
# Water Resources Data New York Water Year 2002

### **Volume 3. Western New York**

By J.F. Hornlein, C.O. Szabo, D.A. Sherwood, S.K. McInnes





In cooperation with the State of New York and with other agencies

## U.S. DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For information on the water program in New York write to District Chief, Water Resources Division
U.S. Geological Survey
425 Jordan Road
Troy, New York 12180-8349

or access the USGS on the world wide web: http://www.usgs.gov or http://wwwdnyalb.er.usgs.gov or http://ny.usgs.gov

2002

# NEW YORK DISTRICT OFFICE LOCATIONS AND ADDRESSES



#### **District Office:**

U. S. Geological Survey Water Resources Division 425 Jordan Road Troy, NY 12180-8349 (518) 285-5600 FAX (518) 285-5601

#### Ithaca Subdistrict Office:

U. S. Geological Survey Water Resources Division 30 Brown Road Ithaca, NY 14850 (607) 266-0217 FAX (607) 266-0521

### Coram Subdistrict Office:

U. S. Geological Survey Water Resources Division 2045 Route 112, Bldg. 4 Coram, NY 11727 (516) 736-4283 FAX (516) 736-4283

#### **Potsdam Field Office:**

U. S. Geological Survey Water Resources Division 22 Depot Street, Box U Potsdam, NY 13676 (315) 265-4410 FAX (315) 265-2166

#### **PREFACE**

This volume of the annual hydrologic data report of New York is one of a series of annual reports that document hydrologic data gathered from the U. S. Geological Survey's surface- and ground-water data-collection networks in each State, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and quality of water provide the hydrologic information needed by State, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources. Hydrologic data for New York are contained in three volumes:

Volume 1. Eastern New York excluding Long Island

Volume 2. Long Island

Volume 3. Western New York

In addition to the authors, who had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data:

D. A. Eckhardt W. M. Kappel J. E. Manzer J. P. Marion R. L. Mulks M. J. Welsh H. J. Zajd Jr.

This report was prepared in cooperation with the State of New York and with other agencies under the general supervision of L. Grady Moore, District Chief, New York.

| REPORT                                                                                                                                                                                                                                | DOCUMENTATIO                                                                                                                                                                                                                                             | N PAGE                                                                                                                                                                                                | Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Public reporting burden for this collection of data sources, gathering and maintaining the or any other aspect of this collection of infor                                                                                            | information is estimated to average 1<br>data needed, and completing and revi<br>mation, including suggestions for reduc                                                                                                                                 | hour per response, including the time wing the collection of information. Sing this burden, to Washington Hea                                                                                         | ne for reviewing instructions, searching existing<br>Send comments regarding this burden estimate<br>idquarters Services, Directorate for Information                                                                                                                                                               |
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                      | 2. REPORT DATE<br>June 2003                                                                                                                                                                                                                              |                                                                                                                                                                                                       | D DATES COVERED 2001 to 30 September 2002                                                                                                                                                                                                                                                                           |
| 4. TITLE AND SUBTITLE Water Resources Data - New Yor Volume 3. Western New York                                                                                                                                                       | k, Water Year 2002                                                                                                                                                                                                                                       |                                                                                                                                                                                                       | 5. FUNDING NUMBERS                                                                                                                                                                                                                                                                                                  |
| 6. AUTHOR(\$)<br>J. F. Hornlein, C. O. Szabo, D. A                                                                                                                                                                                    |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                     |
| 7. PERFORMING ORGANIZATION NAI<br>U. S. Geological Survey, Water F<br>30 Brown Road<br>Ithaca, New York 14850                                                                                                                         | . ,                                                                                                                                                                                                                                                      |                                                                                                                                                                                                       | 8. PERFORMING ORGANIZATION<br>REPORT NUMBER<br>USGS-WDR-NY-02-3                                                                                                                                                                                                                                                     |
| 9. SPONSORING / MONITORING AGE U. S. Geological Survey, Water F 425 Jordan Road Troy, New York 12180                                                                                                                                  |                                                                                                                                                                                                                                                          | )                                                                                                                                                                                                     | 10. SPONSORING / MONITORING<br>AGENCY REPORT NUMBER                                                                                                                                                                                                                                                                 |
| 11. SUPPLEMENTARY NOTES Prepared in cooperation with the                                                                                                                                                                              | State of New York and other a                                                                                                                                                                                                                            | gencies                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                     |
| 12a. DISTRIBUTION / AVAILABILITY S No restriction on distribution. This report may be purchased fro National Technical Information S                                                                                                  | m:                                                                                                                                                                                                                                                       |                                                                                                                                                                                                       | 12b. DISTRIBUTION CODE                                                                                                                                                                                                                                                                                              |
| stage and contents of lakes and re-<br>of precipitation. This volume con-<br>contents at 6 gaging stations; wat-<br>vation wells; daily precipation tot<br>stage partial record stations. Loca<br>not involved in the systematic data | servoirs; water levels and water<br>tains records for water discharger<br>er quality at 12 gaging stations<br>als at 2 sites, and chemical qua-<br>tions of these sites are shown<br>a collection program and are pu-<br>esent that part of the National | quality of ground-water we<br>ge at 70 gaging stations; stage<br>, 24 wells, and 22 partial rec-<br>lity of precipitation at 2 sites<br>on figure 1. Additional water<br>ablished as miscellaneous me | charge, and water quality of streams; lls; and quantity and chemical quality e only at 15 gaging stations; stage and ord stations; water levels at 21 obsers. Also included are data for 41 crester data were collected at various sites easurements. These data together with 1 by the U. S. Geological Survey and |
| 14. SUBJECT TERMS  *New York, *Hydrologic data, * Flow rates, Gaging stations, Lak Water temperature, Water levels,                                                                                                                   | es, Reservoirs, Chemical anal                                                                                                                                                                                                                            | ysis, Sediments, Water ana                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                     |
| 17. SECURITY CLASSIFICATION<br>OF REPORT<br>UNCLASSIFIED                                                                                                                                                                              | 18. SECURITY CLASSIFICATION<br>OF THIS PAGE<br>UNCLASSIFIED                                                                                                                                                                                              | 19. SECURITY CLASSIFICA<br>OF ABSTRACT<br>UNCLASSIFIED                                                                                                                                                | TION 20. LIMITATION OF ABSTRACT UL                                                                                                                                                                                                                                                                                  |

### CONTENTS

| New York district office locations and addresses                                                    |
|-----------------------------------------------------------------------------------------------------|
| Preface                                                                                             |
| List of surface-water stations, in downstream order, for which records are published in this volume |
| List of crest-stage partial record stations, in downstream order                                    |
| List of ground-water wells, by county, for which records are published in this volume               |
| List of discontinued surface-water discharge or stage-only stations                                 |
| List of discontinued surface-water-quality stations                                                 |
| List of discontinued crest-stage partial record stations                                            |
| Introduction                                                                                        |
| Cooperation                                                                                         |
| Summary of hydrologic conditions                                                                    |
| Surface water                                                                                       |
| Water quality                                                                                       |
| Ground water                                                                                        |
| Special networks and programs                                                                       |
| Explanation of the records                                                                          |
| Station identification numbers                                                                      |
| Downstream order system                                                                             |
| Latitude-longitude system                                                                           |
| Records of stage and water discharge                                                                |
| Data collection and computation                                                                     |
| Data presentation                                                                                   |
| Station manuscript                                                                                  |
| Data table of daily mean values                                                                     |
| Statistics of monthly mean data                                                                     |
| Summary statistics                                                                                  |
|                                                                                                     |
| Hydrographs                                                                                         |
| Identifying estimated daily discharge                                                               |
| Accuracy of the records                                                                             |
| Other records available                                                                             |
| Records of surface-water quality                                                                    |
| Classification of records                                                                           |
| Arrangement of records                                                                              |
| On-site measurements and sample collection                                                          |
| Water temperature                                                                                   |
| Sediment                                                                                            |
| Laboratory measurements                                                                             |
| Data presentation                                                                                   |
| Remark codes                                                                                        |
| Water_quality-control data                                                                          |
| Blank samples                                                                                       |
| Reference samples                                                                                   |
| Replicate samples                                                                                   |
| Spike samples                                                                                       |
| Dissolved Trace-Element Concentrations                                                              |
| Change in National Trends Network Procedures                                                        |
| Categories of water-quality data                                                                    |
| Frequency-of-sampling notation                                                                      |
| Records of ground-water levels                                                                      |
| Data collection and computation                                                                     |
| Data presentation                                                                                   |
| Records of ground-water quality                                                                     |
| Data collection and computation                                                                     |
| Data presentation                                                                                   |

### CONTENTS--Continued

|         |       | USGS water data                                                                       | 18      |
|---------|-------|---------------------------------------------------------------------------------------|---------|
|         |       | f terms                                                                               | 19      |
|         |       | y of recent reports relevant to western New York                                      | 30      |
|         |       | s on Techniques of Water-Resources Investigations                                     | 31      |
|         |       | ords, surface water                                                                   | 40      |
| D       |       | large at partial-record stations and miscellaneous sites                              | 236     |
|         |       | Crest-stage partial-record stations                                                   | 236     |
| _       |       | Miscellaneous sites                                                                   | 244     |
|         |       | ses of samples collected at water-quality miscellaneous sites                         | 246     |
|         |       | ords, ground water                                                                    | 271     |
|         |       | ter levels                                                                            | 271     |
|         |       | ty of ground water                                                                    | 292     |
|         |       | ords, quantity of precipitation                                                       | 302     |
|         |       | nical quality of precipitation                                                        | 303     |
| ınaex   | ••••• |                                                                                       | 309     |
|         |       |                                                                                       |         |
|         |       | ILLUSTRATIONS                                                                         |         |
|         |       |                                                                                       | Page    |
| Figure  | 1     | Comparison of daily discharge at Susquehanna River at Conklin during 2002 water yea   | _       |
| i iguio | • • • | with median discharge for period 1952-2000                                            | 5       |
|         | 2     | Comparison of daily discharge at Allegheny River at Salamanca during 2002 water yea   |         |
|         | ۷.    | with median discharge for period 1952-2000                                            | 6       |
|         | 2     |                                                                                       | _       |
|         | 3.    | Comparison of ground-water levels at selected observation wells in New York during 20 |         |
|         |       | water year with median levels for period of record                                    | 7       |
|         |       | System for numbering wells                                                            | 9       |
|         |       | Map showing location of gaging stations and observation wells in western New York     | 34      |
|         | 6.    | Map showing location of gaging stations and observation wells in Erie and Niagara     |         |
|         |       | Counties                                                                              | 36      |
|         | 7.    | Map showing location of gaging stations and observation wells in Monroe County        | 37      |
|         | 8.    | Map showing location of gaging stations and observation wells in Onondaga County      | 38      |
|         | 9.    | Map showing location of public water-supply sites sampled for pesticide analysis      | 262     |
|         | 10.   |                                                                                       | 292     |
|         |       |                                                                                       |         |
|         |       | TABLES                                                                                |         |
| Table   | 1     | Mean discharge for water year 2002 and mean annual discharges for the period of       |         |
| Table   | ٠.    | record, for selected streams                                                          | 2       |
|         | 2     |                                                                                       |         |
|         | ۷.    | Monthly mean discharge for water year 2002 as percentage of period of record          | •       |
|         | ^     | monthly median discharge, at selected sites                                           | 3       |
|         | 3.    | Monthly mean discharge for water year 2002 as percentage of period of record          | _       |
|         |       | monthly median discharge, at selected sites                                           |         |
|         |       |                                                                                       | inside  |
|         |       |                                                                                       | of back |
|         | 4.    | Factors for converting inch-pound units to International System Units (SI)            | cover   |
|         |       |                                                                                       |         |

# SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

NOTE.--Data for partial-record stations and miscellaneous sites for both surface-water discharge and quality are published in separate sections of the data report. See reference at the end of this list for page numbers for these sections.

[Letters after station name designate type of data collected: (d) discharge, (c) chemical, (b) biological, (m) microbiological, (n) nutrient, (p) pesticide, (pr) precipitation, (t) water temperature, (s) sediment, (e) elevation, gage heights, or contents]

| (e) disvation, gage neighter, or contents                    |          |      |
|--------------------------------------------------------------|----------|------|
|                                                              | Station  |      |
| NORTH ATLANTIC SLOPE BASINS                                  | number   | Page |
| SUSQUEHANNA RIVER BASIN                                      |          |      |
| Susquehanna River:                                           | 01500000 | 40   |
| Ouleout Creek at East Sidney (d)                             | 01500000 | 40   |
| Unadilla River:                                              | 04500500 | 40   |
| Unadilla River at Rockdale (d)                               | 01502500 | 42   |
| Susquehanna River at Conklin (d)                             | 01503000 | 44   |
| Tioughnioga River at Cortland (d)                            | 01509000 | 46   |
| Otselic River at Cincinnatus (d)                             | 01510000 | 48   |
| Chenango River near Chenango Forks (d)                       | 01512500 | 50   |
| Susquehanna River at Waverly (d)                             | 01515000 | 52   |
| Canisteo River at Arkport (d)                                | 01521500 | 54   |
| Canacadea Creek near Hornell (d)                             | 01523500 | 56   |
| Canisteo River below Canacadea Creek, at Hornell (d)         | 01524500 | 58   |
| Tuscarora Creek above South Addison (d)                      | 01525981 | 60   |
| Tioga River near Erwins (d)                                  | 01526500 | 62   |
| Cohocton River:                                              | 04507500 | 0.4  |
| Cohocton River at Avoca (d)                                  | 01527500 | 64   |
| Cohocton River near Campbell (d)                             | 01529500 | 67   |
| Chemung River at Corning (d)                                 | 01529950 | 69   |
| Newtown Creek at Elmira (d)                                  | 01530500 | 71   |
| Chemung River at Chemung (d)                                 | 01531000 | 73   |
| Lakes and reservoirs in Susquehanna River basin (d,e)        |          | 75   |
| * * * * * * *                                                | *        | *    |
| OHIO RIVER BASIN                                             |          |      |
| ALLEGHENY RIVER BASIN                                        |          |      |
| Allegheny River (head of Ohio River) at Salamanca (d)        | 03011020 | 78   |
| Cassadaga Creek:                                             |          |      |
| Chautauqua Lake (head of Chadakoin River) at Bemus Point (e) | 03013946 | 80   |
| Chadakoin River at Falconer (d)                              | 03014500 | 81   |
| Lakes in Allegheny River basin (e)                           |          | 83   |
| * * * * * * *                                                | *        | *    |
| ST. LAWRENCE RIVER BASIN                                     |          |      |
| Lake Erie:                                                   |          |      |
| STREAMS TRIBUTARY TO LAKE ERIE                               |          |      |
| Cattaraugus Creek at Gowanda (d)                             | 04213500 | 84   |
| Buffalo Creek (head of Buffalo River) at Gardenville (d)     | 04214500 | 86   |
| Cayuga Creek near Lancaster (d)                              | 04215000 | 88   |
| Buffalo River:                                               |          |      |
| Cazenovia Creek at Ebenezer (d)                              | 04215500 | 90   |
| Lake Erie at Buffalo (e)                                     | 04215900 | 92   |
| Niagara River at Buffalo (d)                                 | 04216000 | 93   |
| Niagara River at Anderson Park, Buffalo (e)                  | 04216060 | 95   |
| Black Rock Canal at Black Rock Lock, Buffalo (e)             | 04216218 | 96   |
| Niagara River at Black Rock Lock, Buffalo (e)                | 04216220 | 97   |
| STREAMS TRIBUTARY TO NIÁGARA RIVÉR                           |          |      |
| Tonawanda Creek at Attica (d)                                | 04216418 | 98   |
| Tonawanda Creek at Batavia (d)                               | 04217000 | 100  |
| Tonawanda Creek at Rapids (d)                                | 04218000 | 102  |
| Ellicott Creek below Williamsville (d)                       | 04218518 | 104  |
| Erie (Barge) Canal at Lock 30, Macedon (d)                   | 04219000 | 106  |
| - ( - 3-) (-)                                                |          |      |

# SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME--Continued

|                                                              | Station     |      |
|--------------------------------------------------------------|-------------|------|
|                                                              | number      | Page |
| ST. LAWRENCE RIVER MAIN STEM                                 |             | · ·  |
| Lake Ontario:                                                |             |      |
| STREAMS TRIBUTARY TO LAKE ONTARIO                            |             | 4.0= |
| Northrup Creek at North Greece (d,c,n,t)                     |             | 107  |
| Genesee River at Wellsville (d)                              | 04221000    | 112  |
| Genesee River at Portageville (d)                            | 04223000    | 114  |
| Mount Morris Lake near Mount Morris (e)                      | 04224000    | 116  |
| Canaseraga Creek above Dansville (d)                         | 04224775    | 117  |
| Canaseraga Creek at Shakers Crossing (d)                     | 04227000    | 119  |
| Genesee River near Mount Morris (d)                          | 04227500    | 121  |
| Conesus Lake near Lakeville (e)                              | 04227980    | 123  |
| Conesus Creek near Lakeville (d)                             | 04227995    | 124  |
| Genesee River at Avon (d,c)                                  | 04228500    | 126  |
| Honeoye Creek at Honeoye Falls (d,c,n)                       | 04229500    | 128  |
| Oatka Creek at Warsaw (d)                                    | 04230380    | 132  |
| Oatka Creek at Garbutt (d,c,n)                               | 04230500    | 134  |
| Genesee River at Ballantyne Bridge near Mortimer (e)         | 04230650    | 138  |
| Black Creek at Churchville (d,c,n)                           | 04231000    | 139  |
| Genesee River at Rochester (d)                               | 04232000    | 143  |
| Irondequoit Creek at Railroad Mills, near Fishers (d,c,n,t)  | 04232034    | 145  |
| East Branch Allen Creek at Pittsford (d,c,n,t)               | )423204920  | 150  |
| Allen Creek near Rochester (d,c,n,t)                         | 04232050    | 155  |
| Irondequoit Creek at Blossom Road, Rochester (d,c,n)         |             | 160  |
| Irondequoit Creek at Empire Boulevard, Rochester (d,c,n,t)   |             | 167  |
| Seneca River (head of Oswego River):                         | , 120200020 |      |
| Seneca Lake at Watkins Glen (e)                              | 04232400    | 175  |
| Keuka Lake Outlet at Dresden (d)                             | 04232482    | 176  |
| Cayuga Inlet near Ithaca (d)                                 | 04233000    | 178  |
| Sixmile Creek at Bethel Grove (d,s)                          | 04233300    | 180  |
| Cayuga Inlet (Cayuga Lake) at Ithaca (e)                     | 04233500    | 184  |
| Fall Creek near Ithaca (d)                                   | 04234000    | 185  |
| Clyde River:                                                 | 04234000    | 100  |
| Great Brook below Victor (d)                                 | 04234232    | 187  |
| Canandaigua Lake at Canandaigua (e)                          | 04234500    | 189  |
| Canandaigua Outlet at Chapin (d)                             | 04235000    | 190  |
| Owasco Lake near Auburn (e)                                  | 04235396    | 192  |
| Owasco Outlet at Genesee Street, Auburn (d)                  | 04235440    | 193  |
|                                                              | 04235600    | 195  |
| Seneca River at Port Byron (d)                               | 04237411    | 195  |
| Seneca River, mount of State Ditch hear Jordan(e)            | 04237500    | 197  |
| Onondaga Creek (head of Onondaga Lake Outlet):               | 04237300    | 190  |
|                                                              | 04237946    | 200  |
| Tributary #6 below main mudboil depression area (d,c,s)      |             | 200  |
| Onondaga Creek near Cardiff (d,pr)                           | 04237962    | 205  |
| Onondaga Creek at Dorwin Avenue, Syracuse (d)                | 04239000    | 207  |
| Onondaga Creek at Spencer Street, Syracuse (d)               | 04240010    | 209  |
| Onondaga Lake:                                               | 0.40.404.00 | 044  |
| Harbor Brook at Syracuse (d)                                 | 04240100    | 211  |
| Harbor Brook at Hiawatha Boulevard, Syracuse (d)             | 04240105    | 213  |
| Ley Creek at Park Street, Syracuse (d)                       | 04240120    | 215  |
| Otisco Lake:                                                 |             |      |
| Spafford Creek:                                              |             |      |
| Spafford Creek Trib. near Sawmill Rd. near Spafford (d,pr,t) |             | 217  |
| Ninemile Creek near Marietta (d)                             | 04240180    | 222  |
| Ninemile Creek at Lakeland (d)                               | 04240300    | 224  |
| Onondaga Lake at Liverpool (e)                               | 04240495    | 226  |
| Oneida River (Oneida Lake):                                  |             | _    |
| Oneida Creek at Oneida (d)                                   | 04243500    | 227  |
|                                                              |             |      |

# SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME--Continued

ST. LAWRENCE RIVER MAIN STEM--Continued
ST. LAWRENCE RIVER BASIN--Continued
Lake Ontario:--Continued
STREAMS TRIBUTARY TO LAKE ONTARIO--Continued

| Lake Ontario:Continued                                                                                |          |      |
|-------------------------------------------------------------------------------------------------------|----------|------|
| STREAMS TRIBUTARY TO LAKE ONTARIOContinued                                                            |          |      |
|                                                                                                       | Station  |      |
|                                                                                                       | number   | Page |
| Oswego River:                                                                                         |          |      |
| Meadow Brook at Hurlburt Road, Syracuse (d)                                                           | 04245236 | 229  |
| Oneida Lake at Brewerton (e)                                                                          | 04246000 | 231  |
| Oneida River near Euclid (d)                                                                          | 04247000 | 232  |
| Oswego River at Lock 7, Oswego (d)                                                                    | 04249000 | 234  |
| Lakes and reservoirs in streams tributary to Lake Ontario (d,e)                                       |          | 236  |
| * * * * * * *                                                                                         | *        | *    |
| CREST-STAGE PARTIAL RECORD STATIONS, IN DOWNSTREAM ORE FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME | DER,     |      |
|                                                                                                       | Station  |      |
| NORTH ATLANTIC SLOPE BASINS                                                                           | number   | Page |
| SUSQUEHANNA RIVER BASIN                                                                               |          |      |
| Susquehanna River:                                                                                    |          |      |
| Little Elk Creek at Westford                                                                          | 01497805 | 237  |
| Susquehanna River at Unadilla                                                                         | 01500500 | 237  |
| Susquehanna River at Bainbridge                                                                       | 01502632 | 237  |
| Susquehanna River at Windsor                                                                          | 01502731 | 237  |
| Chenango River at Eaton                                                                               | 01503980 | 238  |
| Chenango River at Sherburne                                                                           | 01505000 | 238  |
| Chenango River at Greene                                                                              | 01507000 | 238  |
| Tioughnioga River at Lisle                                                                            | 01509520 | 238  |
| Otselic River:                                                                                        | 01000020 | 200  |
| Merrill Creek Tributary near Texas Valley                                                             | 01510610 | 238  |
| Tioughnioga River at Itaska                                                                           | 01511500 | 238  |
| Susquehanna River at Vestal                                                                           | 01513500 | 239  |
| Susquehanna River at Owego                                                                            | 01513831 | 239  |
| Owego Creek near Owego                                                                                | 01514000 | 239  |
| Catatonk Creek near Owego                                                                             | 01514801 | 239  |
| Chemung River:                                                                                        | 01011001 | 200  |
| Tioga River at Lindley                                                                                | 01520500 | 239  |
| Canisteo River:                                                                                       | 01020000 | 200  |
| Big Creek near Howard                                                                                 | 01521596 | 240  |
| Canadadea Creek at Alfred                                                                             | 01522075 | 240  |
| Canisteo River at West Cameron                                                                        | 01525500 | 240  |
| Cohocton River at Bath                                                                                | 01528320 | 240  |
| Cuthrie Run near Big Flats                                                                            | 01530301 | 241  |
| Chemung River at Elmira                                                                               | 01530331 | 241  |
| -                                                                                                     | 01000002 |      |
| * * * * * * *                                                                                         | *        | *    |
| OHIO RIVER BASIN ALLEGHENY RIVER BASIN Allegheny River (head of Ohio River): Olean Creek:             |          |      |
| Ischua Creek:                                                                                         | 00040704 | 0.44 |
| Ischua Creek tributary near Machias                                                                   | 03010734 | 241  |
| Cassadaga Creek:                                                                                      | 00040000 | 0.44 |
| Ball Creek at Stow                                                                                    | 03013800 | 241  |

# CREST-STAGE PARTIAL RECORD STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME--Continued

| ST. L | LAWRENCE RIVER BASIN                                                           | Station<br>number | Page  |
|-------|--------------------------------------------------------------------------------|-------------------|-------|
|       | Lake Erie:                                                                     |                   |       |
|       | STREAMS TRIBUTARY TO LAKE ERIE                                                 |                   |       |
|       | Canadaway Creek at Fredonia                                                    | 04213376          | 241   |
|       | ·                                                                              |                   |       |
|       | STREAMS TRIBUTARY TO NIAGARA RIVER                                             |                   |       |
|       | Niagara River:                                                                 |                   |       |
|       | Scajaquada Creek:                                                              |                   |       |
|       | Delaware Park Lake                                                             |                   | 242   |
|       | Scajaquada Creek below Delaware Park Lake                                      | 04216214          | 242   |
|       | Tonawanda Creek:                                                               |                   |       |
|       | Little Tonawanda Creek at Linden                                               | 04216500          | 242   |
|       |                                                                                |                   |       |
|       | ST. LAWRENCE RIVER MAIN STEM                                                   |                   |       |
|       | Lake Ontario:                                                                  |                   |       |
|       | STREAMS TRIBUTARY TO LAKE ONTARIO  Johnson Creek near Lyndonville              | 04340000          | 242   |
|       | Salmon Creek:                                                                  | 04219900          | 242   |
|       | West Creek near Hilton                                                         | 04220250          | 242   |
|       | Genesee River:                                                                 |                   | 242   |
|       |                                                                                |                   |       |
|       | Canaseraga Creek: Stony Brook tributary at South Dansville                     | 04224807          | 242   |
|       |                                                                                |                   | 242   |
|       | Bear Creek at OntarioSeneca River (head of Oswego River):                      |                   | 243   |
|       | Catharine Creek at Montour Falls                                               | 04232200          | 243   |
|       | Seneca Lake:                                                                   |                   | 243   |
|       | Kendig Creek near MacDougall                                                   | 04222620          | 243   |
|       |                                                                                | 04232630          | 243   |
|       | Cayuga Lake: Cayuga Inlet at Ithaca                                            | 04233255          | 243   |
|       | Coy Glen Creek at Ithaca                                                       |                   | 243   |
|       | Clyde River:                                                                   |                   | 243   |
|       | Mud Creek:                                                                     |                   |       |
|       | Schaeffer Creek near Canandaigua                                               | 04234138          | 243   |
|       | Mud Creek at East Victor                                                       |                   | 244   |
|       | Canandaigua Outlet:                                                            |                   | 2-1-1 |
|       | Canandaigua Outlet tributary near Alloway                                      | 04235255          | 244   |
|       | Oneida River (Oneida Lake):                                                    | 01200200          | 211   |
|       | Oneida Creek                                                                   |                   |       |
|       | Chittenango Creek:                                                             |                   |       |
|       | Limestone Creek:                                                               |                   |       |
|       | Butternut Creek near Jamesville                                                | 04245200          | 244   |
|       | Scriba Creek near Constantia                                                   |                   | 244   |
|       | Catfish Creek at New Haven                                                     |                   | 244   |
|       |                                                                                |                   |       |
| *     | * * * * *                                                                      | * *               | *     |
|       |                                                                                |                   |       |
|       | Discharge at partial-record stations and miscellaneous sites                   |                   | 245   |
|       | Miscellaneous sites                                                            |                   | 245   |
|       | Analyses of samples collected at water-quality miscellaneous sites             |                   | 247   |
|       | Statewide pesticide monitoring project- Public water-supply intake sites in we | estern New York   | 262   |
|       |                                                                                |                   |       |
| *     | * * * *                                                                        | *                 | *     |

# GROUND-WATER WELLS, BY COUNTY, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

### **GROUND-WATER LEVELS**

|                                                                      | Station number  | Page |
|----------------------------------------------------------------------|-----------------|------|
| Broome County                                                        |                 |      |
| Local well number Bm 121                                             | 420657075583501 | 272  |
| Local well number Bm 128                                             | 421138075511301 | 273  |
| Local well number Bm 129                                             | 421157075535401 | 274  |
| Cattaraugus County                                                   |                 |      |
| Local well number Ct 121                                             | 420530078445201 | 275  |
| Chautauqua County                                                    |                 |      |
| Local well number Cu 10                                              | 420815079121401 | 276  |
| Chemung County                                                       |                 |      |
| Local well number Cm 46                                              | 420829076484801 | 277  |
| Chenango County                                                      |                 |      |
| Local well number Cn 12                                              | 421556075281602 | 278  |
| Cortland County                                                      |                 |      |
| Local well number C 102                                              | 423541076114701 | 279  |
| Madison County                                                       |                 |      |
| Local well number M 178                                              | 430056075354102 | 280  |
| Monroe County                                                        |                 |      |
| Local well number Mo 2                                               | 430855077304202 | 281  |
| Local well number Mo 3                                               | 430854077304601 | 282  |
| Local well number Mo 659                                             | 430932077311501 | 283  |
| Local well number Mo 663                                             | 430912077313301 | 284  |
| Local well number Mo 664                                             | 430912077313302 | 285  |
| Local well number Mo 665                                             | 430928077313802 | 286  |
| Local well number Mo 666                                             | 430928077313803 | 287  |
| Local well number Mo 667                                             | 430928077314001 | 288  |
| Local well number Mo 668                                             | 430928077314002 | 289  |
| Otsego County                                                        |                 |      |
| Local well number Og 23                                              | 424136075025101 | 290  |
| Steuben County                                                       |                 |      |
| Local well number Sb 472                                             | 422445077203301 | 291  |
| Wyoming County                                                       |                 |      |
| Local well number Wo 4                                               | 423743078070802 | 292  |
|                                                                      |                 |      |
| * * * * * * *                                                        | *               | *    |
| Statewide pesticide monitoring project- Community water-supply wells |                 | 293  |
| Quality of ground water at miscellaneous sites                       |                 | 298  |
| Quantity of precipitation at miscellaneous sites                     |                 | 303  |
| Quality of precipitation at miscellaneous sites                      |                 | 304  |
|                                                                      |                 |      |
| * * * * * * *                                                        | *               | *    |

## DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in New York have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (\*) after the station number are currently operated as crest-stage partial-record stations.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)]

Discontinued surface-water discharge or stage-only stations

| Station name                                          | Station<br>number | Drainage<br>area (mi <sup>2</sup> ) | Period of record (water years) |
|-------------------------------------------------------|-------------------|-------------------------------------|--------------------------------|
| SUSQUEHANNA RIV                                       | ER BASIN          |                                     |                                |
| Canadarago Lake at Schuyler Lake, NY (e)              | 01496450          | 65.0                                | 1969-79                        |
| Daks Creek at Index, NY (d)                           | 01496500          | 102.0                               | 1930-32,                       |
| , ,                                                   |                   |                                     | 1937-95                        |
| Cherry Valley Creek at Westville, NY (d)              | 01497000          | 81.4                                | 1930-31,                       |
|                                                       |                   |                                     | 1938-41                        |
| Susquehanna River at Colliersville, NY (d)            | 01497500          | 349.0                               | 1907-09,                       |
| 20. 1 2 2 20 20                                       |                   |                                     | 1924-68                        |
| Charlotte Creek at Davenport Center, NY (d)           | 01498000          | 164.0                               | 1938-56                        |
| Charlotte Creek at West Davenport, NY (d)             | 01498500          | 167.0                               | 1938-76                        |
| Otego Creek near Oneonta, NY (d)                      | 01499000          | 108.0                               | 1940-68                        |
| Flax Island Creek near Otego, NY (d)                  | 01499050          | 4.22                                | 1966-68                        |
| East Branch Handsome Brook at Franklin, NY (d)        | 01499470          | 9.12                                | 1966-68                        |
| Susquehanna River at Unadilla, NY (d)                 | 01500500 *        | 982.0                               | 1938-95                        |
| Jnadilla River near New Berlin, NY (d)                | 01501000          | 199.0                               | 1924-68                        |
| fill Brook at New Berlin, NY (d)                      | 01501015          | 4.64                                | 1974-81‡                       |
| Sage Brook near South New Berlin, NY (d)              | 01501500          | 0.61                                | 1932-68                        |
| Butternut Creek at Morris, NY (d)                     | 01502000          | 59.7                                | 1938-95                        |
| Chenango River at Sherburne, NY (d)                   | 01505000 *        | 263.0                               | 1938-95                        |
| Canasawacta Creek near South Plymouth, NY (d)         | 01505500          | 57.9                                | 1945-75                        |
| Chenango River at Greene, NY (d)                      | 01507000 *        | 593.0                               | 1937-70                        |
| Red Brook at Smithville Flats, NY (d)                 | 01507470          | 7.06                                | 1966-68                        |
| Genegantslet Creek at Smithville Flats, NY (d)        | 01507500          | 82.3                                | 1938–70                        |
| Muller Gulf Creek near Cuyler, NY (d)                 | 01507975          | 2.67                                | 1966-68                        |
| Shackham Brook near Truxton, NY (d)                   | 01508000          | 3.16                                | 1932-68                        |
| Albright Creek at East Homer, NY (d)                  | 01508500          | 6.81                                | 1938-68                        |
| Vest Branch Tioughnioga River at Homer, NY (d)        | 01508803          | 71.5                                | 1967-68,                       |
|                                                       |                   |                                     | 1973-86                        |
| Otter Creek at mouth at Cortland, NY (d)              | 01508962          | 14.3                                | 1976-77                        |
| Gridley Creek above East Virgil, NY (d)               | 01509150          | 10.4                                | 1974-81                        |
| Oudley Creek at Lisle, NY (d)                         | 01509500          | 30.0                                | 1938-40                        |
| Otselic River near Upper Lisle, NY (d)                | 01510500          | 217.0                               | 1937-69                        |
| Fioughnioga River at Itaska, NY (d)                   | 01511500 *        | 730.0                               | 1930-67                        |
| Susquehanna River at Vestal, NY (d)                   | 01513500 *        | 3,941.0                             | 1937-67                        |
| East Branch Nanticoke Creek above Glen Aubrey, NY (d) | 01513719          | 12.8                                | 1976-78                        |
| East Branch Nanticoke Creek at Glen Aubrey, NY (d)    | 01513720          | 15.4                                | 1976                           |
| lanticoke Creek at Union Center, NY (d)               | 01513790          | 90.7                                | 1975-78                        |
| Pumpelly Creek at Owego, NY (d)                       | 01513840          | 8.59                                | 1966-68                        |
| Owego Creek near Owego, NY (d)                        | 01514000 *        | 185.0                               | 1930-79                        |
| Dean Creek at Spencer, NY (d)                         | 01514500          | 8.03                                | 1954-60                        |
| Cayuta Creek near Alpine, NY (d)                      | 01515500          | 17.6                                | 1930-31                        |

<sup>‡</sup> No winter record.

# DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued

| Station name                                                         | Station<br>number | Drainage<br>area (mi <sup>2</sup> ) | Period of record (water years) |
|----------------------------------------------------------------------|-------------------|-------------------------------------|--------------------------------|
| SUSQUEHANNA RIVER BASII                                              | NContinued        |                                     |                                |
| Γioga River at Lindley, NY (d)                                       | 01520500 *        | 771.0                               | 1930-95                        |
| Canisteo River at Hornell, NY (d)                                    | 01522000          | 93.7                                | 1938-43                        |
| Karr Valley Creek at Almond, NY (d)                                  | 01522500          | 27.4                                | 1937-68                        |
|                                                                      |                   |                                     | 1973-86                        |
| Canacadea Creek at Hornell, NY (d)                                   | 01524000          | 58.5                                | 1925-29,                       |
|                                                                      |                   |                                     | 1938-40,                       |
|                                                                      |                   |                                     | 1942-44                        |
| Bennett Creek at Canisteo, NY (d)                                    | 01525000          | 95.3                                | 1938-47                        |
| Canisteo River at West Cameron, NY (d)                               | 01525500 *        | 340.0                               | 1930-31,<br>1937-70            |
| Fuscarora Creek Tributary near Woodhull, NY (d)                      | 01525750          | 9.43                                | 1966-68                        |
| Fuscarora Creek near South Addison, NY (d)                           | 01526000          | 114.0                               | 1937-70                        |
| Mulholland Creek near Erwins, NY (d)                                 | 01526495          | 5.06                                | 1966-68                        |
| Kirkwood Creek near Atlanta, NY (d)                                  | 01526980          | 4.65                                | 1966-68                        |
| Cohocton River at Cohocton, NY (d)                                   | 01527000          | 52.2                                | 1951-82                        |
| Switzer Creek near Cohocton, NY (d)                                  | 01527050          | 3.45                                | 1979-81                        |
| Fivemile Creek near Kanona, NY (d)                                   | 01528000          | 66.8                                | 1937-95                        |
| Diversion from Waneta Lake to Keuka Lake at Keuka, NY (d)            | 01528700          | 45.5                                | 1967-96                        |
| Mud Creek near Savona, NY (d)                                        | 01529000          | 76.6                                | 1918-20,<br>1937-82            |
| Newtown Creek at Breesport, NY (d)                                   | 01530380          | 20.6                                | 1975-79‡                       |
| ALLEGHENY RIVER B.                                                   | ASIN              |                                     |                                |
| Olean Creek near Olean, NY (d)                                       | 03010800          | 198.0                               | 1958-68‡,                      |
| Great Valley Creek near Salamanca, NY (d)                            | 03011000          | 137.0                               | 1951-68                        |
| Quaker Run near Quaker Bridge, NY (d)                                | 03011550          | 28.5                                | 1963-64‡                       |
| Conewango Creek below South Dayton, NY (d)                           | 03012834          | 63.3                                | 1975-78‡                       |
| Conewango Creek at Waterboro, NY (d)                                 | 03013000          | 290.0                               | 1938-93                        |
| Ball Creek at Stow, NY (d)                                           | 03013800 *        | 9.06                                | 1974                           |
| Chautauqua Lake at Celeron, NY (e)                                   | 03013980          | 189.0                               | 1973                           |
| Chautauqua Lake near Mayville, NY (e)                                | 03013990          | 189.0                               | 1950-77                        |
| STREAMS TRIBUTARY TO L                                               | _AKE ERIE         |                                     |                                |
| Cattaraugus Creek near Arcade, NY (d)                                | 04213410          | 79.0                                | 1963-68                        |
| Franks Creek near West Valley, NY (d)                                | 04213440          | .28                                 | 1976-80                        |
| Franks Creek Tributary No. 4 near West Valley, NY (d)                | 04213441          | .12                                 | 1976                           |
| Franks Creek Trib. No. 2 to Tributary No. 4 near West Valley, NY (d) | 04213442          | .002                                | 1976-77                        |
| ranks Creek Trib. No. 3 to Tributary No. 4 near West Valley, NY (d)  | 04213443          | .004                                | 1976-77                        |
| Buttermilk Creek near Springville, NY (d)                            | 04213450          | 30.0                                | 1962-68                        |
| South Branch Cattaraugus Creek near Cattaraugus, NY (d)              | 04213492          | 70.4                                | 1969,<br>1980-82               |
| Cattaraugus Creek at Versailles, NY (d)                              | 04214000          | 466.0                               | 1915-23                        |
| Cattaraugus Creek below Irving, NY (e)                               | 0421402001        | 554                                 | 1985-93                        |
| Eighteenmile Creek at North Boston, NY (d)                           | 04214200          | 37.2                                | 1963-68                        |
| Buffalo Creek near Wales Hollow, NY (d)                              | 04214400          | 76.9                                | 1963-68                        |

<sup>‡</sup> No winter record.

# DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued

| Station name                                        | Station number | Drainage<br>area (mi <sup>2</sup> ) | Period of record (water years)  |
|-----------------------------------------------------|----------------|-------------------------------------|---------------------------------|
| ST. LAWRENCE M                                      | IAINSTEM       |                                     |                                 |
| Black Rock Canal at Porter Avenue, Buffalo, NY (e)  | 04216052       | 263,700.0                           | 1984-94                         |
| STREAMS TRIBUTARY TO                                | NIAGARA RIVER  |                                     |                                 |
| Scajaquada Creek at Buffalo, NY (d)                 | 04216200       | 15.4                                | 1957-94                         |
| ittle Tonawanda Creek at Linden, NY (d)             | 04216500 *     | 22.1                                | 1957-9 <del>4</del><br>1912-19, |
| Little Tollawalida Creek at Lilldell, NT (d)        | 04210300       | 22.1                                | 1912-19,                        |
|                                                     |                |                                     | 1977-92                         |
| Fonawanda Creek near Alabama, NY (d)                | 04217500       | 231.0                               | 1956-89                         |
| Murder Creek near Akron, NY (d)                     | 04217750       | 58.8                                | 1983-99                         |
| Black Creek near Swormville, NY (d)                 | 04218190       | 12.9                                | 1978-80                         |
| Ellicott Creek at Milgrove, NY (d)                  | 04218450       | 40.8                                | 1963-68                         |
| Ellicott Creek at Williamsville, NY (d)             | 04218500       | 76.2                                | 1956-73                         |
| Donner Brook near Lockport, NY (d)                  | 04218592       | 3.84                                | 1978-79‡                        |
| STREAMS TRIBUTARY TO                                |                | 0.04                                | 1010104                         |
| Dak Orchard Creek near Elba, NY (d)                 | 04219930       | 21.9                                | 1974-79‡                        |
| Manning Muckland Creek near Barre Center, NY (d)    | 04219940       | 5.80                                | 1974-79‡                        |
| Vest Creek near Hilton, NY (d)                      | 04220250 *     | 31.0                                | 1957-64                         |
| Dyke Creek near Andover, NY (d)                     | 04220470       | 38.0                                | 1964-68                         |
| Dyke Creek at Wellsville, NY (d)                    | 04220500       | 72.1                                | 1955-60                         |
| Genesee River at Scio, NY (d)                       | 04221500       | 308.0                               | 1916-72                         |
| /an Campen Creek at Friendship, NY (d)              | 04221600       | 45.9                                | 1964-68                         |
| Angelica Creek at Transit Bridge, NY (d)            | 04221720       | 86.7                                | 1964-68                         |
| Genesee River at Belfast, NY (d)                    | 04221820       | 644.0                               | 1964-67                         |
| Caneadea Creek at Caneadea, NY (d)                  | 04222000       | 62.0                                | 1949-68                         |
| ost Nation Brook near Centerville, NY (d)           | 04222500       | 1.21                                | 1934-35                         |
| East Koy Creek at East Koy, NY (d)                  | 04222900       | 46.5                                | 1964-68                         |
| Genesee River at St. Helena, NY (d)                 | 04223500       | 1,019.0                             | 1947-50                         |
| Canaseraga Creek near Canaseraga, NY (d)            | 04224650       | 58.4                                | 1964-68                         |
| Canaseraga Creek near Dansville, NY (d)             | 04225000       | 152.0                               | 1919-68 ,<br>1970-77            |
| Canaseraga Creek at Cumminsville, NY (d)            | 04225005       | 155.0                               | 1910-13,<br>1915-17,<br>1918-19 |
| Canaseraga Creek at Groveland, NY (d)               | 04225500       | 180.0                               | 1915-20 ,<br>1956-64            |
| Keshequa Creek at Craig Colony, Sonyea, NY (d)      | 04226000       | 68.3                                | 1917-32,<br>1975-78             |
| Keshequa Creek near Sonyea, NY (d)                  | 04226500       | 68.4                                | 1915-17                         |
| Keshequa Creek at mouth at Sonyea, NY (d)           | 0422660005     | 69.0                                | 1911-14                         |
| Conesus Creek near Lakeville, NY (d)                | 04228000       | 72.0                                | 1920-34                         |
| Honeoye Lake near Honeoye, NY (e)                   | 04228845       | 41.0                                | 1962-63,                        |
| Springwater Creek at Springwater, NY (d)            | 04228900       | 10.1                                | 1964-68                         |
| Genesee River below Erie Canal at Rochester, NY (d) | 04231500       | 2,457.0                             | 1904-05,<br>1905-18             |
| rondequoit Creek near Pittsford, NY (d)             | 04232040       | 44.4                                | 1980-91<br>1965-95              |

<sup>‡</sup> No winter record.

# DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued

| Station name                                                     | Station<br>number | Drainage<br>area (mi <sup>2</sup> ) | Period of record (water years) |  |  |  |  |
|------------------------------------------------------------------|-------------------|-------------------------------------|--------------------------------|--|--|--|--|
| STREAMS TRIBUTARY TO LAKE ONTARIOcontinued                       |                   |                                     |                                |  |  |  |  |
| Thomas Creek at Fairport, NY (d)                                 | 04232046          | 28.5                                | 1980-90                        |  |  |  |  |
| Irondequoit Creek at Linden Avenue, East Rochester, NY (d)       | 04232047          | 101.0                               | 1973-89                        |  |  |  |  |
| Irondequoit Creek at Wetland Narrows at Rochester, NY (d)        | 0423205023        | 144.0                               | 1981-84                        |  |  |  |  |
| Sterling Creek at Sterling, NY (d)                               | 04232100          | 44.4                                | 1957-95                        |  |  |  |  |
| Catharine Creek at Montour Falls, NY (d)                         | 04232200 *        | 41.1                                | 1975-78‡                       |  |  |  |  |
| Keuka Inlet (Keuka Lake) at Hammondsport, NY (e)                 | 04232450          | 182.0                               | 1960-96                        |  |  |  |  |
| Kendig Creek near MacDougall, NY (d)                             | 04232630 *        | 13.8                                | 1965-68                        |  |  |  |  |
| Dryden Lake Inlet near Harford, NY (d)                           | 04233678          | 2.73                                | 1973-74                        |  |  |  |  |
| Virgil Creek at Freeville, NY (d)                                | 04233700          | 40.3                                | 1973-76                        |  |  |  |  |
| Salmon Creek at Ludlowville, NY (d)                              | 04234018          | 81.7                                | 1965-68                        |  |  |  |  |
| Canoga Creek at Canoga, NY (d)                                   | 04234055          | 3.20                                | 1965-68                        |  |  |  |  |
| Mud Creek at East Victor, NY (d)                                 | 04234200 *        | 64.2                                | 1958-68                        |  |  |  |  |
| Red Creek near Walworth, NY (d)                                  | 04234270          | 23.8                                | 1965-69                        |  |  |  |  |
| Flint Creek at Potter, NY (d)                                    | 04235150          | 31.0                                | 1964-68 ,<br>1971-79           |  |  |  |  |
| Flint Creek at Phelps, NY (d)                                    | 04235250          | 102.0                               | 1960-95                        |  |  |  |  |
| Clyde River at Lock 26 Clyde, NY (d)                             | 04235271          | 845.0                               | 1935-67                        |  |  |  |  |
| Black Brook at Tyre, NY (d)                                      | 04235276          | 19.0                                | 1985-95                        |  |  |  |  |
| Dwasco Inlet at Moravia, NY (d)                                  | 04235300          | 106.0                               | 1960-68                        |  |  |  |  |
| Dwasco Outlet near Auburn, NY (d)                                | 04235500          | 206.0                               | 1913-98                        |  |  |  |  |
| Grout Brook Trib. southeast of Fair Haven, NY (d)                | 04235820          | 0.27                                | 1996-99                        |  |  |  |  |
| Skaneateles Lake at Skaneateles, NY (e)                          | 04236000          | 72.7                                | 1968-95                        |  |  |  |  |
| Skaneateles Creek at Willow Glen, NY (d)                         | 04236500          | 75.8                                | 1895-1908                      |  |  |  |  |
| Onondaga Creek Trib. #6 above main mudboil depression area (d)   | 04237944          | 0.32                                | 1991-94                        |  |  |  |  |
| Onondaga Reservoir near Nedrow, NY (e)                           | 04238500          | 67.7                                | 1949-98                        |  |  |  |  |
| Onondaga Creek at Syracuse, NY (d)                               | 04239500          | 95.0                                | 1940-49                        |  |  |  |  |
| Onondaga Creek at Temple Street Syracuse, NY (d)                 | 04240000          | 104.0                               | 1949-51                        |  |  |  |  |
| Spafford Creek at Bromley Road near Spafford, NY (d)             | 04240145          | 3.14                                | 1982-84                        |  |  |  |  |
| Spafford Creek at Sawmill Road near Spafford, NY (d)             | 04240150          | 8.06                                | 1982-83,<br>1986               |  |  |  |  |
| Rice Brook at Rice Grove, NY (d)                                 | 0424015305        | 2.64                                | 1982-83                        |  |  |  |  |
| Villow Brook at Lader Point, NY (d)                              | 0424016205        | 3.73                                | 1982-83                        |  |  |  |  |
| Amber Brook at Amber, NY (d)                                     | 0424016825        | 3.75                                | 1982-83                        |  |  |  |  |
| /an Benthuysen Brook near Amber, NY (d)                          | 0424016975        | 5.84                                | 1982-83                        |  |  |  |  |
| Ninemile Creek at Camillus, NY (d)                               | 04240200          | 84.3                                | 1958-82,                       |  |  |  |  |
|                                                                  |                   |                                     | 1988-98                        |  |  |  |  |
| Vest Branch Fish Creek at Blossvale, NY (d)                      | 04241200          | 204.0                               | 1966-68                        |  |  |  |  |
| East Branch Fish Creek at Fish Creek near Constableville, NY (d) | 04241500          | 74.3                                | 1924-32                        |  |  |  |  |
| East Branch Fish Creek at Taberg, NY (d)                         | 04242500          | 188.0                               | 1923-95                        |  |  |  |  |
| Chittenango Creek near Chittenango, NY (d)                       | 04244000          | 66.3                                | 1950-68                        |  |  |  |  |
| Limestone Creek at Fayetteville, NY (d)                          | 04245000          | 85.5                                | 1940-86                        |  |  |  |  |
| Butternut Creek at Jamesville, NY (d)                            | 04245200 *        | 32.2                                | 1958-99                        |  |  |  |  |
| Butternut Creek below Dewitt, NY (d)                             | 04245250          | 58.6                                | 1964-66                        |  |  |  |  |
| Scriba Creek near Constantia, NY (d)                             | 04245840 *        | 38.4                                | 1966-68                        |  |  |  |  |
| Oneida River at Caughdenoy, NY (d)                               | 04246500          | 1,382.0                             | 1948-98                        |  |  |  |  |
| _ake Ontario at Oswego, NY (e)                                   | 04249010          | 295,800.0                           | 1860-1995                      |  |  |  |  |

<sup>‡</sup> No winter record.

### DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following stations were discontinued as continuous-record surface-water-quality stations. Daily records of temperature, specific conductance, or sediment were collected and published for the record shown for each station.

[Type of record: Temp. (temperature), S.C. (specific conductance), Sed. (sediment).]

Discontinued continuous-record surface-water-quality stations

| Station name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              |             |              |             |                  |  |  |  |  |      |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------|--------------|-------------|------------------|--|--|--|--|------|---------|
| SUSQUEHANNA RIVER BASIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              | Station     |              | Type of     | Period of record |  |  |  |  |      |         |
| Unadilla River at Rockdale, NY Susquehanna River at Conklin, NY O1503000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Station name                                                 | number      | area (mi²)   | record      | (water years)    |  |  |  |  |      |         |
| Susquehanna River at Conklin, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SUS                                                          | SQUEHANNA F | RIVER BASIN  |             |                  |  |  |  |  |      |         |
| Chenango River at Greene, NY 01507000 593.0 Temp. 1957 Tioughnioga River at Cortland, NY 01509000 292.0 Temp. S.C. 1956-92 Susquehanna River at Johnson City, NY 01513110 3,891.0 Temp. 1966-92 Susquehanna River at Vestal, NY 01513500 3,941.0 Temp. 1966-92 Susquehanna River at Vestal, NY 01513500 3,941.0 Temp. 1966.92 Susquehanna River at Lindley, NY 01520500 771.0 Temp. 1968. Tioga River at Lindley, NY 01520500 771.0 Temp. 1957 Canisteo River at West Cameron, NY 01525500 340.0 Temp. 1957 Cohocton River at Cohocton, NY 01527000 52.2 Sed. 1980 Switzer Creek near Cohocton, NY 01527000 52.2 Sed. 1980 ALLEGHENY RIVER BASIN Allegheny River at Red House, NY 03011500 1,690.0 Temp. 1954-56 STREAMS TRIBUTARY TO LAKE ERIE  Cattaraugus Creek at Gowanda, NY 04214500 142.0 Temp. 1962 STREAMS TRIBUTARY TO NIAGARA RIVER  Tonawanda Creek at Batavia, NY 04214500 142.0 Temp. 1962 STREAMS TRIBUTARY TO NIAGARA RIVER  Tonawanda Creek at Batavia, NY 04214500 171.0 Temp., S.C. 1978-81 Erie (barge) Canal at Lock 35 at Lockport, NY 0421800 - Temp. 1962 Erie (barge) Canal (west of Genesee River) at Rochester, NY 04219350 - Temp. 1962 File (barge) Canal River at Niagara Falls, NY 04219350 - Temp. 1962 STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Wellsville, NY 04219350 - Temp. 1962 STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Wellsville, NY 04221500 308.0 Temp. 1959 Niagara River at Rioagara Falls, NY 04221500 308.0 Temp. 1955 Van Campen Creek at Friendship, NY 04221500 308.0 Temp. 1964-67 Cenesee River at Portageville, NY 04221500 308.0 Temp. 1965 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1964-67 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1964-67 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1965 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1966-67 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1966-67 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1966-67 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1965-66. Sed. 1975-77 Canaseraga Creek at Churchville, N | Unadilla River at Rockdale, NY                               | 01502500    | 520.0        | Temp.       | 1957             |  |  |  |  |      |         |
| Tioughnioga River at Cortland, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Susquehanna River at Conklin, NY                             | 01503000    | 2,232.0      | Temp.       | 1955             |  |  |  |  |      |         |
| Susquehanna River at Johnson City, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Chenango River at Greene, NY                                 | 01507000    | 593.0        | Temp.       | 1957             |  |  |  |  |      |         |
| Susquehanna River at Vestal, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Tioughnioga River at Cortland, NY                            | 01509000    | 292.0        | Temp. S.C.  | 1956-92          |  |  |  |  |      |         |
| Tioga River at Lindley, NY  01520500  771.0  Temp. Sed., 1975-81, S.C. 1975-77  Canisteo River at West Cameron, NY  01525500  340.0  Temp. 1957  Cohocton River at Cohocton, NY  01527050  3.46  Sed. 1979-80  Switzer Creek near Cohocton, NY  01527050  3.46  Sed. 1979-80  ALLEGHENY RIVER BASIN  Allegheny River at Red House, NY  03011500  ASTREAMS TRIBUTARY TO LAKE ERIE  Cattaraugus Creek at Gowanda, NY  04213500  4214500  142.0  Temp., S.C. 1978-81  Buffalo Creek at Batavia, NY  04214500  171.0  Temp., S.C. 1978-81  Tonawanda Creek at Batavia, NY  04217000  171.0  Temp., S.C. 1978-81  Teire (barge) Canal (west of Genesee River)  at Rochester, NY  04218700  AUSTREAMS TRIBUTARY TO LAKE ONTARIO  STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Niagara Falls, NY  04219350  04219400  STREAMS TRIBUTARY TO NIAGARA RIVER  Temp.  1962  Temp.  1962  Temp.  1962  Temp.  1962  Temp.  1962  Temp.  1964  1975-77  Temp.  1965  Temp.  1966  1975-77  Genesee River at Wellsville, NY  04219350  04219640  265,000.0  Temp., S.C. 1978-81  1975-77  Genesee River at Portageville, NY  04221500  048.0  Sed.  1975-77  Genesee River at Portageville, NY  04221500  045.9  Temp.  1964-67  Genesee River at Portageville, NY  04221500  045.9  Temp.  1964-67  Genesee River at Portageville, NY  04221500  045.9  Temp.  1964-67  Genesee River at Roroveland, NY  04225500  1,424.0  Temp.  1964-67  Genesee River at Mount Morris, NY  04227000  335.0  Sed.  1975-77  Genesee River at Mount Morris, NY  04227000  335.0  Sed.  1975-77  Genesee River at Mount Morris, NY  04227000  335.0  Sed.  1975-77  Genesee River at Mount Morris, NY  04227500  1,424.0  Temp.  1966-61  Sed.  1975-77  Genesee River at Avon, NY  0423500  2,467.0  Temp.  1965  Ged.  1975-77  Cayuga Lake Trib. No. 6 at Interlaken, NY  04234035   Temp.  1965  Temp.  1965-77  Temp.  1965  Temp.  1965  Temp.  1965  Temp.  1965  Temp.  1965  Temp.  1965     | Susquehanna River at Johnson City, NY                        | 01513110    | 3,891.0      | Temp.       | 1956-92          |  |  |  |  |      |         |
| 1968   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   1975-81   | Susquehanna River at Vestal, NY                              | 01513500    | 3,941.0      | Temp.       | 1961-62,         |  |  |  |  |      |         |
| Tioga River at Lindley, NY 01520500 771.0 Temp. Sed., 1975-81, S.C. 1975-77  Canisteo River at West Cameron, NY 01525500 340.0 Temp. 1957  Cohocton River at Cohocton, NY 01527000 52.2 Sed. 1980  Switzer Creek near Cohocton, NY 01527050 3.46 Sed. 1975-81, S.C. 1979-80  ALLEGHENY RIVER BASIN  Allegheny River at Red House, NY 03011500 1,690.0 Temp. 1954-56  STREAMS TRIBUTARY TO LAKE ERIE  Cattaraugus Creek at Gowanda, NY 04213500 436.0 Temp. 1962  STREAMS TRIBUTARY TO NIAGARA RIVER  Tonawanda Creek at Batavia, NY 04214500 142.0 Temp. 1962  STREAMS TRIBUTARY TO NIAGARA RIVER  Tonawanda Creek at Batavia, NY 04217000 171.0 Temp., S.C. 1978-81  Erie (barge) Canal at Lock 35 at Lockport, NY 04218600 - Temp. 1962  Erie (barge) Canal (west of Genesee River) at Rochester, NY 04219350 - Temp. 1962  Erie (barge Canal (west of Genesee River) 1979-80  Allagara River at Niagara Falls, NY 04219350 - Temp. 1959  Niagara River at Niagara, NY 04219360 - Temp. 1959  Niagara River at Fort Niagara, NY 0421900 288.0 Sed. 1975-77  Genesee River at Wellsville, NY 04221000 308.0 Temp. 1955  Van Campen Creek at Eriendship, NY 04221500 308.0 Temp. 1955  Van Campen Creek at Canaseraga, NY 04224650 58.4 Temp. 1964-67  Canaseraga Creek at Canaseraga, NY 0422500 180.0 Temp. 1961  Canaseraga Creek at Groveland, NY 0422500 180.0 Temp. 1964  Canaseraga Creek at Groveland, NY 0422500 180.0 Temp. 1965  Genesee River at Mount Morris, NY 04227000 335.0 Sed. 1975-77  Genesee River at Mount Morris, NY 04227000 335.0 Sed. 1975-77  Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77  Genesee River at Garbutt, NY 0423000 2,467.0 Temp., 1965-67  Genesee River at Rochester, NY 0423000 2,467.0 Temp., 1965-67  Genesee River at Rochester, NY 0423000 2,467.0 Temp., 1965-61, 5ed. 1975-77  Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp. 1965                                                                                                                                                                                                                      |                                                              |             |              |             | 1966,            |  |  |  |  |      |         |
| S.C.   1975-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   1957-77   |                                                              |             |              |             | 1968             |  |  |  |  |      |         |
| Canisteo River at West Cameron, NY 01525500 340.0 Temp. 1957 Cohocton River at Cohocton, NY 01527000 52.2 Sed. 1980 Switzer Creek near Cohocton, NY 01527050 3.46 Sed. 1979-80 ALLEGHENY RIVER BASIN  Allegheny River at Red House, NY 03011500 1,690.0 Temp. 1954-56  STREAMS TRIBUTARY TO LAKE ERIE  Cattaraugus Creek at Gowanda, NY 04213500 436.0 Temp., S.C. 1978-81 Buffalo Creek at Gardenville, NY 04214500 142.0 Temp. 1962  STREAMS TRIBUTARY TO NIAGARA RIVER  Tonawanda Creek at Batavia, NY 04217000 171.0 Temp., S.C. 1978-81 Erie (barge) Canal (west of Genesee River) at Rochester, NY 04219350 Temp. 1962  Niagara River at Niagara Falls, NY 04219350 Temp. 1959 Niagara River at Wellsville, NY 04219350 Temp. 1959 Niagara River at Wellsville, NY 04221000 288.0 Sed. 1975-77 Genesee River at Portageville, NY 04223000 984.0 Sed. 1975-77 Canaseraga Creek at Groveland, NY 0422500 1,673.0 Sed. 1975-77 Genesee River at Mount Morris, NY 0422500 1,673.0 Sed. 1975-77 Genesee River at Mount Morris, NY 0422500 1,673.0 Sed. 1975-77 Genesee River at Mount Morris, NY 04228500 1,673.0 Sed. 1975-77 Genesee River at Mount Morris, NY 04228500 1,673.0 Sed. 1975-77 Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77 Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77 Genesee River at Charbett, NY 04223000 2,467.0 Temp., 1955-77 Genesee River at Rochester, NY 0423000 2,467.0 Temp., 1955-77 Datka Creek at Garbutt, NY 0423000 2,467.0 Temp., 1955-71, Sed. 1975-77 Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp. 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Tioga River at Lindley, NY                                   | 01520500    | 771.0        |             | 1975-81,         |  |  |  |  |      |         |
| Cohocton River at Cohocton, NY         01527000         52.2         Sed.         1980           Switzer Creek near Cohocton, NY         01527050         3.46         Sed.         1979-80           ALLEGHENY RIVER BASIN           Allegheny River at Red House, NY         03011500         1,690.0         Temp.         1954-56           STREAMS TRIBUTARY TO LAKE ERIE           Cattaraugus Creek at Gowanda, NY         04213500         436.0         Temp., S.C.         1978-81           Buffalo Creek at Gardenville, NY         04214500         142.0         Temp.         1962           STREAMS TRIBUTARY TO NIAGARA RIVER           Tonawanda Creek at Batavia, NY         04217000         171.0         Temp., S.C.         1978-81           Erie (barge) Canal (west of Genesee River)           at Rochester, NY         04218600          Temp.         1962           STREAMS TRIBUTARY TO LAKE ONTARIO           Niagara River at Niagara Falls, NY         04218700          Temp.         1962           Niagara River at Fort Niagara, NY         04219350          Temp.         1975-80           STREAMS TRIBUTARY TO LAKE ONTARIO <td <="" colspan="6" td=""><td></td><td></td><td></td><td>S.C.</td><td>1975-77</td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <td></td> <td></td> <td></td> <td>S.C.</td> <td>1975-77</td> |             |              |             |                  |  |  |  |  | S.C. | 1975-77 |
| Switzer Creek near Cohocton, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Canisteo River at West Cameron, NY                           | 01525500    |              | Temp.       | 1957             |  |  |  |  |      |         |
| ALLEGHENY RIVER BASIN  Allegheny River at Red House, NY  Allegheny River at Red House, NY  BYTEAMS TRIBUTARY TO LAKE ERIE  Cattaraugus Creek at Gowanda, NY  Allegheny River at Gowanda, NY  Buffalo Creek at Gardenville, NY  Allegheny River at Gowanda, NY  Allegheny River NY  All | Cohocton River at Cohocton, NY                               | 01527000    | 52.2         | Sed.        | 1980             |  |  |  |  |      |         |
| Allegheny River at Red House, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Switzer Creek near Cohocton, NY                              | 01527050    | 3.46         | Sed.        | 1979-80          |  |  |  |  |      |         |
| Cattaraugus Creek at Gowanda, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A                                                            | LLEGHENY RI | VER BASIN    |             |                  |  |  |  |  |      |         |
| Cattaraugus Creek at Gowanda, NY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Allegheny River at Red House, NY                             | 03011500    | 1,690.0      | Temp.       | 1954-56          |  |  |  |  |      |         |
| Buffalo Creek at Gardenville, NY STREAMS TRIBUTARY TO NIAGARA RIVER  Tonawanda Creek at Batavia, NY O4217000 171.0 Temp., S.C 1978-81 Erie (barge) Canal at Lock 35 at Lockport, NY 04218600 Temp. 1962  Erie (barge) Canal (west of Genesee River) at Rochester, NY 04218700 Temp. 1962  Niagara River at Niagara Falls, NY 04219350 Temp. 1959  Niagara River at Fort Niagara, NY 04219640 265,000.0 Temp., S.C. 1973-80  STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Wellsville, NY 04221000 288.0 Sed. 1975-77  Genesee River at Fortek at Friendship, NY 04221500 308.0 Temp. 1955  Van Campen Creek at Friendship, NY 04221600 45.9 Temp. 1964-67  Genaseraga Creek at Canaseraga, NY 04224600 45.9 Temp. 1964-67  Canaseraga Creek at Groveland, NY 0422500 180.0 Temp. 1964-67  Canaseraga Creek at Groveland, NY 04227000 335.0 Sed. 1975-77  Genesee River at Mount Morris, NY 04228500 1,673.0 Sed. 1975-77  Genesee River at Avon, NY 0423000 20.0 Temp., 1960-61, Sed. 1975-77  Datka Creek at Churchville, NY 0423000 2,467.0 Temp., 1965-77  Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp. 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - ·                                                          | MS TRIBUTAR | Y TO LAKE ER | NE .        |                  |  |  |  |  |      |         |
| STREAMS TRIBUTARY TO NIAGARA RIVER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cattaraugus Creek at Gowanda, NY                             | 04213500    | 436.0        | Temp., S.C. | 1978-81          |  |  |  |  |      |         |
| Tonawanda Creek at Batavia, NY 04217000 171.0 Temp., S.C 1978-81 Erie (barge) Canal at Lock 35 at Lockport, NY 04218600 Temp. 1962 Erie (barge) Canal (west of Genesee River) at Rochester, NY 04218700 Temp. 1962 Niagara River at Niagara Falls, NY 04219350 Temp. 1959 Niagara River at Fort Niagara, NY 04219640 265,000.0 Temp., S.C. 1973-80  STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Wellsville, NY 04221000 288.0 Sed. 1975-77 Genesee River at Scio, NY 04221500 308.0 Temp. 1955 Van Campen Creek at Friendship, NY 04221600 45.9 Temp. 1964-67 Genesee River at Portageville, NY 04223000 984.0 Sed. 1975-77 Canaseraga Creek at Groveland, NY 04224650 58.4 Temp. 1964-67 Canaseraga Creek at Groveland, NY 0422500 180.0 Temp. 1961 Canaseraga Creek at Shakers Crossing, NY 04227000 335.0 Sed. 1975-77 Genesee River at Mount Morris, NY 04227000 335.0 Sed. 1975-77 Genesee River at Avon, NY 04228500 1,424.0 Temp., 1955-56, Sed. 1975-77 Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77 Oatka Creek at Garbutt, NY 0423000 200.0 Temp., 1960-61, Sed. 1975-77 Black Creek at Churchville, NY 0423000 2,467.0 Temp., 1965 Genesee River at Rochester, NY 0423000 2,467.0 Temp., 1955-71, Sed. 1975-77 Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Buffalo Creek at Gardenville, NY                             | 04214500    | 142.0        | Temp.       | 1962             |  |  |  |  |      |         |
| Erie (barge) Canal at Lock 35 at Lockport, NY 04218600 Temp. 1962  Erie (barge) Canal (west of Genesee River) at Rochester, NY 04218700 Temp. 1962  Niagara River at Niagara Falls, NY 04219350 Temp. 1959  Niagara River at Fort Niagara, NY 04219640 265,000.0 Temp., S.C. 1973-80  STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Wellsville, NY 04221000 288.0 Sed. 1975-77  Genesee River at Scio, NY 04221500 308.0 Temp. 1955  Van Campen Creek at Friendship, NY 04221600 45.9 Temp. 1964-67  Genesee River at Portageville, NY 04223000 984.0 Sed. 1975-77  Canaseraga Creek at Canaseraga, NY 04224650 58.4 Temp. 1964-67  Canaseraga Creek at Groveland, NY 04225000 180.0 Temp. 1961  Canaseraga Creek at Shakers Crossing, NY 04227000 335.0 Sed. 1975-77  Genesee River at Mount Morris, NY 04227500 1,424.0 Temp., 1955-56, Sed. 1975-77  Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77  Oatka Creek at Garbutt, NY 0423050 200.0 Temp., 1960-61, Sed. 1975-77  Black Creek at Churchville, NY 04231000 130.0 Temp., 1965-77  Black Creek at Churchville, NY 04232000 2,467.0 Temp., 1955-71, Sed. 1975-77  Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | STREAMS                                                      | TRIBUTARY 1 | ΓΟ NIAGARA R | IVER        |                  |  |  |  |  |      |         |
| Erie (barge) Canal (west of Genesee River) at Rochester, NY 04218700 Temp. 1962 Niagara River at Niagara Falls, NY 04219350 Temp. 1959 Niagara River at Fort Niagara, NY 04219640 265,000.0 Temp., S.C. 1973-80  STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Wellsville, NY 04221000 288.0 Sed. 1975-77 Genesee River at Scio, NY 04221500 308.0 Temp. 1955 Van Campen Creek at Friendship, NY 04221600 45.9 Temp. 1964-67 Genesee River at Portageville, NY 04223000 984.0 Sed. 1975-77 Canaseraga Creek at Canaseraga, NY 04224650 58.4 Temp. 1964-67 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1961 Canaseraga Creek at Shakers Crossing, NY 04227000 335.0 Sed. 1975-77 Genesee River at Mount Morris, NY 04227500 1,424.0 Temp., 1955-56, Sed. 1975-77 Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77 Oatka Creek at Garbutt, NY 04230500 200.0 Temp., 1960-61, Sed. 1975-77 Black Creek at Churchville, NY 04231000 130.0 Temp. 1962 Genesee River at Rochester, NY 04232000 2,467.0 Temp., 1955-71, Sed. 1975-77 Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp. 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Tonawanda Creek at Batavia, NY                               | 04217000    | 171.0        | Temp., S.C  | 1978-81          |  |  |  |  |      |         |
| At Rochester, NY 04218700 Temp. 1962 Niagara River at Niagara Falls, NY 04219350 Temp. 1959 Niagara River at Fort Niagara, NY 04219640 265,000.0 Temp., S.C. 1973-80  STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Wellsville, NY 04221000 288.0 Sed. 1975-77 Genesee River at Scio, NY 04221500 308.0 Temp. 1955 Van Campen Creek at Friendship, NY 04221600 45.9 Temp. 1964-67 Genesee River at Portageville, NY 04223000 984.0 Sed. 1975-77 Canaseraga Creek at Canaseraga, NY 04224650 58.4 Temp. 1964-67 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1961 Canaseraga Creek at Shakers Crossing, NY 04227000 335.0 Sed. 1975-77 Genesee River at Mount Morris, NY 04227500 1,424.0 Temp., 1955-56, Sed. 1975-77 Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77 Oatka Creek at Garbutt, NY 04230500 200.0 Temp., 1960-61, Sed. 1975-77 Black Creek at Churchville, NY 04231000 130.0 Temp. 1962 Genesee River at Rochester, NY 0423000 2,467.0 Temp., 1955-71, Sed. 1975-77 Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Erie (barge) Canal at Lock 35 at Lockport, NY                | 04218600    |              | Temp.       | 1962             |  |  |  |  |      |         |
| Niagara River at Niagara Falls, NY 04219350 Temp. 1959 Niagara River at Fort Niagara, NY 04219640 265,000.0 Temp., S.C. 1973-80  STREAMS TRIBUTARY TO LAKE ONTARIO  Genesee River at Wellsville, NY 04221000 288.0 Sed. 1975-77 Genesee River at Scio, NY 04221500 308.0 Temp. 1955 Van Campen Creek at Friendship, NY 04221600 45.9 Temp. 1964-67 Genesee River at Portageville, NY 04223000 984.0 Sed. 1975-77 Canaseraga Creek at Canaseraga, NY 04224650 58.4 Temp. 1964-67 Canaseraga Creek at Groveland, NY 04225500 180.0 Temp. 1961 Canaseraga Creek at Shakers Crossing, NY 04227000 335.0 Sed. 1975-77 Genesee River at Mount Morris, NY 04227500 1,424.0 Temp., 1955-56, Sed. 1975-77 Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77 Oatka Creek at Garbutt, NY 04230500 200.0 Temp., 1960-61, Sed. 1975-77 Black Creek at Churchville, NY 04231000 130.0 Temp. 1962 Genesee River at Rochester, NY 04232000 2,467.0 Temp., 1955-71, Sed. 1975-77 Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp. 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Erie (barge) Canal (west of Genesee River)                   |             |              |             |                  |  |  |  |  |      |         |
| Niagara River at Fort Niagara, NY         04219640         265,000.0         Temp., S.C.         1973-80           Genesee River at Wellsville, NY         04221000         288.0         Sed.         1975-77           Genesee River at Scio, NY         04221500         308.0         Temp.         1955           Van Campen Creek at Friendship, NY         04221600         45.9         Temp.         1964-67           Genesee River at Portageville, NY         04223000         984.0         Sed.         1975-77           Canaseraga Creek at Canaseraga, NY         04224650         58.4         Temp.         1964-67           Canaseraga Creek at Groveland, NY         04225500         180.0         Temp.         1961           Canaseraga Creek at Shakers Crossing, NY         04227000         335.0         Sed.         1975-77           Genesee River at Mount Morris, NY         04227500         1,424.0         Temp.,         1955-56, Sed.         1975-77           Genesee River at Avon, NY         04228500         1,673.0         Sed.         1975-77           Oatka Creek at Garbutt, NY         04230500         200.0         Temp.,         1960-61, Sed.         1975-77           Black Creek at Churchville, NY         04231000         130.0         Temp.,         1962     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                            |             |              | -           |                  |  |  |  |  |      |         |
| STREAMS TRIBUTARY TO LAKE ONTARIO           Genesee River at Wellsville, NY         04221000         288.0         Sed.         1975-77           Genesee River at Scio, NY         04221500         308.0         Temp.         1955           Van Campen Creek at Friendship, NY         04221600         45.9         Temp.         1964-67           Genesee River at Portageville, NY         04223000         984.0         Sed.         1975-77           Canaseraga Creek at Canaseraga, NY         04224650         58.4         Temp.         1964-67           Canaseraga Creek at Groveland, NY         04225500         180.0         Temp.         1961           Canaseraga Creek at Shakers Crossing, NY         04227000         335.0         Sed.         1975-77           Genesee River at Mount Morris, NY         04227500         1,424.0         Temp., 1955-56, Sed.         1975-77           Genesee River at Avon, NY         04228500         1,673.0         Sed.         1975-77           Oatka Creek at Garbutt, NY         04230500         200.0         Temp., 1960-61, Sed.         1975-77           Black Creek at Churchville, NY         04231000         130.0         Temp.         1955-71, Sed.           Genesee River at Rochester, NY         04232000         2,467.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |             |              | •           |                  |  |  |  |  |      |         |
| Genesee River at Wellsville, NY       04221000       288.0       Sed.       1975-77         Genesee River at Scio, NY       04221500       308.0       Temp.       1955         Van Campen Creek at Friendship, NY       04221600       45.9       Temp.       1964-67         Genesee River at Portageville, NY       04223000       984.0       Sed.       1975-77         Canaseraga Creek at Canaseraga, NY       04224650       58.4       Temp.       1964-67         Canaseraga Creek at Groveland, NY       04225500       180.0       Temp.       1961         Canaseraga Creek at Shakers Crossing, NY       04227000       335.0       Sed.       1975-77         Genesee River at Mount Morris, NY       04227500       1,424.0       Temp.,       1955-56,         Sed.       1975-77         Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp.,       1960-61,         Sed.       1975-77         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp.,       1955-71,         Sed.       1975-77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                              |             | •            |             | 1973-80          |  |  |  |  |      |         |
| Genesee River at Scio, NY       04221500       308.0       Temp.       1955         Van Campen Creek at Friendship, NY       04221600       45.9       Temp.       1964-67         Genesee River at Portageville, NY       04223000       984.0       Sed.       1975-77         Canaseraga Creek at Canaseraga, NY       04224650       58.4       Temp.       1964-67         Canaseraga Creek at Groveland, NY       04225500       180.0       Temp.       1961         Canaseraga Creek at Shakers Crossing, NY       04227000       335.0       Sed.       1975-77         Genesee River at Mount Morris, NY       04227500       1,424.0       Temp.,       1955-56, Sed.       1975-77         Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp.,       1960-61, Sed.       1975-77         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp.,       1955-71, Sed.       1975-77         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STREAMS                                                      | S TRIBUTARY | TO LAKE ONT  | ARIO        |                  |  |  |  |  |      |         |
| Van Campen Creek at Friendship, NY       04221600       45.9       Temp.       1964-67         Genesee River at Portageville, NY       04223000       984.0       Sed.       1975-77         Canaseraga Creek at Canaseraga, NY       04224650       58.4       Temp.       1964-67         Canaseraga Creek at Groveland, NY       04225500       180.0       Temp.       1961         Canaseraga Creek at Shakers Crossing, NY       04227000       335.0       Sed.       1975-77         Genesee River at Mount Morris, NY       04227500       1,424.0       Temp.,       1955-56,         Sed.       1975-77         Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp.,       1960-61,         Sed.       1975-77         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp.,       1955-71,         Sed.       1975-77       Sed.       1975-77         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Genesee River at Wellsville, NY                              | 04221000    | 288.0        | Sed.        | 1975-77          |  |  |  |  |      |         |
| Genesee River at Portageville, NY       04223000       984.0       Sed.       1975-77         Canaseraga Creek at Canaseraga, NY       04224650       58.4       Temp.       1964-67         Canaseraga Creek at Groveland, NY       04225500       180.0       Temp.       1961         Canaseraga Creek at Shakers Crossing, NY       04227000       335.0       Sed.       1975-77         Genesee River at Mount Morris, NY       04227500       1,424.0       Temp., 1955-56, Sed.       1975-77         Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp., 1960-61, Sed.       1975-77         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp., 1955-71, Sed.       1975-77         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Genesee River at Scio, NY                                    | 04221500    | 308.0        | Temp.       | 1955             |  |  |  |  |      |         |
| Canaseraga Creek at Canaseraga, NY       04224650       58.4       Temp.       1964-67         Canaseraga Creek at Groveland, NY       04225500       180.0       Temp.       1961         Canaseraga Creek at Shakers Crossing, NY       04227000       335.0       Sed.       1975-77         Genesee River at Mount Morris, NY       04227500       1,424.0       Temp., 1955-56, Sed.       1975-77         Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp., 1960-61, Sed.       1975-77         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp., 1955-71, Sed.       1975-77         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Van Campen Creek at Friendship, NY                           | 04221600    | 45.9         | Temp.       | 1964-67          |  |  |  |  |      |         |
| Canaseraga Creek at Groveland, NY       04225500       180.0       Temp.       1961         Canaseraga Creek at Shakers Crossing, NY       04227000       335.0       Sed.       1975-77         Genesee River at Mount Morris, NY       04227500       1,424.0       Temp., 1955-56, Sed.       1975-77         Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp., 1960-61, Sed.       1975-77         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp., 1955-71, Sed.       1975-77         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Genesee River at Portageville, NY                            | 04223000    | 984.0        | Sed.        | 1975-77          |  |  |  |  |      |         |
| Canaseraga Creek at Shakers Crossing, NY       04227000       335.0       Sed.       1975-77         Genesee River at Mount Morris, NY       04227500       1,424.0       Temp., 1955-56, Sed.       1975-77         Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp., 1960-61, Sed.       1975-77         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp., 1955-71, Sed.       1975-77         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Canaseraga Creek at Canaseraga, NY                           | 04224650    | 58.4         | Temp.       | 1964-67          |  |  |  |  |      |         |
| Genesee River at Mount Morris, NY       04227500       1,424.0       Temp., Sed.       1955-56, Sed.       1975-77         Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp., Sed.       1960-61, Sed.         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp., Sed.       1975-71, Sed.         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Canaseraga Creek at Groveland, NY                            | 04225500    | 180.0        | Temp.       | 1961             |  |  |  |  |      |         |
| Sed. 1975-77  Genesee River at Avon, NY 04228500 1,673.0 Sed. 1975-77  Oatka Creek at Garbutt, NY 04230500 200.0 Temp., 1960-61, Sed. 1975-77  Black Creek at Churchville, NY 04231000 130.0 Temp. 1962  Genesee River at Rochester, NY 04232000 2,467.0 Temp., 1955-71, Sed. 1975-77  Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp. 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Canaseraga Creek at Shakers Crossing, NY                     | 04227000    | 335.0        | Sed.        | 1975-77          |  |  |  |  |      |         |
| Genesee River at Avon, NY       04228500       1,673.0       Sed.       1975-77         Oatka Creek at Garbutt, NY       04230500       200.0       Temp., Sed.       1960-61, Sed.         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp., Sed.       1975-71, Sed.         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Genesee River at Mount Morris, NY                            | 04227500    | 1,424.0      | Temp.,      | 1955-56,         |  |  |  |  |      |         |
| Oatka Creek at Garbutt, NY       04230500       200.0       Temp., Sed.       1960-61, Sed.       1975-77         Black Creek at Churchville, NY       04231000       130.0       Temp.       1962         Genesee River at Rochester, NY       04232000       2,467.0       Temp., Sed.       1975-71, Sed.         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |             |              | Sed.        | 1975-77          |  |  |  |  |      |         |
| Sed.   1975-77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Genesee River at Avon, NY                                    | 04228500    |              |             |                  |  |  |  |  |      |         |
| Genesee River at Rochester, NY       04232000       2,467.0       Temp., Sed.       1955-71, Sed.       1975-77         Cayuga Lake Trib. No. 6 at Interlaken, NY       04234035        Temp.       1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Oatka Creek at Garbutt, NY                                   | 04230500    | 200.0        |             |                  |  |  |  |  |      |         |
| Sed. 1975-77  Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp. 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Black Creek at Churchville, NY                               | 04231000    | 130.0        | Temp.       | 1962             |  |  |  |  |      |         |
| Cayuga Lake Trib. No. 6 at Interlaken, NY 04234035 Temp. 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Genesee River at Rochester, NY                               | 04232000    | 2,467.0      |             | 1955-71,         |  |  |  |  |      |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              |             |              | Sed.        | 1975-77          |  |  |  |  |      |         |
| Canona Creek at Canona NV 0/23/055 3.20 Temp 1065                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cayuga Lake Trib. No. 6 at Interlaken, NY                    | 04234035    |              | •           |                  |  |  |  |  |      |         |
| Oarloga Oreek at Oarloga, N1 04254055 5.20 Temp. 1905                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Canoga Creek at Canoga, NY                                   | 04234055    | 3.20         | Temp.       | 1965             |  |  |  |  |      |         |

### DISCONTINUED SURFACE-WATER-QUALITY STATIONS--Continued

| Station name                                 | Station number | Drainage<br>area (mi <sup>2</sup> ) | Type of record | Period of record (water years) |
|----------------------------------------------|----------------|-------------------------------------|----------------|--------------------------------|
| STREAMS TI                                   | RIBUTARY TO LA | KE ONTARIO-                         | -continued     |                                |
| Grout Brook Trib. southeast of Fair Haven, N | NY 04235820    | 0.27                                | Temp.          | 1996-99                        |
| Seneca River at Baldwinsville, NY            | 04237500       | 3,138.0                             | Temp.          | 1958-75                        |
| Spafford Creek at Bromley Road nr Spafford   | d, NY 04240145 | 3.14                                | Sed.           | 1981-83                        |
| Spafford Creek at Sawmill Road nr Spafford   | l, NY 04240150 | 8.06                                | Sed.           | 1981-83                        |
| Rice Brook at Rice Grove, NY                 | 0424015305     | 2.44                                | Sed.           | 1981-83                        |
| Willow Brook at Lader Point, NY              | 0424016205     | 3.73                                | Sed.           | 1981-83                        |
| Amber Brook at Amber, NY                     | 0424016825     | 3.69                                | Sed.           | 1981-83                        |
| Van Benthuysen Brook near Amber, NY          | 0424016975     | 5.84                                | Sed.           | 1981-83                        |
| East Branch Fish Creek at Taberg, NY         | 04242500       | 188.0                               | Temp., S.C.    | 1966-67                        |
| Butternut Creek near Jamesville, NY          | 04245200       | 32.2                                | Temp., S.C.    | 1966-67                        |
| Chittenango Creek at Bridgeport, NY          | 04245500       |                                     | Temp.          | 1967-69                        |
| Scriba Creek near Constantia, NY             | 04245840       | 38.4                                | Temp., S.C.    | 1966-67                        |
| Oneida River at Caughdenoy, NY               | 04246500       | 1,382.0                             | Temp.          | 1958                           |
| Oswego River at Lock 7, Oswego, NY           | 04249000       | 5,100.0                             | Temp., S.C.    | 1975-81                        |

#### DISCONTINUED CREST-STAGE PARTIAL RECORD STATIONS

The following crest-stage partial-record stations in western New York were discontinued. Only maximum discharges and/or gage heights were collected for the period of documented record, expressed in water years, shown for each station. The period of documented record may include peaks prior to and after gaged record. Those stations with an asterisk (\*) after the station number are also discontinued continuous-record surface-water stations (see previous listing) and those with a double asterisk (\*\*) after the station number are current continuous-record surface-water stations.

