USGS Publications Warehouse http://pubs.usgs.gov New Publications of the U.S. Geological Survey - Publications that have been added in the last 7 days. Description and Analytical results for deposited dust samples from a two-year monitoring program near Deer Trail, Colorado (USA), 2006-2007 http://pubs.er.usgs.gov/usgspubs/ofr/ofr20081361 Reheis, Marith (2008), Open-File Report 2008-1361. <br /> <br /> Since late 1993, the Metro Wastewater Reclamation District of Denver (Metro District), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colorado (U.S.A.). In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring ground water at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program recently has been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock ground water, and streambed sediment. Streams at the site are dry most of the year, so samples of streambed sediment deposited after rain were used to indicate surface-water effects. This report will present only analytical results for the biosolids samples collected at the Metro District wastewater treatment plant in Denver and analyzed during 2007. We have presented earlier a compilation of analytical results for the biosolids samples collected and analyzed for 1999 through 2006. More information about the other monitoring components is presented elsewhere in the literature. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross alpha and beta activity. Nitrogen and chromium also were priority parameters for ground water and sediment components. In general, the objective of each component of the study was to determine whether concentrations of priority parameters (1) we... 2009-01-03 OFR Open-File Report Environmental Factors Affecting Mercury in Camp Far West Reservoir, California, 2001-03 http://pubs.er.usgs.gov/usgspubs/sir/sir20065008 Alpers, Charles N.; Stewart, A. Robin; Saiki, Michael K.; Marvin-DiPasquale, Mark C.; Topping, Brent R.; Rider, Kelly M.; Gallanthine, Steven K.; Kester, Cynthia A.; Rye, Robert O.; Antweiler, Ronald C.; De Wild, John F. (2008), Scientific Investigations Report 2006-5008. <br /> <br /> This report documents water quality in Camp Far West Reservoir from October 2001 through August 2003. The reservoir, located at approximately 300 feet above sea level in the foothills of the northwestern Sierra Nevada, California, is a monomictic lake characterized by extreme drawdown in the late summer and fall. Thermal stratification in summer and fall is coupled with anoxic conditions in the hypolimnion. Water-quality sampling was done at approximately 3-month intervals on eight occasions at several stations in the reservoir, including a group of three stations along a flow path in the reservoir: an upstream station in the Bear River arm (principal tributary), a mid-reservoir station in the thalweg (prereservoir river channel), and a station in the deepest part of the reservoir, in the thalweg near Camp Far West Dam. Stations in other tributary arms of the reservoir included those in the Rock Creek arm of the reservoir, a relatively low-flow tributary, and the Dairy Farm arm, a small tributary that receives acidic, metal-rich drainage seasonally from the inactive Dairy Farm Mine, which produced copper, zinc, and gold from underground workings and a surface pit. Several water-quality constituents varied significantly by season at all sampling stations, including major cations and anions, total mercury (filtered and unfiltered samples), nitrogen (ammonia plus organic), and total phosphorus. A strong seasonal signal also was observed for the sulfurisotope composition of aqueous sulfate from filtered water. Although there were some spatial differences in water quality, the seasonal variations were more profound. Concentrations of total mercury (filtered and unfiltered water) were highest during fall and winter; these concentrations decreased at most stations during spring and summer. Anoxic conditions developed in deep parts of the reservoir during summer and fall in association with thermal stratification. The highest concentrations of methylmercury in unfiltered... 2009-01-03 SIR Scientific Investigations Report Geochemical Data from Analyses of Rock, Sediment, Water, and Solid-Phase Leaching at the Tuba City Open Dump, Tuba City, Arizona http://pubs.er.usgs.gov/usgspubs/ofr/ofr20081374 Johnson, Raymond H.; Otton, James K.; Horton, Robert J.; Gallegos, Tanya J.; Choate, LaDonna M.; Sullivan, Jonah E. (2008), Open-File Report 2008-1374. <br /> <br /> This report releases data collected by the U.S. Geological Survey from the Tuba City Open Dump area from January 2008 to September 2008 with cooperation from the U.S. Bureau of Indian Affairs and the Navajo and Hopi Tribes. These data were collected in support of investigations into the possible sources and resulting transport of radionuclides and other dissolved constituents in the surrounding ground water from the Tuba City Open Dump. This report provides a discussion of data collection and analytical methods with the data in a tabular format. 