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INTRODUCTION
9. Laboratory Designators
Awc Langridge, P.
 University of Adelaide
 Waite Campus
 PMB 1
 Glen Osmond
 S.A. 5046, Australia

Gene Symbol
Add to gene symbols list:
Vil. VIN3-like genes similar to Arabidopsis VIN3.

1. Gross Morphology:  Spike characteristics

1.1. Squarehead/spelt
Q. v:  Iranian spelts {0140}. tv:  T. turgidum ssp. carthlicum, durum and polonicum {10457}.
 ma:  Q was cloned and shown to have similarity to AtAP2 (APETALA 2) transcription factors {10457}, the Q 
 allele was more abundantly transcribed than the q allele {10457}.
q. v:  Insert ‘European’ in front of ‘spelt’ and add reference {10457}, i.e., ‘European spelts {10457}’.
 tv:  T. turgidum ssp. dicoccum, dicoccoides {10457}.  
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4. Aluminium Tolerance
Insert before the QTL section:
Allelic variation at the promoter of Almt-D1 is associated with differences in Al tolerance.  Molecular and pedigree 
analysis suggest that Al resistance in modern wheat germ plasm is derived from several independent sources {10532}.

Add to QTL:
‘Atlas 66 (insensitive)/Chisholm (sensitive)’ RILs.  One QTL, located in chromosome 4DL, corresponded to ALMT1 
and accounted for 50% of the phenotypic variation {10483}.  A second QTL was located on 3BL (R2 = 0.11); nearest 
marker Xbarc164-3B {10483}.  Both QTL were verified in ‘Atlas/Century’ {10483}.

5. Anthocyanin Pigmentation
5.3. Red/purple coleoptiles.
rc-a1. Rc {10451}3. 7AS3 {10451}. dv:  PAU14087 {10451 }.
 ma:   Xcfa2174-7AS – 11.1 cM – Rc-A1 – 4.3 cM –  Xgwm573-7AL/Xwmc17-7AL { 10451}3.

8. Blue Aleurone
Ba2. Ba {10451}. dv:  PAU5088 = G2610 = PI 427389 {10451}.
 ma:   Xcfd71-4A – 10.3 cM – Ba – 16.5 cM – Xcfa2173-4A {0802}3.

10. Boron Tolerance
Bo1. Add: 7BL {10460}. v:  Carnamah {10460}; Frame {10460}; Krichauff {10460}; Yitpi {10460}. 
 ma: Bo1 co-segregated with several STS-PCR markers, including Xaww11-7BL, falling within a
  1.8 cM interval {10460}.  The AWW7L7 (Xaww11) PCR marker allele was a good predictor
  of boron tolerance {10460}.

17. Dormancy (Seed)
Seed dormancy in wheat has several components, including factors associated with vivipary and red grain colour. Dor-
mancy is an important component of resistance/tolerance to preharvest sprouting (PHS).

Vivipary:  Othologues of maize viviparous 1 (Vp-1) are located in chromosomes 3AL, 3BL, and 3DL {9961} approxi-
mately 30 cM distal to the R loci.  Variability at one or more of these loci may be related to germination index and hence 
to PHS {10468).

Three sequence variants of Vp-B1 identified in {10468} were used to develop STS marker VpiB3 whose amplified prod-
ucts showed a significant, but not complete, association with germination index used as one measure of PHS.

Pre-harvest sprouting:
phs1 {10500}. Phs {9960}. i:   Haruyokoi*6 / Leader {10500}; Haruyokoi*6 / Os21-5 {10500}.
   v:   Leader {10500}; Os21-5 {10500}.
   ma:  Xhbe03-4AL – 0.5cM – Phs1 – 2.1 cM – Xbarc170-4AL {10500}.
phs1.   v:   Haruyokoi {10500}.

QTL: As currently listed.

20. Flowering Time
Winter wheat cross ‘Ernie (early)/MO94-317 (late)’, days to anthesis (dta):
Qdta.umc-2D, linked to Xbarc95-2D, R2 = 0.74 {10456}.
 
26. Glaucousness (Wasiness/Glossiness)
26.2. Epistatic inhibitors of glaucousness
iw2. Iw3672 {10510}. v:  Synthetic hexaploid line 3672 {10510}.
   ma:  Xbarc124-2D – 0.9 cM – Iw2 – 1.4 cM – Xwe6 (AL731727) {10510}.
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29. Grain Quality Parameters
29.2. Flour, semolina and pasta colour
Add at end of section: 
QTL:  Analysis of yellow flour pigment in an RIL population of ‘PH82-2 (low)/Neixiang (high)’ revealed major QTL 
on chromosomes 7A co-segegating with marker YP7A (R2 = 0.2 – 0.28) (see Phytoene synthase 1), and 1B (R2 = 0.31 – 
0.54) probably contributed by 1RS {10501}.

29.8. Loaf volume
Add:
QTL:  Loaf volume score consistent across three environments was scored in an RIL population ‘Renan/Recital’ and 
revealed major QTL on chromosomes 3A (flanking markers Xfbb250-3A, Xgwm666-3A, positive effect from Renan) and 
7A (flanking markers Xcfa2049-7A, Xbcd1930-7A, positive effect from Recital) {10536}.
 
32. Hairy Leaf
Add note:  A QTL analysis of the ITMI population identified loci determining hairiness of leaf margins and auricles in 
regions of chromosomes 4B and 4D orthologous to Hl1{10516}.
Hl1. ma:   Xgwm375-4B - 12.1 cM - Hl1 - 2.1 cM {10516}.

Hl2.
Add note following this entry:
The hairy leaf gene (HlAesp) in Ae. speltoides introgression line 102/00I was allelic with Hl2 {10516}. 

39. Height
39.1. Reduced Height: GA-insensitive
 
39.2. Reduced Height: GA-sensitive
rht8c. v:  Add: Chuanmai 18 {10512}.
To the note following Rht8c add:
Although the ‘diagnostic’ association of Rht8c and Xgwm261192 applied in many Strampelli derivatives and European 
wheats, there was no association between reduced height and this allele in Norin 10 and its derivatives {10512}.  The 
pedigrees of a number of Chinese wheats postulated to have Rht8c on the basis of the marker trace to Italian sources 
{10515}.

