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*‘For many problems there is an animal on which it can most conveniently be studied’’ — the August
Krogh Principle.!

L. INTRODUCTION

The vast numbers of species of insects and other arthropods offer tremendous possibilities
for medical research. Meglitsch included the insects in his statement; ‘‘It is no accident that
nearly all truly basic zoological discoveries have been based on studies of invertebrates.’’?

The major advantages of using insect models include the ease and low cost of rearing
large numbers of specimens. The more commonly used laboratory insects can be reared or
purchased at a fraction of the cost of mice, rats, and other laboratory animals. Reduced per
diem costs and space requirements also result in significant savings. The rapid reproduction
and maturation and the large number of offspring from a single male-female pairing of some
species are distinct advantages over vertebrate models. The potential number of descendants
from a single pair of insects, such as the housefly Musca domestica, is 10'® in a matter of
months, permitting research designs using multicellular animals which usually are viewed
to be restricted to single-cell organisms.? The flexibility afforded by use of short-lived species
also can be exploited using many insect models. Experiments often can be run in months
or a few years using large genetically homogeneous populations. The ability to use large
numbers of test specimens can be exploited to arrive at highly significant statistical results
and the detection of low-frequency occurrences. Opportunities for studies in embryology
are especially promising because of the detailed knowledge of egg and larval development
in some insect species. Since it is often easier to isolate physiological or pharmacological
systems in insect models, these usually can be studied more simply in insects. Invertebrate
tissue cuitures, although initially difficult to establish, usually can be handled more easily
than vertebrate systems.? The use of animals lower on the evolutionary scale also reduces
objections by antivivisectionist and animal rights groups, a major concern of scientists today.

II. INSECTS AS A GROUP

A. MORPHOLOGY AND PHYSIOLOGY

Insects differ in their morphology and physiology from mammals in a number of ways.*
In particular, insects possess an external exoskeleton rather than bone — the only vertebrate
tissue they lack.? This chitinous structure provides a great deal of protection against a number
of environmental stresses, such as desiccating conditions, chemicals, and pressure. Within
this exoskeleton is the body cavity (hemocoel) which contains systems for digestion, cir-
culation, respiration, excretion, innervation, and reproduction (see Figure 1). Unlike mam-
mals, there is an open blood system with a dorsal heart and blood (hemolymph) which
contains no hemoglobin. The hemolymph is responsible for a variety of transportation and
immunological functions. Insect respiration is provided by a branching series of tubes called
the tracheal system and by passive diffusion of oxygen to individual cells. Analogous to the
vertebrate liver is a tissue known as insect fat body. This group of specialized cells is
enclosed in a membranous sheath and is important in insect metabolism. Insects have a
well-developed neuromuscular system. The insect organs and muscles are innervated through
a series of ganglia that form a ventral nerve cord (see Figure 2). The nervous system is
similar to that of mammals in having a blood-brain barrier and cholinergic synapses; however,
the neuromuscular junctions are glutaminergic, unlike the vertebrate cholinergic junctions.
Reproductive mechanisms in insects are quite species specific, but in general the two sexes
mate via a complex chemical, visual, and tactile communication system.*

. HUSBANDRY AND ECONOMICS OF REARING
The development and use of animal models for biomedical research depend upon the
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FIGURE 1. Longitudinal cross-section of an adult housefly (diagrammatic) showing gross internal organization:
(1) esophageal ganglion, (2) compound thoracic ganglion, (3) pharynx, (4) salivary duct, (5) esophagus, (6)
proventriculus, (7) stomach, (8) hemocoel, (9) salivary gland, (10) proximal intestine, (11) distal intestine, (12)
rectum, (13) anus, and (14) Malpighian tubule. (Modified after Patton® and West.")
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FIGURE 2. Gross nervous system of an adult housefly (diagrammatic): (1) antennary nerve, (2) pharyngeal nerve,
(3) ocellar nerve, (4) optic peduncle, (5) cephalic ganglion, (6) space for esophagus, (7) cephalo-thoracic nerve
cord, (8) cervical nerve, (9) prothoracic dorsal nerve, (10) prothoracic crural nerve, (11) mesothoracic dorsal nerve,
(12) compound thoracic ganglion, (13) accessory mesothoracic dorsal nerve, (14) mesothoracic crural nerve, (15)
metathoracic dorsal nerve, (16) metathoracic crural nerve, (17) accessory metathoracic dorsal nerve, (18) abdominal
nerve cord, (19) abdominal nerves of thoracic origin, and (20) abdominal nerves of local origin. (Modified after
Hewitt® and West.9)

production of the needed specimens which must meet quality control requirements within
specific cost restrictions. The great advantage of insects for use in biomedical studies is the
ease with which these biological organisms can be reared.

