00 2.00
2 4.00 1.00 5.00
Total 1.00 4.00 2.00 5.00
&/0%9 1 3.00 1.00 3.00 1.00
2 1.00 2.00 2.00 1.00 2,00
Total 3.00 2.00 3.00 2.00 3.00 1.00 2.00
Spring Mesn 2.86 3.57 2.00 0.43 1.7 0.71 3.8 1.57 0.14 0.57
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Appendix table 5. Cotch / 15 Minute Transect 122

Gear - Night Elsctrofishing Station - LGSS S$sason - Spring
Species
Length
Date Class OTS SGA AAL CCA MCA POR RSBA OO OMA MO0 Pl
4121 1 7.00 11.00 1.00
2 1.00
Total 7.00 11.00 1.00 1.00
5/05 1 9.00 2.00 2.00
1.00
Total 9.00 2.00 2.00 1.00
5712 1 2.00
3.00 1.00
Total 2.00 3.00 1.00
Szl 1 4.00 1.00 1.00 3.00 2.00 2.00 2.00
2 3.00 1.00 2.00 1.00
Total 4.00 &.00 1.00 3.00 2.00 3.00 4.00 1.00
&/ 1 146.00
2 1.00 1.00 2.00 1.00
Total 16.00 1.00 1.00 2.00 1.00
&/09 1 1.00 1.00 1.00
1.00 : $.00 1.00
Total 1.00 1.00 1.00 10.00 1.00

Spring Mesn 2.87 6.00 1,33 0.17 1.00 0.33 0.57 2.83 0.8% 0.33%




Appendix Table 4. Catch / 15 Minute Transect
Gear - Night Electrofishing Station LGS Season - Fall
Species
Length
Date Class SGA MCA POR REA CCO CMA LGI MDD  PAN
10709 1 &.00 1.00 1.00
2 1.00 6.00 26.00 4,00
Total &.00 2.00 6.00 26.00 5.00
10/28 1 2.00 1.00 21.00 1.00 8.00 4.00
2 1.00 5.00 1.00 2.00
Total 2.00 2.00 5.00 21,00 2.00 8.00 &.00
/10 1 3.00 1.00
s 1.00 3.00 7.00 20.00
Total 3.00 1.00 3.00 7.00 21.00
11728 1 15,00
2 3.00 12.00
Total 15.00 3.00 12.00
Fatl Mean 6.00 0.25 1.00 0.75 5.2%5 20.00 0.50 3.25 1.50

Appendix Table 7. Cateh 7 15 Minute

Transect

Gear - Night Electrofishing Station LG2S Season - Fall
Species
Length
Date Class $GA AAL POR CCO CMA LMA MDD PAN  PNI
10/0% 1 2.00 7.00 2.00
2 1.00 15.00
Totsl 1.00 2.00 22.00 e.00
10/28 1 1.00 16.00 4.00 1.00
4 2.00 $.00
- Total 2.00 1.00 25.00 4.00 1.00
11710 1 3.0 1.00 15,00 2.00 2.00
2 : 1.00 1.00 10.00
Total 3.00 1.00 2.00 25.00 2.00 2.00
11728 3 $.00 1.00 1.00 1.00
2 .00
Totat 14.00 1.00 1.00 1,00
Fall mean 0.75 0.75 t.00 0.50 21.50 0.25 2.2%5 0.50 0.50
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Apperdix Table 8, Catch / 15 Minute Transect 124

Gear - dight Electrofishing Station LG3S Season - Fell
Species
Length
Date Class PUI  SGA AAL POR RBA CCO CMA LMA
10709 1 6.00 1.00
2 2.00 11.00
Total 6.00 2.00 12.00
10/28 1 2.00 1.00 &5.00 2.00
2 1.00 1.00 11.00
Tetal 2.00 1,00 2.00 36.00 2.00
11710 1 3.00 3.00 12.00 4,00
2 3.00 1.00 5.00
Total 3.00 3.00 4.00 17.00 1.00
11728 1 1.00 2.00
2 3,00
Total 1.00 5.00
Fall Mean 0.7 1.25 0.25 1.5 1.25 1.00 17.50 0.7