41. Hybrid Weakness 
41.4. Apical lethality
Apical lethality is caused by complementary recessive genes and is characterized by stunting and tiller death at the 4–5 
leaf stage.  The lethal genotype was designated apd1 apd1 apd2 apd2 {10492}.
apd1 {10492}.  v:  WR95 = Kalyansona / Gigas // HD1999 / Sonalika /3/ T. turgidum subsp. carthlicum 
  {10492}.
apd2 {10492}.  v:  HD2009 {10492}; HW2041 {10492}; Lok-1 {10492}; others {10492}.
apd1 apd2.  v:  Atila {10492}; Kalyansona {10492}; others {10492}.
apd1apd2 Lethal genotype.

Uniculm plants occurred as heterozygous segregates among progenies, but homozygous uniculm lines could not be 
established {10492}.

57. Polyphenol Oxidase (PPO) Activity
QTL:  Chara (medium high PPO) / WW2449 (low PPO): one QTL was located on chromosome 2A.  Two markers (one 
SNP, one CAPS) based on BQ161439 were polymorphic between the parents and showed linkage or allelism with PPO 
loci Xtc1 and XPPO-LDOPA.

Xtc1 – 0.6 cM – XPPO-LDOPA/XPPO18/BQ161439 {10484}.

59. Reaction to Black-Point of Grain
QTL:  Add to the paragraph starting with ‘Sunco/Tasman’:  Markers Xgwm319-2B and Xgwm048-4AS were confirmed 
in a ‘Batavia/Pelsart (resistant)’ DH population {10494}.
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60. Response to Photoperiod
Insert following the current Ppd-B1 entry:
ppd-d1.   Comparative mapping showed that Ppd-D1 was co-linear with barley Ppd-H1 – a member of the pseudo-
response regulator (PRR) gene family {10466}.  Stocks with Ppd-D1a had a 2,089bp deletion upstream of the coding 
region leading to misexpression of the 2D PRR gene {10466}.

Ppd-D1a. v:  Add:  Festival {10466}; Kavkaz {0917}; Orqual {10466}; Recital {10466}; Saitama 27 
 {10466}; Sideral {10466}; Soissons {10466}; Talent {10466}; Texel {10466}.
 ma:  Stocks with Ppd-D1a had a 2,089-bp deletion upstream of the coding region leading to mis-
 expression of the 2D PRR gene {10466}.
 
61. Response to Salinity
61.1. K+/Na+ discrimination
Kna1.
Add note:  Kna1 is a possible othologue of  Nax2 and is the Na+ transporter TaHKT1;5-D {10455}.

6.1.2  Sodium exclusion
nax1 {10452}. 2AL {10452}. i:   Tamaroi*6/Line 149 = P06306 {10453}.
   tv:   Line 149 Nax2 = 126775b {10452}.
   dv:  AUS 90382 Nax2  = C68.101{10455} = JIC T. aegilopoides no. 3.
ma:  Nax1 was mapped as a QTL in the region Xpsr102-2A – 5.4 cM – Xwmc170 -2A – 0.9 cM – Xksud22-2A/Xksu16-
2A – 0.8 cM – Xgwm312-2A with R2 = 0.38 in ‘Tamaroi/Line 149’ {10452}.  TmHKT7-A2 was identified as a putative 
candidate Na+ transporter{10454}.
Nax1 promotes withdrawal of Na+ from xylem in leaf bases and roots {10453}. 

Nax2 {10453}. 5AL {10455}. i:   Tamaroi*6/Line 149 = P05603 {10453}.
   tv:   Line 149 Nax1 = 126775b {10452, 10453}.
   dv:  AUS 90382 Nax1  = C68.101{10455} = JIC T. aegilopoides no. 3.
ma:  Co-segregation with Xgwm291-5A/Xgwm140-5A/Xgpw2181-5A {10455}.  TmHKT1;5-A was identified as a candi-
date for Nax2 {10455}.
Nax2 is a likely orthologue of Kna1 {10455}. 

63. Response to Vernalization
Add to the comment following Vrn3 entries:
……… to Arabidopsis FLOWERING LOCUS T (FT) {10421}.  Polymorphisms in the A and D genome copies of TaFT 
are associated with variation of earliness components in hexaploid wheat {10533}.

Add as a comment at the end of the section:
Three genes up-regulated by vernalization were cloned from T. monococcum subsp. monococcum {10531}.  These were 
VIN3-like genes similar to Arabidopsis VIN3.

Vil-1{10531}. GenBank DQ886919 {10531}. ma: T. monococcum subsp. monococcum chromosome 5Am 

     {10531}.
Vil-2{10531}. GenBank DQ886917 {10531}. ma: T. monococcum subsp. monococcum chromosome 6Am 
     {10531}.
Vil-3{10531}. GenBank DQ886918 {10531}. ma: T. monococcum subsp. monococcum chromosome 1Am 
     {10531}.

71. Tenacious Glumes
tg1. ma:   Placed in a 12 cM interval between Xwmc112-2D and Xbarc168-2D {10497}.
Add below Tg2:
A QTL analysis of the relationship of glume tenacity (Gt) with threshability (Ft) and the size of the glume base scar 
(Gba) after glume detachment in two crosses, viz. the ITMI population and CS* /CS (Ae. tauschii 2D), was undertaken 
{10497}.  In the first cross QFt.orst-2D.1 and QGt.orst-2D.1 were closely associated with Xgwm261-2D, and XFt.orst-
2D.2 and XGt.orst-2D were associated with Xgwm455-2D; in the second population only the first pair along with XGba.
orst-2D were detected; these appeared to correspond with Tg1 {10497}. 
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75.9. Grain yield
Add:
Grain yield under drought stress
QTL:  ‘Dharwar Dry (drought tolerant)/Sitta’:  SSR locus Xwmc89-4AL was the marker most closely associated with 
with QTL for grain yield, grain fill rate, spike density, grains/m2, biomass, and drought susceptibility index covering a 
genetic distance of 7.7 cM {10488}.
 

Proteins 
77. Proteins
77.2.6. Endopeptidase
ep-d1b. 
Add comment after the present entry:  Assuming that Ep-D1 encoded an oligopeptidase G, comarative genetics were ap-
plied to develop a STS marker for identifying resistance gene Pch1{10513} (see Reaction to Tapesia yallundae).
 