Successful rearing is dependent upon a detailed knowledge of the biology, behavior,
habitat, and nutritional requirements of the insect species selected. This knowledge has been
expanded greatly in the past few decades, with numerous descriptions appearing in the
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literature on rearing methods and diets for selected insects and other arthropods.®> Some of
the most widely used insects are often those most easily reared, such as the flies, Lepidoptera
larvae, and other insects of economic importance. The housefly M. domestica is reared
easily on CSMA (Chemical Specialties Manufacturers Association), a diet that provides
year-round rearing on an efficient medium. The commercial availability of artificial and
defined diets for some lepidopteran larval species significantly reduces the trouble and
expense of feeding. Quality control of diet ingredients is essential to ensure proper insect
nutrition at the lowest possible cost. A list of the more important references on insect diets
is given by Singh.’

The containers and enclosures used for rearing often dictate the success of thc operation.
Desirable characteristics of rearing containers include economics, barrier to microbial con-
taminations and pathogens, allowance for gas exchange, moisture regulation, visibility and
accessibility, convenience of handling and harvesting, and ease of cleaning and disinfection
or disposal.®

The rearing procedures usually described are designed for the production of hundreds
to thousands of specimens per week. Mechanized mass rearing systems also have been
developed where the number of insects reared is measured in millions per week. As part of
a sterile-male screwworm eradication program, approximately 500 million flies were pro-
duced per week.” However, production on this scale requires uniquely designed facilities to
meet the needs of controlled environments, mechanized handling methods and control of
pathogens, contaminants, and respiratory hazards.®

III. DISCOVERIES AND APPLICATIONS IN BIOMEDICAL
SCIENCES

A. GENETICS

The study of genetics in multicellular organisms has progressed rapidly during the past
80 years. The fruit fly Drosophila melanogaster has become the best-known model for
laboratory and field studies of genetics. This insect was used first as the basis for amplifying
Mendelian genetics and giving it its present form. In 1910, Morgan® at Columbia University
reported the crisscross nature of sex linkage in Drosophila and, more importantly, set the
standards of excellence for experimental work in genetics.'® Dobzhansky'' was the first
scientist to integrate the results of laboratory and field studies with the predictions arising
from mathematical theory such as the Hardy-Weinberg law. Since Morgan’s initial report
in 1910, it is estimated that over 25,000 articles dealing with Drosophz!a have been published
and that the literature would double every 12 years.!?

The advantages of using the fruit fly Drosophila as a model for the study of genetics
are many.'? The adult fly is small, readily handled, and breeds prolifically in the laboratory
and in the field. Conditions for rearing the flies are simple, cheap, and readily controlled.
The life cycle is short, about 9 d, and thousands can be produced in a small space. There
are only four haploid chromosomes, and the polytene chromosomes of the salivary glands
of larvae are gigantic and show a characteristic banding pattern. These patterns facilitate
the detection of chromosomal rearrangements, the mapping of gene deficiencies, and the
subsequent cytological localization of genes. Since the homologous chromosomes do not
undergo crossing over in the germ cells of the male,” the genetic procedures employed are
simplified greatly. This insect can serve as host to a variety of viruses,'* thereby allowing
the study of the genetics of host-parasite interactions. D. melanogaster flourishes upon many
media; however, a synthetic, minimal medium has been developed upon which flies can be
reared aseptically.!® Schneider' has developed a medium for in vitro cell cultures of fly-
derived cells. Massive collections of hereditary variations in flies have been developed, and
stocks of many of the mutants can be obtained from various workers in the field. Finally,
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an encyclopedic body of information on Drosophila genetic studies is readily available
through indexed bibliographies, such as those by Herskowitz.!”2! Without question, these
attributes make this insect model one of the more important findings in the field of genetics,
as well as in modern science.

