

2004 RFID Summit for Industry RFID Technology Primer

Dan Kimball, DoD Logistics AIT Office April 7, 2004

- The History
- The Basics What RFID is and how it works
- Types of RFID
- Smart Labels
- How RFID compares to barcode
- Applications
- DoD Technical Working Group (TWG) and Vendor Action Group (VAG)

RFID: The History

Pre-50's	s 1950's	1960's	1970's	1980's	1990's	2000's
 1926: Baird's radio object detection patent 1935: Watson-Watt's radar patent WW II: Radar refined WW II: Radar refined 1948: Harry Stockman - Communications By Means of Reflected Power REFID 	 1952: Vernon "Application of the Microwave Homodyne" Harris patent: "Radio transmission systems with modulatable passive responder" TIME 	 Harrington "Active & Loaded Scatterers" 1966: Sensor- matic & Check point EAS 1969: Mario Cardullo RFID concept 	 1973: Cardullo patent 1975 LASL releases research to public sector LASL spins-off IDX & Amtech Fairchild, RCA & Raytheon initiate pgms 1977: Electron license plate for motor vehicles 1979: RFID animal implants 	• Over 3	 50 direct - refer Center Center National & Standard 1991: AAR standard 1991: AAR standard 1994: All US railcars outfitted 1997: US Army rolls out TC-AIMS II Vast number enter RFID ma Vast number enter RFID ma Texas, Georgia / Oklahoma Tolls 	ence patents MIT Auto-ID ter formation PC™ introduced international s emerge Smart shelves • 2003: RFID prominent in Iraqi Freedom • EPCglobal formed 2003 • 2004: TREAD • 2005: Walmart initial deadline of companies ketplace

RFID is Radio Frequency Identification

Used for automatic identification and data collection

Similar to bar code

- RFID tag stores data ~ bar code label
- RFID reader ~ bar code reader

Radio waves vs. light waves

Technical Aspects of RFID

- Tag Power Source
- Tag Components
- Read- Read/Write
- Anti- Collision
- Who talks first?
- Protocol

- Systems/Protocols (transmits RF energy in the 400MHz, 900MHz, and 2.45GHz ranges)
- Range: Generally 300 Feet or less (battery replacement)
- Used Predominantly in Transportation Systems (rail, toll systems, trucking, container).
- Characteristics: Tag with Internal Power Cell Mounted to Item or container/pallet/box, Interrogator Queries Tags, Uploads/Downloads Data. Do not transmit all of the time. Data Capacity Varies.

Tag Types

7

Passive:

RF antenna

- Standard: None, Mainly Manufacturers Proprietary Systems/Protocols (uses back scatter technology)
- Range: Typically Measured in "Inches", Industry Working Toward "Meters" (dependent system layout, interference, etc.)
- Used Predominantly in Retail Systems and Transportation Systems.
- Characteristics: Small Tag Loaded with License Plate Data, Typically Mounted to End Item, Reader Captures Data as Item Moves Through Choke Point (door, pathway, frame, etc.). Could have a battery. Data Capacities are Limited. Paper tag!

Semi-Active or Battery Assisted Passive

- On-board battery power source
 - Uses Passive Technology (no transmitter)
 - Greater range but higher cost (less than active)
 - Requires less power from reader
 - Finite life
 - Can use thin batteries (little change to form factor)

Tag Types - Read vs Read/Write

Read Only:

Information can only be read from an RFID device – programmed at manufacture

User Programmable

 WORM - Write Once Read Many - Ability to initialize an RFID device outside of the RFID manufacturer's facility after manufacture

Read/Write:

- Information can be read from or written to an RFID transponder during the time it is presented to a reader/writer
- Typically asymmetric read and write operating range

Technical Considerations

Anticollision

- Ability to communicate with several transponders simultaneously
- Important in longer range readers
- Must be implemented in the silicon of the RFID device

Who Talks First

- Tag Talks First (TTF)
 - After the tag is energized, it sends out a signal that says "I am here"
- Reader Talks First (RTF)
 - As reader sends out energization signal it says "who is there"
- Problems
 - With TTF you can get tag pollution but slower total read time
 - Compatibility issues?