77.2.29. Starch branching enzyme
Insert headings:
Starch Branching Enzyme I 
Present entries are in this section.

Starch Branching Enzyme II
sbeii
Suppression of SBEIIb expression alone had no effect on amylose content; however, suppression of both SBEIIa and 
SBEIIb expression resulted in wheat starch containing >70% amylose {10534}.

77.2.32.1 Phytoene synthase 1
Add introduction:  Phytoene synthase is involved in the carotenoid biosynthetic pathway and influences yellow pigment 
content in grain (See Flour colour and Grain quality parameters: Flour, semolina and pasta colour).  The gene Psy-A1 
was cloned and a functional marker developed from the sequence distinguishing Chinese common wheats with high and 
low pigment contents {10501}.  Most hexaploid wheat culitvars have a 676-bp insertion in intron four that is absent in 
Australian cultivars Dundee, Raven, and Aroona with high yellow pigment.  The Psy-B1b allele from tetraploid wheat 
Kofa is the result of a B–A intergenomic conversion event that probably occurred in Cappelli ph1c mutant l {10530}.  
An EMS mutation in the Psy-E1 gene is associated with whiter endosperm in lines carrying the Th. elongatum 7EL trans-
location.

psy-a1
psy-a1a {10501}. GenBankEF600063 {10501}. No 37-bp insertion in intron 2 (194-bp fragment for marker Yp7A)
     {10501}.  676-bp insertion in intron 4 {10530}.
 v:  Chinese common wheats with high pigment content:  CA9648 {10501}; Neixiang 188 {10501}.
 ma:  Xwmc809 – 5.8 cM – Yp7A {10501}.
Psy-A1b {10501}. GenBank EF6000644 {10501}. 37-bp insertion intron 2 (231 bp fragment for marker Yp7A) 
     {10501}.  676-bp insertion in intron 4 {10530}.
 v:  Chinese common wheats with low yellow pigment content {10501}.  Ph82-2 {10501}; Xinong
 336 {10501}. 
Psy-A1c {10530}.   Hexaploid wheats with no 37-bp insertion in intron 2 and no 676-bp insertion in intron 4 {10530}.
 v:  High yellow pigment cultivars:  Aroona (PI 464647) {10530}; Dundee (PI 89424, PI106125) 
  {10530}; Raven (PI 303633, PI 330959) {10530}. 
psy-a1d {10530}. GenBank  EU096090 {10530}.
 tv:  Kofa {10530}; UC1113 {10530}.
psy-B1
psy-B1a {10530}. GenBank EU096093 {10530}.
 tv:  UC1113 {10530}.
Psy-B1b {10530}. GenBank EU096092 {10530}.
 tv:  Kofa {10530}.
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Psy-E1  
Psy-E1a {10530}. GenBank EU096095 {10530}.
 v:  Agatha (7EL translocation) {10530}.
Psy-E1b {10530}. = EU096095 with P to L mutation at amino acid 422 {10530}.
 v:  EMS mutant Agatha-28-4 (10530); Wheatear {10530}.

7.2.34.  Polyphenol oxidase
Add as intoductory statement:  High PPO activity in kernels and flour leads to a time-dependent discolouration of end 
products such as noodles, pasta and breads.

Primers different from those in {10386) were developed in {10504}, but their ability to distinguish phenotypic groupings 
(alleles) were similar. A null allele of Ppo-D1 was identified for this locus using primer pair WP3-2 {10504}. 

ppo-a1.
ppo-a1a. v:  Add reference ‘,10504’ to existing reference panels, i.e., {10385, 10386, 10504} and {10386,
 10504}.
ppo-a1b. v:  Nongda 183 {10504}.  Add reference ‘,10504’ to ‘others’.

ppo-d1.
ppo-d1a. v:  Add reference ‘,10504’ to existing reference panels.
ppo-d1b. v:  Nongda 183 {10504}.  Add reference ‘,10504’ to others.

ppo-d1c [{10504}]. Ppo-D1null {10504}. v:   Gaiyuerui {10504}; Xiaobingmai {10504}; Zm2851 {10504};
     XM 2855 {10504}; 9114 {10504}.
 ma:  Wheats with this allele tend to have lower PPO activity {10504}.

Endosperm Storage Proteins
77.3.1. Glutenins
77.3.1.1. Glu-1
glu-a1
Add:
glu-a1y  [{10535}]. 2.. {10535}. v:  211.12014 {10535}.

glu-a1-1
In the following entries that appear in the 2006 Supplement:
glu-a1v {10327}.  2.1* {10327}. v:  KU-1094, KU-1026, KU-1086, Grado, KU-1139 {10327}.
glu-a1w [{10327}]. 2’ {10327}. v:  TRI14165/91 {10327}.

replace ‘glu-a1v’ and ‘glu-a1w’ with ‘glu-a1-1v’ and ‘glu-a1-1w’, respectively.

Add:
glu-a1-1x  [{10535}]. 2.. {10535}. v:  211.12014 {10535}.

77.5.8.  Puroindolines and grain softness protein
Under the preamble, add:
Recent reviews {10522, 10523} provide comprehensive descriptions of the molecular genetics and regulation of puroin-
dolines.  Morris and Bhave {10524} reconciled the D-genome puroindoline alleles with DNA sequence data.  Bonafede 
et al. {10525, 10526} developed a CS line (PI 651012) carrying a T5AmS·5AS translocation from T. monococcum subsp. 
monococcum; the translocated chromatin carries A-genome Pina, Pinb, and Gsp-1 alleles that confer softer kernel tex-
ture.

pina-d1b 
  i:  Add: Near-isogenic pairs were developed in McNeal, Outlook, Hank, Scholar, and 
  Explorer {10527}.
  v:  add: This BAC clone also contains Pinb-D1a {10431}.
pina-d1m.   Add: v:  Hongheshang, (GenBank EF620907) {10208}.
pina-d1n.   Add: v:  Xianmai GenBank EF620908) {10208}.
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Correct:
pinb-d1p {10121}.   v:  Nongda 3213 {10121}; Nongda 3395 {10121}.
pinb-d1u.    v:  Tiekmai, add: (GenBank EF620911) {10427}. 
Delete existing information and relace with: 
pinb-d1x {10528}.   v:  Kashibaipi  (GenBank AM909618) {10528}.
pinb-d1ab   v:  Add: Tuokexunyihao {10528}. 

Pathogenic Disease/Pest Reaction
78. Reaction to Barley Yellow Dwarf Virus
Bdv2. 7D = T7DS-7Ai#1S7Ai#1L group:   v:  Glover (with TC6) {10491}.