Appendix Table 9, Catch 15 Minute Transect

Gear - Night Electrofishing Station LG4S Season -Fall
Speciss
Length
Date Class SGA  AAL MCA POR RBA CMA LMA PAN PFL
10709 1 .00 3.00 5,00 6.00 1.00 3.00
2 2.00 10.00
Total 1.00 5.00 .00 16.00 1.00 3.00
10728 1 .00 11.00 1.00 23.00 2.00
2 1.00 14.00 4,00
Tots! 1.00 11.00 2.00 37.00 4.00
11710 1 4.00 2.00 1.00
2 ‘ 1.00 . 1.00
Total 4.00 2,00 2.00 1.00
11/28 1 1.00 1.00 6.00
2 1.00 5.00
Total 1.00 2.00 1.00
Fall Mesn 1.25 0.23 0.7% 2.75 0.50 7.25 0.25 2.25 0.25




Appendix Tsble 10. 125

Cateh 13 / Minute Transect
- Station LGSS

Gear-Night Electrofishing Season-~-Fall
Species
Length
Date Cless AAL  POR  RBA (OHA
10709 1 1.00 1.00
4 6.90
Total 1.00 1.00 é.00
10/28 1
2 1.00 5.00
Total 1.00 5.00
11710 1 2.00
2 6,00
Total 8.00
11728 1 6.00 5.00
2 1.00 4.00
Total 7.00 9.00
Fall Maan 0.50 0.25 1.7% 7.00
ik i T T T F TR S i H
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Appendix E.

Mean catch per haul from beach seining for all species,
stations, and seasons in Lower Granite Reservoir,
Washington, 1987. Catch rates were calculated within
length classes which differed among species. Length class
1 represents sub-adults for key species (ATR < 500 mm, ONE
and OTS < 200 mm, SGA < 350 mm, POR and IPU < 250 mm, and
MDO < 150 mm) and young-of-the-year (YOY) for all other
species (< 100 mm). Length class 2 represents adults for

key species and non-YOY for all other species. See Table 9
for species codes.
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Appendix Table 1.

Gear - Beach Seine

Mean: Catch/Haul

Station - LG1S

Seagton - Sprimg

Spacies
Length
Date Class 018 SGA AL CCA MCA POR RRA OMA LGI LMA DO PHI  PFL
4720 1 21.33 1.00 0.33 0.33 0.33
2
Total 21.3% 1.00 0.33 0.33 0.33
4725 1 81.00 3.47 0.33 0.3% 5.87
2 0.33 0.33 0.33
Total 31.00 3.67 0.33 0.33 0.33 &.00 .33
5702 1 50.00 4.00 0.33 9.00 1.00 S5.67 0.3% 2.3%
2 &.67 0.67 43.33 2.00 2.47 3.00
Total 50.00 4.00 7.00 9.00 1.47 49.00 2.33 5,00 3.00
5709 1 3.00 5.47 1.67
2 0.33 0.33
Total 5.00 5.87 0.33 2.00
5716 1 1.67
F4 0.33 0.33 1.00
Total 1.87 0.33 0.33 1.00
5s23 1 2.67 2.00
. 0.87 2.00 7.00
Total 2.67 0.467 2.00 9.00
5/30 1 0.33 8.33 2.00
2 0.33 1.67
Total 0.33 833 0.33 3.67
6/06 1 2,67 8.00
2 9.67
Total 2.67 17.67
6/13 1 0.67 &.00 5.33
Fd 1.00 0,35 1.33
Totsl 0.47 &.00 1.00 0.33 6.67
Spring Mean 17.37 3.7 0.82 0.15 0.07 1.70 0.19 S.85 0.0 0,04 4,72 0.5¢ 0.33
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Appendix Table 2.