B. MUTAGENICITY TESTING

The fruit fly D. melanogaster has also proved to be extremely useful in testing materials
for mutagenicity, and the literature on this subject is abundant.? Studies of mutation induction
in Drosophila began with Muller’s experiments with X-rays in 1927.% In the years after
World War II, the mutagenic effects of radiation were studied extensively, and Auerbach
and co-workers were the first to detect chemical mutagenesis by mustard gas and formal-
dehyde using Drosophila.?*

The wealth of specific test strains, special markers, inversions, and other rearrangements
make it possible to test for most of the genetoxic end points relevant to human hazards using
Drosophila. These range from recessive lethals or visible point mutations and small deletions
to translocations, duplications, meiotic or mitotic recombinations, and dominant lethals or
chromosome loss as an indication of open, unrepaired. breaks, chromosome damage, and
aneuploidy.?>?*-% Testing for the different types of mutations often can be conducted si-
multaneously if desired. The life cycle of D. melanogaster is short enough to permit rapid
analysis of many progeny but long enough to distinguish between chronic, acute, and
fractionated doses.?? Since the fruit fly is a multicellular eukaryote, it possesses a cellular
and chromosomal organization more akin to mammals than the bacteria sometimes used for
the initial screening of mutagens. The overlap between the mutagenic and carcinogenic
potential of many classes of chemicals tends to make the distinction between the two an
artificial one.?26

Indirect mutagens and carcinogens require activation by the microsomal enzyme systems
present in the mammalian liver. Mutagens of this kind register as negative in microbial test
systems unless host-mediated assays or plating on microsomal extracts from mammalian
tissues are employéd. Mammalian-like detoxification pathways have been demonstrated in
Drosophila and are capable of facilitating similar enzymic reactions to those from mammalian
liver. Thus, the use of Drosophila is convenient for detecting indirect mutagens and short-
lived metabolites. Over 50 compounds, falling into 9 different groups, that all require
metabolic activation for the manifestation of their mutagenic and carcinogenic properties
have been tested in Drosophila and yielded positive responses.?5-?’

Many of the advantages of using the fruit fly listed in the preceding section apply also
to mutagenicity testing. Toxicity testing using a housefly model is described in Chapter 6.

C. PATHOGEN PRODUCTION

Many human pathogens, such as bacteria, protozoa, rickettsia, viruses, and helminths,
multiply in various insects. These insect hosts may be involved in the natural transmission
of certain pathogens to man. Insect-borne diseases, such as malaria, trypanosomiasis, and
dengue, account for the loss of millions of people each year, particularly in tropical areas.
Scientists, however, have learned to take advantage of this pathogen-insect relationship in
disease diagnosis.

A unique application exploiting parasite development in insect vectors is xenodiagnosis.
The causative organism of some arthropod-transmitted diseases often occurs only sparsely
in human blood, making nonacute forms of the disease difficult to diagnose by recovery of
the parasite. Xenodiagnosis involves the feeding of noninfected insects on the patient. After
incubation and multiplication in the insect’s body, the parasite, if present, may be recovered
and examined. Xenodiagnosis is used most commonly in the detection of trypanosomes
causing Chagas’ disease (American trypanosomiasis) in the gut and feces of conenose bugs
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fed 1 to 2 weeks earlier on patients.?® More recently, phlebotomine sand flies and simuliid
black flies have been used for the diagnosis of New World leishmaniasis*® and onchocer-
ciasis, 3 respectively. -

Insects are used also in the laboratory confirmation of certam human viral illnesses,
such as those caused by the dengue viruses. Dengue is one of the most important arthropod-
borne viruses that occurs in man because of the high numbers of individuals infected and
because it may cause mortality in children. The four viruses that cause this disease, however,
are among the most difficult to detect and propagate in the laboratory. They are not very
pathogenic when inoculated into the brain of a newborn mouse and may require many serial
passages to produce signs of illness in mice. The application of cell culture techniques for
detection led to more sensitive assays, but not all four virus types would produce consistently
cytopathic effects which could be detected in the cultured cells. Upon discovery that the
dengue virus grew to high titers in certain mosquitoes, workers began inoculating virus into
mosquitoes to develop a more sensitive detection system.>!

The use of mosquitoes to assay dengue viruses offers a considerable advantage in
- sensitivity whether the viruses are present in mosquitoes, in sera from naturally infected
humans, or have been adapted to cell cultures or mice.*? The discovery that male mosquitoes,
such as Aedes aegypti, are as sensitive to infection as females, offers a significant advantage
in safety, since males cannot transmit the infection should they escape. It was shown also
that Toxorynchites mosquitoes, a genus that does not feed on blood and is extremely large,
could be infected with the virus. This mosquito currently is the genus of choice for the
laboratory confirmation of the four dengue viruses.?'