79. Reaction to Blumeria tritici
79.1. Designated genes for resistance
pm12. ma:  Add: Secondary recombination analysis indicated that Pm12 was located in the long arm of 6S
 between Xwmc105 and Xcau127 {10517}.
pm21. ma:  Add:  Marker NAU/Xibao15, developed from a serine/threonine gene upregulated by powdery 
 mildew infection, acts as a co-dominant marker for lines carrying Pm21 {10519}.
Pm37. v:  List as:  PI 615588 = NC99BgTAG11 = Saluda*3/PI 615588 {10372}.
 ma:  Add: Xgwm332-7A – 0.5 cM – Pm37 – 0.5 cM – Xwmc790-7A – 15.5 cM – Pm1 {10372}.
Pm39 {10481}. Adult-plant resistance.  1BL {10480, 10481}.
 i:  Avocet-R+Lr46/Yr29 = Avocet-R*3//Lalb mono 1B*4/Pavon 76 {10480}. Genotypes with Lr46/
 Yr29; see Reaction to Puccinia triticina, Reaction to P. striiformis.
 v:  Saar (CID: 160299, SID: 188) Pm38  {10481}.
 ma:  Xwmc719-1BL – 4.3 cM – Lr46/Yr29/Pm39 – 2.5 cM – Xhbe248-1BL {10481}.

To the paragraph following the last named Pm gene and beginning; ‘Single resistance genes……’ add:  A further gene 
derived from T. monococcum PI 427772 was identified in BCBGT96A = PI 599036 = Saluda*3 / PI427772 {10479}. 
 
79.2. Suppressors of pm

79.3. Temporary designated genes for resistance to Blumeria graminis
pmlK906 {10476}. Resistance is recessive (10476, 0928}. 2AL {10476,10477}.
 v:  Lankao 90(6)21-12 {10476}; Zhengzhou 9754 {10476}.
 ma:  TacsAetPR5-2A/Pm4 – 3.9 cM – Xgwm265-2A  – 3.72 cM – Pm39 – 6.15 cM – Xgdm93-2A
 {10476, 10477}.  TacsAetPR5-2A was converted to a STS marker {10477}.

79.4. QTL for resistance to Blumeria graminis
At the end of the paragraph ending with ‘ ….. Becker / Massey {0284}.’ Add: These QTL were confirmed by the addi-
tion of extra markers to the ‘Becker/Massey’ map and in a separate analysis of ‘USG 3209 (A Massey derivative)/Jaypee 
(susceptible)’ {10505}.  USG 3209 possessed Pm8 (T1BL·1RS) and an unknown specific resistance factor and their 
combination had a positive effect on APR even though neither was effective against the races used to identify the QTL 
{10505}.

81. Reaction to diuraphis noxia
dn7. Dn2414 {10478}.  v:  ST-ARS 02RWA2414-11 {10474}.
 ma:  Xhor2-1R – 1.7 cM – Dn7 – 1.0 cM – Xscb241-1R {10474}.  Marker Xrems1303320 was 
 amplified only in genotypes resistant to biotype 3 and presumably possessing Dn7 {10474}.

82. Change to:  Reaction to Fusarium spp.
82.1. Disease: Fusarium head scab, scab
Insert as an introductory statement before listing the first gene:
Whereas much of the recent genetic work involved FHB caused by F. graminearum, according to {10514} F. culmorum 
is more damaging than F. graminearum in terms of FHB severity, kernel damage, yield reduction, and DON/NIV con-
tamination.
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Fhb3 {10529}. 7D = T7AL·7Lr#1S {10529}. v:  TA 5608 (10529}.
     al:  Leymus racemosus {10529}.
The level of type-2 resistance conferred by Fhb3 was similar to that of Sumai 3 {10529}.

QFhs.ndsu-3as. ma:  Add:  Qfhs.ndsu-3AS was placed within a 11.5-cM region flanked by TRAP marker loci Xfcp401-
3A and Xfcp397.2-3A {10482}.  This gene is unlikely to be a homoeologue of Qfhs.ndsu-3BS = Fhb1 {10482}.

QFhs.pur-7el {10489}. 7el2 {10489}, T7DS·7DL-7el2 {10489}. su:   K2630 {10489}.
   v:  K11695 = T7DS·7DL-7el2 {10489}; KS10-2 = T7el2S·7el2L-7DL {10489}; KS24-1 and
   KS24-2 = T7DS·7el2 {10489}. 
  ma:  Qfhs.pur-7el2 was flanked by BE445653 and Xcfa2270-7D {10489}.  These markers
  also were present in KS10-2 {10489}.

QTL: Add after ‘Chokwang/Clark’:
‘Ernie (Resistant)/MO94-317 (Susceptible)’: 243 F8 RIL population.  Four QTL from Ernie detected as follows:
Qfhs.umc-2B, linked to Xgwm278-2BS, R2 = 0.04 {10456}.
Qfhs.umc-3B, linked to Xgwm285-3BS, R2 = 0.13 {10456}.
Qfhs.umc-4B, linked to Xgwm495-4BL, R2 = 0.09 {10456}.
Qfhs.umc-5A, Linked to  Xgwm165-5A, R2 = 0.17 {10456}.
Evidence was provided to suggest the QTL acted additively {10456}. 

Add after ‘Arina/Forno’:
‘Arina/Riband’ DH lines:  QTL affecting AUDPC were identified in 1BL (2), 2B, 4DS, 6BL, and 7AL (Arina), and 7AL 
and 7BL (Riband).  The most effective was the 4DS QTL that appeared to be an effect of Rht-D1a rather than height per 
se {10464}.

‘Cansas (moderately resistant)/Ritmo (susceptible)’ : Map-based analysis across environments revealed seven QTL, 
QFhs.whs-1BS (1RS), QFfhs.whs-3B (not Fhb1), QFhs.whs-3DL, QFhs.whs-5BL, QFhs.whs-7AL, and QFhs.whs-7BL 
(cumultatively, R2 = 0.56).  The chromosome 1D gene was primarily involved in resistance to fungal penetration and the 
others in resistance to spread {10503}.  There were significant correlations of FHB response with height and heading 
date {10503}. 

