

National Research Program

Reston, VA

Nutrient transport and retention in wetland ecosystems

Greg Noe

Wetland nutrient processing

What controls the transport and retention of nutrients in wetland hydroscapes?

Case studies: Everglades & floodplains

Everglades is naturally oligotrophic, P starved

Flat, limestone basin - no terrigenous P loading

P enrichment

Decades of P loading from agricultural and urban lands

WCA's annual P load Natural: 129 Mg/yr (11 upstream) 1990s: 376 Mg/yr (258 upstream) (Davis 1994)

 \rightarrow P accumulation, large changes in upstream ecosystem

Also hydrologic changes

South Florida Ecosystem Assessment, EPA 2000

Oligotrophic wet prairie/slough

Oligotrophic Cladium

Enriched Typha

Drastic changes to ecosystem structure and function

Everglades Forever Act: "no imbalance in the flora or fauna"

Plentiful research on individual ecosystem component responses along P-enrichment gradient (SFWMD, UF, Duke, FIU)

 \rightarrow Ecosystem approach

Research questions

• What is natural P cycling in oligotrophic Everglades? \rightarrow ³²P radiotracer addition

- What level of P enrichment causes ecological changes?
 → Experimental dosing of P
- How does ecosystem change with P enrichment?
 → Whole-ecosystem P budgets
- How fast will P spread downstream?
 → Particulate P transport

• What is natural P cycling in oligotrophic Everglades? \rightarrow ³²P radiotracer addition

³²PO₄ added to 6 1-m² mesocosms

Initial P uptake by suspended particles

Noe et al. 2003. Freshwater Biology

³²P partitioning

 $P \rightarrow particles \rightarrow periphyton + floc \rightarrow soil$

What level of P enrichment causes ecological changes?

 → Experimental dosing of P
 3 FIU flow-through flumes in ENP, each w/ 4 100-m channels

0, 5, 15, and 30 μ g/L PO₄

5 yrs dosing

Noe et al. 2002. Biogeochemistry Gaiser et al. 2004. Water Research Gaiser et al. 2005. J. Env. Qual.

Flume P retention (after 1 wet season)

	<u>% Ret</u>	<u>ention</u>
<u>Treatment</u> (µg L ⁻¹)	<u>Mean</u>	<u>Range</u>
5	24	10 to 40
15	8	-2 to 24
30	8	4 to 15

% Retention: g P recovered in flume / g P dosed

 \rightarrow but most P exported

Cascade of responses through ecosystem:

1st: Periphyton
2nd: Floc
3rd: Consumers
4th: Soil
5th: Macrophytes
6th: Water

→ microbes respond first, water last

Site B - High Dose - Upstream

Dose Day 1 Dose Day 180

Figure 2

How does ecosystem change with P enrichment?

\rightarrow Whole-ecosystem P budgets

Noe & Childers 2007. Wetl Ecol Manag.

Plant P mining

Macrophyte detrital P flux (g P m⁻² yr⁻¹):

WCA-2A annual load:

Cladium/Typha + *Typha* macrophyte mining flux External surface water input (2002) ~ 110 Mg P 18 Mg P

Large quantity of P leached to microbes and surface water (Davis *et al.* 2006, *Hydrobiologia*)

 \rightarrow internal eutrophication

Phosphorus in the Everglades: Too much of a good thing

- PO₄ is quickly removed from water column in natural Everglades
- Low-level additions of PO₄ change the ecosystem
- Microbial ecosystem components (periphyton, floc) control P cycling in the short term
- Macrophytes become much more important to P cycling following P enrichment

How fast will P spread downstream? → Particulate P transport

Clear water column of Everglades

<u>Regional</u> and <u>Ridge vs. Slough</u> differences in suspended particles

South Florida Ecosystem Assessment, EPA 2000

Research questions

- How important are particles vs. solutes to P cycling and transport?
- What are the physical and biogeochemical characteristics of particles?
- Does differential particle transport maintain the characteristic ridge and slough topography of the Everglades?

