FLORIDA STATE UNIVERSITY (DEPARTMENT OF GEOGRAPHY)

LIVING IN A HAZARDOUS ENVIRONMENT

GEO 4340

Dr. Jay Baker Department of Geography Florida State University

I. Hurricanes

- A. Formation
- B. Structure
 - 1. Eye
 - 2. Right front quadrant
 - 3. Profile
- C. Hazard Components
 - 1. Wind
 - 2. Storm surge
 - 3. Erosion/scour
 - 4. Wave battering
 - 5. Rainfall
- D. Saffir-Simpson Scale
- E. Hurricane Climatology in U.S.
- F. Forecasting and Warning
 - 1. Forecasting tools
 - 2. Forecast error
 - 3. National Hurricane Center Forecast products
 - a. Public advisories
 - b. Marine advisories
 - c. Watches/Warnings
 - d. Landfall probabilities
 - 4. Response decision making
- G. Evacuation Studies
 - 1. SLOSH simulations
 - 2. Population at risk
 - 3. Clearance times
 - 4. Shelter analysis
- H. Public Response
- I. Public Awareness Materials
- J. Insurance
- K. Building Codes
 - 1. Stringency
 - 2. Enforcement
 - 3. Performance vs. prescription
- L. Development Policies

- 1. Set-backs
- 2. Density restrictions
- 3. Population caps
- 4. Developments of regional impact
- 5. Public acquisition

M. National Flood Insurance Program

- 1. Elevation requirements
- 2. A-Zone vs. V-Zone
- 3. History of program
- 4. Insurance
- 5. Effect on development rate
- N. COBRA
- O. Hurricane Modification
- P. Federal Disaster Assistance

II. Coastal Erosion

- A. Beach Formation
- B. Barrier Island Structure
- C. Acute Erosion vs. Chronic Erosion
- D. Causes of Erosion
 - 1. Sea level rise/island migration
 - 2. Man-made structures
 - 3. Storms
- E. Erosion problem areas in U.S.
- F. Sea Walls
- G. Groins and Jetties
- H. Beach Renourishment
- I. Set Back Regulations
- J. Dune Protection Regulations
- K. Retreat
- L. Public Awareness Materials
- M. Construction on Pilings

III. Tsunamis

- A. Causes
- B. Speed vs. Height vs. Water Depth
- C. Tsunami-prone Areas of U.S.
- D. Trans-oceanic Tsunamis
- E. Effects on Structures
- F. Local Maps of Tsunami Inundation Areas
- G. Warning Systems
- H. Insurance
- I. Public Awareness Materials

IV. Riverine Floods

A. Causes

- B. Flash Floods vs. Conventional Floods
- C. Effect of Urbanization
- D. Floodplain, Floodway, and Floodway Fringe
- E. Types of Damage
 - 1. Hydrodynamic pressure
 - 2. Hydrostatic pressure
 - 3. Saturation
- F. Distribution of Flood Events in U.S.
- G. Prediction
- H. Warning
- I. Mapping
- J. National Flood Insurance Program
 - 1. Construction requirements
 - a. Floodproofing
 - b. Elevation
 - c. Displacement limits
 - d. Floodway obstructions
 - 2. Insurance
 - a. Setting of premiums
 - b. Inducement to take risk issue
- K. Dams
- L. Levees
- M. Channelization
- N. Floodplain Acquisition
- O. Barriers
- P. Public Awareness Materials

V. Tornadoes

- A. Causes
- B. Distribution in U.S.
- C. Variation by Season of Year
- D. Structure
 - 1. Funnel clouds
 - 2. Suction vortices
 - 3. Peak winds
 - 4. Width
 - 5. Length of track
 - 6. Duration
- E. Causes of Damage
 - 1. Wind
 - 2. Pressure differential
- F. Failure Modes in Structures
- G. Prediction
 - 1. National Severe Storms Forecast Center
 - 2. Local NWS offices
 - 3. Watches vs. Warnings

- 4. Doppler radar
- 5. SKYWARN
- H. Warning
 - 1. NOAA Weather Radio
 - 2. Sirens
 - 3. TV/Radio
- I. Public Awareness Materials
- J. Building Codes
- K. Community Shelters

VI. Lightning

- A. Causes
- B. Types
- C. Vulnerability vs. Height
- D. Distribution of Thunderstorms in U.S.
- E. Thunder vs. Lightning
- F. Types of Damage
 - 1. Deaths
 - 2. Forest fires
 - 3. Fires in structures
- G. Lightning Protection

VII. Hail

- A. Formation
- B. Size
- C. Distribution in U.S.
- D. Variation by Season of Year
- E. Types of Damage
 - 1. Crops
 - 2. Roofs
 - 3. Vehicles
- F. Suppression
- G. Crop hybrids

VIII. Winds (other than hurricane and tornado)

- A. Thunderstorm Downbursts
 - 1. Causes
 - 2. Severity
 - 3. Duration
 - 4. Areal extent
 - 5. Damage
 - a. Structures
 - b. Aviation
 - 6. Prediction
- B. Localized Wind Hazards
 - 1. Santa Anna Winds in Southern California

- 2. Chinook and other orographic effect winds
- C. Distribution of Wind Hazards in U.S.

