From Landslides to Levees

Important Links Among Episodic Sediment Movement,
Fluvial Landforms, Geologic Setting, and Aquatic Habitat

By Faith Fitzpatrick
2 USGS USGS Wisconsin Water Science Center



Why do we need to track
long-term sediment
movement?

« Aquatic and riparian
habitat

« Stream rehabilitation
design and monitoring

« Contaminant transport
and source

« Dam removal
« Drinking water
o Nutrient transport



Why do we need to understand long-
term geomorphic processes?

Fluvial features are
formed by processes that
often work slowly or are
responding to events that
happened in the past

Movement of sediment is
punctuated by periods of
storage

Cause for a recent
change may be an
Internal adjustment to a
past disturbance

Toutle River, WA 2005



USGS

Talk Outline

« Why study episodic sediment movement?
« Geomorphic concepts

« Examples
North Fish Creek (fish habitat)
Bad River (water quality management)
Duluth (stream corridor preservation)
Halfway Creek (wetland preservation/restoration)
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Landslides = episodic sediment movement
& La Conchita, CA 1996

McClure Pass, CO 1994

Photo by Terry Taylor, Colorado State Patrol
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Photo by R.L. Schuster, USGS




Ontonagon River, MI, 2004

Photo source unknown

Stella, WA, Columbia River

Photo by R.L. Schuster, USGS



Tributary mouth near North

Fish Creek
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Photo by Dennis Pratt

North Fish Creek, WI
tributary, W1 2005
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Types of
Landslides

(Highland, 2004)

Rotational landslide

Debris avalanche

Translational landslide

Block slide




Landslides on ephemeral
channels or small tributaries
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North Fish Cfeek, WI,- 1993




Signs of rapid overbank sedimentation
Buried root crowns

=ZUSGS North Fish Creek, WI | Whlttlesey Creek WI

Photo by Bernard Lenz






Upstream effects from Iandslldes

Cranberry River, WI



Measuring sediment transport

« Rate of sediment movement at
a point in space and time

« Short term studies
In-channel only




Definitions of Total Sediment Load

Transport mechanics Source Measurement

Suspended Measured

Bed material

Unmeasured



Water column sampled by
suspended sediment sampler

Suspended
Sediment sampler

Bedload sampler

Lower limit of suspended sediment sampler

Unsampled zone
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Upper limit of bedload sampler

Streambed




Fluvial landforms
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Controls on channel form

Driving variables
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Schumm’s (1969) qualitative
model of channel response:

Q = discharge
Q+ ~ BTDTFtATS- Qs = bed material discharge
B = width
D = depth
QS+ ~BTD-FtATST P- F = width/depth ratio
A= meander wavelength
S =slope

Q+Qs+ ~ B"DrFATSEP- P = sinuosity
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Time Scales, Equilibrium, and Threshold Response
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Geomorphic responses

Exogenic and
endogenic disturbance

magnitude
order
frequency
concentration

Photo by Mitch Harris

(Haschenburger and Souch, 2004)




Internal functioning
Threshold exceedance

Time lag depend on rates
of processes

Limited by history of
landform development

(Haschenburger and Souch, 2004)



Geomorphic Assessment Methods

USGS

Compile watershed data—geology, soils, topography, land
cover

Construct longitudinal profiles

Identify valley types and local geologic setting (3D)
Compile historical streamflow and sediment load data
Collect historical maps, photos, bridge designs, surveys
Identify past disturbances

Identify potential areas of erosion, transport, or deposition

Conduct field reconnaissance survey of watershed—
helicopter or driveby

Conduct stream reach surveys (representative of entire
stream network)

Channel/flood-plain cross sections, slope, streambed and bank
substrate characterization, riparian conditions



Valley Cross Sectlon Surveys and Coring
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Typical Midwest/Great Lakes valley development

Diagram 2.8] A Model of a River Valley

Entrenched
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potential large sediment source from
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Northern Great Lakes Cutover
—Late 1800s