Solute and particle transport: tracer studies

Dual Br and TiO₂ (0.3 μ m) injection: Transport, dispersion, and interception

Br tracer velocity retarded by 50% relative to velocity in 'dominant' water-column flow zone

Quick exchange rate with floating vegetation (0.4 hr⁻¹), slow exchange rate with peat porewater (0.03 hr⁻¹)

Very efficient particle filtration by floating vegetation (3.6 hr⁻¹)

> Saiers *et al.* 2003. *Geophysical Research Letters* Harvey *et al.* 2005. *Water Resources Research*

Spatial patterns in suspended particles characteristics

Noe et al. 2007. L&O

General particle characteristics

Site	Total suspended sediment (mg L ⁻¹)	Total particulate Ρ (μmol L ⁻¹)	Total particulate Ν (μmol L ⁻¹)	Percent particulate P	Percent particulate N	Particulate N:P (molar)
Lox8	2.71 ± 0.09	0.19 ± 0.01	6.8 ± 0.2	43 ± 2	7 ± 0	36 ± 3
F1	$\textbf{0.85} \pm \textbf{0.12}$	$\textbf{0.31} \pm \textbf{0.02}$	4.8 ± 0.7	25 ± 2	3 ± 0	15 ± 1
F4	1.19 ± 0.41	$\textbf{0.18} \pm \textbf{0.00}$	$\textbf{3.2} \pm \textbf{0.1}$	38 ± 0	2 ± 0	18 ± 0
U3	0.81 ± 0.11	0.10 ± 0.01	$\textbf{3.7} \pm \textbf{0.2}$	27 ± 0	2 ± 0	$\textbf{38} \pm \textbf{0}$
5A Slough	1.90 ± 0.27	$\textbf{0.09} \pm \textbf{0.01}$	$\textbf{6.5} \pm \textbf{0.5}$	31 ± 3	10 ± 0	69 ± 1
5A Cladium	$\textbf{2.15} \pm \textbf{0.30}$	0.11 ± 0.01	7.0 ± 0.3	33 ± 3	10 ± 1	66 ± 1
SrsA	0.69 ± 0.14	$\textbf{0.05} \pm \textbf{0.00}$	3.1 ± 0.2	20 ± 2	3 ± 0	65 ± 1

TSS was low

31% of P was particulate

Particulate P was more abundant and more labile with P enrichment

Particle biogeochemical characteristics

Size of most P: 0.45 to 2.7 µm

Particulate N bigger than P, most N was colloidal

Most particulate P was acidhydrolysable, not reactive P or refractory P

Particulate P and Fe (-) correlated

Particulate N and Ca (+) correlated

Particulate P sequential extraction: Dec 05

Most particulate P was in microbial+labile fraction

Humic+Fulvic P also an important fraction

Ca P low

No site or depth differences

Ridge vs. Slough differences in suspended particles

Space (ridge, slough) Depth (upper, middle, lower) Time (through wet season)

TSS

Concentration:

Time Site*Depth interaction

Mean = 0.76 mg/L

Particle size:

≥USGS

Time

Mean = 9.4 μ m

Particulate N

Concentration: Time Depth ~Time*Depth interaction <u>Upper</u> = $4.1 \,\mu\text{M}$ Middle = $3.7 \mu M$ Lower = $3.7 \,\mu\text{M}$ %Particulate N: Time Depth ~Time*Depth interaction <u>Upper</u> = 6.4%Middle = 5.7%Lower = 5.8%Particle N size: Time Depth <u>Upper</u> = $6.0 \, \mu m$

Particulate P

<u>Concentration</u>: Time ~Depth <u>Upper</u> = 0.104 μM Middle = 0.090 μM Lower = 0.088 μM

<u>%Particulate P</u>: Time Mean = 24.5%

<u>Particle P size</u>: ~Depth Upper = 3.2 μm Middle = 2.9 μm <u>Lower</u> = 2.0 μm

Mass flux differences Water flux: Ridge = $1.4 \times 10^8 \text{ cm}^3$ Slough = $2.9 \times 10^8 \text{ cm}^3$ S/R = 2.06Mass flux: Ridge = 139 gSlough = 281 gS/R = 2.02Particulate P flux: Ridge = 14.6 mmol Slough = 26.2 mmol S/R = 1.79**Dissolved P flux:** Ridge = 37.4 mmol Slough = 76.6 mmol S/R = 2.05

