

1992 Reservoir Drawdown Test

Lower Granite and Little Goose Dams

US Army Corps of Engineers Walla Walla District

Appendix O Water Quality and Sediment Quality Data

 \circ

December 1993

APPENDIX O

WATER QUALITY AND SEDIMENT QUALITY DATA 1992 Reservoir Drawdown Test Lower Granite and Little Goose Dams

> Thomas D. Miller Walla Walla District U.S. Army Corps of Engineers

APPENDIX O

WATER AND SEDIMENT QUALITY DATA

INTRODUCTION

This appendix contains the raw turbidity and contaminant data that were collected by the Corps of Engineers and the Geological survey during the March 1992 Lower Granite-Little Goose Reservoir Drawdown Test. Summarized results are contained in the main report.

To assess the impact of drawdown of Lower Granite Reservoir on the turbidity (cloudiness) of its water, two separate turbidity monitoring programs were planned. The aim of the Corps team was to track daily changes in turbidity at selected stations, and to record turbidity inputs to the river as a result of mudflat erosion during storm events. Concurrent with their velocity and temperature measurements, the U.S. Geological Survey, under contract to the Corps, was tasked with turbidity measurement focused on cross-sectional and vertical profiles at chosen sediment ranges.

In preparation for the drawdown test, the Corps worked with other regional entities to try to develop objectives and a plan to evaluate contaminant concerns related to reservoir drawdown. One of the main concerns was that of

resuspension/redistribution/dissolution of contaminants associated with sediment that would be resuspended by scouring as the pool was drafted. The complexity of the problem and the lack of available expertise resulted in the Corps developing a simplified plan. The goals were to collect water samples for contaminant analyses from: a) mudflat runoff during storm events; b) below the Port of Lewiston where they could be resuspended by scouring; and c) representative ponds left standing in the drawdown zone. Another objective was to perform toxicity tests with <u>Daphnia</u> on some of the samples collected.

METHODS

Turbidity

The Corps monitoring plan was based on daily road tours to Lower Granite Lake Habitat Management Unit (for Snake River background), City of Lewiston drinking water intake (for Clearwater River. background), US Highway 12 Snake R. Bridge (immediately above the confluence of the Snake and Clearwater rivers), Redwolf Bridge, Silcott Island, Lower Granite Dam, and Central Ferry Bridge. Samples were collected at Little Goose Dam by project personnel. Water samples were collected from one foot below the surface and analyzed for turbidity in Nephelometric Turbidity Units (NTU) with a Hach portable turbidimeter. (This method is based on comparison of intensity of light scattered by the sample with intensity of light scattered by a standard reference suspension. On a few occasions samples were collected by boat from reaches not included in the road tours to fill in the longitudinal data gap (between Silcott Island and Lower Granite Dam).

The USGS collected turbidity data by boat at three points along the river mile transects shown in Table 1. At each point, a light transmissometer (probe) was lowered to 1 m and to approximately 20 percent, 40 percent, 60 percent, and 80 percent of the total depth of water at that location. Turbidity was recorded as a percent of light transmission, where 0 percent equals total light extinction and 100 percent equals a completely transparent solution.

<u>Contaminants</u>

Corps personnel collected water and sediment samples for contaminant analyses on 24 and 25 March from the following locations:

water-

#1, exposed Potlatch Corp. effluent diffusor;

#2, immediately downstream of Redwolf Marina;

#3, stream flowing from Redwolf Marina;

#4, Lewiston drinking water intake;

#5, exposed Potlatch Corp. effluent diffusor;

#6, mudflats pond in Port of Clarkston;

#7, 0.5 mi. downstream of Potlatch Corp. diffusor;

#8, Clearwater R. at confluence;

#9, Snake R. immediately above confluence;

#10, mudflats pond near Clarkston waste water treatment plant;

sediment#11, mudflats at port of Clarkston;
#12, Redwolf Marina;
#101, mudflats near Clarkston waste water treatment plant.

Water samples collected from ponds were thought to be representative of the numerous ponds left standing in the extensive mudflats. Sediment samples chosen were the most foul and discolored that could be found as those were thought to be areas where contaminants were concentrated, and assessment of the worst case of possible human exposure was the goal. Samples were placed directly into USEPA approved precleaned containers, put on ice and shipped to USACE North Pacific Division Laboratory for analyses of pesticides/PCB's, volatile and semi-volatile organics, metals, and nutrients. Samples #1, #5 and #10 were analyzed for dioxins/furans.

Samples #1, #2, #5, #6 and #7 were also shipped to the Western Region Hazardous Substance Research Center at Oregon State University for toxicity testing. <u>Daphnia magna</u> were exposed to 6.3, 12.5, 25, 50, and 100% sample for 48 hours.

			DATE (M	ARCHI																									
STATION	PM	1	2	4	5	6	7	٠	10	11	12	13	14	16	18	17	18	19	20	21	22	23	24	25	26	27	28	29	:
lgr lk hnu	147	6.6	7.2	6.6	6.3	5 .7	4.7	6.4	4.4	4.2	4,1		4.1			3.7	4]	
CLWTR & LEW.INTA	4	7.8	8.9	6	8.9	6.1	4.3	3.6	3.6	3.1	2.9		3			3.6	4.2												
LWTR O MEMORIA	BR	<u></u>											4.2			3.4													
SNAKE HWY 12	139.5				0.6		6,1	9.8	14	11.6	B.9		10.2			6.1	8.2								3.6				
NED WOLF BR. 1 (BO)	137.3	312	10		23	45	32	10	42	47	36		43			20	27								23				
RED WOLF BRL2	137.3	8.7	12	19	10.8	14.6	12	13	16	16	29		28.5			15.6	14.6												
RED WOLF BRL3	137.3 137.3	7.4 7.0	<u>9.2</u> 7.7	8,1	7.2	17 7,3		10.2 23	20.5	18 28	18.5 32		29 26			12	11							<u> </u>					
RED WOLF BRLS (NO	137.3	8.2	0.2		8.0	7.1	10,1	- 26	29	36	48		32			18	23								•				
BILCOTT ISLAND	131		8.6	····	18	18.2	0.6		24	12	17.5		34			22	13.6		5.9						14				
ALPOWIA CREEK	130										17								0.1										
BTEPTOE CANYON	120										11														• 19				
NISCUALLY JOHN L	125										10.6														13				
CENTENNIAL ISLAN	120.6														14				7.9						9,3				
ILYTON LDG	110										8.3				12.5														
	115.7														11.5										8.8				
NAWAWAI	110.6																												
											6.7				11				7.3						7.8				
LOWER GRANITE DA	107.4	8.8	7.9	7.8		8.2	- 0.0	5 .7	6.9	. 6	6.7		9.3	9.8	8.9	8.9	12	10.9	8.4	7_2	8.7	•	8.8		6.6	7.1	. ,		
WADE'S BAR	99																			13									
RICE BAR	83																9.3			10									
CENTRAL FERRY BR	83.2				8.3		8.9	5.4	8.4		5.0						7.1		8.5										
LITTLE GOOSE DAM	70.3			12.2		7.2				8.7	6.2	6.3	6.2	4	6.7	6.7	6.9	6.2	6.4		8.8	7.4	7.3	7		6	4.8	4.8	

•

*** NO TURBIDITY DATA COLLECTED ON 03 AND 06 MARCH

027E1027 DRAWDOWN '82 TURBIDITY DATA

URBIDITY PROFILES									
184AR									
RICE BAR	11	9.3							
	15 '	9.8							
	30*	9.9							
	50'	9.5							
Carbal									
-CANYCH-FERRY	11	7.1							
	151	7.7							
	301	8.1							
	601	8.9							
		••••							
2877.5	11	7.1							
	50'	8.6							
ZOMAR									
SILCOTT	11	5.9							
	10'	7							
	20'	8.6							
	30.	12.5							
CENTENNIAL	11	7.9							
	10'	8.6							
	30'	9.8							
	50'	9.4							
WAWAWAI	1'	7.3							
	101	7.9							
	201	8.1							
	30'	8.4							
	601	8							
	90'	8.4							
21MAR									
WADE'S BAR	1.	13							
ANYE Y WON	. 20.	13							
	35'	16							
RICE BAR	1'	10							
	251	11							
	50'	11.5							

DRALDOWN 192

22MAR	
ALHOTA	1'
(SPILLING	INFLOW) 201
	35 '
ALMOTA	11
(SPILLING	100Kcfs)204
	401

6.7 7.2 7.1

> 12 11

11

WESTERN REGION HAZARDOUS SUBSTANCE KASEARCH CENTER

April 13, 1992

Tom Miller U.S. Army Corps of Engineers Walla Walla District CENPW-PL-ER

OREGON STATE UNIVERSITY

Apperson Hall 206 Corvallis, Oregon 97331-2302 Dear Tom,

Enclosed you will find the final report and copies of the laboratory data sheets for the five river and effluent samples that you sent for testing. The *Daphnia magna* toxicity tests demonstrated that none of the samples contained constituents that were toxic to the test organism. If I can be of further service please call.

Sincerely,

heene

Joseph C. Greene Research Biologist

Tom if you I have your address and will send this report in the mail.

fas

Telephone 503-737-2751

Fax 503-737-3462 WESTERN REGION HAZARDOUS SUBSTANCE

LOWER GRANITE RESERVOIR STUDY

Freshwater Macroinvertebrate Toxicity Test

March 1992

This test method measured the acute toxicity of freshwater solutions to the cladoceran *Daphnia magna* during a 48-hour static exposure. The responses measured include the synergistic, antagonistic, and additive effects of all the chemical, physical and biological components that adversely affect the physiological and biochemical functions of the test organism. The standard practice followed was that of Greene et al. (1989).

The waters samples were shipped, in ice, by overnight express air service. Upon arrival the temperature of the samples was measured and found to meet the storage criteria of 4°C. Samples were then stored in the dark at 4°C until performance of the test.

The river and effluent samples were diluted with well water obtained from the Willamette Research Station located in Corvallis, Oregon. Prior to dilution the water was adjusted to a hardness of 98 mg/L (as $CaCO_3$). Samples were tested at 6.3, 12.5, 25, 50, and 100% river water or effluent. The hardness adjusted well water served as the test controls and for culture of the test organisms. Each concentration was tested in triplicate. The replicates, 100 ml beakers containing 50 ml of test solution, were inoculated with $10 \leq 24$ -hour-old neonates. The 48-hours of exposure was composed of two diurnal (16:8 hour light:dark) light cycles.

Control survival ranged from 93 to 100 percent. Acceptability criteria for the 48-hour *D. magna* acute toxicity test requires a mean control survival of 90 percent.

Sample, test and chemical codes used to track the river water and effluent are listed in Table 1. Toxicity was not demonstrated in any of the five river water and effluent samples tested.

OREGON State University

Apperson Hall 206 Corvallis, Oregon 97331-2302

Telephone 503-737-2751

Fax 503-737-3462

Sample ID	OSU Chem Code	Biological Test Code	Initial pH	Result
Red Wolf Manha River #1	0313001	LG040892A	7.31	NE ¹
Red Wolf Manha River #2	0313002	LG040692	7.22	NE
Potlach Effluent #5	0313003	LG040792	7.22	NE
Port of Clarkston #6	0313004	LG040892B	7.09	NE
Below Effluent #7	0313005	LG040992	7.82	NE

;

Table 1.Sample identifications, test codes, and chemical codes.

 $\overline{^{1}}$ NE = No toxic effect demonstrated.

Site Identification: Red Wolf Manha River 1 Callected 07-march-1992 14:00 firs										
Test Code: LG04	0892A	Chem.	Code:	031	3 001	·				
No. Replicates:	3	No. Da	phnids p	er Conc:	_30					
(Mark choice) [_] Range finding Test, [_] Definitive Test, [_] Abbreviated Sample as: [_] Percent or [_] Concentration										
Date Test Terminated: <u>41/0192</u> Testor: Joseph (. Choene mm dd yr										
48-Hours	Percent Mortality	Rep 1	Rep 2	Rep 3	Mean	SD	Percent Survival			
Negative Control Well Water - 0%	[]	_0_	_0_	_0_	±	······••	_ <u>100</u> %			
Conc:	[]				<u> </u>	•				
Conc: 6.25%	[]	2 computer	0	0	·_ ±	·_				
Conc: 12.5%	[]	_/		0	±	·				
Conc: 25%	[]	0	_0_	0	±	'				
Conc: 50%	[]	0	_0_	_0_	:_ ±	*				
Conc: 100%	[<u>3</u>]	_0_	_0_	_/	±	*				
RESULTS: LC ₅₀ Concentration mg/L or Percent (%) or other 95% CI: Lower Upper										
-Initial p	Initial pH: 7.31 DM2_MORT.FRM									

Test Code: <u>∠G</u> C	0 <u>4069</u> 2	Chem.	Code:	031	3 002						
No. Replicates:	10	No. Da	phnids p	er Conc:	30						
(Mark choice)	[] Range Sample as:	finding T M Pe	'est, ⊅ rcent or	☐ Definit ☐ Cor	ive Test, <u>[</u> ncentration_	_] Abb	previated				
Date Test Terminated: <u>04/08/92</u> Testor: Joseph C. Greene mm dd yr											
48-Hours	Percent Mortality	Rep 1	Rep 2	Rep 3	Mean	SD	Percent Survival				
Negative Control Well Water - 0%	[]	_0_	_0_	_0_	·=	<u>+</u>	100%				
Conc:	[]		<u></u>		 ' :	±·_					
Conc: 6.25%	[]	0	0	_0_	<u></u> :	±					
Conc: 12.5%	[]	0	0	0	· :	±·-					
Conc: 25%	[_/0_]	_/	_2_	_0_	• :	±•					
Conc: 50%	[]	0	_0_	_0_	· ·	±•	<u> </u>				
Conc: 100%	[]	_0_	_0_	_/	· ·	<u>+</u>					
RESULTS: LC ₅₀	Concentration	n	mg/l	L or Perc	ent (%) or (other					
95 <i>%</i>	CI: Lower_		U	oper							
-Initial f	o₩: 7.2	2			<u></u>	DM2_!	MORT.FRM				

Site Identifica	tion: <u>Pott</u>	ach.	Eff	luent 25-mar	#5	06	.45 Jun 4		
Test Code:	<u>LG04079</u> 2	Chem.	Code: _	03/	3003				
No. Replicates	:	No. Da	aphnids	per Conc:	_30				
(Mark choice) [_] Range finding Test, [_] Definitive Test, [_] Abbreviated Sample as: [_] Percent or [_] Concentration									
Date Test Ter	minated: <u>04109</u> mm dd		Testor:	(Joseph	<u>C.</u>	neene		
48-Hours	Percent Mortality	Rep 1	Rep 2	Rep 3	Mean	SD	Percent Survival		
Negative Conti Well Water - (_0_		_0_	····· <u>+</u>	·······	<u>_100%</u>		
Conc:	[]				±	·			
Conc: 6.25	% []	_0_	0	_0_	<u> </u>		_		
Conc: 12.5%	6 [<u>3</u>]	_0_		0	±	<u> </u>			
Conc: 25%	[]	_0_			· ±	•			
Conc: 50%	[]	_0_	_0_	_0_	· ±				
Conc: 100%	[]	_0	2	_0_	· ±.	*			
RESULTS: LO	C ₅₀ Concentration		mg/L	or Percer		er			
	% CI: Lower								
Initial	рН: 7.22			 2 <u>123-</u> cm	 D	 M2_M(DRT.FRM		

LABORATORY DATA SHEET Daphnia magna Static Acute										
	Daphni	a mag	na Si							
Site Identification:	Port collected	0/ (larke march	lon_ 1992	10:14 hr	4				
Test Code: <u>LGC</u>	40892B	Chem. C	Code:	031	13 004					
No. Replicates:	3	No. Dap	hnids p	er Conc:	30					
(Mark choice) [_] Range finding Test, [_] Definitive Test, [_] Abbreviated Sample as: [_] Percent or [_] Concentration										
Date Test Terminated: <u>#1/0192</u> Testor: Joseph C. Checke										
======================================	Percent Mortality	Rep 1	Rep 2	Rep 3	Mean	SD	Percent Survival			
Negative Control Well Water - 0%	[3]	_/_	_0_	_0_	<u> </u>	··	97%			
Conc:	[]				<u> </u>	±•				
Conc: 6.25%	[]	_0_	_0_		· =	<u></u> •				
Conc: 12.5%	(<u>3</u>)		_0_	_0_	=	±•_				
Conc: 25%	[]	0	_0_	0	<u>·</u> =	±•_				
Conc: 50%	[]	_/_	0	2	· :	±·_				
Conc: 100%	[<u>/3</u>]	_3_	_/_	0	·	±·_				
======================================										
Initial pH: 7.09 DM2_MORT.FRM										

Site Identification	: <u>Belo</u> Colle	w E ted	fluen 25-	1 #	=7 -1992	11.1	5 km				
Test Code: LG	040992	Chem.	Code: _		13 005		2-neur				
No. Replicates:	10				_30						
(Mark choice)	Sample as: [] Percent or [] Concentration										
Date Test Terminated: 04/1/192 Testor: Joseph C. Greene											
48-Hours	Percent Mortality	Rep 1	Rep 2	Rep 3	Mean	SD	Percent Survival				
Negative Control Well Water - 0%	[]	2	_0_	_0_		······································	 %				
Conc:	[]	Sido			<u> </u>	•					
Conc: 6.25%	[]	_/	0	0	· ±						
Conc: 12.5%	[]	0	0	0		•					
Conc: 25%	[]	0	1	_/	±.	•					
Conc: 50%	[]	_/_		_0_	<u> </u>	·•					
Conc: 100%	[]	_0_	_/	0	· ±.	·-					
RESULTS: LC ₅₀ (Concentration_		mg/L	or Percei		===== er					
	CI: Lower										
Initial p	H: 7.8:	2 2			======== ות	 /12_M(DRT.FRM				

May 15, 1992

Tim Seeman U.S. Army Corps of Engineers CENPD Materials Laboratory 1491 NW Graham Avenue Troutdale, OR 97060-9503

Re: Draw Down 92 Project

Dear Tim:

Enclosed are the results of the dioxin/furan analyses submitted to our lab on March 30, 1992. The report has been reviewed by CAS analysts and no problems were found. For your reference, these analyses have been assigned our work order number K921979.

All analyses were performed in accordance with our laboratory's quality assurance program.

Please call if you have any questions.

Respectfully submitted,

Columbia Analytical Services, Inc.

In TRAVISION

Kevin DeWhitt Project Chemist

KD/mbm

Section I. Sample Inventory

Date Received: 1-Apr-92

Alta Lab ID.	Client ID.	ACOE NAME			
11151-1-SA	#10 K1979-1	# 10			
11151-2-SA	#5 K1979-11	# 5			

SECTION II.

1

ŧ

METHOD BLANK Lab ID: <u>11151-001-MB</u> Matrix: <u>Sediment</u>		ed: <u>NA</u> eted: <u>4/09/92</u> ount: <u>10.00 g</u>	ICAL ID: <u>11613A</u> QC Lot: <u>LC0329S</u> Units: <u>pg/g</u>			
·				S/N		
Compound	Conc.	<u>D.L.</u>	<u>Ratio</u>	<u>Ratio</u>	<u>Qualifier</u>	
2,3,7,8-TCDD	ND	0.39				
Total TCDD	ND	0.58				
1,2,3,7,8-PeCDD	ND	0.66				
Total PeCDD	ND	0.66				
1,2,3,4,7,8-HxCDD	ND	0.85				
1,2,3,6,7,8-HxCDD	ND	0.87				
1,2,3,7,8,9-HxCDD	ND	1.0				
Total HxCDD	ND	1.0				
1,2,3,4,6,7, 8- HpCDD	ND	0.72				
Total HpCDD	ND	0.72				
OCDD	ND	1.4				
2,3,7,8-TCDF	ND	0.26				
Total TCDF	ND	0.26				
1,2,3,7,8-PeCDF	ND	0.58				
2,3,4,7,8-PeCDF	ND	0.52				
Total PeCDF	ND	0.58				
1,2,3,4,7,8-HxCDF	ND	0.21				
1,2,3,6,7,8-HxCDF	ND	0.21				
2,3,4,6,7,8-HxCDF	ND	0.23				
1,2,3,7,8,9-HxCDF	ND	0.26				
Total HxCDF	ND	0.26				
1,2,3,4,6,7,8-HpCDF	ND	0.23				
1,2,3,4,7,8,9-HpCDF	ND	0.29				
Total HpCDF	ND	0.29				
OCDF	ND	1.0				

Analyst: 35

Page 1 of 2

Reviewer: 00003

METHOD BLANK Lab ID: <u>11151-001-MB</u>

Isotopic Recovery Results

Internal Standard	<u>% R</u>	<u>Ratio</u>	<u>Oualifier</u>
¹³ C-2,3,7,8-TCDD	81	0.79	
¹³ C-1,2,3,7,8-PeCDD	71	1.55	
¹³ C-1,2,3,4,7,8-HxCDD	110	1.31	
¹³ C-1,2,3,6,7,8-HxCDD	86	1.28	
¹³ C-1,2,3,4,6,7,8-HpCDD	103	1.07	
¹³ C-OCDD	86	0.91	
¹³ C-2,3,7,8-TCDF	79	0.79	
¹³ C-1,2,3,7,8-PeCDF	73	1.45	
¹³ C-2,3,4,7,8-PeCDF	67	1.50	
¹³ C-1,2,3,4,7,8-HxCDF	99	0.52	
¹³ C-1,2,3,6,7,8-HxCDF	91	0.52	
¹³ C-2,3,4,6,7,8-HxCDF	90	0.53	
¹³ C-1,2,3,7,8,9-HxCDF	109	0.52	
¹³ C-1,2,3,4,6,7,8-HpCDF	100	0.43	
¹³ C-1,2,3,4,7,8,9-HpCDF	108	0.46	
Clean-up Recovery Standard:			
³⁷ CI-2,3,7,8-TCDD	72	NA	•
Dates Analyzed:			

DB-5: <u>4/12/92</u>

DB-225: <u>NA</u>

SP-2331: <u>NA</u>

Analyst: 6/14

Page 2 of 2

Reviewer:

LCS RESULTS Lab ID: <u>11151-LCS1/LCS2</u> Matrix: <u>Sediment</u>	Date Received: <u>NA</u> Date Extracted: <u>3/29/92</u> Sample Amount: <u>10.00 g</u>		ICAL ID: <u>11613A</u> QC Lot: <u>LC03295</u> Units: <u>NA</u>	
	LCS1	LCS2	RPD	
Compound	<u>% R</u>	<u>% R</u>	<u>%</u>	
2,3,7,8-TCDD	107	110	2.8	
1,2,3,7,8-PeCDD	104	106	1.9	
1,2,3,4,7,8-HxCDD	104	109	4.7	
1,2,3,6,7,8-HxCDD	109	106	2.8	
1,2,3,7,8,9-HxCDD	127	119	6.5	
1,2,3,4,6,7,8-HpCDD	139	121	14	
OCDD	171	180	5.1	
2,3,7,8-TCDF	106	106	0.0	
1,2,3,7,8-PeCDF	105	107	1.9	
2,3,4,7,8-PeCDF	109	109	0.0	
1,2,3,4,7,8-HxCDF	106	105	0.95	
1,2,3,6,7,8-HxCDF	110	113	2.7	
2,3,4,6,7,8-HxCDF	102	102	0.0	
1,2,3,7,8,9-HxCDF	101	100	1.0	
1,2,3,4,6,7,8-HpCDF	114	107	6.3	
1,2,3,4,7,8,9-HpCDF	104	107	2.8	
OCDF	138	155	12	

Analyst: Bm

`--

Reviewer:

LCS RESULTS Lab ID: <u>11151-LCS1/LCS2</u>

Isotopic Recovery Results

Internal Standard:	LCS1 <u>% R</u>	LCS2 <u>% R</u>
¹³ C-2,3,7,8-TCDD	100	97
¹³ C-1,2,3,7,8-PeCDD	97	9 9
¹³ C-1,2,3,4,7,8-HxCDD	112	112
¹³ C-1,2,3,6,7,8-HxCDD	82	84
¹³ C-1,2,3,4,6,7,8-HpCDD	108	96
¹³ C-OCDD	81	74
¹³ C-2,3,7,8-TCDF	96	92
¹³ C-1,2,3,7,8-PeCDF	98	97
¹³ C-2,3,4,7,8-PeCDF	90	94
¹³ C-1,2,3,4,7,8-HxCDF	110	115
¹³ C-1,2,3,6,7,8-HxCDF	90	89
¹³ C-2,3,4,6,7,8-HxCDF	101	100
¹³ C-1,2,3,7,8,9-HxCDF	122	119
¹³ C-1,2,3,4,6,7,8-HpCDF	103	96
¹³ C-1,2,3,4,7,8,9-HpCDF	124	111

Clean-up Recovery Standard:

³⁷ C-2,3,7,8-TCDD	
------------------------------	--

86

Date Analyzed: 3/31/92

Analyst: 62

Page 2 of 2

91

Reviewer:

Sample ID: <u>#10 K1979-1</u> Lab ID: <u>11151-001-SA</u> × 0 Matrix: <u>Sediment</u> % Solids: <u>29.5</u>	Date Received: <u>4/01/92</u> Date Extracted: <u>4/09/92</u> Sample Amount: <u>9.99 g</u>		ICAL ID: <u>11613A</u> QC Lot: <u>LC0329S</u> Units: <u>pg/g</u>
	•	S/N	

				S/N	
Compound	<u>Conc.</u>	<u>D.L.</u>	<u>Ratio</u>	<u>Ratio</u>	<u>Qualifier</u>
2,3,7,8-TCDD	ND	0.49			
Total TCDD	ND	0.49			
1,2,3,7,8-PeCDD	ND	0.48			
Total PeCDD	ND	0.48			
1,2,3,4,7,8-HxCDD	ND	0.57			
1,2,3,6,7,8-HxCDD	ND	0.62			
1,2,3,7,8,9-HxCDD	ND	0.74			
Total HxCDD	ND	0.74			
1,2,3,4,6,7,8-HpCDD	4.9		1.13	>10:1	
Total HpCDD	9.5		1.12	>10:1	
OCDD	36		0.92	>10:1	
2,3,7,8-TCDF	ND	, 0.24			
Total TCDF	2.0	ı	0.78	>10:1	
1,2,3,7,8-PeCDF	ND	0.37			
2,3,4,7,8-PeCDF	ND	0.31			
Total PeCDF	ND	0.45			
1,2,3,4,7,8-HxCDF	ND	0.20			
1,2,3,6,7,8-HxCDF	ND	0.20			
2,3,4,6,7,8-HxCDF	ND	0.46			
1,2,3,7,8,9-HxCDF	ND	0.15			
Total HxCDF	ND	0.46			
1,2,3,4,6,7,8-HpCDF	1.6		0.89	>10:1	
1,2,3,4,7,8,9-HpCDF	ND	0.27			
Total HpCDF	1.6		0.91	>10:1	
OCDF	2.9		0.83	>10:1	
Analyst: 64		Page 1	of 2		Reviewer: <u></u>
					1

u0007

Sample ID: <u>#5 K1979-11</u> Lab ID: <u>11115-002-SA</u>

Isotopic Recovery Results

Internal Standard:	<u>% R</u>	<u>Ratio</u>	<u>Oualifier</u>
¹³ C-2,3,7,8-TCDD	56	0.80	
¹³ C-1,2,3,7,8-PeCDD	65	1.59	
¹³ C-1,2,3,4,7,8-HxCDD	70	1.28	
¹³ C-1,2,3,6,7,8-HxCDD	56	1.26	
¹³ C-1,2,3,4,6,7,8-HpCDD	63	1.02	
¹³ C-OCDD	50	0.91	
¹³ C-2,3,7,8-TCDF	52	0.80	
¹³ C-1,2,3,7,8-PeCDF	59	1.52	
¹³ C-2,3,4,7,8-PeCDF	59	1.57	
¹³ C-1,2,3,4,7,8-HxCDF	72	0.54	
¹³ C-1,2,3,6,7,8-HxCDF	60	0.52	
¹³ C-2,3,4,6,7,8-HxCDF	62	0.54	
¹³ C-1,2,3,7,8,9-HxCDF	73	0.54	
¹³ C-1,2,3,4,6,7,8-HpCDF	61	0.46	
¹³ C-1,2,3,4,7,8,9-HpCDF	70	0.45	
Clean-up Recovery Standard:			
³⁷ Cl-2,3,7,8-TCDD	81	NA	
Dates Analyzed:			
DB-5: <u>4/06/92</u>	DB-225: <u>NA</u>	SP-	2331: <u>NA</u>

Analyst: ht

Page 2 of 2

Reviewer:

METHOD BLANK Lab ID: <u>11151-002-MB</u> Matrix: <u>Aqueous</u>	Date Received: <u>NA</u> Date Extracted: <u>4/06/92</u> Sample Amount: <u>1.0 L</u>				ICAL ID: <u>11613A</u> QC Lot: <u>LC0406A</u> Units: <u>pg/L</u>
	•	.	D 4	S/N	0 V.
Compound	<u>Conc.</u>		<u>Ratio</u>	<u>Ratio</u>	<u>Qualifier</u>
2,3,7,8-TCDD	ND	1.9			
Total TCDD	ND	1.9			
1,2,3,7,8-PeCDD	ND	3.9			
Total PeCDD	ND	5.8			
1,2,3,4,7,8-HxCDD	ND	3.4			
1,2,3,6,7,8-HxCDD	ND	3.8			
1,2,3,7,8,9-HxCDD	ND	4.5			
Total HxCDD	ND	4.5			
1,2,3,4,6,7,8-HpCDD	ND	5.6			
Total HpCDD	ND	5.6			
OCDD	37		0.85	>10:1	Α
2,3,7,8-TCDF	ND	0.90			
Total TCDF	ND	0.90			
1,2,3,7,8-PeCDF	ND	1.9			
2,3,4,7,8-PeCDF	ND	1.6			
Total PeCDF	ND	1.9			
1,2,3,4,7,8-HxCDF	ND	1.2			
1,2,3,6,7,8-HxCDF	ND	1.2			
2,3,4,6,7,8-HxCDF	ND	3.3			
1,2,3,7,8,9-HxCDF	ND	2.0			
Total HxCDF	ND	3.3			
1,2,3,4,6,7,8-HpCDF	ND	2.7			
1,2,3,4,7,8,9-HpCDF	ND	1.5			
Total HpCDF	ND	2.7			
OCDF	ND	6.1			
,					

Analyst: bity

· • • • •

Page 1 of 2

Reviewer: 00009

METHOD BLANK Lab ID: 11115-002-MB

Isotopic Recovery Results

Internal Standard	<u>% R</u>	<u>Ratio</u>	<u>Qualifier</u>
¹³ C-2,3,7,8-TCDD	80	0.79	
¹³ C-1,2,3,7,8-PeCDD	77	1.60	
¹³ C-1,2,3,4,7,8-HxCDD	95	1.29	
¹³ C-1,2,3,6,7, 8 -HxCDD	73	1.32	
¹³ C-1,2,3,4,6,7, 8 -HpCDD	79	1.02	
¹³ C-OCDD	60	0.93	
¹³ C-2,3,7,8-TCDF	78	0.81	
¹³ C-1,2,3,7,8-PeCDF	71	1.55	
¹³ C-2,3,4,7,8-PeCDF	71	1.54	
¹³ C-1,2,3,4,7,8-HxCDF	92	0.54	
¹³ C-1,2,3,6,7,8-HxCDF	77	0.52	
¹³ C-2,3,4,6,7,8-HxCDF	86	0.52	
¹³ C-1,2,3,7,8,9-HxCDF	105	0.54	
¹³ C-1,2,3,4,6,7,8-HpCDF	83	0.46	
¹³ C-1,2,3,4,7,8,9-HpCDF	93	0.45	
Clean-up Recovery Standard:			
³⁷ Cl-2,3,7,8-TCDD	84	NA	
Dates Analyzed:			
DB-5: <u>4/06/92</u>	DB-225: <u>NA</u>		SP-2331: <u>NA</u>

Analyst: 6h

Page 2 of 2

Reviewer:

::0010

LCS RESULTS Lab ID: <u>11115-LCS1/LCS2</u> Matrix: <u>Aqueous</u>	Date Received: <u>NA</u> Date Extracted: <u>4/06/92</u> Sample Amount: <u>1.0 L</u>		ICAL ID: <u>11613A</u> QC Lot: <u>LC0406A</u> Units: <u>NA</u>	
()	LCS1	LCS2	RPD	
<u>Compound</u>	<u>% R</u>	<u>% R</u>	<u>%</u>	
2,3,7,8-TCDD	101	90	12	
1,2,3,7,8-PeCDD	100	100	0.0	
1,2,3,4,7,8-HxCDD	100	106	5.8	
1,2,3,6,7,8-HxCDD	106	108	1.9	
1,2,3,7,8,9-HxCDD	118	122	3.3	
1,2,3,4,6,7,8-HpCDD	104	107	2.8	
OCDD	116	112	35	
2,3,7,8-TCDF	94	8 6	8.9	
1,2,3,7,8-PeCDF	98	97	1.0	
2,3,4,7,8-PeCDF	99	108	8.7	
1,2,3,4,7,8-HxCDF	100	106	5.8	
1,2,3,6,7,8-HxCDF	101	103	2.0	
2,3,4,6,7,8-HxCDF	98	104	7.9	
1,2,3,7, 8 ,9-HxCDF	95	103	8.1	
1,2,3,4,6,7,8-HpCDF	105	102	2.9	
1,2,3,4,7,8,9-HpCDF	103	112	8.4	
OCDF	110	111	0.90	

Analyst: Bin

Reviewer:____

LCS RESULTS Lab ID: <u>11115-LCS1/LCS2</u>

-

Isotopic Recovery Results

Internal Standard:	LCS1 <u>% R</u>	LCS2 <u>% R</u>
¹³ C-2,3,7,8-TCDD	75	96
¹³ C-1,2,3,7,8-PeCDD	72	85
¹³ C-1,2,3,4,7,8-HxCDD	76	100
¹³ C-1,2,3,6,7,8-HxCDD	53	73
¹³ C-1,2,3,4,6,7,8-HpCDD	58	90
¹³ C-OCDD	42	72
¹³ C-2,3,7, &-TCDF	74	90
¹³ C-1,2,3,7,8-PeCDF	73	85
¹³ C-2,3,4,7,8-PeCDF	71	72
¹³ C-1,2,3,4,7,8-HxCDF	73	96
¹³ C-1,2,3,6,7,8-HxCDF	59	84
¹³ C-2,3,4,6,7,8-HxCDF	69	86
¹³ C-1,2,3,7,8,9-HxCDF	78	106
¹³ C-1,2,3,4,6,7,8-HpCDF	61	94
¹³ C-1,2,3,4,7,8,9-HpCDF	64	101

Clean-up Recovery Standard:

37	C-2,3,7,8-TCDD	

115

Date Analyzed: 4/06/92

Analyst: bin

Page 2 of 2

87

Reviewer: W/A.

;

PCDD & PCDF EPA METHOD 8290

Sample ID: <u>#5 K1979-11</u> Lab ID: <u>11115-002-SA</u> Matrix: <u>Aqueous</u>		Date Receive Date Extract Sample Amo	ed: <u>4/06/92</u>		ICAL ID: <u>11613A</u> QC Lot: <u>LC0406A</u> Units: <u>pg/L</u>
	-		-	S/N	
Compound	Conc.	<u>D.L.</u>	<u>Ratio</u>	<u>Ratio</u>	<u>Qualifier</u>
2,3,7,8-TCDD	ND	8.4			
Total TCDD	ND	8.4			
1,2,3,7, 8-Pe CDD	ND	14			
Total PeCDD	ND	17			I
1,2,3,4,7,8-HxCDD	ND	7.8			
1,2,3,6,7, 8 -HxCDD	ND	6.5			
1,2,3,7,8,9-HxCDD	ND	7.7			
Total HxCDD	ND	7.8			
1,2,3,4,6,7,8-HpCDD	ND	14			
Total HpCDD	ND	14			
OCDD	100		0.77	>10:1	В
2,3,7,8-TCDF	ND	8.2			
Total TCDF	ND	8.2			i V
1,2,3,7,8-PeCDF	ND	11			
2,3,4,7,8-PeCDF	ND	5.4			
Total PeCDF	ND	11			
1,2,3,4,7,8-HxCDF	ND	7.0			
1,2,3,6,7,8-HxCDF	ND	5.2			
2,3,4,6,7,8-HxCDF	ND	11			
1,2,3,7,8,9-HxCDF	ND	5.7			
Total HxCDF	ND	11			
1,2,3,4,6,7,8-HpCDF	ND	8.2			
1,2,3,4,7,8,9-HpCDF	ND	4.5			
Total HpCDF	ND	8.2			
OCDF	ND	16			

Analyst: 127

Reviewer:

ALTA

PCDD & PCDF EPA METHOD 8290

Sample ID: <u>#10 K1979-1</u> Lab ID: <u>11151-001-SA</u>

Isotopic Recovery Results

Internal Standard:	<u>% R</u>	<u>Ratio</u>	<u>Oualifier</u>
¹³ C-2,3,7,8-TCDD	85	0.80	
¹³ C-1,2,3,7,8-PeCDD	75	1.55	
¹³ C-1,2,3,4,7,8-HxCDD	103	1.31	
¹³ C-1,2,3,6,7,8-HxCDD	77	1.27	
¹³ C-1,2,3,4,6,7,8-HpCDD	93	1.06	
¹³ C-OCDD	73	0.92	
¹³ C-2,3,7,8-TCDF	80	0.80	
¹³ C-1,2,3,7,8-PeCDF	69	1.49	
¹³ C-2,3,4,7,8-PeCDF	68	1.52	
¹³ C-1,2,3,4,7,8-HxCDF	86	0.54	
¹³ C-1,2,3,6,7,8-HxCDF	72	0.53	
¹³ C-2,3,4,6,7,8-HxCDF	81	0.50	
¹³ C-1,2,3,7,8,9-HxCDF	94	0.51	
¹³ C-1,2,3,4,6,7,8-HpCDF	77	0.45	
¹³ C-1,2,3,4,7,8,9-HpCDF	83	0.46	
Clean-up Recovery Standard:			
³⁷ Cl-2,3,7,8-TCDD	77	NA	
Dates Analyzed:			
DB-5: <u>4/12/92</u>	DB-225: <u>NA</u>	1	SP-2331: <u>NA</u>

Analyst: Bly

Page 2 of 2

Reviewer:

00008

APPENDIX

÷

u0015

DATA QUALIFIERS & ABBREVIATIONS

A	The amount detected is below the Method Quantitation Limit.
B	This compound was also detected in the blank.
С	The amount detected is less than five times the Method Quantitation Limit.
D	The amount reported is the maximum possible concentration.
E	The detection limit was raised above the Method Quantitation Limit due to chemical interferences.
F	This result has been confirmed on a DB-225 column.
G	This result has been confirmed on a SP-2331 column.
H	The signal-to-noise ratio is greater than 10:1.
I	Chemical Interference

Conc.	Concentration		
D.L.	Detection Limit		

NA Not applicable

S/N Signal-to-noise

R.L. Reporting Limit

CENPD-PE-GT-L (1110-1-8100c)

4 Jun 92

MEMORANDUM FOR: Commander, Walla Walla District, ATTN: CENPW-PL-ER (Miller)

SUBJECT: W.O. 92-HM-179, Report of Chemical Analysis

Project:	DRAWDOWN 92
Intended Use:	Evaluate site
Source of Mate	rial: <u>Reference Chain of Custody Records</u>
	CENPW-PL-ER
Date Sampled:	22,24, 25 Mar 92 Date Received: 28 & 30 Mar 92
	t: Reference Enclosure 1
Reference:	DD Form 448, MIPR No. E86-92-0114, dated 20 Apr 92

1. Enclosed are results of analyses and guality assurance data for environmental samples collected from the above site. Included are:

a. Enclosure 1, Chemical Quality Assurance Report.

b. Enclosure 2, Report number K921979 from Columbia Analytical Services, Inc.

c. Enclosure 3, Report number 92.1645 from NET Pacific, Inc.

d. Enclosure 4, Chain of Custody and Cooler Receipt forms.

2. This completes all work requested for this site.

3. If you have any questions or comments regarding the Chemical Quality Assurance Report, please contact Dr. Ajmal Ilias at (503) 665-4166.

() SEEMAN

Director

Enclosures

Copy Furnished: CENPD-PE-GT CEMRD-EP-EC CEMP-RT

CHEMICAL QUALITY ASSURANCE REPORT

DRAWDOWN 92

1. SUMMARY:

a. Up to 0.032, 8870, 584 and 9.8 ppm of volatiles (VOCs) in water, metals in soil, metals in water and non-metallics in water were found, respectively. Four total dioxin/furans, up to a maximum of 36 parts per trillion (ppt), were found in the sediment samples. 100 parts per quadrillion (ppq) of OCDD was detected in water sample #5 due to laboratory contamination.

b. All project data are acceptable based on acceptable internal quality control (QC) except dioxin detected in the water sample. The project and quality assurance (QA) data comparisons for VOCs, semi-volatiles (BNAs) and pesticides/PCBs are shown in Table II. All data agree.

2. BACKGROUND: The samples were collected on March 22, 24 and 25, 1992 and were received by the analytical laboratories on March 28 and 30, 1992.

3. OBJECTIVES:

a. Ten water and three sediment samples were collected from various locations to determine the extent of chemical contamination on the site.

b. One QA sample and two trip blanks were submitted to evaluate the project laboratory's data.

4. PROJECT ORGANIZATION:

a. The samples were collected by North Pacific Division/Walla Walla District staff.

b. The project samples were analyzed by Columbia Analytical Services, Inc. (CAS), Kelso, Washington.

c. The QA samples were analyzed by NET Pacific, Inc., Santa Rosa, California.

5. ANALYTICAL REFERENCES:

Number		Title	Date
a.	SW-846, Third Edition	Test Methods for Evaluating Solid Waste	11/86
b.	CENPD-PE-GT-L Proposed Modified Method 8015	Fuel Quantitation and Identification	1989
	1) Method D-3328-78	Annual Book of ASTM Standards, Part 31	1980
	2) Method D-2600	Annual Book of ASTM Standards, Part 24	1980
c.	EPA-600/4-79-020	Hethods for Chemical Analysis of Water and Wastes	3/83

CENPD-PE-GT-L (92-HM-179)

6. PROJECT LABORATORY'S DATA:

a. <u>Volatile Organics (VOC)</u>: Thirty-four and two ppb of bromethane and acetone, respectively, were detected in water samples #5 and #7, 1 and 2 ppb carbon disulfide and chloroform, respectively, in water sample #5, and 32, 3 and 27 ppb of acetone, carbon disulfide and chloroform, respectively, in water sample #1. No VOCs were detected in five out of eleven water or any sediment sample.

b. <u>Organochlorine/PCBs and Semi-Volatiles (BNAs)</u>: None were detected above detection limits in any sample.

c. <u>Dioxin and Furans</u>: 100 parts per quadrillion (ppg) of OCDD was detected in water sample #5, which could be due to laboratory contamination as 37 ppg of this analyte was also detected in the laboratory blank. 9.5, 2, 1.6 and 2.9 parts per trillion (ppt) of total HPCDD, TCDF, HPCDF and OCDF were found, respectively, in sediment sample #10.

d. <u>Metals</u>: Fifteen out of twenty-three metals were detected from 6 through 8870 ppm in the sediment samples and 0.021 through 584 ppm of sixteen out of twenty-three metals were found in the water samples.

e. <u>Non-Metallics</u>: Up to 1.21, 2.8, 9.8 and 4.3 ppm of ammonia as nitrogen, nitrate as nitrogen, total Kjeldahl nitrogen and total phosphorous were found, respectively, in the water samples.

7. EVALUATION OF THE PROJECT LABORATORY'S DATA:

a. <u>Surrogate, Laboratory Control (LC), Matrix Spike (MS)</u> and <u>Matrix</u> <u>Spike Duplicates (MSD)</u>: All recoveries met method requirements and are acceptable except LC recoveries of pesticides/PCBs and BNAs were below lower QC limits, the data were accepted based on acceptable surrogate, MS and MSD recoveries. The MS and LC recoveries of metals and non-metallics met method requirements and are acceptable.

b. <u>Laboratory Duplicates</u>: The relative percent differences (RPDs) of all methods were within EPA required QC limits and acceptable.

c. <u>Blind Duplicates</u>: None submitted for analysis or were not identified.

d. <u>Trip and Laboratory Blanks</u>: Trip blanks results are shown in Table I. No targeted VOCs were detected in any trip blank. All laboratory blanks were free from targeted analytes except sediment laboratory blanks were contaminated with 7 ppm of iron and 3 ppm of magnesium. The water dioxin and furan laboratory blanks were contaminated with 37 ppg OCDD.

CENPD-PE-GT-L (92-HM-179)

This analyte was also detected at 100 ppg in water sample #5, which is due to laboratory contamination. The iron and magnesium levels found in the sediment samples were ten times above the blank levels; therefore, data of metals are not affected.

e. <u>Detection Limits. Holding Times. Tuning and Mass Calibration</u>: All met method requirements and are acceptable.

f. <u>Overall Evaluation</u>: All project data are acceptable except dioxin in water sample #5, which is due to laboratory contamination.

8. EVALUATION OF THE QA LABORATORY'S DATA: Only three parameters were analyzed by the QA laboratory, NET Pacific. Detection limits, method blanks, surrogates, MS, MSD and RPD all met method requirements except four out of twelve MS and MSDs of pesticides/PCBs were above upper QC limits. Data were not affected as no targeted analytes were detected in the QA sample. Overall, all QA data are acceptable.

9. QA/QC COMPARISONS: All data comparisons are shown in Table II. All data agree.

10. LESSONS LEARNED/PROBLEMS ENCOUNTERED: QA samples were only submitted for pesticides/PCBs, VOCs and BNAs; therefore, comparisons were only made for these parameters.

CENFD-PE-GT-L (92-HM-179)

COMPARISON OF PROJECT BLIND DUPLICATES

TABLE I

TRIP BLANKS

Project: <u>DRAWDOWN 92</u> Project Laboratory: <u>0</u>		QA Labo	Units:	uq/L (ppb) NET Pacific	
Method: Volatile Organics (EPA 8240)					
Analytes Detected	13	_14_	<u>Limits</u>		
	ND	ND	1-20		
<u>Tentatively Identified Compounds</u>					
	ND	ND			

ND = None detected

SUMMARY: The absence of targeted analytes indicates that no crosscontamination was encountered during shipment, storage or analysis.

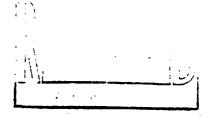

COMPARISON OF PROJECT AND QA RESULTS

TABLE II

Project: DRAWDOWN	<u>92</u> Matrix:_	water U	nits: <u>uq</u>	/L (ppb)		
Project Laboratory:_		WA Labora		I Pacific		
1. Method: <u>Volati</u>	le Organics (EPA	8240)				
Analytes_Detected	Project Lab	Detection	QA Lab	Detection <u>Limits</u>		
	ND	1-20	ND	5-25		
Tentatively Identified Compounds						
	ND		ND			
ND = None detected						
2. Method: <u>Semi-V</u> Analytes Detected	<u>olatile Organics</u> Froject Lab 10		0A Lab 10	Detection Limits		
	ND	5-50	ND	10-50		
Tentatively Identifi	ed Compounds					
	ND		ND			
SUMMARY: The projec	t and QA data agr	ee for all 65	targeted	analytes.		
3. Method: <u>Pestic</u>	ides/PCBs (EPA 80	80)		·····		
Analytes Detected	Froject Lab 10	Detection Limits		Detection Limits		
	ND	0.04-1	ND	0.005-1		
SUMMARY. The projec		- (

SUMMARY: The project and DA data agree for all targeted analytes.

April 30, 1992

Tim Seeman U.S. Army Corps of Engineers CENPD Materials Laboratory 1491 NW Graham Avenue Troutdale, OR 97060-9503

Re: Draw Down 92/Project #92-HM-179

Dear Tim:

Enclosed are the results of the samples submitted to our lab on March 30, 1992. For your reference, these analyses have been assigned our work order number K921979.

The dioxin/furan analyses will follow under separate cover; the results from ALTA labs have not yet been received by Columbia Analytical Services.

All analyses were performed in accordance with our laboratory's quality assurance program.

Please call if you have any questions.

Respectfully submitted,

Columbia Analytical Services, Inc.

Thauton

Kevin DeWhitt Project Chemist

KD/so

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Analyzed:	04/02/92
Sample Matrix:	Sediment	Work Order No.:	K921979

Solids, Total EPA Method Modified 160.3 Percent (%)

Sample Name	Lab Code	Result
#11	К1979-2	55.2
#101	К1979-10	76.5
#12	К1979-14	56.1

Date 4-30 Approved by 00001

Analytical Report

Client:U.S. Army Corps of EngineersDisconsistiveProject:Draw Down 92/#92-HM-179WoSample Matrix:Water	ork Order No.:	K921979
--	----------------	---------

Inorganic Parameters mg/L (ppm)

Sample Name: Lab Code:			#8 K1979-3	#9 K1979-4	#1 K1979-6
Analyte	EPA Method	MRL			
Ammonia as Nitrogen Nitrate + Nitrite as Nitrogen Nitrogen, Total Kjeldahl (TKN) Orthophosphate as Phosphorus Phosphorus, Total	350.3 353.2 351.4 365.3 365.3	0.05 0.2 0.1 0.01 0.01	0.07 ND •0.04 0.01	ND 0.72 •0.04 0.01	0.09 2.8 0.6

Method Reporting Limit MRL

- None Detected at or above the method reporting limit
- Sample was received past the end of the recommended maximum holding time. ND

_____Date____4-3.0 TENATON Bin 00002 Approved by

03/30/92

Date Received:

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Work Order No.:	K921979
Sample Matrix:	Water		

Inorganic Parameters mg/L (ppm)

Sample Name: Lab Code:			#2 K1979-7	#3 K1979-8	#4 K1979-9
Analyte	EPA Method	MRL			
Ammonia as Nitrogen Nitrate + Nitrite as Nitrogen Nitrogen, Total Kjeldahl (TKN) Orthophosphate as Phosphorus Phosphorus, Total	350.3 353.2 351.4 365.3 365.3	0.05 0.2 0.1 0.01 0.01	0.52 0.8 2.3 	 0.02 4.3	0.06 0.3 0.8

Method Reporting Limit MRL

ZALADO Date 4-30 Approved by

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92	
Project:	Draw Down 92/#92-HM-179	Work Order No.:	K921979	
Sample Matrix:	Water			

Inorganic Parameters mg/L (ppm)

Sample Name: Lab Code:			#5 K1979-11	#6 K1979-12	#7 K1979-13
Analyte	EPA Method	MRL			
Ammonia as Nitrogen	350.3	0.05	0.36	1.21	ND
Nitrate + Nitrite as Nitrogen	353.2	0.2	1.4	0.06	0.6
Nitrogen, Total Kjeldahl (TKN)	351.4	0.1	9.8	2.2	1.7
Orthophosphate as Phosphorus	365.3	0.01			 i
Phosphorus, Total	365.3	0.01			

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

____Date__<u>4-30</u> TRIM Approved by

Analytical Report

Client: **U.S. Army Corps of Engineers** Draw Down 92/#92-HM-179 Project: Sample Matrix: Water

Work Order No.: K921979

Inorganic Parameters mg/L (ppm)

Sample Name: Lab Code: Method Blank K1979-MB

	EPA		
Analyte	Method	MRL	
Ammonia as Nitrogen	350.3	0.05	ND
Nitrate + Nitrite as Nitrogen	353.2	0.2	ND
Nitrogen, Total Kjeldahl (TKN)	351.4	0.1	ND
Orthophosphate as Phosphorus	365.3	0.01	ND
Phosphorus, Total	365.3	0.01	ND

Method Reporting Limit MRL

None Detected at or above the method reporting limit ND

Date 4-30 EWHOR Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fox 206/636-1068

00005

Analytical Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Sediment	Date Received: Work Order No.:	03/30/92 K921979	

Total Metals mg/Kg (ppm) **Dry Weight Basis**

	Sample Name: Lab Code:		#11 K1979-2	#101 K1979-10	#12 K1979-14
Analyte	EPA Method	MRL			
Aluminum	6010	10	8,870	5,050	7,090
Antimony	6010	10	ND	ND	ND
Arsenic	7060	1	4	6	4
Barium	6010	1	109	71	98
Beryllium	6010	1	ND	ND	ND
Cadmium	6010	1	ND	ND	ND
Calcium	6010	10	4,680	3,190	3,920
Chromium	6010	2	15	12	16
Cobalt	6010	2 2	16	14	17
Copper	6010	2	21	12	18
Iron	6010	4	19,200	16,800	20,10 0
Lead	6010	20	ND	ND	ND
Magnesium	6010	2	3,970	3,270	4,170
Manganese	6010	1	326	373	286
Mercury	7471	0.2	ND	ND	ND
Nickel	6010	10	12	10	12
Potassium	6010	400	1,200	600	1,100
Selenium	7740	1	ND	ND	ND
Silver	6010	2	ND	ND	ND
Sodium	6010	20	252	176	185
Thallium	7841	1	ND	ND	ND
Vanadium	6010	2	56	47	68
Zinc	6010	2	52	45	54

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

TENH Date 4-30 Approved by Hann

00006

Analytical Report

Client:	U.S. Army Corps of Engineers	Work Order No.:	K921979
Project:	Draw Down 92/#92-HM-179		
Sample Matrix:	Sediment		

Total Metals mg/Kg (ppm) Dry Weight Basis

Sample	Name:
Lab	Code:

Method Blank K1979-MB

	EPA		
Analyte	Method	MRL	
Aluminum	6010	10	ND
Antimony	6010	10	ND
Arsenic	7060	1	ND
Barium	6010	1	ND
Beryllium	6010	1	ND
Cadmium	6010	1	ND
Calcium	6010	10	ND
Chromium	6010	2	ND
Cobalt	6010	2 2 2	ND
Copper	6010		ND
Iron	6010	4	7
Lead	6010	20	ND
Magnesium	6010	2	3
Manganese	6010	1	ND
Mercury	7471	0.2	ND
Nickel	6010	10	ND
Potassium	6010	400	ND
Selenium	7740	1	ND
Silver	6010	2	ND
Sodium	6010	20	ND
Thallium	7841	1	ND
Vanadium	6 010	2 2	ND
Zinc	6010	2	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Zauthor Date 4-30 11310 Approved by

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Proiect:	Draw Down 92/#92-HM-179	Work Order No.:	K921979
Sample Matrix:	Water		

Total Metals µg/L (ppb)

	Sample Nan Lab Cod		#10 K1979-1	#8 K1979-3	#9 K1979-4
Analyte	EPA Method	MRL			
Aluminum	6010	50	1,480	666	119
Antimony	6010	50	ND	ND	ND
Arsenic	7060	5	21	ND	ND
Barium	6010	5	143	16	22
Beryllium	6010	5	ND	ND	ND
Cadmium	6010	3	ND	ND	ND
Calcium	6010	50	75,500	3,790	25,900
Chromium	6010	5	ND	ND	ND
Cobalt	6010	10	ND	ND	ND
Copper	6010	10	ND	ND	ND
iron	6010	20	30,700	1,040	171
Lead	7421	2	ND	ND	ND
Magnesium	6010	10	20,400	1,010	9,560
Manganese	6010	5	4,390	32	11
Mercury	7470	0.5	ND	ND	ND
Nickel	6010	20	ND	ND	ND
Potassium	6010	2,000	5,000	ND	ND
Selenium	7740	5	ND	ND	ND
Silver	6010	10	ND	ND	ND
Sodium	6010	100	20,700	2,400	20,700
Thallium	7841	5	ND	ND	ND
Vanadium	6010	10	ND	ND	ND
Zinc	6010	10	21	12	47

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

ZIM Date 30 4 13m Approved by

00008

~ ~ ~ ~

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Work Order No.:	K921979
Sample Matrix:	Water		

Total Metals µg/L (ppb)

	Sample Nan Lab Co		#1 K1979-6	#3 K1979-8	#4 K1979-9
Analyte	EPA Method	MRL			
Aluminum	6010	50	1,150	55,200	119
Antimony	6010	50	ND	ND	ND
Arsenic	7060	5	ND	16	ND
Barium	6010	5	175	635	6
Beryllium	6010	5	ND	ND	ND
Cadmium	6010	3	ND	ND	ND
Calcium	6010	50	41,500	109,000	3,510
Chromium	6010	5	9	66	ND
Cobalt	6010	10	ND	74	ND
Copper	6010	10	ND	136	ND
Iron	6010	20	425	88,300	(144
Lead	7421	2	5	46	ND
Magnesium	6010	10	2,280	38,400	832
Manganese	6010	5	348	1,790	ND
Mercury	7470	0.5	ND	ND	ND
Nickel	6010	20	ND	66	ND
Potassium	6010	2,000	19,000	14,000	ND
Selenium	7740	5	ND	ND	ND
Silver	6010	10	ND	ND	ND
Sodium	6010	100	584,000	63,900	2,240
Thallium	7841	5	ND	ND	ND
Vanadium	6010	10	ND	236	ND
Zinc	6010	10	40	298	12

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Raution Date 4-30 Approved by

Analytical Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Work Order No.:	03/30/92 K921979
---------------------------------------	--	-----------------------------------	---------------------

Total Metals µg/L (ppb)

	Sample Nan Lab Coo		#5 K1979-11	#6 K1979-12	#7 K1979-13
Analyte	EPA Method	MRL			
	6010	50	1,140	54	481
Aluminum	6010	50	ND	ND	ND
Antimony	7060	5	ND	17	ND
Arsenic	6010	5	186	54	23
Barium	6010	5 5	ND	ND	ND
Beryllium	6010	3	ND	ND	ND
Cadmium Calcium	6010	50	42,000	64,000	22,000
	6010	5	9	ND	ND
Chromium	6010	10	ND	ND	ND
Cobalt	6010	10	ND	ND	ND
Copper	6010	20	558	3,270	696
Iron	7421	2	18	ND	ND
Lead Magnesium	6010	10	2,380	17,200	8,100
-	6010	5	390	2,430	22
Manganese Mercury	7470	0.5	ND	ND	ND
Nickel	6010	20	ND	ND	ND
Potassium	6010	2,000	18,000	2,500	ND
Selenium	7740	5	ND	ND	ND
Silver	6010	10	ND	ND	ND
Sodium	6010	100	562,000	23,300	18,200
Thallium	7841	5	ND	ND	ND
Vanadium	6010	10	ND	ND	ND
Zinc	6010	10	328	15	32