2009-01-03 OFR Open-File Report Geologic Model for Oil and Gas Assessment of the Kemik-Thomson Play, Central North Slope, Alaska http://pubs.er.usgs.gov/usgspubs/sir/sir20085146 Schenk, Christopher J.; Houseknecht, David W. (2008), Scientific Investigations Report 2008-5146. <br /> <br /> A geologic model was developed to assess undiscovered oil and gas resources in the Kemik-Thomson Play of the Central North Slope, Alaska. In this model, regional erosion during the Early Cretaceous produced an incised valley system on the flanks and crest of the Mikkelsen High and formed the Lower Cretaceous unconformity. Locally derived, coarse-grained siliciclastic and carbonate detritus from eroded Franklinian-age basement rocks, Carboniferous Kekiktuk Conglomerate (of the Endicott Group), Lisburne Group, and Permian-Triassic Sadlerochit Group may have accumulated in the incised valleys during lowstand and transgression, forming potential reservoirs in the Lower Cretaceous Kemik Sandstone and Thomson sandstone (informal term). Continued transgression resulted in the deposition of the mudstones of the over-lying Cretaceous pebble shale unit and Hue Shale, which form top seals to the potential reservoirs. Petroleum from thermally mature facies of the Triassic Shublik Formation, Jurassic Kingak Shale, Hue Shale (and pebble shale unit), and the Cretaceous-Tertiary Canning Formation might have charged Thomson and Kemik sandstone reservoirs in this play during the Tertiary. The success of this play depends largely upon the presence of reservoir-quality units in the Kemik Sandstone and Thomson sandstone. 2009-01-03 SIR Scientific Investigations Report Mercury in Precipitation in Indiana, January 2004-December 2005 http://pubs.er.usgs.gov/usgspubs/sir/sir20085148 Risch, Martin R.; Fowler, Kathleen K. (2008), Scientific Investigations Report 2008-5148. <br /> <br /> Mercury in precipitation was monitored during 2004-2005 at five locations in Indiana as part of the National Atmospheric Deposition Program-Mercury Deposition Network (NADP-MDN). Monitoring stations were operated at Roush Lake near Huntington, Clifty Falls State Park near Madison, Fort Harrison State Park near Indianapolis, Monroe County Regional Airport near Bloomington, and Indiana Dunes National Lakeshore near Porter. At these monitoring stations, precipitation amounts were measured continuously and weekly samples were collected for analysis of mercury by methods achieving detection limits as low as 0.05 ng/L (nanograms per liter). Wet deposition was computed as the product of mercury concentration and precipitation. The data were analyzed for seasonal patterns, temporal trends, and geographic differences. In the 2 years, 520 weekly samples were collected at the 5 monitoring stations and 448 of these samples had sufficient precipitation to compute mercury wet deposition. The 2-year mean mercury concentration at the five monitoring stations (normalized to the sample volume) was 10.6 ng/L. As a reference for comparison, the total mercury concentration in 41 percent of the samples analyzed was greater than the statewide Indiana water-quality standard for mercury (12 ng/L, protecting aquatic life) and 99 percent of the concentrations exceeded the most conservative Indiana water-quality criterion (1.3 ng/L, protecting wild mammals and birds). The normalized annual mercury concentration at Clifty Falls in 2004 was the fourth highest in the NADP-MDN in eastern North America that year. In 2005, the mercury concentrations at Clifty Falls and Indiana Dunes were the ninth highest in the NADP-MDN in eastern North America. At the five monitoring stations during the study period, the mean weekly total mercury deposition was 0.208 ug/m2 (micrograms per square meter) and mean annual total mercury deposition was 10.8 ug/m2. The annual mercury deposition at Clifty Falls in 2... 2009-01-03 SIR Scientific Investigations Report Sediment quality and comparison to historical water quality, Little Arkansas River Basin, south-central Kansas, 2007 http://pubs.er.usgs.gov/usgspubs/sir/sir20085187 Juracek, Kyle E. (2008), Scientific Investigations Report 2008-5187. <br /> <br /> 2009-01-03 SIR Scientific Investigations Report Summary of Ground-Water Data for Brunswick County, North Carolina, Water Year 2007 http://pubs.er.usgs.gov/usgspubs/ofr/ofr20081307 McSwain, Kristen Bukowski (2008), Open-File Report 2008-1307. <br /> <br /> Ground-water availability in Brunswick County, North Carolina, has been monitored continuously since 2000 through the operation and maintenance of ground-water-level observation wells in the surficial, Castle Hayne, Peedee, and Black Creek aquifers of the North Atlantic Coastal Plain aquifer system. Ground-water-resource conditions for the Brunswick County area were determined by relating the period-of-record normal (25th to 75th percentile) monthly mean groundwater- level and precipitation data to median monthly mean ground-water levels and monthly sum of daily precipitation for water year 2007. Summaries of precipitation and ground-water conditions for the Brunswick County area and hydrographs and statistics of continuous ground-water levels collected during the 2007 water year are presented in this report. Ground-water resource conditions varied by aquifer and geographic location within Brunswick County. Water levels were normal in 6 of the 11 observation wells, above normal in 1 well, and below normal in the remaining 4 wells. 