Suspended material size differences

Weighted average particle size:

TSS =	8.6 µm
Particulate N =	5.2 µm
Particulate P =	2.9 µm

≥USGS

LISST-100X Suspended Sediment Analyzer

100-250 µm percent of total particle volume:

43%, 45%, 19%

100+ µm percent of total particulate nutrients:

10% of PP, 26% of PN, P mixture of microbial and refractory organic P

Suspended particles in the Everglades

- Suspended particles are a large proportion of P in the water column, are quickest uptake component, and are intermediately labile ... despite low TSS!
- P-rich particles were suspended bacteria, larger particles were more refractory
- Preliminary evidence suggests no difference in particle characteristics between ridge and slough
- Extreme flow events may be necessary to generate meaningful differences in particle mobilization, transport, and interception between ridge and slough.
- Particles have different transport characteristics than solutes
- Suspended particles must be incorporated into Everglades ecosystem models
 USGS

Particle tracer injections and flow enhancement experiments

Tracer Multi-levelH₂O-withdrawal Injection Samplers wells

2005: Fluorescing 1 µm artificial particles

2007: Flow enhancement and mobilization of natural particles

2008: Tagging natural particles

Floodplain nutrient processing

Quantifying sinks, sources, and transformations of nutrients in river-floodplain ecosystems

What controls nutrient processing? - climate, geomorphology, hydrology?

River Res Appl.

	6-7 Feb 2004 (1 °C)		12-15 Apr '04 (9 °C)		29-30 Sep '04 (20 °C)		20-22 May 2005 (14 °C)	
	Concentration change	% change	Concentration change	% change	Concentration change	% change	Concentration change	% change
<mark>NO₂-</mark> (μM)	-0.14	-29	0.00	0	0.11	33	0.05	8
NO ₃ - (μM)					0.21	5		
NH ₄ ⁺ (μM)			0.33	8	-0.46	-21	-0.34	-6
DON (μM)	-1.48	-16	-0.94	-4	1.89	8	2.99	12
PON (μM)	0.58	7	3.39	25	1.10	7	-4.10	-27
ΤΝ (μΜ)	-4.15	-8	2.25	4	2.86	6	-3.55	-5
DRP (µM)			-0.02	-9	-0.02	-7	0.01	5
DAHP (µM)			-0.04	-27	-0.03	-36	0.03	15
DOP (µM)	-0.07	-134	0.01	5	0.02	10	-0.01	-5
PRP (μM)	-0.05	-49	-0.02	-13	0.01	3	-0.02	-11
PAHP (µM)	-0.03	-5	0.05	5	0.03	2	0.16	11
ΡΟΡ (μΜ)	-0.20	-92	0.13	32	0.21	85	-0.34	-74
ΤΡ (μΜ)			0.17	9	0.26	10	-0.19	-8
ISS (mg L ⁻¹)	n.d.	n.d.	4.31	27	-2.24	-14	-2.42	-10
OSS (mg L ⁻¹)	n.d.	n.d.	0.55	12	-0.50	-17	3.43	38
TSS (mg L ⁻¹)	n.d.	n.d.	2.45	14	-2.77	-15	1.01	3
Conductivity (μU)	2.20	1	-3.28	-3	-1.88	-2	3.30	4
		Un	- Dowr	Sou	rce Sinl	<		