Add above ‘Frontana/Remus’ entry:
‘Veery (susceptible)/CJ 9306 (resistant)’:  Four QTL, QFhs.ndsu-3BS (Xgwm533b – Xgwm493), QFhs.nau-2DL 
(Xgwm157 – Xwmc-041), QFhs.nau-1AS (Xwmc024 – Xbarc148), and QFhs.nau-7BS (Xgwm400 – gwm573) accounted 
for 31, 16, 10, and 7%, respectively, of the average phenotypic variation over three years {10490}.

Continue under ‘Dream/Lynx’:  ‘Dream*4/Lynx’ lines were developed by selection of QTL on chromosomes 6AL, 7BS, 
and 2BL.  Lines carrying QFhs.lfl-6AL and QFhs.lfl-7BS were more resistant than lines lacking them; the 2BL QTL ef-
fect was not verified {10470}.

Change the heading ‘DON accumulation’ to ‘Resistance to DON accumulation’
Add:
‘Veery/CJ 9306 (resistant)’:  Four QTL contributed to resistance; QFhs.ndsu-3BS, nearest marker Xgwm533b (R2 = 0.23), 
QFhs.nau-2DL, Xgwm539 (R2 = 0.2), QFhs.nau-1AS, Xbarc148 (R2 = 0.05) and QFhs.nau-5AS, Xgwm425 (R2 = 0.05) 
{10496}. 

82.2. Disease: Crown rot caused by Fusarium pseudograminearum, F. culmorum and other Fusarium species.

83.Reaction to Heterodera avenae Woll.
CreX {10486}. Derived from Ae. variabilis. 2AS or 2DS {10486}. ad:  Line M {10487}.
         v:  Line D {10486}.
  ma:  RAPD markers OP021000, OpR41600, OpV3450 {10486}.
CreY {10486}. Derived from Ae. variabilis. 3BL {590}.  v:  Line X {10487}. 
  ma:  Co-segregation with RAPD OpY161065 {0103} which was converted to SCAR16 {10486}.
May be the same gene as Rkn-mn1 (see reaction to Meloidogyne naasi).
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84. Reaction to magnaporthe grisea (Herbert) Barr
Rmg1 {10462}. 1D {10462}. s:  CS (Cheyenne 1D) {10462}. 
    v:  Cheyenne (10462}; Norin 26 {10462}; Shin-chunaga {10462}.
Rmg2 {10461}. 7A {10461}. i:  CS (Thatcher 7A) {10461}. 
    v2:  Thatcher Rmg3 {10461}. 
Rmg3 {10461}. 6B {10461}. i:  CS (Thatcher 6B) {10461}. 
    v2:  Thatcher Rmg2 {10461}. 

86. Reaction to meloidogyne spp.
rkn-mn1.  ma:  After RAPD Op1065 insert: (converted to SCAR Y16 {10486}).  May be the same as CreY (see 
   reaction to Heterodera avenae). 

87. Reaction to mycosphaerella graminicola (Fuckel) Schroeter
stb6.    v:  Add: Bezostaya 1 {10495}.

89. Reaction to phaeosphaeria nodorum (E. Muller) Hedjaroude (anamorph: stagonospora nodorum (Berk.) Cas-
tellani & E.G. Germano).
Disease: Septoria nodorum blotch, Stagonospra nodorum blotch.
This entire section has been revised

89.1. Genes for resistance
Snb1 {856}.    3AL {856}.    v:  Red Chief {856}.    
    v2:  EE8 Snb2 {856}. 
Snb2 {856}.    2AL {856}.    v2:  EE8 Snb1 {856}. 
Snb3 {1594}.    5DL {1594}.    s:  CS*/Synthetic 5D {1594}.    
    v:  Synthetic {1594}.    
    dv:  Ae. tauschii {1594}. 
SnbTM    3A {857}, 3AL {856}.     
{856, 857}.   v:  Coker {10210}; Hadden {10210}; Missouri {10210}; Red Chief {10210}; 
    811WWMN 2095 {10210}; 86ISMN 2137 {10210}.
    tv:  T. timopheevii subsp. timopeevii/2*Wakooma {856}; T. timopheevii subsp. 
    timopeevii PI 290518. T. timopheevii subsp. timopeevii derivatives: S3-6 {857}; 
    S9-10 {857}; S12-1 {857}.
    ma:  UBC521650 - 15 cM - SnbTM - 13.1 cM - RC37510{0212}.  UBC521650 was 
    converted to a SCAR marker {0212}.
Allelism of the hexaploid wheat gene and the T. timopheevii SnbTM was suspected. but not confirmed.

QTL
 A QTL analysis of SNB response in the ITMI population found significant effects associated with chromosome 1B 
(probably Snn1) and 4BL, with an interactive effect involving the 1BS region and a marker on chromosome 2B {10009}. 
An additional QTL on 7BL was effective at a later stage of disease development {10009}. 

Four QTL, on chromosomes 2B (proximal part of long arm), 3B (distal part of short arm), 5B. and 5D, were mapped 
in a ‘Liwilla/Begra’ DH population.  Longer incubation period and lower disease intensity were contributed by Liwilla 
{10045}.  

Two QTL for glume blotch resistance under natural infection were identified on chromosomes 3BS and 4BL in ‘Arina/
Forno’ RILs {10065}.  The 3BL QTL, designated QSng.sfr-3BS, was associated with marker Xgwm389-3B and explained 
31.2% of the variation.  The resistance was contributed by Arina {10065}.  The 4BL QTL, QSng.sfr-4BL, was associ-
ated with Xgwm251-4B and explained 19.1% of the variation.  Resistance was contributed by Forno {10065}.  A QTL 
on 5BL, QSng.sfr-5BL, overlapped with QTL for plant height and heading time {10065}.  QSng.sfr-3BS peaked 0.6 cm 
proximal to Xsun2-3B {10465}.  Association mapping involving 44 modern European cultivars indicated that the asso-
ciation was retained in a significant proportion of genotypes {10465}.
 
A QTL, QSnl.ihar-6AL, identified in DH lines of ‘Alba (resistant)/Begra (susceptible)’ accounted for 36% of the pheno-
typic variance in disease severity and 14% of the variance in incubation period {10143}.
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‘Forno (susceptible)/Oberkulmer spelt (resistant)’.  Among 204 RILs, leaf and glume responses were genetically differ-
ent but correlated (R2 = 0.52).  Ten QTL for glume blotch (SNG) resistance were detected, six from Forno.  A major QTL 
(R2 = 35.8%) was associated with q.  Eleven QTL (four from Forno) affected leaf blotch; three of these (chromosomes 
3D, 4B, and 7B) with R2 > 13% were considered potential candidates for MAS {10250}.