2009-01-03 OFR Open-File Report Total Dissolved Gas and Water Temperature in the Lower Columbia River, Oregon and Washington, 2008: Quality-Assurance Data and Comparison to Water-Quality Standards http://pubs.er.usgs.gov/usgspubs/ofr/ofr20081357 Tanner, Dwight Q.; Bragg, Heather M.; Johnston, Matthew W. (2008), Open-File Report 2008-1357. <br /> <br /> When water is released through the spillways of dams, air is entrained in the water, increasing the downstream concentration of dissolved gases. Excess dissolved-gas concentrations can have adverse effects on freshwater aquatic life. The U.S. Geological Survey (USGS), in cooperation with the U.S. Army Corps of Engineers, collected dissolved-gas and water-temperature data at eight monitoring stations on the lower Columbia River in Oregon and Washington in 2008. Significant findings from the data include: * During the spill season of April through August 2008, hourly values of total-dissolved-gas (TDG) concentration were occasionally larger than 115-percent saturation for the forebay stations (John Day navigation lock, The Dalles forebay, Bonneville forebay, and Camas). Hourly values of TDG concentration were occasionally larger than 120-percent saturation for tailwater stations (John Day tailwater, The Dalles tailwater, and Cascade Island). * From late July to September 2008, water temperatures were greater than 20 deg C (degrees Cel-sius) at seven stations on the lower Columbia River. According to the State of Oregon temperature standard, the 7-day average maximum temperature of the lower Columbia River should not exceed 20 deg C; Washington regulations state that the 1-day maximum should not exceed 20 deg C as a result of human activities. * Each of the in situ field checks of TDG sensors with a secondary standard was within +- (plus or minus) 1-percent saturation after 3 to 4 weeks of deployment in the river. All field checks of barometric pressure were within +-2.0 millimeters of mercury of a secondary stan-dard, and water-temperature field checks were all within +-0.2 deg C. * For the eight monitoring stations in water year 2008, an average of 99.6 percent of the TDG data were received in real time by the USGS satellite downlink and were within 1-percent saturation of the expected value on the basis of calibration data, replicate quality-control measurements... 2009-01-03 OFR Open-File Report Using Logistic Regression to Predict the Probability of Debris Flows in Areas Burned by Wildfires, Southern California, 2003-2006 http://pubs.er.usgs.gov/usgspubs/ofr/ofr20081370 Rupert, Michael G.; Cannon, Susan H.; Gartner, Joseph E.; Michael, John A.; Helsel, Dennis R. (2008), Open-File Report 2008-1370. <br /> <br /> Logistic regression was used to develop statistical models that can be used to predict the probability of debris flows in areas recently burned by wildfires by using data from 14 wildfires that burned in southern California during 2003-2006. Twenty-eight independent variables describing the basin morphology, burn severity, rainfall, and soil properties of 306 drainage basins located within those burned areas were evaluated. The models were developed as follows: (1) Basins that did and did not produce debris flows soon after the 2003 to 2006 fires were delineated from data in the National Elevation Dataset using a geographic information system; (2) Data describing the basin morphology, burn severity, rainfall, and soil properties were compiled for each basin. These data were then input to a statistics software package for analysis using logistic regression; and (3) Relations between the occurrence or absence of debris flows and the basin morphology, burn severity, rainfall, and soil properties were evaluated, and five multivariate logistic regression models were constructed. All possible combinations of independent variables were evaluated to determine which combinations produced the most effective models, and the multivariate models that best predicted the occurrence of debris flows were identified. Percentage of high burn severity and 3-hour peak rainfall intensity were significant variables in all models. Soil organic matter content and soil clay content were significant variables in all models except Model 5. Soil slope was a significant variable in all models except Model 4. The most suitable model can be selected from these five models on the basis of the availability of independent variables in the particular area of interest and field checking of probability maps. The multivariate logistic regression models can be entered into a geographic information system, and maps showing the probability of debris flows can be constructed in recently burned areas of south... 