	6-7 Feb 2004 (1 °C)		12-15 Apr '04	1 (9 °C)	29-30 Sep '04	· (20 °C)	20-22 May 2005 (14 °C)			
	Concentration change	% change	Concentration change	% change	Concentration change	% change	Concentration change	% change		
<mark>NO₂-</mark> (μM)			0.00	0	0.11	33	0.05	8		
<mark>NO₃-</mark> (μM)	-4.16	-16	-0.37	-2	0.21	5	-2.15	-12		
NH ₄ ⁺ (μM)			0.33	8	-0.46	-21	-0.34	-6		
DON (μM)	-1.48	-16	-0.94	-4	1.89	8	2.99	12		
PON (μM)	0.58	7	3.39	25	1.10	7	-4.10	-27		
ΤΝ (μΜ)	-4.15	-8	2.25	4	2.86	6	-3.55	-5		
DRP (μM)			-0.02	-9	-0.02	-7	0.01	5		
DAHP (μM)			-0.04	-27	-0.03	-36	0.03	15		
DOP (µM)	-0.07	-134	0.01	5	0.02	10	-0.01	-5		
PRP (μM)	-0.05	-49	-0.02	-13	0.01	3	-0.02	-11		
PAHP (µM)	-0.03	-5	0.05	5	0.03	2	0.16	11		
POP (μM)	-0.20	-92	0.13	32	0.21	85	-0.34	-74		
ΤΡ (μΜ)			0.17	9	0.26	10	-0.19	-8		
ISS (mg L ⁻¹)	n.d.	n.d.	4.31	27	-2.24	-14	-2.42	-10		
OSS (mg L ⁻¹)	n.d.	n.d.	0.55	12	-0.50	-17	3.43	38		
TSS (mg L ⁻¹)	n.d.	n.d.	2.45	14	-2.77	-15	1.01	3		
Conductivity (μU)	2.20	1	-3.28	-3	-1.88	-2	3.30	4		
	Up – Down; <mark>Source</mark> , Sink									

	6-7 Feb 2004	- (1 °C)	12-15 Apr '04 (9 °C)		29-30 Sep '04	(20 °C)	20-22 May 2005 (14 °C)	
_	Concentration change	% change	Concentration change	% change	Concentration change	% change	Concentration change	% change
NO ₂ ⁻ (μM)	-0.14	-29	0.00	0	0.11	33	0.05	8
<mark>NO₃⁻ (</mark> μM)	-4.16	-16			0.21	5		
NH ₄ ⁺ (μM)	-0.91	-9	0.33	8	-0.46	-21	-0.34	-6
DON (μM)	-1.48	-16	-0.94	-4	1.89	8	2.99	12
PON (μM)	0.58	7	3.39	25	1.10	7	-4.10	-27
ΤΝ (μΜ)	-4.15	-8	2.25	4	2.86	6	-3.55	-5
	0.40	C 2	0.00	0	0.00	7	0.04	_
	-0.13	-63	-0.02	-9	-0.02	-1	0.01	5
DAHP (μM)	-0.11	-192	-0.04	-27	-0.03	-36	0.03	15
DOP (µM)	-0.07	-134	0.01	5	0.02	10	-0.01	-5
PRP (µM)	-0.05	-49	-0.02	-13	0.01	3	-0.02	-11
PAHP (µM)	-0.03	-5	0.05	5	0.03	2	0.16	11
POP (μM)	-0.20	-92	0.13	32	0.21	85	-0.34	-74
ΤΡ (μΜ)	-0.51	-41	0.17	9	0.26	10	-0.19	-8
ISS (mg L ⁻¹)	n.d.	n.d.	4.31	27	-2.24	-14	-2.42	-10
OSS (mg L^{-1})	n.d.	n.d.	0.55	12	-0.50	-17	3.43	38
TSS (mg L ⁻¹)	n.d.	n.d.	2.45	14	-2.77	-15	1.01	3
Conductivity (μU)	2.20	1	-3.28	-3	-1.88	-2	3.30	4
		Up	– Down	; Sou	rce, Sinl	<		

Likely mechanisms

Upper flowpath:

Steeper slope NH_4^+ export (nitrified to NO_3^-) Low sedimentation (1.6 mm/yr)

Lower flowpath: Shallower slope Particulate nutrient sink Suspended sediment sink More sedimentation (3.5 mm/yr)

Short-hydroperiod floodplain

- Seasonality (temperature) affects N and P processing
- Source of inorganic, sink of organic N and P
- Geomorphology within floodplain influences nutrient processing
 - → <u>complexity</u> floodplains variable in short term