#### Discontinued crest-stage partial record stations

| Station name                                         | Station<br>number | Drainage<br>area (mi <sup>2</sup> ) | Period of<br>documented<br>record<br>(water years) |
|------------------------------------------------------|-------------------|-------------------------------------|----------------------------------------------------|
| SUSQUEHANNA RI                                       | VER BASIN         |                                     |                                                    |
| Ocquionis Creek at Richfield Springs, NY             | 01496363          | 20.0                                | 1975-77                                            |
| Mink Creek at Richfield Springs, NY                  | 01496370          | 10.4                                | 1969-86                                            |
| Hyder Creek near Richfield Springs, NY               | 01496390          | 9.52                                | 1975-77                                            |
| Herkimer Creek at Schuyler Lake, NY                  | 01496448          | 12.0                                | 1976-77                                            |
| Susquehanna River Trib. near Milford, NY             | 01496630          | 3.52                                | 1976                                               |
| Susquehanna River at Colliersville, NY               | 01497500 *        | 349.0                               | 1971-72                                            |
| Schnevus Creek at Schnevus, NY                       | 01497800          | 54.2                                | 1963-76                                            |
| Susquehanna River southwest of Oneonta, NY           | 01498620          | 678.0                               | 1988-91                                            |
| Otego Creek near Oneonta, NY                         | 01499000 *        | 108.0                               | 1969-75                                            |
| Unadilla River near New Berlin, NY                   | 01501000 *        | 199.0                               | 1970-72                                            |
| Mill Brook at New Berlin, NY                         | 01501015 *        | 4.64                                | 1982-86                                            |
| Wharton Creek Trib. near Edmeston, NY                | 01501140          | 2.02                                | 1976-86                                            |
| Unadille River at Rockdale, NY                       | 01502500**        | 520.0                               | 1929-33,                                           |
|                                                      |                   |                                     | 1937-2000                                          |
| Susquehanna River at Afton, NY                       | 01502701          | 1716.0                              | 1972, 1977                                         |
|                                                      |                   |                                     | 1979-90,                                           |
|                                                      |                   |                                     | 1996                                               |
| Ouaquaga Creek near Belden, NY                       | 01502714          | 3.37                                | 1975-86                                            |
| Susquehanna River at Tompkins St. at Binghamton, NY  | 01503495          | 2265.0                              | 1988-90                                            |
| Electric Light Stream near Morrisville, NY           | 01503960          | 7.21                                | 1976-86                                            |
| Cold Brook near North Norwich, NY                    | 01505017          | 5.80                                | 1975-86                                            |
| Cold Brook at North Norwich, NY                      | 01505018          | 5.90                                | 1975-79                                            |
| Canasawacta Creek near South Plymouth, NY            | 01505500          | 57.9                                | 1977                                               |
| Albright Creek at East Homer, NY                     | 01508500 *        | 6.81                                | 1969-76                                            |
| West Branch Tioughnioga River at Homer, NY           | 01508803 *        | 71.5                                | 1987-92                                            |
| Otter creek Trib. at State Hwy 222 near Cortland, NY | 01508946          | 2.85                                | 1976-86                                            |
| Page Brook Trib. near Page Brook, NY                 | 01512515          | 2.07                                | 1976-78                                            |
| Nanticoke Creek Trib. at Nanticoke, NY               | 01513712          | 1.70                                | 1975-86                                            |
| Nanticoke Creek at Union Center, NY                  | 01513790 *        | 90.7                                | 1956,                                              |
|                                                      |                   |                                     | 1963-64,                                           |
|                                                      |                   |                                     | 1966-68,                                           |
| 2 1 2                                                | 0.4.5             |                                     | 1970-74                                            |
| Susquehanna River near Waverly, NY                   | 01515000**        | 4,773.0                             | 1937-2000                                          |
| Karr Valley Creek at Almond, NY                      | 01522500 *        | 27.4                                | 1971-73                                            |
| Tuscarora Creek above South Addison, NY              | 01525981**        | 102.0                               | 1989-2000                                          |
| Tuscarora Creek near South Addison, NY               | 01526000 *        | 114.0                               | 1971-72                                            |
| Cohocton River at Cohocton, NY                       | 01527000 *        | 52.2                                | 1982-99                                            |
| ALLEGHENY RIVE                                       |                   | - 0-                                | 4077 70                                            |
| Johnson Creek near Franklinville, NY                 | 03010743          | 5.25                                | 1977-78,                                           |
|                                                      |                   |                                     | 1982-86                                            |

### DISCONTINUED CREST-STAGE PARTIAL RECORD STATIONS--Continued

| Station name                                      | Station<br>number | Drainage<br>area (mi <sup>2</sup> ) | Period of<br>documented<br>record<br>(water years) |
|---------------------------------------------------|-------------------|-------------------------------------|----------------------------------------------------|
| ALLEGHENY RIVER BAS                               | SINContinued      |                                     |                                                    |
| Olean Creek near Olean, NY                        | 03010800 *        | 198.0                               | 1970-95                                            |
| Great Valley Creek Trib. near Great Valley, NY    | 03010997          | 3.91                                | 1977-78                                            |
| Great Valley Creek near Salamanca, NY             | 03011000 *        | 137.0                               | 1977-92                                            |
| West Branch Conewango Creek Trib. near Hamlet, NY | 03012837          | 6.84                                | 1977-81                                            |
| Conewango Creek at Waterboro, NY                  | 03013000 *        | 290.0                               | 1994                                               |
| STREAMS TRIBUTARY 1                               | TO LAKE ERIE      |                                     |                                                    |
| Nalnut Creek Trib. near Arcade, NY                | 04213399          | 1.02                                | 1979,                                              |
| ,                                                 |                   | -                                   | 1981-86                                            |
| ranks Creek Tributary No. 4 near West Valley, NY  | 04213441          | .12                                 | 1976                                               |
| South Branch Cattaraugus Creek near Otto, NY      | 04213490          | 25.1                                | 1963-99                                            |
| Delaware Creek near Angola, NY                    | 04214040          | 8.32                                | 1963-86                                            |
| ighteenmile Creek at North Boston, NY             | 04214200 *        | 37.2                                | 1971-76                                            |
| Smoke Creek at Lackawanna, NY                     | 04214250          | 14.3                                | 1955,                                              |
| mono oroon at Labhawamia, 111                     | 01211200          |                                     | 1963-68,                                           |
|                                                   |                   |                                     | 1970-74,                                           |
|                                                   |                   |                                     | 1976                                               |
| South Branch Smoke Creek at Lackawanna, NY        | 04214260          | 13.0                                | 1953,                                              |
| outi Brancii Ginoke Greek at Lackawanna, 141      | 04214200          | 10.0                                | 1955,                                              |
|                                                   |                   |                                     | 1967-76                                            |
| Buffalo Creek near Wales Hollow, NY               | 04214400 *        | 76.9                                | 1970-74                                            |
| lunter Creek at Colegrave, NY                     | 04214410          | 14.0                                | 1964-86                                            |
| ittle Buffalo Creek near East Lancaster, NY       | 04214980          | 24.0                                | 1963,                                              |
| illie Bullaio Creek riear Last Lancaster, 141     | 04214300          | 24.0                                | 1966-73,                                           |
|                                                   |                   |                                     | 1976-80                                            |
| Vest Branch Cazenovia Creek near East Aurora, NY  | 04215250          | 58.7                                | 1963,                                              |
| vest branch Gazenovia Greek near Last Aurora, NT  | 04213230          | 36.7                                |                                                    |
|                                                   |                   |                                     | 1965-68,                                           |
| inst Dranch Company in Creak at Couth Wales, NV   | 04045050          | 20.4                                | 1970                                               |
| ast Branch Cazenovia Creek at South Wales, NY     | 04215350          | 38.1                                | 1963,                                              |
| STREAMS TRIBUTARY TO                              | NIAGARA RIVER     |                                     | 1966-70                                            |
| onawanda Creek near Johnsonburg, NY               | 04216400          | 23.7                                | 1962-86                                            |
| ittle Tonawanda Creek Trib. near Batavia, NY      | 04216875          | 1.02                                | 1976-86                                            |
| Murder Creek at Pembroke, NY                      | 04217700          | 43.6                                | 1962-72,                                           |
|                                                   |                   |                                     | 1974-86                                            |
| ourmile Creek near Youngstown, NY                 | 04219645          | 4.88                                | 1970-73,                                           |
|                                                   | J .= . J J . J    |                                     | 1976-80,                                           |
|                                                   |                   |                                     | 1982-86                                            |
| STREAMS TRIBUTARY TO                              | LAKE ONTARIO      |                                     |                                                    |
| ighteenmile Creek Trib. near Lockport, NY         | 04219738          | 2.53                                | 1977-86                                            |
| ohnson Creek Trib. near Lyndonville, NY           | 04219905          | 4.95                                | 1970,                                              |
|                                                   | 2                 |                                     | 1972-73,                                           |
|                                                   |                   |                                     | 1977-79                                            |
| Dak Orchard Creek at Barryville Rd. near Elba, NY | 04219922          | 6.48                                | 1976-86                                            |
| Dak Orchard Creek near Elba, NY                   | 04219925          | 7.49                                | 1976-78Oa                                          |
| Orchard Creek at Medina, NY                       | 04220150          | 157.0                               | 1962-70,                                           |
| •                                                 |                   |                                     | 1972,                                              |
|                                                   |                   |                                     | 1975-76                                            |

### DISCONTINUED CREST-STAGE PARTIAL RECORD STATIONS--Continued

| Station name                                      | Station<br>number | Drainage<br>area (mi <sup>2</sup> ) | Period of<br>documented<br>record<br>(water years) |
|---------------------------------------------------|-------------------|-------------------------------------|----------------------------------------------------|
| STREAMS TRIBUTARY TO LA                           | KE ONTARIOcontinu | ed                                  |                                                    |
| West Creek near Hamlin, NY                        | 04220245          | 4.56                                | 1978-81,<br>1983-86                                |
| Quig Hollow Brook near Andover, NY                | 04220455          | 4.24                                | 1964-72                                            |
| Genesee River at Transit Bridge near Angelica, NY | 04221725          | 579.0                               | 1975-76                                            |
| Black Creek at Hyde Flats Road at Black Creek, NY | 04221769          | 10.7                                | 1978-93                                            |
| Wiscoy Creek at Bliss, NY                         | 04222600          | 22.0                                | 1962-86                                            |
| Sugar Creek near Ossian, NY                       | 04224700          | 10.0                                | 1964-86                                            |
| Sugar Creek near Canaseraga, NY                   | 04224740          | 16.9                                | 1977                                               |
| Stony Brook at Stony Brook State Park, NY         | 04224848          | 21.4                                | 1977                                               |
| Mill Creek at Patchinville, NY                    | 04224900          | 4.22                                | 1964-86                                            |
| Mill Creek at Dansville, NY                       | 04224978          | 35.9                                | 1977                                               |
| Canaseraga Creek at Groveland, NY                 | 04225500 *        | 180.0                               | 1975-77                                            |
| Bradner Creek near Dansville, NY                  | 04225600          | 9.68                                | 1976                                               |
| Keshequa Creek at Nunda, NY                       | 04225915          | 32.7                                | 1975-77                                            |
| Keshequa Creek at Tuscarora, NY                   | 04225950          | 58.5                                | 1976-77                                            |
| Little Conesus Creek near South Lima, NY          | 04228370          | 7.38                                | 1975-76                                            |
| ittle Conesus Creek near East Avon, NY            | 04228380          | 8.02                                | 1975-76                                            |
| Springwater Creek at Springwater, NY              | 04228900 *        | 10.1                                | 1970-72                                            |
| Datka Creek at Rock Glen, NY                      | 04230320          | 14.5                                | 1977                                               |
| Datka Creek at Pearl Creek, NY                    | 04230400          | 78.4                                | 1975-76                                            |
| Pearl Creek at Pearl Creek, NY                    | 04230410          | 10.8                                | 1975-77                                            |
| Datka Creek near Pavillion Center, NY             | 04230423          | 110.0                               | 1975-77                                            |
| Mud Creek near LeRoy, NY                          | 04230470          | 10.2                                | 1975-76                                            |
| Hotel Creek at Griffin Road near Churchville, NY  | 04231040          | 4.57                                | 1976-86                                            |
| rondequoit Creek near Pittsford, NY               | 04232040 *        | 44.4                                | 1962-63,<br>1965-66,<br>1968-70,<br>1972           |
| rondequoit Creek at Bushnell Basin, NY            | 04232042          | 52.6                                | 1962-64,<br>1966,<br>1968-70                       |
| Mill Creek Trib. near Webster, NY                 | 042320527         | R2.12                               | 1971-72,<br>1976-86                                |
| Second Creek Trib. at Alton, NY                   | 04232071          | 1.07                                | 1970,<br>1973,<br>1976-86                          |
| Red Creek Trib. No. 16 near Red Creek, NY         | 04232087          | 2.90                                | 1969,<br>1976-86                                   |
| Hector Falls Creek at Burdett, NY                 | 04232406          | 11.8                                | 1971-74                                            |
| Sugar Creek at Guyanoga, NY                       | 04232460          | 28.9                                | 1966-2000                                          |
| Sixmile Creek near Ithaca, NY                     | 04233310          | 42.0                                | 1967-69,<br>1971-73,<br>1976-86                    |
| Webster Brook at Summer Hill, NY                  | 04233624          | 2.59                                | 1975                                               |

### DISCONTINUED CREST-STAGE PARTIAL RECORD STATIONS--Continued

| Station name                                  | Station<br>number  | Drainage<br>area (mi <sup>2</sup> ) | Period of record (water years) |
|-----------------------------------------------|--------------------|-------------------------------------|--------------------------------|
| STREAMS TRIBUTARY TO LA                       | KE ONTARIOcontinue | ed                                  |                                |
| Fall Creek Trib. No. 7 at Stevens Corners, NY | 04233632           | 0.52                                | 1975-76                        |
| Fall Creek at Freeville, NY                   | 04233648           | 55.9                                | 1975                           |
| Virgil Creek at Mill Street, Dryden, NY       | 04233676           | 20.7                                | 1966-70,<br>1972,              |
|                                               |                    |                                     | 1975-86                        |
| Dryden Lake Inlet near Harford, NY            | 04233678 *         | 2.73                                | 1975-76                        |
| Virgil Creek at Freeville, NY                 | 04233700 *         | 40.3                                | 1976-86                        |
| Salmon Creek at Ludlowville, NY               | 04234018 *         | 81.7                                | 1971-72                        |
| Cayuga Lake Trib. No. 8 near Jacksonville, NY | 042340202          | 1.36                                | 1977-86                        |
| Yawger Creek Trib. near Auburn, NY            | 042340588          | 1.76                                | 1976-86                        |
| Ganargua Creek above Macedon, NY              | 04234250           | 104.0                               | 1965-69                        |
| Marbletown Creek Trib. near Newark, NY        | 04234363           | 0.58                                | 1976-86                        |
| West River near Middlesex, NY                 | 04234400           | 29.3                                | 1965-72,<br>1975-77            |
| Black Brook at Tyre, NY                       | 04235276 *         | 19.0                                | 1966-73,<br>1975-84            |
| Owasco Inlet at Moravia, NY                   | 04235300 *         | 106.0                               | 1970                           |
| Canada Creek Trib. near Lee Center, NY        | 04242795           | 1.34                                | 1977-86                        |
| Chittenango Creek near Chittenango, NY        | 04244000 *         | 66.3                                | 1978                           |
| Limestone Creek at Fayetteville, NY           | 04245000 *         | 85.5                                | 1987-95                        |
| Negro Brook near Bridgeport, NY               | 04245405           | 1.53                                | 1976-79                        |
| Wine Creek at Oswego, NY                      | 04249011           | 3.11                                | 1976-78                        |

#### INTRODUCTION

Water resources data for the 2002 water year for New York consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; ground-water levels and water quality; and precipitation quality. This volume contains records for water discharge at 70 gaging stations; stage only at 15 gaging stations; stage and contents at 6 gaging stations; water quality at 12 gaging stations, 24 wells, and 22 partial-record stations; water levels at 21 observation wells; daily precipitation totals at 2 sites, and chemical quality of precipitation at 2 sites. Also included are data for 41 crest-stage partial-record stations. Locations of these sites are shown on figure 1. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as measurements made at miscellaneous sites. Surface-water, ground-water, and waterquality data at all sites are listed in Eastern Standard Time (EST), unless otherwise noted. These data together with the data in Volumes 1 and 2 represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State, local, and Federal agencies in New York.

Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey water-supply papers entitled "Surface Water Supply of the United States." Through September 30, 1960, these water-supply papers were in an annual series and then in a 5-year series for 1961–65 and 1966–70. Records of chemical quality, water temperatures, and suspended sediment were published from 1941 to 1970 in an annual series of water-supply papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1935 to 1974 in a series of water-supply papers entitled "Ground Water Levels in the United States." Water-supply papers may be consulted in the libraries of the principal cities in the United States or may be purchased from the Distribution Branch, U.S. Geological Survey, 604 South Pickett Street, Alexandria, VA 22304.

For water years 1961 through 1970, streamflow data were released by the Geological Survey in annual reports on a Stateboundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Streamflow and water-quality data beginning with the 1971 water year, and ground-water data beginning with the 1975 water year are published only in reports on a State-boundary basis. Beginning with the 1975 water year, these Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report NY–02–3." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (518) 285–5600.

#### COOPERATION

The U.S. Geological Survey and organizations of the State of New York and other agencies have had cooperative agreements for the systematic collection of water records since 1900. Organizations that assisted in collecting data included in Volume 3, water year 2002, through cooperative agreement with the Survey are:

New York State Department of Environmental Conservation

New York State Department of Transportation

New York State Thruway Authority

County of Chautauqua, Planning Department

County of Monroe, Department of Health

County of Monroe, Division of Engineering

County of Monroe, Water Authority

County of Onondaga, Department of Water Environment Protection

County of Onondaga, Water Authority Commission

County of Onondaga, Soil and Water Conservation District

City of Auburn

City of Ithaca

Town of Amherst, Erie County

Town of Cheektowaga, Erie County

Irondequoit Bay Pure Waters District

Village of Victor

Assistance in the form of funds for collecting records at gaging stations published in this report was also given by the U.S. Army Corps of Engineers, National Weather Service, Onondaga Lake Management Conference, and U.S. Environmental Protection Agency.

The following organizations aided in collecting records:

Municipalities of Batavia, Canandaigua, Jamestown, Lancaster, Oneida, Rochester, Syracuse; Cornell University; New York State Electric and Gas Corporation; Niagara Mohawk Power Corporation (Orion Power New York); Rochester Gas and Electric Corporation.

Organizations that supplied data are acknowledged in station descriptions.

### SUMMARY OF HYDROLOGIC CONDITIONS<sup>1</sup>

#### Surface Water

Streamflow in western New York during the 2002 water year was characterized by below-average annual mean discharges at most index sites (table 1). The greatest departures from normal occurred during October and November (table 2), when monthly mean discharges averaged 59 and 32 percent of the normal monthly discharges, respectively, and during May and June (table 3), when monthly mean discharges averaged 213 and 345 percent of the normal monthly discharges, respectively. Departures from the median discharges at two index stations—Susquehanna River at Conklin and Allegheny River at Salamanca—are shown in figures 1 and 2.

The 2002 water year began with variable amounts of precipitation and warmer-than-normal air temperatures. Streamflow during October 2001 was normal throughout the Great Lakes and Western Plateau and was deficient (lowest 25 percent of the record) further to the east. November was warm and dry throughout western New York and was the third-warmest and the second-driest November in 107 years of record. Streamflow at all index sites decreased sharply, and streamflow at all sites was in the deficient range. Monthly mean discharges of the Susquehanna River at Conklin and the Unadilla River at Rockdale were the third-lowest on record for November, and the monthly mean for the Genesee River at Wellsville was its fourth-lowest on record for November

December air temperatures were the warmest on record for the month. The Statewide December average of 33.8°F degrees was 8.3° F warmer than normal. Precipitation during the month throughout western New York was near normal. A massive lake-effect snowstorm hit the Lake Erie and Lake Ontario snowbelts from December 24 through the end of the month. Buffalo recorded 81.6 inches of snow from that storm and had a total of 82.7 inches for the month. The previous record total December snowfall at Buffalo was 64.8 inches in December 1985. Streamflow in western New York either remained deficient or increased to normal for the month.

Air temperatures in January 2002 remained well above normal for the month (8.8° F), and precipitation was slightly below normal. Streamflow decreased throughout the State and ranged from normal to deficient. Streamflow at the Susquehanna River at Conklin was in the deficient range for the sixth consecutive month. February temperatures in western New York remained above normal. Precipitation varied across the western

part of the State but averaged slightly above normal. Streamflow increased and was in the normal to excessive range (upper 25 percent of the record) at all index sites.

March was warmer than normal, and precipitation was near normal. Streamflow throughout the western part of the State decreased and was in the normal-to-deficient range at all index sites. April was the ninth consecutive warmer-than-normal month. Air temperatures reached new record daily highs and were in the mid-to-upper 80's at Binghamton, Ithaca, Rochester, and Syracuse on April 16 and 17. Precipitation was near normal, and streamflow remained in the normal-to-deficient range at all index sites

May 2002 ended the string of consecutive warmer-thannormal months. Air temperatures across the State averaged 3.5° F cooler than normal. May precipitation throughout much of western New York was well above normal. Streamflow increased into the excessive range at all index sites. Oneida Creek at Oneida had its third-highest monthly mean discharge on record, and Tonawanda Creek at Batavia had its fourth-highest monthly mean discharge on record for May.

June brought the return of warmer-than-normal temperatures to western New York. Precipitation throughout the State averaged 5.43 inches, which was 135 percent of the normal. The Great Lakes was the only climate division to report a precipitation deficit for the month (92 percent of normal). Streamflow increased throughout much of the State and remained excessive at all index sites. The Genesee River at Wellsville, Fall Creek near Ithaca, and Oneida Creek at Oneida had their second-highest monthly mean discharges on record for June, and Chenango River near Chenango Forks and Oatka Creek at Garbutt had their fourth-highest monthly mean discharges on record for June.

July brought warm, dry weather to the western part of the State. The Statewide average precipitation was only 2.02 inches (53 percent of normal) and made July 2002 the second-driest July on record. The below-normal precipitation caused streamflow to decrease to normal throughout much of the western part of the State. The warmer and drier-than-normal conditions continued during August. In response, streamflow either remained normal or decreased to deficient at all index sites. Precipitation during September varied widely throughout western New York. Streamflow at index sites ranged from deficient to excessive for the month.

month.
Climatological data used in this summary are from monthly weather summaries published by the Northeast Regional Climate Center, Cornell University, Ithaca, N.Y.

| <b>Table 1.</b> Mean discharges for selected streams for water year 2002 and mean annual discharges for the period of recor | d. |
|-----------------------------------------------------------------------------------------------------------------------------|----|
| [Locations are shown in fig. 4. Discharges are in cubic feet per second.]                                                   |    |

| Station no. | Name                               | Period of record     | Mean annual discharge<br>for period of record | Mean discharge for<br>2002 water year | Percent<br>difference |
|-------------|------------------------------------|----------------------|-----------------------------------------------|---------------------------------------|-----------------------|
| 01502500    | Unadilla River at Rockdale         | 1930-33, 37-95, 2001 | 841                                           | 675                                   | - 19.7                |
| 01503000    | Susquehanna River at Conklin       | 1913-2001            | 3,581                                         | 2,783                                 | - 22.3                |
| 01512500    | Chenango River near Chenango Forks | 1913-2001            | 2,416                                         | 2,196                                 | - 9.1                 |
| 01531000    | Chemung River at Chemung           | 1906-13, 1915-2001   | 2,558                                         | 2,148                                 | - 16.0                |
| 03011020    | Allegheny River at Salamanca       | 1904-2001            | 2,769                                         | 2,773                                 | + 0.1                 |
| 04213500    | Cattaraugus Creek at Gownada       | 1940-97, 2001        | 747                                           | 799                                   | + 7.0                 |
| 04217000    | Tonawanda Creek at Batavia         | 1944-2001            | 213                                           | 233                                   | + 9.4                 |
| 04221000    | Genesee River at Wellsville        | 1955-58, 1973-2001   | 385                                           | 358                                   | - 7.0                 |
| 04230500    | Oatka Creek at Garbutt             | 1946-2001            | 216                                           | 201                                   | - 6.9                 |
| 04234000    | Fall Creek near Ithaca             | 1926-2001            | 186                                           | 169                                   | - 9.1                 |
| 04243500    | Oneida Creek at Oneida             | 1950-2001            | 166                                           | 169                                   | + 1.8                 |

| Table 2Monthly mean discharge for water year 2002 at selected sites | , as percentage of period-of-record monthly median discharge. |
|---------------------------------------------------------------------|---------------------------------------------------------------|
| [Locations are shown in fig. 4.]                                    |                                                               |

|             |                                    | Period                 | Monthly mean<br>percentage<br>median d | of monthly |
|-------------|------------------------------------|------------------------|----------------------------------------|------------|
| Station no. | Name                               | of record              | Oct                                    | Nov        |
| 01502500    | Unadilla River at Rockdale         | 1930-33, 1937-95, 2001 | 28                                     | 15         |
| 01503000    | Susquehanna River at Conklin       | 1913–2001              | 29                                     | 13         |
| 01512500    | Chenango River near Chenango Forks | 1913–2001              | 44                                     | 28         |
| 01531000    | Chemung River at Chemung           | 1906-13, 1915-2001     | 60                                     | 25         |
| 03011020    | Allegheny River at Salamanca       | 1904–2001              | 77                                     | 50         |
| 04213500    | Cattaraugus Creek at Gowanda       | 1940-97, 2001          | 95                                     | 46         |
| 04217000    | Tonawanda Creek at Batavia         | 1944–2001              | 76                                     | 38         |
| 04221000    | Genesee River at Wellsville        | 1955-58, 1973-2001     | 58                                     | 28         |
| 04230500    | Oatka Creek at Garbutt             | 1946-2001              | 62                                     | 31         |
| 04234000    | Fall Creek near Ithaca             | 1925–2001              | 63                                     | 38         |
| 04243500    | Oneida Creek at Oneida             | 1950-2001              | 62                                     | 43         |

**Table 3.--**Monthly mean discharge for water year 2002 at selected sites, as percentage of period of record monthly median discharge. [Locations are shown in fig. 4.]

|             |                                    | Period                 | Monthly mean discharge, as<br>percentage of monthly<br>median discharge |
|-------------|------------------------------------|------------------------|-------------------------------------------------------------------------|
| Station no. | Name                               | of record              | May June                                                                |
| 01502500    | Unadilla River at Rockdale         | 1930-33, 1937-95, 2001 | 178 308                                                                 |
| 01503000    | Susquehanna River at Conklin       | 1913–2001              | 182 329                                                                 |
| 01512500    | Chenango River near Chenango Forks | 1913–2001              | 191 372                                                                 |
| 01531000    | Chemung River at Chemung           | 1906–13, 1915–2001     | 185 447                                                                 |
| 03011020    | Allegheny River at Salamanca       | 1904–2001              | 192 346                                                                 |
| 04213500    | Cattaraugus Creek at Gowanda       | 1940-97, 2001          | 218 196                                                                 |
| 04217000    | Tonawanda Creek at Batavia         | 1944–2001              | 289 255                                                                 |
| 04221000    | Genesee River at Wellsville        | 1955-58, 1973-2001     | 194 485                                                                 |
| 04230500    | Oatka Creek at Garbutt             | 1946-2001              | 228 320                                                                 |
| 04234000    | Fall Creek near Ithaca             | 1925-2001              | 203 321                                                                 |
| 04243500    | Oneida Creek at Oneida             | 1950–2001              | 284 416                                                                 |

#### Water Quality

Samples of atmospheric deposition, ground water, and surface water were collected at several sites throughout Monroe County for chemical analysis. (Locations are shown in fig. 5). Analyses indicated no significant changes from previous years. Concentrations of all constituents monitored were within the historical range of the period of record for each station. Sites are periodically added to, or dropped from, this monitoring network, which currently emphasizes the Irondequoit Creek basin but is being expanded to other parts of Monroe County. Constituent concentrations were used with streamflow data to calculate long-term trends in concentration and constituent loadings, which are used by county managers to assess environmental effects of land-use changes and water-resource-management practices. Water samples were analyzed by the Monroe County Environmental Health Laboratory in Rochester, N.Y.

Suspended-sediment samples from the Tully Valley mudboil/depression area (MDA) for the 2002 water year indicated a nearly constant sediment loading to Onondaga Creek at a rate of about 0.8 tons per day. The loading rate from the MDA has been nearly constant over the past several years, but mudboil activity downstream from the remediation project has increased and a separate containment system was installed during the summer of 2001. The discharge of sediment and water to Onondaga Creek from this newer area varied, but usually had a similar, or slightly higher sediment concentration than that measured at the MDA.

Quarterly water-quality analyses of depressurizing wells and springs along Onondaga Creek from the headwaters to Onondaga Lake during the 2002 water year indicated that mineralized discharges from the southern Tully Valley segment of the Onondaga Creek basin (Tully Moraine to U.S. Route 20) continued to add halite, gypsum, and sulfate loads to the Creek. Discharge from springs further north of Route 20 did not have the degree of mineralization seen in the Tully Valley, except for salt springs near Onondaga Lake which had much higher salt concentrations.

Water samples were collected for pesticide analyses from selected lakes, reservoirs, and wells that serve as sources of drinking water throughout upstate New York, as part of the Statewide Pesticide Monitoring Project in cooperation with the New York State Department of Environmental Conservation. More than 25 samples from 6 surface-water and 2 ground-water sites in western New York were analyzed for 60 pesticides or degradates in water year 2002. The analytical detection limits ranged from 0.001 to 0.05  $\mu g/L$ . Trace levels of a few pesticides—mainly atrazine, metolachlor, and their degradates—were detected at several sites, but the concentrations did not exceed any Federal or New York State standards for drinking water.

#### Ground Water

Ground-water levels in shallow, unconfined aquifers in western New York typically show a seasonal pattern—a sharp rise during the spring in response to aquifer recharge from precipitation, and a gradual decline from summer through early fall. Aquifer recharge varies locally and seasonally and is affected by many factors, including the timing and amount of precipitation, the soil-moisture content, the amount of local runoff, and the rate of evapotranspiration. Evapotranspiration consists of physical evaporation, transpiration by vegetation, and ground-water evapotranspiration. Typically, recharge is greatest during the late fall and from early to mid-spring, when transpiration is minimal, and the ground is not frozen and allows infiltration. Water levels rise during the spring and typically exceed those reached in the preceding fall, mainly as a result of recharge from the melting snowpack. Water levels decline during the late spring and summer, when plant growth and rising water temperatures increase the rate of evapotranspiration and, thus, reduce the rate of recharge. Storms of sufficient intensity and duration provide minor recharge to shallow aquifers during summer. Precipitation in New York is (on average) fairly evenly distributed from month to month; thus, the annual summer decline in ground-water levels is due primarily to a reduction in recharge from increased evapotranspiration.

Water levels in confined aquifers generally are less responsive to individual storms than those in unconfined aquifers; the response in confined aquifers is generally subdued and delayed because their hydraulic connection to the overlying unconfined aquifers is indirect.

The minimum, maximum, median long-term monthly, and current water levels at three observation wells during the 2002 water year are plotted in the hydrographs in figure 3. The hydrograph for well Ct-121 in Cattaraugus County (western New York) illustrates the water-level fluctuations under natural (nonpumping) conditions in a representative confined sand and gravel aquifer; the hydrograph for well Og-23 in Otsego County (central New York) illustrates seasonal water-level fluctuations under natural conditions in a shallow, unconfined till aquifer and the hydrograph for well Cm-46 in Chemung County (south-central New York) illustrates water-level fluctuations under

natural conditions in an unconfined sand aquifer.

Water levels under confined conditions at well Ct-121 were below the median throughout the entire water year except for part of June, when they were at the median. Water levels at well Og-23 were below the median from October through January, above the median in February and March, below the median in April, above the median in May and June, below the median in July and August, and above the median in September. Water levels at well Cm-46 were below the median at the beginning of the water year, then fluctuated around the median during December, then declined to below the median in January. From February through the first 2 weeks of May, water levels again fluctuated above and below the median, then were well above the median from the latter part of May through the first 2 weeks of July, then below the median through September. Water levels at this well were affected by water-level changes in Newtown Creek.

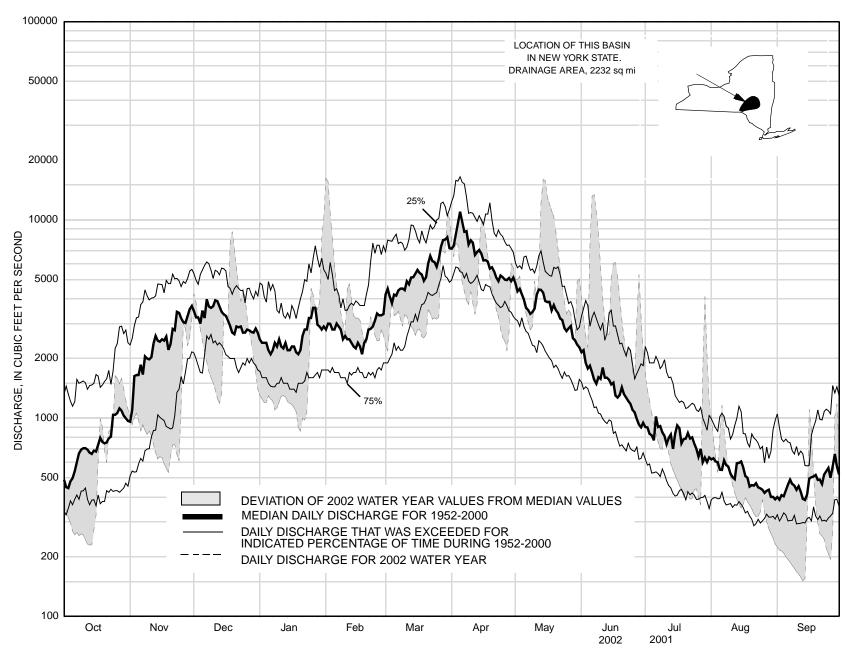



Figure 1.-- Hydrographic Comparisons, Susquehanna River at Conklin

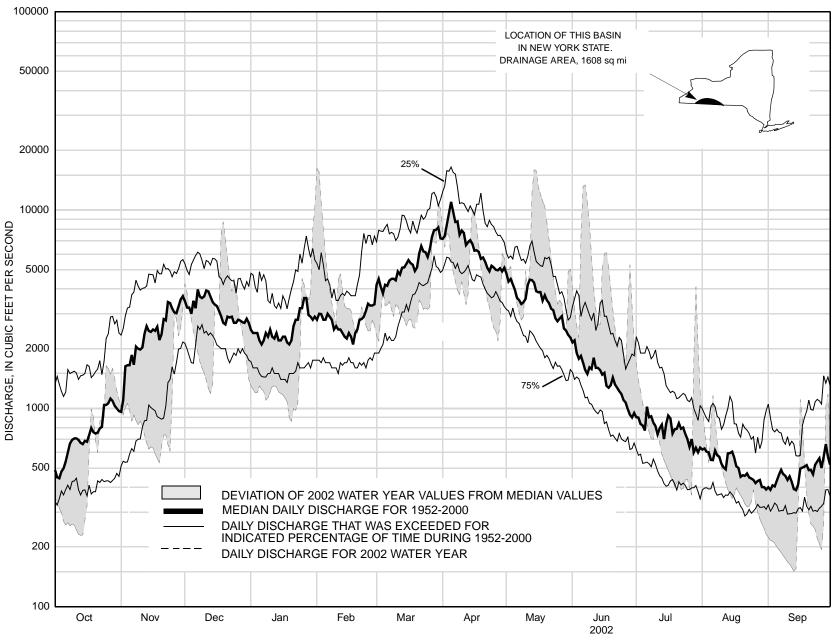



Figure 2.-- Hydrographic Comparisons, Allegheny River at Salamanca

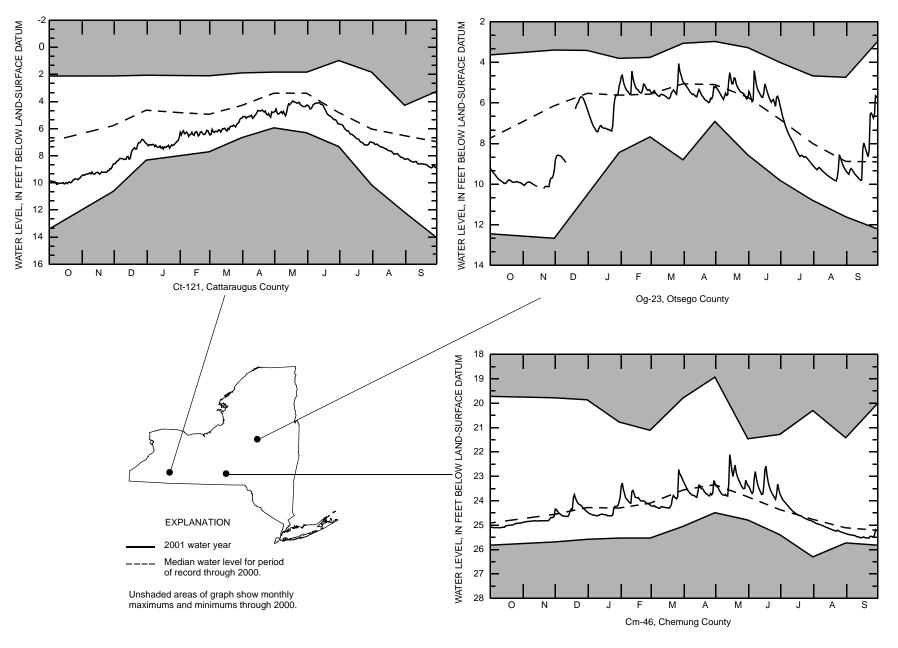



Figure 3.-Comparison of ground-water levels at selected observation wells in New York during 2002 water year with median levels for period of record.

#### SPECIAL NETWORKS AND PROGRAMS

#### Hydrologic Benchmark Network

is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative of undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the effects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/.

#### National Stream-Quality Accounting Network

(NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations was operated in the Mississippi, Columbia, Colorado, and Rio Grande basins. For the period 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of offcontinent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/.

#### The National Water-Quality Assessment (NAWQA)

<u>Program</u> of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground-and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest.

Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at http://water.usgs.gov/nawqa/

#### EXPLANATION OF THE RECORDS

The surface-water and ground-water data published in this report are for the water year that began October 1, 2001, and ended September 30, 2002. A calendar of the water year is provided on the inside of the front cover. The data include discharge or stage of streams and canals, surface area, stage, and contents of lakes or reservoirs, surface-water quality, and ground-water levels. The locations of the stations and wells where data were collected are shown in figure 5. The following provide an explanation of how the data were collected, analyzed, computed, and arranged for presentation.

#### Station Identification Numbers

Each surface-water station and well in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number is usually assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surfacewater stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for surface-water stations and the "latitude-longitude" system is used for wells.

#### Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in Survey reports is in a downstream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two main-stream stations is listed between them. A similar order is followed on listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated with respect to the stream to which it is immediately tributary is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. This downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated.

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between partial-record stations, miscellaneous sites, and other stations; therefore, the station number for a partial-record station or a miscellaneous site indicates downstream-order position in a list made up of all types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8digit number for each station, such as 01502500, includes the 2digit Part number "01" plus the 6-digit downstream order number "502500." The Part number designates the major river basin. Part numbers used in this report and their corresponding river basins are: "01," the North Atlantic Slope basin; "03," the Ohio River basin; and "04," the St. Lawrence River basin. In a few instances where no gaps were left in the 8-digit numbering sequence, one or two digits were added (making a 9-or 10-digit station number) and (or) a latitude-longitude number was used to identify intermediate stations.

#### Latitude-Longitude System

The well-identification number is based on the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells within a 1-second grid. See figure below.

#### Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharges may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or period of time. They may be obtained using a continuous stage-recording device, but need not be. Because daily mean discharges and end-of-day contents commonly are published for such stations, they are referred to as "daily stations." Periods of record for discontinued continuous-record surfacewater stations are given in a table following the "Contents" section of this report.

By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records," or "Low-flow partial records." Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Locations of all complete-record stations for which data are given in this report are shown in figure 5.

#### **Data Collection and Computation**

The data collected at stream-gaging stations consist of records of stage, measurements of discharge throughout a range of stages, and notations regarding factors that may affect the relationship between stage and discharge. These data, together with supplemental information, such as weather records, are used to compute daily discharges. The data collected at a lake or reservoir station consist of records of stage and notations regarding factors that may affect the relationship between stage and lake content. These data are used with stage-area and stage-capacity curves or tables to compute water-surface areas and lake storage.

Records of stage are obtained from direct readings on a nonrecording gage, analog recorders that trace continuous graphs of stage, digital recorders that punch stage values on paper tapes at selected time intervals, or with data-collection platforms (DCP) that electronically record and then transmit the data via satellite to

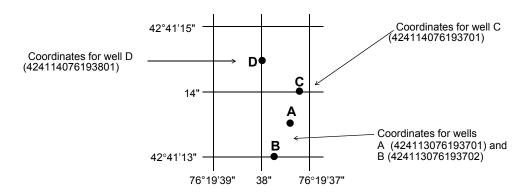



Figure 4. System for numbering wells (latitude and longitude)

ground receiving stations. Measurements of discharge are made with a current meter, using the general methods adopted by the Geological Survey. These methods are described in standard textbooks, in Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations (TWRI's), Book 3, Chapter A1 through A19 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO).

For stream-gaging stations, results of individual discharge measurements are plotted against corresponding stages to develop stage-discharge relation curves. From these curves, rating tables that indicate the approximate discharge for any stage within the range of measurements are prepared. If it is necessary to express discharge greater than measured, the rating curves are extended on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements, computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, and logarithmic plotting.

Daily mean discharges are computed by applying the instantaneous stages (gage heights) to the stage-discharge curves or rating tables and averaging these discharges for each day. Monthly and yearly mean discharges are computed from the daily figures. If the stage-discharge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes of the personnel making the measurements and observers are applied to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of aquatic growth or debris on the control.

At some gaging stations, acoustic velocity meter (AVM) systems are used to compute discharge. The AVM system measures the stream's velocity at one or more paths in the cross section. Coefficients are developed to relate this path velocity to the mean velocity in the cross section. Because the AVM sensors are fixed in position, the adjustment coefficients generally vary with stage. Cross-sectional area curves are developed to relate stage, recorded as noted above, to cross section area. Discharge is computed by multiplying path velocity by the appropriate stage related coefficient and area.

At some stream-gaging stations the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method, in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge.

At some stream-gaging stations, formation of ice in the winter may so obscure the stage-discharge relation that daily mean discharges must be estimated on the basis of gage-height record, occasional water discharge measurements, and other information such as temperature and precipitation records, notes by gage observers and hydrographers, and records of discharge for other stations in the same or nearby basins for comparable periods.

For computing lake or reservoir contents, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage

to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents are computed. If the stage-capacity curve changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys the computed contents may be increasingly in error due to the gradual accumulation of sediment.

For some gaging stations there are periods when no gage-height record is obtained, or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated from recorded range in stage, previous and following records, discharge measurements, weather records, and comparison with other station records in the same or nearby basins. Likewise daily contents may be estimated from operator's logs, previous and following records, inflow-outflow studies, and other information. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" (REMARKS paragraph) and "Identifying Estimated Daily Discharge."

#### Data Presentation

Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1992 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts, the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration.

#### Station manuscript

The manuscript provides, under various headings, descriptive information, such as station location; period of record; extremes; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for some stations, is that determined and used by the U.S. Army Corps of Engineers or other agencies.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--Identifies the period for which there are published records for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not, and whose location was such that records from it can reasonably be considered equivalent with records from the present station.

REVISED RECORDS.--Published records, because of new information, occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see DEFINITION OF TERMS), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--All periods of estimated daily-discharge record will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily-discharge table. (See next section, "Identifying Estimated Daily Discharge.") If a remarks statement is used to identify estimated record, the paragraph will begin with this information presented at the first entry. The paragraph is also used to present information relative to the accuracy of the records, to special methods of computation, to conditions that affect natural flow at the station and, possibly, to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES FOR PERIOD OF RECORD.--Extremes may include maximum and minimum stages and maximum and minimum discharges or content. Unless otherwise qualified, the maximum discharge or content is the instantaneous maximum corresponding to the highest stage that occured. The highest stage may have been obtained from a graphic or electronic data logger, a crest-stage gage, or by direct observation of a nonrecording gage. If the maximum stage did not occur on the same day as the maximum discharge or content, it is given separately. Similarly, the minimum is the instantaneous minimum discharge, unless otherwise qualified, and was determined and is reported in the same manner as the maximum.

EXTREMES OUTSIDE PERIOD OF RECORD.--Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR.--For stations meeting certain criteria, all peak discharges and stages occurring during the water year and greater than a selected base discharge are presented under this heading. All peaks greater than the base discharge are listed with the maximum for the year footnoted by an asterisk (\*). The base discharge, which is given in the heading, is selected so that an average of about three peaks a year will be

presented. Peak discharges are not published for canals, ditches, drains, or streams for which the peaks are subject to substantial control by man. The time of occurence for peaks is expressed in 24-hour Eastern Standard Time (EST), at all sites unless otherwise noted.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office to determine if the published records were ever revised after the station was discontinued. Of course, if the data were obtained by computer retrieval, the data is always accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily stages are given.

Headings for AVERAGE DISCHARGE have been deleted and the information contained in this paragraph is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate. No changes have been made to the data presentations of lake contents.

#### Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN."); or in acre-feet (line headed "AC-FT"). Figures for cubic feet per second per square mile and runoff in inches or in acre-feet may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol and corresponding footnote.

#### Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") or monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS \_\_\_\_\_\_\_, BY WATER YEAR (WY)," and will list the first and DOT.

\_\_\_\_\_, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all of the partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unles a break in the station record is indicated in the manuscript.

#### Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year, but also for the previous calendar year and for the designated period, as appropriate. The designated period selected, "WATER YEARS \_\_\_\_\_\_," will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated ANNUAL (See line headings below.), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years.

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. In some instances, these extremes may occur on more than one date or year. Repeated occurrences may be noted in the manuscript. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data maya be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments to follow clarify information presented under the various line headings of the summary statistics table.

- ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes
- ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations, the yearly mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.
- HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.
- LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.
- HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.
- LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

- ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1-March 31). The data shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)
- ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year.