2009-01-03 OFR Open-File Report Water-Quality Effects and Characterization of Indicators of Onsite Wastewater Disposal Systems in the East-Central Black Hills Area, South Dakota, 2006-08 http://pubs.er.usgs.gov/usgspubs/sir/sir20085232 Putnam, Larry D.; Hoogestraat, Galen K.; Sawyer, J. Foster (2008), Scientific Investigations Report 2008-5232. <br /> <br /> Onsite wastewater disposal systems (OWDS) are used extensively in the Black Hills of South Dakota where many of the watersheds and aquifers are characterized by fractured or solution-enhanced bedrock with thin soil cover. A study was conducted during 2006-08 to characterize water-quality effects and indicators of OWDS. Water samples were collected and analyzed for potential indicators of OWDS, including chloride, bromide, boron, nitrite plus nitrate (NO2+NO3), ammonia, major ions, nutrients, selected trace elements, isotopes of nitrate, microbiological indicators, and organic wastewater compounds (OWCs). The microbiological indicators were fecal coliforms, Escherichia coli (E. coli), enterococci, Clostridium perfringens (C. perfringens), and coliphages. Sixty ground-water sampling sites were located either downgradient from areas of dense OWDS or in background areas and included 25 monitoring wells, 34 private wells, and 1 spring. Nine surface-water sampling sites were located on selected streams and tributaries either downstream or upstream from residential development within the Precambrian setting. Sampling results were grouped by their hydrogeologic setting: alluvial, Spearfish, Minnekahta, and Precambrian. Mean downgradient dissolved NO2+NO3 concentrations in ground water for the alluvial, Spearfish, Minnekahta, and Precambrian settings were 0.734, 7.90, 8.62, and 2.25 milligrams per liter (mg/L), respectively. Mean downgradient dissolved chloride concentrations in ground water for these settings were 324, 89.6, 498, and 33.2 mg/L, respectively. Mean downgradient dissolved boron concentrations in ground water for these settings were 736, 53, 64, and 43 micrograms per liter (ug/L), respectively. Mean dissolved surface-water concentrations for NO2+NO3, chloride, and boron for downstream sites were 0.222 mg/L, 32.1 mg/L, and 28 ug/L, respectively. Mean values of delta-15N and delta-18O (isotope ratios of 14N to 15N and 18O to 16O relative to standard ratios... 2009-01-03 SIR Scientific Investigations Report Weather and Climate Monitoring Protocol, Channel Islands National Park, California http://pubs.er.usgs.gov/usgspubs/tm/tm2B1 McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky (2008), Techniques and Methods 2-B1. <br /> <br /> Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts. 2009-01-03 TM Techniques and Methods Flood of June 2008 in Southern Wisconsin http://pubs.er.usgs.gov/usgspubs/sir/sir20085235 Fitzpatrick, Faith A.; Peppler, Marie C.; Walker, John F.; Rose, William J.; Waschbusch, Robert J.; Kennedy, James L. (2008), Scientific Investigations Report 2008-5235. <br /> <br /> In June 2008, heavy rain caused severe flooding across southern Wisconsin. The floods were aggravated by saturated soils that persisted from unusually wet antecedent conditions from a combination of floods in August 2007, more than 100 inches of snow in winter 2007-08, and moist conditions in spring 2008. The flooding caused immediate evacuations and road closures and prolonged, extensive damages and losses associated with agriculture, businesses, housing, public health and human needs, and infrastructure and transportation. Record gage heights and streamflows occurred at 21 U.S. Geological Survey streamgages across southern Wisconsin from June 7 to June 21. Peak-gage-height data, peak-streamflow data, and flood probabilities are tabulated for 32 USGS streamgages in southern Wisconsin. Peak-gage-height and peak-streamflow data also are tabulated for three ungaged locations. Extensive flooding along the Baraboo River, Kickapoo River, Crawfish River, and Rock River caused particularly severe damages in nine communities and their surrounding areas: Reedsburg, Rock Springs, La Farge, Gays Mills, Milford, Jefferson, Fort Atkinson, Janesville, and Beloit. Flood-peak inundation maps and water-surface profiles were generated for the nine communities in a geographic information system by combining flood high-water marks with available 1-10-meter resolution digital-elevation-model data. The high-water marks used in the maps were a combination of those surveyed during the June flood by communities, counties, and Federal agencies and hundreds of additional marks surveyed in August by the USGS. The flood maps and profiles outline the extent and depth of flooding through the communities and are being used in ongoing (as of November 2008) flood response and recovery efforts by local, county, State, and Federal agencies. 