Pocomoke River, MD

Geomorphology & River Load

Chickahominy River, VA

Noe & Hupp 2005, Ecol. Applications

3-6 yr net sediment accumulation rates

Extrapolate nutrient accumulation to wider network of sediment deposition sites

n = 114

n = 71

n = 185

N and P net accumulation rates

Geomorphology and River Load effects

- Nutrient accumulation rates in floodplains were controlled by
 - River-floodplain hydraulic connectivity
 - Watershed land-use

Extrapolate nutrient accumulation to wider network of sediment deposition sites

(Sediment deposition) x (bulk density) x ($\begin{bmatrix} n \\ N \end{bmatrix}$ or $\begin{bmatrix} n \\ P \end{bmatrix}$) x (age) = Mean (± CI) accumulation rate per site (g m⁻² yr⁻¹)

 \rightarrow Accumulation rate per site x floodplain area per site = River retention rate (kg yr⁻¹)

Percent retention summary statistics

	N				Р			Sed		
	Mean	-90%	+90%	Mean	-90%	+90%	Mean	-90 %	+90%	
Chickahominy	104	49	305	245	121	840				
Choptank	5	3	7	14	9	22	85	56	130	
Dragon Run	150	85	265	587	333	1035				
Mattaponi	<mark>56</mark>	43	75	66	51	87	476	360	632	
Pamunkey	12	8	17	<mark>22</mark>	15	32	53	35	82	
Patuxent	17	14	21	59	47	74	119	94	149	
Pocomoke	22	17	30	21	16	27	690	529	911	

If disconnected Pocomoke floodplains were restored, projected 23% N, 25% P retention

Atchafalaya: 5% N, 27% P (Hupp & Noe 2006 ASABE)

Assumptions

- Permanent sink
- Deposited material is allochthonous and riverine
- Load data is accurate
- Other removal fluxes not measured
 - Nutrient concentration is accurately predicted
 - Sampling network representative
 - Floodplain area estimation is accurate

Hydrology

Scott et al., in prep.

Surface-subsurface exchange: March flood

Br⁻ tracer addition to mesocosms

1st-order coupled N removal, constrained by hydrologic mass balance

$$DON \longrightarrow NH_3 \longrightarrow NO_3 \longrightarrow N_2$$

Flood	Location	GW-SW Hydrology	DON	NH ₃	NO ₃
			<i>k_{DON}</i> [day⁻1]	<i>k_{NH3}</i> [day⁻1]	k _{NO3} [day⁻1]
Jan	SI – B	discharge	-0.3	-0.3	-1.6
	SI – A	discharge	-0.8	-0.6	-2.6
Mar	SI – B	recharge	-0.2	0	-1.8
	SI – A	discharge	0.1	0	-2.0

Source, Sink

20-km reach scale NO₃⁻ removal

- Estimate percent inundation and residence time (DEMInundate)
- Apply measured denitrification rates
- Floodplain removes 9% of the annual N load (16% of NO₃-) (does not include PON)

Hydrology effects

- Surface-subsurface hydrologic exchange controls O₂ and nitrification
- Denitrification removes most NO₃ in surface and subsurface water (~9% of annual riverine NO₃ load?)
- DON and PON flux dominates
 N load
 what is fate of ON?

 Coupled mineralization – nitrification – denitrification important process in Southeastern US floodplains

Conclusions

- Nutrient processing in floodplains was controlled by:
 - river load
 - geomorphology and hydraulic connectivity
 - climate
 - hydrology
 - → Adds up to meaningful nutrient and sediment retention

≥USGS

Noe & Hupp. In press. River Res Appl.

Collaborators

FIU

Dan Childers Adrienne Edwards **Evelyn Gaiser** Krish Jayachandran **Ron Jones** David Lee **Jennifer Richards** Len Scinto Jonathan Taylor Joel Trexler **U** Colorado Laurel Larsen

USGS Jud Harvey **Cliff Hupp Ray Schaffranek U** Nebraska **Durelle Scott** Yale **Jim Saiers** Yong Huang **USF-SP** Jim Krest

Funding: USGS NRP, USGS Everglades & Chesapeake PES, NSF, SFWMD, ENP, DOI