IX. Drought

- A. Definition
 - 1. NWS
 - 2. Palmer index
- B. Variation in U.S.
- C. Cycles
- D. Effects
 - 1. Crops
 - 2. Urban areas
- E. Cultivation practices
- F. Irrigation
- G. Crop varieties
- H. Wind breaks
- I. Cover crops
- J. Crop insurance

X. Heat

- A. Extreme events
- B. Heat Index (Heat + Humidity)
- C. Weather Stress Index
- D. Health effects
- E. Shelters

XI. Cold

- A. Extreme events
- B. Wind chill
- C. Weather Stress Index
- D. Health effects
- E. Frost/Freeze vs. Crops
 - 1. Advective vs. radiated frost
 - 2. Prediction and warning
 - 3. Crop resistance
 - 4. Topographic factors
 - 5. Mitigation
 - a. Heaters
 - b. Smudge pots
 - c. Wind turbines
 - d. Spraying
 - 6. Shelters

XII. Snow and Ice Storms

- A. Definitions
 - 1. Blizzard

- 2. Winter storm
- B. Variation in U.S.
- C. Prediction and Warning
- D. Effects
 - 1. Health
 - 2. Property damage
 - 3. Economic disruption
 - 4. Lifelines
- E. Adjustments
 - 1. Plows
 - 2. Salting and sanding
 - 3. "Snowfests"
 - 4. Materials design

XIII. Forest and Brush Fires

- A. Major events
- B. Urban-wildfire interface
- C. Causes of fires
- D. Types of fires
- E. Fire behavior
 - 1. Fuel load
 - 2. Weather conditions
 - 3. Topography
- F. Firefighting
 - 1. Firebreaks
 - 2. Fuel breaks
 - 3. Backfiring
 - 4. Water and chemicals
- G. Prescribed burns
- H. Construction materials

XIV. Earthquakes

- A. Plate Tectonics
 - 1. Continental drift
 - a. Evidence
 - b. Prehistoric alignments
 - 2. Geology of the earth's crust and mantle
 - 3. Plate boundaries
 - a. Oceanic divergent zones
 - b. Subduction zones
 - c. Transform zones
 - d. Continental convergent zones
 - e. Continental divergent (rift) zones
- B. Faults
 - 1. Stress
 - 2. Focus

- 3. Types of faults
- 4. Examples

C. Effects

- 1. Physical phenomena
 - a. Elastic rebound
 - b. Seismic waves
 - c. Surface displacement
 - d. Ground shaking
 - e. Liquefaction
 - f. Landslides
 - g. Seiche
 - h. Tsunami
- 2. Attenuation effects due to soil and geology
- 3. Measurement
 - a. Seismometers and seismographs
 - b. Triangulating the epicenter
 - c. Metrics
 - i. Magnitude
 - ii. Intensity
 - iii. Moment
- 4. Vulnerability of structures
 - a. Failure modes
 - b. Damage curves
 - c. Construction materials and techniques
 - d. Building height and period of vibration
- 5. Lifelines, fires, and other secondary effects

D. Prediction

- 1. Short term
 - a. Successes
 - b. Failures
 - c. Occasional precursors
 - i. Seismic wave velocity
 - ii. Surface deformation
 - iii. Radon in well water
 - iv. Electrical resistivity of rock
 - v. Number of small earthquakes
 - vi. Animal behavior
- 2. Long term
 - a. Seismic gaps
 - b. Return periods
- E. Hazard Mapping
- F. California Altquist-Priolo Act
- G. Building Codes
- H. Setback Zones
- I. Fluid Injection
- J. Insurance

XV. Volcanoes

- A. Origin
 - 1. Magma
 - 2. Tectonic plate boundaries
 - 3. Hot spots
- B. Major types
 - 1. Shield
 - 2. Cinder cones
 - 3. Composite cones
- C. Hazards
 - 1. Lava
 - 2. Pyroclastics
 - 3. Toxic gases
 - 4. Glowing avalanches
 - 5. Lahars
- D. Prediction, Warning, and Evacuation
- E. Hazard Mapping
- F. Diversion Barriers