Method Reporting Limit MRL

None Detected at or above the method reporting limit ND

Date 4 -30 Approved by 00010 1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

Analytical Report

Client: U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 **Project:** Sample Matrix: Water

Work Order No.: K921979

Total Metals $\mu g/L (ppb)$

Sample Name: Lab Code: Method Blank K1979-MB

	EPA		
Analyte	Method	MRL	
Aluminum	6010	50	ND
Antimony	6010	50	ND
Arsenic	7060	5	ND
Barium	6010	5	ND
Beryllium	6010	5	ND
Cadmium	6010	3	ND
Calcium	6010	50	ND
Chromium	6010	5	ND
Cobalt	6010	10	ND
Copper	6010	10	ND
Iron	6010	20	ND
Lead	7421	2	ND
Magnesium	6010	10	ND
Manganese	6010	5	ND
Mercury	7470	0.5	ND
Nickel	6010	20	ND
Potassium	6010	2,000	ND
Selenium	7740	5	ND
Silver	6010	10	ND
Sodium	6010	100	. ND
Thallium	7841	5	ND
Vanadium	6010	10	ND
Zinc	6010	10	ND

Method Reporting Limit MRL

None Detected at or above the method reporting limit ND

EWHON !! 4-30 Date \$13m Approved by

00011

Analytical Report

03/30/92 04/02/92 K921979
Date Extracted:

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3540/8080 mg/Kg (ppm) **Dry Weight Basis**

Sample Lab Date Ana	Code:	#11 K1979-2 04/16/92	#101 K1979-10 04/16/92	#12 K1979-14 04/16/92
Analyte	MRL			
Alpha-BHC	0.01	•<0.02	•<0.02	•<0.02
Gamma-BHC (Lindane)	0.01	•<0.02	•<0.02	* <0.02
Beta-BHC	0.03	•<0.06	•<0.06	*<0.06
Heptachlor	0.01	•<0.02	•<0.02	•<0.02
Delta-BHC	0.01	•<0.02	•<0.02	•<0.02
Aldrin	0.01	•<0.02	•<0.02	•<0.02
Heptachlor Epoxide	0.01	ND	ND	ND
Endosulfan I	0.01	ND	ND	ND
4,4'-DDE	0.01	ND	ND	ND
Dieldrin	0.01	ND	ND	ND
Endrin	0.01	ND	ND	ND
4,4'-DDD	0.01	ND	ND	ND
Endosulfan II	0.01	ND	ND	ND
4,4'-DDT	0.01	ND	ND	ND
Endrin Aldehyde	0.01	ND	ND	ND
Endosulfan Sulfate	0.01	ND	ND	ND
Methoxychlor	0.02	ND	ND	ND
Toxaphene	0.3	ND	ND	ND
Chlordane	0.1	ND	ND	ND
PCBs: Aroclor 1016	0.1	ND	ND	ND
Aroclor 1221	0.1	ND	ND	ND
Aroclor 1232	0.1	ND	ND	ND
Aroclor 1242	0.1	ND	ND	ND
Aroclor 1248	0.1	ND	ND	ND
Aroclor 1254	0.1	ND	ND	ND
Aroclor 1260	0.1	ND	ND	ND

MRL Method Reporting Limit

MRL is elevated because of matrix interferences. ٠

ND None Detected at or above the method reporting limit

Bun -30 Date 4 Approved by_

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

00012

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Extracted:	04/02/92
Project:	Draw Down 92/#92-HM-179	Work Order No.:	K921979
Sample Matrix:	Sediment		

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3540/8080 mg/Kg (ppm) **Dry Weight Basis**

Sample Name: Lab Code: Date Analyzed:		Method Blank K1979-MB 04/16/92
Analyte	MRL	
Alpha-BHC	0.01	ND
Gamma-BHC (Lindane)	0.01	ND
Beta-BHC	0.03	ND
Heptachlor	0.01	ND
Deita-BHC	0.01	ND
Aldrin	0.01	ND
Heptachlor Epoxide	0.01	ND
Endosulfan I	0.01	ND
4,4'-DDE	0.01	ND
Dieldrin	0.01	ND
Endrin	0.01	ND
4,4'-DDD	0.01	ND
Endosulfan II	0.01	ND
4,4'-DDT	0.01	ND
Endrin Aldehyde	0.01	ND
Endosulfan Sulfate	0.01	ND
Methoxychlor	0.02	ND
Toxaphene	0.3	ND
Chlordane	0.1	ND
PCBs: Aroclor 1016	0.1	ND
Aroclor 1221	0.1	ND
Aroclor 1232	0.1	ND
Aroclor 1242	0.1	ND
Aroclor 1248	0.1	ND
Aroclor 1254	0.1	ND
Aroclor 1260	0.1	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Date 4-30 Hann Approved by_

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	03/31/92
Sample Matrix:	Water	Work Order No.:	K921979

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3510/8080 µg/L (ppb)

Sample Name: Lab Code: Date Analyzed:		#10 K1979-1 04/04/92	#8 K1979-3 04/04/92	#9 K1979-4 04/04/92
Analyte	MRL			
Alpha-BHC Gamma-BHC (Lindane) Beta-BHC Heptachlor Delta-BHC Aldrin Heptachlor Epoxide Endosulfan I 4,4'-DDE Dieldrin Endrin 4,4'-DDD Endosulfan II 4,4'-DDT Endrin Aldehyde Endosulfan Sulfate Methoxychlor Toxaphene Chlordane PCBs: Aroclor 1016 Aroclor 1221	0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04		ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N
Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260	0.2 0.2 0.2 0.2 0.2	ND ND ND ND	ND ND ND ND	ND ND ND ND

Method Reporting Limit MRL

None Detected at or above the method reporting limit ND

_Date_4-30 ZUNATON nen Approved by_

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

00014

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	03/31/92
Sample Matrix:	Water	Work Order No.:	K921979

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3510/8080 µg/L (ppb)

Sample Name: Lab Code: Date Analyzed:		#1 K1979-6 04/07/92	#3 K1979-8 04/04/92	#4 K1979-9 04/04/92
Analyte	MRL	•		
Alpha-BHC	0.04	•<0.4	ND	ND
Gamma-BHC (Lindane)	0.04	•<0.4	ND	ND
Beta-BHC	0.1	•<1.0	ND	ND
Heptachlor	0.04	•<0.4	ND	ND
Delta-BHC	0.04	•<0.4	ND	ND
Aldrin	0.04	•<0.4	ND	ND
Heptachlor Epoxide	0.04	* <0.4	ND	ND
Endosulfan I	0.04	•<0.4	ND	ND
4,4'-DDE	0.04	•<0.4	ND	ND
Dieldrin	0.04	* <0.4	ND	ND
Endrin	0.04	* <0.4	ND	ND
4,4'-DDD	0.04	•<0.4	ND	ND
Endosulfan II	0.04	•<0.4	, ND	ND
4,4'-DDT	0.04	*<0.4	' ND	ND
Endrin Aldehyde	0.04	*<0.4	ND	ND
Endosulfan Sulfate	0.04	*<0.4	ND	ND
Methoxychlor	0.1	*<1.0	ND	ND
Toxaphene	1	*<10	ND	ND
Chlordane	0.5	*<5.0	ND	ND
PCBs: Aroclor 1016	0.2	*<1.0	ND	ND
Aroclor 1221	0.2	•<1.0	ND	ND
Aroclor 1232	0.2	•<1.0	ND	ND
Aroclor 1242	0.2	•<1.0	ND	ND
Aroclor 1248	0.2	•<1.0	ND	ND
Aroclor 1254	0.2	•<1.0	ND	ND
Aroclor 1260	0.2	•<1.0	ND	ND

Method Reporting Limit MRL

MRL is elevated because of matrix interferences and because the sample(s) required diluting. None Detected at or above the method reporting limit ND

TENADOR Date 4-30 Bun Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

UD015

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/31/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	
Sample Matrix:	Water	Work Order No.:	

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3510/8080 µg/L (ppb)

Sampie Name: Lab Code: Date Analyzed:		#5 K1979-11 04/07/92	#6 K1979-12 04/04/92	#7 K1979-13 04/04/92
Analyte	MRL			
Alpha-BHC	0.04	•<0.4	ND	ND
Gamma-BHC (Lindane)	0.04	•<0.4	ND	ND
Beta-BHC	0.1	*<1.0	ND	ND
Heptachlor	0.04	•<0.4	ND	ND
Delta-BHC	0.04	*<0.4	ND	ND
Aldrin	0.04	*<0.4	ND	ND
Heptachlor Epoxide	0.04	•<0.4	ND	ND
Endosulfan I	0.04	•<0.4	ND	ND
4,4'-DDE	0.04	•<0.4	ND	ND
Dieldrin	0.04	*<0.4	ND	ND
Endrin	0.04	•<0.4	ND	ND
4,4'-DDD	0.04	•<0.4	ND	ND
Endosulfan II	0.04	* <0.4	ND	ND
4,4'-DDT	0.04	*<0.4	ND	ND
Endrin Aldehyde	0.04	•<0.4	ND	ND
Endosulfan Sulfate	0.04	•<0.4	ND	ND
Methoxychlor	0.1	•<1.0	ND	ND
Toxaphene	1	•<10	ND	ND
Chlordane	0.5	•<5.0	ND	ND
PCBs: Aroclor 1016	0.2	•<1.0	ND	ND
Aroclor 1221	0.2	•<1.0	ND	ND
Aroclor 1232	0.2	*<1.0	ND	ND
Aroclor 1242	0.2	•<1.0	ND	ND
Aroclor 1248	0.2	•<1.0	ND	ND
Aroclor 1254	0.2	•<1.0	ND	ND
Aroclor 1260	0.2	*<1.0	ND	ND

MRL Method Reporting Limit

MRL is elevated because of matrix interferences and because the sample(s) required diluting. .

None Detected at or above the method reporting limit ND

TRUMIN Date 4-30 Bin Approved by

Analytical Report

U.S. Army Corps of Engineers Client: Draw Down 92/#92-HM-179 **Project:** Sample Matrix: Water

03/31/92 Date Extracted: Work Order No.: K921979

Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3510/8080 µg/L (ppb)

Sample Name:	Method Blank
Lab Code:	K1979-MB
Date Analyzed:	04/04/92

Analyte	MRL	
Alpha-BHC	0.04	ND
Gamma-BHC (Lindane)	0.04	ND
Beta-BHC	0.1	ND
Heptachlor	0.04	ND
Delta-BHC	0.04	ND
Aldrin	0.04	ND
Heptachlor Epoxide	0.04	ND
Endosulfan I	0.04	ND
4,4'-DDE	0.04	ND
Dieldrin	0.04	ND
Endrin	0.04	ND
4,4'-DDD	0.04	ND
Endosulfan II	0.04	ND
4,4'-DDT	0.04	ND
Endrin Aldehyde	0.04	ND
Endosulfan Sulfate	0.04	ND
Methoxychlor	0.1	ND
Toxaphene	1	ND
Chlordane	0.5	ND
PCBs: Aroclor 1016	0.2	ND
Aroclor 1221	0.2	ND
Aroclor 1232	0.2	ND
Aroclor 1242	0.2	ND
Aroclor 1248	0.2	ND
Aroclor 1254	0.2	ND
Aroclor 1260	0.2	ND

Method Reporting Limit MRL

None Detected at or above the method reporting limit ND

Date 4-30 Approved by B

Analytical Report

Project: Sample Matrix:	Draw Down Sediment	92/#92-HM-179	Work Order No.:	
		Volatile Organic Comp EPA Method 8240 (Low µg/Kg (ppb) Dry Weight	Level)	
	Sample Nam Lab Cod		#11 K1979-2	#12 K1979-14
	Date Analyze		04/03/92	04/03/92
Analyte		MRL*		
Chlosemethane		10	ND	ND
Chloromethane Vinyl Chloride		10	ND	ND
Bromomethane		10	ND	ND
Chloroethane		10	ND	ND
Trichlorofluoron	nethane (Freor	n 11) 10	ND	ND
Trichlorotrifluor	oethane (Freo	n 113) 20	ND	ND
1,1-Dichloroeth		10	ND	ND ND
Acetone		100	ND	ND
Carbon Disulfid	e	10	ND	ND
Methylene Chio	ride	20	ND ND	ND
trans-1,2-Dichlo	proethene	10	ND	ND
cis-1,2-Dichloro	bethene	10 20	ND	ND
2-Butanone (MI	EK)	10	ND	ND
1,1-Dichloroeth	ane	10	ND	ND
Chloroform		10	ND	ND
1,1,1-Trichloro		10	ND	ND
Carbon Tetrach	Noride	10	ND	ND
Benzene	200	10	ND	ND
1,2-Dichloroeth	hane	20	ND	ND
Vinyl Acetate Trichloroethene		10	ND	ND
1,2-Dichloropro		10	ND	ND
Bromodichloror		10	ND	ND
2-Chloroethyl		20	ND	ND
trans-1,3-Dichl	oropropene	10	ND	ND
2-Hexanone		20	ND	ND
4-Methyl-2-per	ntanone (MIBK	() 20	ND	ND
Toluene		10	ND	ND ND
cis-1,3-Dichlor	opropene	10	ND	ND ND
1,1,2-Trichlord	bethane	10	ND	ND
Tetrachloroeth	ene (PCE)	10	ND	ND
Dibromochloro		10	ND ND	ND
Chlorobenzene	•	10	ND	ND
Ethylbenzene		10 10	ND	ND
Styrene		10	ND	ND
Total Xylenes		10	ND	ND
Bromoform	hlorosthese	10	ND	ND
1,1,2,2-Tetrac		10	ND	ND
1,3-Dichlorobe		10	ND	ND
1,2-Dichlorobe		10	ND	ND
	d Reporting Li	imit	olide in the earnole as rea	eived.
 MRLs ND None 	are elevated t Detected at or	pecause of the low percent so r above the method reporting	limit	
Approved by		TRANHION	Date 4-30	
	1.0000			

.

Analytical Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Sediment	Date Received: Work Order No.:	03/30/92 K921 <u>9</u> 79
	Volatile Organic Compounds EPA Method 8240 (Low Level µg/Kg (ppb) Dry Weight Basis		
-	Sample Name: Lab Code: Date Analyzed:		#101 K1979-10 04/03/92

Date Analyzed.	
Analyte	MRL
Chloromethane	5
Vinyl Chloride	5
Bromomethane	5
Chloroethane	
Trichlorofluoromethane (Freon 11)	5
Trichlorotrifluoroethane (Freon 113)	10
1,1-Dichloroethene	5
Acetone	50
Carbon Disulfide	5
Methylene Chloride	10
trans-1,2-Dichloroethene	5
cis-1,2-Dichloroethene	5
2-Butanone (MEK)	10
1,1-Dichloroethane	5
Chloroform	5 5 5 5
1,1,1-Trichloroethane (TCA)	5
Carbon Tetrachloride	ວ ເ
Benzene	5
1,2-Dichloroethane	5 10
Vinyl Acetate	
Trichloroethene (TCE)	5 5
1,2-Dichloropropane	5
Bromodichloromethane	10
2-Chloroethyl Vinyl Ether	5
trans-1,3-Dichloropropene	5 10
4-Methyl-2-pentanone (MIBK)	10
	5 5
cis-1,3-Dichloropropene	5
	5

5 ND (ND 5 Ē 5 ND 0 ND 5 ND 5 ND 5 ND ND 0 5 ND 0 ND ND 0 5 ND 5 ND 5 ND 1,1,2-Trichloroethane 5 ND Tetrachloroethene (PCE) 5 ND Dibromochloromethane 5 ND Chlorobenzene 5 ND Ethylbenzene ND 5 Styrene ND 5 **Total Xylenes** 5 ND Bromoform 5 ND 1,1,2,2-Tetrachloroethane 5 ND 1,3-Dichlorobenzene 555 ND 1,4-Dichlorobenzene ND 1,2-Dichlorobenzene MRL Method Reporting Limit None Detected at or above the method reporting limit ND Date 4-30 ADA Approved by 13/1-

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

00019

ND

ND

ND

ND

ND

ND

ND

ND ND

ND ND

ND

ND

ND

ND

ND

Analytical Report

Client:U.S. Army Corps of EngineersProject:Draw Down 92/#92-HM-179Sample Matrix:Sediment

Work Order No.: K921979

.

Volatile Organic Compounds EPA Method 8240 (Low Level) µg/Kg (ppb) Dry Weight Basis

Sample Name: Lab Code: Date Analyzed:		K197 04/0
Analyte	MRL	
Chloromethane	5	N
Vinyl Chloride	5	N
Bromomethane	5	N
Chloroethane	5	N
Trichlorofluoromethane (Freon 11)	5	N
Trichlorotrifluoroethane (Freon 113)	10	N
1,1-Dichloroethene	5	N
Acetone	50	N
Carbon Disulfide	5	N
Methylene Chloride	10	Ν
trans-1,2-Dichloroethene	5	Ν
cis-1,2-Dichloroethene	5	N
2-Butanone (MEK)	10	N
1,1-Dichloroethane	5	N
Chloroform	5	N
1,1,1-Trichloroethane (TCA)		h
Carbon Tetrachloride	5	٢
Benzene	5 5 5 5	N
1,2-Dichloroethane	5	٨
Vinyl Acetate	10	1
Trichloroethene (TCE)	5	1
1,2-Dichloropropane	5	h
Bromodichloromethane	5	١
2-Chloroethyl Vinyl Ether	10	1
trans-1,3-Dichloropropene	5	1
2-Hexanone	10	1
4-Methyl-2-pentanone (MIBK)	10	1
Toluene		1
cis-1,3-Dichloropropene	5 5 5 5 5 5 5 5	1
1,1,2-Trichloroethane	5	1
Tetrachloroethene (PCE)	5	1
Dibromochloromethane	5	1
Chlorobenzene	5	1
Ethylbenzene	5	1
Styrene	5	1
Total Xylenes		1
Bromoform	5	1
1,1,2,2-Tetrachloroethane	5 5 5 5	1
1,3-Dichlorobenzene	5	I
1,4-Dichlorobenzene	5	1
1,2-Dichlorobenzene	5	l
MRL Method Reporting Limit		
ND None Detected at or above the m	nethod reporting limit	
Approved by Bin TEUAA	T Date 4	-30

00020 Fox 206/636-1068

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Analyzed:	04/03/92
Sample Matrix:	Sediment	Work Order No.:	K921979

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 (Low Level) µg/Kg (ppb) Dry Weight Basis

Sample Name: #11 Lab Code: K1979-2

CAS Number

TIC

Retention Time

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Date 4-30 Approved by

ÚOO21 • Fox 206/636-1068

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	
	Draw Down 92/#92-HM-179	Date Analyzed:	
	Sediment	Work Order No.:	K921979

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 (Low Level) µg/Kg (ppb) Dry Weight Basis

Sample Name: #101 Lab Code: K1979-10

CAS Number

TIC

Retention Time Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

4-30 Date Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

00022

Analytical Report

Client: Project:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Sediment	Date Received: Date Analyzed: Work Order No.:	
Sample Matrix:	Sediment	Work Urder No	KJ213/J

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 (Low Level) µg/Kg (ppb) Dry Weight Basis

Sample Name: #12 K1979-14 Lab Code:

CAS Number

TIC

Retention Time

ł

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

4-30 Date Approved by

Analytical Report

Client: Project: Sample Matrix:	U.S. Army Corps of Draw Down 92/#92 Water	Engineers -HM-179		Date Received: Work Order No.:	03/30/92 K921979
	v	olatile Organ EPA Meti µg/L			
	Sample Name: Lab Code: Date Analyzed:		#10 K1979-1 04/03/92	#8 K1979-3 04/03/92	#9 K1979-4 04/03/92
Analyte		MRL			
		1	ND	ND	ND
Chloromethane		i	ND	ND	ND
Vinyl Chloride		1	ND	ND	2
Bromomethane		1	ND	ND	ND
Chloroethane	school (Frood 11)	i	ND	ND	ND
Trichlorofluoron	nethane (Freon 11) Dethane (Freon 113)	10	ND	ND	ND
		1	ND	ND	ND
1,1-Dichloroeth	5110	20	ND	ND	ND
Acetone Carbon Disulfide	•	1	ND	ND	ND
Methylene Chio	ride	10	ND	ND	ND
trans-1,2-Dichlo	roethene	1	ND	ND	ND
cis-1,2-Dichloro	ethene	1	ND	ND	ND
2-Butanone (ME	EK)	10	ND	ND	ND
1,1-Dichloroeth	ane	1	ND	ND	ND ND
Chloroform		1	ND	ND	ND
1,1,1-Trichloro	ethane (TCA)	1	ND	ND	ND
Carbon Tetrach	loride	1	ND	ND	ND
Benzene		1	ND	ND ND	ND
1,2-Dichloroeth	ane	1	ND	ND	ND
Vinyl Acetate		10	ND	ND	ND
Trichloroethene		1	ND	ND	ND
1,2-Dichloropro	pane	1	ND ND	ND	ND
Bromodichloror	nethane	1	ND	ND	ND
2-Chloroethyl	/inyl Ether	10 1	ND	ND	ND
trans-1,3-Dichi	oropropene	10	ND	ND	ND
2-Hexanone		10	ND	ND	ND
4-Methyl-2-per	tanone (MIBK)	10	ND	ND	ND
Toluene	· · · · · · · · ·	1	ND	ND	ND
cis-1,3-Dichlor	opropene	1	ND	ND	ND
1,1,2-Trichloro		1	ND	ND	ND
Tetrachloroeth	ene (PLE)	1	ND	ND	ND
Dibromochloro		1	ND	ND	ND
Chlorobenzene		i	ND	ND	ND
Ethylbenzene Styrene		1	ND	ND	ND
Total Xylenes		1	ND	ND	ND
Bromoform		1	ND	ND	ND
1,1,2,2-Tetrac	hloroethane	1	ND	ND	ND
1,3-Dichlorobe	nzene	1	ND	ND	ND ND
1,4-Dichlorobe		1	ND	ND	ND ND
1,2-Dichlorobe		1	ND	ND	ND
MRL Metho	d Reporting Limit Detected at or above	the method	reporting limit		
ND None	\cdot	فت حسية		1 7 5	
Approved by_	Kani TA	HAVAT		Date 4-30	

Analytical Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Work Order No.:	03/30/92 K921979	
---------------------------------------	--	-----------------------------------	---------------------	--

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: Lab Code: Date Analyzed:		#14 K1979-5 04/06/92	#1 K1979-6 04/06/92	#3 K1979-8 04/06/92
Analyte	MRL			
Chloromethane Vinyl Chloride Bromomethane Chloroethane Trichlorofluoromethane (Freon 11) Trichlorotrifluoroethane (Freon 113) 1,1-Dichloroethene Acetone Carbon Disulfide Methylene Chloride trans-1,2-Dichloroethene cis-1,2-Dichloroethene 2-Butanone (MEK) 1,1-Dichloroethane Chloroform 1,1,1-Trichloroethane (TCA) Carbon Tetrachloride Benzene 1,2-Dichloroethane Vinyl Acetate Trichloroethene (TCE) 1,2-Dichloropropane Bromodichloromethane	MRL 1 1 1 1 1 1 20 1 10 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1	ND N	ND ND ND ND ND ND ND ND ND ND ND ND ND N	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
2-Chloroethyl Vinyl Ether trans-1,3-Dichloropropene 2-Hexanone 4-Methyl-2-pentanone (MIBK) Toluene cis-1,3-Dichloropropene 1,1,2-Trichloroethane Tetrachloroethene (PCE) Dibromochloromethane Chlorobenzene Ethylbenzene Styrene Total Xylenes Bromoform 1,1,2,2-Tetrachloroethane 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene MRL Method Reporting Limit ND None Detgeted at or above th	1 10 10 1 1 1 1 1 1 1 1 1	ND N		ND ND ND ND ND ND ND ND ND ND ND ND ND N

Approved by Bin Taution T

Date 4-30

Analytical Report

ample Matrix:	Water	IM-179			
	Vol	atile Organi EPA Meth µg/L	ic Compounds 10d 8240 (ppb)		
	Sample Name: Lab Code: Date Analyzed:		#4 K1979-9 04/06/92	#5 K1979-11 04/06/92	#6 K1979-12 04/06/92
		MRL			
Analyte			ND	ND	ND
Chloromethane		1	ND	ND	ND
Vinyl Chloride		1	ND	ND	ND
Bromomethane		1	ND	ND	ND
Chloroethane	· · · · · · · · · · · · · · · · · · ·	1	ND	ND	ND
Trichlorofluoron	nethane (Freon 11)	10	ND	ND	ND
Trichlorotrifluor	oethane (Freon 113)	1	ND	ND	ND
1,1-Dichloroeth	ene	20	ND	ND	ND
Acetone	•		ND	1	ND ND
Carbon Disulfid Methylene Chlo	v vride	10	ND	ND	ND
trans-1,2-Dichle	proethene	1	ND	ND ND	ND
cis-1,2-Dichlor	pethene	1	ND	ND	ND
2-Butanone (M	EK)	10	ND	ND	ND
1,1-Dichloroeth	hane	1	ND ND	22	ND
Chloroform		1	ND	ND	ND
1.1.1-Trichloro	ethane (TCA)	1	ND	ND	ND
Carbon Tetrach	hloride	1	ND	ND	ND
Benzene		1	ND	ND	ND
1,2-Dichloroet	hane	10	ND	ND	ND
Vinyl Acetate		1	ND	ND	(ND
Trichloroethen		1	ND	ND	ND
1,2-Dichloropr Bromodichloro	opane	1	ND	ND	ND ND
2-Chloroethyl	Viovl Ether	10	ND	ND	ND
trans-1,3-Dich	loropropene	1	ND	ND ND	ND
2-Hexanone		10	ND	ND	ND
4-Methyl-2-De	ntanone (MIBK)	10	ND	ND	ND
Toluene		1	ND ND	ND	ND
cis-1,3-Dichlo	ropropene	1	ND	ND	ND
1.1.2-Trichlor	oethane	1	ND	ND	ND
Tetrachloroet	nene (PCE)	1 1	ND	ND	ND
Dibromochlor		1	ND	ND	ND
Chlorobenzen	e	i	ND	ND	ND
Ethylbenzene		1	ND	ND	ND ND
Styrene	•	1	ND	ND	ND ND
Total Xylenes Bromoform	•	1	ND	ND	ND
1,1,2,2-Tetra	chloroethane	1	ND	ND	ND
1,3-Dichlorot	enzene	1	ND	ND ND	ND
1,4-Dichlorot	Denzene	1	ND	ND	ND
1,2-Dichlorot	Denzene	1	ND		
MRL Meth ND None	od Reporting Limit Detected at or above	the method	I reporting limit	4	
Approved by		HATEN		_Date_ <u>4-30</u>	— (

x 206/636-1068

Analytical Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Work Order No.:	03/30/92 K921979
---------------------------------------	--	-----------------------------------	---------------------

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: Lab Code: Date Analyzed:		#7 K1979-13 04/06/92	#13 K1979-15 04/06/92	Method Blank K1979-MB 04/03/92
Analyte	MRL			
Chioromethane	1	ND	ND	ND
Vinyl Chloride	1	ND	ND	ND
Bromomethane	1	ND	ND	ND
Chloroethane	1	ND	ND	ND
Trichlorofluoromethane (Freon 11)	1 .	ND	ND	ND
Trichlorotrifluoroethane (Freon 113)	10	ND	ND	ND
1,1-Dichloroethene	1	ND	ND	ND
Acetone	20	34	ND	ND
Carbon Disulfide	1	ND	ND	ND
Methylene Chloride	10	ND	ND	ND
trans-1,2-Dichloroethene	1	ND	ND	ND
cis-1,2-Dichloroethene	1	ND	ND	ND
2-Butanone (MEK)	10	ND	ND	ND
1,1-Dichloroethane	1	ND	ND	ND
Chloroform	1	ND	ND	ND
1,1,1-Trichloroethane (TCA)	1	ND	ND	ND
Carbon Tetrachloride	1	ND	ND	ND ND
Benzene	1	ND	ND	ND
1,2-Dichloroethane	1	ND	ND	ND
Vinyl Acetate	10	ND	ND	
Trichloroethene (TCE)	1	ND	ND	ND
1,2-Dichloropropane	1	ND	ND	ND
Bromodichloromethane	1	ND	ND	ND
2-Chloroethyl Vinyl Ether	10	ND	ND	ND
trans-1,3-Dichloropropene	1	ND	ND	ND
2-Hexanone	10	ND	ND	ND
4-Methyl-2-pentanone (MIBK)	10	ND	ND	ND
Toluene	1	ND	ND	ND
<i>cis</i> -1,3-Dichloropropene	1	ND	ND	ND
1,1,2-Trichloroethane	1	ND	ND	ND
Tetrachloroethene (PCE)	1	ND	ND	ND
Dibromochloromethane	1	ND	ND	ND
Chlorobenzene	1	ND	ND	ND ND
Ethylbenzene	1	ND	ND	ND
Styrene	1	ND	ND	
Total Xylenes	1	ND	ND	ND ND
Bromoform	1	ND	ND ND	ND
1,1,2,2-Tetrachloroethane	1	ND		ND
1,3-Dichlorobenzene	1	ND	ND ND	ND
1,4-Dichlorobenzene	1	ND	ND	ND
1,2-Dichlorobenzene	1	ND		
MRL Method Reporting Limit ND None Detected at or above th	e method i	reporting limit		
Approved by Bin TBU	HDAT	Da	te <u>4-30</u>	- 000

00027

Analytical Report

Work Order No.: K921979

Client:U.S. Army Corps of EngineersProject:Draw Down 92/#92-HM-179Sample Matrix:Water

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: Lab Code: Date Analyzed:		K 1979-MB 04/06/92	
Analyte	MRL		
Chloromethane	1	ND	
Vinyl Chloride	1	ND	
Bromomethane	1	ND	
Chioroethane	1	ND	
Trichlorofluoromethane (Freon 11)	· 1	ND	
Trichlorotrifluoroethane (Freon 113)	10	ND	
1,1-Dichloroethene	1	ND	
Acetone	20	ND	
Carbon Disulfide	1	ND	
Methylene Chloride	10	ND	
trans-1,2-Dichloroethene	1	ND	
cis-1,2-Dichloroethene	1	ND	
2-Butanone (MEK)	10	ND	
1,1-Dichloroethane	1	ND	
Chloroform	1	ND	
1,1,1-Trichloroethane (TCA)	1	ND	
Carbon Tetrachloride	1	ND	
Benzene	1	ND	
1,2-Dichloroethane	1	ND	
Vinyl Acetate	10	ND	
Trichloroethene (TCE)	; 1	ND	
1,2-Dichloropropane	1	ND	
Bromodichloromethane	1	ND	
2-Chloroethyl Vinyl Ether	10	ND	
trans-1,3-Dichloropropene	1	ND	
2-Hexanone	10	ND ND	
4-Methyl-2-pentanone (MIBK)	10	ND	
Toluene	1		
cis-1,3-Dichloropropene	1	ND	
1,1,2-Trichloroethane	1	ND ND	
Tetrachloroethene (PCE)	1		
Dibromochloromethane	1	ND	
Chlorobenzene	1	ND	
Ethylbenzene	1	ND	
Styrene	1	ND	
Total Xylenes	1	ND	
Bromoform	1	ND ND	
1,1,2,2-Tetrachloroethane	1	ND ND	
1,3-Dichlorobenzene	1	ND	
1,4-Dichlorobenzene	1	ND	
1,2-Dichlorobenzene	1		
MRL Method Reporting Limit ND None Detected at or above the n			
Approved by High That	1Am Date_	4-30	
		الاست. الاست. ولايات م	
th 13th Avenue • P.O. Box 479 • Kelso.			