Mean Catch/Haul

128

Gear - Desch Seine Station - LG2S Season - Spring
Species
Length
Date Class OT§ SGA AAL CCA MCA POR RBA CCD CHA MDO PNI  PFL
4720 1 1.67 0.33 0.67 0.33 0.33%
2 0.33 0.67
Totsl 1.67 0.67 0.67 0.33 1.00
“/25 1 0.33 0.33 0.33 1.00 1.67 0.33
e 0.13 0.47 0.33
Total 0.33 0.33 0.33 0.3} 1.00 2.33 0.3% 0.3%
5702 1 3.33 3.0 2.35 4.67 1.47 11.33 4.00
2 1.33 0.33 0.33 5.00 1.00 0.33 0.33
Totsl 3.13 4.3%3 0.33 2.67 &.67 1.67 16.33 1.00 4.33 0.33
5709 1 2.00 5.3% 0.33
F4 0.33
Total .00 533 0.67
5716 1 0.67
2 0.33 0.33 1.33
Total 0.67 0.33 0.33 1.33
5/23 1
2 0.67 0.33
Tatal 0.47 0.33
5730 1 1.00 0.33
2 1.00
Total 1.00 1.00 0.33%
6/06 1 11.67
2 0.67 1.00
Tota! 11.67 0.47 1.00
6713 1 0.67
F 4 0.67 0.33 1.00
Total 0.67 0.67 0.33 1.00
Spring Mean

0.96 2.07 0.52 0.37 0.11 0.5 0.52 0,22 2.30

0.56 0.48 0.07




Appendix Table 3.

Gear - Beach Seine

Mean Catch/Haul

Station - LG3S

129

Season - Spring

Species
Length
Date Class OT8 PWI SGA AAL CCA MCA POR MBA CCO OMA LGl w0 Pa?
4/20 1 4,33 0.33 9.67 35.00 0.33 0.67
2 0.33 5.67 0.33 0.33
Total &.67 0.33 5.67 10.00 3.00 0.33 0.47 0.33
&/25 1 0.33 0.67 0.33 1.00 0.33
Q.33
Total 0.33 0.67 0.33 1.00 0,33 0.33
5,02 1 2.00 1.00 2.33 1.00 3.67 1.33 3.00 10.33 0.33
2 B.67 5.33 0.33
Total 2.00 1.00 3.00 1.00 3.67 1.33 3.00 15.67 0.33 0.33
5,09 1 2.33 0.33 1.33 0.33
2 0.67 2.00 0.67
Total 2.33 0.33 0.67 1.13 2.00 1.00
5/16 1 1.33 1.00 0.33 0.67
0.87 1.33 0.33 1.47
Total 1.33 1.00 0.4&7 0.33 1.33 0.33 2.47
5/23 1 5.33 1.33 2.00 .
1.67 1.33
Total 5.33 1.33 2.00 1.67 1.33
5730 1 .33 0.47 2.00 0.33 1.00 1.33
2 0.67 0.67 2.00
Total 3.33 0.87 2.00 0.33 0.67 1.00 0.47 3.33
6706 1 0.33 14.00 10.00 38.33 1,33 0.67
2 0.47 4.33
Total 0.33 14,00 10.00 38.33 1.33 0.67 5.00
6713 1 2.00 0.33 0.67
2 3.47 0.33 5.00
Total 2.00 3,67 0.33 0.33 5.67
Spring Mean 2.19 0.07 2.37 1.60 1.19 1.22 5.5 0.59 0.4 2.52 0.06 2.19 0.04




Appendix Table &. Mesn Catch/Heul 130
Gear - Beach Seine Statfon - LGLS Season - Spring
Species
Length
Date Class QNE ©OTS PWI  SGA AAL CCA  NCA POR  RBA CCO CMA LGI  MDO  PAN
4720 1 1.00 0.67 0,33 0.33 0.33 0.3%
F4
Total 1.00 0.47 0.33 0.33 0.33 0.13
47235 1 1.00 1.00 0.33
4
Total 1.00 1.00 0.33
5702 1 11.33 1.33 2.00 7.33 1.33 1.33 8.00 D.67
2 0.67 0.67
Totsl 11.33 1.33 0.47 2.00 7.33 1.3% 1.33 8.00 0.67 0.47
5/09 1 5.33 37.00 1.00 35,67 17.47 3.33 11.00
2 0.33 0.33 0.33 &.00
Total 0.33 5.33 37.3% 1.00 35.47 18,00 3.33 11.33 4.00
8716 1 19.33 0.33 1.00 1.00 0.33 0.33
Fy 0.33 0.33 1.67 0.33
Total 19.33 0.33 .00 1.00 0.67 0.33 2.00 0.33
5783 1 1.67
e . 0.53 0.67
Total 1.67 0.33 0.67
5730 1 2.00 9.33 0.33 0.33 1.60 0.33
4 0.33 0.67
Total 2.00 9.33 0.33 0.33 1.00 0.67 D.67
6/06 1 2.33 13.67 8.33 2.33 3.67 3.00 0.67
4 1.33 0.33 3.33 0.67
Total 2.33 13.67 B.3%3 3.&7 3.67 3.00 0.3% 4.00 0.67
6/13 1 12.47 1.&7 0.33
1.00 0.33 1.67 0.33
Total 12.67 1.00 1.67 D.67 1.87 0.33