D. NEUROENDOCRINE CONTROL MECHANISMS

Insect metamorphosis has been a fascinating phenomenon from ancient times. However,
it was not until 1922 when an insight into this phenomenon was gained by Kopec.* He
showed that a chemical factor had to be released from the brain of the gypsy moth larva,
Lymantria dispar, to cause pupation. This was the first evidence in the animal kingdom that
the nervous system was involved in the endocrine control of growth and development. We
now know that the vertebrate hypothalamic-hypophyseal complex provides the same coor-
dination of the nervous and endocrine activities as the pars intercerebralis-corpora cardiaca
complex of insects. The first evidence on the mode of action of steroid hormones at cellular
and molecular level came from the studies of Clever and Karlson in the 1960s on the polytene
chromosomes of a fly, Chironomus sp.>* The role of cyclic nucleotides in insect hormone
action provides a commonality in the mode of action of insect hormones with those of
mammals such as serotonin.?® The discovery that RNA and protein syntheses were important
to the action of insect hormones has yielded basic information of great significance to the
mode of action of hormones in general.

E. ANTIMALARIAL DRUGS
Insects have proved very effective in the screening of potential drugs, in particular, with
antimalarial compounds. Following World War II and our experience with malaria in vast
numbers of military troops serving in tropical areas, malaria research centered on the de-
velopment of more effective drugs. At this time, there was the need for newer testing
methods to seek out compounds with antimalarial activity. The need derived from the fact
that testing methods using the vertebrate hosts of avian and simian malarias, ordinarily used
for preliminary evaluation of compounds for antimalarial activity, failed to show a consistent
“relation between the activity in animal models and that in human beings. For example,
paludrine had a prophylactic effect against the avian malaria Plasmodium gallinaceum but
not against the human malaria P. vivax. Consequently, preliminary evaluation of this com-
pound required the use of experimentally infected human volunteers. Furthermore, other
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compounds were not being considered because of their lack of activity against avian or
simian malaria and may have been overlooked because they had not been tested against the
human malarias.>

This need for drug-testing methods which showed drug effects in human malarias was
met, in part, by studies in which various antimalarial compounds were administered to the
mosquito hosts (Anopheles quadrimaculatus, Aedes aegypti) of Plasmodium falciparum and
other malarias, and in which drug action was evaluated by its morphological and physiological
effects on the various stages of the malaria cycle within the mosquito.3”3° As a result of
these studies, a specific relation in drug action between the mosquito and the human- liver
cycle of malaria was shown. Those compounds that had a prophylactic action in the mosquito,
also had a prophylactic effect in the human being. As a consequence of this relation, it
became possible to evaluate compounds for prophylactic activity against human malarias by
using mosquitoes infected with human malarial strains as the test animal. This reduced the
need for tests of drug activity in other animal models.>¢

In addition to the reduced need for animal testing, this insect model made possible a
greatly expanded and accelerated malaria drug testing program at a comparatively low cost.
With the discovery that drugs tested against avian malaria in the mosquito reliably predicted
possible curative activity against P. vivax, this insect model was considered even more
useful.> However, in the 1960s the discovery of several new nonhuman primate models
led to decreased utilization of the insect model, although it was and still is a valid and much
less expensive model.

F. BIOLUMINESCENCE

Insects have been used also to study the fate of various biochemical components like
adenosine triphosphate during bioluminescence. Self-luminescence, not involving bacteria,
occurs in insects from the orders Collembola, Homoptera, Diptera, and Coleoptera.* Bio-
luminescence has been characterized best in the common North American firefly, Photinus
pyralis. Firefly luciferase catalyzes the adenosine triphosphate (ATP)-dependent oxidative
decarboxylation of luciferin (LH,), resulting in the production of light (hv) as shown in the
reaction where P denotes the product oxyluciferin:

LH, + ATP + O, = P + AMP + CO, + hv

The reaction catalyzed by this enzyme has a quantum yield of 0.88 with respect to LH,,
making it the most efficient bioluminescent reaction known.* Firefly luciferase is useful in
a variety of applications. Because of its specificity for ATP, firefly luciferase can be used
to measure the amount of ATP present in biological sampies without interference from other
nucleotide triphosphates.*' Using luciferase isolated from fireflies, in conjunction with suit-
ably sensitive liquid scintillation counters or biometers, less than 1 fmol (10~!5 mol) of ATP
can be detected.*> The level of endogenous ATP in a cell may be used as an index of its
energy status and is therefore useful in metabolic and physiological studies. Estimates of
cell numbers in microbial and tissue cultures may be obtained after determining the ATP
per cell under defined conditions and measuring total ATP in a sample of culture.** This
has served as a basis for rapidly quantitating bacteria in urine, milk, wine, and polluted
waters, with sufficient sensitivity to detect the ATP contents of as few as 10 colony-forming
units (CFU) per milliliter.** Replacing radiolabels (e.g., '*I) with luciferin- or firefly lu-
ciferase-conjugated ligands in a bioluminescent immuno- or affinity-assay, can result in
increased assay sensitivity, elimination of hazardous radiolabeled compounds, increased
speed of the assay, and decreased cost per assay.*> Commercially available firefly luciferase
reagents for use in these assays have been evaluated by Leach and Webster.*¢
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- IV. AREAS OF POTENTIAL RESEARCH

A. GENERAL CONSIDERATIONS

Insects, by their enormous species diversity and antiquity, present a wide choice of
biological parameters. There appears to be no common ancestry between mammals and
insects. Interestingly, the basic biological functions are essentially similar in these diverse
animal groups. Among the various insect species, cockroaches may be considered as rela-
tively primitive, while bees and flies may be considered more advanced in terms of evolution.
Vertebrate evolution, of course, is much more recent than that of insects; however, certain
basic mechanisms are conserved throughout the animal kingdom. Therefore, the chances
are high of finding a body function or a control mechanism of biomedical interest in insects.
~ Based on the current status of our knowledge on comparative physiology, biochemistry, and
molecular biology, the following areas of research appear promising for biomedical purposes.

B. SPECIFIC AREAS
1. Insectan Antibiotics

Because of their long history of survival on this planet, insects may be looked at as the
founders of successful defensive mechanisms. They possess a complex, multicomponent,
active defensive system that is regulated and coordinated by several distinct cell popula-
tions.*”*® They exhibit cellular and humoral defensive mechanisms as well as the acquisition
of a protected (‘‘immune’’) state to bacterial infections.

The insect immunocytes (hemocytes) are efficient in eliminating bacteria, fungi, ne-
matodes, and other foreign particles by either phagocytosis, nodule formation, or encap-
sulation. The recognition of foreignness is thought to be mediated by certain hemolymph
proteins (agglutinins; lectins) that function as opsonins.*’ Lectins, which may play a role in
the receptor-mediated endocytosis, also have been found on the cell surface of insect hem-
ocytes. 4952 .

Insect immunocytes, namely, plasmatocytes and granulocytes, are functionally com-
parable to vertebrate (mammalian) B- and T-lymphocytes.*® The plasmatocytes perform the
analogous killer function and helper-cell-independent cytotoxic function of the T-lympho-
cytes. The plasmatocytes also perform the functions of vertebrate macrophages. The gran-
ulocytes perform the analogous functions of the B-lymphocytes as well as the suppressor
functions of the T-lymphocytes. A detailed hypothesis on the evolution of these immunocytes
from a primitive arthropod granulocyte was proposed recently.*®

Insect hemolymph is rich in a polyphenoloxidase that catalyzes, among others, the
oxidation of tyrosine to 3,4-dihydroxyphenylalanine. It has been proposed that the activation
of this enzyme may have a role in the recognition of foreign particles.>?

A broad spectrum of antibiotic proteins and peptides are known to be synthesized by
insects in response to bacterial infections. For example, the cecropins (3.5 to 4 kDa) and
attacins (20 to 23 kDa) in the hemolymph of silkworm, Hyalophora cecropia, are bacteri-
cidal.>*%® The site of synthesis of these proteins or related bactericidal proteins appears to
be the fat body. Insect lysozymes exhibit properties (thermostability, pH optima, and ionic
strength optima) similar to those of chicken egg white lysozyme.57-61-63