The method used to talk to a tag

- Modulation method
- Error correction
- Anti-collision technique
- Message format
- Commands

Tag Types- Operating Frequency

Low Frequency (LF) - 125 kHz

- Short range; good propagation
- Higher cost; slower data transfer

High Frequency (HF) - 13.56 MHz

- Reasonable range; reasonable propagation
- Low cost; faster data transfer
- Ultra High Frequency (UHF) 860-960 MHz, 2.45GHz, 5.8GHz
 - Low cost; fast data transfer
 - Good range but regulatory restrictions may limit (passive tags)
 - Some propagation issues:
 - Line of sight/shadow effect (one tag may obscure another)
 - Attenuation by water (paper based packaging)

Frequency Selection Issues

- Desired Pattern
- Required Range
- Tag-to-Tag Spacing
- Data Rate
- Size Requirements
- Power Requirements
- Interference Issues
- Noise Environment
- Cost / Performance Tradeoffs

Worldwide Regulatory Environment

	North America	Europe (current)	Europe (future)	Japan (new)	Korea (new)	Australia	Argentina Brazil Peru	New Zealand
Band size	902-928	869.5	866-868	950-956	910-914	918-926	902-928	864-929 spotty
Power	4W EIRP	.5W ERP	2W ERP	4W EIRP	4W EIRP	4W EIRP	4W EIRP	.5 – 4W EIRP
Channels #	50	1	10	12	16	16	50	varied
Class 0 Rate	1000	200	200	1000	400	1000	1000	varied
OOB spurious	-50dBc	-63dBc+	-63dBc+	-54dBc	-50dBc	-50dBc	?	?

No Global Solution

Smart Labels

	Smart Label	2D Barcode
Line of sight	Not required	Required
Capacity	Low to high	Low to medium
Security	High	Low to Medium
Change Information?	Yes – Read/Write	NO – new label
Cost (today)	\$0.40 - \$1.00 (in millions)	\$0.05 or less

A Hybrid World

Traditional bar codes

- Will remain the dominant auto ID technology in most mainstream applications for the foreseeable future
 - Lowest cost, broadest applicability, huge infrastructure investment

2D bar codes

- Will be increasingly adopted for value added applications
 - Portable data files, supplementary retail coding etc.
- RFID
 - Will be increasingly adopted where non-line of sight, read/write, multiple detection offers real advantages

Warehouse Management Solutions

- Uniquely Identify, Collect, Sort and
- **Track more efficiently**
- Hard data on pallets, containers, fork
- lift trucks, equipment & man-hours
- Data collection in rugged environments
- where barcodes can't

Enhanced Productivity, Reduced Costs

Vehicle Identification

Vehicle Identification

Tire tags

Automotive Manufacturing

Parcel Logistics

Manufacturing

Manufacturing

- Attach to work-item
- Program progressive build and QC status
- Automatic product tracking through production, shipping and after-sales service

23

Retail Supply Chain

Retail supply chain

- Program "contents" data at manufacturing source
- Program "destination" data at distribution center
- Identify whole carton contents, while closed
- Trace returns

Electronic Article Surveillance (EAS)

Electronic Article Surveillance (EAS)

- Already exists
- RFID technology detects if an item is removed from a store without tag being deactivated
 - Amorphous magnetic strips
 - Destructible tuned circuits
- Existing technology cannot uniquely identify goods
- New RFID technology provides significant features:
 - Able to write SKU number into transponder
 - Automatic inventory with a hand held reader
 - Anti-collision mandatory for this feature
 - Cash registers can automatically ring up merchandise

Background

- RFID TWG Established Dec 2003
- Mission
 - Technical specifications
 - Standards
 - Identify appropriate RFID technologies for DOD

TWG team composition

- Military services, Defense Agencies, National Labs
- RFID vendors
- Academia
- Consultants

RFID Vendor Advisory Group

RFID Technical Working Group (TWG)

Technical Requirements

Identified and agreed upon (parameters)

- Conformance
- References
- Concepts
- Data content
- Human readable
- Tag operation
- Tag presentation and location
- Interoperability

RFID Technical Working Group (TWG)

- Supply Chain Functional Areas
 - Acquisition
 - Warehousing
 - Transportation
 - Maintenance
 - Disposal
 - Yard management
 - Freight security

How Far – How Fast – How Many – How Much

QUESTIONS?