Analytical Report

Client: Project:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179	Date Analyzed:	03/30/92 04/03/92	
Sample Matrix:	Water	Work Order No.:	K921979	

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 μ g/L (ppb)

#10 Sample Name: K1979-1 Lab Code:

Estimated Retention CAS Concentration Time TIC Number

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

ZENHIT Date 4-30 Approved by

Analytical Report

	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Analyzed:	04/03/9
	ILC Army Come of Engineers	Date Received:	03/30/

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: #8 K1979-3 Lab Code:

CAS Number Retention Time

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

TIC

DETECTED

Date 4-30 Approved by 00030

Analytical Report

Project:	Draw Down 92/#92-HM-179	Date Analyzed:	04/03/92
Sample Matrix:	Water	Work Order No.:	K921979
Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

#9 Sample Name: K1979-4 Lab Code:

CAS	TIC	Retention	Estimated
Number		Time	Concentration
	Unknown	19.61	7

4-30 Date 13m (autor Approved by 00031

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fox 206/636-1068

ł

Analytical Report

Client: Project:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Date Analyzed: Work Order No.:	03/30/92 04/06/92 K921979
Sample Matrix:	Water	Work Urder NU.:	KJ213/J

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 μ g/L (ppb)

Sample Name: #1 K1979-6 Lab Code:

CAS Number

TIC

Retention Time

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Approved by 12	y Dautos	Date 4-30	
			00033

Analytical Report

03/30/92 U.S. Army Corps of Engineers **Date Received:** Client: Date Analyzed: 04/06/92 Draw Down 92/#92-HM-179 Project: Work Order No.: K921979 Sample Matrix: Water

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: #14 Lab Code: K1979-5

CAS Number

TIC

Retention Time

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Date 4-30 Approved by U0032

Analytical Report

03/30/92 Date Received: U.S. Army Corps of Engineers Client: 04/06/92 Date Analyzed: Draw Down 92/#92-HM-179 **Project:** Work Order No.: K921979 Water Sample Matrix:

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 μ g/L (ppb)

Sample Name: #3 K1979-8 Lab Code:

Estimated Retention CAS TIC Time Number

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Approved by_	Karin	TRUMANT	Date	4-30
Whiches of	10000	170 411013		

U0034

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

Concentration

Analytical Report

03/30/92 U.S. Army Corps of Engineers Date Received: Client: 04/06/92 Draw Down 92/#92-HM-179 Date Analyzed: Project: Work Order No.: K921979 Sample Matrix: Water

> Tentatively Identified Compounds (TIC) Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: #4 K1979-9 Lab Code:

CAS Number

TIC

Retention Time

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

/			
Approved by Hoving	TRUMATION Dat	<u> </u>	v0035
			00030

Analytical Report

03/30/92 Date Received: U.S. Army Corps of Engineers Client: 04/06/92 Date Analyzed: Draw Down 92/#92-HM-179 Project: Work Order No.: K921979 Water Sample Matrix:

> Tentatively Identified Compounds (TIC) **Volatile Organic Compounds** EPA Method 8240

 $\mu g/L (ppb)$

#5 Sample Name: K1979-11 Lab Code:

CAS Number

TIC

Retention Time

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

/			
Approved by Halim	TRANSFORT	Date 4-30	

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

00036

Analytical Report

Date Received: 03/30/92 U.S. Army Corps of Engineers Client: 04/06/92 Date Analyzed: Draw Down 92/#92-HM-179 Project: Work Order No.: K921979 Water Sample Matrix:

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 $\mu g/L (ppb)$

Sample Name: #6 K1979-12 Lab Code:

CAS Number

TIC

Retention Time

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Date 4-30 Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 •

UOO37 Fax 206/636-1068

Analytical Report

Client:U.S. Army Corps of EngineersProject:Draw Down 92/#92-HM-179Sample Matrix:Water

Date Received: 03/30/92 Date Analyzed: 04/06/92 Work Order No.: K921979

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: #7 Lab Code: K1979-13

CAS Number

TIC

Retention Time Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

/		
Approved by Having	DBUHHON	Date 4-30

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Analyzed:	04/06/92
Sample Matrix:	Water	Work Order No.:	K921979

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: #13 Lab Code: K1979-15

CAS Retention Estimated Number TIC Time Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

÷

Approved by_	hain	TENHON	Date 4-30
-	•		

Analytical Report

Client:	U.S. Army Corps of Engineers		04/03/92
Project:	Draw Down 92/#92-HM-179	Work Order No.:	K921979
Sample Matrix:	Water		

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 µg/L (ppb)

Sample Name: Method Blank Lab Code: K1979-MB

CAS Number

TIC

Retention Time Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Date 4-30 Din Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

UOO40 Fox 206/636-1068

Analytical Report

Client: U.S. Army Corps of Engineers Project: Draw Down 92/#92-HM-179 Sample Matrix: Water

Date Analyzed: 04/06/92 Work Order No.: K921979

Tentatively Identified Compounds (TIC)

Volatile Organic Compounds EPA Method 8240 $\mu g/L (ppb)$

Method Blank Sample Name: K1979-MB Lab Code:

CAS Number

TIC

Retention Time

Estimated Concentration

l

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Approved by Karing	TRAUMENT	Date4-3-3-2	
	-		^

u0041

Analytical Report

	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Sediment	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 04/06/92 04/20/92 K921979
--	---	--	---

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) **Dry Weight Basis**

Sample Name: #11 K1979-2 Lab Code:

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
	0.3	ND	2,6-Dinitrotoluene	0.3	ND
N-Nitrosodimethylamine	0.3	ND	Diethyl Phthalate	0.3	ND
Aniline	0.3	ND	4-Chlorophenyl Phenyl Ether	0.3	ND
Bis(2-chloroethyl) Ether	0.3	ND	Fluorene	0.3	ND
1,2-Dichlorobenzene	0.3	ND	4-Nitroaniline	2	ND
1,3-Dichlorobenzene	0.3	ND	N-Nitrosodiphenylamine	0.3	ND
1,4-Dichlorobenzene	0.3	ND	4-Bromophenyi Phenyi Ether	0.3	ND
Bis(2-chloroisopropyl) Ether	0.3	ND	Hexachlorobenzene	0.3	ND
N-Nitrosodi-n-propylamine	0.3	ND	Phenanthrene	0.3	ND
Hexachloroethane	0.3	ND	Anthracene	0.3	ND
Nitrobenzene	0.3	ND	Di-n-butyl Phthalate	0.3	ND
lsophorone Bis(2-chloroethoxy)methane	0.3	ND	Fluoranthene	0.3	ND
1,2,4-Trichlorobenzene	0.3	ND	Pyrene	0.3	ND
	0.3	ND	Butylbenzyl Phthalate	0.3	ND
Naphthalene 4-Chloroaniline	0.3	ND	3,3'-Dichlorobenzidine	0.3	ND
Hexachlorobutadiene	0.3	ND	Benz(a)anthracene	0.3	ND
2-Methylnaphthalene	0.3	ND	Bis(2-ethylhexyl) Phthalate	0.3	ND
Hexachlorocyclopentadiene	0.3	ND	Chrysene	0.3	ND
2-Chloronaphthalene	0.3	ND	Di-n-octyl Phthalate	0.3	ND
2-Chioronaphthalene 2-Nitroaniline	2	ND	Benzo(b)fluoranthene	0.3	ND
Dimethyl Phthalate	0.3	ND	Benzo(k)fluoranthene	0.3	ND
	0.3	ND	Benzo(a)pyrene	0.3	ND
Acenaphthylene 3-Nitroaniline	2	ND	Indeno(1,2,3-c,d)pyrene	0.3	ND
	0.3	ND	Dibenz(a,h)anthracene	0.3	ND
Acenaphthene Dibenzofuran	0.3	ND	Benzo(g,h,i)perylene	0.3	ND
2,4-Dinitrotoluene	0.3	ND			

Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol 2-Chlorophenol Benzyl Alcohol 2-Methylphenol 3- and 4-Methylphenol 2-Nitrophenol	0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	ND ND ND ND ND ND ND	2,4-Dichlorophenol 4-Chloro-3-methylphenol 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,4-Dinitrophenol 4-Nitrophenol 2-Methyl-4,6-dinitrophenol	0.3 0.3 0.3 2 2 2	ND ND ND ND ND ND
2,4-Dimethylphenol Benzoic Acid	2	ND	Pentachlorophenol	2	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Quantified as 4-methylphenol.

Date 4-30 GNHM 13m Approved by_

U0042 Fox 206/636-1068

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	04/06/92
Sample Matrix:	Sediment	Date Analyzed:	04/16/92
		Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) **Dry Weight Basis**

Sample Name: #101 K1979-10 Lab Code:

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	0.3	ND	2,6-Dinitrotoluene	0.3	ND
Aniline	0.3	ND	Diethyl Phthalate	0.3	ND
Bis(2-chloroethyl) Ether	0.3	ND	4-Chiorophenyl Phenyl Ether	0.3	ND
1,2-Dichlorobenzene	0.3	ND	Fluorene	0.3	ND
1,3-Dichlorobenzene	0.3	ND	4-Nitroaniline	2	ND
1,4-Dichlorobenzene	0.3	ND	N-Nitrosodiphenylamine	0.3	ND
Bis(2-chloroisopropyl) Ether	0.3	ND	4-Bromophenyl Phenyl Ether	0.3	ND
N-Nitrosodi-n-propylamine	0.3	ND	Hexachlorobenzene	0.3	ND
Hexachloroethane	0.3	ND	Phenanthrene	0.3	ND
Nitrobenzene	0.3	ND	Anthracene	0.3	ND
Isophorone	0.3	ND	Di-n-butyl Phthalate	0.3	ND
Bis(2-chloroethoxy)methane	0.3	ND	Fluoranthene	0.3	ND
1,2,4-Trichlorobenzene	0.3	ND	Pyrene	0.3	ND
Naphthalene	0.3	ND	Butylbenzyl Phthalate	0.3	ND
4-Chloroaniline	0.3	ND	3,3'-Dichlorobenzidine	0.3	ND
Hexachlorobutadiene	0.3	ND	Benz(a)anthracene	0.3	ND
2-Methylnaphthalene	0.3	ND	Bis(2-ethylhexyl) Phthalate	0.3	ND
Hexachlorocyclopentadiene	0.3	ND	Chrysene	0.3	ND
2-Chloronaphthalene	0.3	ND	Di-n-octyl Phthalate	0.3	ND
2-Nitroaniline	2	ND	Benzo(b)fluoranthene	0.3	ND
Dimethyl Phthalate	0.3	ND	Benzo(k)fluoranthene	0.3	ND
Acenaphthylene	0.3	ND	Benzo(a)pyrene	0.3	ND
3-Nitroaniline	2	ND	Indeno(1,2,3-c,d)pyrene	0.3	ND
Acenaphthene	0.3	ND	Dibenz(a,h)anthracene	0.3	ND
Dibenzofuran	0.3	ND	Benzo(g,h,i)perylene	0.3	ND
2,4-Dinitrotoluene	0.3	ND			

Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	0.3	ND	2,4-Dichlorophenol	0.3	ND
2-Chlorophenol	0.3	ND	4-Chloro-3-methylphenol	0.3	ND
Benzyl Alcohol	0.3	ND	2,4,6-Trichlorophenol	0.3	ND
2-Methylphenol	0.3	ND	2,4,5-Trichlorophenol	0.3	ND
3- and 4-Methylphenol ⁺	0.3	ND	2,4-Dinitrophenol	2	ND
2-Nitrophenol	0.3	ND	4-Nitrophenol	2	ND
2,4-Dimethylphenol	0.3	ND	2-Methyl-4,6-dinitrophenol	2	ND
Benzoic Acid	2	ND	Pentachlorophenol	2	ND

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Quantified as 4-methylphenol.

Approved by Date 4-30 俖

v0043

Analytical Report

lient:	U.S. Army Corps of Engineers
-Project:	Draw Down 92/#92-HM-179
Sample Matrix:	Sediment

Date Received:	03/30/92
Date Extracted:	04/06/92
Date Analyzed:	04/22/92
Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) **Dry Weight Basis**

#12 Sample Name: K1979-14 Lab Code:

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	0.3	ND	2,6-Dinitrotoluene	0.3	ND
Aniline	0.3	ND	Diethyl Phthalate	0.3	ND
Bis(2-chloroethyl) Ether	0.3	ND	4-Chlorophenyl Phenyl Ether	0.3	ND
1,2-Dichlorobenzene	0.3	ND	Fluorene	0.3	ND
1,3-Dichlorobenzene	0.3	ND	4-Nitroaniline	2	ND
1,4-Dichlorobenzene	0.3	ND	N-Nitrosodiphenylamine	0.3	ND
Bis(2-chloroisopropyl) Ether	0.3	ND	4-Bromophenyl Phenyl Ether	0.3	ND
N-Nitrosodi-n-propylamine	0.3	ND	Hexachlorobenzene	0.3	ND
Hexachloroethane	0.3	ND	Phenanthrene	0.3	ND
Nitrobenzene	0.3	ND	Anthracene	0.3	ND
isophorone	0.3	ND	Di-n-butyl Phthalate	0.3	ND
Bis(2-chloroethoxy)methane	0.3	ND	Fluoranthene	0.3	ND
1,2,4-Trichlorobenzene	0.3	ND	Pyrene	0.3	ND
Naphthalene	0.3	ND	Butylbenzyl Phthalate	0.3	ND
4-Chloroaniline	0.3	ND	3,3'-Dichlorobenzidine	0.3	ND
Hexachlorobutadiene	0.3	ND	Benz(a)anthracene	0.3	ND
2-Methylnaphthalene	0.3	ND	Bis(2-ethylhexyl) Phthalate	0.3	ND
Hexachlorocyclopentadiene	0.3	ND	Chrysene	0.3	ND
2-Chloronaphthalene	0.3	ND	Di-n-octyl Phthalate	0.3	ND
2-Nitroaniline	2	ND	Benzo(b)fluoranthene	0.3	ND
Dimethyl Phthalate	0.3	ND	Benzo(k)fluoranthene	0.3	ND
Acenaphthylene	0.3	ND	Benzo(a)pyrene	0.3	ND
3-Nitroaniline	2	ND	Indeno(1,2,3-c,d)pyrene	0.3	ND
Acenaphthene	0.3	ND	Dibenz(a,h)anthracene	0.3	ND
Dibenzofuran	0.3	ND	Benzo(g,h,i)perylene	0.3	ND
2,4-Dinitrotoluene	0.3	ND			

Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	0.3	ND	2,4-Dichlorophenol	0.3	ND
2-Chlorophenol	0.3	ND	4-Chloro-3-methylphenol	0.3	ND
Benzyl Alcohol	0.3	ND	2,4,6-Trichlorophenol	0.3	ND
2-Methylphenol	0.3	ND	2,4,5-Trichlorophenol	0.3	ND
3- and 4-Methylphenol ⁺	0.3	ND	2,4-Dinitrophenol	2	ND
2-Nitrophenol	0.3	ND	4-Nitrophenol	2	ND
2,4-Dimethylphenol	0.3	ND	2-Methyl-4,6-dinitrophenol	2	ND
Benzoic Acid	2	ND	Pentachlorophenol	2	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Quantified as 4-methylphenol.

Date 4-30 Bin Approved by

u0044

Analytical Report

Client:	U.S. Army Corps of Engineers
Project:	Draw Down 92/#92-HM-179
Sample Matrix:	Sediment

Date Extracted:	04/06/92
Date Analyzed:	04/10/92
Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) **Dry Weight Basis**

Sample Name:	Method Blank
Lab Code:	K1979-MB

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	0.3	ND	2,6-Dinitrotoluene	0.3	ND
Aniline	0.3	ND	Diethyl Phthalate	0.3	ND
Bis(2-chloroethyl) Ether	0.3	ND	4-Chlorophenyl Phenyl Ether	0.3	ND
1,2-Dichlorobenzene	0.3	ND	Fluorene	0.3	ND
1,3-Dichlorobenzene	0.3	ND	4-Nitroaniline	2	ND
1,4-Dichlorobenzene	0.3	ND	N-Nitrosodiphenylamine	0.3	ND
Bis(2-chloroisopropyl) Ether	0.3	ND	4-Bromophenyl Phenyl Ether	0.3	ND
N-Nitrosodi-n-propylamine	0.3	ND	Hexachlorobenzene	0.3	ND
Hexachloroethane	0.3	ND	Phenanthrene	0.3	ND
Nitrobenzene	0.3	ND	Anthracene	0.3	ND
Isophorone	0.3	ND	Di-n-butyl Phthalate	0.3	ND
Bis(2-chloroethoxy)methane	0.3	ND	Fluoranthene	0.3	ND
1,2,4-Trichlorobenzene	0.3	ND	Pyrene	0.3	ND
Naphthalene	0.3	ND	Butylbenzyl Phthalate	0.3	ND
4-Chloroaniline	0.3	ND	3,3'-Dichlorobenzidine	0.3	ND
Hexachlorobutadiene	0.3	ND	Benz(a)anthracene	0.3	ND
2-Methylnaphthalene	0.3	ND	Bis(2-ethylhexyl) Phthalate	0.3	ND
Hexachlorocyclopentadiene	0.3	ND	Chrysene	0.3	ND
2-Chloronaphthalene	0.3	ND	Di-n-octyl Phthalate	0.3	ND
2-Nitroaniline	2	ND	Benzo(b)fluoranthene	0.3	ND
Dimethyl Phthalate	0.3	ND	Benzo(k)fluoranthene	0.3	ND
Acenaphthylene	0.3	ND	Benzo(a)pyrene	0.3	ND
3-Nitroaniline	2	ND	Indeno(1,2,3-c,d)pyrene	0.3	ND
Acenaphthene	0.3	ND	Dibenz(a,h)anthracene	0.3	ND
Dibenzofuran	0.3	ND	Benzo(g,h,i)perylene	0.3	ND
2,4-Dinitrotoluene	0.3	ND			

Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenoi	0.3	ND	2,4-Dichlorophenol	0.3	ND
2-Chlorophenol	0.3	ND	4-Chloro-3-methylphenol	0.3	ND
Benzyl Alcohol	0.3	ND	2,4,6-Trichlorophenol	0.3	ND
2-Methylphenol	0.3	ND	2,4,5-Trichlorophenol	0.3	ND
3- and 4-Methylphenol*	0.3	ND	2.4-Dinitrophenol	2	ND
2-Nitrophenol	0.3	ND	4-Nitrophenol	2	ND
2,4-Dimethylphenol	0.3	ND	2-Methyl-4,6-dinitrophenol	2	ND
Benzoic Acid	2	ND	Pentachlorophenol	2	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

. Quantified as 4-methylphenol.

Date 4-30 Tevin Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

U0045

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	04/06/92
Sample Matrix:	Sediment	Date Analyzed:	04/20/92
		Work Order No.:	K921979

Tentatively Identified Compounds (TIC)

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) Dry Weight Basis

Sample Name: #11 Lab Code: K1979-2

CAS Number	TIC	Retention Time	Estimated Concentration
74367332	2-Methyl-2,2-dimethyl-1-(2-hydroxy-		
	1-methylethyl) propyl ester of		
	Propanoic Acid	14.16	0.5
	Unknown	14.45	0.7
	Unknown Hydrocarbon	18.53	0.6
544638	Tetradecanoic Acid	19.23	0.7
	Unknown	19.62	0.5
	Unknown	20.02	0.5
	Unknown	21.22	3.4
57103	Hexadecanoic Acid	21.39	1.6
10544500	Molecular Sulfur	22.41	15
	Unknown	22.87	0.8
	Unknown	23.15	2.8
	Unknown	24.69	0.9
••	Unknown Hydrocarbon	26.24	0.7
	Unknown Hydrocarbon	27.88	2.2
	Unknown	29.31	1.2
	Unknown Hydrocarbon	30.02	1.9
	Unknown	32.13	0.5
	Unknown	33.17	0.6
-	Unknown	36.38	1.0
	Unknown	37.06	3.3

GUN Date Approved by

u0046

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	04/06/92
Sample Matrix:	Sediment	Date Analyzed:	04/16/92
		Work Order No.:	K921979

Tentatively Identified Compounds (TIC)

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) Dry Weight Basis

Sample Name: #101 K1979-10 Lab Code:

CAS		Retention	Estimated
Number	TIC	Time	Concentration
74367332	2-Methyl-2,2-dimethyl-1-(2-hydroxy-		
	1-methylethyl) propyl ester of		
	Propanoic Acid	14.51	0.3
	Unknown	14.80	0.3
**	Unknown	16.56	0.3
544638	Tetradecanoic Acid	19.59	0.4
	Unknown	20.07	0.4
	Unknown	21.59	1.8
	Unknown	21.66	0.3
57103	Hexadecanoic Acid	21.76	0.3
10544500	Molecular Sulfur	22.88	12
	Unknown	25.05	0.5
-	Unknown Hydrocarbon	28.32	0.4
	Unknown	30.65	0.4
	UNKIUWI	33.03	V . -

Date 4-30 Tauto Approved by

00047

Analytical Report

Date Received:	03/30/92
Date Extracted:	04/06/92
Date Analyzed:	04/22/92
Work Order No.:	K921979
	Date Extracted:

Tentatively Identified Compounds (TIC)

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) Dry Weight Basis

Sample Name: #12 Lab Code: K1979-14

CAS Number	TIC	Retention Time	Estimated Concentration
74367332	2-Methyl-2,2-dimethyl-1-(2-hydroxy-		
	1-methylethyl) propyl ester of Propanoic Acid	14.17	0.3
-	Unknown	14.44	0.4
10544500	Molecular Sulfur	22.35	4.1
	Unknown Hydrocarbon	27.85	0.5
	Unknown	36.99	0.8

Date 4-30 Bin Approved by

Analytical Report

Client:	U.S. Army Corps of Engineers
Project:	Draw Down 92/#92-HM-179
Sample Matrix:	Water

Date Received:	03/30/92
Date Extracted:	·03/31/92
Date Analyzed:	04/08/92
Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #10 K1979-1 Lab Code:

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2,6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachlorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5	ND
2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5	ND
Benzyl Alcohol	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5	ND	2,4,5-Trichlorophenol	5	ND -
3- and 4-Methylphenol*	5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND
	F 0	ND	Dentschlessehenel	20	ND

MRL Method Reporting Limit

Benzoic Acid

None Detected at or above the method reporting limit ND

5Õ

٠ Quantified as 4-methylphenol.

Date 4-30 Approved by AUV

ND

00049

30

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

Pentachlorophenol

ND

Analytical Report

	U.S. Army Corps of Engineers	Date Received:	03/30/92
	Draw Down 92/#92-HM-179	Date Extracted:	03/31/92
	Water	Date Analyzed:	04/20/92
Sample Matrix:	water	Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #8 K1979-3 Lab Code:

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2.6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachiorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5 5 5	ND
Nitrobanzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5 5 5	ND
2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5	ND
Benzyl Alcohol	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5	ND	2,4,5-Trichlorophenol	5	ND
3- and 4-Methylphenol ⁺	5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND
Benzoic Acid	50	ND	Pentachlorophenol	30	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

٠ Quantified as 4-methylphenol.

Date 4-30 Approved by

00050

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	03/31/92
Sample Matrix:	Water	Date Analyzed:	04/20/92
-		Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #9 K1979-4 Lab Code:

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2,6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5 5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachlorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5 5 5	ND
2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5 5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol		ND
Benzyi Alcohoi	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5	ND	2,4,5-Trichlorophenol	5	ND
3- and 4-Methylphenol ⁺	5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND

MRL Method Reporting Limit

Benzoic Acid

ND ♦ None Detected at or above the method reporting limit

Quantified as 4-methylphenol.

Date 4-30 Approved by Din

50

ND

00051

30

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

Pentachlorophenol

ND

`----

Analytical Report

Client: U.S. Army Corps of Engineers Project: Draw Down 92/#92-HM-179 Sample Matrix: Water	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 03/31/92 04/21/92 K921979
--	--	---

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name:	#1
Lab Code:	K1979-6

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
	5	ND	2,6-Dinitrotoluene	5	ND
N-Nitrosodimethylamine	20	ND	Diethyl Phthalate	5	ND
Aniline	5	ND	4-Chlorophenyi Phenyl Ether	5	ND
Bis(2-chloroethyl) Ether	5	ND	Fluorene	5	ND
1,2-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,3-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
1,4-Dichlorobenzene Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5 5	ND	Hexachlorobenzene	5 5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5 5 5	ND
2-Chloronaphthalene 2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5	ND
Benzyl Alcohol	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5	ND	2,4,5-Trichlorophenol	5	ND
3- and 4-Methylphenol ⁺	5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND
2,4-Dimethylphenol Benzoic Acid	50	ND	Pentachiorophenol	30	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

۲ Quantified as 4-methylphenol.

1

Approved by Karing TRANATON	DateU	0052
-----------------------------	-------	------

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

Analytical Report

Client:	U.S. Army Corps of Engineers
Project:	Draw Down 92/#92-HM-179
Sample Matrix:	Water

Date Received:	03/30/92
Date Extracted:	03/31/92
Date Analyzed:	04/20/92
Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

.

Sample Name: #3 K1979-8 Lab Code:

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2,6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachlorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5 5 5 5 5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene		ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5 5	ND
2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5 5 5	ND
Benzyi Alcohol	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5 5 5 5	ND	2,4,5-Trichlorophenol	5	ND
3- and 4-Methylphenol ⁺	5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND
Benzoic Acid	50	ND	Pentachlorophenol	30	ND

Method Reporting Limit MRL

None Detected at or above the method reporting limit ND

Quantified as 4-methylphenol. .

ZILLATA Date 4-30 Approved by

00053

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

Analytical Report

 Client: Project: Sample Matrix: 	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 03/31/92 04/20/92 K921979
---	--	--	---

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name:	#4
Lab Code:	K1979-9

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2,6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachlorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3.3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5	ND
2-Chloronaphthalene 2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5 5 5 5 5 5 5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene		ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
	5	ND			
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
			• • • • • •	-	AID

Phenol	5	ND	2,4-Dichlorophenol	5	ND
	5	ND	4-Chloro-3-methylphenol	5	ND
2-Chlorophenol	5	ND	2,4,6-Trichlorophenol	5	ND
Benzyi Alcohol	5	ND	2,4,5-Trichlorophenol	5	ND
2-Methylphenol 3- and 4-Methylphenol [●]	5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND
Benzoic Acid	50	ND	Pentachlorophenol	30	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

٠ Quantified as 4-methylphenol.

Date Approved by ALDAIN

U0054

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

4-30

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	03/31/92
Sample Matrix:	Water	Date Analyzed:	04/20/92
		Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #5 K1979-11 Lab Code:

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2,6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5 5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachlorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5 5 5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5 5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5	ND
2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5 5 5 5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5	ND

2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5	ND
Benzvi Alcohol	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5	ND	2,4,5-Trichlorophenol	5	ND
3- and 4-Methylphenol ⁺	5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND
Benzoic Acid	50	ND	Pentachlorophenol	30	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Quantified as 4-methylphenol.