ITMI population:  A major QTL, coinciding with Snn1, was located in chromosome 1BS (R2 = 0.58, 5 days after inocula-
tion), minor QTL were found in 3AS, 3DL, 4AL, 4BL, 5DL, 6AL, and 7BL (10009).

‘Br34/Grandin’:  Three QTL with resistance effects from BR34; Qsnb.fcu-5BL.1 (Tsn1), R2 = 0.63, Qsnb.fcu-5BL.2, R2 
= 0.06, and Qsnb.fcu-1BS (vicinity of Snn1) R2 = 0.10 (10458).  QTL analysis of the RIL population with Culture Sn6 
revealed four QTL, Qsnb.fcu-2DS (R2 = 0.3 – 0.49) associated with Snn2, Qsnb.fcu-5BL (R2 = 0.14 – 0.2) associated 
with Tsn1, Qsnb.fcu-5AL (R2 = 0 – 0.13) associated with Xfcp13-5A, and Qsnb.fcu-1BS (R2 = 0 - 0.11) associated with 
Xgdm125-1BS {10507}.

‘P91193D1 (partially resistant)/P92201D5 (partially resistant)’ RIL populations were tested in India and Western Aus-
tralia for glume resistance.  Two QTL were idientified:  Qng.pur-2DL.1 from P91193D1 (R2 = 12.3 in Indiana and 38.1% 
in WA, respectively; Xgwm526.1-2D – Xcfd50.2-2D) and QSng.pur-2DL.2 from P99201D5 (R2 = 6.9% and 11.2%, 
respectively; Xcfd50.3-2D – wPT9848) {10471}.

89.2. Sensitivity to SNB toxins
tsn1 {10458, 346, 10207}.  Sensitive to SnToxA which is functionally identical to Ptr ToxA {10459}.
 v:  See reaction to Pyrenophora tritici repentis {10458}. Cheyenne {0007}; Hope {0007}; Jagger {0007}; 

Kulm {346,10030, 10458}; ND495 {0007}; Timstein {0007}; Trenton {0315}.
 tv:  Langdon {10458}.

tsn1 {346,10207}. Insensitivity (disease resistance) is recessive {346}.   5BL {346}.
v:  AC Barrie {10153}; AC Cadillac {10153}; AC Elsa {10153}; BR34 {0007}; CEP17 {0007}; Chinese Spring {0007};  
Erik {0007,10030}; Hadden {10155}; Laura {10153}; Line 6B-365 {10155}; Red Chief {10155}; 1A807 {0007}; 
1A905 {0007}; Synthetic W-7976 = Cando/R143/Mexicali ‘S’/3/Ae. squarrosa C122.
tv:  Altar 84 {0007}; D87450 {0007}; T. turgidum subsp. dicoccoides Israel A {10506}.
ma:  Xbcd1030-5B – 5.7 cM – tsn1 – 16.5 cM – Xwg583-5B {346}; tsn1 – 3.7 cM – Xbcd1030-5B {0007}; Xfgcg7-5B 
– 0.4 cM – Tsn1/Xfcg17-5B – 0.2 cM – Xfcg9-5B {10207}; Xfcg17-5B – 0.2 cM – Tsn1 – 0.6 cM – Xfcg9-5B {10207}; 
Xfcp1-5B and Xfcp2-5B delineated Tsn1 to an interval of about 1 cM {10337}.  Tsn1 was placed in a 2.1 cM region 
spanned by XBF483506 and XBF138151.1/XBE425878/Xfcc/XBE443610 {10413}.

snn1 tsn1.  Atlas 66 {10458}; BR34 {10458}; Erik {10458}; Opata 85 {10458}; ND688 {10458}.

snn1 {10008}. Sensitivity to SnTox1 is dominant {10008}.  1BS {10008}.
  s:  CS- DIC 1B {10008}. 
  v:  CS {10008}; Grandin {10008}; Kulm {10008}; ND 495 {10008}. 
  ma:  Snn1 – 4.7 cM – XksuD14-1B {10008}. 
snn1.  v:  Br34 {10008}; Erik {10008}; Opata 85 {10008}.
        
snn2.  v:  Br34 {10507}.   

Snn2 {10507}. Sensitivity to SnTox2 is dominant {10507}.  2DS {10507}. 
  v:  BG223 {10507}. v2:  Grandin Tsn1Tsn {10507}.
  ma:  Xgwm614-2D – 7.6 cM – Snn2 – 5.9 cM – Xbarc95-2D {10507}.

90. Reaction to puccinia graminis
sr9a.   ma:  Xbarc101-2B/Xgwm12-2B – 2.7 cM – Xgwm47-2B – 0.9 cM – Sr9a/Xwmc175-2B {10472}.
sr8b.  tv:   According to Luig {841} one of the genes in Leeds is Sr8b.  This could be the gene located on 
  chromosome 6A in ST464-A1 {10473} and one of the genes present in ST464, a parent of Leeds.   
sr9e.  tv: ST464-A2 {10473}. tv2:  ST464 Sr13 {10473}.
sr13.  tv:  ST464-C1 {10473}. tv2:  ST-464 Sr9e {10473}.
Genotype lists: add: {10511}.
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sr46 {10538}. 2DS {10538}. v:  L-18913 / Meering selections R9.3 {10538}; R11.4 {10538}; R14.2 {10538}.
 v2:  L-18913 = Synthetic, Langdon / Ae. tauschii var. meyeri AUS 18913 Sr9e {10538}.
 ma:  Co-segregation with RFLP Xpsr649-2DS at both the diploid and hexaploid levels {10538}.  A PCR-based 

marker, csSC46, was developed from a BAC clone containing Xpsr649 {10538}.
  
91. Reaction to puccinia striiformis
91.1. Designated genes for resistance to stripe rust
Yr21.  After 1B add reference: {‘,10450’}.
A closely linked gene, also in Lemhi, conferred resistance to P. s. hordei {10450}.  Both genes were mapped relative to 
RGAP markers. Yr21 – YrRpsLem, 0.3 cM {10450}.