Spring Mesn 0.04 4.89 2.56 2.63 4.81 0.15 0.52 S.52 2.59 0.47 2.93 0.04 1.00 0.1




Apperciix Table S. Sesn Catch/#aul 131
Gesr - Beach Seine Station - LGSS Season - Spring
Spacins
Length
Date Ciass OTS SGA AAL CCA NCA POR RBA CCO CMA MOD  PFL
4/20 0.33
Total 0.33
L/2% 0.33 0,33
Total 0.33 0.33
5702 2.67 1.00 0.33 0.33
Total 2.67 1.00 0.33 0.33
5/09 13.00 0.67 0.67 0.33
0.33 0.33
Totai 13.00 0.47 0.33 0.67 0.33 0.3%
5716 13.67 0.33 2.00 3.67 0.67 0.3%5 0.87
0.33 1.00 0.67
Total 15.67 0.33 0.33 2.00 3.67 0.67 0.33 1.67 0.67
5723 0.67
Total 0.567
5/30 0.33
0.33 0.67
Total 0.33 0.33 .87
6/06 2.33
2.00
Total 2.33 2.00
6713 0.47
1.00 0.33 0.47
Totsl 0.67 1.00 0.33 0.47
Spring Mean 3.41 0.52 0.07 0.07 0.33 0.44 0.07 0.07 0.5¢ 0.15 0.1%
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Appendix Table 4. Hean Catch / Haul
Gear - Beach Seine All Statioms Susmer Season
Spacies
Length
Station Date Class SGA AAL CCA MCA POR REBA COCD OMA LGl WA MO PRL
LGS 1718 1 1.667 3.48587
2 5 0.333 1.333
Totat 1.667 5 0.333 5
8729 1 4.333 0.667 5.667
2 2.313
Total 4,353 0.667 2.313 §.687
Summer Mean 3 0.33 3.7 0.17 5.33
LG2S 7718 1 0.333 0.333
2 1.667 1 1,667
Total 0.333 1.6467 0.333 1 1.667
829 1 0.887 1 0.333 16
2
Total 0.687 1 0.333 16
Summer Mean 0.7 0.83 0.% 1 0.17 B8.A3
LGls 7718 1 2.667 0.333
2 4,333 0.333 0.333 1.333
Totat 2.687 %.333 0.333 0.333 1.667
8/29 1 4 1,333 39.35% 0.333 43 26.67 k+.)
2 0.333 2
Total 4 D.333 1.333 30.33 0.333 43 26.67 40
Summer Mesn 1.33 2 2.33 0.67 19.67 0.17 21.67 0.17 13.33 20.23
LG4S 7718 1 1.333 1
2 0.467 1.667
Total 2 2.667
8/29 1 2.667 1.333 17.67 0.333 7.333 B.333 29.33 1.447
2 0.647 1.333
Total 2.687 1.333 17.47 0.333 8 8.333 30.67 1.6467
Summer Nean 1.33 0.67 B8.83 0.%7 5 .17 16,67 0.83
LG5S 7718 1 0.333 0.333 1.333
2 0.333 0.313 1.687
Total e.333 0.333 0.647 3
829 1 207.T7 2.333 17.67 182 1" 497.7 6 83.67
2 0.887
Total 207.7 2.333 T7.6T 182 1" &97.7 0.867 & 83.67
Surmer Mesn 105.8 1.3 38.88 91,17 5.5 249.2 0,33 34333
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Apperdix Table 7, Hean Cateh / Haul