Date 4-30 Here Approved by

00055

Analytical Report

lient:	U.S. Army Corps of Engineers
Project:	Draw Down 92/#92-HM-179
Sample Matrix:	Water

Date Received:	03/30/92
Date Extracted:	03/31/92
Date Analyzed:	04/20/92
Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #6 Lab Code: K1979-12

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2,6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachlorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5	ND
2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5	ND
Benzyl Alcohol	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5	ND	2,4,5-Trichlorophenol	5	ND
3- and 4-Methylphenol ⁺	5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
	i i i i i i i i i i i i i i i i i i i	ND	O Mashed A C allalana ab card		10

ND	2,4-Dichlorophenol	5
ND	4-Chloro-3-methylphenol	5
ND	2,4,6-Trichlorophenol	5
ND	2,4,5-Trichlorophenol	5
ND	2,4-Dinitrophenol	50
ND	4-Nitrophenol	50
ND	2-Methyl-4,6-dinitrophenol	20
ND	Pentachlorophenol	30

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

. Quantified as 4-methylphenol.

Date 4-30 13m Khr. Approved by_

5

50

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

00056

ND

ND

Analytical Report

Client:	U.S. Army Corps of Engineers
Project:	Draw Down 92/#92-HM-179
Sample Matrix:	Water

Date Received:	03/30/92
Date Extracted:	03/31/92
Date Analyzed:	04/20/92
Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #7 Lab Code: K1979-13

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2,6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachlorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chioronaphthalene	5	ND	Di-n-octyl Phthalate	5	ND
2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5	ND
Benzyl Alcohol	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5	ND	2,4,5-Trichlorophenol	5	ND
3- and 4-Methylphenol ⁺	5 5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND
Benzoic Acid	50	ND	Pentachlorophenol	30	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Quantified as 4-methylphenol. ٠

Date 4-30 HUE Approved by

U0057

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

İ

Analytical Report

lient:	U.S. Army Corps of Engineers
Project:	Draw Down 92/#92-HM-179
Sample Matrix:	Water

Date Extracted:	03/31/92
Date Analyzed:	04/08/92
Work Order No.:	K921979

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name:	Method Blank
Lab Code:	K1979-MB

Base Neutral Analyte	MRL	Result	Base Neutral Analyte	MRL	Result
N-Nitrosodimethylamine	5	ND	2,6-Dinitrotoluene	5	ND
Aniline	20	ND	Diethyl Phthalate	5	ND
Bis(2-chloroethyl) Ether	5	ND	4-Chlorophenyl Phenyl Ether	5	ND
1,2-Dichlorobenzene	5	ND	Fluorene	5	ND
1,3-Dichlorobenzene	5	ND	4-Nitroaniline	20	ND
1,4-Dichlorobenzene	5	ND	N-Nitrosodiphenylamine	5	ND
Bis(2-chloroisopropyl) Ether	5	ND	4-Bromophenyl Phenyl Ether	5	ND
N-Nitrosodi-n-propylamine	5	ND	Hexachlorobenzene	5	ND
Hexachloroethane	5	ND	Phenanthrene	5	ND
Nitrobenzene	5	ND	Anthracene	5	ND
Isophorone	5	ND	Di-n-butyl Phthalate	5	ND
Bis(2-chloroethoxy)methane	5	ND	Fluoranthene	5	ND
1,2,4-Trichlorobenzene	5	ND	Pyrene	5	ND
Naphthalene	5	ND	Butylbenzyl Phthalate	5	ND
4-Chloroaniline	5	ND	3,3'-Dichlorobenzidine	20	ND
Hexachlorobutadiene	5	ND	Benz(a)anthracene	5	ND
2-Methylnaphthalene	5	ND	Bis(2-ethylhexyl) Phthalate	5	ND
Hexachlorocyclopentadiene	10	ND	Chrysene	5	ND
2-Chloronaphthalene	5	ND	Di-n-octyl Phthalate	5 5 5	ND
2-Nitroaniline	20	ND	Benzo(b)fluoranthene	5	ND
Dimethyl Phthalate	5	ND	Benzo(k)fluoranthene	5	ND
Acenaphthylene	5	ND	Benzo(a)pyrene	5	ND
3-Nitroaniline	20	ND	Indeno(1,2,3-c,d)pyrene	5	ND
Acenaphthene	5	ND	Dibenz(a,h)anthracene	5	ND
Dibenzofuran	5	ND	Benzo(g,h,i)perylene	5	ND
2,4-Dinitrotoluene	5	ND			
Acid Analyte	MRL	Result	Acid Analyte	MRL	Result
Phenol	5	ND	2,4-Dichlorophenol	5	ND
2-Chlorophenol	5	ND	4-Chloro-3-methylphenol	5	ND
Benzyl Alcohol	5	ND	2,4,6-Trichlorophenol	5	ND
2-Methylphenol	5	ND	2,4,5-Trichlorophenol	5	ND
3- and 4-Methylphenol ⁺	5 5	ND	2,4-Dinitrophenol	50	ND
2-Nitrophenol	5	ND	4-Nitrophenol	50	ND
2,4-Dimethylphenol	5	ND	2-Methyl-4,6-dinitrophenol	20	ND
Benzoic Acid	50	ND	Pentachlorophenol	30	ND

MRL Method Reporting Limit

None Detected at or above the method reporting limit ND

Quantified as 4-methylphenol.

12/1 Approved by

Date 4-30

00058

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	03/31/92
Sample Matrix:	Water	Date Analyzed:	04/08/92
Outline mediat		Work Order No.:	K921979

Tentatively Identified Compounds (TIC)

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 μ g/L (ppb)

#10 Sample Name: K1979-1 Lab Code:

Estimated Retention CAS Concentration Time TIC Number

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Date 4 Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

U0059

Analytical Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 03/31/92 04/20/92 K921979
Sample Matrix:	***	Work Order No.:	K921979

Tentatively Identified Compounds (TIC) Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 μ g/L (ppb)

#8 Sample Name: K1979-3 Lab Code:

Estimated Retention CAS Concentration Time TIC Number

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Approved by Bun	TRANSTON	DateDate

00060

Analytical Report

Client:U.S. Army Corps of EngineersDate Received:03/30/92Project:Draw Down 92/#92-HM-179Date Extracted:03/31/92Sample Matrix:WaterDate Analyzed:04/20/92Work Order No.:K921979

Tentatively Identified Compounds (TIC)

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #9 Lab Code: K1979-4

CAS Number

TIC

Retention Time Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Approved by 413in	RELIANT	Date 4-30

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

.

U0061

Analytical Report

Client:	U.S. Army Corps of Engineers	Date Received: Date Extracted:	03/30/92 03/31/92
Project:	Draw Down 92/#92-HM-179	Date Analyzed:	04/21/92
Sample Matrix:	Water	Work Order No.:	

Tentatively Identified Compounds (TIC)

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

#1 Sample Name: К1979-6 Lab Code:

CAS Number	TIC	Retention Time	Estimated Concentration
		6.88	60
	Dimethylcyclopentenone Isomer	9.44	28
	Unknown	-	31
-	Unknown	9.50	36
	Unknown	10.00	
	Unknown	10.32	24
	Unknown	10.42	42
	Unknown	13.14	150
	Unknown	13.32	32
•-	Unknown Hydrocarbon	14.96	29
••	Unknown	19.19	29
	Unknown Hydrocarbon	21.24	71
		21.41	41
	Unknown	21.90	32
••	Unknown	22.00	28
	Unknown Hydrocarbon	22.50	24
**	Unknown Hydrocarbon		120
	Unknown	22.79	
	Unknown Organic Acid	23.35	29
	Unknown	25.61	31
	Unknown	26.32	78
-	(3.beta)-Stigmast-5-en-3-ol Isomer	36.47	76

Date 4-30 Approved by

u0062

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

.

Analytical Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 03/31/92 04/20/92 K921979
---------------------------------------	--	--	---

Tentatively Identified Compounds (TIC) Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 μ g/L (ppb)

Sample Name: #3 К1979-8 Lab Code:

CAS Number

TIC

Retention Time

Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Approved by	,	Bring	T	authors	I	Date <u>4-32</u>		
		P.O. Box 47			•	Telephone 206/577-7222	•	U0063 Fax 206/636-1068

Analytical Report

- ----

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 03/31/92 04/20/92 K921979
---------------------------------------	--	--	---

Tentatively Identified Compounds (TIC) Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270

µg/L (ppb)

Sample Name: #4 Lab Code: K1979-9

CAS Retention Estimated Number TIC Time Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Date 4-30 Approved by

Analytical Report

	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Date Extracted: Date Analyzed: Work Order No :	03/30/92 03/31/92 04/20/92 K921979
Gampie meese		Work Order No.:	K921979

Tentatively Identified Compounds (TIC)

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

#5 Sample Name: K1979-11 Lab Code:

CAS Number	TIC	Retention Time	Estimated Concentration
	Unknown		32
	Unknown		29
**	Dimethylcyclopentenone Isomer	•	92
	Unknown	1.	36
	Unknown	0	64
	Unknown		44
	Unknown		20
	Unknown		39
			21
	Unknown		140
••	Unknown		34
	Unknown	14.95	21
	Unknown Hydrocarbon		22
	Unknown	19.17	
	Unknown Hydrocarbon	21.23	58
	Unknown	21.39	37
	Unknown	21.88	21
	Unknown Hydrocarbon	22.00	18
	Unknown Hydrocarbon	22.49	20
	Unknown	22.77	80
	Unknown Organic Acid	23.32	26

EUHTO Date 4-30 Approved by 1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

ł

Analytical Report

AA MA (0.2

	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 03/31/92 04/20/92 K921979
--	--	--	---

Tentatively Identified Compounds (TIC) Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #6 Lab Code: K1979-12

CAS Number	TIC	Retention Time	Estimated Concentration

NO TENTATIVELY IDENTIFIED COMPOUNDS

DETECTED

Date 4-30 TANAT **U0**066 Approved by_

Analytical Report

U.S. Army Corps of Engineers Client: Draw Down 92/#92-HM-179 **Project:** Water Sample Matrix:

Date Received: 03/30/92 03/31/92 Date Extracted: Date Analyzed: 04/20/92 Work Order No.: K921979

Tentatively Identified Compounds (TIC)

Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 $\mu g/L (ppb)$

Sample Name: #7 K1979-13 Lab Code:

CAS	тіс	Retention	Estimated
Number		Time	Concentration
115866	Phosphoric Acid - Triphenyl Ester	25.58	7

Zauttir Date 1-30 Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

00067

APPENDIX A

LABORATORY QC RESULTS

Laboratory Chronicle

Client: U.S. Army Corps of Engineers Project: Draw Down 92/#92-HM-179

Date Received: 03/30/92 Work Order No.: K921979

Inorganic Parameters

	EPA	Date	
Analyte	Method	Analyzed	
Ammonia as Nitrogen	350.3	04/06/92	
Nitrate + Nitrite as Nitrogen	353.2	03/31/92	
Nitrogen, Total Kjeldahl (TKN)	351.4	04/08,21/92	
Orthophosphate as Phosphorus	365.3	04/01/92*	
Phosphorus, Total	365.3	04/01/92	

Sample was received past the end of the recommended maximum holding time.

;

GUMM Date Approved by 1-30

00069

QA/QC Report

U.S. Army Corps of Engineers Client: Draw Down 92/#92-HM-179 Project: Water Sample Matrix:

03/30/92 Date Received: Work Order No.: K921979

Duplicate Summary Inorganic Parameters mg/L (ppm)

#8 Sample Name: K1979-3 Lab Code:

Analyte	EPA Method	MRL	Sample Result	Duplicate Sample Result	Average	Relative Percent Difference
Ammonia as Nitrogen	350.3	0.05	0.07	0.07	0.07	<1
Nitrate + Nitrite as Nitrogen	353.2	0.2	ND	ND	ND	
Nitrogen, Total Kjeldahl (TKN)	351.4	0.1	0.7	0.7	0.7	<1
Orthophosphate as Phosphorus	365.3	0.01	0.04	0.04	0.04	<1
Phosphorus, Total	365.3	0.01	0.01	0.03	0.02	NC

Method Reporting Limit MRL

None Detected at or above the method reporting limit ND

Not Calculated NC

Date 4-30 Approved by

U0070 Fax 206/636-1068

– • • -

QA/QC Report

Client: U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 **Project:** Sample Matrix: Water

Date Received: 03/30/92 Work Order No.: K921979

Matrix Spike Summary Inorganic Parameters mg/L (ppm)

Sample Name: #8 K1979-3 Lab Code:

Analyte	EPA Method	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Nitrate + Nitrite as Nitrogen	353.2	0.2	2.0	ND	1.9	95	75-125
Nitrogen, Total Kjeldahl (TKN)	351.4	0.1	100	0.7	99.8	99	75-125
Orthophosphate as Phosphorus	365.3	0.01	0.2	0.04	0.22	90	75-125
Phosphorus, Total	365.3	0.01	0.2	0.01	0.23	110	75-125

MRL Method Reporting Limit ND None Detected at or above the method reporting limit

Date 4-30 Approved by

00071

QA/QC Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Sediment	Date Received: Work Order No.:	03/30/92 K921979	
---------------------------------------	---	-----------------------------------	---------------------	--

Duplicate Summary Total Metals mg/Kg (ppm) Dry Weight Basis

Sample Name:	#11
Lab Code:	K1979-2

	EPA		Sample	Duplicate Sample Result	Average	Relative Percent Difference
Analyte	Method	MRL	Result	NESUR	Meelaye	_
Aluminum	6010	10	8,870	8,120	8,500	9
Antimony	6010	10	ND	ND	ND	
Arsenic	7060	1	4	4	4	<1
Barium	6010	1	109	102	106	7
Beryllium	6010	1	ND	ND	ND	
Cadmium	6010	1	ND	ND	ND	
Calcium	6010	10	4,680	4,220	4,450	10
Chromium	6010	2	15	14	14	7
Cobalt	6010	2	16	15	15	6
Copper	6010	2	21	18	20	15
• •	6010	4	19,200	18,200	18,700	5
Iron	6010	20	ND	ND	ND	
Lead	6010	2	3,970	3,850	3,910	3
Magnesium	6010	1	326	311	318	5
Manganese	7471	0.2	ND	ND	ND	
Mercury	6010	10	12	12	12	<1
Nickel	6010	400	1,200	1,100	1,200	<1
Potassium	7740		ND	ND	ND	•••
Selenium	6010	2	ND	ND	ND	· +-
Silver	6010	20	252	252	252	<1
Sodium	-	1	ND	ND	ND	••
Thallium	7841	-	56	51	54	9
Vanadiu m Zinc	6010 6010	2 2	52	50	51	4

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Date 4-30 Approved by

U0072

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Received: Work Order No.:	03/30/92
Project:	Draw Down 92/#92-HM-179	Work Order No.:	KJ213/3
Sample Matrix:	Sediment		

Matrix Spike Summary **Total Metals** mg/Kg (ppm) **Dry Weight Basis**

Sample Name: Lab Code:

#11 K1979-2

Analyte	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Aluminum	10	724	8,870	8,800	NA	60-130
Antimony	10	181	ND	121	67	30-120
Arsenic	1	15	4	17	87	60-130
Barium	1	724	109	768	91	60-130
Beryllium	1	18	ND	17	94	60-130
Cadmium	1	18	ND	17	94	60-130
Chromium	2	72	15	84	96	60-130
Cobalt	2	181	16	181	91	60-130
Copper	2	91	21	101	88	60-130
Iron	4	362	19,200	18,600	NA	60-130
Lead	20	181	ND	173	96	60-130
Manganese	1	181	326	476	83	60-130
Mercury	0.2	0.5	ND	0.5	100	60-130
Nickel	10	181	12	187	97	60-130
Selenium	1	4	ND	4	100	60-130
Silver	2	18	ND	17	94	60-130
Thallium	1	18	ND	18	100	60-130
Vanadium		181	56	229	96	60-130
Zinc	2 2	181	52	208	86	60-130

MRL Method Reporting Limit

Not Applicable because of the sample matrix. Accuracy of the spike recovery value is reduced, NA since the sample concentration was greater than four times the amount spiked.

None Detected at or above the method reporting limit ND

TRANHAW Date 4-30 Approved by ABIN u0073

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Work Order No.:	K921979
Sample Matrix:	Water		

Duplicate Summary Total Metals µg/L (ppb)

Sample Name: #10 Lab Code: K1979-1

				Duplicate		Relative
	EPA		Sample	Sample	-	Percent
Analyte	Method	MRL	Result	Result	Average	Difference
Aluminum	6010	50	1,480	1,300	1,390	13
Antimony	6010	50	ND	ND	ND	••
Arsenic	7060	5	21	21	21	<1
Barium	6010	5	143	141	142	1
Beryllium	6010	5	ND	ND	ND	
Cadmium	6010	3	ND	ND	ND	
Calcium	6010	50	75,500	74,900	75,200	<1
Chromium	6010	5	ND	ND	ND	
Cobalt	6010	10	ND	ND	ND	
Copper	6010	10	ND	ND	ND	
Iron	6010	20	30,700	30,300	30,500	1
Lead	7421	2	ND	ND	ND	
Magnesium	6010	10	20,400	20,200	20,300	<1
Manganese	6010	5	4,390	4,360	4,380	<1
Mercury	7470	0.5	ND	ND	ND	
Nickel	6010	20	ND	ND	ND	
Potassium	6010	2,000	5,000	5,000	5,000	<1
Selenium	7740	5	ND	ND	ND	
Silver	6010	10	ND	ND	ND	
Sodium	6010	100	20,700	20,500	20,600	<1
Thallium	7841	5	ND	ND	ND	
Vanadium	6010	10	ND	ND	ND	
Zinc	6010	10	21	16	18	28

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

Date 4-30 00074 Approved by Kan-

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Work Order No.:	K921979
Sample Matrix:	Water		

Matrix Spike Summary **Total Metals** µg/L (ppb)

Sample Name: #10 K1979-1 Lab Code:

Analyte	MRL	Spike Level	Sample Result	Spiked Sample Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Aluminum	50	2,000	1,480	3,080	80	75-125
Antimony	50	500	ND	486	97	75-125
Arsenic	5	40	21	51	75	75-125
Barium	5	2,000	143	1,940	90	75-125
Beryllium	5	50	ND	47	94	75-125
Cadmium	3	50	ND	48	96	75-125
Chromium	5	200	ND	195	98	75-125
Cobalt	10	500	ND	467	93	75-125
Copper	10	250	ND	236	94	75-125
Iron	20	1,000	30,700	30,900	NA	75-125
Lead	2	20	ND	21	105	75-125
Manganese	5	500	4,390	4,810	84	75-125
Mercury	0.5	1.0	ND	0.9	90	60-140
Nickel	20	500	ND	481	96	75-125
Selenium	5	10	ND	8	80	60-125
Silver	10	50	ND	51	102	75-125
Thallium	5	50	ND	49	98	75-125
Vanadium	10	500	ND	496	99	75-125
Zinc	10	500	21	475	91	75-125

MRL Method Reporting Limit

ND None Detected at or above the method reporting limit

NA Not Applicable because of the sample matrix. Accuracy of the spike recovery value is reduced, since the sample concentration was greater than four times the amount spiked.

AUNT Date 4-30 Approved by YBM

00075

QA/QC Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Sediment	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 04/02/92 04/16/92 K921979
---------------------------------------	---	--	---

Surrogate Recovery Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3540/8080

Sample Name	Lab Code	Percent Tetrachloro- <i>m-x</i> ylene	R e c o v e r y Decachlorobiphenyl
#11	K1979-2	60	70
#11	K1979-2MS	74	65
#11	K1979-2DMS	77	66
#101	K1979-10	77	67
#12	K1979-14	75	82
Laboratory Control Sample	K1979-LCS	82	74
Method Blank	K1979-MB	84	74

CAS Acceptance Criteria

45-112

53-120

Date 4 Approved by 41311

U0076 Fax 206/636-1068

QA/QC Report

U.S. Army Corps of Engineers Client: Draw Down 92/#92-HM-179 Project: Sample Matrix: Sediment

Date Received:	03/30/92
Date Extracted:	04/02/92
Date Analyzed:	04/16/92
Work Order No.:	K921979

Matrix Spike/Duplicate Matrix Spike Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3540/8080 mg/Kg (ppm) Dry Weight Basis

Sample Name: #11 К1979-2 Lab Code:

Percent Recovery

	Spike	Level	Sample	Spike	Result			CAS Acceptance	Relative Percent
Analyte	MŚ	DMS	Result	MS	DMS	MS	DMS	Criteria	Difference
Gamma-BHC (Lindane)	0.12	0.12	ND	0.15	0.15	125	125	52-125	<1
Heptachlor	0.12	0.12	ND	0.09	0.09	75	75	38-147	<1
Aldrin	0.12	0.12	ND	0.13	0.10	108	83	51-124	26
Dieldrin	0.12	0.12	ND	0.11	0.10	92	83	57-130	10
Endrin	0.12	0.12	ND	0.11	0.10	92	83	54-143	10
4,4'-DDT	0.12	0.12	ND	0.08	0.07	67	58	40-157	14

None Detected at or above the method reporting limit ND

Date 4-30 Approved by

U0077

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Extracted:	
Project:	Draw Down 92/#92-HM-179	Date Analyzed:	
LCS Matrix:	Soil	Work Order No.:	K921979

Laboratory Control Sample Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3540/8080 mg/Kg (ppm)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Gamma-BHC (Lindane)	0.07	0.06	86	52-125
Heptachlor	0.07	0.06	86	38-147
Aldrin	0.07	0.06	86	51-124
Dieldrin	0.07	0.06	86	57-130
Endrin	0.07	0.07	100	54-143
4,4'-DDT	0.07	0.07	100	40-157

Zautin Date 4-30 Approved by

QA/QC Report

Client:U.S. Army Corps of EngineersProject:Draw Down 92/#92-HM-179Sample Matrix:Water

 Date Received:
 03/30/92

 Date Extracted:
 03/31/92

 Date Analyzed:
 04/04,07/92

 Work Order No.:
 K921979

Surrogate Recovery Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3510/8080

Sample Name	Lab Code	Percent Tetrachioro- <i>m</i> -xylene	R e c o v e r y Decachlorobiphenył
#10	K1979-1	38	41
#10	K1979-1MS	53	42
#10	K1979-1DMS	67	45
#8	K1979-3	46	56
#9	K1979-4	59	48
#1	K1979-6	62	NA
#3	K1979-8	49	41
#4	K1979-9	38	43
#5	K1979-11	73	NA
#6	K1979-12	43	37
	CAS Acceptance Criteria	26-93	31-111

NA Not Applicable because of the sample matrix. Analysis of this sample required a dilution such that the surrogate concentration was diluted below the MRL.

ENHIM 430 Date Approved by 00079

QA/QC Report

ps of Engineers Date Received:	03/30/92
2/#92-HM-179 Date Extracted:	03/31/92
Date Analyzed:	04/04/92
Work Order No.:	K921979
	/#92-HM-179 Date Extracted: Date Analyzed:

Surrogate Recovery Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3510/8080

Sample Name	Lab Code	Percent Tetrachioro- <i>m</i> -xylene	R e c o v e r y Decachlorobiphenyl
#7	K1979-13	33	61
Laboratory Control Sample	K1979-LCS	42	*30
Method Blank	K1979-MB	85	77

CAS Acceptance Criteria

26-93

31-111

Outside of acceptance limits. Since the reduced recovery is for the LCS, and since all recoveries for pesticides of interest were within acceptance criteria, it is the laboratory's opinion that the data has not been adversely impacted.

Date Approved by **U0080**

QA/QC Report

U.S. Army Corps of Engineers Client: Draw Down 92/#92-HM-179 Project: Sample Matrix: Water

Date Received: 03/30/92 03/31/92 Date Extracted: 04/04/92 Date Analyzed: Work Order No.: K921979

Matrix Spike/Duplicate Matrix Spike Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3510/8080 $\mu g/L$ (ppb)

Sample Name: #10 Lab Code: K1979-1

Percent Recovery

	Spike	e Level	Sample	Spike	Result			CAS Acceptance	Relative Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Criteria	Difference
Gamma-BHC (Lindane)	1.0	1.0	ND	0.64	0.75	64	75	58-119	16
Heptachlor	1.0	1.0	ND	0.62	0.71	62	71	37-115	14
Aldrin	1.0	1.0	ND	0.56	0.66	56	66	30-111	16
Dieldrin	1.0	1.0	ND	0.92	1.09	92	109	55-124	17
Endrin	1.0	1.0	ND	0.78	0.88	78	88	64-127	12
4,4'-DDT	1.0	1.0	ND	0.74	0.78	74	78	57-132	5

ND None Detected at or above the method reporting limit

	_		
Approved by Bin	TAMAN	Date 4-30	
			U O O S

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

81

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Extracted:	03/31/92
Project:	Draw Down 92/#92-HM-179	Date Analyzed:	04/04/92
LCS Matrix:	Water	Work Order No.:	K921979

Laboratory Control Sample Summary Organochlorine Pesticides and Polychlorinated Biphenyls (PCBs) EPA Methods 3510/8080 µg/L (ppb)

Analyte	True Value	Result	Percent Recovery	CAS Percent Recovery Acceptance Criteria
Gamma-BHC (Lindane)	1.0	0.67	67	58-119
Heptachlor	1.0	0.43	43	37-115
Aldrin	1.0	0.33	33	30-111
Dieldrin	1.0	0.88	88	55-124
Endrin	1.0	0.93	93	64-127
4,4'-DDT	1.0	0.71	71	57-132

2 VIATO Date 4-30 Approved by_

v0082

QA/QC Report

Client:U.S. Army Corps of EngineersProject:Draw Down 92/#92-HM-179Sample Matrix:Sediment

 Date Received:
 03/30/92

 Date Analyzed:
 04/03/92

 Work Order No.:
 K921979

Surrogate Recovery Summary Volatile Organic Compounds EPA Method 8240 (Low Level)

Sample Name	Lab Code	Percent Recovery				
• - · · ·		1,2-Dichloroethane - D ₄				
#11	K1979-2	110	90	99		
#101	K1979-10	106	91	100		
#12	K1979-14	111	95	99		
Method Blank	K1979-MB	104	89	97		
#12	K1979-14MS	75	108	105		
#12	K1979-14DMS	78	102	105		

EPA Acceptance Criteria	70-121	84-138	59-113
-------------------------	--------	--------	--------

/		
Approved by Think	TRAUMONT	Date 4-30

U0083

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
•	Draw Down 92/#92-HM-179	Date Analyzed:	04/03/92
		Work Order No.:	K921979
Sample Matrix:	Sediment	WORK Ofuer No	KJE I U / U

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds EPA Method 8240 (Low Level) µg/Kg (ppb) Dry Weight Basis

Sample Name: #12 Lab Code: K1979-14

Percent Recovery

	Spike	e Level	Sampie	Spike	Result			EPA Acceptance	Relative Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Criteria	Difference
1 1 Dichloroethene	97	95	ND	76	62	78	65	59-172	18
1,1-Dichloroethene	97	95	ND	73	91	75	96	66-142	25
Benzene Trichloroethene	97	95	ND	80	77	82	81	62-137	1
Toluene	97	95	ND	96	91	99	96	59-139	3
Chlorobenzene	97	95	ND	91	92	94	97	60-133	3

ND None Detected at or above the method reporting limit

Date 4-30 Approved by

v0084

QA/QC Report

U.S. Army Corps of Engineers Client: Draw Down 92/#92-HM-179 Project: Sample Matrix: Water

Date Received: 03/30/92 Date Analyzed: 04/03/92 Work Order No.: K921979

Surrogate Recovery Summary Volatile Organic Compounds EPA Method 8240

Sample Name	Lab Code	Perce 1,2-Dichloroethane - D ₄	n t Rec Toluene - D _B	-
#10	K1979-1	110	99	104
#8	K1979-3	107	99	101
#9	K1979-4	102	98	92
Method Blank	K1979-MB	101	99	102
				:
	EPA Acceptance Criteria	76-114	88-110	86-115

Approved by_	hanni	TRANTIT	Date 4-30

U0085

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

1

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date R
Project:	Draw Down 92/#92-HM-179	Date A
Sample Matrix:		Work C

Received: 03/30/92 04/06/92 Analyzed: Order No.: K921979

Surrogate Recovery Summary Volatile Organic Compounds EPA Method 8240

Sample Name	Lab Code	Percent Recovery 1,2-Dichloroethane - D ₄ Toluene - D ₈ 4-Bromofluorobenzen					
#14	K1979-5	105	107	109			
#1	K1979-6	98	98	102			
#3	K1979-8	107	105	106			
#4	K1979-9	105	104	105			
#5	K1979-11	103	99	104			
#6	K1979-12	106	105	104			
#C #7	K1979-13	112	104	107			
#13	K1979-15	109	106	109			
#6	K1979-12MS	108	103	106			
#6	K1979-12DMS	105	103	103			
Method Blank	K1979-MB	98	104	103			
	EPA Acceptance Criteria	76-114	88-110	86-115			

EPA Acceptance Criteria

Transfirst Date 4-30 Approved by_

U0086

QA/QC Report

U.S. Army Corps of Engineers Client: Draw Down 92/#92-HM-179 Project: Sample Matrix: Water

Date Received: 03/30/92 Date Analyzed: 04/06/92 Work Order No.: K921979

Matrix Spike/Duplicate Matrix Spike Summary Volatile Organic Compounds EPA Method 8240 μ g/L (ppb)