Yr41 {10502}. YrCn19{10228}.  2BS {10228, 10502}. v:  AIM {10228}; AIM6 {10228}; Chuannong 
        19 {10228, 10502}.
  ma:  Complete linkage to a 391-bp allele of Xgwm410-2BS {10228}.  Xgwm410-2B – 0.3 cM – Yr41 
  {10502}.

91.2. Temporarily designated genes for resistance to stripe rust
YrCN19.  This listing can be deleted.

91.3. Stripe rust QTL
Add at end of section: T. monococcum subsp. monococcum PAU14087 (resistant) / T. monococcum subsp. aegilopoides 
PAU5088 (resistant): RIL population: One adult-plant resistance QTL identified in each parent and named QYrtm.pau-
2A (in a 3.6 cM interval between Xwmc407-2A and Xwmc170-2A; R2 = 0.14) and QYrtb.pau-5A (in a 8.9 cM interval 
between Xbarc151-5A and Xcfd12-5A; R2 =  0.24) {10518}. 

92. Reaction to puccinia triticina
92.1. Genes for resistance
Lr3.
At the end of the section add note:  Durum cv. Storlom likely carries Lr3a or Lr3b {10469}.  Cv. Camayo was consid-
ered to have a closely linked gene, or Lr3 allele {10469}.  Resistance in Storlom co-segregated with an STS derivative of 
Xmwg798-6B {10469}.  All three Thatcher NILs with named Lr3 alleles carried the STS marker {10469}.

Lr13.    ma:  Lr13 – 10.7 and 10.3 cM – Xgwm630-2BS {10463}.
Lr14a. Add: LrLla {10520}. tv:  Lloreta INIA {10520}; Somateria {10520}.
    ma:  Xwmc273-7B – 13 cM – Lr14a – 10 cM – Xgwm344-7B {10520}. 
Lr22a.    i:  Neepawa*6/RL5404, RL4495 {10467}; Thatcher*7//Tetra-Canthatch/RL5271,
    RL6044 {10467}.
    ma:  Xgwm455-2D - 1.5 cM - Lr22a - 2.9 cM - Xgwm296-2D {10467}.
lr34.     v2:  Mentana Lr3b {10493}. 
    ma:  After the entry …csLV34a ……Lr34 {10387}.  Add:  STS marker csLV34 was
    used to confirm or postulate the presence of Lr34  in Australian culitvars {10493}.
Lr58.    ma:  After the third RFLP add: ‘..... and SSR marker Xcfd50 …..’.
lr61 {10485}. 6BS {10485}. tv:  Guayacan 2 {10485}; Guayacan INIA {10485}.
    ma:  Closely linked and distal to 3 AFLP markers about 22 cM distal to SSR marker
    Xwmc487-6B {10485}.
 
93. Reaction to pyrenophora tritici repentis (anomorph: Drechlera tritici-repentis)
This entire section has been revised.  Disease: Tan spot, yellow leaf spot.
Virulence in the pathogen is mediated by host-specific toxins and host resistance is characterized at least in part by 
insensitivity to those toxins.  Three toxins, Ptr ToxA, Ptr ToxB, and Ptr ToxC, have been identified (see {10153}).  Toxin 
sensitivity determined by use of toxins extracted from pathogen strains and resistance determined by infection experi-
ments are treated as different traits, although common genes may be involved.

93.1. Insensitivity to tan spot toxin (necrosis)
tsn1 {346, 10207}. Insensitivity     Tsr1 {10508},    5BL {346}.
   (disease resistance) see Resistance to tanspot
    is recessive {346}.
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 v:  AC Barrie {10153}; AC Cadillac{10153}; AC Elsa {10153}; Atlas 66 {10458}; BR34 {0007,10458}; 

CEP17 {0007}; Chinese Spring {0007,10458}; Erik{0007,10030,10458}; Laura {10153}; IA807 {0007}; 
IA905 {0007}; ND688 {10458}; Opata 85 {10458}; Synthetic W-7976 = Cando/R143/Mexicali ‘S’/3/Ae. 
tauschii C122 {346,10207,10458}; Synthetic W-7984 = Altar 84/Ae. tauschii CI 18 {0007,10458}.

 tv:  Altar 84 {0007}; D87450 {0007}. T. turgidum subsp. dicoccoides Israel A {10506}.
 ma:  Xbcd1030-5B – 5.7 cM – tsn1 – 16.5 cM – Xwg583-5B {346}; tsn1 – 3.7 cM – Xbcd1030-5B {0007}; 

Xfcg7-5B – 0.4 cM – Tsn1/Xfcg17-5B – 0.2 cM – Xfcg9-5B {10207}; Xfcg17-5B – 0.2 cM – Tsn1 – 0.6 cM – 
Xfcg9-5B {10207}; Xfcp1-5B and Xfcp2-5B delineated Tsn1 to an interval of about 1 cM {10337}.  Tsn1 was 
placed in a 2.1 cM region spanned by XBF483506 and XBF138151.1/XBE425878/Xfcc1/XBE443610 {10413}.

Tsn1. Sensitive to Ptr ToxA.   
 v:  Grandin {10458}; Bobwhite {10458}; Cheyenne {0007, 10458}; Glenlea {10458}; Hope {0007, 10458}; 

Jagger {0007}; Katepwa {10458}; ND2709 {10458}; ND495 {0007}; Sumai 3 {10458}; Timstein {0007, 
10458}.

 tv:  Langdon {10458}.
 v2:  Kulm  Tsc1 {346,10030,10458}; Trenton Tsc1 {0315}. 
  
In Kulm/Erik, toxin response accounted for 24% of the variation in disease response, which was affected by 4–5 genes 
{10030}.
Ptr ToxA is functionally identical to S. nodorum ToxA but has two predicted amino acid differences {10459}.  See Reac-
tion to Phaeosphaeria nodorum. 

93.2. Insensitivity to tan spot toxin (chlorosis) 
tsc1 {344}.   Insensitivity is recessive.   QTsc.ndsu-1A {9924}.    
  v:  Katepwa {0315}; Opata 85 {344}; Synthetic W-7984 {0315}.
Tsc1 {344}.   Sensitivity to Ptr ToxC {344}.       1AS {344}.    
  v:  6B365 {0315}; Opata 85 {344}.  
  v2:  Kulm Tsn1 {0315}; Trenton Tsn1 {0315}.  
  ma:  Gli-A1 – 5.7 cM – Tsc1 – 11.7 cM  XksuD14-1A {0315}.
According to {10376} the same allele, presumably tsc1, conferred resistance to chlorosis induced by races 1 and 3 in 
cultivars Erik, Hadden, Red Chief, Glenlea, and 86ISMN 2137 in crosses with 6B-365.
tsc2.   Insensitivity allele {10015}.      v:  Opata 85 {0315,10015}.
Tsc2. Sensitive to Ptr ToxB {10015}.         2BS {10015}.    
  v:  Synthetic W-7984 {10015}.