  Data reports may use any of the following units of measurement in presenting annual runoff data:
  - Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equivalent to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.
  - Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area.
  - Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.
- 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.
- 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.
- 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

#### **Hydrographs**

Hydrographs of daily mean flows at water-discharge stations follow the summary statistics tabulation. These hydrographs show the current water year daily mean discharges and their relation to the maximum, minimum, and median of record (see years used for statistical summary) through the previous water year for sites with more than 5 years of record. The hydrograph for sites with 5 years or less will only show daily mean discharges for the current water year. A log scale is used for all hydrographs and therefore, zero daily flows are plotted as 0.001 ft<sup>3</sup>/s.

Information published for partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in a table of annual maximum stage and discharge at crest-stage stations. The table of partial-record stations is followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are caslled measurements at miscellaneous sites.

#### Identifying Estimated Daily Discharge

Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily values with the letter symbol "e" and printing a table footnote, "e Estimated," or by listing the dates of the estimated record in the REMARKS paragraph of the station description.

#### Accuracy of the Records

The accuracy of streamflow records depends primarily on (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The accuracy attributed to the records is indicated under "REMARKS." "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true discharge; "good," within 10 percent; and "fair," within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy. Different accuracies may be attributed to different parts of a given record.

Daily mean discharges in this report are given to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft<sup>3</sup>/s; to tenths between 1.0 and 10 ft<sup>3</sup>/s; to whole numbers between 10 and 1,000 ft<sup>3</sup>/s; and to 3 significant figures above 1,000 ft<sup>3</sup>/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharge figures listed for partial-record stations and miscellaneous sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge.

#### Other Records Available

Information used in the preparation of records in this report, such as discharge measurement notes, water temperature measurements, gage-height records, and rating tables is on file in the Ithaca subdistrict office. Also most gaging-station records are available in computer-readable form and many statistical analyses are available. Information on the availability of unpublished data or statistical analyses may be obtained from the district office.

#### Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. Locations of all surface-water-quality stations for which data are given in this report are shown in figure 5.

Historical and current dissolved trace-element concentrations are reported herein for water that was collected, processed, and analyzed by using either ultraclean or other than ultraclean techniques. If ultraclean techniques were used, then those concentrations are reported in nanograms per liter. If other than ultraclean techniques were used, then those concentrations are reported in micrograms per liter and could reflect contamination introduced during some phase of the procedure.

#### Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. Locations of surface-water quality stations are shown on figure 5.

Note that "continuing-record" differs from "continuous recording," which refers to a continuous graph or a series of discrete values recorded at predetermined intervals. Some waterquality data may be obtained through continuous recordings (i.e. temperature); however, most data are obtained only monthly or less frequently.

#### Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the location of the water quality sampling site differs significantly from that of the nearby surface-water station, the continuing-record water-quality site is given its own station number and name in the regular downstream order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. Data for precipitation-quality stations appear next. The table of ground-water quality data follow the ground-water level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number.

#### On-site Measurements and Sample Collection

In obtaining water-quality data, a major concern is that the data obtained represent the in situ quality of the water. To assure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To assure that measurements made in the laboratory also represent the in situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending analysis, and in shipping the samples to the laboratory. Procedures for on-site measurements and for collecting, treating, and shipping samples are given publications on Techniques of Water-Resources Investigations, "Book 1, Chap. D2; Book 3, Chap. A1, A3, and A4; Book 9, Chap. A1-A9. These references are listed in the PUBLICATIONS ON TECHNIQUES OF WATER RESOURCES INVESTIGATIONS section of this report. These methods are consistent with ASTM standards and generally follow ISO standards. Also, detailed information on collecting, treating, and shipping samples may be obtained from the Geological Survey District office.

One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. All samples obtained for the National Stream Quality Accounting Network (see DEFINITION OF TERMS) are obtained from at least several verticals. Whether samples are obtained from the centroid of flow or from several verticals, depends on flow conditions and other factors which must be evaluated by the collector.

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

#### Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at the time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once or twice daily, the water temperatures are taken at about the same time each day. Large streams have a small diurnal temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where recording instruments are used, either mean temperatures and/or maximum and minimum temperatures for each day are published. Water temperatures measured at the time of water-discharge measurements are on file in the Ithaca subdistrict office.

#### Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentrations in the cross sections. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow and in predicting long-term sediment-discharge characteristics of the stream.

For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These meth-

ods are consistent with ASTM standards and generally follow ISO standards.

In addition to the records of instantaneous suspended-sediment discharge, the percentage of suspended sediment finer than 0.062 mm are reported at continuing-record sites.

#### Laboratory Measurements

Sediment samples, samples for biochemical-oxygen demand (BOD), samples for indicator bacteria, and daily samples for specific conductance are analyzed locally. All other samples are analyzed in the Geological Survey laboratories in Arvada, Colo. Methods used to analyze sediment samples and to compute sediment records are described in the TWRI, Book 5, Chapter C1. Methods used by the U. S. Geological Survey laboratories are given in the TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, A4 and A5. These methods are consistent with ASTM standards and generally follow ISO standards.

#### Data Presentation

For continuing-record stations, information pertinent to the history of station operation, including station location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily preceeds the data tables. If the location is identical to that of the discharge gaging station, neither the LOCATION nor the DRAINAGE AREA statements are repeated. Following is a list of headings and a discussion of the information provided under each heading.

LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gage with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for some stations, is that determined and used by the U.S. Army Corps of Engineers or other agencies.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage area to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which there are published water-quality records for the station. The periods are shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually.

INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records.

COOPERATION.--Records provided by a cooperating organization or obtained for the Geological Survey by a cooperating organization are identified here.

EXTREMES.--Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximum or minimum may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year.

REVISIONS.--If errors in published water-quality records are discovered after publication, appropriate updates are made in the U. S. Geological Survey's distributed data system, NWIS, and subsequently to its web-based National data system, NWISWeb [http://water.usgs.gov/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State data-report series or elsewhere, potential users of U. S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to insure the most recent updates. Updates to NWISWeb are currently made on an annual basis.

The surface-water-quality records for miscellaneous sampling sites are published in a separate table following the table of discharge measurements at miscellaneous sites. No descriptive statements are given for these records. Each station is published with its own station number and name in the regular downstream-order sequence.

#### Remark Codes

The following remark codes may appear with the waterquality data in this report:

| PRINTED OUTPUT | <u>REMARK</u>                         |
|----------------|---------------------------------------|
| E              | Estimated value                       |
| >              | Actual value is known to be greater   |
|                | than the value shown                  |
| <              | Actual value is known to be less than |
|                | the value shown                       |
| M              | Presence of material verified, but    |
|                | not quantified                        |
| N              | Presumptive evidence of presence      |
|                | of material                           |
| U              | Material specifically analyzed for,   |
|                | but not detected                      |
| A              | Value is an average                   |
| V              | Analyte was detected in both the      |
|                | environmental sample and the          |
|                | associated blanks                     |
| S              | Most probable value                   |
| Wa             | ter Quality-Control Data              |

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

#### Blank Samples

Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank samples for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are:

Source solution blank – a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes.

Ambient blank – a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions.

Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office).

Sampler blank – a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

Pump blank – a blank solution that is processed through the same pump-and-tubing system used for an environmental sample.

Standpipe blank – a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank.

Filter blank – a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

Preservation blank – a blank solution that is treated with the sampler preservatives used for an environmental sample.

Canister blank – a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample.

# Reference Samples

Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

#### Replicate Samples

Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

Concurrent sample – a type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers.

Sequential sample – a type of replicate sample in which the samples are collected one after the other, typically over a short time.

Split sample – a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

#### Spike Samples

Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

Concurrent sample – a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

Split sample – a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

#### Dissolved Trace-Element Concentrations

Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter ( $\mu$ g/L) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Data above the  $\mu$ g/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols will take place during the 1995 water year

# Change in National Trends Network Procedures

Sample handling procedures at all National Trends Network stations were changed substantially on January 11, 1994, in order to reduce contamination from the sample shipping container. The data for samples before and after that date are different and not directly comparable. A tabular summary of the differences based on a special intercomparison study, is available from the NADP/NTN Coordination Office, Colorado State University, Fort Collins, CO 80523 (Telephone: 303-491-5643).

# Categories of Water-Quality Data

There is a broad range of water-quality parameters available for most stations whose record exceeds more than a few years operation. Sampling schedules are often intermittent for certain types of data, with analyses available for some but not all years within a station's period of record. An accurate description of the variety of data available is shown by grouping similar parameters into a few general categories, which are listed in the "PERIOD OF RECORD" paragraph. Each category of data is followed by a notation of the water year(s) for which data is available and a

letter code describing the frequency of sampling (see following section, "Frequency-of-Sampling Notation").

The "PERIOD OF RECORD" paragraph lists the following categories of data to describe information available.

- CHEMICAL DATA: Usually includes most of the "major ions," and may often include some of the following physical properties: specific conductance, pH, temperature, color, turbidity, dissolved oxygen.
- MINOR ELEMENT DATA: Comprises the "heavy metals" and some of the "alkaline earth" groups. Determinations usually include some but not all of the following: Al, As, Ba, Cd, Cr, Co, Cu, Hg, Li, Ni, Pb, Se, Sn, Sr, Zn.
- RADIOCHEMICAL DATA: The determinations of the concentration of individual radioactive elements, such as radium 226, cobalt 60, strontium 90, and tritium. This category also includes the gross measurement of radioactivity (alpha, beta, gamma) without regard to the radiochemical species that produce the radioactivity.
- PESTICIDE DATA: The organic compounds (insecticides and herbicides) used to control insects and plants. Routinely, the analyses searches for traces of between 12 to 22 compounds.
- ORGANIC DATA: Organic data (other than pesticides) such as OC, PCB, PCN.
- NUTRIENT DATA: Constituents containing nitrogen or phosphorus. Results usually include several of the following: nitrite plus nitrate, phosphorus, ammonia nitrogen, organic nitrogen, ammonia plus organic nitrogen (Kjeldahl nitrogen).
- BIOLOGICAL DATA: The identification and concentration of microscopic plant organisms (phytoplankton, periphyton), or enteric bacteria (total coliform, fecal coliform, or fecal streptococcal) living in aquatic habitats.
- SEDIMENT DATA: Suspended-sediment concentration, suspended-sediment discharge, and particle-size data for discrete samples.

# Frequency-of-Sampling Notation

The categories of data given in the "PERIOD OF RECORD" paragraph are followed by the water year(s) for which that kind of data was collected. The amount of data available is specified by the following letter codes:

- (a) 1 or 2 samples per year.
- (b) 3 to 5 samples per year.
- (c) 6 to 9 samples per year.
- (d) 10 to 20 samples per year.
- (e) more than 20 samples per year.

Thus, "CHEMICAL DATA: 1972-74(c), 1977-82(a).", shows there are at least six analyses each year for the first three years of record, no data for this category in 1975 and 1976, and 1 or 2 samples for each of the six additional years.

#### Records of Ground-Water Levels

Ground-water level data consist of water-level measurements made in observation wells. Each well is identified by means of (1) a 15-digit number that is based on latitude and longitude and (2) a local number that is provided for local needs. (See figure 4.)

Ground-water records are presented by county, in alphabetical order. Locations of observation wells are shown on figure 5.

#### **Data Collection and Computation**

Water-level measurements are made in many types of wells, under varying conditions of access and at different temperatures, hence, neither the method of measurement nor the equipment can be standardized. At each observation well, however, the equipment and techniques used are those that will ensure that measurements at each well are consistent.

Water-level records are from direct measurements using a steel tape, from the punched tape of a water-stage recorder, or from an electronic data recorder. Water-level measurements in this report are given in feet with reference to land-surface datum (lsd). Land-surface datum is a datum plane that is approximately at land surface at each well. If known, the altitude of the land-surface datum above sea level (see DEFINITION OF TERMS) is given in the well description. The height of the measuring point (MP) above or below land-surface datum is given in each well description. Water levels in wells equipped with recording gages are reported as mean daily values; then monthly and yearly means are computed from the daily figures. Water levels in wells not equipped with recording gages are measured periodically, usually weekly, with a weighted tape.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet, the error in determining the absolute value of the total depth to water may be a few tenths of a foot, whereas the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some are given only to a tenth of a foot.

## **Data Presentation**

Each well record consists of three parts, the station description, the data table of water levels observed during the current water year, and a graph of the water levels for the current water year or other selected period. The description of the well is presented first through use of descriptive headings preceding the tabular data. The comments to follow clarify information presented under the various headings of the well description.

LOCATION.--Provides (immediately below the well-identification number) the latitude and longitude (in degrees, minutes, and seconds); the hydrologic unit number (see DEFINITION OF TERMS); the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--Identifies by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--Describes the depth, diameter, casing depth and/or screened interval, method of construction, and use of the well and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--Describes frequency of measurements and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--Describes both the measuring point and the landsurface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above (or below) sea level; it is reported with a precision depending on the method of determination.

REMARKS.--Describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells, and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--Identifies the period for which there are published records for the observation well or for an equivalent

EXTREMES FOR PERIOD OF RECORD.--Indicates the highest and lowest water levels of the period of published record, with respect to land-surface datum, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet above or below land-surface datum. For wells not equipped with continuous-stage recorders, the table lists the water levels and measurement dates. For wells equipped with recorders, mean daily values are published, with missing records indicated by dashes in place of the water level. Because mean daily values are published for wells with recorders, the extremes may be values that are not listed in the table.

A hydrograph of water levels follows the data table for each well. The current year and the previous 9 years of record are plotted in feet above or below land-surface datum. If the period of record is less than 10 years, the water levels for the entire record are plotted. Because all values are not plotted for wells with continuous-stage recorders, some extreme values may not appear on the plot.

# Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarilyt changes only slowly; therefore, for most general purposes one annual sampling, or only a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In the special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

# Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as part of a special study of a specific area. Consequently, a number of chemical analyses are presented for one county, but none are presented for others. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality Statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other counties in earlier years.

Most methods for collecting and analyzing water samples are described in the U. S. Geological Survey TWRI publications referred to in the "On-site Measurements and Sample Collection" and the "Laboratory Measurements" sections in this data report. In addition, the TWRI Book 1, Chapter D2, describes guidelines for the collection and field analysis of ground-water samples for selected unstable constituents. The values reported in this report represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. These methods are consistent with ASTM standards and generally follow ISO standards. All samples were obtained by trained personnel. The wells sampled were pumped long enough to assure that the water collected came directly from the aquifer and had not stood for a long time in the well casing where it would have been exposed to the atmosphere and to the material, possibly metal, comprising the casings.

#### **Data Presentation**

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed alphabetically by County, and are identified by well number. The prime identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water quality records; however, the well number, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water. The REMARKS codes listed for the surface-water-quality records are also applicable to ground-water-quality records.

#### ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at

#### http://www.water.usgs.gov

Some water-quality and ground-water data also are available through the WWW. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.).

#### **DEFINITION OF TERMS**

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover.

- Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).
- Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")
- Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.
- Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight")
- **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.
- Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches
- Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.)
- Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine.

- Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")
- Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 ×C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass" and "Dry mass")
- **Aspect** is the direction toward which a slope faces with respect to the compass.
- **Bacteria** are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.
- **Bankfull stage**, as used in this report, is the stage at which a stream first overflows its natural banks formed by floods with 1- to 3-year recurrence intervals.
- Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow")
- **Base flow** is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.
- **Bedload** is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load.
- Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge")
- **Bed material** is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")
- **Benthic organisms** are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

**Biochemical oxygen demand** (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

**Biomass** is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

**Biomass pigment ratio** is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index.

**Blue-green algae** (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material (See "Bed material")

**Bulk electrical conductivity** is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock.

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (mm³) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere  $4/3 \pi r^3$  cone  $1/3 \pi r^2 h$  cylinder  $\pi r^2 h$ .

pi  $(\pi)$  is the ratio of the circumference to the diameter of a circle; pi = 3.14159....

From cell volume, total algal biomass expressed as biovolume (mm³/mL) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species.

Cfs-day (See "Cubic foot per second-day")

**Channel bars**, as used in this report, are the lowest prominent geomorphic features higher than the channel bed.

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

**Coliphages** are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment.

**Color unit** is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable bound-aries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

**Contents** is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

**Continuous-record station** is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

**Control structure**, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft<sup>3</sup>/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft<sup>3</sup>/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft<sup>3</sup>/s)/mi<sup>2</sup>] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

**Daily mean suspended-sediment concentration** is the timeweighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration") **Daily-record station** is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

**Data collection platform** (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

**Data logger** is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

**Datum** is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

**Diatoms** are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

**Diel** is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

**Dissolved** refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

**Dissolved oxygen** (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

**Dissolved-solids concentration** in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate.

Alternatively, alkalinity concentration (as mg/L CaCO<sub>3</sub>) can be converted to carbonate concentration by multiplying by 0.60.

**Diversity index** (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n} ,$$

where  $n_i$  is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

**Drainage area** of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

**Drainage basin** is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

**Dry mass** refers to the mass of residue present after drying in an oven at 105 ×C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

**Dry weight** refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

**Embeddedness** is the degree to which gravel-sized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class")

Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 ×C on mE agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")

**EPT Index** is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

**Euglenoids** (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment.

**Fecal coliform bacteria** are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 ×C plus or minus 0.2 ×C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 ×C plus or minus 1.0 ×C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

**Fire algae** (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

**Flow-duration percentiles** are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

**Gage values** are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

**Gaging station** is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained.

**Gas chromatography/flame ionization detector** (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution.

**Habitat quality index** is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

**Hardness** of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO<sub>3</sub>).

**High tide** is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site*:

http://www.co-ops.nos.noaa.gov/tideglos.html

**Hilsenhoff's Biotic Index** (HBI) is an indicator of organic pollution that uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N}$$
,

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

**Hydrologic index stations** referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

**Hydrologic unit** is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

**Instantaneous discharge** is the discharge at a particular instant of time. (See also "Discharge")

**Island**, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events.

Laboratory reporting level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV—a term that is no longer used.]

**Land-surface datum** (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter.

**Light-attenuation coefficient,** also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation:

$$I = I_o e^{-\lambda L}$$
,

where  $I_o$  is the source light intensity, I is the light intensity at length L (in meters) from the source, l is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} \ .$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html

**Macrophytes** are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

**Mean discharge** (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

**Mean high** or **low tide** is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

**Measuring point** (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

**Membrane filter** is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymph-adult.

Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

**Methylene blue active substances** (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

**Micrograms per gram** (UG/G, mg/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

- **Micrograms per kilogram** (UG/KG, mg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.
- Micrograms per liter (UG/L, mg/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.
- Microsiemens per centimeter (US/CM, mS/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms.
- Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture.
- **Minimum reporting level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method.
- **Miscellaneous site,** miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or waterquality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and waterquality conditions over a broad area in a river basin.
- Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.
- **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.
- Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.
- National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site:
  - http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")
- Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")

- **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.
- Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample.
- North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks.
- **Open** or **screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.
- **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).
- Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")
- Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.
- **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.
- **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.
- **Parameter code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.
- Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.
- Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

| Classification | Size (mm)        | Method of analysis  |
|----------------|------------------|---------------------|
|                |                  |                     |
| Clay           | >0.00024 - 0.004 | Sedimentation       |
| Silt           | >0.004 - 0.062   | Sedimentation       |
| Sand           | >0.062 - 2.0     | Sedimentation/sieve |
| Gravel         | >2.0 - 64.0      | Sieve               |
| Cobble         | >64 - 256        | Manual measurement  |
| Boulder        | >256             | Manual measurement  |

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

**Peak flow (peak stage)** is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

**Percent composition** or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade.

**Periodic-record station** is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record.

**Periphyton** is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

**Pesticides** are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton")

**Picocurie** (PC, pCi) is one trillionth (1 x 10<sup>-12</sup>) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10<sup>10</sup> radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

**Plankton** is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample.

**Polychlorinated biphenyls** (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

**Polychlorinated naphthalenes** (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

**Pool**, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photo-synthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg C/(m²/time)] for periphyton and macrophytes or per volume [mg C/(m²/time)] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of elements that exhibit radio-activity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

**Reach**, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow  $(7Q_{10})$  is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the 7Q<sub>10</sub> occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the  $7Q_{10}$ .

**Replicate samples** are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

**Return period** (See "Recurrence interval")

**Riffle**, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation.

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river.

**Run**, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

**Sea level,** as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of pre-cipitation.

Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter.

Seven-day, 10-year low flow  $(7Q_{10})$  is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the  $7Q_{10}$  is 10 years; the chance that the annual 7-day minimum flow will be less than the  $7Q_{10}$  is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval")

**Shelves**, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation.

**Sodium adsorption ratio** (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter.

**Soil-water content** is the water lost from the soil upon drying to constant mass at 105 ×C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 ×C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

**Stable isotope ratio** (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

**Stage-discharge relation** is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as the percentage covered by fine sediment:

0 no gravel or larger substrate 3 26-50 percent 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

**Surficial bed material** is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers.

**Suspended** (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter.

**Suspended, recoverable** is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate

matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended mate-rial collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

**Suspended sediment** is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

**Suspended-sediment discharge** (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft<sup>3</sup>/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific waterquality conditions during selected seasonal or hydro-logic periods to provide improved spatial resolution for critical waterquality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

**Taxa (Species) richness** is the number of species (taxa) present in a defined area or sampling unit.

**Taxonomy** is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal

Phylum: Arthropoda

Class: Insecta

Order: Ephemeroptera

Family: Ephemeridae

Genus: Hexagenia

Species: Hexagenia limbata

**Thalweg** is the line formed by connecting points of minimum streambed elevation (deepest part of the channel).

**Thermograph** is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

**Time-weighted average** is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

**Tons per acre-foot** (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

**Tons per day** (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

**Total coliform bacteria** are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonsporeforming, rod-shaped bacteria that ferment lactose with gas for-

mation within 48 hours at  $35 \times C$ . In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at  $35 \times C$  plus or minus  $1.0 \times C$  on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria")

**Total discharge** is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

**Total in bottom material** is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

**Total length** (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

**Total load** refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

**Total organism count** is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

**Total sediment discharge** is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load")

**Transect**, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line.

**Turbidity** is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values.

#### Ultraviolet (UV) absorbance (absorption) at 254 or

280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

**Unconfined aquifer** is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Watertable aquifer")

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens.

**Water table** is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which the water table is found.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year."

**WDR** is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate dischargeweighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A dischargeweighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

**WSP** is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

#### BIBLIOGRAPHY

Selected Recent Water-Related U.S. Geological Survey Reports Relevant to Western New York

Clark, R.N., Green, R.O., Swayze, G.A., Hoefen, T.M., Livo, K.E., Pavi, B., Sarcher, C., Boardman, J. and Vance, J.S., 2001, Images of the World Trade Center site show thermal hot spots on September 16 and 23, 2001: U.S. Geological Survey Open-File Report 01-405.

Clark, Roger, Meeker, Greg, Plumlee, Geoff, and Swayze, Gregg, 2002, USGS environmental studies of the World Trade Center area, New York City, after September 11, 2001: U.S. Geological Survey Fact Sheet 0050-02, 4 p.

Daniels, R.A., Riva-Murray, Karen, Halliwell, D.B., Vana-Miller, D.L., and Bilger, M.D., 2002, An index of biological integrity for northern mid-Atlantic slope drainages: Transactions of the American Fisheries Society, v. 131, p. 1044-1060.

Kappel, W.M., and Landre, B.F., 2000 (revised 2002), Managing the water resources of the Oswego River Basin in central New York: U.S. Geological Survey Fact Sheet 180-99, 6 p.

Komor, S.C., 2002, Ground-water age dating in community wells in Oswego County, New York: U.S. Geological Survey Open-File Report 01-232, 16 p.

Lawrence, G.B., 2002, Persistent episodic acidification of streams linked to acid rain effects on soil: Atmospheric Environment, v. 36, no. 10, p. 1589-1598.

Lumia, D.S., and Linsey, K.S., 2002, New York Water-Use Program and Data, 1995: U.S. Geological Survey Fact Sheet 014-02, 6 p.

Moran, M.J., Lapham, W.W., Rowe, B.L., and Zogorski, J.S., 2002, Occurrence and status of volatile organic compounds in ground water from rural, untreated, self-supplied domestic wells in the United States, 1986-99: U.S. Geological Survey Water-Resources Investigations Report 02-4085, 51 p.

Myers, D.N., Chambers, M.J., Dawson, V.K., and others, 2002, Strategic vision for the U.S. Geological Survey in the Great Lakes-St. Lawrence region, 2001-2010: U.S. Geological Survey Open-File Report 02-193, 16 p.

Myers, D.N., 2002, USGS capabilities for interdisciplinary investigations in coastal and nearshore ecosystems of the Great Lakes: U.S. Geological Survey Fact Sheet 055-02, 6 p.

Pair, D.L. and Kappel, W.M., 2002, Geomorphic studies of landslides in the Tully Valley, New York--Implications for public policy and planning: Geomorphology, v. 47, nos. 2-4, p. 125-135.

Phillips, P.J., Eckhardt, D.A., Freehafer, D.A., Wall, G.R., and Ingleston, H.H., 2002, Regional patterns of pesticide concentrations in surface waters of New York in 1997: Journal of the American Water Resources Association, v. 38, no. 3, p. 731-745.

Riva-Murray, Karen, Bode, R.W., Phillips, P.J., and Wall, G.L., 2001, Impact source determation with biomonitoring data in New York State--concordance with environmental data: Northeastern Naturalist, v. 9, no. 2, p. 127-162.

Robertson, D.M., Saad, D.A., and Wieben, A.M., 2001, An alternative regionalization scheme for defining nutrient criteria for rivers and streams: U.S. Geological Survey Water-Resources Investigations Report 01-4073, 57 p.

Yager, R.M., 2001, Estimating Sedimentation Rates in Cayuga Lake, New York, from Sediment Profiles of CS-137 and PB-210 Activity: Proceedings of a Symposium on Environmental Research in the Cayuga Lake Watershed, October 12, 1999, Cornell University, May 2001, p. 210.

Yager, R.M., [2002], Simulated transport and biodegradation of chlorinated ethenes in a fractured dolomite aquifer near Niagara Falls, New York: U.S. Geological Survey Water-Resources Investigations Report 00-4275, 55 p.

Yager, R.M., and Fountain, J.C., 2001, Effect of natural gas exsolution on specific storage in a confined aquifer undergoing water level decline: Journal of Ground Water, v. 39, no. 4, p. 517-525.

# TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The USGS publishes a series of manuals titled the "Techniques of Water-Resources Investigations" that describe procedures for planning and conducting specialized work in water-resources investigations. The material in these manuals is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. Each chapter then is limited to a narrow field of the section subject matter. This publication format permits flexibility when revision or printing is required.

Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at http://water.usgs.gov/pubs/twri/. Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required.

# **Book 1.** Collection of Water Data by Direct Measurement Section D. Water Quality

- 1–D1. Water temperature—Influential factors, field measurement, and data presentation, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1–D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

## **Book 2. Collection of Environmental Data**

#### Section D. Surface Geophysical Methods

- 2–D1. Application of surface geophysics to ground-water investigations, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2–D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS–TWRI book 2, chap. D2. 1988. 86 p.

## Section E. Subsurface Geophysical Methods

- 2–E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS–TWRI book 2, chap. E1. 1971. 126 p.
- 2–E2. Borehole geophysics applied to ground-water investigations, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

# Section F. Drilling and Sampling Methods

2–F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

# **Book 3. Applications of Hydraulics**

# Section A. Surface-Water Techniques

- 3–A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3–A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS–TWRI book 3, chap. A2. 1967. 12 p.
- 3–A3. *Measurement of peak discharge at culverts by indirect methods,* by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3-A4. *Measurement of peak discharge at width contractions* by indirect methods, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3–A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS–TWRI book 3, chap. A5. 1967. 29 p.
- 3–A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3–A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3–A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3–A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS–TWRI book 3, chap. A9. 1989. 27 p.
- 3–Al0. *Discharge ratings at gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. Al0. 1984. 59 p.
- 3–A11. *Measurement of discharge by the moving-boat method,* by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3–A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3–A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3–A14. *Use of flumes in measuring discharge,* by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3–A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.

- 3–A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3–A17. *Acoustic velocity meter systems*, by Antonius Laenen: USGS–TWRI book 3, chap. A17. 1985. 38 p.
- 3–A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3–A19. *Levels at streamflow gaging stations*, by E.J. Kennedy: USGS–TWRI book 3, chap. A19. 1990. 31 p.
- 3–A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3–A21 Stream-gaging cableways, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p.

#### Section B. Ground-Water Techniques

- 3–B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3–B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS–TWRI book 3, chap. B2. 1976. 172 p.
- 3–B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3–B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3–B4. Supplement 1. Regression modeling of ground-water flow—Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS–TWRI book 3, chap. B4. 1993. 8 p.
- 3–B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3–B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.
- 3–B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3–B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

#### Section C. Sedimentation and Erosion Techniques

3–C1. *Fluvial sediment concepts*, by H.P. Guy: USGS–TWRI book 3, chap. C1. 1970. 55 p.

- 3–C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3–C3. *Computation of fluvial-sediment discharge,* by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p.

# **Book 4. Hydrologic Analysis and Interpretation**

#### Section A. Statistical Analysis

- 4–A1. *Some statistical tools in hydrology*, by H.C. Riggs: USGS–TWRI book 4, chap. A1. 1968. 39 p.
- 4–A2. *Frequency curves*, by H.C. Riggs: USGS–TWRI book 4, chap. A2. 1968. 15 p.
- 4–A3. Statistical methods in water resources, by D.R. Helsel and R.M. Hirsch: USGS–TWRI book 4, chap. A3. 1991. Available only online at http://water.usgs.gov/pubs/twri/twri4a3/. (Accessed August 30, 2002.)

# Section B. Surface Water

- 4–B1. *Low-flow investigations,* by H.C. Riggs: USGS–TWRI book 4, chap. B1. 1972. 18 p.
- 4–B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4–B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

# Section D. Interrelated Phases of the Hydrologic Cycle

4–D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS–TWRI book 4, chap.D1. 1970. 17 p.

# **Book 5. Laboratory Analysis**

# Section A. Water Analysis

- 5–A1. *Methods for determination of inorganic substances in water and fluvial sediments,* by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5–A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5–A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw,
   M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5–A4. *Methods for collection and analysis of aquatic biological and microbiological samples,* by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5–A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.

- 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by
   L.C. Friedman and D.E. Erdmann: USGS-TWRI book
   5, chap. A6. 1982. 181 p.Section C. Sediment Analysis
- 5–C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

# **Book 6. Modeling Techniques**

#### Section A. Ground Water

- 6–A1. A modular three-dimensional finite-difference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.
- 6–A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6–A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6–A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS–TWRI book 6, chap. A4. 1992. 108 p.
- 6–A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5. 1993. 243 p.
- 6–A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS–TWRI book 6, chap. A6. 1996. 125 p.
- 6–A7. User's guide to SEAWAT: A computer program for simulation of three-dimensional variable-density ground-water flow, by Weixing Guo and Christian D. Langevin: USGS–TWRI book 6, chap. A7. 2002. 77 p.

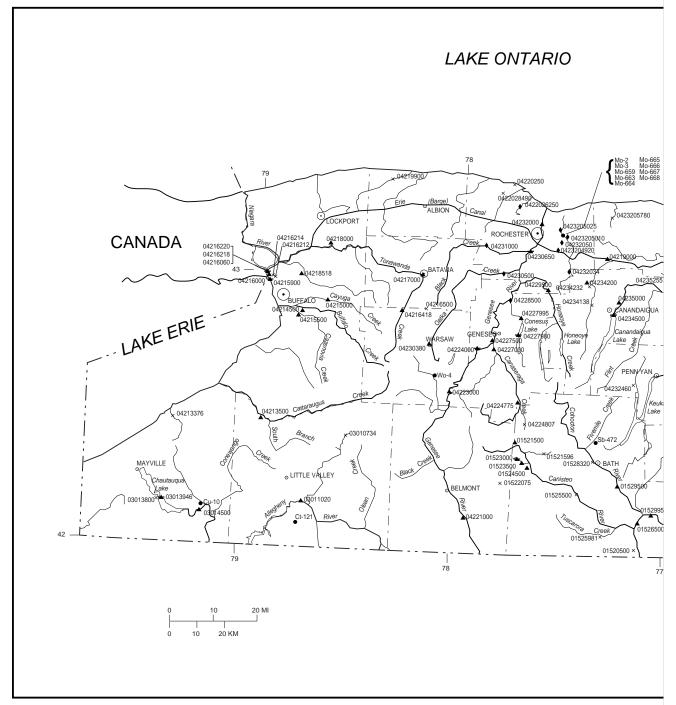
# **Book 7. Automated Data Processing and Computations Section C. Computer Programs**

- 7–C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7–C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7–C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

#### **Book 8. Instrumentation**

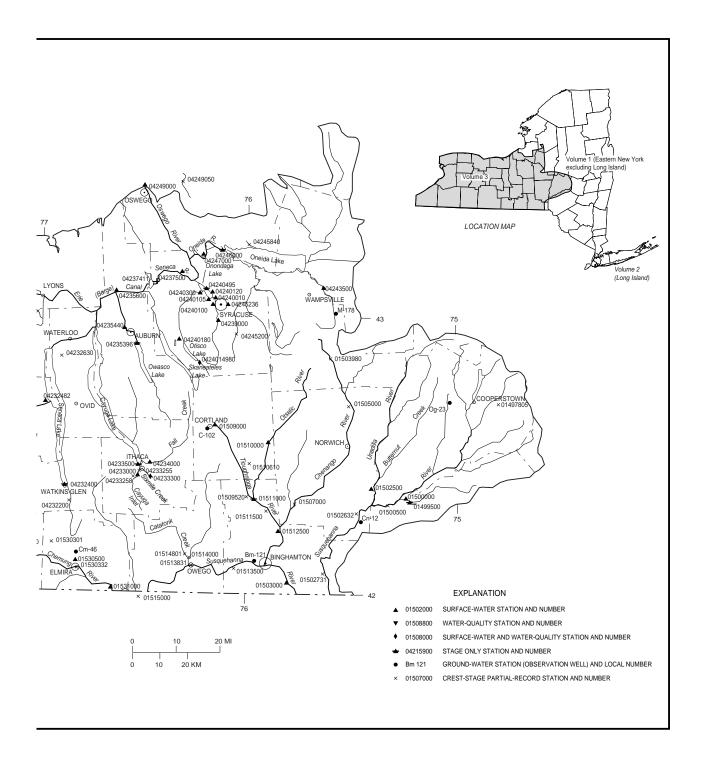
# Section A. Instruments for Measurement of Water Level

- 8–A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8–A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.


# Section B. Instruments for Measurement of Discharge

8–B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS–TWRI book 8, chap. B2. 1968. 15 p.

# Book 9. Handbooks for Water-Resources Investigations Section A. National Field Manual for the Collection of Water-Quality Data


- 9–A1. National field manual for the collection of waterquality data: Preparations for water sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9–A2. National field manual for the collection of water-quality data: Selection of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A2. 1998. 94 p.
- 9–A3. National field manual for the collection of water-quality data: Cleaning of equipment for water sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A3. 1998. 75 p.
- 9–A4. National field manual for the collection of water-quality data: Collection of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9–A5. National field manual for the collection of water-quality data: Processing of water samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9-A6. National field manual for the collection of water-quality data: Field measurements, edited by F.D.
   Wilde and D.B. Radtke: USGS-TWRI book 9, chap.
   A6. 1998. Variously paginated.
- 9–A7. *National field manual for the collection of water-quality data: Biological indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9–A8. National field manual for the collection of waterquality data: Bottom-material samples, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9–A9. National field manual for the collection of waterquality data: Safety in field activities, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

# WATER RESOURCES DATA - NEW YORK, 2002



Base from U.S. Geological Survey digital data, 1:2,000,000, 1972. Albers Equal-Area Conic projection Standard parallels 29 30' and 45 30', central meridian -96 00'.

FIGURE 5. LOCATION OF GAGING STATIONS AND



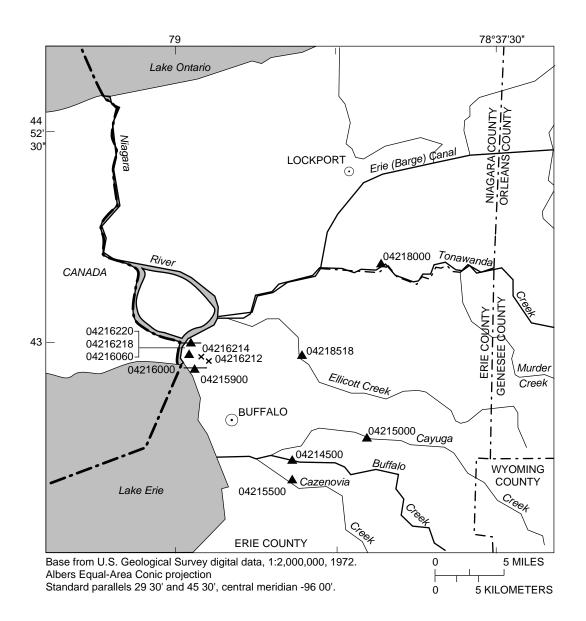
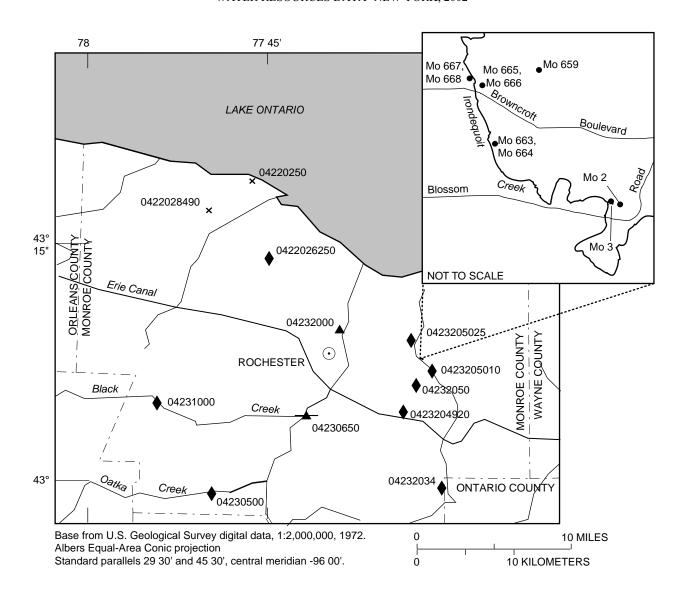






FIGURE 6. LOCATION OF GAGING STATIONS AND OBSERVATION WELLS IN ERIE AND NIAGARA COUNTIES, NY.

#### WATER RESOURCES DATA- NEW YORK, 2002



# **EXPLANATION**

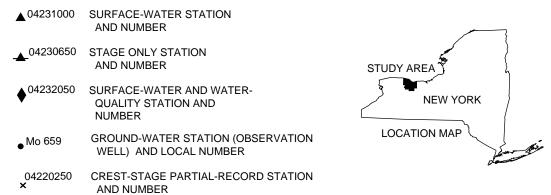



FIGURE 7 . LOCATION OF GAGING STATIONS AND OBSERVATION WELLS IN MONROE COUNTY, NY.

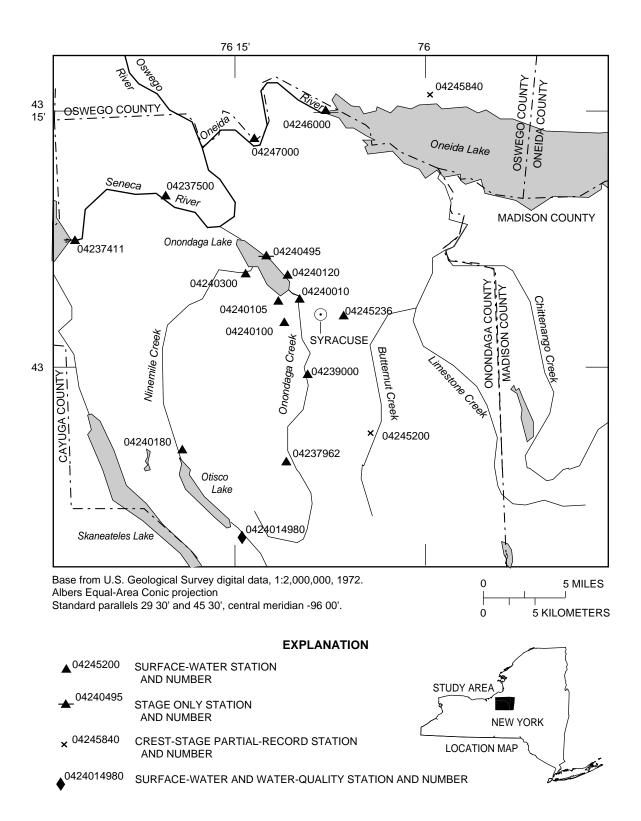
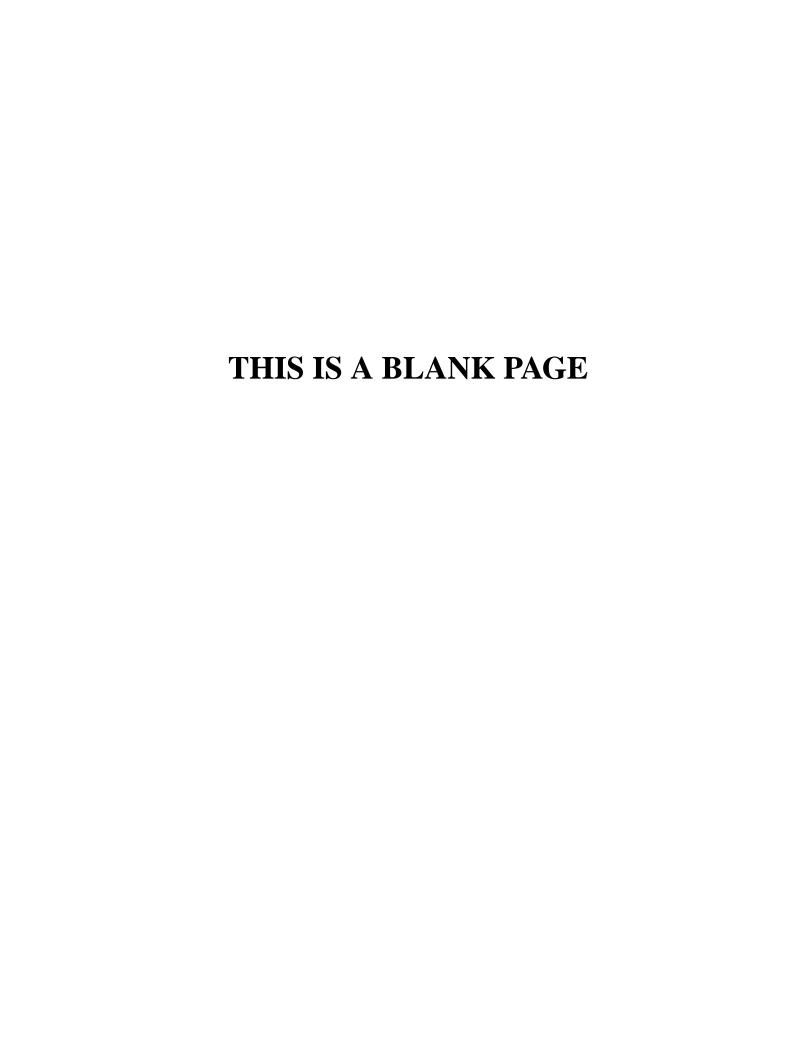




FIGURE 8. LOCATION OF GAGING STATIONS AND OBSERVATION WELLS IN ONONDAGA COUNTY, NY.



#### 01500000 OULEOUT CREEK AT EAST SIDNEY, NY

LOCATION.--Lat 42°20'00", long 75°14'07", Delaware County, Hydrologic Unit 02050101, on right bank 0.2 mi downstream from bridge on County Highway 44, 0.4 mi downstream from East Sidney Dam, at East Sidney, and 3.5 mi upstream from mouth. DRAINAGE AREA.--103 mi<sup>2</sup>.

PERIOD OF RECORD. -- August 1940 to current year. REVISED RECORDS. -- WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,086.23 ft above NGVD of 1929. Prior to June 13, 1947, water-stage recorder at

site 0.5 mi upstream at datum 27.30 ft higher.