XVI. Landslides and Mass Movement

- A. Factors Affecting Slope Stability
 - 1. Angle of repose
 - 2. Soil and rock structure
 - 3. Water content
 - 4. Particle packing
- B. Types of Mass Movement
 - 1. Dimensions
 - a. Particle size
 - b. Speed of movement
 - 2. Classifications
 - a. Rockfalls
 - b. Landslides and rockslides
 - c. Slumps
 - d. Earthflows and mudflows
 - e. Soil creep
 - f. Solifluction
 - g. Avalanches
- C. Prediction and Warning
- D. Hazard Mapping
- E. Grading Regulations
- F. Drainage systems
- G. Retaining barriers

XVII. Soil Hazards

A. Subsidence Due to Withdrawal of Oil and Water

- B. Subsidence Due to Excavation
- C. Limestone Solution Sinkholes
 - 1. Karst topography
 - 2. Triggering activities
 - 3. Effects
 - 4. Hazard identification
- D. Swelling clays
 - 1. Effects
 - 2. Testing
 - 3. Mitigation

XVIII. Radon

- A. Source
- B. Health Effects
- C. Identification of Hazard Areas
- D. Mitigation

XIX. Technological Hazards

- A. Principles and concepts of pollution and toxicology
 - 1. Dispersal and dilution
 - 2. Biological magnification
 - a. Bioconcentration
 - b. Appearance delay
 - 3. Persistence
 - a. Biodegradation
 - b. Half-life
 - 4. Acute vs. chronic exposure
 - 5. Duration of exposure
 - 6. Immediate vs. delayed effects
 - 7. Local vs. systemic effects
 - 8. Interaction effects
 - a. Synergy
 - b. Potentiation
 - c. Antagonism
 - 9. Duration of exposure
 - 10. Dose/response rates
 - a. Expressions
 - i. Thresholds
 - ii. Linear vs. non-linear relationships
 - iii. LD₅₀
 - b. Methods of analysis
 - i. Animal experiments
 - ii. Human epidemiology
 - iii. Human experiments
 - 11. Mutagens
 - 12. Carcinogens

- 13. Teratogens
- 14. Form of economic system vs. pollution
- 15. Economics of pollution control
- B. Air pollution
 - 1. Global air pollution problems
 - a. Climate change
 - i. Historical background
 - ii. Theory
 - iii. Empirical evidence
 - iv. Predictions
 - v. Consequences
 - b. Ozone depletion
 - i. Types of UV radiation
 - ii. Creation and depletion of stratospheric ozone
 - iii. Ozone depleting chemicals
 - iv. Theory of CFC's vs. ozone
 - v. Empirical evidence
 - vi. Possible effects of surface UVA and UVB
 - c. Acid precipitation
 - i. Sources
 - ii. Economic costs
 - 2. Sources and effects of major air pollutants
 - a. Oxides of sulfur
 - b. Oxides of nitrogen
 - c. Carbon monoxide
 - d. Heavy metals
 - e. Total suspended particulates (TSP's)
 - f. Volatile organic compounds (VOC's)
 - 3. Air pollution prevention and control
 - a. Technologies
 - i. Source controls
 - ii. Emission controls
 - b. Clean Air Act(s)
 - c. Trends in air pollution levels
 - 4. Temperature inversions
- C. Water pollution
 - 1. Sources and effects of major types of water pollution
 - a. Oxygen demanding wastes (BOD)
 - b. Disease causing agents (pathogens)
 - c. Plant nutrients and detergents
 - d. Heavy metals
 - e. Acids
 - f. Sediments
 - g. Salts
 - h. Radioactivity
 - i. Heat

- j. Oil
- k. Pesticides
- 2. Pollution prevention and control
 - a. Point vs. non-point sources
 - b. Clean Water Act(s)
 - c. Safe Drinking Water Act
 - d. Municipal water and waste treatment
- D. Hazardous Waste
 - 1. Major types
 - a. Toxic and caustic chemicals
 - b. Radioactive
 - 2. Major incidents
 - 3. Resource Conservation and Recovery Act
 - 4. Superfund and SARA
 - 5. Toxic Substances Control Act
 - 6. Disposal
- E. Industrial accidents
 - 1. Major incidents
 - 2. SARA Title III
 - 3. CERCLA
 - 4. Evacuation
- F. Hazardous Material Transportation Accidents
 - 1. Major incidents
 - 2. DOT guide
 - 3. On-line resources
 - 4. Evacuation
- G. Nuclear Power Plant Accidents
 - 1. Nuclear fuel cycle
 - 2. Principles of fission
 - 3. Reactor components
 - 4. Loss of coolant accidents
 - 5. Safety systems
 - 6. Probabilities of meltdown sequences (fault trees)
 - 7. Factors affecting the consequences of meltdowns
 - a. Release categories
 - b. Atmospheric conditions
 - c. Dosimetry
 - d. Population at risk
 - e. Evacuation
 - 8. Health effects
 - 9. Economic costs