93.3 Resistance to tanspot
tsr1. [tsn1 See: Insensitivity to tanspot toxin].   Resistance is recessive.
 5BL v:  Genetic stocks that do not have Tsn1 and other genes that respond to toxins produced by the 
  pathogen.
Tsr2.   [tsn2 {10344}].   Resistance is recessive.  Confers resistance to race 3 {10344}.  3BL {10344}.   
  sutv:  LDN (DIC-3B) {10344}.    
  tv:  T. turgidum subsp. dicoccoides Israel-A {10344}.  
  tv2:  T. turgidum subsp. turgidum no. 283, PI 352519 Tsr5 {10344}.
  ma:  Identified as a QTL in region Xgwm285-3B – Xwmc366.2-3B (R2 = 91%) {10344}, also classified
  as a single gene:  Xgwm285-3B – 2.1 cM – tsn2 – 15.2 cM – Xwmc366.2-3B {10344}.
Tsr3.   [tsn3 [{10394}].          3D {10394}, 3DS {10419}.  
  v:  XX41 = [Langdon / Ae. tauschii CI 00017] {10394}; XX45 {10394}; XX110 {10394}.
  dv:  Ae. tauschii CI 00017 {10394}.  
  ma:  Xgwm2a – tsn3, 15.3 cM, 14.4 cM, and 9.5 cM in ‘CS/XX41’, ‘CS/XX45’, and ‘CS/XX110’,
  respectively {10419}.
Resistances in XX41 and XX110 were recessive whereas that in XX45 was dominant – all three were hemizygous-effec-
tive {10394}.  The genes were given different temporary designations {10394, 10419}, but all will be considered to have 
a common gene until they are shown to be different.

tsr4.   Resistance is recessive.  [tsn4 (10350)].  Resistance to race 1 (culture ASC1a) {10350}.   3A {10350}.
  v:  Salamouni {10350}. 
Tsr5.     tsn {10509}       . 3BL {10509}.  
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  tv2:  T. turgidum subsp. turgidum no. 283, PI 352519 Tsr2 {10509}.
  ma:  Tsr5 – 8.3 cM – Xgwm285-3B – 2.7 cM – Tsr2 {10509}.

QTL:
Qtsc.ndsu-1a {9924}. Resistance is likely recessive {344}.   [Tsc1 {344}].   1AS {344}.   v:  Synthetic W7984 

{344}. ma:  Association with Gli-A1 {344, 0040, 0264}.  QTsc.ndsu-1A, or a closely associated gene, confers 
insensitivity to Ptr ToxC, see {0315}.  Inoculation with purified toxin Ptr ToxC was used to map this locus. 
QTsc.ndsu-1A confers resistance in both seedlings and adult plants.

Qtsc.ndsu-4a.   4AL {0090}.   v:  Opata 85 / W-7984 (ITMI) RI mapping population; resistance was contributed 
by W-7984 {0090}; In W-7976 / Trenton resistance was contributed by W-7976 {0264}.  ma:  Association 
with Xksu916(Oxo2) - 4A and Xksu915(14-3-3a)-4A {0090}; In W-7976 / Trenton there was association with 
Xwg622-4A {0264}; Minor QTL in chromosomes 1AL, 7DS, 5AL and 3BL were associated with resistance in 
adult plants {0264}.

QTL:  ITMI population:  In addition to tsc2 which accounted for 69% of the phenotypic variation in response to race 5, 
a QTL in chromosome 4AL (Xksu916(Oxo)-4AS, W-7948) accounted for 20% of the phenotypic variation {10015}.
‘Grandin (susceptible)/BR34 (resistant)’ RILs:  QTL in 1BS, QTs.fcu-1BS, (13-29% of variation depending on race) and 
3BL, QTs.fcu-3BL, (13-41%) were involved in resistance to 4 races.  Five other QTL showed race specific responses 
{10248}.

Introgressions of genes for insensitivity to Ptr ToxA and Ptr ToxB are outlined in {10153}.

96. Reaction to Soil-Borne Cereal Mosaic
Add:  QTL:  QSbv.ksu.5D in interval Xcfd86-5D – Xcfd10-5D  in ‘TA 4152-4/Karl 92’.  TA 4152-4 = ‘T. turgidum subps. 
durum Altar 84/Ae. tauschii WX193 {10521}’.

97. Reaction to tapesia yallundae. (Anomorph: pseudocerosporella herpotrichoides 
pch1. v:  Add: Coda {10513}. ma: Add:  Leonard et al. {10513} predicted that Ep-D1 might encode an oligopepti-

dase B, and by comparative genetics, developed primers to a wheat oligopeptidase B-encoding wheat EST 
BU1003257.  Complete linkage occurred for a derived STS marker Xorw1 and Pch1 in a Coda / Brundage RIL 
population and the marker identied the presence or absence of Pch1 44 among wheat accessions {10513}.    

 
98. Reaction to tilletia caries (D.C.)Tul., t. foetida (Wallr.) Liro, t. controversa
Bt10. i:  BW553 = Neepawa*6 // Red Bobs / PI178383 (10475}.  

99. Reaction to tilletia indica Mitra
QTL:
Qkb.ksu-4Bl.1. ‘WL711/HD29 (resistant)’ RILs: R2 = 0.25, associated with Xgwm538-4B {10498}.  ‘WH542/W485 

(resistant)’ RILs:  R2 = 0.15, Xgwm6-4BL – Xwmc349-4BL interval {10499}.
Xkb.ksu-5Bl.1. ‘WH542/HD29 (resistant)’ RILs:  R2 = 0.19, Xgdm116-5BL – Xwmc235-5BL {10499}.
Xkb.ksu-6Bs.1. ‘WH542/HD29 (resistant)’ RILs:  R2 = 0.13, Xwmc105-6BS – Xgwm88-6BS {10499}.
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