Sample Name: #6 Lab Code: K1979-12

Percent Recovery

	Spike	Sample	Spike	Result			EPA Acceptance	Relative Percent
Analyte	Level	Result	MS	DMS	MS	DMS	Criteria	Difference
1,1-Dichloroethene	50	ND	47	45	94	90	61-145	4
Benzene	50	ND	48	49	96	98	76-127	2
Trichloroethene	50	ND	47	49	94	98	71-120	4
Toluene	50	ND	49	51	98	102	76-125	4
Chlorobenzene	50	ND	49	49	98	98	75-130	<1

ND None Detected at or above the method reporting limit

Date 4-30 Approved by

u0087

QA/QC Report

Client:U.S. Army Corps of EngineersDate Received:03/30/92Project:Draw Down 92/#92-HM-179Date Extracted:04/06/92Sample Matrix:SedimentDate Analyzed:04/20/92Work Order No.:K921979

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270

Sample Name	Lab Code	2FP	Per Phl	cent TBP	Recov NBZ	ery FBP	трн
#11	K1979-2	66	71	93	72	82	89
EPA Acceptance Cri	teria	25-121	24-113	19-122	23-120	30-115	18-137

2FP 2-Fluorophenol PHL Phenol-D₈ TBP 2,4,6-Tribromophenol NBZ Nitrobenzene-D₅ FBP 2-Fluorobiphenyl TPH Terphenyl-D₁₄

Date 4-30 AJUNT Approved by

v0088

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	04/06/92
Sample Matrix:	Sediment	Date Analyzed:	04/16/92
•		Work Order No.:	K921979

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270

Sample Name	Lab Code	2FP	Per Phl	cent TBP	Recov NBZ	FBP	ТРН
#101	K1979-10	70	72	95	72	77	94
EPA Acceptance Criter	a	25-121	24-113	19-122	23-120	30-115	18-137

2FP 2-Fluorophenol Phenol-D₆ PHL

- 2,4,6-Tribromophenol TBP
- Nitrobenzene-D₅ NBZ
- 2-Fluorobiphenyl FBP
- Terphenyl-D₁₄ TPH

Date 4-30 G. MAR Approved by

UD089

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	04/06/92
Sample Matrix:	<u> </u>	Date Analyzed:	04/21/92
Sample meun	o dannon t	Work Order No.:	K921979

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270

Sample Name	Lab Code		Per	cent	Recov		
		2FP	PHL	TBP	NBZ	FBP	TPH
#101	K1979-10MS	68	72	91	70	78	101
#101	K1979-10DMS	70	73	88	75	7 9	95
EPA Acceptance C	riteria	25-121	24-113	19-122	23-120	30-115	18-137

2FP 2-Fluorophenol PHL Phenol-D₈ TBP 2,4,6-Tribromophenol NBZ Nitrobenzene-D₅ FBP 2-Fluorobiphenyl TPH Terphenyl-D₁₄

Date 4-30 WAT Approved by

v0090

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	04/06/92
Sample Matrix:	Sediment	Date Analyzed:	04/22/92
·		Work Order No.:	K921979

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270

Sample Name	Lab Code	2FP	Per Phl	cent TBP	Recov NBZ	FBP	ТРН
#12	K1979-14	67	66	81	70	75	110
EPA Acceptance Criter	a	25-121	24-113	19-122	23-120	30-115	18-137

2FP 2-Fluorophenol PHL Phenol-D₆ 2,4,6-Tribromophenol TBP NBZ Nitrobenzene-D₅ 2-Fluorobiphenyl FBP TPH Terphenyl-D₁₄

Date 4-30 Approved by

u0091

QA/QC Report

Date Received: 03/30/92 U.S. Army Corps of Engineers Client: Date Extracted: 04/06/92 Draw Down 92/#92-HM-179 Project: Date Analyzed: 04/10/92 Sample Matrix: Sediment Work Order No.: K921979

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270

Sample Name	Lab Code	2FP	Per Phl	cent TBP	R • c o v NBZ	ery FBP	ТРН
Method Blank	K1979-MB	76	78	81	81	89	113
Laboratory Control Sample	K1979-LCS	77	78	88	80	88	103
EPA Acceptance Criteria	1	25-121	24-113	19-122	23-120	30-115	18-137

2FP 2-Fluorophenol Phenoi-D₆ PHL 2,4,6-Tribromophenol TBP Nitrobenzene-D_s NBZ 2-Fluorobiphenyl **FBP** Terphenyl-D₁₄ TPH

Date Approved by_

u0092

QA/QC Report

Client: U.S. Army Corps of Engineers Project: Draw Down 92/#92-HM-179 Sample Matrix: Sediment

Date Received:	03/30/92
Date Extracted:	04/06/92
Date Analyzed:	04/21/92
Work Order No.:	K921979

Matrix Spike/Duplicate Matrix Spike Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) **Dry Weight Basis**

Sample Name: #101 K1979-10 Lab Code:

Percent Recovery

			. .					EPA	Relative
	Spike	Level	Sample	Spike	Result			Acceptance	Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Criteria	Difference
Phenol	4.3	4.3	ND	2.9	2.9	67	67	26-90	<1
2-Chlorophenol	4.3	4.3	ND	2.7	2.7	63	63	25-102	<1
1,4-Dichlorobenzene	1.7	1.7	ND	1.2	1.3	71	76	28-104	7
N-Nitrosodi-n-propylamine	1.7	1.7	ND	1.2	1.3	71	76	41-126	7
1,2,4-Trichlorobenzene	1.7	1.7	ND	1.2	1.3	71	76	38-107	7
4-Chloro-3-methylphenol	4.3	4.3	ND	3.3	3.4	77	79	26-103	3
Acenaphthene	1.7	1.7	ND	1.4	1.4	82	82	31-137	<1
4-Nitrophenol	4.3	4.3	ND	3.1	3.1	72	72	11-114	<1
2,4-Dinitrotoluene	1.7	1.7	ND	1.4	1.5	82	88	28-89	7
Pentachlorophenol	4.3	4.3	ND	2.9	2.5	67	58	17-109	14
Pyrene	1.7	1.7	ND	1.7	1.6	100	94	35-142	6

ND None Detected at or above the method reporting limit

All Date 4-30 Approved by Ъ

u0093

QA/QC Report

Client: Project: LCS Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Soil	04/06/92 04/10/92 K921979	
LCS Matrix:	2011		

Laboratory Control Sample Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3550/8270 mg/Kg (ppm) Dry Weight Basis

Analyte	True Value	Result	Percent Recovery	EPA Percent Recovery Acceptance Criteria
Phenol	3.0	2.0	67	5-112
2-Chlorophenol	3.0	2.3	77	23-134
1,4-Dichlorobenzene	1.2	0.9	75	20-124
N-Nitrosodi-n-propylamine	1 2	1.0	83	D-230
1,2,4-Trichlorobenzene	1.2	1.0	83	44-142
4-Chloro-3-methylphenol	3.0	2.2	73	22-147
	1.2	1.1	92	47-145
Acenaphthene	3.0	2.1	70	D-132
4-Nitrophenol	1.2	0.9	75	39-139
2,4-Dinitrotoluene	3.0	2.5	83	14-176
Pentachlorophenol Pyrene	1.2	1.2	100	52-115

D Detected; result must be greater than zero.

Date 4-30 Approved by

v0094

í

QA/QC Report

Client:	U.S. Army Corps of Engineers	Date Received:	03/30/92
Project:	Draw Down 92/#92-HM-179	Date Extracted:	03/31/92
Sample Matrix:	Water	Date Analyzed:	04/08/92
		Work Order No.:	K921979

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270

Sample Name	mple Name Lab Code			cent	nt Recovery		
		2FP	PHL	TBP	NBZ	FBP	TPH
#10 Method Blank	K1979-1 K1979-MB	48 48	34 33	84 73	78 76	80 62	87 90
EPA Acceptance Crite	ria	21-100	10-94	10-123	35-114	43-116	33-141
		21.00	10 04	10-125	55-114	43-110	33-141

- 2FP 2-Fluorophenol PHL
- Phenol-D₆ 2,4,6-Tribromophenol TBP
- Nitrobenzene-D₅ NBZ
- FBP 2-Fluorobiphenyl
- TPH Terphenyl-D₁₄

SUHT Approved by Date A-30

QA/QC Report

Client: Project: Sample Matrix:	U.S. Army Corps of Engineers Draw Down 92/#92-HM-179 Water	Date Received: Date Extracted: Date Analyzed: Work Order No.:	03/30/92 03/31/92 04/20/92 K921979
---------------------------------------	--	--	---

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270

	2FP	PHL	TBP	1107		
		· · · -	IDF	NBZ	FBP	ТРН
K1979-1MS	57	46	88	73	69	75
	57	47	98	78	76	101
		32	91	85	80	91
		27	80	73	72	95
			90	77	77	91
			88	75	72	87
			87	66	61	49
			101	80	75	89
		28	85	69	70	88
K1979-LCS	47	33	105	77	56	94
	21-100	10-94	10-123	35-114	43-116	33-141
	K1979-1MS K1979-1DMS K1979-3 K1979-4 K1979-8 K1979-9 K1979-11 K1979-12 K1979-13 K1979-LCS	K1979-1DMS57K1979-343K1979-438K1979-845K1979-944K1979-1150K1979-1246K1979-1337K1979-LCS47	K1979-1DMS5747K1979-34332K1979-34332K1979-43827K1979-84532K1979-94432K1979-115030K1979-124633K1979-133728K1979-LCS4733	K1979-1DMS574798K1979-3433291K1979-4382780K1979-8453290K1979-9443288K1979-11503087K1979-124633101K1979-13372885K1979-LCS4733105	K1979-1DMS 57 47 98 78 K1979-3 43 32 91 85 K1979-4 38 27 80 73 K1979-8 45 32 90 77 K1979-9 44 32 88 75 K1979-11 50 30 87 66 K1979-12 46 33 101 80 K1979-13 37 28 85 69 K1979-LCS 47 33 105 77	K1979-1DMS 57 47 98 78 76 K1979-3 43 32 91 85 80 K1979-3 43 32 91 85 80 K1979-4 38 27 80 73 72 K1979-8 45 32 90 77 77 K1979-9 44 32 88 75 72 K1979-11 50 30 87 66 61 K1979-12 46 33 101 80 75 K1979-13 37 28 85 69 70 K1979-LCS 47 33 105 77 56

2FP	2-Fluorophenol
PHL	Phenol-D _e
TBP	2,4,6-Tribromophenol
NBZ	Nitrobenzene-D ₅
FBP	2-Fluorobiphenyl
трн	Ternhenvi-D.

Date 4-30 Approved by

UOO96

QA/QC Report

U.S. Army Corps of Engineers Client: Project: Draw Down 92/#92-HM-179 Sample Matrix: Water

Date Received:	03/30/92
Date Extracted:	03/31/92
Date Analyzed:	04/21/92
Work Order No.:	K921979

Surrogate Recovery Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270

Sample Name	Lab Code	2FP	Per Phl	cent TBP	Recov NBZ	rery FBP	ТРН
#1	K1979-6	57	39	89	76	72	62
EPA Acceptance Criter	ia	21-100	10-94	10-123	35-114	43-116	33-141

2FP 2-Fluorophenol Phenol-D₆ PHL TBP 2,4,6-Tribromophenol Nitrobenzene-D₅ NBZ FBP 2-Fluorobiphenyl TPH Terphenyl-D₁₄

autor Date__ 4-30 Approved by

1317 South 13th Avenue • P.O. Box 479 • Kelso, Washington 98626 • Telephone 206/577-7222 • Fax 206/636-1068

00097

QA/QC Report

Client:U.S. Army Corps of EngineersProject:Draw Down 92/#92-HM-179Sample Matrix:Water

Date Received:	03/30/92
Date Extracted:	03/31/92
Date Analyzed:	04/20/92
Work Order No.:	K921979

Matrix Spike/Duplicate Matrix Spike Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 µg/L (ppb)

Sample Name: #10 Lab Code: K1979-1

Percent Recovery

								EPA	Relative
	Spike	Level	Sample	Spike	Result			Acceptance	Percent
Analyte	MS	DMS	Result	MS	DMS	MS	DMS	Criteria	Difference
Phenol	200	200	ND	90	87	45	44	12-89	2
2-Chlorophenol	200	200	ND	140	140	70	70	27-123	<1
1,4-Dichlorobenzene	82	82	ND	38	44	46	54	36-97	16
N-Nitrosodi-n-propylamine	82	82	ND	61	65	74	79	41-116	7
1.2.4-Trichlorobenzene	82	82	ND	42	47	51	57	39-98	11
4-Chloro-3-methylphenol	200	200	ND	150	150	75	75	23-97	<1
	82	82	ND	62	67	76	82	46-118	8
Acenaphthene	200	200	ND	80	72	40	36	10-80	11 🕓
4-Nitrophenol 2.4-Dinitrotoluene	82	82	ND	54	59	66	72	24-96	9
	200	200	ND	180	180	90	90	9 -103	<1
Pentachlorophenol Pyrene	82	82	ND	60	84	73	102	26-127	33

ND None Detected at or above the method reporting limit

Date 4-30 Approved by v0098

QA/QC Report

Client: U.S. Army Corps of Engineers Date Extracted: 03/31/92 Project: Draw Down 92/#92-HM-179 Date Analyzed: 04/20/92 LCS Matrix: Water Work Order No.: K921979

Laboratory Control Sample Summary Base Neutral/Acid Semivolatile Organic Compounds EPA Methods 3510/8270 μ g/L (ppb)

Analyte	True Value	Result	Percent Recovery	EPA Percent Recovery Acceptance Criteria
Phenol	100	27	27	5-112
2-Chlorophenol	100	67	67	23-134
1,4-Dichlorobenzene	40	12	30	20-124
N-Nitrosodi-n-propylamine	40	33	82	D-230
1,2,4-Trichlorobenzene	40	13	•32	44-142
4-Chioro-3-methylphenol	100	75	75	22-147
Acenaphthene	40	24	60	47-145
4-Nitrophenol	100	26	26	D-132
2,4-Dinitrotoluene	40	31	78	39-139
Pentachlorophenol	100	101	101	14-176
Pyrene	40	34	85	52-115

- Detected; result must be greater than zero. D
- . Outside acceptance limits

Date 4-30 Approved by rB

00099

APPENDIX B

CHAIN OF CUSTODY INFORMATION

l

00100

COOLER RECEIPT FORM

Projec	ct: Drawn Down 92	
Coole	er received on 3,30,92 and opened on 3,30,92 by L. Jording	
1)	Were custody seals on outside of cooler	
2)	Were custody papers taped to lid inside cooler?	· -
3)	Were custody papers properly filled out (ink, signed, etc.)?	
4)	Did you sign custody papers in the appropriate place?	
5)	Did you attach shipper's packing slip to this form?	
6)	What kind of packing material was used? Verniculise	
7)	Was sufficient ice used (if appropriate)?	
8)	Were all bottles sealed in separate plastic bags?	
9)	Did all bottles arrive in good condition (unbroken)?	
10)	Were all bottle labels complete (No., date, signed, anal. pres, etc.)	
11)	Did all bottle labels and tags agree with custody papers?	
12)	Were correct bottles used for the tests indicated?	
13)	Were VOA vials checked for absence of air bubbles, & noted if so?	
14)	Was sufficient amount of sample sent in each bottle?	
Explai	n any discrepancies> Sample #10 One VUA Record broken NU Sample Contamed. S. 3/30/92	

COOLER RECEIPT FORM

Proje	ct: Drawn Down 92
Coole	or received on 3,30,92 and opened on 3,30,92 by L. Jording
1)	Were custody seals on outside of cooler were signature and date correct? Were signature and date correct? were signature and date correct?
2)	Were custody papers taped to lid inside cooler?
3)	Were custody papers properly filled out (ink, signed, etc.)?
4)	Did you sign custody papers in the appropriate place?
5)	Did you attach shipper's packing slip to this form?
6)	What kind of packing material was used? Verniculise
7)	Was sufficient ice used (if appropriate)?
8)	Were all bottles sealed in separate plastic bags?
9)	Did all bottles arrive in good condition (unbroken)?
10)	Were all bottle labels complete (No., date, signed, anal. pres, etc.)
11)	Did all bottle labels and tags agree with custody papers?
12)	Were correct bottles used for the tests indicated?
13)	Were VOA vials checked for absence of air bubbles, & noted if so?
14)	Was sufficient amount of sample sent in each bottle?
Explai	n any discrepancies> Sample #10 One Vua Record broken no sample Contamed, 19. 3/30/92.

COOLER RECEIPT FORM

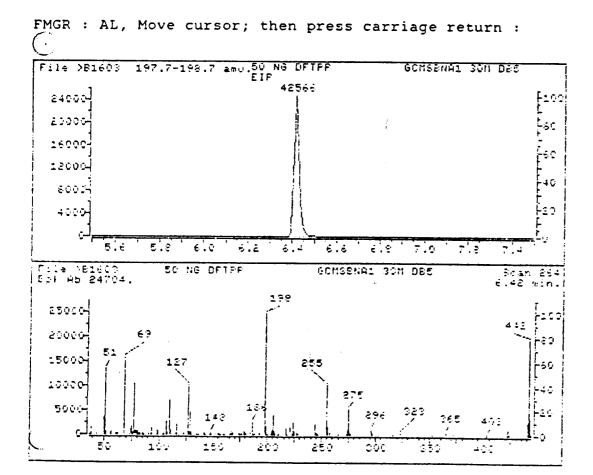
Project: Drawn Down 92

Cooler received on 3,30,92 and opened on 3,30,92 by L. Jording

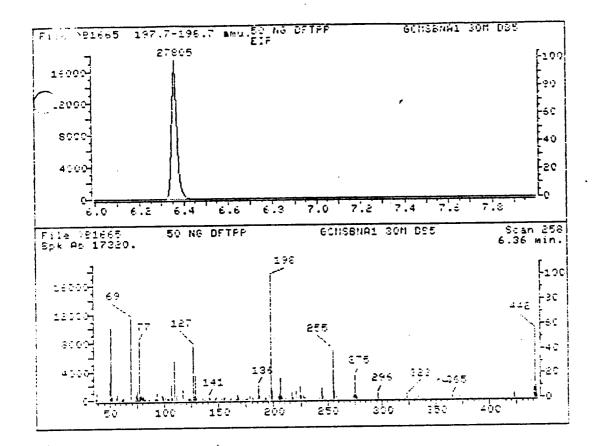
1)	If yes, how many and where? /his trang + side	YES	NO
	Were signature and date correct?	YES	NO
2)	Were custody papers taped to lid inside cooler?	TES	NO
3)	Were custody papers properly filled out (ink, signed, etc.)?	ES	NO
4)	Did you sign custody papers in the appropriate place?	YES	NO
5)		YES	NO
6)	What kind of packing material was used? Vermiculise	_	
7)	Was sufficient ice used (if appropriate)?	YES	NO
8)	Were all bottles sealed in separate plastic bags?	YES	NO
9)	Did all bottles arrive in good condition (unbroken)?	ES	NO
10)	Without all broads to be a second sec	\leq	NO
11)	Did all bottle labels and tags agree with custody papers?	YES	NO
12)	Were correct bottles used for the tests indicated?	TES	NO
13)	Were VOA vials checked for absence of air bubbles, & noted if so?	TES	NO
14)	A		NO
Explai	in any discrepancies> Sample #10 ONE VUA Recud No sample Contamed. \$9. 3/30/92.	brei	ken

1

APPENDIX C


RAW DATA

GC/MS PERFORMANCE STANDARD


Decafluorotriphenylphospine (DFTPP)

		% Relati	ve Abundance	
•	Ion Abundance	Base	Appropriate	
m/z	Criteria	Peak	Peak	Status
51	30-60% of mass 198	54.62	54.62	Ok
68	Less than 2% of mass 69	0.00	0.00	Ok
69	(reference only)	63.24	63.24	Ok
70	Less than 2% of mass 69	. 30	.47	Ok
127	40-60% of mass 198	41.01	41.01	Ok
197	Less than 1% of mass 198	0.00	0.00	Ok
198	Base peak, 100% relative abundance	100.00	100.00	OK
199	5-9% of mass 198	6.54	6.54	Ok
275	10-30% of mass 198	21.24	21.24	Ok
365	Greater than 1% of mass 198	2.03	2.03	Ok
441	0-100% of mass 443	10.86	78.74	Ok
442	Greater than 40% of mass 198	78.98	78.98	Ok
443	17-23% of mass 442	13.79	17.46	Ok

Injection Date: 04/08/92 Injection Time: 10:58 Data File: >B1603 Scan: 264

00108

C

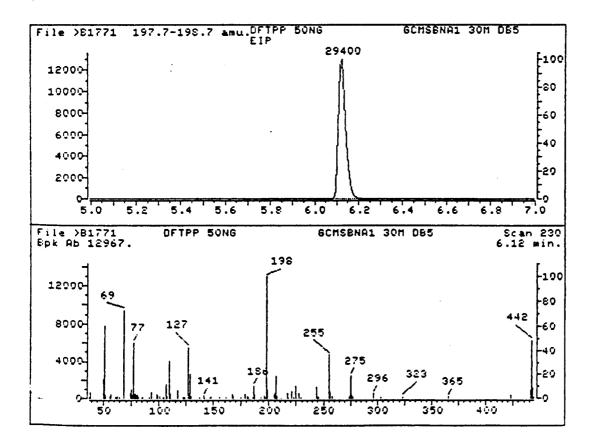
GC/MS PERFORMANCE STANDARD

Decafluorotriphenylphospine (DFTPP)

m/z	Ion Abundance Criteria		e Abundance Appropriate Peak	Status
51	зоба об mass 198	58.49	58.49	Ok
68	Less than 2% of mass 69	0.00	0.00	Ok
	(reference only)	65.88	65.88	Ok
69	Less than 2% of mass 69	0.00	0.00	Ok
70	40-60% of mass 198	43.44	43.44	Ok
127	Less than 1% of mass 198	0.00	0.00	Ok
197	Base peak, 100% relative abundance	100.00	100.00	Ok
198		7.01	7.01	Ok
199	5-9% of mass 198	18.61	18.61	Ok
275	10-30% of mass 198	1.86	1.86	Ok
365	Greater than 1% of mass 198	8.15	81.81	Ok
441	0-100% of mass 443	54.71	54.71	Ok
442 443	Greater than 40% of mass 198 17-23% of mass 442	9.97	18.22	Ok

Injection Date: 04/10/92 Injection Time: 10:44 Data File: >B1665 Scan: 258

FMGR : AL, Move cursor; then press carriage return :

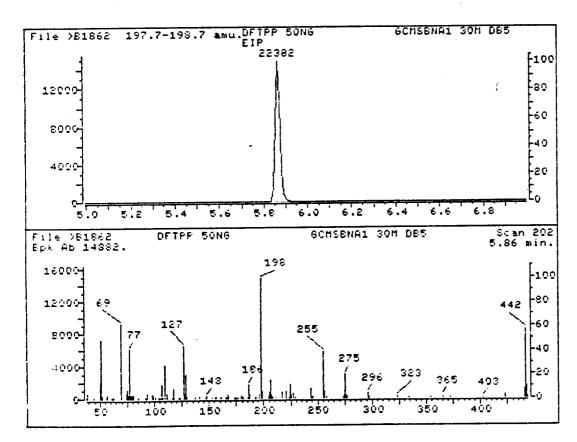

Decafluorotriphenylphospine (DFTPP)

	Ion Abundance		Abundance Appropriate	
m/z	Criteria	Peak	Peak	Status
51	30-60% of mass 198	· 59.78	59.78	Ok
68	Less than 2% of mass 69	0.00	0.00	Ok
69	(reference only)	72,60	72.60	Ok
70	Less than 2% of mass 69	0.00	0.00	Ok
127	40-60% of mass 198	42.40	42.40	Ok
197	Less than 1% of mass 198	.57	. 57	Ok
198	Base peak, 100% relative abundance	100.00	100.00	Ok
199	5-9% of mass 198	6.73	6.73	Ok
275	10-30% of mass 198	18.78	18.78	Ok
365	Greater than 1% of mass 198	1,90	1.90	Ok
441	0-100% of mass 443	7.15	81.03	Ok
442	Greater than 40% of mass 198	48.35	48.35	Ok
443	17-23% of mass 442	8.82	18.25	Ok

Injection Date: 04/15/92 Injection Time: 15:19 Data File: >B1771 Scan: 230

[GR : AL; Move cursor; then press carriage return :

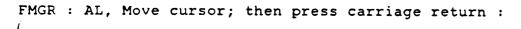
i

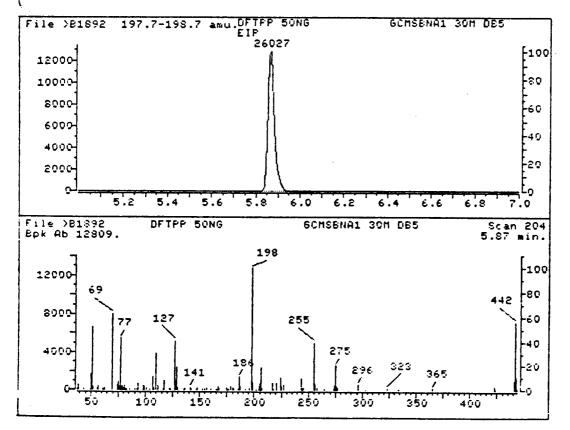

Decafluorotriphenylphospine (DFTPP)

		% Relative Abundance				
	Ion Abundance	Base	Appropriate			
m/z	Criteria	Peak	Peak	Status		
	30-60% of mass 198	48.55	48.55	Ok		
68	Less than 2% of mass 69	0.00	0.00	Ok		
69	(reference only)	62.34	62.34	Ok		
70	Less than 2% of mass 69	0.00	0,00	Ok		
127	40-60% of mass 198	43.86	43,86	Ok		
	Less than 1% of mass 198	0.00	0.00	Ok		
198	Base peak, 100% relative abundance	100.00	100.00	Ok		
199	5-9% of mass 198	6.22	6.22	Ok		
275	10-30% of mass 198	20.24	20.24	Ok		
365	Greater than 1% of mass 198	2.00	2.00	Ok		
441	0-100% of mass 443	8.04	80.81	Ok		
442	Greater than 40% of mass 198	56.72	56.72	Ok		
443	17-23% of mass 442	9.94	17.53	Ok		

Injection Date: 04/20/92 Injection Time: 10:43 Data File: >B1862 Scan: 202

::

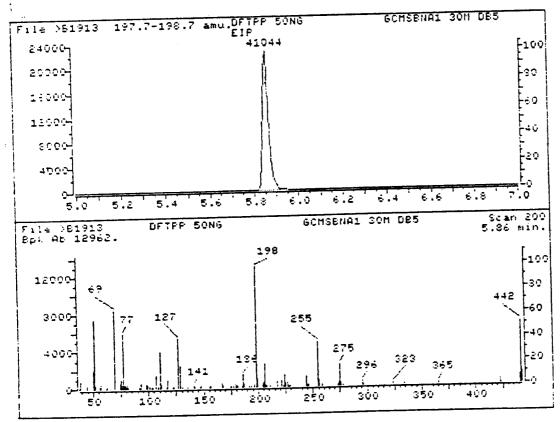

FMGR : AL, Move cursor; then press carriage return :



Decafluorotriphenylphospine (DFTPP)

1_	Ion Abundance	% Relative Base		
m/z	Criteria	Peak	Appropriate Peak	Status
51	30-60% of mass 198	52.62	52.62	Ok
68	Less than 2% of mass 69	0.00	0.00	Ok
69	(reference only)	62,50	62,50	Ok
70	Less than 2% of mass 69	0.00	0.00	Ok
127	40-60% of mass 198	40.53	40,53	Ok
197	Less than 1% of mass 198	0.00	0.00	Ok
198	Base peak, 100% relative abundance	100.00	100.00	Ok
199	5-9% of mass 198	6.26	6.26	Ok
275	10-30% of mass 198	20.13	20.13	Ok
365	Greater than 1% of mass 198	1.87	1.87	Ok
441	0-100% of mass 443	7.92	76.26	Ok
442	Greater than 40% of mass 198	56.03	56.03	Ok
443	17-23% of mass 442	10.39	18.55	Ok

Injection Date: 04/21/92 Injection Time: 11:46 Data File: >B1892 Scan: 204

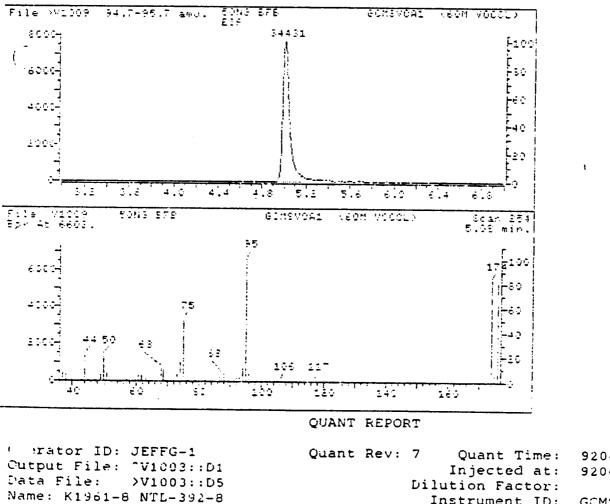


Decafluorotriphenylphospine (DFTPP)

	Ion Abundance	% Relative Base Peak	Abundance Appropriate Peak	Status
/z	Criteria			
		57.01	57.01	Ok
51	30-60% of mass 198	0.00	0.00	Ok
58	Less than 2% of mass 69	65.19	65.19	Ok
59	(reference only)	0.00	0.00	Ok
70	Less than 2% of mass 69	41.14	41,14	Ok
27	40-60% of mass 198	0.00	0.00	Ok í
97	Less than 1% of mass 198	100.00	100.00	Ok
98	Base peak, 100% relative abundance	6.73	6.73	Ok
99	5-9% of mass 198	18,19	18.19	Ok
75	10-30% of mass 198	1.55	1.55	Ok
65	Greater than 1% of mass 198	6.84	72,50	Ok
41	0-100% of mass 443	50.83	50.83	Ok
42	Greater than 40% of mass 198	9.43	18.55	Ok
43	17-23% of mass 442	2.20		

Injection Date: 04/22/92 Injection Time: 08:50 Data File: >B1913 Scan: 200

:: FMGR : AL, Move cursor; then press carriage return :



Eromofluorobenzene (BFB)

(Ion Abundance Move cursor; then press carriage	Base	e Abundance Appropriate	
	Hove cursor, then press carriage	return :	Peak	Status
50	15-40% of mass 95	20.38	20.38	 Ok
75	30-60% of mass 95	49.28	49.28	Ok
95	Base peak, 100% relative abundance	100.00	100.00	Ok
56	5-9% of mass 95	6.41	6.41	Ok
173	Less than 2% of mass 174	0.00	0.00	Ok
174	Greater than 50% of mass 95	83.40	83.40	Ok
175	5-9% of mass 174	5.06	6.07	Ok
176	95-101% of mass 174	80.63	96.68	Ok
177	5-9% of mass 176	5,38	6.67	Ok

Injection Date: 04/03/92 Injection Time: 13:52 Data File: >V1009 Scan: 254

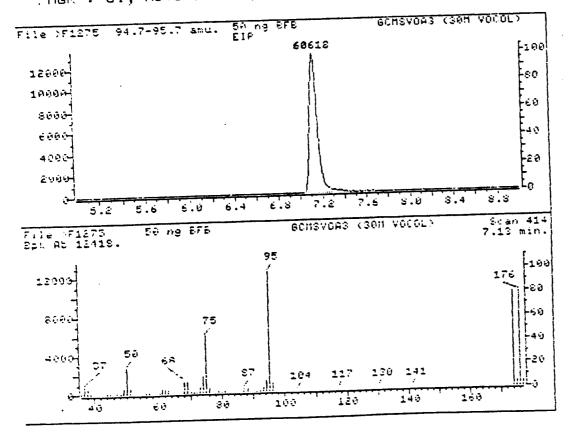
FMGR : AL,, 3

920403 08:37 920402 19:09 1,00000 GCMSVOA1

Instrument ID:

Page 1

ID File: ID_LLV::D1 mitist mome TOW TEVET VOLVETLES METHOD 2020 MODIFIED


Misc: GCMSVOA1 (60M VOCOL)

Bromofluorobenzene (BFB)

m/z	Ion Abundance Criteria	% Relative Base Peak	Abundance Appropriate Peak	Status
50 75 95 96 173 174 175 176 177	15-40% of mass 95 30-60% of mass 95 Base peak, 100% relative abundance 5-9% of mass 95 Less than 2% of mass 174 Greater than 50% of mass 95 5-9% of mass 174 95-101% of mass 174 5-9% of mass 176	21.78 47.88 100.00 6.56 0.00 79.00 5.54 79.05 5.27	$\begin{array}{c} 21.78 \\ 47.83 \\ 100.00 \\ 6.56 \\ 0.00 \\ 79.00 \\ 7.01 \\ 100.06 \\ 6.66 \end{array}$	Ok Ok Ok Ok Ok Ok Ok

Injection Date: 04/06/92 Injection Time: 10:10 Data File: >F1275 Scan: 414

.MGR : al, Move cursor; then press carriage return :

NET Pacific, Inc. 435 Tesconi Circle Santa Rosa, CA 95401 Tel: (707) 526-7200 Fax: (707) 526-9623

Director Portland Army Corps of Eng CENPD Materials Lab. 1491 NW Graham Ave. Troutdale, OR 97060

Date: 04/13/1992 NET Client Acct No: 702 NET Pacific Log No: 92.1645 Received: 03/28/1992

Client Reference Information

Draw Down 92, Work Order No: 92-HM-179

Sample analysis in support of the project referenced above has been completed and results are presented on following pages. The analytical results for solid samples are reported on dry weight basis. The reporting limits have not been adjusted for dry weight. Please refer to the enclosed "Key to Abbreviations" for definition of terms. Should you have questions regarding procedures or results, please feel welcome to contact Client Services.