Gear - Banch Seine Station LGS Season -~ Fall

Species
Length
Date Class PUI SGA POR CMA LMA  MDO
10/11 1 0.33 1.53 0.33
r4 0.67
Total 0.33 0.47 1.33 0.33
10729 1 1.67
2
Total 1.67
11703 1
2 1.67
Total 1.67
11712 1 1.87 0.67
F 4 1.33
Total 1.67 2.00
11719 1 &.00 1.00
2 0.33 0.33 0.33
Total 0.3% £.33 1.33
11727 1 7.33 1.00
2 1.00
Totel 7.3% 2.00

Fall Mesn 0.06 2.50 0.06 1.30 0.22 0.%
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Appendix Teble 8, Mean Catch / Waul 134
Gear - Beach Seine Station LG2S Season-Falt
Species
Length
Cate Class OrS SGA CCA POR  OCMA  LGI LMA
10/11 1
2 0.33
Total 0.33
10/29 1 0.33
2 1.00
Total 0.33 1.00
11/03 1 0.33 0.33
2 0.33 0.33
Total 0.33 0.33 0.33 0.33
11712 1 0.33 0.33
2 0.33 0.67
Yotal 0.47 0.67 0.33
11719 1 0.33
2
Total 0.33
1127 1 0.33 1.00
2
Toval 0.33 1.00
Fall Mean 0.06 0.28 0.06 0.06 0.50 0.D& 0.06




Appendix Table 9. Wean Catch / Haul 135
Gear - Besch Seine Station LG3S Senson-Fatl
Species
Length
Date Class PWI SGA AAL POR WA LMA PNl
10711 1 0.67 0.33
2
Total 0.7 0.33
10729 1 0.67T 0.33 0.3% 2.33
2 0.67
Total 0.67 0.67 0.33 0.33 2.33
11703 1 0.67
2 1.00
3 1.00
Total 1.00 0.47 1.00
11712 1 0.67 0.33
2 1.00
3 0.33
Total 0.33 0.67 1.33
11719 1 0.3% 0.33 1.00
4 0.33
3 0.33
Total 0.33 0.33 0.67 1.00
11727 1 0.33 5.00 5.00
2
3 0.67
Total 0.67 0.33 5.00 5.00

Fall Mesn 0.02 0.50 0.04 0.49 1.40 1.00 0.38




Appendix Table 10,

Mean Catch 7/ Haul

Genr - Besch Seine Statfon LGAS Season-Fall
Species
Length
Date Ciass $GA AL CCA POR REA CCO OMA  LMA M0 PNl
10711 1 0.33 4.33 0.3} 0.33 .87
4
Total 0.33 4.33 0.33 0.33 0.67
10729 1 0.33 0.33 0.33
2 0.47
Total 0.33 0.33 0.47 0.33
11703 1
2 0.87
Total 0.67
11712 1 0.33 1.00 0.33
2 2.67
Total 0.33 3.47 0.33
11719 1 0.33 0.47 0.67 0.67
4 0.33
Total 0.33 0.67 0.33 0.47 0.67
11727 1 0.33
2
Total 0.33
Fall Mean 0.17 0.17 0.06 0.8% 0.06 0.31 0.89 0.0 0.22 0.06
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Appendix Table 11.  Mesn Catch / Keul 137
Gear -Basch Seine $tation LG5S Ssason - Fall
Spacies
Langth
Date Class $GA PORK CCO OMA  LMWA PN
10711 1 18.33 0.67 0.33
2
Total 1.3 0.67 0.33
10729 1 1.00 0.67 0,33 0.47
2
Total 1.00 0.7 0.33 0.467 .
11703 1 0.33
2
Total 0.33
11/12 1 0.33
4
Total 0.33
1719 1 0.33 1.67
2
Total 0.33 1.67
11727 1 0.33
2
Total 0.33
Fall Mean 0.06 35.55 0.17 0.22 0.06 0.1

s s bt ey i i erin P HLE e Doer dsoe i b Al awioen 6w .
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Appendix Table F. Summary of smallmouth bass stomachs analyzed for
food habits from Lower Granite Reservoir,
Washington, 1987.