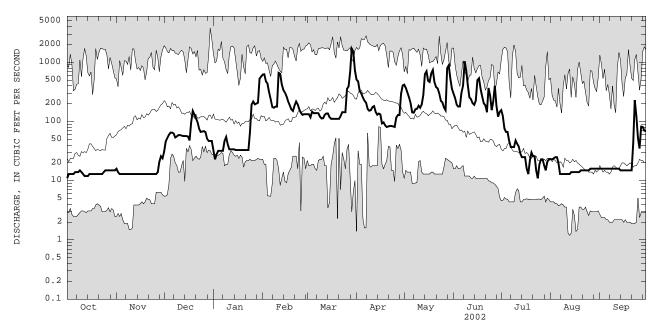
REMARKS.--Records good except those for estimated daily discharges, which are fair. Since November 1949, flow regulated by East Sidney Lake (see station 01499500). Satellite gage-height telemeter at station. Several measurements of water temperature

were made during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 7,250 ft<sup>3</sup>/s, Dec. 30, 1942, gage height, 7.62 ft, site and datum then in use, from rating curve extended above 4,000 ft<sup>3</sup>/s; minimum daily discharge, 1.2 cfs, gage height, 0.32 ft, Aug. 13, 14, 17, 1949, result of construction, minimum instantaneous discharge not determined. Maximum discharge since construction of East Sidney Reservoir in 1950, 4,000 ft<sup>3</sup>/s, Apr. 7, 1960, gage height, 6.19 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.—A discharge of 16,700 ft<sup>3</sup>/s, in July 1935, was determined by computation of flow over dam

and from floodmarks.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,970  $\mathrm{ft}^3/\mathrm{s}$ , Mar. 29, gage height, 4.64  $\mathrm{ft}$ ; minimum discharge, 6.9  $\mathrm{ft}^3/\mathrm{s}$ , Aug. 13, gage height, 0.95 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG SEP e65 e63 13 12 57 34 16 297 ---TOTAL MEAN 13.5 14.2 66.9 38.1 16.2 37.2 MAY 13 MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1950 - 2002, BY WATER YEAR (WY) MEAN 93.2 56.5 39.2 56.1 MAX (WY) MIN 6.95 3.35 4.46 45.0 28.3 33.3 86.2 35.4 16.2 3.86 2.45 (WY) 

e Estimated

# 01500000 OULEOUT CREEK AT EAST SIDNEY, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1950 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 40547.8                | 51561               |                         |
| ANNUAL MEAN              | 111                    | 141                 | 171                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 242 1960                |
| LOWEST ANNUAL MEAN       |                        |                     | 77.9 1965               |
| HIGHEST DAILY MEAN       | 2090 Apr 18            | 1700 Mar 29         | 2800 Apr 7 1960         |
| LOWEST DAILY MEAN        | 9.4 Sep 29             | 11 Oct 1            | 1.4 Apr 1 1989          |
| ANNUAL SEVEN-DAY MINIMUM | 9.8 Sep 24             | 13 Oct 11           | 1.8 Nov 5 1973          |
| 10 PERCENT EXCEEDS       | 222                    | 375                 | 407                     |
| 50 PERCENT EXCEEDS       | 45                     | 60                  | 85                      |
| 90 PERCENT EXCEEDS       | 13                     | 13                  | 12                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### SUSQUEHANNA RIVER BASIN

#### 01502500 UNADILLA RIVER AT ROCKDALE, NY

LOCATION.--Lat 42°22'40", long 75°24'23", Chenango County, Hydrologic Unit 02050101, on right bank 400 ft downstream from Chenango-Otsego County highway bridge at Rockdale, and 0.7 mi downstream from Kent Brook.

DRAINAGE AREA.--520 mi².

PERIOD OF RECORD.--November 1929 to September 1933, January 1937 to March 1995. Annual maximum, water years 1996-2000.

October 2000 to current year.

REVISED RECORDS.--WDR NY 1974: 1973 (P).

GAGE.--Water-stage recorder. Datum of gage is 992.25 ft above NGVD of 1929. Prior to Sept. 30, 1933, nonrecording gage at bridge 400 ft upstream at datum 0.73 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 17,400 ft³/s, Dec. 31, 1942, gage height, 12.98 ft; minimum instantaneous discharge not determined.

Time

1630

Date

Mar. 27

Discharge (ft<sup>3</sup>/s)

Time

No other peak greater than base discharge.

Date

Gage height

(ft.)

discharge not determined.

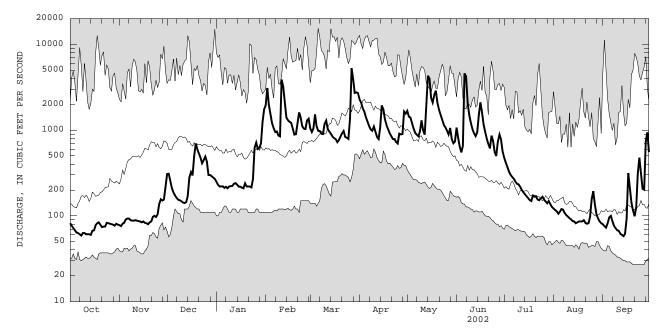
EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 5,700 ft<sup>3</sup>/s and maximum (\*):

Gage height

\*8.51

Discharge (ft<sup>3</sup>/s)

\*5,740


| Minimum disc                                                                                     | charge, 5                        | 8 ft <sup>3</sup> /s, 0         | oct. 8, 1                                   | 4, Sept.                                 | 13, 14, 1                              | 5.                                           |                                      |                                         |                                  |                                        |                                     |                                 |
|--------------------------------------------------------------------------------------------------|----------------------------------|---------------------------------|---------------------------------------------|------------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------------|----------------------------------|----------------------------------------|-------------------------------------|---------------------------------|
| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                                  |                                 |                                             |                                          |                                        |                                              |                                      |                                         |                                  |                                        |                                     |                                 |
| DAY                                                                                              | OCT                              | NOV                             | DEC                                         | JAN                                      | FEB                                    | MAR                                          | APR                                  | MAY                                     | JUN                              | JUL                                    | AUG                                 | SEP                             |
| 1<br>2<br>3<br>4<br>5                                                                            | 82<br>77<br>72<br>68<br>64       | 78<br>76<br>81<br>83<br>91      | 308<br>310<br>256<br>209<br>186             | e250<br>e230<br>e220<br>e220<br>221      | 1940<br>3100<br>1960<br>e1550<br>e1200 | 1050<br>951<br>1050<br>1530                  | 2290<br>2090<br>1800<br>1640<br>1410 | 1680<br>1440<br>1400<br>1210<br>1040    | 1070<br>821<br>644<br>550<br>658 | 473<br>415<br>369<br>329<br>301        | 122<br>117<br>113<br>106<br>112     | 80<br>76<br>73<br>82<br>96      |
| 6                                                                                                | 63                               | 93                              | 173                                         | 212                                      | e1050                                  | 982                                          | 1260                                 | 926                                     | 4600                             | 284                                    | 120                                 | 100                             |
| 7                                                                                                | 61                               | 93                              | 162                                         | 218                                      | e950                                   | 975                                          | 1120                                 | 884                                     | 4220                             | 271                                    | 118                                 | 87                              |
| 8                                                                                                | 59                               | 89                              | 154                                         | e210                                     | 966                                    | 906                                          | 1020                                 | 848                                     | 2060                             | 251                                    | 108                                 | 77                              |
| 9                                                                                                | 63                               | 88                              | 152                                         | e220                                     | 866                                    | 900                                          | 983                                  | 966                                     | 1500                             | 237                                    | 102                                 | 72                              |
| 10                                                                                               | 63                               | 88                              | 148                                         | 222                                      | 846                                    | 1180                                         | 1100                                 | 1300                                    | 1220                             | 233                                    | 98                                  | 68                              |
| 11                                                                                               | 61                               | 89                              | 143                                         | 223                                      | 3890                                   | 1290                                         | 952                                  | 990                                     | 1030                             | 218                                    | 94                                  | 67                              |
| 12                                                                                               | 61                               | 88                              | 141                                         | 237                                      | 3230                                   | 1030                                         | e830                                 | 886                                     | 919                              | 201                                    | 91                                  | 62                              |
| 13                                                                                               | 61                               | 87                              | 145                                         | 241                                      | 2080                                   | 962                                          | 787                                  | 1810                                    | 850                              | 189                                    | 87                                  | 60                              |
| 14                                                                                               | 60                               | 86                              | 172                                         | 231                                      | e1400                                  | 906                                          | 1090                                 | 4320                                    | 940                              | 179                                    | 86                                  | 58                              |
| 15                                                                                               | 67                               | 84                              | 281                                         | 219                                      | e1300                                  | 841                                          | 1940                                 | 3970                                    | 1490                             | 170                                    | 82                                  | 62                              |
| 16                                                                                               | 68                               | 86                              | 325                                         | 219                                      | e1250                                  | 806                                          | 1750                                 | 2370                                    | 2110                             | 161                                    | 84                                  | 93                              |
| 17                                                                                               | 78                               | 83                              | 296                                         | 213                                      | 1220                                   | 784                                          | 1330                                 | 2100                                    | 1620                             | 153                                    | 86                                  | 316                             |
| 18                                                                                               | 82                               | 82                              | 497                                         | e210                                     | 1040                                   | 724                                          | 1140                                 | 2580                                    | 1180                             | 149                                    | 86                                  | 215                             |
| 19                                                                                               | 84                               | 80                              | 699                                         | e240                                     | 887                                    | 764                                          | 1020                                 | 2890                                    | 956                              | 173                                    | 86                                  | 143                             |
| 20                                                                                               | 79                               | 84                              | 595                                         | e220                                     | 897                                    | 837                                          | 916                                  | 2080                                    | 798                              | 170                                    | 89                                  | 115                             |
| 21                                                                                               | 74                               | 86                              | 532                                         | e220                                     | 1190                                   | 916                                          | 847                                  | 1720                                    | 689                              | 167                                    | 83                                  | 99                              |
| 22                                                                                               | 75                               | 97                              | 476                                         | e220                                     | 1610                                   | 975                                          | 784                                  | 1500                                    | 612                              | 155                                    | 81                                  | 127                             |
| 23                                                                                               | 75                               | 100                             | 411                                         | 215                                      | 1390                                   | 831                                          | 786                                  | 1310                                    | 863                              | 152                                    | 82                                  | 308                             |
| 24                                                                                               | 83                               | 97                              | 446                                         | 269                                      | 1100                                   | 816                                          | 727                                  | 1150                                    | 742                              | 160                                    | 98                                  | 477                             |
| 25                                                                                               | 82                               | 104                             | 491                                         | 622                                      | 1040                                   | 791                                          | 698                                  | 1080                                    | 550                              | 167                                    | 156                                 | 305                             |
| 26<br>27<br>28<br>29<br>30<br>31                                                                 | 81<br>80<br>79<br>77<br>81<br>79 | 138<br>156<br>151<br>155<br>218 | 429<br>e300<br>e300<br>e290<br>e280<br>e270 | 716<br>604<br>626<br>698<br>1250<br>1760 | 1030<br>1300<br>1360<br>               | 1350<br>5290<br>3890<br>2720<br>2760<br>2710 | 908<br>891<br>902<br>1650<br>1560    | 986<br>891<br>1060<br>787<br>702<br>736 | 499<br>734<br>889<br>775<br>560  | 155<br>147<br>140<br>149<br>137<br>127 | 194<br>136<br>104<br>93<br>86<br>82 | 207<br>202<br>737<br>942<br>554 |
| TOTAL                                                                                            | 2239                             | 3011                            | 9577                                        | 11676                                    | 41642                                  | 42627                                        | 36221                                | 47612                                   | 36149                            | 6582                                   | 3182                                | 5960                            |
| MEAN                                                                                             | 72.2                             | 100                             | 309                                         | 377                                      | 1487                                   | 1375                                         | 1207                                 | 1536                                    | 1205                             | 212                                    | 103                                 | 199                             |
| MAX                                                                                              | 84                               | 218                             | 699                                         | 1760                                     | 3890                                   | 5290                                         | 2290                                 | 4320                                    | 4600                             | 473                                    | 194                                 | 942                             |
| MIN                                                                                              | 59                               | 76                              | 141                                         | 210                                      | 846                                    | 724                                          | 698                                  | 702                                     | 499                              | 127                                    | 81                                  | 58                              |
| CFSM                                                                                             | 0.14                             | 0.19                            | 0.59                                        | 0.72                                     | 2.86                                   | 2.64                                         | 2.32                                 | 2.95                                    | 2.32                             | 0.41                                   | 0.20                                | 0.38                            |
| IN.                                                                                              | 0.16                             | 0.22                            | 0.69                                        | 0.84                                     | 2.98                                   | 3.05                                         | 2.59                                 | 3.41                                    | 2.59                             | 0.47                                   | 0.23                                | 0.43                            |
| STATIST                                                                                          | CICS OF M                        | ONTHLY MEA                      | AN DATA F                                   | OR WATER                                 | YEARS 193                              | 0 - 2002,                                    | BY WATER                             | YEAR (WY                                | )                                |                                        |                                     |                                 |
| MEAN                                                                                             | 431                              | 773                             | 964                                         | 849                                      | 984                                    | 1768                                         | 2063                                 | 955                                     | 527                              | 288                                    | 197                                 | 277                             |
| MAX                                                                                              | 2944                             | 2223                            | 2104                                        | 1931                                     | 2858                                   | 4181                                         | 5395                                 | 2264                                    | 1710                             | 1209                                   | 836                                 | 2067                            |
| (WY)                                                                                             | 1978                             | 1960                            | 1973                                        | 1952                                     | 1981                                   | 1977                                         | 1940                                 | 1943                                    | 1972                             | 1947                                   | 1992                                | 1977                            |
| MIN                                                                                              | 34.6                             | 51.6                            | 148                                         | 115                                      | 174                                    | 568                                          | 465                                  | 278                                     | 128                              | 65.4                                   | 54.0                                | 34.2                            |
| (WY)                                                                                             | 1965                             | 1965                            | 1931                                        | 1931                                     | 1980                                   | 1941                                         | 1946                                 | 1985                                    | 1964                             | 1962                                   | 1964                                | 1964                            |

e Estimated

# SUSQUEHANNA RIVER BASIN

#### 01502500 UNADILLA RIVER AT ROCKDALE, NY

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1930 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 218546                 | 246478              |                         |
| ANNUAL MEAN              | 599                    | 675                 | 841                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 1294 1943               |
| LOWEST ANNUAL MEAN       |                        |                     | 447 1965                |
| HIGHEST DAILY MEAN       | 11200 Apr 10           | 5290 Mar 27         | 15400 Mar 6 1979        |
| LOWEST DAILY MEAN        | 53 Sep 19              | 58 Sep 14           | 27 Sep 20 1964          |
| ANNUAL SEVEN-DAY MINIMUM | 59 Sep 14              | 61 Oct 8            | 27 Sep 20 1964          |
| ANNUAL RUNOFF (CFSM)     | 1.15                   | 1.30                | 1.62                    |
| ANNUAL RUNOFF (INCHES)   | 15.63                  | 17.63               | 21.97                   |
| 10 PERCENT EXCEEDS       | 1150                   | 1550                | 1970                    |
| 50 PERCENT EXCEEDS       | 296                    | 300                 | 450                     |
| 90 PERCENT EXCEEDS       | 70                     | 80                  | 96                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 01503000 SUSQUEHANNA RIVER AT CONKLIN, NY

LOCATION.--Lat 42°02'07", long 75°48'12", Broome County, Hydrologic Unit 02050101, on left bank at abutment of former highway bridge, 500 ft upstream from bridge on County Highway 304 at Conklin, 0.7 mi downstream from Little Snake Creek, and 3.5 mi downstream from Pennsylvania-New York State line.

DRAINAGE AREA.--2,232 mi².

PERIOD OF RECORD.--November 1912 to current year.

REVISED RECORDS.--WSP 1672: 1918(M, P). WSP 2103: Drainage area. WDR NY-81-3: 1918 (M, P).

GAGE.--Water-stage recorder. Datum of gage is 841.04 ft above NGVD of 1929. Prior to Oct. 4, 1914, nonrecording gage at same site and datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Minor regulation by upstream lakes and reservoirs. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 61,600 ft<sup>3</sup>/s, Mar. 18, 1936, gage height, 20.14 ft; maximum gage height, 20.83 ft, Mar. 22, 1948; minimum discharge, 85 ft<sup>3</sup>/s, Oct. 14, 1964, gage height 1.30 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 18,000 ft<sup>3</sup>/s and maximum (\*):

|     |                                  |                                        |                                 |                                                  |                                                |                          |                                                   | _                                    |                                              |                                      | . ,                                    |                                        |                                     |
|-----|----------------------------------|----------------------------------------|---------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------|---------------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|
|     | Date                             | Tin                                    | ne                              | Discharge<br>(ft <sup>3</sup> /s)                | Gag                                            | ge height<br>(ft)        |                                                   | Date                                 | Tim                                          | ne                                   | Discharge<br>(ft <sup>3</sup> /s)      |                                        | height<br>(ft)                      |
|     | Mar. 2                           | 7 170                                  | 0                               | *23,700                                          |                                                | *12.09                   |                                                   | Jun. 7                               | 073                                          | 30                                   | 20,300                                 | 11                                     | .12                                 |
| Min | imum dis                         | charge, 19                             | 9 ft <sup>3</sup> /s,           | Sept. 15,                                        | gage he                                        | eight, 1.6               | 8 ft.                                             |                                      |                                              |                                      |                                        |                                        |                                     |
|     |                                  |                                        | DISCHA                          | ARGE, CUBIC                                      | FEET P                                         |                          | , WATER YE<br>LY MEAN VA                          |                                      | ER 2001 TO                                   | ) SEPTEME                            | SER 2002                               |                                        |                                     |
|     | DAY                              | OCT                                    | NOV                             | DEC                                              | JAN                                            | FEB                      | MAR                                               | APR                                  | MAY                                          | JUN                                  | JUL                                    | AUG                                    | SEP                                 |
|     | 1                                | 495                                    | 307                             | 948                                              | e920                                           | 7930                     | 3900                                              | 10400                                | 6900                                         | 5310                                 | 2020                                   | 420                                    | 277                                 |
|     | 2                                | 423                                    | 308                             | 978                                              | e900                                           | 10200                    | 3300                                              | 9080                                 | 7170                                         | 4620                                 | 1790                                   | 395                                    | 266                                 |
|     | 3                                | 375                                    | 308                             | 1000                                             | e850                                           | 9780                     | 3250                                              | 7900                                 | 6700                                         | 3670                                 | 1610                                   | 385                                    | 266                                 |
|     | 4                                | 346                                    | 305                             | 946                                              | e820                                           | 6910                     | 3470                                              | 7010                                 | 5800                                         | 2960                                 | 1420                                   | 373                                    | 262                                 |
|     | 5                                | 329                                    | 319                             | 840                                              | e810                                           | 5780                     | 4000                                              | 6370                                 | 5070                                         | 3020                                 | 1280                                   | 371                                    | 273                                 |
|     | 6                                | 315                                    | 339                             | 777                                              | e800                                           | 4860                     | 3360                                              | 5610                                 | 4390                                         | 8910                                 | 1160                                   | 375                                    | 333                                 |
|     | 7                                | 302                                    | 332                             | 706                                              | e820                                           | 4220                     | 3060                                              | 5050                                 | 3960                                         | 19600                                | 1080                                   | 370                                    | 354                                 |
|     | 8                                | 290                                    | 336                             | 654                                              | e820                                           | 3770                     | 3020                                              | 4570                                 | 3780                                         | 14600                                | 993                                    | 398                                    | 321                                 |
|     | 9                                | 276                                    | 337                             | 660                                              | e800                                           | 3560                     | 2870                                              | 4180                                 | 3610                                         | 9340                                 | 940                                    | 366                                    | 287                                 |
|     | 10                               | 269                                    | 323                             | 643                                              | 839                                            | 3400                     | 2930                                              | 4290                                 | 4140                                         | 6770                                 | 891                                    | 339                                    | 260                                 |
|     | 11                               | 261                                    | 316                             | 608                                              | 871                                            | 8960                     | 3240                                              | 4330                                 | 4390                                         | 5440                                 | 834                                    | 321                                    | 240                                 |
|     | 12                               | 254                                    | 312                             | 611                                              | 867                                            | 13200                    | 3390                                              | 3830                                 | 3960                                         | 4590                                 | 794                                    | 309                                    | 228                                 |
|     | 13                               | 253                                    | 303                             | 659                                              | e860                                           | 9600                     | 3070                                              | 3460                                 | 6880                                         | 4240                                 | 708                                    | 302                                    | 213                                 |
|     | 14                               | 252                                    | 299                             | 778                                              | e850                                           | 6860                     | 2960                                              | 3510                                 | 13500                                        | 4030                                 | 672                                    | 295                                    | 207                                 |
|     | 15                               | 292                                    | 295                             | 1010                                             | 863                                            | 5490                     | 2870                                              | 4700                                 | 15600                                        | 5020                                 | 632                                    | 286                                    | 207                                 |
|     | 16                               | 323                                    | 296                             | 1150                                             | e820                                           | 5370                     | 2880                                              | 6410                                 | 12100                                        | 7520                                 | 593                                    | 276                                    | 222                                 |
|     | 17                               | 348                                    | 292                             | 1350                                             | e800                                           | 5070                     | 2750                                              | 5520                                 | 8940                                         | 9210                                 | 558                                    | 273                                    | 226                                 |
|     | 18                               | 365                                    | 287                             | 4390                                             | e760                                           | 4560                     | 2490                                              | 4580                                 | 11700                                        | 6720                                 | 535                                    | 268                                    | 248                                 |
|     | 19                               | 359                                    | 282                             | 3900                                             | e800                                           | 3950                     | 2600                                              | 4140                                 | 13400                                        | 5220                                 | 521                                    | 267                                    | 427                                 |
|     | 20                               | 356                                    | 295                             | 3240                                             | e720                                           | 3540                     | 2660                                              | 3750                                 | 11400                                        | 4210                                 | 555                                    | 275                                    | 413                                 |
|     | 21                               | 351                                    | 303                             | 2660                                             | e780                                           | 3720                     | 3180                                              | 3370                                 | 8660                                         | 3460                                 | 732                                    | 268                                    | 341                                 |
|     | 22                               | 341                                    | 286                             | 2220                                             | 867                                            | 4300                     | 3580                                              | 3160                                 | 7270                                         | 2950                                 | 614                                    | 255                                    | 378                                 |
|     | 23                               | 331                                    | 292                             | 1920                                             | e820                                           | 4920                     | 3430                                              | 2910                                 | 6320                                         | 2630                                 | 567                                    | 260                                    | 781                                 |
|     | 24                               | 364                                    | 298                             | 1810                                             | 974                                            | 4390                     | 3150                                              | 2790                                 | 5510                                         | 3270                                 | 547                                    | 274                                    | 1080                                |
|     | 25                               | 400                                    | 321                             | 1740                                             | 1970                                           | 3740                     | 2940                                              | 2640                                 | 4860                                         | 2870                                 | 507                                    | 308                                    | 1470                                |
|     | 26<br>27<br>28<br>29<br>30<br>31 | 370<br>353<br>350<br>332<br>317<br>313 | 656<br>616<br>605<br>604<br>631 | 1720<br>e1450<br>e1150<br>e1050<br>e1050<br>e950 | e2800<br>e3080<br>2910<br>3090<br>4630<br>6850 | 3520<br>3540<br>3950<br> | 6670<br>21600<br>21400<br>15900<br>13000<br>12000 | 2840<br>3280<br>4460<br>6990<br>7380 | 4430<br>4030<br>4160<br>5400<br>4500<br>5320 | 2640<br>2530<br>3200<br>3000<br>2590 | 524<br>507<br>490<br>474<br>453<br>443 | 323<br>366<br>401<br>357<br>324<br>296 | 1040<br>858<br>1050<br>1300<br>1990 |
|     | TOTAL                            | 10305                                  | 10803                           | 43568                                            | 45361                                          | 159090                   | 168920                                            | 148510                               | 213850                                       | 164140                               | 25444                                  | 10096                                  | 15818                               |
|     | MEAN                             | 332                                    | 360                             | 1405                                             | 1463                                           | 5682                     | 5449                                              | 4950                                 | 6898                                         | 5471                                 | 821                                    | 326                                    | 527                                 |
|     | MAX                              | 495                                    | 656                             | 4390                                             | 6850                                           | 13200                    | 21600                                             | 10400                                | 15600                                        | 19600                                | 2020                                   | 420                                    | 1990                                |
|     | MIN                              | 252                                    | 282                             | 608                                              | 720                                            | 3400                     | 2490                                              | 2640                                 | 3610                                         | 2530                                 | 443                                    | 255                                    | 207                                 |
|     | CFSM                             | 0.15                                   | 0.16                            | 0.63                                             | 0.66                                           | 2.55                     | 2.44                                              | 2.22                                 | 3.09                                         | 2.45                                 | 0.37                                   | 0.15                                   | 0.24                                |
|     | IN.                              | 0.17                                   | 0.18                            | 0.73                                             | 0.76                                           | 2.65                     | 2.82                                              | 2.48                                 | 3.56                                         | 2.74                                 | 0.42                                   | 0.17                                   | 0.26                                |
|     | MEAN                             | 1817                                   | 3307                            | 3915                                             | 3905                                           | 3960                     | 7524                                              | 8437                                 | 4248                                         | 2258                                 | 1419                                   | 971                                    | 1156                                |
|     | MAX                              | 12860                                  | 9281                            | 10680                                            | 10110                                          | 11150                    | 18540                                             | 21340                                | 10590                                        | 8122                                 | 7929                                   | 5033                                   | 8783                                |
|     | (WY)                             | 1978                                   | 1928                            | 1997                                             | 1913                                           | 1981                     | 1936                                              | 1940                                 | 1943                                         | 1917                                 | 1915                                   | 1915                                   | 1977                                |
|     | MIN                              | 130                                    | 140                             | 641                                              | 476                                            | 724                      | 2808                                              | 2000                                 | 1300                                         | 476                                  | 267                                    | 171                                    | 142                                 |

e Estimated

1965

1965

1931

1931

1980

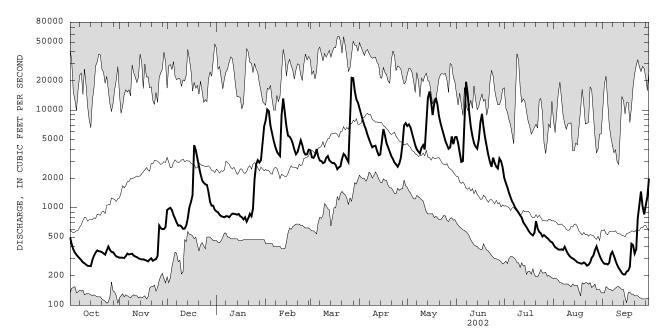
1965

1946

1985

1999

1936


1964

1964

(WY)

# 01503000 SUSQUEHANNA RIVER AT CONKLIN, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1913 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 870324                 | 1015905             |                         |
| ANNUAL MEAN              | 2384                   | 2783                | 3572                    |
| HIGHEST ANNUAL MEAN      |                        |                     | 5667 1928               |
| LOWEST ANNUAL MEAN       |                        |                     | 1690 1965               |
| HIGHEST DAILY MEAN       | 28100 Apr 11           | 21600 Mar 27        | 57800 Mar 19 1936       |
| LOWEST DAILY MEAN        | 201 Sep 20             | 207 Sep 14          | 105 Oct 24 1964         |
| ANNUAL SEVEN-DAY MINIMUM | 221 Sep 7              | 220 Sep 11          | 114 Oct 19 1964         |
| ANNUAL RUNOFF (CFSM)     | 1.07                   | 1.25                | 1.60                    |
| ANNUAL RUNOFF (INCHES)   | 14.51                  | 16.93               | 21.74                   |
| 10 PERCENT EXCEEDS       | 5570                   | 6870                | 8390                    |
| 50 PERCENT EXCEEDS       | 1170                   | 1050                | 2000                    |
| 90 PERCENT EXCEEDS       | 281                    | 292                 | 420                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 01509000 TIOUGHNIOGA RIVER AT CORTLAND, NY

LOCATION.--Lat 42°36'10", long 76°09'35", Cortland County, Hydrologic Unit 02050102, on right bank at east end of Elm Street at Cortland, 0.4 mi downstream from confluence of East and West Branches.

DRAINAGE AREA.--292 mi², including 14.0 mi², the flow from which may be diverted into De Ruyter Reservoir in Oswego River basin.

PERIOD OF RECORD.--May 1938 to current year.

REVISED RECORDS.--WSP 2103: Drainage area. WDR NY 1974: 1973.

GAGE.--Water-stage recorder. Datum of gage is 1,084.92 ft above NGVD of 1929. Prior to Oct. 1, 1939, water-stage recorder at datum 4.00 ft higher; Oct. 1, 1939 to Sept. 30, 1963, water-stage recorder at datum 3.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation at low and medium flow caused by powerplants in mills on West Branch. Slight diversion from East Branch for operation of Erie (Barge) Canal. Slight diversion from Gate House Pond on West Branch 17 mi upstream from station into Onondaga Creek basin (St. Lawrence River basin) for manufacturing purposes by Linden Chlorine Process Co. Telephone and satellite gage-height telemeters at station. Several measurements of temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,000 ft<sup>3</sup>/s, Mar. 5, 1964, gage height, 12.49 ft; maximum gage height, 13.82 ft, Apr. 5, 1950; minimum discharge, 9.8 ft<sup>3</sup>/s, Sept. 20, 1939, Sept. 29, 1959.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,400 ft<sup>3</sup>/s and maximum (\*):

| Date                  | Tir                             | me                              | Discharge<br>(ft <sup>3</sup> /s) | Gage                              | height<br>(ft)                       |                                      | Date                              | Time                            |                                 | Discharge<br>(ft <sup>3</sup> /s) |                                 | height<br>ft)              |
|-----------------------|---------------------------------|---------------------------------|-----------------------------------|-----------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------|---------------------------------|-----------------------------------|---------------------------------|----------------------------|
| Feb.                  | 2 133                           | 15                              | *3,380                            | *7                                | 7.58                                 |                                      |                                   |                                 |                                 |                                   |                                 |                            |
| Minimum di            | scharge, 50                     | 0 ft <sup>3</sup> /s, S         | Sept. 15.                         |                                   |                                      |                                      |                                   |                                 |                                 |                                   |                                 |                            |
|                       |                                 | DISCHAF                         | RGE, CUBIC                        | FEET PER                          |                                      | WATER YEA<br>Y MEAN VAI              |                                   | 2001 TO                         | SEPTEMB:                        | ER 2002                           |                                 |                            |
| DAY                   | OCT                             | NOV                             | DEC                               | JAN                               | FEB                                  | MAR                                  | APR                               | MAY                             | JUN                             | JUL                               | AUG                             | SEP                        |
| 1<br>2<br>3<br>4<br>5 | 141<br>128<br>118<br>109<br>104 | 111<br>117<br>124<br>127<br>149 | 887<br>708<br>550<br>465<br>413   | e320<br>e300<br>287<br>285<br>277 | 2270<br>3220<br>2120<br>1450<br>1070 | e640<br>e580<br>e750<br>e930<br>e640 | 1080<br>1000<br>920<br>861<br>755 | 938<br>840<br>812<br>703<br>616 | 563<br>448<br>362<br>325<br>465 | 287<br>264<br>246<br>228<br>219   | 118<br>112<br>109<br>106<br>105 | 75<br>71<br>71<br>69<br>66 |
| 6<br>7<br>8<br>9      | 103<br>100<br>96<br>93          | 143<br>139<br>129<br>136        | 385<br>335<br>304<br>291          | 270<br>277<br>251<br>257          | 927<br>804<br>730<br>660             | e620<br>621<br>571<br>579            | 679<br>605<br>566<br>578          | 555<br>570<br>565<br>704        | 954<br>782<br>578<br>465        | 206<br>194<br>181<br>171          | 104<br>98<br>94<br>90           | 68<br>64<br>62<br>61       |

| 8                                | 96                                     | 129                             | 304                                       | 251                                      | 730                   | 571                                         | 566                             | 565                                    | 578                             | 181                                    | 94                                 | 62                               |
|----------------------------------|----------------------------------------|---------------------------------|-------------------------------------------|------------------------------------------|-----------------------|---------------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------------|------------------------------------|----------------------------------|
| 9                                | 93                                     | 136                             | 291                                       | 257                                      | 660                   | 579                                         | 578                             | 704                                    | 465                             | 171                                    | 90                                 | 61                               |
| 10                               | 91                                     | 143                             | 279                                       | 262                                      | 644                   | 788                                         | 676                             | 683                                    | 396                             | 168                                    | 87                                 | 59                               |
| 11                               | 91                                     | 134                             | 260                                       | 295                                      | 1960                  | 692                                         | 561                             | 561                                    | 350                             | 159                                    | 84                                 | 55                               |
| 12                               | 86                                     | 129                             | 253                                       | 295                                      | 1590                  | 628                                         | 489                             | 639                                    | 341                             | 148                                    | 81                                 | 55                               |
| 13                               | 82                                     | 126                             | 261                                       | 287                                      | 1230                  | 576                                         | 604                             | 1500                                   | 342                             | 142                                    | 78                                 | 55                               |
| 14                               | 83                                     | 119                             | 285                                       | 271                                      | e870                  | 535                                         | 1450                            | 2910                                   | 761                             | 136                                    | 77                                 | 52                               |
| 15                               | 92                                     | 115                             | 396                                       | 260                                      | e840                  | 483                                         | 2520                            | 2960                                   | 1400                            | 132                                    | 74                                 | 97                               |
| 16                               | 101                                    | 116                             | 365                                       | 262                                      | 780                   | 432                                         | 2120                            | 1980                                   | 1560                            | 127                                    | 74                                 | 319                              |
| 17                               | 103                                    | 113                             | 378                                       | 256                                      | 762                   | 390                                         | 1430                            | 1820                                   | 1250                            | 122                                    | 75                                 | 206                              |
| 18                               | 110                                    | 109                             | 795                                       | 253                                      | e640                  | 394                                         | 1110                            | 1920                                   | 974                             | 119                                    | 74                                 | 133                              |
| 19                               | 108                                    | 107                             | 945                                       | e235                                     | e570                  | 436                                         | 928                             | 1830                                   | 748                             | 118                                    | 75                                 | 110                              |
| 20                               | 100                                    | 114                             | 886                                       | e260                                     | 590                   | 443                                         | 822                             | 1420                                   | 611                             | 120                                    | 77                                 | 97                               |
| 21                               | 96                                     | 125                             | 833                                       | e260                                     | 792                   | 506                                         | 725                             | 1160                                   | 519                             | 115                                    | 74                                 | 92                               |
| 22                               | 105                                    | 127                             | 719                                       | 251                                      | 1040                  | 519                                         | 657                             | 986                                    | 445                             | 111                                    | 72                                 | 97                               |
| 23                               | 119                                    | 135                             | 646                                       | 251                                      | 854                   | 456                                         | 630                             | 847                                    | 569                             | 114                                    | 71                                 | 262                              |
| 24                               | 114                                    | 123                             | 721                                       | 336                                      | 699                   | 455                                         | 561                             | 746                                    | 460                             | 161                                    | 109                                | 251                              |
| 25                               | 111                                    | 132                             | 673                                       | 599                                      | 689                   | 431                                         | 560                             | 684                                    | 378                             | 133                                    | 137                                | 169                              |
| 26<br>27<br>28<br>29<br>30<br>31 | 110<br>123<br>126<br>126<br>137<br>114 | 226<br>240<br>224<br>355<br>553 | 568<br>466<br>443<br>e400<br>e380<br>e360 | 520<br>486<br>518<br>604<br>1090<br>1260 | 679<br>829<br>736<br> | 522<br>1440<br>1210<br>1140<br>1380<br>1230 | 637<br>539<br>567<br>922<br>861 | 606<br>538<br>476<br>432<br>428<br>432 | 345<br>456<br>542<br>400<br>323 | 120<br>115<br>114<br>173<br>162<br>129 | 116<br>101<br>92<br>87<br>81<br>78 | 132<br>177<br>1090<br>701<br>400 |
| TOTAL                            | 3320                                   | 4740                            | 15650                                     | 11635                                    | 30045                 | 21017                                       | 26413                           | 31861                                  | 18112                           | 4934                                   | 2810                               | 5216                             |
| MEAN                             | 107                                    | 158                             | 505                                       | 375                                      | 1073                  | 678                                         | 880                             | 1028                                   | 604                             | 159                                    | 90.6                               | 174                              |
| MAX                              | 141                                    | 553                             | 945                                       | 1260                                     | 3220                  | 1440                                        | 2520                            | 2960                                   | 1560                            | 287                                    | 137                                | 1090                             |
| MIN                              | 82                                     | 107                             | 253                                       | 235                                      | 570                   | 390                                         | 489                             | 428                                    | 323                             | 111                                    | 71                                 | 52                               |
| CFSM                             | 0.37                                   | 0.54                            | 1.73                                      | 1.29                                     | 3.67                  | 2.32                                        | 3.02                            | 3.52                                   | 2.07                            | 0.55                                   | 0.31                               | 0.60                             |

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1938 - 2002, BY WATER YEAR (WY)

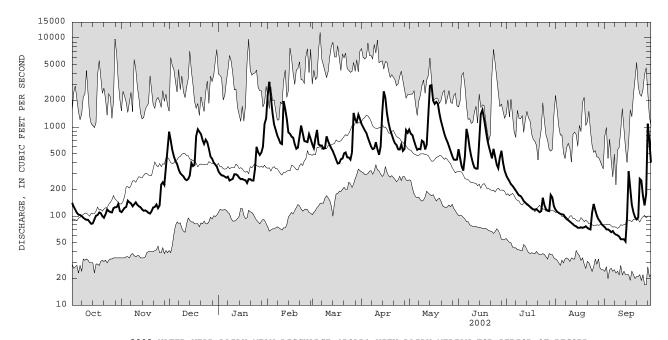
3.83

1.99

| MEAN | 243  | 419  | 566  | 523  | 567  | 1038 | 1254 | 584  | 335  | 183  | 129  | 152  |
|------|------|------|------|------|------|------|------|------|------|------|------|------|
| MAX  | 1553 | 1119 | 1537 | 1415 | 1469 | 2432 | 3487 | 1539 | 1674 | 539  | 480  | 1125 |
| (WY) | 1978 | 1969 | 1997 | 1998 | 1976 | 1945 | 1993 | 2000 | 1972 | 1976 | 1992 | 1977 |
| MIN  | 33.2 | 44.3 | 86.7 | 112  | 127  | 359  | 305  | 205  | 77.7 | 43.5 | 34.6 | 23.8 |
| (WY) | 1965 | 1965 | 1961 | 1961 | 1963 | 1941 | 1946 | 1999 | 1999 | 1962 | 1939 | 1939 |

2.31

0.63


0.66

IN.

e Estimated

# 01509000 TIOUGHNIOGA RIVER AT CORTLAND, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1938 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 162261                 | 175753              |                         |
| ANNUAL MEAN              | 445                    | 482                 | 498                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 723 1943                |
| LOWEST ANNUAL MEAN       |                        |                     | 303 1965                |
| HIGHEST DAILY MEAN       | 7160 Apr 9             | 3220 Feb 2          | 11500 Mar 6 1979        |
| LOWEST DAILY MEAN        | 66 Sep 16              | 52 Sep 14           | 17 Sep 26 1959          |
| ANNUAL SEVEN-DAY MINIMUM | 67 Sep 15              | 57 Sep 8            | 21 Sep 19 1939          |
| ANNUAL RUNOFF (CFSM)     | 1.52                   | 1.65                | 1.71                    |
| ANNUAL RUNOFF (INCHES)   | 20.67                  | 22.39               | 23.18                   |
| 10 PERCENT EXCEEDS       | 897                    | 992                 | 1110                    |
| 50 PERCENT EXCEEDS       | 210                    | 341                 | 283                     |
| 90 PERCENT EXCEEDS       | 86                     | 91                  | 70                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### SUSQUEHANNA RIVER BASIN

#### 01510000 OTSELIC RIVER AT CINCINNATUS, NY

LOCATION.--Lat 42°32'28", long 75°54'00", Cortland County, Hydrologic Unit 02050102, on right bank 150 ft upstream from Mead Brook, and 300 ft downstream from bridge on County Highway 159 at Cincinnatus.

DRAINAGE AREA.--147 mi².

PERIOD OF RECORD.--June 1938 to September 164, October 1969 to current year. REVISED RECORDS.--WSP 2103: Drainage area.> GAGE.--Water-stage recorder. Datum of gage is 1,031.67 ft above NGVD of 1929.

GAGE.--Water-stage recorder. Datum of gage is 1,031.6/ It above NGVD of 1925.

REMARKS.--Records good except those for esimated daily discharges, which are fair. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,390 ft<sup>3</sup>/s, Dec. 30, 1942; maximum gage height, 10.89 ft, Jan. 19, 1996, ice jam; minimum discharge, 3.8 ft<sup>3</sup>/s, Sept. 25, 1939.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,500 ft<sup>3</sup>/s and maximum (\*):

Discharge (ft<sup>3</sup>/s)

43

1853

59.8

0.41

1962

114

37

19

18

738

23.8

0.16

0.19

1964

14

411

6513.2

217

2190

8.7

1.48 1.65

86.5

706 1977

5.54

1964

Time

Gage height

(ft)

Discharge (ft<sup>3</sup>/s) Gage height (ft) Time Date Date

| Feb. 1                     |                            |                            | 2,750<br>2,510                  |                                    | .56<br>.24                         |                                 | Sept. 28                         | 0130                               | 0                                | *3,220                       | *6                         | .16                           |
|----------------------------|----------------------------|----------------------------|---------------------------------|------------------------------------|------------------------------------|---------------------------------|----------------------------------|------------------------------------|----------------------------------|------------------------------|----------------------------|-------------------------------|
| Minimum dis                | charge, 7.                 | $7 \text{ ft}^3/\text{s},$ | Sept. 15.                       |                                    |                                    |                                 |                                  |                                    |                                  |                              |                            |                               |
|                            |                            | DISCHA                     | RGE, CUBIC                      | FEET PER                           |                                    | WATER YEA<br>MEAN VAI           |                                  | 2001 TO                            | SEPTEMBE                         | R 2002                       |                            |                               |
| DAY                        | OCT                        | NOV                        | DEC                             | JAN                                | FEB                                | MAR                             | APR                              | MAY                                | JUN                              | JUL                          | AUG                        | SEP                           |
| 1<br>2<br>3<br>4<br>5      | 49<br>44<br>40<br>37<br>35 | 40<br>39<br>44<br>48<br>48 | 535<br>332<br>262<br>223<br>202 | e120<br>e130<br>e125<br>127<br>121 | 1720<br>1730<br>866<br>664<br>507  | 336<br>305<br>478<br>526<br>341 | 679<br>588<br>516<br>435<br>369  | 596<br>514<br>492<br>392<br>330    | 274<br>163<br>135<br>122<br>331  | 114<br>103<br>93<br>85<br>81 | 37<br>34<br>32<br>29<br>31 | 16<br>15<br>15<br>18<br>16    |
| 6<br>7<br>8<br>9<br>10     | 33<br>31<br>31<br>33<br>31 | 52<br>53<br>51<br>50<br>51 | 184<br>162<br>145<br>143<br>134 | 118<br>119<br>100<br>112<br>110    | 441<br>370<br>331<br>291<br>362    | 338<br>327<br>288<br>305<br>696 | 328<br>277<br>262<br>253<br>291  | 283<br>294<br>278<br>467<br>408    | 1220<br>620<br>394<br>290<br>234 | 76<br>73<br>68<br>63<br>61   | 33<br>28<br>26<br>24<br>23 | 15<br>14<br>13<br>12          |
| 11<br>12<br>13<br>14<br>15 | 29<br>28<br>28<br>27<br>31 | 51<br>50<br>48<br>48<br>48 | 125<br>116<br>137<br>159<br>238 | 127<br>125<br>121<br>111<br>108    | 1700<br>823<br>625<br>455<br>436   | 456<br>394<br>353<br>320<br>286 | 230<br>200<br>232<br>537<br>1810 | 299<br>412<br>1190<br>2050<br>1440 | 190<br>185<br>173<br>589<br>1020 | 56<br>52<br>51<br>48<br>45   | 22<br>21<br>19<br>19<br>18 | 10<br>9.9<br>9.6<br>8.7<br>23 |
| 16<br>17<br>18<br>19<br>20 | 31<br>36<br>40<br>38<br>36 | 48<br>48<br>45<br>45<br>48 | 189<br>226<br>523<br>508<br>447 | 107<br>104<br>102<br>85<br>e100    | 399<br>370<br>e285<br>e250<br>e260 | 275<br>236<br>234<br>246<br>256 | 954<br>689<br>559<br>465<br>393  | 886<br>961<br>1150<br>944<br>724   | 1210<br>820<br>597<br>440<br>334 | 43<br>40<br>38<br>52<br>91   | 18<br>16<br>16<br>15<br>16 | 418<br>109<br>69<br>53<br>45  |
| 21<br>22<br>23<br>24<br>25 | 34<br>39<br>50<br>49<br>46 | 53<br>55<br>54<br>54<br>60 | 398<br>337<br>305<br>334<br>291 | e100<br>103<br>101<br>198<br>361   | 463<br>567<br>414<br>332<br>335    | 284<br>281<br>241<br>237<br>220 | 335<br>306<br>287<br>238<br>274  | 609<br>515<br>429<br>372<br>337    | 265<br>222<br>298<br>209<br>160  | 53<br>45<br>43<br>58<br>47   | 15<br>14<br>15<br>26<br>53 | 39<br>63<br>991<br>292<br>153 |
| 26<br>27<br>28<br>29       | 43<br>43<br>45<br>45       | 113<br>100<br>93<br>230    | 246<br>197<br>e200<br>e180      | 266<br>254<br>271<br>318           | 351<br>584<br>425                  | 445<br>1240<br>755<br>763       | 327<br>242<br>297<br>556         | 281<br>233<br>196<br>169           | 150<br>296<br>201<br>150         | 40<br>38<br>37<br>64         | 33<br>26<br>22<br>20       | 117<br>635<br>2190<br>722     |

496

13425

448 1810

200

3.04

3.40

1946

159

164

17574

567

2050

159

3.86

4.45

1985

126

11418

381

1220

122

2.59 2.89

1962

962

748

13172

425 1240

220

2.89

1941

| STAT | ISTICS OF | F MONTHLY | MEAN DATA | FOR WATER | YEARS 1938 | 8 - 2002, | BY WATER | R YEAR (WY | ")   |      |      |
|------|-----------|-----------|-----------|-----------|------------|-----------|----------|------------|------|------|------|
| MEAN | 143       | L 24      | 325       | 274       | 292        | 580       | 679      | 298        | 160  | 85.0 | 54.3 |
| MAX  | 713       | 62        | 8 841     | 716       | 764        | 1302      | 1693     | 927        | 773  | 299  | 277  |
| (WY) | 1978      | 3 196     | 1997      | 1998      | 1976       | 1945      | 1940     | 2000       | 1972 | 1976 | 1994 |
| MIN  | 9.90      | 23.       | 3 66.9    | 55.6      | 63.1       | 178       | 150      | 80.3       | 24.6 | 12.5 | 8.99 |

16356

584 1730

250

3.97

4.14

1987

742

701

5687

183

742

85

1.25

1.44

1961

e155

e140

7773

251

535

116

1.71 1.97

1961

30

31

TOTAL

MEAN

CFSM

IN.