10. Comparative risks

- 11. Major incidents
- 12. Nuclear Regulatory Commission

13. Emergency planning

Textbook: Nicholas K. Coch, Geohazards: Natural and Human. Miscellaneous xerox

materials

Grading: Four exams of equal weight

DISASTER PREPAREDNESS AND HAZARD MITIGATION

GEO 5345

Dr. Jay Baker Department of Geography Florida State University

- I. Selected Hazards and Their Distribution in the U.S.
- II. Measures of the Effects of Hazardous Events
 - A. Types of Effects
 - 1. Life and health
 - 2. Economy
 - a. Property
 - b. Production
 - c. Employment
 - 3. Housing
 - 4. Infrastructure
 - 5. Public services
 - 6. Environment
 - 7. Population distribution
 - B. Loss-management Frameworks
 - 1. Average annual losses
 - 2. Catastrophe potential
 - 3. Distributional goals
 - a. Equity
 - b. Reliance
 - C. Trends in losses
- III. Hazard Analysis and Mapping
 - A. Delineation of the Physical Event System
 - B. Inventory of Population and Property at Risk
 - C. Specification of Damage Curves for Structures
 - D. Anticipating Loss of Life and Injuries
 - E. Simulation Methods and Issues
 - F. Scale Issues
 - G. Output Options
 - H. Geographic Information Systems
- IV. Warning and Evacuation
 - A. Planning
 - 1. Hazard analysis and display
 - 2. Population and facility inventory
 - 3. Behavioral analysis

- 4. Transportation analysis
- 5. Shelter analysis
- B. Response and Logistics
 - 1. Detection and evaluation
 - 2. Decision making
 - 3. Dissemination
 - 4. Coordination and control
- C. Reducing Evacuation Times
- D. Preventing Impossible Evacuation Situations

V. Development Management

- A. Hazard Analysis and Mapping
 - 1. Technical feasibility
 - 2. Scale
 - 3. Cost
 - 4. Output media and formats
- B. Market Failures and Arguments for Regulation
- C. Approaches to Regulation
 - 1. Regulations affecting how structures and facilities are built
 - 2. Regulations affecting where structures and facilities are built
 - 3. Regulations affecting the density of structures and facilities
 - 4. Regulations requiring modification or protection of the building site
- D. Government Acquisition of Land
- E. Siting and Funding of Public Facilities
- F. Assessing Fees for Occupants of Hazardous Areas
- G. The Taking Issue
- H. Political Considerations
- I. Environmental Considerations
- J. Economic Considerations
- K. Land Use Benefits Foregone

VI. Structural Protection Works

- A. Dams, Levees, and Channelization of Streams
- B. Seawalls, Armoring, Groins, Jetties, and Beach Nourishment
- C. Diversions and Barriers

VII. Insurance

- A. Spreading Risk
- B. Actuarial Programs
- C. Subsidized Programs
- D. Market Factors
- E. The Role of Government

VIII. Response and Recovery

- A. Search and Rescue
- B. Damage Assessment

- C. Needs Assessment
- D. Essential Goods
 - 1. Food
 - 2. Water
 - 3. Medical care
- E. Shelter
- F. Security
- G. Communications
- H. The Role of Donations and Volunteer Organizations
- I. Emergency Operating Center (EOC) Structures
 - 1. Emergency Support Functions (ESF's)
 - 2. Incident Command System
- J. The Role of Government
 - 1. Local
 - 2. State
 - 3. Federal
- K. Repair and Reconstruction
- L. Redevelopment
- M. Use of New Technologies
 - 1. Portable satellite communications
 - 2. Computer mapping and GIS software
 - 3. Global Positioning Systems (GPS)
 - 4. Cellular modems
 - 5. Computer simulations
 - 6. Remote sensing

IX. Hazard Perception and Public Response

- A. Beliefs about Hazards
- B. Concerns about Hazards and Determinants of Concern
- C. Individual Differences
- D. Hazard Disclosure
- E. Risk Communication
- F. Behaviors
 - 1. Preparedness actions
 - 2. Evacuation
 - 3. Insurance purchase
 - 4. Political involvement
 - 5. Residential location

X. Policy Evaluation

- A. Acceptable Risk
- B. Risk Comparisons
- C. Benefit-Cost (Risk) Analysis
- D. Political Considerations

TEXTBOOK: David Alexander, *Natural Disasters*, NY: Chapman and Hall, 1993 plus

supplementary readings

GRADING: Research Paper 40%

Mid-Term Exam 15% Final Exam 15% Class Participation 10%