Total Total Total n
Number  Number  Number Range Mean
Season Statfon Collected Empty Stomachs (mm) {mm)
Spring LG1S 127 38 89 127-356 205.5
LG2S 25 3 22 161-475 251.7
LG3S 71 17 54 150-460 217.6
LG4S 27 7 20 171-280 212.5
LG5S 8 1 7 178-320 220.5
LGIM 1 1 270.0
LG2M 2 2 189-29¢6 239.0
LG3M
LG1D
LG2D
Summer LG1S 5 5 145-251 196.0
LG2S 9 2 7 174-287 205.0
LG3S 11 2 9 164-353 205.7
LG4S 9 9 162-256 201.0
LG5S 5 5 154-234 187.8
LGIM 1 1 293.0
LG2M 3 1 2 189-351 249.3
LG3M 5 5 174-206 189.0
LGID
LG2D
Fall LG1S 1 | 192.0
LG2S 8 8 260-297 281.3
LG3S
LG4S 2 2 438-441 439.5
LG5S
LGIM 4 3 1 210-456 307.8
LG2M
LG3M 2 1 1 270-413 341.5
LG1D
LG2D
a0 T I T T i i 1 TR T

Sin bdk it B gk Tl s
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Appendix Table G. Summary of northern squawfish stomachs analyzed
for food habits from Lower Granite Reservoir,
Washington, 1987.

Total Total Total Jotal Length

Number  Number  Number Range Mean
Season  Station Collected Empty Stomachs {mm) (rom)
Spring LEIS -3 2 1 310-359 333.0
LG2S 24 5 19 137-550 323.8
LG3S 1 1 347.0
LG4S 5 3 2 154-381 241.8
LG5S
LGIM 9 3 6 253-499 356.0
LG2M 17 5 12 230-510 366.5
LG3M 14 2 12 243-472 343.9
LG1D 2 1 1 335-493 414.0
LG2D 5 5 233-365 310.6
Summer LG1S
LG2S 1 1 360.0
Le3s
LG4S
LG5S
LGIM 3 1 2 355-491 435.3
LG2Z2M 11 4 7 255-495 348.2
LG3M 14 3 11 230-356 274.4
LG1D 1 : 1 362.0
LG2D 4 1 3 325-432 373.3
Fall LG1S 1 1 331.0
LG2S 19 8 11 261-420 269.5
LG3S
LG4S 2 1 1 331-337 334.0
LGSS
LGIM 15 1 14 260-532 316.9
LG2M 11 4 7 252-427 324.2
LG3M 7 1 6 256-498 314.9
LG1D 7 7 255-37% 293.6
LG2D 6 3 3 255-358 294.2
Winter LG1S
LG2S 3 2 1 273-370 335.7
LG3S
LG4S
LG5S
LGIM 1 1 369.0
LG2M 4 3 1 250-367 289.0
LG3M 1 1 342.0
LEID 5 3 2 245-358 303.2
LG2D 1 1 348.0
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Appendix Table H. Summary of channel catfish stomachs analyzed for
food habits from Lower Granite Reservoir,
Washington, 1987,

“Total Total Total

Number Number  Number Range Mean
Season  Station Collected Empty Stomachs (mm) (mm)
Spring LG1S
LG2S 1 1 493.0
LE3s
LGAS
LG5S
LGIM
LG2M 14 2 12 356-612 466.0
LG3M 3 3 430-526 492.0
LG1D 1 | 305.0
L62D | 1 493.0
Summer LGIS
LG2S 5 5 299-473 362.4
LG3S
LG4S
LG5S
LGIM 2 2 259-528 384.0
LG2M 8 1 7  268-435 (3455
LG3M 2 2 323-409 366.0
LG1D
LG2D
Fall LGIS
LG2S 1 1 302.0
LG3S
LG4S
LGSS
LGIM 4 4 208-510 390.8
LG2M 8 3 5 243-389 308.1
LG3M 1 1 285.0
LGID 2 2 324-515 419.5
- LG2D 2 2 359.583 471.0
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