(WY)

MAX MIN 43

42

2102

70.1

335

0.48

1954

39

1167

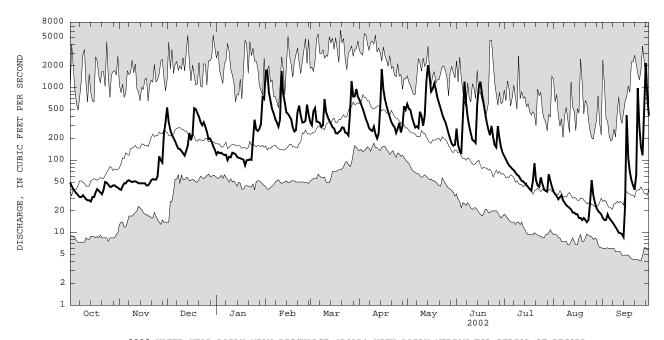
37.6

0.26

0.30

1964

50


27

e Estimated

49

# 01510000 OTSELIC RIVER AT CINCINNATUS, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1938 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 79135                  | 97778.2             |                         |
| ANNUAL MEAN              | 217                    | 268                 | 267                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 391 1943                |
| LOWEST ANNUAL MEAN       |                        |                     | 151 1995                |
| HIGHEST DAILY MEAN       | 3700 Apr 10            | 2190 Sep 28         | 6200 Mar 20 1948        |
| LOWEST DAILY MEAN        | 12 Sep 19              | 8.7 Sep 14          | 4.1 Sep 24 1939         |
| ANNUAL SEVEN-DAY MINIMUM | 13 Sep 13              | 11 Sep 8            | 4.3 Sep 19 1939         |
| ANNUAL RUNOFF (CFSM)     | 1.47                   | 1.82                | 1.82                    |
| ANNUAL RUNOFF (INCHES)   | 20.03                  | 24.74               | 24.70                   |
| 10 PERCENT EXCEEDS       | 460                    | 613                 | 612                     |
| 50 PERCENT EXCEEDS       | 90                     | 160                 | 136                     |
| 90 PERCENT EXCEEDS       | 23                     | 26                  | 23                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 01512500 CHENANGO RIVER NEAR CHENANGO FORKS, NY

LOCATION.--Lat 42°13'05", long 75°50'55", Broome County, Hydrologic Unit 02050102, on left bank in Chenango Valley State Park, and 1.2 mi downstream from Tioughnioga River and village of Chenango Forks.

DRAINAGE AREA.--1,483 mi<sup>2</sup>.

GAGE.--Water-stage recorder. Datum of gage is 871.63 ft above NGVD of 1929. Nov. 11, 1912 to Oct. 1, 1914, nonrecording gage and Oct. 2, 1914 to Aug. 2, 1936, water-stage recorder at site 300 ft upstream at same datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Since March 1942, flood flows partly regulated by Whitney Point Lake (see station 01511000). Slight diversion from upstream tributaries for operation of Erie (Barge) Canal. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 96,000 ft<sup>3</sup>/s, July 8, 1935, gage height, 20.3 ft, from floodmarks, from rating curve extended above 32,000 ft<sup>3</sup>/s on basis of slope-area measurement of peak flow; minimum discharge, 79 ft<sup>3</sup>/s, Sept. 3, 4, 5, 6, 1999. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 18,000 ft<sup>3</sup>/s and maximum (\*):

| Date                                                                                          | Time         | e                     | Discharge<br>(ft <sup>3</sup> /s) |         | e height<br>(ft) |          | Date | Time  | e     | Discharge<br>(ft <sup>3</sup> /s) |     | height<br>ft) |
|-----------------------------------------------------------------------------------------------|--------------|-----------------------|-----------------------------------|---------|------------------|----------|------|-------|-------|-----------------------------------|-----|---------------|
| Jun.                                                                                          | 6 1200       | 0                     | *15,500                           |         | *8.83            |          |      |       |       |                                   |     |               |
| Minimum di                                                                                    | scharge, 149 | 9 ft <sup>3</sup> /s, | Sept. 13,                         | 14, 15, | gage heig        | ht, 2.39 | ft.  |       |       |                                   |     |               |
| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES |              |                       |                                   |         |                  |          |      |       |       |                                   |     |               |
| DAY                                                                                           | OCT          | NOV                   | DEC                               | JAN     | FEB              | MAR      | APR  | MAY   | JUN   | JUL                               | AUG | SEP           |
| 1                                                                                             | 527          | 430                   | 2790                              | e1200   | 8090             | 2860     | 5530 | 4570  | 2370  | 1500                              | 371 | 225           |
| 2                                                                                             | 452          | 464                   | 2650                              | e1160   | 11300            | 2500     | 4980 | 4130  | 2180  | 1250                              | 346 | 219           |
| 3                                                                                             | 406          | 504                   | 2220                              | e1120   | 8770             | 2660     | 4370 | 3900  | 1740  | 1110                              | 326 | 210           |
| 4                                                                                             | 373          | 517                   | 1980                              | e1100   | 6740             | 3560     | 3880 | 3370  | 1440  | 1010                              | 304 | 219           |
| 5                                                                                             | 346          | 544                   | 1760                              | 1060    | e4650            | 3070     | 3280 | 2850  | 1640  | 891                               | 305 | 204           |
| 6                                                                                             | 325          | 575                   | 1610                              | 1040    | e3750            | 2590     | 2970 | 2520  | 13700 | 759                               | 296 | 204           |
| 7                                                                                             | 312          | 560                   | 1520                              | 1050    | e3300            | 2510     | 2690 | 2410  | 10600 | 727                               | 296 | 206           |
| 8                                                                                             | 296          | 539                   | 1420                              | e990    | 3030             | 2390     | 2400 | 2410  | 5710  | 726                               | 282 | 196           |
| 9                                                                                             | 281          | 518                   | 1370                              | 993     | 2830             | 2320     | 2220 | 2710  | 3530  | 715                               | 267 | 187           |
| 10                                                                                            | 271          | 511                   | 1320                              | 1020    | 2770             | 2950     | 2680 | 3600  | 2850  | 688                               | 258 | 180           |
| 11                                                                                            | 277          | 511                   | 1190                              | 1070    | 10400            | 3360     | 2340 | 2900  | 2360  | 622                               | 249 | 169           |
| 12                                                                                            | 292          | 479                   | 1160                              | 1130    | 9230             | 3160     | 2040 | 2690  | 2010  | 547                               | 241 | 158           |
| 13                                                                                            | 292          | 428                   | 1180                              | 1130    | 6600             | 2710     | 1950 | 5930  | 2010  | 498                               | 234 | 152           |
| 14                                                                                            | 281          | 416                   | 1340                              | 1090    | e4200            | 2340     | 3400 | 12100 | 2960  | 475                               | 227 | 149           |
| 15                                                                                            | 312          | 405                   | 1910                              | 1040    | e3850            | 2250     | 7690 | 12000 | 7420  | 452                               | 221 | 161           |
| 16                                                                                            | 342          | 401                   | 1830                              | 1030    | 3740             | 2230     | 7790 | 8820  | 11700 | 429                               | 202 | 710           |
| 17                                                                                            | 360          | 397                   | 1810                              | 1020    | 3590             | 2150     | 5370 | 6730  | 8680  | 406                               | 205 | 965           |
| 18                                                                                            | 407          | 397                   | 4730                              | 1000    | 3070             | 2020     | 4300 | 8760  | 5100  | 397                               | 206 | 795           |
| 19                                                                                            | 417          | 381                   | 4630                              | e930    | 2600             | 2070     | 3580 | 8990  | 3710  | 442                               | 198 | 510           |
| 20                                                                                            | 385          | 377                   | 3640                              | e920    | 2480             | 2210     | 3100 | 6390  | 2940  | 522                               | 206 | 392           |
| 21                                                                                            | 352          | 388                   | 3300                              | e980    | 2990             | 2610     | 2800 | 5140  | 2390  | 493                               | 203 | 318           |
| 22                                                                                            | 353          | 402                   | 2810                              | 983     | 4100             | 2860     | 2560 | 4280  | 1990  | 463                               | 195 | 331           |

CFSM 0.25 0.37 1.42 1.04 3.16 2.38 2.37 3.05 2.66 0.41 0.18 0.66 IN. 0.29 0.41 1.63 1.20 3.29 2.75 2.64 3.52 2.96 0.48 0.20 0.73 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1913 - 2002, BY WATER YEAR (WY) MEAN 1978 MAX (WY) MIN (WY) 

TOTAL

MEAN

MAY

MIN

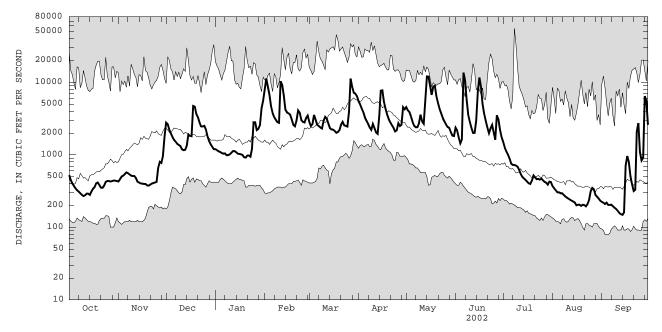
e1800

e1550

e1400

e1300

e1200


1160

---

e Estimated

# 01512500 CHENANGO RIVER NEAR CHENANGO FORKS, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1913 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 697541                 | 801686              |                         |
| ANNUAL MEAN              | 1911                   | 2196                | 2414                    |
| HIGHEST ANNUAL MEAN      |                        |                     | 3618 1943               |
| LOWEST ANNUAL MEAN       |                        |                     | 1307 1965               |
| HIGHEST DAILY MEAN       | 20800 Apr 10           | 13700 Jun 6         | 55400 Jul 8 1935        |
| LOWEST DAILY MEAN        | 157 Sep 19             | 149 Sep 14          | 79 Sep 5 1999           |
| ANNUAL SEVEN-DAY MINIMUM | 166 Sep 17             | 165 Sep 9           | 86 Sep 1 1999           |
| ANNUAL RUNOFF (CFSM)     | 1.29                   | 1.48                | 1.63                    |
| ANNUAL RUNOFF (INCHES)   | 17.50                  | 20.11               | 22.11                   |
| 10 PERCENT EXCEEDS       | 4270                   | 4830                | 5960                    |
| 50 PERCENT EXCEEDS       | 960                    | 1520                | 1300                    |
| 90 PERCENT EXCEEDS       | 271                    | 279                 | 300                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 01515000 SUSQUEHANNA RIVER NEAR WAVERLY, NY

LOCATION.--Lat 41°59'05", long 76°30'05", Bradford County, Pa., Hydrologic Unit 02050103, on left bank 0.2 mi upstream from Cayuta Creek, 0.4 mi upstream from bridge on East Lockhart Street at Sayre, Pa., 1 mi downstream from New York-Pennsylvania State line, and 2 mi southeast of Waverly.

DRAINAGE AREA.--4,773 mi<sup>2</sup>.

PERIOD OF RECORD.--February 1937 to March 1995. Annual maximum, water years 1996-2000. October 2000 to current year.

REVISED RECORDS.--WEP 2103: Drainage area.

Date

Time

GAGE.--Water-stage recorder. Datum of gage is 743.96 ft above NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to November 1939, at datum 1.0 ft higher. REMARKS.--Records good except those for estimated daily discharges, which are fair. Minor regulation by upstream lakes and

reservoirs. Slight diversion from upstream tributaries for operation of Erie (Barge) Canal. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 121,000 ft<sup>3</sup>/s, June 23, 1972, gage height, 21.24 ft; minimum instantaneous

discharge not determined.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in March 1936 reached a stage of about 21.4 ft, from flood profile (discharge, 128,000)

 $ft^3/s)$ .

Date

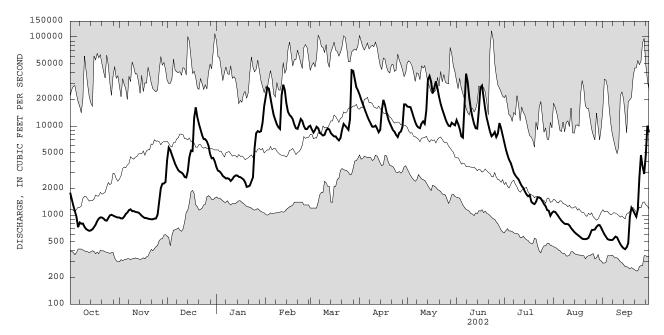
Time

Discharge (ft<sup>3</sup>/s)

Gage height

(ft.)

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 52,000 ft<sup>3</sup>/s and maximum (\*): Gage height (ft.)


Discharge (ft<sup>3</sup>/s)

| Mar.       | 27 20       | 00                     | *45,900        | *1            | 11.44              |                |                          |                |               |             |             |               |
|------------|-------------|------------------------|----------------|---------------|--------------------|----------------|--------------------------|----------------|---------------|-------------|-------------|---------------|
| Minimum di | scharge, 4  | 12 ft <sup>3</sup> /s, | Sept. 1        | 4, 15.        |                    |                |                          |                |               |             |             |               |
|            |             | DISCHA                 | ARGE, CUB      | IC FEET PE    | ER SECOND,<br>DAII | WATER Y        | YEAR OCTOBER<br>VALUES   | R 2001 T       | O SEPTEMBER   | 2002        |             |               |
| DAY        | OCT         | NOV                    | DEC            | JAN           | FEB                | MAR            | APR                      | MAY            | JUN           | JUL         | AUG         | SEP           |
| 1          | 1790        | 941                    | 4150           | e3450         | 21400              | 10100          | 22600                    | 16600          | 11700         | 6550        | 1100        | 660           |
| 2          | 1510        | 920                    | 5730           | e3150         | 27200              | 9160           | 19900                    | 16400          | 10600         | 5490        | 1090        | 608           |
| 3<br>4     | 1280        | 920                    | 5350           | e3100         | 26200              | 8470           | 17700                    | 16300          | 9320          | 4740        | 1030        | 572           |
| 4<br>5     | 1110        | 962                    | 4730<br>4220   | e2950         | 20800              | 9050           | 15800<br>14200           | 14400          | 7690<br>7420  | 4210        | 973         | 538<br>528    |
|            | 955         | 1030                   | 4220           | e2750         | 16400              | 9830           | 14200                    | 12600          | 7420          | 3880        | 914         | 528           |
| 6          | 732         | 1070                   | 3780           | 2670          | 13300              | 9470           | 12800                    | 11100          | 18300         | 3440        | 865         | 526           |
| 7          | 828         | 1140                   | 3460           | 2580          | 11700              | 8430           | 11600                    | 10100          | 38700         | 3000        | 831         | 526           |
| 8          | 800         | 1160                   | 3200<br>3070   | e2600         | 10400              | 8130           | 10700                    | 9630           | 31200         | 2790        | 801         | 548           |
| 9          | 806         | 1110                   | 3070           | e2550         | 9690               | 7830           | 9820                     | 9470           | 20700         | 2640        | 793         | 575           |
| 10         | 740         | 1110                   | 3010           | 2420          | 9280               | 7980           | 9810                     | 10700          | 15600         | 2520        | 793         | 562           |
| 11         | 699         | 1090                   | 2890           | 2530          | 22000              | 8950           | 10100                    | 11300          | 12600         | 2300        | 766         | 513           |
| 12         | 681         | 1080                   | 2680           | 2700          | 29100              | 9370           | 9400                     | 10600          | 10600         | 2130        | 717         | 473           |
| 13         | 667         | 1070                   | 2650           | 2790          | 25300              | 9140           | 8520                     | 15000          | 9460          | 2020        | 681         | 445           |
| 14         | 674         | 1030                   | 3120           | 2790          | 17900              | 8320           | 9060                     | 33300          | 9380          | 1840        | 649         | 425           |
| 15         | 694         | 985                    | 4490           | 2700          | 14400              | 7960           | 14900                    | 36400          | 14800         | 1710        | 624         | 415           |
| 16         | 734         | 952                    | 5320           | 2670          | 13300              | 7650           | 19700                    | 31400          | 27000         | 1630        | 604         | 434           |
| 17         | 780         | 929                    | 5240           | 2600          | 12800              | 7660           | 17200                    | 23400          | 28500         | 1680        | 584         | 486           |
| 18         | 856         | 927                    | 12300          | 2520          | 11900              | 7210           | 14100                    | 26800          | 21600         | 1420        | 564         | 958           |
| 19         | 914         | 913                    | 16200          | 2360          | 10400              | 6900           | 12000                    | 31700          | 15700         | 1360        | 545         | 1210          |
| 20         | 945         | 905                    | 12500          | 2080          | 9440               | 7330           | 10800                    | 26700          | 12300         | 1330        | 538         | 1130          |
| 21         | 941         | 898                    | 10500          | e2100         | 9290               | 9010           | 9840                     | 21300          | 10300         | 1410        | 538         | 1040          |
| 2.2        | 918         | 899                    | 9130           | 2150          | 10500              | 10600          | 9010                     | 17700          | 8690          | 1590        | 541         | 960           |
| 23         | 876         | 913                    | 7920           | 2400          | 12000              | 10100          | 8640                     | 15400          | 7680          | 1580        | 557         | 1150          |
| 24         | 868         | 919                    | 7140           | 2660          | 11400              | 9590           | 7960                     | 13600          | 8020          | 1530        | 608         | 2630          |
| 25         | 931         | 1010                   | 7120           | 5630          | 9990               | 9080           | 7520                     | 12100          | 8570          | 1440        | 678         | 4730          |
| 26         | 995         | 1400                   | 6720           | 8330          | 9280               | 11900          | 8410                     | 10900          | 7520          | 1330        | 684         | 3510          |
| 27         | 1010        | 2010                   | 6040           | 8790          | 9240               | 42500          | 8680                     | 10100          | 8210          | 1260        | 691         | 2900          |
| 28         | 990         | 2250                   | e4850          | 8570          | 9840               | 41600          | 9860                     | 9920           | 10800         | 1140        | 740         | 4700          |
| 29<br>30   | 969<br>953  | 2270<br>2360           | e4350<br>e4400 | 8730<br>10900 |                    | 33900<br>27300 | 17500<br>17500           | 10900<br>10500 | 9420<br>7890  | 1120<br>985 | 773<br>773  | 10100<br>8490 |
| 31         | 941         | 2300                   | e4000          | 16600         |                    | 25200          | 1/500                    | 10200          | 7690          | 1060        | 721         |               |
|            |             |                        |                |               |                    |                |                          |                |               |             |             |               |
| TOTAL      |             | 35173                  | 180260         | 130820        | 414450             | 399720         | 375630<br>12520<br>22600 | 516520         | 420270        | 71125       | 22766       | 52342<br>1745 |
| MEAN       | 922         | 1172                   | 5815           | 4220          | 14800              | 12890          | 12520                    | 16660          | 14010         | 2294        | 734         | 1745<br>10100 |
| MAX<br>MIN | 1790<br>667 | 2360<br>898            | 16200<br>2650  | 16600<br>2080 | 29100<br>9240      | 42500<br>6900  | 7520                     | 36400<br>9470  | 38700<br>7420 | 6550<br>985 | 1100<br>538 | 415           |
| CFSM       | 0.19        | 0.25                   | 1.22           | 0.88          | 3.10               | 2.70           | 2.62                     | 3.49           | 2.94          | 0.48        | 0.15        | 0.37          |
| IN.        | 0.19        | 0.27                   | 1.40           | 1.02          | 3.23               | 3.12           | 2.93                     | 4.03           | 3.28          | 0.55        | 0.13        | 0.41          |
| STATI      | STICS OF M  | ONTHLY ME              |                | FOR WATER     | YEARS 193          | 37 - 2002      | 2, BY WATER              | YEAR (W        | Y)            |             |             |               |
| MEAN       | 3862        | 6747                   | 8751           | 7493          | 8774               | 15860          | 18430                    | 9160           | 5061          | 2509        | 1827        | 2457          |
| MAX        | 25090       | 17130                  | 19820          | 18670         | 23870              | 33430          | 46500                    | 22140          | 22550         | 7620        | 8386        | 17800         |
| (WY)       | 1978        | 1973                   | 1973           | 1979          | 1976               | 1945           | 46500<br>1993            | 1943           | 1972          | 1947        | 1994        | 1977          |
| MIN        | 392         | 382                    | 1835           | 1319          | 1472               | 6763           | 3962                     | 2418           | 1155          | 589         | 384         | 326           |
| (WY)       | 1965        | 1965                   | 1965           | 1961          | 1980               | 1941           | 1946                     | 1985           | 1939          | 1962        | 1964        | 1964          |
|            |             |                        |                |               |                    |                |                          |                |               |             |             |               |

e Estimated

# 01515000 SUSQUEHANNA RIVER NEAR WAVERLY, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALEN | DAR YEAR | FOR 2002 W | ATER YEAR | WATER YEAR | S 1937 - 2002 |
|--------------------------|----------------|----------|------------|-----------|------------|---------------|
| ANNUAL TOTAL             | 2248387        |          | 2647663    |           |            |               |
| ANNUAL MEAN              | 6160           |          | 7254       |           | 7578       |               |
| HIGHEST ANNUAL MEAN      |                |          |            |           | 11490      | 1978          |
| LOWEST ANNUAL MEAN       |                |          |            |           | 3745       | 1965          |
| HIGHEST DAILY MEAN       | 54600          | Apr 11   | 42500      | Mar 27    | 117000     | Jun 23 1972   |
| LOWEST DAILY MEAN        | 419            | Sep 22   | 415        | Sep 15    | 237        | Sep 22 1964   |
| ANNUAL SEVEN-DAY MINIMUM | 455            | Sep 18   | 456        | Sep 11    | 248        | Sep 17 1964   |
| MAXIMUM PEAK FLOW        |                |          |            |           | 121000     | Jun 23 1972   |
| MAXIMUM PEAK STAGE       |                |          |            |           | 21.24      | Jun 23 1972   |
| ANNUAL RUNOFF (CFSM)     | 1.29           | l        | 1.52       | 2         | 1.59       |               |
| ANNUAL RUNOFF (INCHES)   | 17.52          | !        | 20.64      | 4         | 21.57      |               |
| 10 PERCENT EXCEEDS       | 14700          |          | 16800      |           | 18000      |               |
| 50 PERCENT EXCEEDS       | 3300           |          | 4350       |           | 4200       |               |
| 90 PERCENT EXCEEDS       | 665            |          | 697        |           | 835        |               |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 01521500 CANISTEO RIVER AT ARKPORT, NY

LOCATION.--Lat 42°23'45", long 77°42'42", Steuben County, Hydrologic Unit 02050104, on left bank 0.2 mi downstream from Arkport Dam, and 0.9 mi west of Arkport.

DRAINAGE AREA.--30.6 mi².

PERIOD OF RECORD.--January 1937 to current year.

REVISED RECORDS.--WSP 1552: 1952-57. WSP 2103: Drainage area.

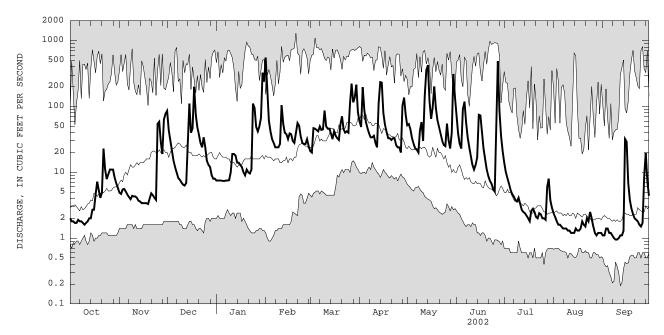
GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,202.85 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Since March 1940, flows above 500 ft³/s controlled by detention in Arkport Reservoir. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge prior to construction of Arkport Reservoir in 1940, 2,000 ft³/s, Mar. 5, 1938, Feb. 20, 1939; maximum gage height, 5.63 ft, Feb. 19, 1939 (ice jam); practically no flow July 30, 1938, Sept. 30, 1939 (result of construction operations). Maximum discharge since construction of Arkport Reservoir in 1940, 1,740 ft³/s, Feb. 11, 1966.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 8, 1935, reached a discharge of 4,820 ft³/s, on basis of slope-area measurement. measurement.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 596 ft<sup>3</sup>/s, June 27, gage height, 2.89 ft; minimum discharge not determined.


|                                    |                                      | DISCHA                              | RGE, CUB                                 | IC FEET PE                          | R SECOND,<br>DAILY                  | WATER YEAR VA                         |                                     | R 2001 TO                           | O SEPTEMBE                          | R 2002                                 |                                      |                                     |
|------------------------------------|--------------------------------------|-------------------------------------|------------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|--------------------------------------|-------------------------------------|
| DAY                                | OCT                                  | NOV                                 | DEC                                      | JAN                                 | FEB                                 | MAR                                   | APR                                 | MAY                                 | JUN                                 | JUL                                    | AUG                                  | SEP                                 |
| 1<br>2<br>3<br>4<br>5              | e2.0<br>e1.8<br>e1.8<br>e1.7<br>e1.7 | 4.9<br>4.7<br>5.5<br>5.6<br>5.1     | 86<br>44<br>30<br>21<br>15               | e7.5<br>e7.5<br>e7.5<br>7.5<br>7.4  | 554<br>166<br>61<br>42<br>e32       | 21<br>e20<br>47<br>e46<br>e44         | 59<br>49<br>197<br>88<br>58         | 52<br>54<br>45<br>33<br>27          | 75<br>39<br>27<br>23<br>92          | 14<br>10<br>8.1<br>6.7<br>5.4          | 2.4<br>2.1<br>1.8<br>1.6<br>1.6      | 1.1<br>1.1<br>1.4<br>1.4            |
| 6<br>7<br>8<br>9<br>10             | e1.9<br>e1.8<br>e1.8<br>e1.7<br>e1.6 | 4.6<br>4.2<br>3.9<br>4.4<br>4.3     | 12<br>9.9<br>8.2<br>7.7<br>7.0           | 7.4<br>e7.5<br>e7.5<br>7.6          | e28<br>e24<br>24<br>24<br>27        | 42<br>50<br>44<br>45<br>87            | 47<br>39<br>34<br>34<br>36          | 23<br>22<br>20<br>43<br>58          | 119<br>58<br>34<br>24<br>18         | 4.7<br>4.3<br>3.8<br>3.6<br>4.1        | 1.5<br>1.4<br>1.4<br>1.3             | 1.2<br>1.1<br>1.0<br>0.95<br>0.95   |
| 11<br>12<br>13<br>14<br>15         | e1.7<br>1.8<br>2.0<br>2.0<br>2.7     | 4.3<br>4.1<br>3.7<br>3.6<br>3.4     | 6.5<br>6.3<br>6.9<br>21<br>111           | 19<br>19<br>18<br>e14<br>14         | 105<br>55<br>e40<br>e38<br>32       | 50<br>46<br>46<br>39<br>32            | 28<br>24<br>112<br>235<br>231       | 30<br>143<br>359<br>426<br>120      | 13<br>11<br>13<br>17<br>75          | 3.3<br>2.7<br>2.5<br>2.4<br>2.2        | 1.3<br>1.2<br>1.2<br>1.2<br>1.4      | 1.0<br>1.1<br>1.1<br>1.3<br>32      |
| 16<br>17<br>18<br>19<br>20         | 2.7<br>4.6<br>7.2<br>5.4<br>4.1      | 3.4<br>3.4<br>3.3<br>4.0            | 40<br>47<br>200<br>76<br>48              | 13<br>12<br>e10<br>e9.0<br>e11      | 39<br>38<br>e30<br>e28<br>39        | 42<br>36<br>33<br>31<br>54            | 80<br>53<br>41<br>33<br>33          | 65<br>96<br>202<br>96<br>62         | 73<br>41<br>23<br>16<br>11          | 2.0<br>1.8<br>2.6<br>2.8<br>2.5        | e1.3<br>e1.3<br>e1.4<br>e1.8<br>e1.6 | 29<br>6.9<br>3.8<br>2.8<br>2.3      |
| 21<br>22<br>23<br>24<br>25         | 4.9<br>23<br>11<br>7.9<br>9.4        | 4.8<br>4.5<br>4.1<br>3.8<br>55      | 37<br>28<br>24<br>34<br>24               | 10<br>9.6<br>11<br>111<br>96        | 56<br>51<br>35<br>28<br>27          | 71<br>45<br>40<br>42<br>40            | 31<br>33<br>33<br>26<br>24          | 48<br>38<br>30<br>26<br>25          | 8.7<br>7.4<br>6.7<br>5.6<br>5.1     | 2.1<br>2.0<br>2.4<br>2.3<br>2.0        | e1.5<br>e2.0<br>e1.8<br>e2.5<br>e2.0 | 2.0<br>1.9<br>1.8<br>1.6<br>1.5     |
| 26<br>27<br>28<br>29<br>30<br>31   | 11<br>11<br>11<br>8.3<br>6.8<br>5.8  | 59<br>29<br>19<br>64<br>78          | e15<br>e13<br>12<br>e9.0<br>e8.0<br>e8.0 | 49<br>42<br>50<br>67<br>327<br>239  | 27<br>32<br>e25<br><br>             | 111<br>222<br>116<br>137<br>215<br>82 | 24<br>20<br>105<br>137<br>75        | 55<br>31<br>23<br>40<br>313<br>139  | 90<br>491<br>87<br>36<br>21         | 2.0<br>1.9<br>6.0<br>8.0<br>3.8<br>2.9 | e1.5<br>e1.2<br>e1.1<br>e1.2<br>1.2  | 1.7<br>8.4<br>20<br>7.3<br>4.4      |
| TOTAL<br>MEAN<br>MAX<br>MIN        | 162.1<br>5.23<br>23<br>1.6           | 405.0<br>13.5<br>78<br>3.3          | 1015.5<br>32.8<br>200<br>6.3             | 1228.0<br>39.6<br>327<br>7.4        | 1707<br>61.0<br>554<br>24           | 1976<br>63.7<br>222<br>20             | 2019<br>67.3<br>235<br>20           | 2744<br>88.5<br>426<br>20           | 1560.5<br>52.0<br>491<br>5.1        | 124.9<br>4.03<br>14<br>1.8             | 47.4<br>1.53<br>2.5<br>1.1           | 143.30<br>4.78<br>32<br>0.95        |
| STATIST                            | rics of M                            | ONTHLY ME                           | CAN DATA                                 | FOR WATER                           | YEARS 1937                          | - 2002,                               | BY WATER                            | YEAR (W                             | Y)                                  |                                        |                                      |                                     |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 16.4<br>98.4<br>1977<br>1.09<br>1942 | 29.5<br>106<br>1951<br>1.62<br>1961 | 38.3<br>132<br>1973<br>1.67<br>1961      | 37.7<br>121<br>1998<br>1.85<br>1961 | 46.0<br>195<br>1976<br>8.28<br>1958 | 83.9<br>188<br>1942<br>24.9<br>1981   | 83.0<br>205<br>1993<br>10.9<br>1946 | 40.8<br>144<br>1943<br>5.81<br>1955 | 27.2<br>245<br>1972<br>1.57<br>1955 | 7.81<br>46.2<br>1992<br>0.82<br>1955   | 6.14<br>58.6<br>1984<br>0.67<br>2001 | 9.85<br>151<br>1977<br>0.59<br>1995 |

e Estimated

SUSQUEHANNA RIVER BASIN

# 01521500 CANISTEO RIVER AT ARKPORT, NY--Continued

| SUMMARY STATISTICS                                 | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1937 - 2002 |
|----------------------------------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN<br>HIGHEST ANNUAL MEAN | 8302.95<br>22.7        | 13132.70<br>36.0    | 35.5<br>55.9 1972       |
| LOWEST ANNUAL MEAN                                 |                        |                     | 20.9 1955               |
| HIGHEST DAILY MEAN                                 | 560 Apr 9              | 554 Feb 1           | 1300 Feb 20 1939        |
| LOWEST DAILY MEAN                                  | 0.50 Aug 24            | 0.95 Sep 9          | 0.19 Sep 12 1995        |
| ANNUAL SEVEN-DAY MINIMUM                           | 0.56 Aug 10            | 1.0 Sep 7           | 0.28 Sep 7 1995         |
| 10 PERCENT EXCEEDS                                 | 48                     | 86                  | 77                      |
| 50 PERCENT EXCEEDS                                 | 7.0                    | 14                  | 12                      |
| 90 PERCENT EXCEEDS                                 | 0.71                   | 1.6                 | 1.7                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 01523500 CANACADEA CREEK NEAR HORNELL, NY

LOCATION.--Lat 42°20'05", long 77°41'00", Steuben County, Hydrologic Unit 02050104, on right bank 35 ft downstream from bridge on State Highway 21, 1.2 mi west of Hornell, 1.5 mi downstream from Almond Dam, and 2.0 mi upstream from mouth.

DRAINAGE AREA.--57.9 mi<sup>2</sup>.

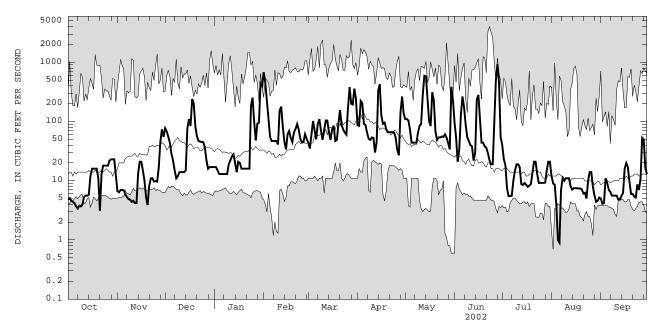
PERIOD OF RECORD. --October 1940 to December 1942, October 1944 to current year. REVISED RECORDS. --WSP 2103: Drainage area. WDR NY 1971: 1969(M).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,185.68 ft above NGVD of 1929. Oct. 23, 1940 to Dec. 31,

1942, at site 185 ft upstream at different datum.

REMARKS.--Records fair. Since October 1948, floodflows regulated by detention in Almond Lake (see station 01523000). Occasional regulation at low flows to clear debris from gates at Almond Lake. Monthly figures for 1952-66 water years adjusted for regulation at low flows to clear debris from gates at Almond Lake. Monthly figures for 1952-66 water years adjusted for regulation. Satellite gage-height telemeter at station. Several measurements of water temperature were made during the year. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge prior to construction of Almond Reservoir in 1949, 9,430 ft³/s, May 17, 1945, gage height, 5.14 ft, from rating curve extended above 3,400 ft³/s; maximum gage height, 6.65 ft, June 3, 1947; minimum discharge, 3.4 ft³/s, Oct. 2, 1941. Maximum discharge since construction of Almond Reservoir in 1949, 5,880 ft³/s, June 23, 1972, gage height 6.14 ft; minimum discharge, 0.5 ft³/s, May 29, 1965.

EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 8, 1935, reached a stage of 16.61 ft, from floodmarks, discharge, 21,000 ft³/s, on basis of slope-area measurement of peak flow.


EXTREMES FOR CURRENT YEAR.—Maximum discharge, 1,020 ft³/s, June 28, gage height, 2.84 ft; minimum discharge, 0.9 ft³/s, Aug. 5, 6,

|                                    |                                     | DISCHAR                             | GE, CUBIC                           | FEET PER                            |                                     | WATER YEAN VAL                         | AR OCTOBER<br>LUES                 | 2001 TO                             | SEPTEMBE                            | R 2002                              |                                       |                                     |
|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|
| DAY                                | OCT                                 | NOV                                 | DEC                                 | JAN                                 | FEB                                 | MAR                                    | APR                                | MAY                                 | JUN                                 | JUL                                 | AUG                                   | SEP                                 |
| 1<br>2<br>3<br>4<br>5              | 4.8<br>5.1<br>4.6<br>4.4<br>4.2     | 6.7<br>6.4<br>7.0<br>7.0<br>6.9     | 77<br>68<br>55<br>43<br>28          | 17<br>17<br>15<br>13                | 679<br>459<br>233<br>107<br>55      | 44<br>35<br>60<br>102<br>71            | 87<br>85<br>223<br>203<br>91       | 110<br>110<br>104<br>73<br>44       | 96<br>54<br>21<br>34<br>130         | 40<br>23<br>18<br>7.6<br>5.5        | 12<br>9.0<br>8.6<br>3.9<br>1.0        | 5.0<br>4.1<br>4.2<br>11<br>9.2      |
| 6<br>7<br>8<br>9<br>10             | 3.7<br>3.4<br>3.8<br>3.7<br>4.0     | 5.8<br>5.3<br>e4.9<br>e4.8<br>e4.4  | 22<br>15<br>11<br>12<br>14          | 13<br>13<br>13<br>13                | 47<br>47<br>47<br>47<br>41          | 50<br>91<br>110<br>71<br>49            | 88<br>65<br>51<br>49<br>54         | 44<br>44<br>44<br>64<br>85          | 265<br>173<br>88<br>54<br>47        | 5.5<br>5.6<br>10<br>15<br>19        | 0.90<br>7.0<br>11<br>10               | 7.0<br>6.5<br>5.6<br>5.6            |
| 11<br>12<br>13<br>14<br>15         | 5.3<br>5.6<br>5.6<br>5.8<br>12      | e4.6<br>e4.2<br>e4.2<br>e13<br>21   | 14<br>14<br>14<br>15<br>77          | 22<br>26<br>28<br>20<br>14          | 152<br>179<br>82<br>46<br>34        | 72<br>104<br>104<br>67<br>49           | 53<br>30<br>45<br>340<br>428       | 90<br>275<br>594<br>580<br>227      | 40<br>38<br>22<br>30<br>239         | 19<br>17<br>8.8<br>8.5<br>9.2       | 11<br>11<br>8.0<br>7.1<br>7.5         | 5.6<br>4.8<br>4.8<br>5.6<br>6.2     |
| 16<br>17<br>18<br>19<br>20         | 16<br>16<br>16<br>16<br>11          | 21<br>15<br>10<br>5.3<br>3.9        | 110<br>84<br>240<br>200<br>83       | 21<br>20<br>16<br>16<br>16          | 61<br>69<br>53<br>45<br>65          | 73<br>85<br>47<br>49<br>94             | 126<br>92<br>96<br>75<br>66        | 101<br>84<br>312<br>225<br>68       | 281<br>109<br>44<br>44<br>38        | 8.6<br>7.9<br>8.3<br>8.8<br>14      | 7.5<br>7.5<br>7.4<br>7.4<br>7.2       | 16<br>20<br>17<br>9.7<br>6.0        |
| 21<br>22<br>23<br>24<br>25         | 3.1<br>13<br>18<br>18               | 8.3<br>11<br>11<br>9.7<br>9.9       | 56<br>47<br>46<br>45<br>45          | 16<br>16<br>16<br>183<br>253        | 75<br>91<br>73<br>51<br>45          | 156<br>87<br>73<br>65<br>60            | 66<br>66<br>65<br>53               | 49<br>54<br>54<br>56<br>55          | 36<br>29<br>22<br>19                | 21<br>21<br>13<br>9.2<br>9.2        | 6.1<br>6.3<br>5.0<br>9.9              | 6.0<br>5.4<br>5.2<br>8.7<br>7.0     |
| 26<br>27<br>28<br>29<br>30<br>31   | 18<br>22<br>23<br>23<br>23<br>23    | 9.7<br>17<br>45<br>74<br>55         | 36<br>22<br>16<br>17<br>17          | 100<br>48<br>92<br>96<br>444<br>400 | 45<br>61<br>51<br><br>              | 172<br>380<br>200<br>194<br>358<br>243 | 33<br>27<br>142<br>263<br>135      | 61<br>54<br>43<br>34<br>385<br>232  | 68<br>484<br>926<br>450<br>55       | 9.2<br>9.2<br>9.3<br>15<br>21       | 14<br>8.0<br>5.6<br>4.4<br>4.6<br>5.2 | 11<br>53<br>49<br>16<br>13          |
| TOTAL<br>MEAN<br>MAX<br>MIN        | 343.1<br>11.1<br>23<br>3.1          | 412.0<br>13.7<br>74<br>3.9          | 1560<br>50.3<br>240<br>11           | 2009<br>64.8<br>444<br>13           | 3040<br>109<br>679<br>34            | 3415<br>110<br>380<br>35               | 3263<br>109<br>428<br>27           | 4355<br>140<br>594<br>34            | 3955<br>132<br>926<br>19            | 417.4<br>13.5<br>40<br>5.5          | 239.10<br>7.71<br>14<br>0.90          | 333.8<br>11.1<br>53<br>4.1          |
| STATIST                            | rics of M                           | ONTHLY MEA                          | N DATA FO                           | R WATER Y                           | EARS 1949                           | - 2002,                                | BY WATER                           | YEAR (WY)                           |                                     |                                     |                                       |                                     |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 33.6<br>139<br>1977<br>7.07<br>1950 | 58.6<br>193<br>1951<br>9.16<br>1961 | 69.9<br>218<br>1973<br>7.13<br>1961 | 68.8<br>215<br>1996<br>6.55<br>1961 | 82.3<br>278<br>1976<br>17.7<br>1980 | 143<br>306<br>1956<br>33.4<br>1969     | 146<br>470<br>1993<br>46.0<br>1955 | 71.6<br>215<br>1984<br>15.5<br>1955 | 58.0<br>547<br>1972<br>5.24<br>1965 | 22.5<br>111<br>1972<br>4.63<br>1965 | 18.7<br>128<br>1984<br>5.13<br>1965   | 25.2<br>198<br>1977<br>6.09<br>1955 |

e Estimated

# 01523500 CANACADEA CREEK NEAR HORNELL, NY

| SUMMARY STATISTICS          | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1949 - 2002 |
|-----------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN | 15791.3<br>43.3        | 23342.40<br>64.0    | 66.3                    |
| HIGHEST ANNUAL MEAN         |                        |                     | 110 1972                |
| LOWEST ANNUAL MEAN          |                        |                     | 36.9 1965               |
| HIGHEST DAILY MEAN          | 1040 Apr 9             | 926 Jun 28          | 3970 Jun 23 1972        |
| LOWEST DAILY MEAN           | 3.1 Sep 22             | 0.90 Aug 6          | 0.60 May 30 1965        |
| ANNUAL SEVEN-DAY MINIMUM    | 3.9 Oct 4              | 3.9 Oct 4           | 0.83 May 26 1965        |
| 10 PERCENT EXCEEDS          | 88                     | 162                 | 146                     |
| 50 PERCENT EXCEEDS          | 16                     | 22                  | 27                      |
| 90 PERCENT EXCEEDS          | 5.9                    | 5.5                 | 8.1                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 01524500 CANISTEO RIVER BELOW CANACADEA CREEK, AT HORNELL, NY

LOCATION.--Lat 42°18'50", long 77°39'05", Steuben County, Hydrologic Unit 02050104, on right bank 235 ft upstream from Erie Railroad bridge in Hornell, 0.3 mi upstream from Crosby Creek, and 1.5 mi downstream from Canacadea Creek.