Photos courtesy
Wisconsin State
Historical Society



History of Land Cover Changes
North Fish Creek

clearcut (90%) pasture/grassland (7%)
forest pasture/grassland (31%)
(66%) cropland (22%)
cropland (3%)

wetland (4%) wetland (5%)

barren(shrubland
forest (10%) barren(burn) (1%) §3%) )

pre-1870 circa 1890 1928 1992
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North Fish Creek _
Total sediment load 1990-91 24,440 metric tons/year
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Geomorphic processes and sediment
loads for North Fish Creek

Transitional main stem Lower main stem

14,000 metric tons/year 24,440 metric tons/year
zuses 140 tons/km?2/yr 200 tons/km?/yr
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Photo of cut bank

\

APPROXIMATE ALTITUDE (METERS)

206

205

204

203

200

Terrace 1

1545+/-405AD
— —\ -

[1525+/-115

> Pre-1946
M channel

Terrace 2

Modern
channel

(HORIZONTAL DISTANCE NOT TO SCALE)

re-settlement

°§t;'-wprm TS e

1670+/-20 BC

Location




APPROXIMATE ALTITUDE ( METERS)
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ALTITUDE, IN METERS
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ANNUAL PEAK DISCHARGE, IN
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Bad River—upstream of the Penokee Range

Penokee
Iron Range




Copper Falls,
Bad River
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Lake Superior

Lower Bad
River Basin

White River Basin.

Manengo River Basin

Upper Bad
River Basii
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EXPLANATION
Geomorphic Segment Hassification
W -watland,< 3%
W.3 - wetland, 0.3-1%
U1 - upper main stem, 1-2%
U2 - upper main stem, 2-4%
M.3 - middle main stem, 0.3-1%
M1 - middle main stam, 1-2%
M2 - middle main stam, 2-4%
B - badrock main stam, > 4%
L1 - lowar main stam, 1-2%
L2 - lowrer main stam, 2-4%
A - lowar main stem, 0.3-1%
T1 - uppar/middle tributary, 1-2%
T2 - uppar/middle tibutary, 2-4%
BT - bedrock tributary, > 4%
LT - lowar tributary, 2-4%

Stream sagmant |D
Stream basin boundary
—-—  Subbasin boundary

Geomorphic Assessment
and Classification of
Duluth Area streams

Basa from Minnesata Departmant of Natural Reseurcas hydrography and Wisconzin Departmant
of Natural Resourcas hydrography: 1:24,000 digital data. Transversa Marcator Projection, NAD &3
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Summary Thoughts

« For streams with historical land cover disturbance,
post-settlement levee building and overbank
sedimentation has been accelerated in valleys,
resulting in entrenched-looking channels, loss of
flood-plain storage, bank erosion, and downstream
sedimentation and flooding problems.

« Zones of erosion, transport, and deposition are
dependent on watershed and local geology,
topography, drainage network position, historical
geomorphic adjustments, and internal feedback.
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« Overbank sedimentation is a underappreciated,

widespread problem with long-term impacts on Eh= Ty g |
channel morphology, aquatic habitat, and riparian | g ‘
vegetation. i

« Geomorphic assessments need to recognize internal | t’ N r &
adjustments and time lags associated with historical ’ M

disturbance.
22 USGS



How IS this information used?

Stream Restoration

Identify main causes and
processes for channel
Instability (external and
Internal)

Guide where restoration efforts
are concentrated

Guide alternatives for restoration
techniques




How Is this information used?
TR0 Brool: Trous Distribution _. _I 4 ': B rO O k T rO Ut R e h a.b I I Itatl O n

Identify physical causes and
processes for lack of habitat

Identify possible changes in
current habitat conditions
compared to presettlement
conditions

Guide habitat improvement




How Is this information

Sediment transport/water
guality assessment

Provide framework for fitting intensive
short-term water column studies
into long-term conditions

Provide information on modern
sources and sinks of sediment and
related contaminants

Identify historical sources for
sediment

Help guide sampling design and
strategies

Help guide management plans
aUSGS



Bad River Band of the Lake Superior
Chippewa Tribe

Menominee Tribe
Wisconsin DNR

Ashland-Bayfield-Douglas-lron Co. Land
Conservation Dept.

U.S. Fish and Wildlife Service

U.S. Environmental Protection Agency
City of Duluth

USGS-BRD

University of Wisconsin-Madison
Trout Unlimited

The Nature Conservancy

Great Lakes Commission

Great Lakes Coastal Management
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