2009-01-01 SIR Scientific Investigations Report Ground-Water Quality Data in the Middle Sacramento Valley Study Unit, 2006 - Results from the California GAMA Program http://pubs.er.usgs.gov/usgspubs/ds/ds385 Schmitt, Stephen J.; Fram, Miranda S.; Milby Dawson, Barbara J.; Belitz, Kenneth (2008), Data Series 385. <br /> <br /> Ground-water quality in the approximately 3,340 square mile Middle Sacramento Valley study unit (MSACV) was investigated from June through September, 2006, as part of the California Groundwater Ambient Monitoring and Assessment (GAMA) program. The GAMA Priority Basin Assessment project was developed in response to the Groundwater Quality Monitoring Act of 2001 and is being conducted by the U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board (SWRCB). The Middle Sacramento Valley study was designed to provide a spatially unbiased assessment of raw ground-water quality within MSACV, as well as a statistically consistent basis for comparing water quality throughout California. Samples were collected from 108 wells in Butte, Colusa, Glenn, Sutter, Tehama, Yolo, and Yuba Counties. Seventy-one wells were selected using a randomized grid-based method to provide statistical representation of the study unit (grid wells), 15 wells were selected to evaluate changes in water chemistry along ground-water flow paths (flow-path wells), and 22 were shallow monitoring wells selected to assess the effects of rice agriculture, a major land use in the study unit, on ground-water chemistry (RICE wells). The ground-water samples were analyzed for a large number of synthetic organic constituents (volatile organic compounds [VOCs], gasoline oxygenates and degradates, pesticides and pesticide degradates, and pharmaceutical compounds), constituents of special interest (perchlorate, N-nitrosodimethylamine [NDMA], and 1,2,3-trichloropropane [1,2,3-TCP]), inorganic constituents (nutrients, major and minor ions, and trace elements), radioactive constituents, and microbial indicators. Naturally occurring isotopes (tritium, and carbon-14, and stable isotopes of hydrogen, oxygen, nitrogen, and carbon), and dissolved noble gases also were measured to help identify the sources and ages of the sampled ground water. Quality-control samples (blank... 2009-01-01 DS Data Series Total Mercury and Methylmercury in Indiana Streams, August 2004-September 2006 http://pubs.er.usgs.gov/usgspubs/sir/sir20085176 Ulberg, Amanda L.; Risch, Martin R. (2008), Scientific Investigations Report 2008-5176. <br /> <br /> Total mercury and methylmercury were determined by use of low (subnanogram per liter) level analytical methods in 225 representative water samples collected following ultraclean protocols at 25 Indiana monitoring stations in a statewide network, on a seasonal schedule, August 2004-September 2006. The highest unfiltered total mercury concentrations were at six monitoring stations - five that are downstream from urban and industrial wastewater discharges and that have upstream drainage areas more than 1,960 square miles and one that is downstream from active and abandoned mine lands and that has an upstream drainage area of 602 square miles. Total mercury concentrations in unfiltered samples ranged from 0.24 to 26.9 nanograms per liter (ng/L), with a median of 2.35 ng/L. The highest concentrations of total mercury, those in the 90th percentile and above, were more than 9.05 ng/L, and most were in samples collected during winter and spring 2006 during changing streamflow hydrograph conditions. Seasonal medians for unfiltered total mercury were highest during winter and spring. Instantaneous streamflow and turbidity at the time of sample collection also were highest in winter and spring and potentially indicate conditions for the most particulate mercury transport. Samples with the highest total mercury concentrations were from water that had the highest turbidity at the time of sample collection. Unfiltered total mercury concentrations were significantly lower in samples collected at five stations downstream from dams. Values for particulate total mercury and streamflow also were significantly lower at these five stations. Total mercury concentrations equaled or exceeded the 2007 Indiana chronic aquatic criterion of 12 ng/L in 5.8 percent of samples and at 10 monitoring stations. Most of the total mercury in these 13 samples was estimated to be particulate. Most of the samples with mercury concentrations that equaled or exceeded the 12 ng/L criterion were coll... 2008-12-30 SIR Scientific Investigations Report