DRAINAGE AREA.--158 mi<sup>2</sup>.

PERIOD OF RECORD. --August 1942 to current year.
REVISED RECORD--WDR NY-86-3: 1971 (including minimum daily).

REVISED RECORD--WDR NY-86-3: 1971 (including minimum daily).

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,131.32 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diversion from Carrington Creek, a tributary upstream from station, by City of Hornell for municipal supply; effluent from wastewater treatment plant enters river downstream from gage. Since Nov. 1939, flood flows regulated by Arkport Reservoir (see station 01521000), and, since October 1948, by Almond Lake (see station 01523000); normal regulation occasionally sufficient to affect figures of monthly runoff.

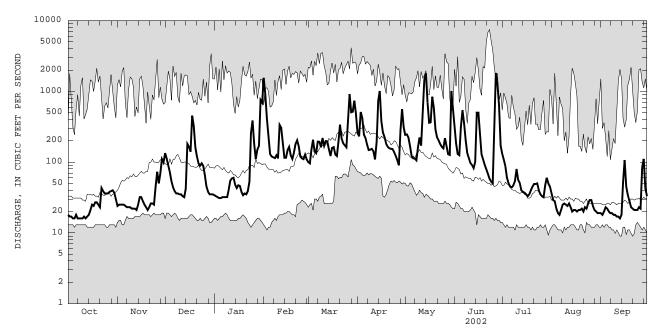
Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during

the year.

COOPERATION.--Records of diversion from Carrington Creek furnished by City of Hornell.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge prior to construction of Almond Reservoir in 1949, 9,340 ft<sup>3</sup>/s, May 26, 1943, gage height 13.30 ft, from rating curve extended above 7,600 ft<sup>3</sup>/s on the basis of critical-depth measurement of peak flow; minimum discharge, 9.3 ft<sup>3</sup>/s, Mar. 4, 1947. Maximum discharge since construction of Almond Reservoir, 9,560 ft<sup>3</sup>/s, June 23, 1972, gage height, 13.45 ft, from floodmark, from rating curve extended above 7,600 ft<sup>3</sup>/s on the basis of critical-depth measurement of peak flow; minimum discharge, 7.4 ft<sup>3</sup>/s, Sept. 13, 14, 1955.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 3,280 ft<sup>3</sup>/s, June 27, gage height, 4.98 ft; minimum discharge, 15 ft<sup>3</sup>/s, Oct. 5,


Sept. 13. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                  |                                  | DISCHA                      | KGE, COBI                              | C FEET PI                              | DAIL!                 | Y MEAN VA                              |                                | .K 2001 10                              | SEFIEMBE                          | K 2002                           |                            |                             |
|----------------------------------|----------------------------------|-----------------------------|----------------------------------------|----------------------------------------|-----------------------|----------------------------------------|--------------------------------|-----------------------------------------|-----------------------------------|----------------------------------|----------------------------|-----------------------------|
| DAY                              | OCT                              | NOV                         | DEC                                    | JAN                                    | FEB                   | MAR                                    | APR                            | MAY                                     | JUN                               | JUL                              | AUG                        | SEP                         |
| 1                                | 18                               | 24                          | 134                                    | e34                                    | 1550                  | 100                                    | 259                            | 243                                     | 319                               | 130                              | 36                         | 19                          |
| 2                                | 17                               | 25                          | 111                                    | e33                                    | 920                   | 96                                     | 231                            | 247                                     | 184                               | 107                              | 29                         | 18                          |
| 3                                | 17                               | 25                          | 88                                     | e32                                    | 414                   | 150                                    | 510                            | 223                                     | 130                               | 86                               | 28                         | 20                          |
| 4                                | 16                               | 25                          | 71                                     | 31                                     | 237                   | 207                                    | 416                            | 169                                     | 125                               | 60                               | 22                         | 23                          |
| 5                                | 16                               | 25                          | 53                                     | 31                                     | e130                  | 141                                    | 244                            | 123                                     | 311                               | 50                               | 19                         | 22                          |
| 6                                | 18                               | 24                          | 44                                     | 32                                     | e120                  | 134                                    | 219                            | 113                                     | 542                               | 45                               | 18                         | 20                          |
| 7                                | 16                               | 23                          | 39                                     | 32                                     | 117                   | 195                                    | 177                            | 112                                     | 354                               | 44                               | 21                         | 19                          |
| 8                                | 16                               | 23                          | 36                                     | e32                                    | 114                   | 194                                    | 148                            | 106                                     | 204                               | 47                               | 25                         | 19                          |
| 9                                | 16                               | 23                          | 36                                     | 32                                     | 125                   | 162                                    | 150                            | 160                                     | 133                               | 54                               | 26                         | 18                          |
| 10                               | 16                               | 22                          | 35                                     | 41                                     | 113                   | 219                                    | 154                            | 223                                     | 114                               | 80                               | 25                         | 18                          |
| 11                               | 17                               | 22                          | 35                                     | 55                                     | 335                   | 170                                    | 142                            | 171                                     | 97                                | 56                               | 24                         | 17                          |
| 12                               | 16                               | 22                          | 33                                     | 59                                     | 305                   | 198                                    | 109                            | 470                                     | 91                                | 51                               | 26                         | 17                          |
| 13                               | 17                               | 21                          | 32                                     | 60                                     | 181                   | 197                                    | 194                            | 1470                                    | 82                                | 40                               | 23                         | 16                          |
| 14                               | 18                               | 25                          | 42                                     | 48                                     | e115                  | 152                                    | 739                            | 1800                                    | 101                               | 38                               | 20                         | 18                          |
| 15                               | 21                               | 32                          | 180                                    | 43                                     | 115                   | 122                                    | 1010                           | 702                                     | 498                               | 37                               | 21                         | 51                          |
| 16                               | 25                               | 32                          | 164                                    | 47                                     | 148                   | 159                                    | 378                            | 360                                     | 500                               | 35                               | 21                         | 107                         |
| 17                               | 24                               | 28                          | 140                                    | 46                                     | 164                   | 163                                    | 261                            | 365                                     | 247                               | 33                               | 20                         | 45                          |
| 18                               | 27                               | 25                          | 454                                    | e38                                    | 125                   | 128                                    | 224                            | 840                                     | 129                               | 35                               | 21                         | 34                          |
| 19                               | 27                               | 23                          | 322                                    | e34                                    | 111                   | 122                                    | 181                            | 584                                     | 109                               | 40                               | 21                         | 28                          |
| 20                               | 25                               | 21                          | 161                                    | e36                                    | 136                   | 195                                    | 164                            | 290                                     | 91                                | 45                               | 22                         | 23                          |
| 21                               | 23                               | 23                          | 119                                    | e35                                    | 180                   | 338                                    | 157                            | 224                                     | 79                                | 49                               | 20                         | 22                          |
| 22                               | 43                               | 26                          | 96                                     | 39                                     | 203                   | 215                                    | 154                            | 202                                     | 68                                | 49                               | 23                         | 21                          |
| 23                               | 39                               | 26                          | 89                                     | 53                                     | 167                   | 184                                    | 153                            | 179                                     | 58                                | 50                               | 22                         | 21                          |
| 24                               | 36                               | 25                          | 96                                     | 256                                    | 120                   | 173                                    | 139                            | 164                                     | 53                                | 40                               | 26                         | 21                          |
| 25                               | 36                               | 45                          | 88                                     | 388                                    | 113                   | 162                                    | 123                            | 156                                     | 50                                | 35                               | 29                         | 23                          |
| 26<br>27<br>28<br>29<br>30<br>31 | 36<br>38<br>39<br>40<br>37<br>30 | 73<br>50<br>69<br>110<br>99 | e65<br>e45<br>e38<br>e35<br>e35<br>e35 | 182<br>111<br>150<br>170<br>754<br>693 | 110<br>127<br>109<br> | 343<br>918<br>506<br>516<br>739<br>485 | 106<br>90<br>280<br>561<br>311 | 218<br>167<br>129<br>126<br>1010<br>572 | 325<br>1820<br>1260<br>634<br>171 | 33<br>32<br>47<br>60<br>50<br>45 | 29<br>24<br>21<br>20<br>19 | 22<br>84<br>111<br>42<br>33 |
| TOTAL                            | 780                              | 1036                        | 2951                                   | 3627                                   | 6704                  | 7783                                   | 7984                           | 11918                                   | 8879                              | 1603                             | 720                        | 952                         |
| MEAN                             | 25.2                             | 34.5                        | 95.2                                   | 117                                    | 239                   | 251                                    | 266                            | 384                                     | 296                               | 51.7                             | 23.2                       | 31.7                        |
| MAX                              | 43                               | 110                         | 454                                    | 754                                    | 1550                  | 918                                    | 1010                           | 1800                                    | 1820                              | 130                              | 36                         | 111                         |
| MIN                              | 16                               | 21                          | 32                                     | 31                                     | 109                   | 96                                     | 90                             | 106                                     | 50                                | 32                               | 18                         | 16                          |
| STATIST                          | rics of MC                       | ONTHLY MEA                  | AN DATA F                              | OR WATER                               | YEARS 1942            | 2 - 2002,                              | BY WATER                       | YEAR (WY                                | )                                 |                                  |                            |                             |
| MEAN                             | 76.3                             | 126                         | 157                                    | 158                                    | 189                   | 351                                    | 346                            | 198                                     | 143                               | 55.4                             | 46.3                       | 58.4                        |
| MAX                              | 304                              | 455                         | 551                                    | 499                                    | 722                   | 826                                    | 877                            | 696                                     | 1226                              | 249                              | 303                        | 498                         |
| (WY)                             | 1977                             | 1951                        | 1973                                   | 1998                                   | 1976                  | 1945                                   | 1993                           | 1943                                    | 1972                              | 1972                             | 1984                       | 1977                        |
| MIN                              | 13.5                             | 17.9                        | 16.6                                   | 15.6                                   | 35.6                  | 111                                    | 66.6                           | 42.4                                    | 20.1                              | 13.8                             | 13.2                       | 11.7                        |
| (WY)                             | 1965                             | 1965                        | 1961                                   | 1961                                   | 1963                  | 1969                                   | 1946                           | 1955                                    | 1955                              | 1955                             | 1965                       | 1955                        |

e Estimated

# 01524500 CANISTEO RIVER BELOW CANACADEA CREEK, AT HORNELL, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1942 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 38298                  | 54937               |                         |
| ANNUAL MEAN              | 105                    | 151                 | 158                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 255 1972                |
| LOWEST ANNUAL MEAN       |                        |                     | 79.8 1965               |
| HIGHEST DAILY MEAN       | 2480 Apr 8             | 1820 Jun 27         | 7440 Jun 23 1972        |
| LOWEST DAILY MEAN        | 13 Aug 14              | 16 Oct 4            | 9.0 Sep 13 1955         |
| ANNUAL SEVEN-DAY MINIMUM | 14 Aug 11              | 16 Oct 4            | 10 Sep 8 1955           |
| 10 PERCENT EXCEEDS       | 207                    | 340                 | 349                     |
| 50 PERCENT EXCEEDS       | 41                     | 60                  | 69                      |
| 90 PERCENT EXCEEDS       | 16                     | 21                  | 22                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 01525981 TUSCARORA CREEK ABOVE SOUTH ADDISON, NY

LOCATION.--Lat 42°04'20", long 77°17'57", Steuben County, Hydrologic Unit 02050104, on right bank 500 ft downstream from bridge on State Highway 417, 200 ft upstream from Elk Creek, and 1.7 mi southwest of South Addison.

DRAINAGE AREA.--102 mi².

PERIOD OF RECORD.--Annual maximum, water years 1989-2000. October 2000 to current year.

REVISED RECORD.--WDR NY-01-3: 1991 (M).

GAGE.--Water-stage recorder. Datum of gage is 1,079.00 ft above NGVD of 1929.

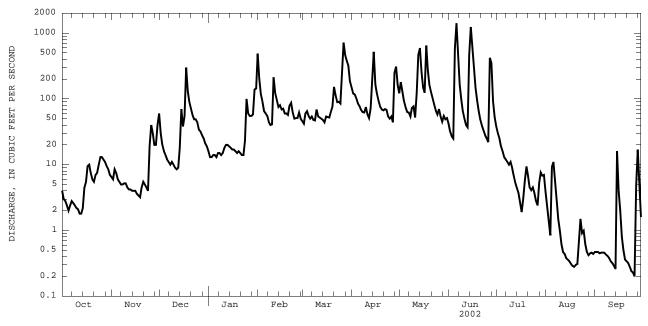
REMARKS.--Records good except those for estimated daily discharges, which are poor. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,800 ft³/s, Oct. 23, 1990, gage height, 10.96 ft, maximum gage height, 13.49 ft, Jan. 19, 1996 (ice jam); minimum instantaneous discharge, 0.17 ft³/s, Aug. 15, 16, 2001, gage height 1.52 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,600 ft³/s and maximum (\*):

| Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|---------|------|-----------------------------------|---------------------|------|------|-----------------------------------|---------------------|
| June 15 | 1300 | *2,500                            | *6.16               |      |      |                                   |                     |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


Minimum discharge, 0.19  $\mathrm{ft}^3/\mathrm{s},$  Sept. 26, gage height, 1.53 ft.

|                                            |                                            | DIBCIE                                     | INOL, CODI                                   | C IDDI II                                | DAILY                                     | MEAN VA                                  |                                          | 10 2001 10                               | DDI IDNDI                                 | IC ZOOZ                                    |                                              |                                             |
|--------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|----------------------------------------------|---------------------------------------------|
| DAY                                        | OCT                                        | NOV                                        | DEC                                          | JAN                                      | FEB                                       | MAR                                      | APR                                      | MAY                                      | JUN                                       | JUL                                        | AUG                                          | SEP                                         |
| 1<br>2<br>3<br>4<br>5                      | e4.0<br>e3.0<br>e2.8<br>e2.4<br>e2.0       | e6.5<br>e6.0<br>e8.5<br>e7.5<br>e6.0       | e60<br>e30<br>e20<br>e16<br>e14              | 16<br>13<br>13<br>14<br>14               | 488<br>202<br>117<br>e90<br>e65           | e46<br>e42<br>e60<br>e65<br>e55          | 150<br>121<br>117<br>102<br>85           | 122<br>180<br>127<br>92<br>74            | 42<br>32<br>27<br>25<br>587               | 38<br>30<br>25<br>19<br>16                 | 3.9<br>2.4<br>1.4<br>0.84<br>9.3             | 0.47<br>0.47<br>0.47<br>0.45<br>0.46        |
| 6<br>7<br>8<br>9<br>10                     | e2.4<br>e2.8<br>e2.6<br>e2.4<br>e2.2       | e5.5<br>e5.0<br>e5.0<br>e5.2<br>e5.2       | e12<br>e11<br>e10<br>e11<br>e10              | 13<br>15<br>15<br>14<br>15               | e60<br>e55<br>e44<br>40<br>41             | e50<br>54<br>48<br>47<br>69              | 78<br>68<br>63<br>62<br>75               | 63<br>62<br>54<br>73<br>77               | 1410<br>410<br>166<br>98<br>65            | 13<br>12<br>11<br>10<br>11                 | 11<br>5.2<br>2.7<br>1.5<br>1.0               | 0.46<br>0.46<br>0.43<br>0.41<br>0.38        |
| 11<br>12<br>13<br>14<br>15                 | e2.1<br>e1.8<br>e1.8<br>e2.2<br>e4.5       | e4.5<br>e4.2<br>e4.2<br>e4.0<br>e4.0       | e9.0<br>e8.5<br>e9.0<br>e18<br>e70           | 18<br>e20<br>e20<br>e19<br>18            | 213<br>122<br>e95<br>e75<br>e80           | e54<br>52<br>50<br>48<br>44              | 58<br>51<br>72<br>228<br>518             | 52<br>124<br>470<br>592<br>257           | 50<br>40<br>37<br>463<br>1240             | 8.9<br>6.7<br>5.3<br>4.4<br>3.7            | 0.62<br>0.47<br>0.44<br>0.38<br>0.36         | 0.34<br>0.32<br>0.29<br>0.26                |
| 16<br>17<br>18<br>19<br>20                 | e5.5<br>e9.5<br>e10<br>e7.5<br>e6.0        | e4.0<br>e3.6<br>e3.4<br>e3.2<br>e4.5       | e38<br>e55<br>e300<br>132<br>89              | e17<br>17<br>e16<br>15<br>16             | 69<br>71<br>e60<br>e60<br>57              | 54<br>53<br>52<br>64<br>77               | 165<br>119<br>93<br>76<br>69             | 148<br>124<br>648<br>272<br>161          | 650<br>291<br>148<br>95<br>65             | 2.7<br>1.9<br>3.1<br>5.8<br>9.4            | 0.34<br>0.31<br>0.29<br>0.28<br>0.30         | e4.0<br>e2.0<br>e0.80<br>e0.50<br>e0.36     |
| 21<br>22<br>23<br>24<br>25                 | e5.5<br>e7.0<br>e7.5<br>e10<br>e13         | e5.5<br>e5.0<br>e4.5<br>e4.0               | 71<br>57<br>49<br>49<br>e44                  | 15<br>e14<br>e14<br>23<br>e100           | 79<br>87<br>e62<br>e50<br>51              | 152<br>113<br>89<br>90<br>85             | 67<br>70<br>68<br>54<br>50               | 126<br>101<br>81<br>66<br>58             | 48<br>39<br>33<br>28<br>25                | 6.8<br>4.5<br>4.1<br>4.5<br>3.7            | 0.31<br>0.63<br>1.5<br>0.91<br>0.99          | e0.34<br>e0.32<br>e0.28<br>0.24<br>0.23     |
| 26<br>27<br>28<br>29<br>30<br>31           | e13<br>e12<br>e11<br>e9.5<br>e8.5<br>e7.0  | e40<br>e30<br>e20<br>e20<br>e40            | e34<br>e32<br>e28<br>25<br>21                | e60<br>e55<br>e55<br>e58<br>139<br>144   | 51<br>62<br>e50<br><br>                   | 273<br>720<br>458<br>379<br>320<br>185   | 54<br>44<br>251<br>310<br>162            | 70<br>54<br>45<br>55<br>49<br>51         | 22<br>420<br>348<br>92<br>53              | 2.8<br>2.4<br>5.3<br>7.6<br>6.8<br>7.0     | 0.62<br>0.47<br>0.42<br>0.45<br>0.46<br>0.44 | 0.20<br>4.8<br>17<br>5.1<br>1.6             |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 181.5<br>5.85<br>13<br>1.8<br>0.06<br>0.07 | 288.0<br>9.60<br>40<br>3.2<br>0.10<br>0.11 | 1351.5<br>43.6<br>300<br>8.5<br>0.43<br>0.50 | 995<br>32.1<br>144<br>13<br>0.32<br>0.37 | 2596<br>92.7<br>488<br>40<br>0.92<br>0.96 | 3948<br>127<br>720<br>42<br>1.26<br>1.45 | 3500<br>117<br>518<br>44<br>1.16<br>1.29 | 4528<br>146<br>648<br>45<br>1.45<br>1.67 | 7049<br>235<br>1410<br>22<br>2.33<br>2.60 | 292.4<br>9.43<br>38<br>1.9<br>0.09<br>0.11 | 50.23<br>1.62<br>11<br>0.28<br>0.02<br>0.02  | 59.44<br>1.98<br>17<br>0.20<br>0.02<br>0.02 |
| STATIS                                     | TICS OF M                                  | ONTHLY MI                                  | EAN DATA F                                   | OR WATER                                 | YEARS 2001                                | - 2002,                                  | BY WATER                                 | YEAR (WY)                                |                                           |                                            |                                              |                                             |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)         | 24.1<br>42.4<br>2001<br>5.85<br>2002       | 19.3<br>29.1<br>2001<br>9.60<br>2002       | 51.3<br>58.9<br>2001<br>43.6<br>2002         | 25.0<br>32.1<br>2002<br>17.8<br>2001     | 77.6<br>92.7<br>2002<br>62.4<br>2001      | 140<br>152<br>2001<br>127<br>2002        | 285<br>454<br>2001<br>117<br>2002        | 84.5<br>146<br>2002<br>22.9<br>2001      | 134<br>235<br>2002<br>32.4<br>2001        | 5.37<br>9.43<br>2002<br>1.30<br>2001       | 1.24<br>1.62<br>2002<br>0.87<br>2001         | 3.34<br>4.70<br>2001<br>1.98<br>2002        |

e Estimated

# 01525981 TUSCARORA CREEK ABOVE SOUTH ADDISON, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 2001 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 24346.13               | 24839.07            |                         |
| ANNUAL MEAN              | 66.7                   | 68.1                | 70.4                    |
| HIGHEST ANNUAL MEAN      |                        |                     | 72.7 2001               |
| LOWEST ANNUAL MEAN       |                        |                     | 68.1 2002               |
| HIGHEST DAILY MEAN       | 1940 Apr 7             | 1410 Jun 6          | 1940 Apr 7 2001         |
| LOWEST DAILY MEAN        | 0.19 Aug 15            | 0.20 Sep 26         | 0.19 Aug 15 2001        |
| ANNUAL SEVEN-DAY MINIMUM | 0.21 Aug 13            | 0.28 Sep 20         | 0.21 Aug 13 2001        |
| ANNUAL RUNOFF (CFSM)     | 0.66                   | 0.67                | 0.70                    |
| ANNUAL RUNOFF (INCHES)   | 8.97                   | 9.15                | 9.47                    |
| 10 PERCENT EXCEEDS       | 148                    | 148                 | 150                     |
| 50 PERCENT EXCEEDS       | 12                     | 20                  | 18                      |
| 90 PERCENT EXCEEDS       | 0.59                   | 0.49                | 0.58                    |



2002 WATER YEAR DAILY MEAN DISCHARGE.

## 01526500 TIOGA RIVER NEAR ERWINS, NY

LOCATION.--Lat 42°07'16", long 77°07'46", Steuben County, Hydrologic Unit 02050104, on right bank 20 ft downstream from bridge on Mulholland Road, 1.1 mi northeast of Erwins, and 1.1 mi downstream from Canisteo River.

DRAINAGE AREA.--1,377 mi².

PERIODO F RECORD.--July 1918 to current year.

REVISED RECORDS.--WSP 891: 1935-38. WSP 1672: 1919(M), 1927(M), 1929(M). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 931.24 ft above NGVD of 1929. Prior to June 21, 1931, nonrecording gage on highway

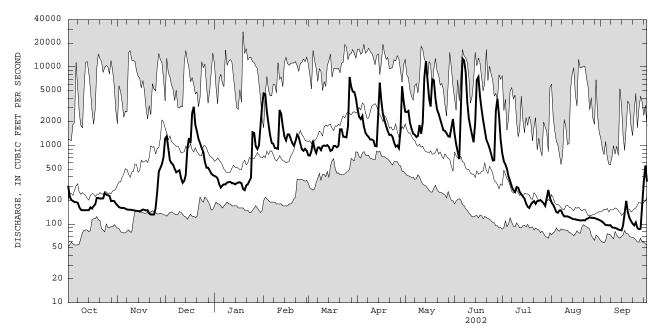
bridge at same datum.

REMARKS.—Records good except those for estimated daily discharges, which are fair. High flows regulated by upstream reservoirs. Since March 1979, flood flows regulated by Tioga Lake; normal regulation occasionally sufficient to affect figures of monthly runofff. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, prior to construction of Tioga Reservoir in 1979, 190,000 ft³/s, June 23, 1972, from rating curve extended above 90,000 ft³/s, on basis of computation of peak flow at Lindley and Canisteo River at Erwins, 7.2 mi and 2.0 mi upstream, respectively, adjusted for flow from intervening area, gage height, 26.74 ft, from floodmarks; minimum discharge, 18 ft³/s, Sept. 2, 3, 1939; minimum gage height, 0.40 ft, Sept. 8, 9, 1954, July 23, Aug. 10, 11, 1955. Maximum discharge since construction of Tioga Reservoir in 1979, 45,600 ft³/s, Jan. 19, 1996, gage height 16.98 ft; minimum discharge, 52 ft³/s, Oct. 1, 2, 6, 1980, gage height, 0.53 ft.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 14,800 ft³/s, June 6, gage height, 9.57 ft; minimum discharge, 83 ft³/s, Sept. 12, 13, 14, 15, gage height, 0, 34 ft³.


12, 13, 14, 15, gage height, 0.34 ft.

|                                    |                                        | DISCHA                              | RGE, CUBI                                        | IC FEET PI                                     | ER SECOND,<br>DAIL                               | WATER YE<br>Y MEAN VA                        |                                       | R 2001 TO                                       | SEPTEMBE                            | R 2002                                 |                                        |                                     |
|------------------------------------|----------------------------------------|-------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------|----------------------------------------------|---------------------------------------|-------------------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|
| DAY                                | OCT                                    | NOV                                 | DEC                                              | JAN                                            | FEB                                              | MAR                                          | APR                                   | MAY                                             | JUN                                 | JUL                                    | AUG                                    | SEP                                 |
| 1                                  | 308                                    | 173                                 | 1220                                             | e410                                           | e4600                                            | 748                                          | 2910                                  | 2690                                            | 1410                                | 796                                    | 188                                    | 110                                 |
| 2                                  | 226                                    | 164                                 | 1310                                             | e400                                           | e4500                                            | 743                                          | 2320                                  | 2660                                            | 1050                                | 630                                    | 176                                    | 107                                 |
| 3                                  | 203                                    | 161                                 | 913                                              | e380                                           | 2670                                             | 855                                          | 2170                                  | 2760                                            | 831                                 | e570                                   | 160                                    | 102                                 |
| 4                                  | 197                                    | 160                                 | 643                                              | e320                                           | 1870                                             | 1140                                         | 2380                                  | 1930                                            | 671                                 | e500                                   | 142                                    | 97                                  |
| 5                                  | 190                                    | 160                                 | 594                                              | 291                                            | e1350                                            | 906                                          | 1730                                  | 1620                                            | 3250                                | e400                                   | 139                                    | 97                                  |
| 6                                  | 190                                    | 157                                 | 571                                              | 310                                            | e1080                                            | 804                                          | e1450                                 | 1410                                            | 12800                               | e350                                   | 149                                    | 96                                  |
| 7                                  | 187                                    | 153                                 | 505                                              | e320                                           | e1050                                            | 944                                          | e1350                                 | 1370                                            | 12100                               | e300                                   | 149                                    | 97                                  |
| 8                                  | 164                                    | 152                                 | 454                                              | e320                                           | 927                                              | 942                                          | e1280                                 | 1280                                            | 8660                                | e270                                   | 134                                    | 91                                  |
| 9                                  | 152                                    | 152                                 | 471                                              | 337                                            | 922                                              | 873                                          | 1190                                  | 1320                                            | 3560                                | 256                                    | 125                                    | 90                                  |
| 10                                 | 150                                    | 151                                 | 483                                              | 342                                            | 905                                              | 980                                          | 1190                                  | 1820                                            | 2220                                | 296                                    | 125                                    | 89                                  |
| 11                                 | 150                                    | 150                                 | 384                                              | 344                                            | 2830                                             | 999                                          | 1160                                  | 1410                                            | 1710                                | 290                                    | 125                                    | 88                                  |
| 12                                 | 150                                    | 148                                 | 334                                              | e330                                           | 2520                                             | 988                                          | 983                                   | 1940                                            | 1380                                | 255                                    | 123                                    | 85                                  |
| 13                                 | 150                                    | 147                                 | 355                                              | e330                                           | e1750                                            | 1010                                         | 977                                   | 7290                                            | 1100                                | 240                                    | 120                                    | 84                                  |
| 14                                 | 150                                    | 146                                 | 425                                              | e320                                           | e1300                                            | 958                                          | 2360                                  | 11800                                           | 1950                                | 224                                    | 117                                    | 83                                  |
| 15                                 | 163                                    | 145                                 | 913                                              | e330                                           | 1160                                             | 852                                          | 6290                                  | 7070                                            | 6860                                | 210                                    | 115                                    | 96                                  |
| 16                                 | 157                                    | 148                                 | 1240                                             | 338                                            | 1380                                             | 875                                          | 3670                                  | 3950                                            | 7470                                | 182                                    | 115                                    | 136                                 |
| 17                                 | 169                                    | 153                                 | 1070                                             | e340                                           | 1380                                             | 985                                          | 2470                                  | 3130                                            | 4230                                | 166                                    | 113                                    | 197                                 |
| 18                                 | 178                                    | 151                                 | 2600                                             | e330                                           | 1210                                             | 986                                          | e2070                                 | 6970                                            | 2930                                | 160                                    | 112                                    | 141                                 |
| 19                                 | 214                                    | 149                                 | 3110                                             | e280                                           | 1070                                             | 948                                          | 1750                                  | 6790                                            | 2100                                | 177                                    | 111                                    | 120                                 |
| 20                                 | 215                                    | 150                                 | 1810                                             | e270                                           | 994                                              | 993                                          | 1520                                  | 3980                                            | 1600                                | 189                                    | 111                                    | 109                                 |
| 21                                 | 210                                    | 136                                 | 1500                                             | e310                                           | 1140                                             | 1600                                         | 1360                                  | 2870                                            | 1190                                | 196                                    | 112                                    | 101                                 |
| 22                                 | 211                                    | 132                                 | 1210                                             | 321                                            | 1370                                             | 1610                                         | 1370                                  | 2520                                            | 1060                                | 181                                    | 111                                    | 96                                  |
| 23                                 | 212                                    | 132                                 | 1070                                             | 355                                            | 1270                                             | 1290                                         | 1290                                  | 2140                                            | 921                                 | 196                                    | 116                                    | 105                                 |
| 24                                 | 248                                    | 132                                 | 920                                              | 387                                            | 1050                                             | 1290                                         | 1090                                  | 1820                                            | 777                                 | 198                                    | 118                                    | 89                                  |
| 25                                 | 236                                    | 159                                 | 831                                              | 1470                                           | 894                                              | 1270                                         | 968                                   | 1560                                            | 643                                 | 201                                    | 122                                    | 86                                  |
| 26<br>27<br>28<br>29<br>30<br>31   | 232<br>229<br>196<br>197<br>196<br>182 | 257<br>465<br>514<br>581<br>711     | 618<br>520<br>e520<br>e480<br>e440<br>e420       | 1440<br>976<br>e900<br>e1000<br>e1700<br>e3300 | 856<br>908<br>861<br>                            | 1750<br>7450<br>5550<br>4850<br>4800<br>3970 | 999<br>919<br>1520<br>5670<br>3600    | 1530<br>1430<br>1310<br>1290<br>1690<br>2170    | 649<br>2750<br>3930<br>2380<br>1180 | 193<br>184<br>170<br>214<br>271<br>215 | 120<br>120<br>119<br>117<br>115<br>113 | 87<br>159<br>341<br>556<br>345      |
| TOTAL                              | 6012                                   | 6289                                | 27934                                            | 18801                                          | 43817                                            | 53959                                        | 60006                                 | 93520                                           | 93362                               | 8680                                   | 3932                                   | 4080                                |
| MEAN                               | 194                                    | 210                                 | 901                                              | 606                                            | 1565                                             | 1741                                         | 2000                                  | 3017                                            | 3112                                | 280                                    | 127                                    | 136                                 |
| MAX                                | 308                                    | 711                                 | 3110                                             | 3300                                           | 4600                                             | 7450                                         | 6290                                  | 11800                                           | 12800                               | 796                                    | 188                                    | 556                                 |
| MIN                                | 150                                    | 132                                 | 334                                              | 270                                            | 856                                              | 743                                          | 919                                   | 1280                                            | 643                                 | 160                                    | 111                                    | 83                                  |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 680<br>4160<br>1991<br>96.5<br>1992    | 1176<br>4401<br>1997<br>139<br>1999 | AN DATA I<br>1426<br>3545<br>1997<br>155<br>1999 | 1330<br>4870<br>1996<br>165<br>1981            | YEARS 198<br>1778<br>4219<br>1981<br>340<br>1980 | 2677<br>5737<br>1994<br>843<br>1981          | 3488<br>11970<br>1993<br>1320<br>1981 | YEAR (WY<br>1771<br>4689<br>1989<br>371<br>1985 | 1226<br>4579<br>1989<br>142<br>1999 | 463<br>1169<br>1998<br>95.9<br>1991    | 417<br>3257<br>1994<br>102<br>2001     | 333<br>1156<br>1992<br>72.0<br>1980 |

e Estimated

# 01526500 TIOGA RIVER NEAR ERWINS, NY

| SUMMARY STATISTICS                                                                                                     | FOR 2001 CALEN                          | DAR YEAR                  | FOR 2002 W                              | ATER YEAR                | WATER YEAR                              | RS 1980 - 2002                           |
|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------|-----------------------------------------|--------------------------|-----------------------------------------|------------------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN<br>HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN                                               | 329804<br>904                           |                           | 420392<br>1152                          |                          | 1392<br>2192<br>786                     | 1984<br>1999                             |
| HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 17300<br>71<br>79<br>2160<br>322<br>120 | Apr 8<br>Aug 15<br>Aug 10 | 12800<br>83<br>87<br>2710<br>520<br>119 | Jun 6<br>Sep 14<br>Sep 8 | 28000<br>52<br>55<br>3300<br>580<br>131 | Jan 19 1996<br>Oct 1 1980<br>Sep 30 1980 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 01527500 COHOCTON RIVER AT AVOCA, NY

LOCATION.--Lat 42°23'52", long 77°25'04", Steuben County, Hydrologic Unit 02050105, on left bank just downstream from bridge on State Highway 415, 0.2 mi north of Avoca, 1.6 mi upstream from Goff Creek, and 6.4 mi north of Bath.

DRAINAGE AREA.--152 mi².

PERIODO OF RECORD.--May 1938 to September 1945; June 1996 to September 1997; June 2001 to current year.

GAGE.--Water-stage recorder. Datum of gage is 1,182.75 ft above NGVD of 1929. May 16, 1938 to Sept. 30, 1945, at site 4,200 ft downstream at datum 2.75 ft higher.

CONSISTERMENT ACTUAL 2.75 To Inspect.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

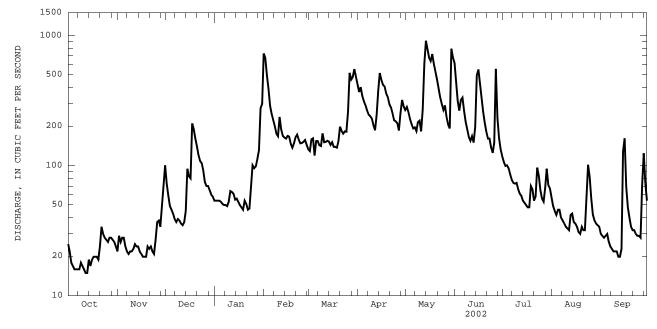
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,880 ft<sup>3</sup>/s Mar. 17, 1942, gage height, 8.88 ft, site and datum then in use, minimum discharge, 6.5 ft<sup>3</sup>/s, Sept. 28, 1941.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23, 1972 reached a discharge of 13,300 ft<sup>3</sup>/s on basis of contracted opening

measurement of peak flow.

EXTREMES FOR CURRENT PERIOD.--July 2001 to September 2001: Maximum discharge, 126 ft<sup>3</sup>/s, July 26, gage height, 2.40 ft; minimum discharge, 9.6 ft<sup>3</sup>/s, Sept. 23, 24.

October 2001 to September 2002: Maximum discharge, 1,220 ft<sup>3</sup>/s, May 30, gage height, 3.97 ft; minimum discharge, 14 ft<sup>3</sup>/s, Oct 13. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001


|             |           | DISCILL    | CODIC      | , , , , , , , , , , , , , , , , , , , , |           | MEAN VAI  |          | . 2000 10 | OBI TBI DBI | . 2001       |              |              |
|-------------|-----------|------------|------------|-----------------------------------------|-----------|-----------|----------|-----------|-------------|--------------|--------------|--------------|
| DAY         | OCT       | NOV        | DEC        | JAN                                     | FEB       | MAR       | APR      | MAY       | JUN         | JUL          | AUG          | SEP          |
| 1           |           |            |            |                                         |           |           |          |           |             | 37           | 19           | 20           |
| 2           |           |            |            |                                         |           |           |          |           |             | 37           | 18           | 19           |
| 3           |           |            |            |                                         |           |           |          |           |             | 39           | 18           | 18           |
| 4           |           |            |            |                                         |           |           |          |           |             | 39           | 18           | 17           |
| 5           |           |            |            |                                         |           |           |          |           |             | 55           | 17           | 15           |
| 3           |           |            |            |                                         |           |           |          |           |             | 33           | Ξ,           | 13           |
| 6           |           |            |            |                                         |           |           |          |           |             | 44           | 16           | 14           |
| 7           |           |            |            |                                         |           |           |          |           |             | 39           | 15           | 13           |
| 8           |           |            |            |                                         |           |           |          |           |             | 41           | 15           | 13           |
| 9           |           |            |            |                                         |           |           |          |           |             | 38           | 14           | 13           |
| 10          |           |            |            |                                         |           |           |          |           |             | 34           | 15           | 12           |
|             |           |            |            |                                         |           |           |          |           |             |              |              |              |
| 11          |           |            |            |                                         |           |           |          |           |             | 34           | 14           | 12           |
| 12          |           |            |            |                                         |           |           |          |           |             | 34           | 13           | 11           |
| 13          |           |            |            |                                         |           |           |          |           |             | 31           | 13           | 12           |
| 14          |           |            |            |                                         |           |           |          |           |             | 30           | 13           | 13           |
| 15          |           |            |            |                                         |           |           |          |           |             | 28           | 12           | 12           |
|             |           |            |            |                                         |           |           |          |           |             |              |              |              |
| 16          |           |            |            |                                         |           |           |          |           |             | 27           | 12           | 11           |
| 17          |           |            |            |                                         |           |           |          |           |             | 29           | 15           | 12           |
| 18          |           |            |            |                                         |           |           |          |           |             | 29           | 14           | 12           |
| 19          |           |            |            |                                         |           |           |          |           |             | 27           | 19           | 11           |
| 20          |           |            |            |                                         |           |           |          |           |             | 25           | 24           | 11           |
|             |           |            |            |                                         |           |           |          |           |             |              |              |              |
| 21          |           |            |            |                                         |           |           |          |           |             | 24           | 22           | 12           |
| 22          |           |            |            |                                         |           |           |          |           |             | 24           | 20           | 11           |
| 23          |           |            |            |                                         |           |           |          |           |             | 24           | 17           | 11           |
| 24          |           |            |            |                                         |           |           |          |           |             | 26           | 16           | 17           |
| 25          |           |            |            |                                         |           |           |          |           |             | 23           | 14           | 83           |
|             |           |            |            |                                         |           |           |          |           |             |              |              |              |
| 26          |           |            |            |                                         |           |           |          |           |             | 34           | e14          | 55           |
| 27          |           |            |            |                                         |           |           |          |           |             | 22           | 28           | 37           |
| 28          |           |            |            |                                         |           |           |          |           |             | 20           | 30           | 28           |
| 29          |           |            |            |                                         |           |           |          |           |             | 19           | 25           | 30           |
| 30          |           |            |            |                                         |           |           |          |           |             | 19           | 20           | 29           |
| 31          |           |            |            |                                         |           |           |          |           |             | 20           | 18           |              |
| moma r      |           |            |            |                                         |           |           |          |           |             | 952          | 538          | F 0 4        |
| TOTAL       |           |            |            |                                         |           |           |          |           |             | 30.7         |              | 584          |
| MEAN        |           |            |            |                                         |           |           |          |           |             | 30.7<br>55   | 17.4         | 19.5         |
| MAX         |           |            |            |                                         |           |           |          |           |             | 19           | 30           | 83           |
| MIN         |           |            |            |                                         |           |           |          |           |             |              | 12           | 11           |
| CFSM<br>IN. |           |            |            |                                         |           |           |          |           |             | 0.20<br>0.23 | 0.11<br>0.13 | 0.13<br>0.14 |
| TIN.        |           |            |            |                                         |           |           |          |           |             | 0.23         | 0.13         | 0.14         |
| STATIS'     | TICS OF M | ONTHLY MEA | AN DATA FO | OR WATER Y                              | EARS 1938 | 3 - 2001, | BY WATER | YEAR (WY  | )           |              |              |              |
| MEAN        | 64.7      | 114        | 153        | 128                                     | 174       | 460       | 486      | 269       | 134         | 76.7         | 42.2         | 68.9         |
| MAX         | 233       | 394        | 397        | 280                                     | 417       | 997       | 1143     | 746       | 211         | 187          | 95.4         | 231          |
| (WY)        | 1997      | 1997       | 1997       | 1943                                    | 1939      | 1945      | 1940     | 1943      | 1945        | 1942         | 1942         | 1945         |
| MIN         | 15.2      | 19.2       | 34.5       | 43.8                                    | 68.4      | 206       | 242      | 84.1      | 38.9        | 25.8         | 17.4         | 13.5         |
| (WY)        | 1942      | 1942       | 1942       | 1942                                    | 1942      | 1998      | 1997     | 1941      | 1939        | 1941         | 2001         | 1941         |
| · · · = /   |           |            |            |                                         |           |           |          |           |             |              |              |              |

e Estimated

65

01527500 COHOCTON RIVER AT AVOCA, NY--Continued

|                                                                                    |                                                          | DISCHAF                                                    | RGE, CUBIC                                | C FEET PER                                |                                           | WATER YEA                                 |                                           | 2001 TO S                                  | SEPTEMBI                                  | ER 2002                                                                                   |                                               |                                           |
|------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|
| DAY                                                                                | OCT                                                      | NOV                                                        | DEC                                       | JAN                                       | FEB                                       | MAR                                       | APR                                       | MAY                                        | JUN                                       | JUL                                                                                       | AUG                                           | SEP                                       |
| 1<br>2<br>3<br>4<br>5                                                              | 25<br>22<br>18<br>17<br>16                               | 22<br>29<br>26<br>28<br>28                                 | 101<br>73<br>59<br>49<br>46               | e54<br>e54<br>e54<br>e54<br>53            | 732<br>676<br>500<br>392<br>e290          | 134<br>130<br>160<br>163<br>e120          | 427<br>370<br>403<br>344<br>313           | 269<br>284<br>259<br>229<br>209            | 617<br>432<br>317<br>266<br>321           | 118<br>107<br>100<br>101<br>96                                                            | 57<br>49<br>45<br>42<br>46                    | 30<br>29<br>28<br>29<br>30                |
| 6<br>7<br>8<br>9<br>10                                                             | 16<br>16<br>16<br>18<br>17                               | 24<br>22<br>21<br>22<br>22                                 | 43<br>39<br>37<br>39<br>38                | 51<br>e50<br>e50<br>49<br>53              | e250<br>224<br>200<br>177<br>169          | 155<br>155<br>144<br>142<br>178           | 293<br>267<br>248<br>241<br>231           | 194<br>198<br>185<br>217<br>223            | 335<br>265<br>218<br>189<br>167           | 86<br>78<br>74<br>73<br>74                                                                | 46<br>40<br>38<br>36<br>34                    | 26<br>24<br>23<br>22<br>22                |
| 11<br>12<br>13<br>14<br>15                                                         | 16<br>15<br>15<br>19<br>17                               | 23<br>25<br>24<br>24<br>22                                 | 36<br>35<br>37<br>45<br>95                | 64<br>63<br>61<br>e55<br>56               | 238<br>190<br>e170<br>e165<br>162         | 152<br>153<br>156<br>154<br>145           | 205<br>188<br>246<br>379<br>518           | 184<br>271<br>608<br>916<br>792            | 156<br>169<br>151<br>199<br>499           | 66<br>61<br>59<br>54<br>52                                                                | 33<br>32<br>42<br>43<br>37                    | 22<br>20<br>20<br>23<br>129               |
| 16<br>17<br>18<br>19<br>20                                                         | 19<br>20<br>20<br>20<br>19                               | 21<br>20<br>20<br>20<br>20<br>24                           | 83<br>80<br>212<br>191<br>162             | 53<br>50<br>48<br>e46<br>e54              | 170<br>168<br>148<br>138<br>149           | 152<br>140<br>140<br>138<br>156           | 458<br>420<br>408<br>361<br>338           | 678<br>640<br>724<br>608<br>532            | 552<br>422<br>330<br>262<br>215           | 50<br>48<br>48<br>70<br>66                                                                | 36<br>34<br>31<br>30<br>34                    | 163<br>69<br>48<br>40<br>34               |
| 21<br>22<br>23<br>24<br>25                                                         | 24<br>e34<br>e30<br>e28<br>e27                           | 23<br>24<br>22<br>21<br>27                                 | 141<br>121<br>109<br>105<br>92            | 51<br>46<br>47<br>66<br>101               | 166<br>174<br>159<br>149<br>150           | 200<br>185<br>177<br>184<br>183           | 298<br>281<br>254<br>224<br>220           | 461<br>391<br>334<br>297<br>269            | 183<br>162<br>162<br>138<br>126           | 54<br>58<br>97<br>84<br>65                                                                | 32<br>32<br>55<br>102<br>82                   | 32<br>32<br>30<br>29<br>29                |
| 26<br>27<br>28<br>29<br>30<br>31                                                   | 26<br>28<br>28<br>27<br>26<br>24                         | 37<br>38<br>34<br>49<br>69                                 | e75<br>e70<br>e70<br>e65<br>e60<br>e58    | 96<br>99<br>113<br>132<br>278<br>e300     | 153<br>158<br>145<br>                     | 259<br>519<br>461<br>481<br>555<br>489    | 213<br>187<br>254<br>321<br>286           | 292<br>237<br>207<br>194<br>795<br>679     | 151<br>557<br>234<br>164<br>134           | 56<br>53<br>68<br>95<br>71<br>67                                                          | 56<br>42<br>38<br>36<br>35<br>34              | 28<br>72<br>125<br>73<br>54               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN.                                         | 663<br>21.4<br>34<br>15<br>0.14<br>0.16                  | 811<br>27.0<br>69<br>20<br>0.18<br>0.20                    | 2466<br>79.5<br>212<br>35<br>0.52<br>0.60 | 2401<br>77.5<br>300<br>46<br>0.51<br>0.59 | 6562<br>234<br>732<br>138<br>1.54<br>1.61 | 6660<br>215<br>555<br>120<br>1.41<br>1.63 | 9196<br>307<br>518<br>187<br>2.02<br>2.25 | 12376<br>399<br>916<br>184<br>2.63<br>3.03 | 8093<br>270<br>617<br>126<br>1.77<br>1.98 | 2249<br>72.5<br>118<br>48<br>0.48<br>0.55                                                 | 1329<br>42.9<br>102<br>30<br>0.28<br>0.33     | 1335<br>44.5<br>163<br>20<br>0.29<br>0.33 |
| STATIST                                                                            | CICS OF MO                                               | ONTHLY MEA                                                 | AN DATA FO                                | OR WATER                                  | ZEARS 1938                                | 3 - 2002,                                 | BY WATER                                  | YEAR (WY)                                  |                                           |                                                                                           |                                               |                                           |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)                                                 | 60.4<br>233<br>1997<br>15.2<br>1942                      | 105<br>394<br>1997<br>19.2<br>1942                         | 145<br>397<br>1997<br>34.5<br>1942        | 123<br>280<br>1943<br>43.8<br>1942        | 180<br>417<br>1939<br>68.4<br>1942        | 436<br>997<br>1945<br>206<br>1998         | 466<br>1143<br>1940<br>242<br>1997        | 284<br>746<br>1943<br>84.1<br>1941         | 148<br>270<br>2002<br>38.9<br>1939        | 76.3<br>187<br>1942<br>25.8<br>1941                                                       | 42.2<br>95.4<br>1942<br>17.4<br>2001          | 66.8<br>231<br>1945<br>13.5<br>1941       |
| e Esti                                                                             | mated                                                    |                                                            |                                           |                                           |                                           |                                           |                                           |                                            |                                           |                                                                                           |                                               |                                           |
|                                                                                    | STATIST                                                  | ICS                                                        |                                           |                                           |                                           | 002 WATER                                 | YEAR                                      |                                            |                                           | WATER YEAR                                                                                | S 1938 -                                      | 2002                                      |
| LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL ANNUAL 10 PERC 50 PERC | MEAN<br>'ANNUAL M<br>ANNUAL ME<br>'DAILY ME<br>DAILY MEA | EAN EAN AN (MINIMUM ) MAGE ) W FLOW CFSM) LINCHES) EDS EDS |                                           |                                           | 1<br>1<br>35<br>8                         | .6 M.<br>.5 Oc.<br>.6 Oc.                 | ay 14<br>ct 12<br>ct 7                    |                                            |                                           | 180<br>245<br>141<br>3450<br>10<br>11<br>3880<br>8.88<br>26<br>1.19<br>16.13<br>440<br>83 | Sep 26<br>Sep 23<br>Mar 17<br>Mar 17<br>Sep 3 | 1941<br>1941<br>1942<br>1942              |



