Fusarium Infection and Mycotoxin Contents of Oats Under Different Tillage Treatments

Päivi Parikka, Veli Hietaniemi, Sari Rämö and Heikki Jalli MTT Plant Production Research and MTT Laboratories

Fusarium Head Blight on Oats

- Fusarium head blight occurs every year in some extent in Finnish oats
- reduces grain yield and quality: poor grain development, small and light weight grain, mycotoxins harmful in food and animal feed
- oats is very susceptible to *Fusarium* infection
- the highest mycotoxin contents in Finnish cereals are mainly detected on oats
- oat cultivars are often harvested late and suffer from unfavourable weather in autumn
- Fusarium species infecting plants survive in soil and plant debris: stubble, straw
- infection and mycotoxin production depend on weather conditions

Cultivation practices and *Fusarium* infection

reduced tillage and direct drilling are increasing also in Finland

results from other countries: less tillage- increasing risk for Fusarium head blight and high mycotoxin contents

EY Directive for deoxynivalenol (DON) contents in cereals and cereal products: 1700 μ g/kg for oat grain

proposed maximum content for T-2+HT-2 500µg/kg??

development of *Fusarium* infection in kernels- no earlier studies in Finland

Field trial to study Fusarium infection

- in Southern Finland (MTT Jokioinen), on sandy clay soil in 2004-2006
- autumn ploughing/ direct drilling
- four oat cultivars: Roope, Freja, Veli and Belinda
- sampling to detect *Fusarium* infection: starting from panicle emergence, continuing every second week until harvest
- *Fusarium* and mycotoxin analyses of the harvested grain
- in 2005 and 2006 mycotoxin analyses also 2 weeks before harvest and of cleaning residue, small grain

Development of *Fusarium* infection

- *Fusarium* infection is first detected at panicle emergence
 - the first species detected is F. langsethiae
- infection increases in the developing kernels
 - F. poae, F. avenaceum, F. culmorum, F. sporotrichioides, F. tricinctum, F. graminearum, F. sambucinum and F.equiseti colonise the kernels during July- early August
- Colonization depending on the weather conditions
 - 2004: very humid growing season- favored *F. avenaceum* and *F. culmorum*
 - 2005: first dry, warm, favored F. poae, then humid -
 - F. avenaceum, F. culmorum and F. tricinctum increased
- 2006: dry, warm season, favored *F. poae and F. langsethiae* the number of species detected and amount of infected kernels increases towards the end of the season but detection of *F. langsethiae* is normally reduced when grains are maturing

Sampling dates from 4.7. 2005 1= week27 2= week29 3= week31 4= week33 5=grain

Sampling dates from 4.7. 2005 1= week27 2= week29 3= week31 4= week33 5=grain

Sampling from 4.7. 2005 1= week27 2= week29 3= week31 4= week33 5=grain

Sampling from 4.7. 2005 1= week27 2= week29 3= week31 4= week33 5=grain

Early and late colonizers

- early colonizers: *F. langsethiae*, *F. poae*
- mid-season infections: *F. sporotrichioides*,
 F. graminearum, *F. culmorum*
- late colonizers: *F. avenaceum*, *F. culmorum*, infections increase in mature grain

Fusarium species and mycotoxins

Trichotechene toxins: deoxynivalenol (DON), 3-acetyldeoxynivalenol (3-AcDON), nivalenol, diacetylscirpenol (DAS), T-2, HT-2

- producers *F. culmorum* and *F. graminearum* (DON, 3-AcDON)
- *F. sporotrichioides* and *F. langsethiae* (T-2 and HT-2)
- *F. poae*: nivalenol
- Zearalenone
- producers F. graminearum and F. culmorum
- Moniliformin and enniatins producer *F. avenaceum*

Tillage can influence infection

Direct drilling:

- can increase T-2/HT-2 producers, especially *F. langsethiae*
- increases risk for T-2/HT-2 in grain

decreases DON-producers, especially F. culmorum

- decreases DON contents in grain

increase F. avenaceum infection in humid growing seasons

- *F. avenaceum* colonizes kernels rapidly and inhibits growth of other species

Tillage:

- seems to favor F. poae-infection
- may increase risk for nivalenol in grain

MT

Mycotoxins before harvest and in harvested grain

- the highest mycotoxin contents in 2005: high temperatures and humidity
- in 2006 T-2/HT-2 contents high in grain: F. langsethiae –infections high
 - toxins analysed already 2-3 weeks before harvest: DON, T-2/HT-2
- DON-contents in harvested grain were not near to the EU limits

 in direct drill often lower toxin contents
 differences between cultivars, late cultivars had higher toxin
 contents than early ones
- variation between years: humid/dry year the high T-2/HT-2 contents on oats correspond to those in the national mycotoxin survey

Cultivars- mycotoxins 2006

		Uncleaned grain				Cleaned grain			
		DON	NIV	T - 2	HT - 2	DON	NIV	T-2	HT - 2
Roope	tillage	610-790	71-160	0	0-49	440-680	0	0	0
	direct drill	290-480	0	0-220	0-390	370-390	0-<25	0	0
Freja	tillage	220-340	70-96	0-84	0-110	300-330	0	0	0
	direct drill	180-220	0-120	120-300	120-300	130-230	0	0	0
Veli	tillage	320-400	160-340	0	0	290-430	0	0	0
	direct drill	340-430	75-250	45-95	140-230	280-380	0-<25	0	0
Belinda	tillage	370-470	220-300	0	0-140	230-390	0-72	0	0-31
	direct drill	170-330	0	210-280	320-490	250	44	0	0

Normally cleaning reduces both DON and T-2/HT-2 contents, but the dry year 2006 was exceptional in case of DON

Conclusions

- *Fusarium* infection can take place in early kernel development
- the first infecting species is a T-2-producer *F. langsethiae* which is not highly dependent on weather conditions
- late cultivars more susceptible to DON producers- infections still near maturity
- poor knowlegde of resistance in cultivars
- T-2/HT-2 potential risks under reduced tillage or direct drilling
- cleaning reduces effectively mycotoxin contents of harvested grain

Acknowledgements

This study was supported by the Finnish Ministry of Agriculture Forestry, Raisio Ltd, Nestle Nutrition and Viking Malt Ltd

Thank you