In spite of some significant progress made in the past decade in our understanding of
invertebrate immunity, our present knowledge of cellular recognition and mediation- of
immune response is lagging severely behind that of mammalian immunity. Future research,
therefore, should concentrate on cell-surface and humoral molecules, their characterization,
synthesis, regulation, and possible specificity against human pathogens and toxins. Because
of the absence of mammalian-type diversification of cell functions, the insect immunocytes
may provide an array of molecules for both basic and applied research in immunology. As
a reward, one might be able to identify antibiotic molecules that are very different from



69

TABLE 1

Homologous/Analogous Aspects Between the Neuroendocrine Systems of Insects and
Vertebrates®
Insects Vertebrates
Neuroendocrine System

Axoplasmic neurosecretion flow
Paired groups of neurosecretory cells in the

Axoplasmic neurosecretion flow
Hypothalamic neurosecretory center

protocerebrum
Corpus cardiacum Posterior lobe of pituitary gland
Corpus allatum Adenohypophysis
Anterior lobe of hypophysis
Chemistry of Neuropeptides

Peptidergic neurosecretions; allatostatin/allatinhibin
Corpus cardiacum secretions
Proctolin

Oxytocin, vasopressin, somatostatin
Substance P, glucagon, insulin, secretin

B-Endorphin

Control of Reproductive Activity

Synthesis of vitellogenins is extraovarial
Vitellogenins synthesized in liver

Synthesis of vitellogenins is extraovarial
Vitellogenins synthesized in fat body

Reproduction cyclic Reproduction cyclic

Vivipary/ovovivipary Pregnancy

Reproductive quiescence terminated by denervation of ~ Reproductive quiescence terminated by denervation of
corpus allatum mammary gland or hypophysectomy

Egg diapause hormone secreted by subesophageal Embryonic diapause (delayed implantation of fertil-
ganglion or other parts ized egg) controlled by hypothalamic-adenohypophy-

sial system

* Modified after Reference 65.

those of mammals and perhaps were never acquired by the mammals through the evolutionary
process, either deliberately or accidentally. For example, the inability of the human im-
munodeficiency virus (HIV) to replicate in insect cells®* might lead to a novel insectan
molecular weapon against this deadly virus now threatening millions of people.

2. Neuroendocrine System

**The episodic events, including the molting cycle and metamorphic transformations that
lead to the emergence of adult insects, are programmed with greater precision than the
developmental steps leading to maturity in most vertebrates. The cyclicality in the repro-
ductive activity of the females of certain insect species resembles that of mammals.’’%® Some
of the homologies and analogies are shown in Table 1. The identity and precise biological
activity of many neurosecretory materials are currently under investigation in many labo-
ratories. One can conclude at this point that the insects possess a very complex array of
neurosecretions that may not be very different from those of mammals. It is hoped that
future research efforts will be directed toward a clear understanding of these historical
molecules and a better understanding of our own molecular systems.

V. SUMMARY

Insects as models for biomedical research offer attractive alternatives to the use of higher
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animals, particularly in light of dwindling research dollars and increasing protests by animal
rights groups. A major advantage of using insect models is the ease with which large numbers
of specimens can be reared; reduced per diem costs and space requirements result in sig-
nificant savings. The flexibility afforded by use of short-generation species also can be
exploited using insect models, and experiments can be run with large genetically homoge-
neous populations. Although insects differ from mammals in their morphology and physi-
ology in a number of ways, it is often easier to isolate physiological or pharmacological
systems in insect models. :

Scientists have taken advantage of insect models in the past and have made significant
discoveries in the biomedical sciences using them. The fruit fly Drosophila melanogaster
has become the best-known model for laboratory and field studies of genetics. An ency-
clopedic body of information on Drosophila genetic studies is readily available through
indexed bibliographies, proving that this insect model is one of the more important findings
in the field of genetics. The fruit fly model has been also valuable in testing materials for
their mutagenic and carcinogenic properties. Scientists have learned to use insect-pathogen
transmission models to screen antipathogen chemical compounds and to diagnose certain
human diseases. In addition, insect models have been used to study such diverse fields as
the mode of action of steroid hormones and bioluminescence. For example, the role of cyclic
nucleotides in insect hormone action provides a basis for studies on the animal hormone
serotonin, and determinations of total ATP using insect luciferase have facilitated the esti-
mation of low bacterial numbers in urine, milk, wine, and water. Current emphasis on
utilizing insects as models for biomedical research has been in the fields of immunology
and neuroendocrinology.
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