Approved by:

Jules Skamarack Laboratory Manager

Enclosure(s)

Client No:702Date:04/13/1992Client Name:Portland Army Corps of EngPage:2NET Log No:92.1645

٠

NET Pacific, Inc

Ref: Draw Down 92, Work Order No: 92-HM-179

SAMPLE DESCRIPTION:10 Clarkston W. W. PlantSAMPLE TAKEN:03/25/1992SAMPLE RECEIVED:03/28/1992TIME TAKEN:14:00LAB JOB NO:(-117766)

•	Hethod	Reporting Limit	Results	Units	Date Received	Date Extracted	Date Analyzed	QC Batch ID
Parameter				-				
METHOD 8080 (GC,Liquid)					03/28/1992		04/10/1992	G9P161W3
DATE EXTRACTED			03-31-92		03/28/1992	03/31/1992	04/10/1992	G9P161W3
DATE ANALYZED			04-10-92		03/28/1992	03/31/1992	04/10/1992	G9P161W3
DILUTION FACTOR*			1		03/28/1992	03/31/1992		G9P161W3
	8080	0.02	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
Aldrin	8080	0.005	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
alpha-BHC	8080	0.005	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
beta-BHC	8080	0.005	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
delta-BHC	8080	0.02	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
gamma-BHC (Lindane)	8080	0.4	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
Chlordane	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
4,4'-DDD	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
4,4'-DDE	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	
4,4'-DDT	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
Dieldrin	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
Endosulfan I	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
Endosulfan II		0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W2
Endosulfan sulfate	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W3
Endrin	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W
Endrin aldehyde	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W
Heptachlor	8080	0.05	ND	ug/L	03/28/1992	03/31/1992		G9P161W
Heptachlor epoxide	8080	0.05	ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W
Methoxychlor	8080		ND	ug/L	03/28/1992	03/31/1992	04/10/1992	G9P161W
Toxaphene	8080	1.0			03/28/1992	03/31/1992	04/10/1992	G9P161W
POLYCHLORINATED BIPHENYL	S			ug/L	03/28/1992	03/31/1992		G9P161₩
Aroclor 1016	8080	. 0.5	ND	ug/L	03/28/1992	03/31/1992		G9P161W
Aroclor 1221	8080	0.5	ND		03/28/1992	03/31/1992		G9P161W
Aroclor 1232	8080	0.5	ND	ug/L	03/28/1992	03/31/1992		G9P161W
Aroclor 1242	8080	0.6	ND	ug/L	03/28/1992		_	G9P161W
Aroclor 1248	8080	0.5	ND	ug/L	03/28/1992	03/31/1992		
Aroclor 1254	8080	0.5	ND	ug/L	03/28/1992	03/31/1992		
Aroclor 1260	8080	0.5	ND	ug/L	03/28/1992			
SURROGATE RESULTS			••	A	03/28/1992			
Tetrachlorometaxylene			N/A *	X Rec.	03/28/1992			
Dibutylchlorendate			N/A *	X Rec.	U3/20/1992			

* Surrogates not added, insufficient sample to reextract.

Client No: 702 Date: 04/13/1992 Client Name: Portland Army Corps of Eng Page: 3 NET Log No: 92.1645

NET Pacific, Inc

Ref: Draw Down 92, Work Order No: 92-HH-179

SAMPLE DESCRIPTION: 10 Clarkston W. W. Plant SAMPLE RECEIVED: 03/28/1992 LAB JOB NO: (-117766)

SAMPLE TAKEN: 03/25/1992 TIME TAKEN: 14:00

	Reporting			Date	Date	Date	90	
Parameter	Nethod	Limit	Results	Units	Received	Extracted	Analyzed	Batch ID
METHOD 8240(GCMS,Liquid)				••••••	03/28/1992			· · · · · · · · · · · · · · · · · · ·
DATE ANALYZED			03-31-92		03/28/1992	:	03/31/1992	SC0229¥1
DILUTION FACTOR*			1		03/28/1992	:	03/31/1992	SC0229W1
Acetone	8240	10	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Benzene	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Bromodichloromethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Bromoform	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Bromomethane	8240	5.0	ND ·	ug/L	03/28/1992	:	03/31/1992	\$C0229W1
2-Butanone	8240	10	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Carbon disulfide	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Carbon Tetrachloride	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Chlorobenzene	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Chloroethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
2-Chioroethyl vinyl ether	8240	10	ND	ug/L	03/28/1992	-	03/31/1992	SC0229W1
Chloroform	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Chloromethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Dibromochloromethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229V1
1,2-Dichlorobenzene	8240	6.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,3-Dichlorobenzene	8240	6.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,4-Dichlorobenzene	8240	6.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,1-Dichloroethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,2-Dichloroethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,1-Dichloroethene	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
trans-1,2-Dichloroethene	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,2-Dichloropropane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
cis-1,3-Dichloropropene	8240	5.0	ND	ug/L	03/28/1992	•	03/31/1992	SC0229W1
trans-1,3-Dichloropropene	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Ethyl benzene	8240	5.0	ND	ug/L	03/28/1992		03/31/1992	SC0229W1
2-Hexanone	8240	10	ND	ug/L	03/28/1992		03/31/1992	SC0229W1
Methylene chloride	8240	25	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
4-Methyl-2-pentanone	8240	10	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Styrene	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,1,2,2-Tetrachloroethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Tetrachloroethene	8240	5.0	ND	ug/L	03/28/1992	•	03/31/1992	SC0229W1
Toluene	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,1,1-Trichloroethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
1,1,2-Trichloroethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Trichloroethene	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	SC0229W1
Trichlorofluoromethane	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992	
Vinyl acetate	8240	10	ND	ug/L	03/28/1992	•		SC0229W1
Vinyl chloride	8240	5.0	ND	ug/L	03/28/1992		03/31/1992	SC0229W1
Xylenes (total)	8240	5.0	ND	ug/L	03/28/1992	:	03/31/1992 03/31/1992	SC0229W1
SURROGATE RESULTS					03/28/1992		-	SC0229W1
Toluene-d8	8240		105	% Rec.	03/28/1992	:	03/31/1992 03/31/1992	SC0229W1
Bromofluorobenzene	8240		103	X Rec.	03/28/1992			SC0229W1
1,2-Dichloroethane-d4	8240		94	X Rec.		:	03/31/1992	SC0229W1
				A REC.	03/28/1992	:	03/31/1992	SC0229W1

Date: 04/13/1992 Client No: 702 Date: 04 Client Name: Portland Army Corps of Eng Page: 4 NET Log No: 92.1645

Ref: Draw Down 92, Work Order No: 92-HH-179

SAMPLE RECEIVED:	10 Clarkston W. W. Plant 03/28/1992 (-117766)	SAMPLE TAKEN: TIME TAKEN:	
------------------	--	------------------------------	--

		Reporting			Date	Date	Date	QC Batch 1D
Parameter	Nethod	Limit	Results	Units	Received	Extrected	Analyzed	Batth 10
	<u> </u>				03/28/1992			
METHOD 8270(GCMS,Liquid)			03-31-92		03/28/1992	03/31/1992	04/03/1992	\$80476W1
DATE EXTRACTED			04-03-92		03/28/1992	03/31/1992	04/03/1992	S80476W1
DATE ANALYZED			1		03/28/1992	03/31/1992	04/03/1992	SB0476W1
DILUTION FACTOR*			1	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Acenaphthene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Acenaphthylene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Aldrin	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476₩1
Anthracene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Benzidine	8270	44	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Benzo(a)anthracene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476¥1
Benzo(b)fluoranthene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Benzo(k)fluoranthene	8270	10	ND	-	03/28/1992	03/31/1992	04/03/1992	SB0476⊌1
Benzo(a)pyrene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Benzo(g,h,i)perylene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Benzoic acid	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W1
Benzyl alcohol	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476¥1
Butyl benzyl phthalate	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	S80476₩
delta-BHC	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W
gemma-BHC	8270	50	ND	ug/L	03/28/1992	03/31/1992		S80476W
bis(2-Chloroethyl)ether	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W
bis(2-Chloroethoxy)methane	8270	10	ND	ug/L	03/28/1992	03/31/1992		SB0476W
bis(2-Chloroisopropyl)ethe	r 8270	10	ND	ug/L		03/31/1992	04/03/1992	SB0476W
bis(2-Ethylhexyl)phthalate	8270	10	ND	ug/L	03/28/1992	03/31/1992		SB0476₩
4-Bromophenyl phenyl ether	8270	10	ND	ug/L	03/28/1992	03/31/1992		S80476W
4-Chloroaniline	8270	10	ND	ug/L	03/28/1992	03/31/1992		SB0476W
2-Chloronaphthalene	8270	10	ND	ug/L	03/28/1992	03/31/1992		SB0476W
4-Chlorophenyi phenyi ethe	r 8270	10	ND	ug/L	03/28/1992			SB0476W
	8270	10	ND	ug/L	03/28/1992	03/31/1992		S80476W
Chrysene	8270	50	ND	ug/L	03/28/1992	03/31/1992	· · ·	SB0476
4,4'-DDD	8270	50	ND	ug/L	03/28/1992	03/31/1992		SB0476W
4,4'-DDE	8270	50	ND	ug/L	03/28/1992			SB0476W
4,4'-DDT Dibenzo(a,h)anthracene	8270	10	ND	ug/L	03/28/1992			
	8270	10	ND	ug/L	03/28/1992			
Dibenzofuran	8270	10	ND	ug/L	03/28/1992			
Di-n-butylphthalate	8270	10	ND	ug/L	03/28/1992			
1,2-Dichlorobenzene	8270	10	ND	ug/L	03/28/1992			
1,3-Dichlorobenzene	8270	10	ND	ug/L	03/28/1992		2 04/03/1992	
1,4-Dichlorobenzene	8270	20	ND	ug/L	03/28/1992		2 04/03/1992	SB0476
3,3'-Dichlorobenzidine	8270	50	ND	ug/L	03/28/1992			
Dieldrin	8270	10	ND	ug/L	03/28/1992	03/31/199		
Diethylphthalate	8270	10	ND	ug/L -	03/28/1992		2 04/03/1992	
Dimethyl phthalate	8270	10	ND	ug/L	03/28/1992		2 04/03/1992	
2,4-Dinitrotoluene	8270	10	ND	ug/L	03/28/1992			
2,6-Dinitrotoluene	8270	10	ND	ug/L	03/28/1997			-
Di-n-octyl phthalate	8270	50	ND	ug/L	03/28/1992	2 03/31/199		
Endrin aldehyde	8270	10	ND	ug/L	03/28/1992	2 03/31/199	2 04/03/1997	
Fluoranthene		10	ND	ug/L	03/28/1993	2 03/31/199	2 04/03/199	2 SB0476
Fluorene	8270			-				

Date: 04/13/1992 Client No: 702 Client Name: Portland Army Corps of Eng Page: 5 NET Log No: 92.1645

NET Pacific, Inc

Ref: Draw Down 92, Work Order No: 92-HM-179

SAMPLE DESCRIPTION: 10 Clarkston W. W. Plant SAMPLE RECEIVED: 03/28/1992

LAB JOB NO: (-117766)

SAMPLE TAKEN: 03/25/1992 TIME TAKEN: 14:00

		Reporting			Date	Date	Date	QC
arameter	Nethod	Limit	Results	Units	Received	Extracted	Analyzed	Batch II
Heptachlor	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W
Heptachlor epoxide	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476₩
Hexachiorobenzene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W
Hexachlorobutadiene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W
Hexachlorocyclopentadiene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476W
Hexachioroethane	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
Indeno(1,2,3-cd)pyrene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
Isophorone	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
2-Methylnaphthalene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
Naphthalene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
2-Nitroaniline	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
3-Nitroaniline	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB04761
4-Nitroaniline	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
Nitrobenzene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
N-Nitroso-Di-N-propylamine	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
N-Nitrosodiphenylamine	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
Phenanthrene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
Pyrene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
1,2,4-Trichlorobenzene	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
ACID EXTRACTABLES			••	-	03/28/1992	03/31/1992	04/03/1992	SB0476
4-Chloro-3-methylphenol	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
2-Chlorophenol	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
2.4-Dichlorophenol	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
2.4-Dimethylphenol	8270	10	ND	ug/L	03/28/1992	/ 03/31/1992	04/03/1992	SB0476
2.4-Dinitrophenol	8270	50	ND	ug/L	03/28/1992	63/31/1992	04/03/1992	SB0476
4,6-Dinitro-2-methylphenol		50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
2-Nitrophenol	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
4-Nitrophenol	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
Pentachlorophenol	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
Phenol	8270	10	ND	Ug/L	03/28/1992	03/31/1992	04/03/1992	S80476
2,4,6-Trichlorophenol	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
2-Nethylphenol	8270	10	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
4-Methylphenol	8270	10	ND	Ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
2,4,5-Trichlorophenol	8270	50	ND	ug/L	03/28/1992	03/31/1992	04/03/1992	SB0476
SURROGATE RESULTS				-	03/28/1992	03/31/1992	04/03/1992	SB0476
Nitrobenzene-c5	8270		97	% Rec.	03/28/1992	03/31/1992	04/03/1992	SB0476
2-Fluorobiphenyl	8270		82	% Rec.	03/28/1992	03/31/1992	04/03/1992	SB0476
p-Terphenyl-d14	8270		76	% Rec.	03/28/1992	03/31/1992	04/03/1992	S80476
Phenol-d5	8270		31	% Rec.	03/28/1992	03/31/1992	04/03/1992	SB0476
2-Fluorophenol	8270		28	X Rec.	03/28/1992	03/31/1992	04/03/1992	S80476
2,4,6-Tribromophenol	8270		29	% Rec.	03/28/1992	03/31/1992	04/03/1992	SB0476

APPENDIX 0-1

The following tables are from the U.S. Geological Service report on the 1992 reservoir drawdown test. The Service collected water quality data in addition to velocity, as reported in Appendix M.

Snake			Type of Data		
River Mile	Sediment	Velocity	Temperature	Turbidity	Dye
70.5 a					
70.9		х			
79.2		х			
91.		Х			
101.		Х			
106.		Х			
107.5 b					
107.73		X			
108.31		Х	x	х	x
114.		Х		•	x
119.		Х	x	х	
120.46		Х	x	х	X
126.		Х			X
130.66		Х	x	Х	-
132.05	x	Х	x	х	x
137.17	x	Х	x	x	
138.34		X	x	x	X
139.43	x	Х	x	x	X
141.21		Х	x	x	
142.		Х			X
145.		Х	· · · ·		X
148.09		Х			X
167.2 c	х		x	i i	
Clearwater River Mile					
0.41	x	x	x	x	
1.26		х	x	x	
2.34		х	x	x	
11.6 d	x		x		

Table 1. Lower Granite Drawdown Study Cross-section Locations

a - location of Little Goose Dam

b - location of Lower Granite Dam

c - location of gaging station, Snake River near Anatone, WA (13334300)

d - location of gaging station, Clearwater River at Spalding, ID (13342500)

TEMPERATURE AND TURBIDITY

Background stream temperature at the two gaging stations that monitor Lower Granite Reservoir inflow are shown in tables 10 and 11. The data shown cover the period of this project.

Temperature and turbidity data from the river and reservoir cross-sections were collected by the crew and boat that also collected the velocity data. In the riverine environment where high velocities were encountered, the lake-sampling equipment available to us did not work well. The large diameter cylindrical probes tended to float on the surface. To overcome this problem, we developed a "drift and drop" method. In this method, the boat was maneuvered slightly upstream of the section, engine power was cut back and the boat was allowed to drift back through the section. When the boat was again on section, the probes were lowered to about one-half total depth as recorded by the boats fathometer. One quick reading at each location in the cross-section was obtained. This method was repeated at three locations in each cross-section. The lateral distribution of temperature and turbidity was recorded in this manner and the vertical distribution was assumed to be constant in the turbulent flow.

Tables 12-48 show data from the several verticals at each river mile location assigned. Stream temperature is recorded to the nearest tenth of degree on the Centigrade Scale, and turbidity is indicated as a percent of light transmissivity, where 0 percent = total light extinction and 100 percent = completely translucent medium.

STATION NUMBER 13334300STATION NUMBER 13342500SNAKE RIVER NR ANATONE WACLEARWATER RIVER AT SPALDING ID

WATER TEMPERATURE, DEGREES CELSIUS, FEBRUARY 20 TO MARCH 31, 1992

DAY	MAX	MIN	MAX	MIN	DAY	MAX	MIN	MAX	MIN
	FEE	RUARY	MA	RCH		FEI	BRUARY	MA	RCH
1			7.7	6.7	1			8.0	8.0
2			7.6	6.9	2			8.0	8.0
3			7.7	6.8	3			8.0	8.0
4			8.3	6.9	4			9.0	9.0
5			7.3	6.6	5			9.0	9.0
6			7.4	6.6	6			8.5	8.5
7			7.6	7.2	7			8.5	8.5
8			7.8	7.3	8			8.5	8.5
9					9			9.0	9.0
10					10			9.0	9.0
11					11			8.5	8.5
12					12			8.5	8.5
13					13			9.0	9.0
14					14			8.5	8.5
15					15			9.0	9.0
16					16			9.0	9.0
17					17			9.0	9.0
18					18			9.0	9.0
19					19			8.0	8.0
20	6.2	5.1			20	5.5	5.5	9.0	9.0
21	6.2	5.8			21	5.5	5.5	9.5	9.5
22	6.6	5.7			22	6.5	6.0	9.5	9.5
23	6.3	5.7			23	6.5	6.0	9.0	9.0
24	6.7	5.9			24	6.5	6.5	9.0	9.0
25	7.3	6.3			25	7.0	6.5	9.5	9.5
26	7.3	6.7			26	7.0	7.0	9.5	9.5
27	7.2	6.3			27	8.0	8.0	9.5	9.5
28	7.2	6.4			28	8.0	8.0	9.5	9.5
29	7.2	6.6			29	8.0	8.0	9.5	9.5
30					30				10.0
31					31				10.5

Table 10.

Table 11.

Table 12.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 148.09 on March 19, 1992.

		Di	stance	from	left ba	ink (fee	t)		
175	,	350		52	25				
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	-	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
7.2	8.0	4.8	8.1	3.6	8.1				
12	Btm	8	Btm	6	Btm				

		Di	istance	from 1	left ba	ınk (fe	et)		
17	5	350)	52	25				
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
6.7	42.0	5.0	42.0	3.3	42.0				
12	Btm	8	Btm	6	Btm				

Table 13.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 145.0 on March 19, 1992.

		Di	stance	from l	eft ba	nk (fee	t)		
200		400		60	0				
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
7.8	8.0	7.8	8.0	5.4	8.0				
13	Btm	13	Btm	9	Btm				

	_			from 1		nk (fee	;,		
225	0	450)	U.					
Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	-	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
6.7	42.0	6.7	42.0	5.0	42.0				
13	Btm	13	Btm	9	Btm			•	

Table 14.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 142.00 on March 19, 1992.

		Di	stance	from l	eft ba	nk (fee	t)		
150		300		45	0				
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
6.0	8.0	8.4	8.0	8.4	8.0				
10	Btm	14	Btm	14	Btm				

Distance from left bank (feet)

15	150		300		450				
Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
5.0	43.0	8.2	43.0	8.2	43.0				
10	Btm	14	Btm	14	Btm			-	

Distance from left bank (feet)											
150	I	400		700) 	900	I	1,20	0		
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)		
1.2 2.4 3.6 4.8	5.8 5.8 5.8 5.8	1.9 3.7 5.6 7.4	5.8 5.7 5.7 5.7	1.6 3.2 4.8 6.4	5.7 5.7 5.7 5.7	1.5 3.0 4.5 6.0	5.7 5.7 5.7 5.7	1.7 3.4 5.2 6.9	5.7 5.7 5.7 5.7 5.7		
6	Btm	9.3	Btm	8	Btm	7.5	Btm	8.6	Btm		

Table 15.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 141.21 on February 25, 1992.

Distance	from	left	bank	(feet)
220000000			Danz	(エピモレノ

15	0	400	0	700		900		1,200	
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
3.3 6.7 9.8 13.1 16.4	29 28 27 27 28	3.3 6.7 9.8 13.1 16.4 19.7 23.0 26.3	33 32 31 31 31 29 30 28	3.3 6.7 9.8 13.1 16.4 19.7 23.0	32 31 31 30 30 30 30	3.3 6.7 9.8 13.1 16.4 19.7 23.0	31 31 31 31 31 31 31 29	3.3 6.7 9.8 13.1 16.4 19.7 23.0 26.3	32 31 31 31 31 31 31 31 31
6	Btm	9.3	Btm	8	Btm	7.5	Btm	8.6	Btm

		Di	stance	e from l	eft b	ank (fee	t)		
130	130		390		650		910		0
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
2.8	6.8	2.4	6.7	2.4	6.7	2.8	6.7 6.7	2.6	6.7
8.4 11.2	6.8 6.7	7.2 9.6	6.7 6.7	7.2 9.6	6.7 6.7	8.4 11.2	6.7 6.7	7.8 10.4	6.7 6.7
14	Btm	12	Btm	12	Btm	14	Btm	13	Btm

Table 16.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 141.21 on March 5, 1992.

Distance from left bank (feet)

13	0	390		650	650)	1,170	
Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
3.3	32	3.3	39	3.3	39	3.3	39	3.3	38
5.0	32	5.0	38	5.0	38	5.0	39	5.0	39
6.7	31	6.7	38	6.7	38	6.7	39	6.7	38
8.2	32	8.2	38	8.2	39	8.2	39	8.2	38
9.8	33	9.8	38	9.8	38	9.8	39	9.8	37
11.5	30	11.5	38			11.5	38	11.5	37
13.1	32					13.1	37	13.1	35
14	Btm	12	Btm	12	Btm	14	Btm	13	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		
100		300		500		700		900	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
4.0 8.0 12.0 16.0	6.9 6.9 6.9 6.9	5.2 10.4 15.6 20.8	6.9 6.8 6.8 6.8	4.8 9.6 14.4 19.2	6.9 6.8 6.8 6.8	2.8 5.6 8.4 11.2	6.9 6.8 6.8 6.8	1.2 2.4 3.6 4.8	6.9 6.9 6.9 6.9
20	Btm	26	Btm	24	Btm	14	Btm	6	Btm

Table 17.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 139.43 on March 5, 1992.

Distance	from	left	bank	(feet)
----------	------	------	------	--------

. •

13	130		390		650		910		70
Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
3.3 6.7 9.8 13.1 16.4 19.7	32 32 31 30 30 30	6.7 13.1 19.7 26.3	37 37 38 36	3.3 9.8 16.4 23.0	38 37 37 37	3.3 5.0 6.7 8.4 9.8 11.5	38 38 37 38 37 36	1.7 3.3 5.0 6.7	38 38 38 38
20	Btm	26	Btm	24	Btm	14	Btm	6	Btm

.

Table 18.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 139.43 on March 19, 1992.

Distance from left bank (feet)											
150		300		45	0						
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)		
9.0	7.9	9.0	7.9	5.4	7.9						
15	Btm	15	Btm	9	Btm						

Distanc	e from	left	bank	(feet)
---------	--------	------	------	--------

150	150 300		450					
Depth (ft)	Trans (%)	Depth (ft)		Depth (ft)		Depth (ft)	Depth (ft)	Trans (%)
8.2	33	8.2	40	5.0	40			
15	Btm	15	Btm	9	Btm		•	

		Di	stance	from 1	.eft ba	ink (fee	et)		
160		480		800		1,100		1,480	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)						
4.8 9.6 14.4 19.2	5.9 5.9 3.9 5.9	5.4 10.8 16.2 21.6	5.9 5.9 5.9 5.9	5.8 11.6 17.4 23.2	6.0 5.9 5.9 5.9	7.4 14.8 22.2 29.6	6.0 5.9 5.9 5.9	8.0 16.0 26.0 32.0	6.0 6.0 6.0 6.0
24	Btm	27	Btm	29	Btm	37	Btm	40	Btm

Table 19.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 138.34 on February 26, 1992.

Distance from left bank (feet)

16	160 480)	800	800		1,100)
Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
3.3 6.7 9.8 13.1 16.4 19.7 23.0	32 32 32 32 32 32 31 30	3.3 6.9 9.8 13.1 16.4 19.7 23.0 26.3	33 33 33 33 33 33 33 33 33	3.3 6.7 9.8 13.1 16.4 19.7 23.0 26.3	32 33 34 34 34 34 34 34 34 34	3.3 9.8 16.4 23.0 29.5 36.1	31 32 34 34 32 32	6.7 13.1 19.7 26.3 32.8 39.4	30 28 27 26 27 28
24	Btm	27	Btm	29	Btm	37	Btm	40	Btm

160		480		800		1,120		1,440	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
2.4	6.8	3.0	6.8	2.4	7.0	5.6	7.2	6.0	7.1
7.2	6.8	9.0	6.8	7.2	7.0 7.0 7.0	11.2 16.8 22 4	7.2 7.0 7.0	12.0 18.0 24.0	7.1 7.0 7.0
7.2 9.6 12	6.8 6.8 Btm	9.0 12.0 15	6.8 6.8 Btm	7.2 9.6 12	7.0 7.0 Btm	16.8 22.4 28	7.0 7.0 Btm	18.0 24.0 30	

Table 20.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 138.34 on March 5, 1992.

Distance from left bank (feet)

16	160		480		800		1,120		40
Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
3.3	28	3.3	33	3.3	36	6.7	34	3.3	35
6.7	27	6.7	32	6.7	36	13.1	35	9.8	32
9.8	28	9.8	32	9.8	35	19.7	32	16.4	32
13.1	27	13.1	33	13.1	35	26.3	31	23.0	32
								29.5	26
12	Btm	15	Btm	12	Btm	28	Btm	30	Btm

Table 21.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 138.34 on March 18, 1992.

	Distance from left bank (feet)											
175		350)	52	25							
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)			
4.8	8.5	4.8	8.2	4.2	7.8		<u></u>					
8	Btm	8	Btm	7	Btm							

		İ	Distance	from	left ba	unk (fe	et)		
17	5	3	50	5	25				
Depth (ft)	Trans (%)	Dept) (ft)	n Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)
5.0	33	5.0	10	5.0	5				
8	Btm	8	Btm	7	Btm			•	

		Di	.stance	from 1	eft ba	ank (fee	et)		
150		450		750		1,050		1,350	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
4.0 8.0 12.0 16.0	5.9 5.9 5.9 5.8	7.0 14.0 21.0 28.0	5.8 5.8 5.8 5.8	8.0 16.0 24.0 32.0	5.8 5.8 5.8 5.8	9.0 18.0 27.0 36.0	5.9 5.8 5.8 5.8	9.0 18.0 27.0 36.0	5.9 5.9 5.8 5.9
20	Btm	35	Btm	40	Btm	45	Btm	45	Btm

Table 22.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 137.17 on February 25, 1992.

Distance	from	left	bank	(feet)
----------	------	------	------	--------

150		450		750		1,050		1,350	
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)
3.3 6.7 9.8 13.1 16.4 19.7	18 16 17 18 18 18	6.7 13.1 19.7 26.3 32.8	28 28 30 30 28	6.7 13.1 19.7 26.3 32.8 39.4	28 28 29 28 29 28	3.3 9.8 16.4 23.0 29.5 36.1 42.7	26 25 26 25 26 26 26 25	6.7 13.1 19.7 26.3 32.8 39.4	23 24 24 24 23 23
20	Btm	35	Btm	40	Btm	45	Btm	45	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		
120		360		600		840 .		1,060	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
1.4 2.8 4.2 5.6	7.0 7.0 7.0 7.0	5.6 11.2 16.8 22.4	6.9 6.8 6.8 6.8	7.6 15.2 22.8 30.4	6.9 6.8 6.8 6.8	5.0 10.0 15.0 20.0	6.8 6.7 6.7 6.7	2.8 5.6 8.4 11.2	7.3 7.2 7.2 7.0
7	Btm	28	Btm	38	Btm	25	Btm	14	Btm

Table 23.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 137.17 on March 5, 1992.

Distance from left bank (feet)											
12	120		360		600		840)		
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)		
1.7 3.3 5.0 6.7 8.2	31 30 30 30 30	6.7 13.1 19.7 26.3	31 30 30 30	6.7 16.4 26.3 36.1	35 34 34 29	3.3 9.8 16.4 23.0	34 34 29 29	3.3 6.7 9.8 13.1	17 18 15 8		
7	Btm	28	Btm	38	Btm	25	Btm	14	Btm		

Table 24.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 137.17 on March 19, 1992.

Distance from left bank (feet)											
225		450		675							
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)		
8.4	8.2	9.0	8.1	12.0	7.6						
14	Btm	15	Btm	20	Btm						

	Distance from left bank (feet)												
225	õ	45()	6	75								
Depth (ft)	Trans (%)	Depth (ft)		Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)				
8.2	22	8.2	28	11.5	19								
14	Btm	15	Btm	20	Btm			•					

		Di	stance	from 1	eft ba	nk (fee	t)		
170		520		870		1,220		1,570	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
10.0 20.0 30.0 40.0	6.3 6.2 6.2 6.2	14.0 28.0 42.0 56.0	6.2 6.2 6.2 6.2	12.6 25.2 37.8 50.4	6.2 6.2 6.2 6.2	9.2 18.4 27.6 36.8	6.2 6.2 6.2 6.2	1.0 2.0 3.0 4.0	6.3 6.3 6.2 6.2
50	Btm	70	Btm	63	Btm	46	Btm	5	Btm

Table 25.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 132.05 on February 26, 1992.

Distance	from	left	bank	(feet)	
----------	------	------	------	--------	--

17(170		520		870		1,220		1,570	
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	
6.7 13.1 19.7 26.3 32.8 39.4 45.9	31 31 31 31 31 31 30 30	9.8 19.7 29.5 39.4 49.2 59.1 68.9	30 31 31 30 30 30 29	9.8 19.7 29.5 39.4 49.2 59.1	30 30 29 29 28 28 28	6.7 13.1 19.7 26.3 32.8 39.4 45.9	29 28 28 28 27 28 28 28	1.7 3.3 5.0	19 16 19	
50	Btm	70	Btm	63	Btm	46	Btm	5	Btm	

		Di	stance	from 1	eft ba	nk (fee	t)		
170		520		870		1,220		1,570	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
10.0 20.0 30.0 40.0	6.0 6.0 6.0 6.0	13.0 26.0 39.0 52.0	6.0 6.0 5.9 6.0	12.6 25.2 37.8 50.4	5.9 5.9 6.0 6.0	9.4 18.8 28.2 37.6	6.0 6.0 6.0 6.0	1.6 3.2 4.8 6.4	5.9 5.9 5.9 5.9
50	Btm	65	Btm	63	Btm	47	Btm	8	Btm

Table 26.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 132.05 on February 27, 1992.

		D	istance	from]	left ba	nk (fee	et)		
17	170		520		870		20	1,570	
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)
6.7 13.1 19.7 26.3	35 35 34 34 34 34	6.7 16.4 26.3 36.1 45.9	35 34 34 34 34 34	9.8 19.7 29.5 39.4 49.2	34 34 34 34 34 32	3.3 9.8 16.4 23.0 29.5	34 32 32 32 32 30	1.7 3.3 5.0 6.7	28 26 26 25
32.8 39.4 45.9 50	34 34 33 Btm	45.9 55.8 65	33 Btm	49.2 59.1 63	28 Btm	29.5 36.1 42.7 47	30 28 Btm	8	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		
90	90		270		0	630		810	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
3.6 7.2	8.0 8.0 8.0	5.4 10.8 16.2	8.1 8.0 8.0	6.4 12.8 19.2	8.0 8.0 7.9	7.4 14.8 22.2	7.6 7.6 7.8	5.6 11.2 16.8	7.4 7.4 7.4
10.8 14.4	8.0	21.6	8.0	25.6	7.9	29.6	7.9	22.4	7.4
18	Btm	27	Btm	32	Btm	37	Btm	28	Btm

Table 27.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 132.05 on March 19, 1992.

Distance from left bank (feet)

9	0	270		45	50	630		810	0
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
3.3	18	6.7	18	3.3	19	6.7	17	6.7	17
6.7	10	13.1	10	9.8	14	13.1	17	13.1	10
9.8	10	19.7	3	16.4	16	19.7	10	19.7	6
13.1	5	26.3	0	23.0	4	26.3	4	26.3	4
16.4	5			29.5	1	32.8	1		
18	Btm	27	Btm	32	Btm	37	Btm	28	Btm

		Di	stance	from 1	eft ba	nk (fee	:t)		
300		900		1,5	1,500 2,10		0	2,70	0
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
9.4 18.4 28.2 37.6	6.2 6.2 6.2 6.2	12.8 25.6 38.4 51.2	6.2 6.2 6.2 6.2	7.0 14.0 21.0 28.0	6.1 6.1 6.1 6.1	4.0 8.0 12.0 16.0	6.0 6.0 6.0 5.9	2.6 5.2 7.8 10.4	6.1 6.1 6.0 6.0
47	Btm	64	Btm	35	Btm	20	Btm	13	Btm

Table 28.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 130.66 on February 26, 1992.

Distance from left bank (feet)

30	0	900		1,50	00	2,10	00	2,70	00
Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)
6.7	30	6.7	30	6.7	27	3.3	27	. 3.3	27
13.1	29	13.1	30	13.1	27	6.7	26	6.7	26
19.7	29	19.7	29	19.7	27	9.8	25	9.8	24
26.3	29	26.3	29	26.3	27	13.1	25	13.1	23
32.8	29	32.8	28	32.8	27	16.4	24		
39.4	29	39.4	28			19.7	21		
45.9	29	45.9	29						
		52.5	29						
		59 . 1	27						
47	Btm	64	Btm	35	Btm	20	Btm	13	Btm

		Di	stance	from l	eft ba	nk (fee	t)		
200	-	600		1,0	1,000		00	1,80	0
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
.8 1.6 2.4	7.8 7.8 7.8	1.6 3.2 4.8	7.6 7.6 7.6	2.8 5.6 8.4	7.4 7.4 7.4	8.8 17.6 26.4	7.0 6.9 6.9	8.8 17.6 26.4	7.1 7.0 6.9
3.2	7.8	6.4	7.5	11.2	7.4	35.2	6.9	35.2	6.8
4	Btm	8	Btm	14	Btm	44	Btm	44	Btm

Table 29.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 130.66 on March 6, 1992.

		D:	istance	from 1	left ba	nk (fee	et)		
20	0	600)	1,0	000	1,4	100	1,80	00
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)
1.7 3.3	20 21	1.7 3.3 5.0	26 26 27	3.3 6.7 9.8 13.1	31 31 31 30	3.3 13.1 23.0 32.8 42.7	37 37 33 34 30	3.3 13.1 23.0 32.8 42.7	36 35 33 28 17
4	Btm	8	Btm	14	Btm	44	Btm	44	Btm

Table 30Temperature as	nd light trans	missivity profiles	s for Lower
Granite Reservoir at Sn	ake River mile	130.66 on March	7, 1992.

	Distance from left bank (feet)											
170		510		850		1,190		1,530				
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)			
.6 2.4	7.2 7.2	8.0 16.0 24.0 32.0	7.0 7.0 7.0 7.0	8.8 17.6 26.4 35.2	7.0 7.0 7.0 7.0	8.6 17.2 25.8 34.4	7.0 7.0 7.0 7.0	6.6 13.2 19.8 26.4	7.2 7.2 7.0 7.0			
3	Btm	40	Btm	44	Btm	43	Btm	33	Btm			

		D	istance	from 1	left ba	nk (fee	et)		
170)	51()	850)	1,190)	1,530	0
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
1.7	25	9.8 19.7 29.5 39.4	33 32 30 28	3.3 13.1 23.0 32.8 42.7	36 31 31 28 28	3.3 13.1 23.0 32.8 42.7	37 34 30 26 18	6.7 13.1 19.7 26.3 32.8	36 35 36 34 27
3	Btm	40	Btm	44	Btm	43	Btm	33	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		
100		300		500		700		900	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
5.2 10.4 15.6 20.8	8.4 8.4 8.4 8.4	6.0 12.0 18.0 24.0	8.3 8.3 8.3 8.3	7.2 14.4 21.6 28.8	8.2 8.2 8.2 8.3	7.2 14.4 21.6 28.8	8.2 8.2 8.2 8.2	5.2 10.4 15.6 20.8	8.3 8.2 8.2 8.2 8.2
26	Btm	30	Btm	36	Btm	36	Btm	26	Btm

Table 31.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 130.66 on March 18, 1992.

Distance from left bank (feet)

10	0	300	0	500	0	700)	900	
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)
3.3 9.8 16.4	17 14 12	3.3 9.8 19.7	21 16 16	6.7 13.1 19.7	21 16 16	6.7 13.1 19.7	20 17 15	3.3 9.8 16.4	22 16 12
23.0	10	29.5	12	26.3 32.8	14 11	26.3 32.8	11 4	23.0	7
26	Btm	30	Btm	36	Btm	36	Btm	26	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		
110	110		330		550		0	990	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
5.2 10.4 15.6 20.8	7.9 7.9 8.0 8.0	6.4 12.8 19.2 25.6	7.8 7.9 7.9 7.9	7.0 14.0 21.0 28.0	7.8 7.8 7.9 7.9	5.6 11.2 16.8 22.4	7.6 7.6 7.8 7.8	4.6 9.2 13.8 18.4	7.5 7.5 7.7 7.7
26	Btm	32	Btm	35	Btm	28	Btm	23	Btm

Table 32.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 130.66 on March 19, 1992.

Distance from left bank (feet)									
110		330		550		770		990	
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
3.3 19.8 16.4 23.0	16 14 10 4	3.3 9.8 16.4 23.0 29.5	18 10 9 9 7	6.7 13.1 19.7 26.3 32.8	20 12 8 10 2	6.7 13.1 19.7 26.3	20 16 6 2	5.0 9.8 14.8 19.7	16 13 10 3
26	Btm	32	Btm	35	Btm	28	Btm	23	Btm

, , , , , , , , , , , , , , , , , , ,		Di	stance	from l	eft ba	nk (fee	t)		
110		330		55	0	770		990	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
5.4 10.8 16.2 21.6	7.8 7.8 7.8 7.9	6.6 13.2 19.8 26.4	7.7 7.7 7.8 7.8	7.4 14.8 22.2 29.6	7.7 7.7 7.7 7.7	5.8 11.6 17.4 23.2	7.8 7.7 7.7 7.7	5.0 10.0 15.0 20.0	7.8 7.8 7.7 7.7
27	Btm	33	Btm	37	Btm	29	Btm	25	Btm

Table 33.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 130.66 on March 20, 1992.

Distance from left bank (feet)

11	110)	55	50	770)	990	C
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
6.7 13.1 19.7 23.0	22 22 22 18	3.3 13.1 23.0 29.5 32.8	27 26 21 21 0	3.3 13.1 23.0 32.8	30 27 25 20	6.7 13.1 19.7 26.3	27 26 20 14	6.7 13.1 19.7 23.0	25 22 14 10
27	Btm	33	Btm	37	Btm	29	Btm	25	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		
200		600		1,00	0	1,40	0	1,80	0
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
9.8 19.6 29.4 39.2	6.0 5.9 5.9 5.9	20.0 40.0 60.0 80.0	5.8 5.8 5.8 5.8	17.2 34.3 51.6 68.8	5.8 5.8 5.8 5.8	8.0 16.0 24.0 32.0	5.9 5.8 5.8 5.8	2.0 4.0 6.0 8.0	5.9 5.9 5.8 5.8
49	Btm	100	Btm	86	Btm	40	Btm	10	Btm

Table 34.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 120.46 on February 27 , 1992.

Distance from le	ett.	bank ((Ieet)
------------------	------	--------	--------

20	0	600)	1,00	00	1,40	00	1,80	00
Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
6.7 16.4 26.3 36.1 45.9	28 28 28 28 28 28	16.4 32.8 49.2 65.6 82.0 98.4	27 28 27 27 27 27 28	3.3 16.4 29.5 42.7 55.8 68.9 82.0	28 27 27 27 27 27 27 27	3.3 9.8 19.7 29.5 39.4	28 27 26 25 25	1.7 3.3 5.0 6.7 8.2 9.8	26 25 25 25 25 25 25
49	Btm	100	Btm	86	Btm	40	Btm	10	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		
150		450		750		1,050		1,350	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
8.0 16.0 24.0 32.0	7.3 7.2 7.2 7.2 7.2	11.2 22.4 33.6 44.8	7.3 7.2 7.2 7.2	14.6 29.2 43.8 58.4	7.2 7.2 7.2 7.2 7.2	17.4 34.8 52.2 69.6	7.2 7.2 7.2 7.2 7.2	7.8 15.6 23.4 31.2	7.2 7.2 7.2 7.2 7.2
40	Btm	56	Btm	73	Btm	87	Btm	39	Btm

Table 35.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 120.46 on March 7, 1992.

Distance from left bank (feet)

15	150		450) .	1,050		1,3	50
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
6.7 16.4 26.3 36.1	30 30 27 22	13.1 26.3 39.4 52.5	34 33 27 24	6.7 23.0 39.4 55.8 72.2	35 34 32 32 32 32	3.3 19.7 36.1 52.5 68.9 85.3	36 36 35 34 34	6.7 16.4 26.3 36.1	36 36 35 35
40	Btm	56	Btm	73	Btm	87	Btm	39	Btm

		Di	stance	from l	eft ba	nk (fee	t)			
140	140		420 700			980		1,360		
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	
6.6 13.2 19.8 26.4	8.0 7.9 7.9 7.9	10.0 20.0 30.0 40.0	8.0 8.0 7.9 7.9	14.0 28.0 42.0 56.0	8.0 7.9 7.9 7.9	14.0 28.0 42.0 56.0	89.0 8.0 8.0 8.0	5.0 10.0 15.0 20.0	8.1 8.0 8.0 8.0	
33	Btm	50	Btm	70	Btm	70	Btm	25	Btm.	

Table 36.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 120.46 on March 20, 1992.

Distance	from	left	bank	(feet)
----------	------	------	------	--------

140	140		140		420)	980		1,360	C
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)		
3.3 13.1 23.0	21 19 16	3.3 16.4 29.5	21 21 20	3.3 19.7 36.1	22 22 22	3.3 19.7 36.1	18 18 18	3.3 9.8 16.4	22 22 22		
32.8	16	42.7 55.8	20 14	52.5 68.9	22 21	52.5 68.9	18 16	23.0	22		
33	Btm	50	Btm	70	Btm	70	Btm	25	Btm		

	<u></u>	Di	stance	from l	eft ba	nk (fee	t)		
220		660		1,1	00	1,540		1,98	0
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
5.0 10.0 15.0 20.0	5.9 5.9 5.9 5.9	14.0 28.0 42.0 56.0	5.9 5.8 5.8 5.8	15.0 30.0 45.0 60.0	5.8 5.8 5.8 5.8	15.0 30.0 45.0 60.0	5.9 5.8 5.8 5.8	12.0 24.0 36.0 48.0	5.9 5.8 5.8 5.8
25	Btm	70	Btm	75	Btm	75	Btm	60	Btm

Table 37.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 119.00 on February 27, 1992.

220		660)	1,10	00	1,54	10	1,98	30
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)
3.3	29	3.3	29	3.3	29	3.3	29	6.7	28
6.7	28	9.8	28	13.1	28	13.1	28	16.4	28
9.8	28	19.7	28	23.0	28	23.0	28	26.3	27
13.1	28	29.5	28	32.8	28	32.8	28	36.1	27
16.4	28	39.4	28	42.7	28	42.7	27	45.9	27
19.7	28	49.2	28	52.5	28	52.5	27	55.8	27
		59.1	28	62.3	27	62.3	27		
		68.9	27	72.2	26	72.2	27		

		Di	stance	from l	eft ba	nk (fee	t)		
210		630		1,050		1,470		1,890	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
7.6 15.2 22.8 30.4	7.3 7.3 7.3 7.2	10.6 21.2 31.8 42.4	7.4 7.3 7.3 7.3	11.4 22.8 34.2 45.6	7.3 7.3 7.3 7.3	9.6 19.2 28.8 38.4	7.4 7.3 7.3 7.3	7.2 14.4 21.6 28.8	7.4 7.3 7.3 7.3
38	Btm	53	Btm	57	Btm	48	Btm	36	Btm

Table 38.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 119.00 on March 7, 1992.

Distance from left bank (feet)

210	0	630)	1,05	50	1,470		1,89	90
Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)
6.7	34	9.8	36	13.1	35	6.7	37	6.7	36
13.1	32	19.7	34	26.3	32	19.7	35	13.1	36
19.7	32	29.5	31	39.4	32	32.8	32	19.7	35
26.3	31	39.4	30	52.5	34	45.9	31	26.3	36
32.8	27	49.2	30					32.8	34
38	Btm	53	Btm	57	Btm	48	Btm	36	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		·
200	200		600		1,000		1,400		0
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
7.6 15.2 22.8 30.4	8.1 8.0 7.9 7.8	7.2 14.4 21.6 28.8	8.0 8.0 7.9 7.9	7.8 15.6 23.4 31.2	8.0 8.0 7.9 7.9	9.0 18.0 27.0 36.0	8.1 7.9 7.9 7.8	5.2 10.4 15.6 20.8	8.1 8.0 7.9 7.9
38	Btm	36	Btm	39	Btm	45	Btm	26	Btm

Table 39.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 119.0 on March 20, 1992.

Distance from left bank (feet)

20	0	600)	1,0	000	1,40	00	1,80	00
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)
3.3 13.1 23.0 32.8	18 19 20 18	3.3 13.0 23.0 32.8	22 22 22 20	3.3 13.1 23.0 32.8	22 22 22 21	3.3 13.1 23.0 32.8 42.7	23 23 22 22 20	3.3 9.8 16.4 23.0	23 21 21 20
38	Btm	36	Btm	39	Btm	45	Btm	26	Btm

		Di	stance	from l	eft ba	nk (fee	t)		
300		900		1,500		2,100		2,700	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
17.0 34.0 51.0 68.0	5.8 5.7 5.7 5.7	18.6 37.2 55.8 74.4	5.7 5.7 5.6 5.3	23.6 47.2 70.8 94.4	5.6 5.5 5.4 5.3	17.0 34.0 51.0 68.0	5.5 5.4 5.4 5.3	11.8 23.6 35.4 47.2	5.6 5.5 5.4 5.3
85	Btm	93	Btm	118	Btm	85	Btm	59	Btm

Table 40.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 108.31 on February 27, 1992.

Distance from left bank (feet)

30	0	90()	1,50	00	2,10	00	2,70	00
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
9.8	14	3.3	14	16.4	10	13.1	8	9.8	8
23.0	13	19.7	12	32.8	9	26.3	8	19.7	8
36.1	12	36.1	12	49.2	8	39.4	8	29.5	8
49.2	12	52.5	10	65.6	8	52.5	8	39.4	8
62.3	12	68.9	8	82.0	8	65.6	8	49.2	8
75.5	12	85.3	10	98.4	10	78.7	8	59.1	0
				114.8	10				
85	Btm	93	Btm	118	Btm	85	Btm	59	Btm

		Di	stance	from l	eft ba	nk (fee	t)		
300		900		1,500		2,100		2,700	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
9.0 18.0 27.0 36.0	7.3 6.9 6.6 6.6	13.4 26.8 40.2 53.6	7.1 6.8 6.8 6.7	20.8 41.6 62.4 83.2	6.9 6.8 6.8 6.7	20.0 40.0 60.0 80.0	7.0 7.0 6.8 6.8	14.6 29.2 43.8 58.4	7.0 7.0 6.9 6.9
45	Btm	67	Btm	104	Btm	100	Btm	73	Btm

Table 41.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 108.31 on March 7, 1992.

Distance from left bank (feet)

30	0	900)	1,50	00	2,100		2,70	00
Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (%)
3.3	33	13.1	36	16.4	35	16.4	36	16.4	35
13.1	32	26.3	34	36.1	34	36.1	35	29.5	36
23.0	31	39.4	33	55.8	33	55.8	35	42.7	35
32.6	30	52.5	30	75.5	30	75.5	33	55.8	34
42.7	30	65.6	26	95.2	30	95.2	32	68.9	34
45	Btm	67	Btm	104	Btm	100	Btm	73	Btm

		Di	stance	from 1	eft ba	ink (fee	t)		
300		900		1,500		2,100		2,700	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
10.6 21.2 31.8 42.4	9.0 9.0 9.0 9.0	16.6 33.2 49.8 66.4	9.0 9.0 8.9 8.8	17.0 34.0 51.0 68.0	9.0 8.9 8.8 8.8	13.6 27.2 40.8 54.4	9.0 8.8 8.8 8.8	11.4 22.8 34.2 45.6	9.1 9.1 9.0 9.0
53	Btm	83	Btm	85	Btm	68	Btm	57	Btm

Table 42.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Snake River mile 108.31 on March 20, 1992.

Distance	from	left	bank	(feet)	
----------	------	------	------	--------	--

30	0	900	0	1,5	500	2,100		2,70	00
Depth (ft)	Trans (१)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
3.3	15	13.3	16 `	16.6	16	3.3	18	3.3	20
19.7	15	23.0	16	23.0	16	19.7	18	19.7	18
36.1	15	42.1	14	42.7	18	36.1	18	36.1	18
49.2	10	62.3	14	62.3	18	52.5	18	52.5	16
		78.7	13	82.0	16	68.9	16		
53	Btm	83	Btm	85	Btm	68	Btm	57	Btm

		Di	stance	from 1	eft ba	nk (fee	t)		
90	I	270		450		630		810	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
3.0 6.0 9.0 12.0	6.5 6.4 6.4 6.4	3.0 6.0 9.0 12.0	6.3 6.3 6.3 6.3	2.0 4.0 6.0 8.0	6.3 6.3 6.3 6.3	2.0 4.0 6.0 8.0	6.4 6.4 6.4 6.4	1.8 3.5 5.4 7.2	6.5 6.5 6.5 6.5
15	Btm	15	Btm	10	Btm	10	Btm	9	Btm

Table 43.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Clearwater River mile 2.34 on February 25, 1992.

Distance from left bank (feet)											
90		270		450	450		630		D		
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)		
3.3 6.7 9.8 13.1 16.4	21 21 23 18 15	3.3 6.7 9.8 13.1	21 21 20 18	3.3 6.7 9.8	20 19 18	3.3 6.7 9.8	19 19 18	3.3 6.7	15 14		
15	Btm	15	Btm	10	Btm	10	Btm	9	Btm		

		Di	stance	from l	eft ba	nk (fee	t)		
30		90		150		210		270	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
	6.6		6.4		6.4		6.5		6.5
5	Btm	5	Btm	5	Btm	4	Btm	3	Btm

Table 44.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Clearwater River mile 2.34 on March 6, 1992. **Table 45.**-Temperature and light transmissivity profiles for Lower Granite Reservoir at Clearwater River mile 2.34 on March 17, 1992.

		Di	stance	from 1	eft ba	nk (fee	t)		
35		105		175		245		315	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
1.4	8.6	1.8	8.4	1.4	8.4	1.0	8.6	. 4	8.6
7	Btm	9	Btm	7	Btm	5	Btm	2	Btm

		Di	stance	from l	eft ba	nk (fee	t)		
120		370		620		870		1,120	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
5.0 10.0 15.0 20.0	5.8 5.7 5.7 5.7	3.0 6.0 9.0 12.0	5.8 5.8 5.7 5.7	2.4 4.8 7.2 9.6	5.7 5.7 5.7 5.7	4.0 8.0 12.0 16.0	5.7 5.7 5.7 5.7	4.2 8.4 12.6 16.8	5.7 5.7 5.7 5.7
25	Btm	15	Btm	12	Btm	20	Btm	21	Btm

Table 46.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Clearwater River mile 1.26 on February 26, 1992.

Distance	from	left	bank	(feet)
----------	------	------	------	--------

12	0	37(0	620)	870)	1,120	0
Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)
3.3 6.7 9.8 13.1 16.4 19.7 23.0	33 32 32 32 31 31 30	3.3 6.7 9.8 13.1	32 31 30 30	1.7 3.3 5.0 6.7 8.2 9.8	33 32 32 32 32 32 32	3.3 6.7 9.8 13.1 16.4 19.7	32 32 31 31 31 31 30	3.3 6.7 9.8 13.1 16.4 19.7	29 29 29 28 22 26
25	Btm	15	Btm	12	Btm	20	Btm	21	Btm

Table 47.-Temperature and light transmissivity profiles for Lower Granite Reservoir at Clearwater River mile 1.26 on March 18, 1992.

		Di	stance	from l	eft ba	nk (fee	t)		
100		120		21	0				
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
3.6	7.2	4.2	7.2	3.0	7.2				
6	Btm	7	Btm	5	Btm				

100)	120)	21	LO				
Depth (ft)	Trans (१)	Depth (ft)		Depth (ft)		Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
3.3	32	3.3	38	3.3	37				
6	Btm	7	Btm	5	Btm			•	

		Di	stance	from l	eft ba	nk (fee	t)		
90		270		450		630		810	
Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)	Depth (ft)	Temp (C)
2.6 5.2 7.8 10.4	6.7 6.7 6.6 6.6	2.2 4.4 6.6 8.8	6.6 6.6 6.6 6.6	1.6 3.2 4.8 6.4	6.6 6.6 6.5 6.5	3.0 6.0 9.0 12.0	6.5 6.5 6.5 6.5	2.8 5.6 8.4 11.2	6.6 6.6 6.6 6.6
13	Btm	11	Btm	8	Btm	15	Btm	14	Btm

Table 48.—Temperature and light transmissivity profiles for Lower Granite Reservoir at Clearwater River mile .41 on March 6, 1992.

		Di	stance	from]	left ba	nk (fee	et)		
90		270		450	450		630)
Depth (ft)	Trans (%)	Depth (ft)	Trans (%)	Depth (ft)	Trans (१)	Depth (ft)	Trans (१)	Depth (ft)	Trans (%)
3.3 6.7 9.8 13.1	30 30 28 26	3.3 6.7 9.8 13.1 16.4	35 32 32 31 20	1.7 3.3 5.0 6.7	32 31 26 23	3.3 5.0 6.7 8.4 9.8	25 27 26 27 25	3.3 6.7 9.8 13.1	27 27 25 22
14	Btm	15	Btm	8	Btm	11	Btm	13	Btm