2002 WATER YEAR DAILY MEAN DISCHARGE.

Discharge

Gage height

#### SUSQUEHANNA RIVER BASIN

#### 01529500 COHOCTON RIVER NEAR CAMPBELL, NY

LOCATION.--Lat 42°15'09", long 77°13'01", Steuben County, Hydrologic Unit 02050105, on left bank just downstream from bridge on town road at junction with County Highway 125, 1.9 mi upstream from Michigan Creek, and 2.0 mi north of Campbell.

DRAINAGE AREA.--470 mi².

PERIOD OF RECORD.--July 1918 to current year.

REVISED RECORDS.--WSP 891: 1935. WSP 1302: 1919-20(M), 1927-28(M), 1928-38 (monthly runoff). WSP 2103: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,016.34 ft above NGVD of 1929. Prior to Mar. 5, 1937, nonrecording gage on bidways bridge.

highway bridge.

REMARKS.--Records good except those for estimated daily discharges, which are fair. During each year since March 1931, a large part of flow from 45.5 mi<sup>2</sup> of drainage area upstream from Lake Lamoka on Mud Creek, a tributary upstream from this station, has been diverted into Keuka Lake (Oswego River basin), for power development. Telephone and satellite gage-height telemeters

at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 41,100 ft<sup>3</sup>/s, July 8, 1935, gage height, 11.6 ft, from floodmark, from rating curve extended above 24,200 ft<sup>3</sup>/s on basis of velocity—area and slope—area measurements of peak flow; minimum discharge, 8 ft<sup>3</sup>/s, Sept. 6, 7, 1934.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 4,200 ft<sup>3</sup>/s and maximum (\*):

Gage height

Discharge

| Date         | Tim       | ie                           | (ft <sup>3</sup> /s) | 5       | (ft) |            | Date     | Time      | :         | (ft <sup>3</sup> /s) | (:      | ft) |
|--------------|-----------|------------------------------|----------------------|---------|------|------------|----------|-----------|-----------|----------------------|---------|-----|
| Jun. 27      | 053       | 0                            | *4,670               | *4      | 1.92 |            | No other | peak gre  | eater tha | n base dis           | charge. |     |
| Minimum disc | harge, 30 | $\mathrm{ft}^3/\mathrm{s}$ , | Sept. 14,            | 15.     |      |            |          |           |           |                      |         |     |
|              |           | DISCHA                       | ARGE, CUBIC          | FEET PE |      |            |          | R 2001 TO | SEPTEMBE  | R 2002               |         |     |
|              |           |                              |                      |         | DAIL | Y MEAN VAI | JUES     |           |           |                      |         |     |
| DAY          | OCT       | NOV                          | DEC                  | JAN     | FEB  | MAR        | APR      | MAY       | JUN       | JUL                  | AUG     | SEP |
| 1            | 56        | 43                           | 198                  | e95     | 2410 | 303        | 1150     | 751       | 1320      | 317                  | 116     | 47  |
| 2            | 50        | 45                           | 160                  | e95     | 2320 | 298        | 965      | 759       | 874       | 279                  | 96      | 43  |
| 3            | 46        | 49                           | 126                  | e95     | 1420 | 361        | 1010     | 766       | 675       | 244                  | 84      | 43  |
| 4            | 41        | 48                           | 103                  | e95     | 1030 | 442        | 955      | 649       | 466       | 219                  | 76      | 41  |
| 5            | 38        | 50                           | 92                   | e95     | 667  | 326        | 827      | 578       | 566       | 219                  | 76      | 40  |
| 6            | 39        | 46                           | 87                   | 98      | e600 | 348        | 695      | 534       | 975       | 192                  | 83      | 39  |
| 7            | 38        | 45                           | 81                   | 99      | e560 | 370        | 590      | 496       | 725       | 178                  | 76      | 37  |
| 8            | 38        | 43                           | 87                   | e90     | 568  | 341        | 541      | 454       | 497       | 166                  | 69      | 35  |
| 9            | 39        | 43                           | 143                  | e90     | 517  | 326        | 528      | 519       | 398       | 159                  | 63      | 33  |
| 10           | 38        | 43                           | 155                  | e100    | 491  | 404        | 574      | 577       | 346       | 160                  | 60      | 31  |
| 11           | 35        | 43                           | 139                  | e120    | 846  | 377        | 482      | 441       | 315       | 145                  | 57      | 31  |
| 12           | 35        | 43                           | 135                  | e120    | 697  | 368        | 421      | 580       | 337       | 131                  | 54      | 31  |
| 13           | 34        | 45                           | 136                  | e110    | 587  | 363        | 573      | 1980      | 346       | 126                  | 56      | 31  |
| 14           | 35        | 44                           | 151                  | e100    | 446  | 400        | 1420     | 3550      | 560       | 120                  | 62      | 30  |
| 15           | 39        | 44                           | 271                  | e110    | 453  | 432        | 2640     | 2730      | 1230      | 112                  | 60      | 41  |
| 16           | 38        | 42                           | 274                  | 111     | 443  | 457        | 1610     | 1990      | 1430      | 107                  | 58      | 300 |
| 17           | 41        | 41                           | 247                  | 105     | 453  | 462        | 1200     | 1690      | 981       | 103                  | 54      | 134 |
| 18           | 41        | 39                           | 593                  | 99      | 372  | 449        | 1120     | 2210      | 720       | 97                   | 50      | 88  |
| 19           | 41        | 39                           | 605                  | 75      | 340  | 453        | 935      | 1910      | 576       | 113                  | 47      | 68  |
| 20           | 40        | 44                           | 440                  | e90     | 368  | 466        | 827      | 1410      | 428       | 134                  | 54      | 58  |
| 21           | 40        | 45                           | 366                  | e100    | 404  | 736        | 773      | 1120      | 355       | 111                  | 51      | 55  |
| 2.2          | 58        | 44                           | 283                  | e95     | 458  | 684        | 709      | 894       | 318       | 100                  | 49      | 54  |
| 23           | 64        | 44                           | 228                  | e90     | 403  | 548        | 599      | 759       | 315       | 129                  | 63      | 48  |
| 24           | 62        | 43                           | 213                  | 123     | 350  | 540        | 507      | 623       | 280       | 150                  | 85      | 42  |

| IN.                                | 0.11                                | 0.12                                | 0.49                                | 0.41                                | 1.47                                | 1.62                                | 2.04                                | 2.59                               | 1.58                                | 0.37                                | 0.17                               | 0.16                                |
|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|------------------------------------|-------------------------------------|
| STATIST                            | rics of Mo                          | ONTHLY MEAN                         | DATA F                              | OR WATER                            | YEARS 1918                          | - 2002,                             | BY WATER                            | YEAR (WY)                          |                                     |                                     |                                    |                                     |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 187<br>1284<br>1956<br>25.7<br>1942 | 331<br>1611<br>1928<br>33.0<br>1942 | 422<br>1861<br>1928<br>42.5<br>1961 | 416<br>1586<br>1998<br>32.5<br>1961 | 496<br>2059<br>1976<br>75.1<br>1920 | 1099<br>3793<br>1936<br>312<br>1965 | 1136<br>3579<br>1993<br>201<br>1946 | 610<br>2074<br>1919<br>143<br>1934 | 343<br>3167<br>1972<br>59.2<br>1955 | 182<br>2278<br>1935<br>31.1<br>1955 | 119<br>649<br>1992<br>25.0<br>1934 | 133<br>1204<br>1977<br>15.5<br>1934 |

1.41

1.83

2.25

1.42

0.32

68.7

0.15

---

66.0

0.14

2.7

TOTAL

MEAN

MAX

MTN

CFSM

44.2

0.09

50.9

0.11

e190

e140

e120

e130

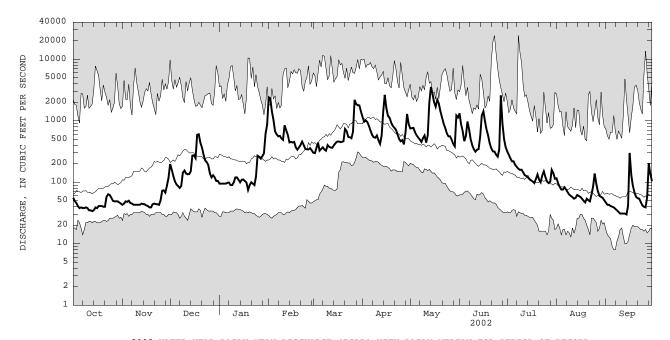
e120

e105

e105

0.43

0.36


---

1.41

e Estimated

# 01529500 COHOCTON RIVER NEAR CAMPBELL, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1918 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 116253                 | 140733              |                         |
| ANNUAL MEAN              | 319                    | 386                 | 456                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 766 1956                |
| LOWEST ANNUAL MEAN       |                        |                     | 210 1965                |
| HIGHEST DAILY MEAN       | 8080 Apr 9             | 3550 May 14         | 24400 Jul 8 1935        |
| LOWEST DAILY MEAN        | 26 Sep 22              | 30 Sep 14           | 8.0 Sep 6 1934          |
| ANNUAL SEVEN-DAY MINIMUM | 27 Sep 17              | 32 Sep 8            | 11 Sep 3 1934           |
| ANNUAL RUNOFF (CFSM)     | 0.68                   | 0.82                | 0.97                    |
| ANNUAL RUNOFF (INCHES)   | 9.20                   | 11.14               | 13.17                   |
| 10 PERCENT EXCEEDS       | 612                    | 943                 | 1100                    |
| 50 PERCENT EXCEEDS       | 110                    | 159                 | 206                     |
| 90 PERCENT EXCEEDS       | 36                     | 42                  | 50                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 01529950 CHEMUNG RIVER AT CORNING, NY

LOCATION.--Lat  $42^{\circ}08^{\circ}47^{\circ}$ , long  $77^{\circ}03^{\circ}28^{\circ}$ , Steuben County, Hydrologic Unit 02050105, on right bank adjacent to Corning Glass Works power plant, 0.2 mi upstream from bridge on State Highway 414 (Centerway St.) at Corning, and 1.7 mi downstream from Cohocton River. DRAINAGE AREA. -- 2,006 mi<sup>2</sup>.

DRAINAGE AREA. --2,006 ml.

PERIOD OF RECORD. --Occasional discharge measurements water years 1941, 1968-69. October 1974 to current year.

REVISED RECORDS. --WDR NY-78-1: 1976, 1977(M). WDR NY-83-3: 1982(M).

GAGE. --Water-stage recorder. Datum of gage is 900.00 ft above NGVD of 1929.

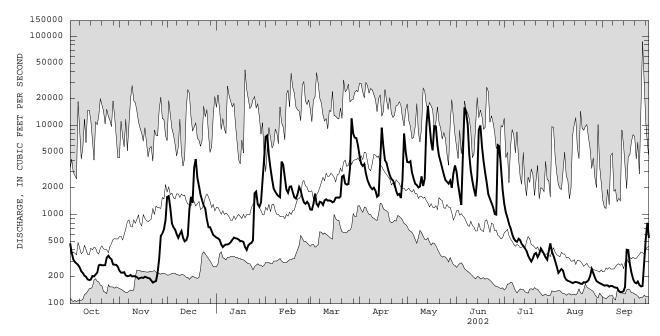
REMARKS. --Records good except those for estimated daily discharges, which are fair. High flows significantly regulated by upstream reservoirs. During each year a large part of flow from 45.5 mi<sup>2</sup> of drainage area is diverted upstream from Lake Lamoka on Mud Crook, an unstream tributary, into Kouka Lake (Orwege Biver basin) for never development. Tolerbore and establish group height

reservoirs. During each year a large part of flow from 45.5 mi<sup>2</sup> of drainage area is diverted upstream from Lake Lamoka on Mud Creek, an upstream tributary, into Keuka Lake (Oswego River basin) for power development. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 127,000 ft<sup>3</sup>/s, Sept. 26, 1975, gage height, 32.46 ft; minimum discharge, 210 ft<sup>3</sup>/s, Aug. 1978. Maximum discharge since construction of Tioga Reservoir in 1979, about 61,000 ft<sup>3</sup>/s, Jan. 19, 1996; minimum discharge, 95 ft<sup>3</sup>/s, Sept. 9, 10, 23, 24, 1991, gage height, 14.30 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23, 1972, reached a stage of 40.71 ft, from floodmark; discharge 228,000 ft<sup>3</sup>/s, from peak flows determined at upstream and downstream stations adjusted for drainage area and channel storage.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 18,000 ft<sup>3</sup>/s, May 14, gage height, 21.08 ft; minimum discharge, 132 ft<sup>3</sup>/s, Sept. 11, 12, 13 Sept. 11, 12, 13.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY SEP OCT NOV DEC JAN FEB MAY JUN AUG e550 e540 e520 e460 e2500 e430 e450 e1950 e460 e1800 e230 e460 e220 e470 e205 e490 e200 e520 13 184 e2600 170 135 e550 e540 e1900 e1750 167 e430 e400 e470 e480 e2200 e3300 e720 e12000 e720 e650 ---e590 TOTAL MEAN MAY MIN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1975 - 2002, BY WATER YEAR (WY) MEAN MAX (WY) MIN 

(WY)

e Estimated

# 01529950 CHEMUNG RIVER AT CORNING, NY

| SUMMARY STATISTICS       | FOR 2001 CALEN | DAR YEAR | FOR 2002 WA | ATER YEAR | WATER YEAR | S 1975 - 2002 |
|--------------------------|----------------|----------|-------------|-----------|------------|---------------|
| ANNUAL TOTAL             | 499297         |          | 625321      |           |            |               |
| ANNUAL MEAN              | 1368           |          | 1713        |           | 2094       |               |
| HIGHEST ANNUAL MEAN      |                |          |             |           | 3284       | 1978          |
| LOWEST ANNUAL MEAN       |                |          |             |           | 1203       | 1999          |
| HIGHEST DAILY MEAN       | 25900          | Apr 8    | 16500       | May 14    | 87100      | Sep 26 1975   |
| LOWEST DAILY MEAN        | 125            | Aug 12   | 134         | Sep 12    | 105        | Oct 3 1980    |
| ANNUAL SEVEN-DAY MINIMUM | 128            | Aug 9    | 143         | Sep 8     | 108        | Oct 2 1980    |
| 10 PERCENT EXCEEDS       | 3280           |          | 3980        |           | 4920       |               |
| 50 PERCENT EXCEEDS       | 499            |          | 703         |           | 950        |               |
| 90 PERCENT EXCEEDS       | 166            |          | 177         |           | 225        |               |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 01530500 NEWTOWN CREEK AT ELMIRA, NY

71

LOCATION.--Lat 42°06'16", long 76°47'54", Chemung County, Hydrologic Unit 02050105, on left bank 200 ft downstream from bridge on Linden Place in Elmira, and 1.5 mi upstream from mouth.

DRAINAGE AREA.--77.5 mi².

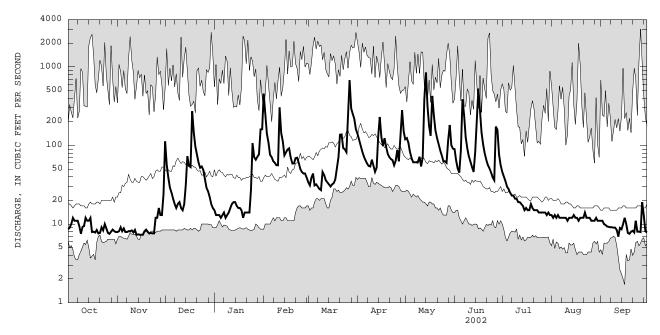
PERIOD OF RECORD.--May 1938 to current year.

REVISED RECORDS.--WSP 1502: 1956. WSP 2103: Drainage area. WDR NY 1974: 1973.

GAGE.--Water-stage recorder. Datum of gage is 838.35 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation at low flow caused by numerous industrial operations upstream. Since August 1989, high flows regulated by detention in upstream reservoir. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 4,000 ft³/s, June 23, 1972 (backwater from Chemung River), maximum gage height, 19.28 ft, June 23, 1972, from floodmarks (backwater from Chemung River). Maximum discharge since construction of upstream reservoir in August 1989, 3,810 ft³/s, Jan. 19, 1996, gage height 16.98 ft. Minimum instantaneous discharge not determined. determined.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,200 ft<sup>3</sup>/s, May 13, gage height 9.91 ft; minimum discharge, 5.5 ft<sup>3</sup>/s, Sept. 19, 20, 21, gage height 4.13 ft. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                  |                                        | 2100111                         | 102, 0021                        | , , , , , , , , , ,                | DAILY                          | MEAN VA                                | LUES                          | 10 2001 10                          | 021 12122                    | 2002                       |                            |                               |
|----------------------------------|----------------------------------------|---------------------------------|----------------------------------|------------------------------------|--------------------------------|----------------------------------------|-------------------------------|-------------------------------------|------------------------------|----------------------------|----------------------------|-------------------------------|
| DAY                              | OCT                                    | NOV                             | DEC                              | JAN                                | FEB                            | MAR                                    | APR                           | MAY                                 | JUN                          | JUL                        | AUG                        | SEP                           |
| 1                                | 8.6                                    | 7.9                             | 113                              | 15                                 | 457                            | 34                                     | 140                           | 120                                 | 90                           | 46                         | 13                         | 11                            |
| 2                                | 9.0                                    | 8.1                             | 57                               | 13                                 | 249                            | 31                                     | 117                           | 124                                 | 65                           | 40                         | 12                         | 11                            |
| 3                                | 10                                     | 9.1                             | 39                               | 13                                 | 141                            | 39                                     | 98                            | 108                                 | 51                           | 35                         | 13                         | 10                            |
| 4                                | 12                                     | 8.1                             | 29                               | 13                                 | 109                            | 44                                     | 83                            | 82                                  | 45                           | 30                         | 12                         | 9.7                           |
| 5                                | 11                                     | 8.8                             | 25                               | 12                                 | e76                            | 31                                     | 72                            | 69                                  | 87                           | 28                         | 13                         | 9.3                           |
| 6                                | 11                                     | 7.9                             | 21                               | 13                                 | 71                             | 32                                     | 65                            | 61                                  | 387                          | 25                         | 12                         | 9.2                           |
| 7                                | 11                                     | 7.9                             | 18                               | 14                                 | 63                             | 30                                     | 59                            | 61                                  | 245                          | 23                         | 12                         | 9.1                           |
| 8                                | 9.4                                    | 8.1                             | 16                               | 12                                 | 60                             | 28                                     | 55                            | 61                                  | 128                          | 23                         | 12                         | 9.1                           |
| 9                                | 7.5                                    | 8.1                             | 18                               | 13                                 | 56                             | 27                                     | 54                            | 62                                  | 92                           | 21                         | 12                         | 9.0                           |
| 10                               | 9.2                                    | 8.3                             | 19                               | 14                                 | 56                             | 46                                     | 66                            | 72                                  | 73                           | 21                         | 12                         | 9.0                           |
| 11<br>12<br>13<br>14<br>15       | 9.4<br>12<br>11<br>11<br>12            | 7.8<br>8.4<br>7.3<br>7.4<br>7.3 | 16<br>15<br>18<br>31<br>73       | 16<br>18<br>19<br>19               | 306<br>144<br>113<br>e75<br>82 | 42<br>36<br>34<br>32<br>30             | 55<br>46<br>52<br>133<br>230  | 54<br>71<br>385<br>851<br>314       | 62<br>53<br>46<br>82<br>217  | 19<br>19<br>18<br>17<br>15 | 11<br>12<br>12<br>12<br>13 | 8.4<br>6.9<br>8.9<br>8.6      |
| 16                               | 7.9                                    | 7.3                             | 55                               | 16                                 | 89                             | 32                                     | 128                           | 176                                 | 531                          | 16                         | 12                         | 12                            |
| 17                               | 8.0                                    | 7.3                             | 53                               | 16                                 | 92                             | 33                                     | 98                            | 133                                 | 280                          | 15                         | 12                         | 10                            |
| 18                               | 7.8                                    | 8.1                             | 273                              | 15                                 | 70                             | 37                                     | 124                           | 428                                 | 147                          | 15                         | 11                         | 7.7                           |
| 19                               | 8.4                                    | 8.5                             | 147                              | 12                                 | 59                             | 51                                     | 95                            | 243                                 | 103                          | 18                         | 12                         | 7.5                           |
| 20                               | 7.6                                    | 8.0                             | 97                               | 14                                 | 59                             | 71                                     | 78                            | 155                                 | 79                           | 16                         | 12                         | 8.0                           |
| 21                               | 7.7                                    | 7.6                             | 76                               | e14                                | 69                             | 137                                    | 71                            | 124                                 | 65                           | 15                         | 12                         | 8.2                           |
| 22                               | 9.1                                    | 7.7                             | 61                               | 14                                 | 70                             | 138                                    | 67                            | 103                                 | 56                           | 15                         | 14                         | 7.8                           |
| 23                               | 8.3                                    | 7.6                             | 52                               | 14                                 | 60                             | 93                                     | 65                            | 86                                  | 51                           | 15                         | 12                         | 11                            |
| 24                               | 10                                     | 7.6                             | 54                               | 27                                 | 50                             | 89                                     | 56                            | 74                                  | 45                           | 14                         | 12                         | 8.0                           |
| 25                               | 8.8                                    | 12                              | 49                               | 107                                | 46                             | 82                                     | 64                            | 63                                  | 39                           | 14                         | 12                         | 8.0                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 7.7<br>7.5<br>8.0<br>8.5<br>8.1<br>7.9 | 12<br>16<br>13<br>13<br>24      | 38<br>29<br>26<br>22<br>18<br>16 | 71<br>66<br>72<br>77<br>160<br>161 | 44<br>44<br>39<br>             | 216<br>678<br>294<br>252<br>217<br>160 | 87<br>63<br>139<br>281<br>151 | 63<br>60<br>116<br>182<br>100<br>91 | 36<br>174<br>158<br>77<br>56 | 14<br>14<br>14<br>13<br>14 | 11<br>11<br>12<br>11<br>11 | 7.9<br>19<br>13<br>8.1<br>7.8 |
| TOTAL                            | 285.4                                  | 280.2                           | 1574                             | 1077                               | 2849                           | 3096                                   | 2892                          | 4692                                | 3620                         | 615                        | 371                        | 283.2                         |
| MEAN                             | 9.21                                   | 9.34                            | 50.8                             | 34.7                               | 102                            | 99.9                                   | 96.4                          | 151                                 | 121                          | 19.8                       | 12.0                       | 9.44                          |
| MAX                              | 12                                     | 24                              | 273                              | 161                                | 457                            | 678                                    | 281                           | 851                                 | 531                          | 46                         | 14                         | 19                            |
| MIN                              | 7.5                                    | 7.3                             | 15                               | 12                                 | 39                             | 27                                     | 46                            | 54                                  | 36                           | 13                         | 11                         | 6.9                           |
| STATIS                           | TICS OF M                              | NONTHLY MEA                     | AN DATA FO                       | OR WATER                           | YEARS 1990                     | - 2002,                                | BY WATER                      | YEAR (WY)                           | )                            |                            |                            |                               |
| MEAN                             | 50.2                                   | 84.0                            | 88.5                             | 99.2                               | 100                            | 166                                    | 210                           | 91.2                                | 62.5                         | 34.7                       | 32.6                       | 24.2                          |
| MAX                              | 183                                    | 295                             | 248                              | 269                                | 205                            | 310                                    | 747                           | 249                                 | 142                          | 105                        | 171                        | 108                           |
| (WY)                             | 1991                                   | 1997                            | 1997                             | 1996                               | 1990                           | 1994                                   | 1993                          | 1996                                | 1996                         | 1992                       | 1994                       | 1992                          |
| MIN                              | 9.21                                   | 9.34                            | 11.8                             | 12.6                               | 23.2                           | 63.5                                   | 87.5                          | 22.0                                | 11.1                         | 7.30                       | 7.25                       | 8.28                          |
| (WY)                             | 2002                                   | 2002                            | 1999                             | 2001                               | 1993                           | 1990                                   | 1997                          | 2001                                | 1999                         | 1991                       | 1991                       | 1991                          |

e Estimated

# 01530500 NEWTOWN CREEK AT ELMIRA, NY

| SUMMARY STATISTICS                                                                                   | FOR 2001 CALENDAR YEAR                     | FOR 2002 WATER YEAR                         | WATER YEARS 1990 - 2002                                             |
|------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN | 17430.5<br>47.8<br>957 Mar 30<br>5.7 Sep 2 | 21634.8<br>59.3<br>851 May 14<br>6.9 Sep 12 | 86.7<br>133 1993<br>46.9 2001<br>2470 Jan 19 1996<br>4.9 Aug 3 1991 |
| ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS                    | 7.5 Nov 11<br>90<br>15<br>8.0              | 7.5 Nov 11<br>138<br>25<br>8.1              | 6.0 Aug 12 1991<br>181<br>38<br>9.9                                 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

73

## 01531000 CHEMUNG RIVER AT CHEMUNG, NY

LOCATION.--Lat 42°00'08", long 76°38'06", Chemung County, Hydrologic Unit 02050105, on right bank 100 ft upstream from bridge on State Highway 427, 0.7 mi southwest of Chemung, and 10.0 mi upstream from mouth.

DRAINAGE AREA.--2,506 mi².

DRAINAGE AREA. -2,506 mi<sup>2</sup>.

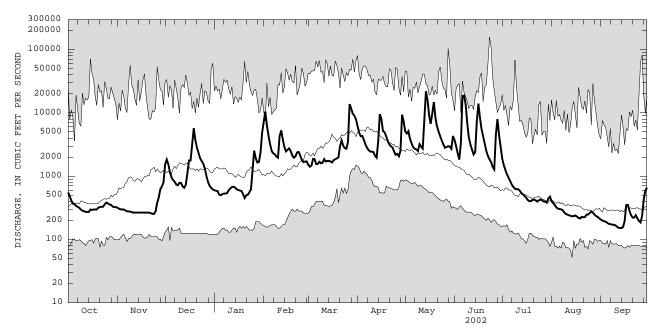
PERIOD OF RECORD. --September 1903 to current year (gage heights only for some winter periods).

REVISED RECORDS. --WSP 891: 1935-39. WSP 1432: 1904, 1907, 1915. WSP 2103: Drainage area. WDR NY 1974: 1973.

GAGE. --Water-stage recorder. Datum of gage is 778.63 ft above NGVD of 1929 (levels by Corps of Engineers). Prior to Jan. 10, 1930, nonrecording gage on highway bridge 60 ft upstream at same datum.

REMARKS. --Records good except those for estimated daily discharges, which are fair. High flows significantly regulated by upstream reservoirs. During each year a large part of flow from 45.5 mi<sup>2</sup> of drainage area is diverted upstream from Lake Lamoka on Mud Creek, an upstream tributary, into Keuka Lake (Oswego River basin) for power development. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 189,000 ft<sup>3</sup>/s, June 23, 1972, gage height, 31.62 ft, from floodmark, from rating curve extended above 65,000 ft<sup>3</sup>/s, on basis of slope-area and velocity-area studies at gage height 19.75 ft, and slope-area and contracted opening measurements at gage heights 23.97 and 31.62 ft; minimum discharge, 49 ft<sup>3</sup>/s, Aug. 14, 1911, gage height, 1.47 ft. Maximum discharge since construction of Tioga Reservoir in 1979, 77,800 ft<sup>3</sup>/s, Jan. 20, 1996, gage height 19.71 ft; minimum discharge, 104 ft<sup>3</sup>/s, Sept. 3, 1991, gage height, 1.40 ft; minimum discharge, 146 ft<sup>3</sup>/s, Sept. 13, gage height, 2.74 ft.


13, gage height, 2.74 ft.

|                                  |                                        | DISCHA                          | RGE, CUB                                    | IC FEET PI                                   |                          | , WATER YE<br>LY MEAN VA                       |                                      | ER 2001 TO                                   | ) SEPTEMBE                           | R 2002                                 |                                        |                                 |
|----------------------------------|----------------------------------------|---------------------------------|---------------------------------------------|----------------------------------------------|--------------------------|------------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | OCT                                    | NOV                             | DEC                                         | JAN                                          | FEB                      | MAR                                            | APR                                  | MAY                                          | JUN                                  | JUL                                    | AUG                                    | SEP                             |
| 1                                | 555                                    | 317                             | 1540                                        | e600                                         | 7270                     | 1520                                           | 6210                                 | 5110                                         | 3720                                 | 1880                                   | 401                                    | 206                             |
| 2                                | 483                                    | 305                             | 1830                                        | e590                                         | 10500                    | 1410                                           | 4870                                 | 4730                                         | 2990                                 | 1480                                   | 377                                    | 198                             |
| 3                                | 409                                    | 299                             | 1530                                        | e580                                         | 6410                     | 1470                                           | 4290                                 | 5160                                         | 2280                                 | 1240                                   | 350                                    | 194                             |
| 4                                | 372                                    | 297                             | 1160                                        | e510                                         | 4380                     | 1880                                           | 4340                                 | 3900                                         | 1830                                 | 1070                                   | 321                                    | 191                             |
| 5                                | 358                                    | 297                             | 951                                         | e500                                         | e3200                    | 1860                                           | 3740                                 | 3290                                         | 3330                                 | 941                                    | 306                                    | 183                             |
| 6                                | 339                                    | 288                             | 870                                         | e520                                         | e2500                    | 1550                                           | 3160                                 | 2870                                         | 18500                                | 838                                    | 303                                    | 176                             |
| 7                                | 327                                    | 278                             | 814                                         | e530                                         | e2300                    | 1570                                           | 2810                                 | 2710                                         | 18900                                | 735                                    | 299                                    | 174                             |
| 8                                | 315                                    | 277                             | 738                                         | e530                                         | 2220                     | 1690                                           | 2580                                 | 2650                                         | 13600                                | 675                                    | 291                                    | 171                             |
| 9                                | 297                                    | 275                             | 719                                         | e540                                         | 2040                     | 1600                                           | 2440                                 | 2500                                         | 6860                                 | 634                                    | 266                                    | 170                             |
| 10                               | 284                                    | 269                             | 786                                         | 600                                          | 1960                     | 1630                                           | 2450                                 | 3220                                         | 4120                                 | 621                                    | 253                                    | 168                             |
| 11                               | 279                                    | 265                             | 778                                         | 639                                          | 4340                     | 1870                                           | 2400                                 | 2940                                         | 3170                                 | 623                                    | 246                                    | 160                             |
| 12                               | 272                                    | 265                             | 687                                         | 675                                          | 5300                     | 1710                                           | 2100                                 | 2730                                         | 2620                                 | 592                                    | 240                                    | 153                             |
| 13                               | 271                                    | 265                             | 654                                         | 681                                          | 3790                     | 1740                                           | 1960                                 | 8460                                         | 2200                                 | 544                                    | 236                                    | 151                             |
| 14                               | 271                                    | 265                             | 730                                         | 656                                          | 2880                     | 1740                                           | 3610                                 | 22000                                        | 2400                                 | 518                                    | 232                                    | 151                             |
| 15                               | 297                                    | 265                             | 1100                                        | 620                                          | 2470                     | 1710                                           | 9560                                 | 16000                                        | 7280                                 | 490                                    | 233                                    | 157                             |
| 16                               | 293                                    | 265                             | 1770                                        | 605                                          | 2630                     | 1650                                           | 8050                                 | 9190                                         | 14000                                | 457                                    | 239                                    | 196                             |
| 17                               | 297                                    | 265                             | 1770                                        | 592                                          | 2750                     | 1790                                           | 5190                                 | 6740                                         | 8370                                 | 422                                    | 229                                    | 348                             |
| 18                               | 297                                    | 265                             | 3310                                        | 584                                          | 2480                     | 1860                                           | 4970                                 | 9740                                         | 5550                                 | 402                                    | 218                                    | 350                             |
| 19                               | 297                                    | 265                             | 5720                                        | 520                                          | 2110                     | 1910                                           | 4290                                 | 14900                                        | 4230                                 | 402                                    | 214                                    | 283                             |
| 20                               | 319                                    | 265                             | 3700                                        | e450                                         | 1960                     | 2000                                           | 3590                                 | 8370                                         | 3240                                 | 421                                    | 228                                    | 243                             |
| 21                               | 324                                    | 265                             | 2820                                        | e500                                         | 2070                     | 2990                                           | 3170                                 | 6080                                         | 2490                                 | 425                                    | 223                                    | 221                             |
| 22                               | 327                                    | 260                             | 2340                                        | e510                                         | 2390                     | 3670                                           | 2970                                 | 5020                                         | 2090                                 | 415                                    | 225                                    | 221                             |
| 23                               | 329                                    | 253                             | 1920                                        | 560                                          | 2420                     | 3030                                           | 2850                                 | 4240                                         | 1840                                 | 396                                    | 245                                    | 241                             |
| 24                               | 360                                    | 253                             | 1730                                        | 620                                          | 2100                     | 2780                                           | 2460                                 | 3660                                         | 1660                                 | 414                                    | 247                                    | 215                             |
| 25                               | 383                                    | 278                             | 1570                                        | 1280                                         | 1810                     | 2730                                           | 2180                                 | 3180                                         | 1390                                 | 428                                    | 260                                    | 195                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 372<br>357<br>352<br>331<br>324<br>324 | 381<br>467<br>622<br>689<br>800 | 1310<br>989<br>e800<br>e700<br>e650<br>e620 | 2530<br>1910<br>1650<br>1680<br>2400<br>4940 | 1670<br>1700<br>1710<br> | 3550<br>13800<br>11700<br>9720<br>9090<br>7920 | 2260<br>2070<br>2540<br>9400<br>7300 | 2820<br>2910<br>2970<br>2950<br>2710<br>4330 | 1280<br>4470<br>7990<br>4500<br>2910 | 415<br>398<br>395<br>381<br>443<br>473 | 277<br>264<br>247<br>234<br>227<br>215 | 185<br>240<br>429<br>592<br>658 |
| TOTAL                            | 10415                                  | 9820                            | 46606                                       | 30102                                        | 89360                    | 105140                                         | 119810                               | 178080                                       | 159810                               | 19568                                  | 8146                                   | 7220                            |
| MEAN                             | 336                                    | 327                             | 1503                                        | 971                                          | 3191                     | 3392                                           | 3994                                 | 5745                                         | 5327                                 | 631                                    | 263                                    | 241                             |
| MAX                              | 555                                    | 800                             | 5720                                        | 4940                                         | 10500                    | 13800                                          | 9560                                 | 22000                                        | 18900                                | 1880                                   | 401                                    | 658                             |
| MIN                              | 271                                    | 253                             | 620                                         | 450                                          | 1670                     | 1410                                           | 1960                                 | 2500                                         | 1280                                 | 381                                    | 214                                    | 151                             |
| STATIST                          | rics of Mo                             | ONTHLY ME                       | AN DATA                                     | FOR WATER                                    | YEARS 19                 | 80 - 2002,                                     | BY WATER                             | R YEAR (W                                    | ď)                                   |                                        |                                        |                                 |
| MEAN                             | 1245                                   | 2147                            | 2676                                        | 2461                                         | 3213                     | 4917                                           | 6534                                 | 3393                                         | 2165                                 | 951                                    | 804                                    | 631                             |
| MAX                              | 6774                                   | 8107                            | 6688                                        | 8569                                         | 7695                     | 9919                                           | 21600                                | 8901                                         | 7418                                 | 2772                                   | 5001                                   | 2572                            |
| (WY)                             | 1991                                   | 1997                            | 1997                                        | 1996                                         | 1981                     | 1994                                           | 1993                                 | 1996                                         | 1989                                 | 1998                                   | 1994                                   | 1992                            |
| MIN                              | 199                                    | 266                             | 282                                         | 459                                          | 631                      | 1750                                           | 2214                                 | 696                                          | 280                                  | 196                                    | 161                                    | 169                             |
| (WY)                             | 1992                                   | 1999                            | 1999                                        | 1981                                         | 1980                     | 1981                                           | 1981                                 | 1985                                         | 1999                                 | 1991                                   | 1999                                   | 1991                            |

e Estimated

# 01531000 CHEMUNG RIVER AT CHEMUNG, NY

| SUMMARY STATISTICS       | FOR 2001 CALEN | IDAR YEAR | FOR 2002 W | ATER YEAR | WATER YEAR | RS 1980 - 2002 |
|--------------------------|----------------|-----------|------------|-----------|------------|----------------|
| ANNUAL TOTAL             | 615790         |           | 784077     |           |            |                |
| ANNUAL MEAN              | 1687           |           | 2148       |           | 2587       |                |
| HIGHEST ANNUAL MEAN      |                |           |            |           | 4126       | 1984           |
| LOWEST ANNUAL MEAN       |                |           |            |           | 1513       | 1999           |
| HIGHEST DAILY MEAN       | 32000          | Apr 9     | 22000      | May 14    | 65400      | Jan 20 1996    |
| LOWEST DAILY MEAN        | 133            | Aug 15    | 151        | Sep 13    | 113        | Sep 3 1991     |
| ANNUAL SEVEN-DAY MINIMUM | 142            | Aug 10    | 159        | Sep 9     | 125        | Sep 1 1991     |
| 10 PERCENT EXCEEDS       | 3720           |           | 5060       |           | 5990       |                |
| 50 PERCENT EXCEEDS       | 621            |           | 814        |           | 1150       |                |
| 90 PERCENT EXCEEDS       | 186            |           | 241        |           | 271        |                |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### LAKES AND RESERVOIRS IN SUSQUEHANNA RIVER BASIN

01499500 EAST SIDNEY LAKE.--Lat 42°19'40", long 75°13'42", Delaware County, Hydrologic Unit 02050101, at East Sidney Dam, on Ouleout Creek, 0.3 mi upstream from bridge on County Highway 44 at East Sidney, 4.4 mi upstream from mouth, and 4.5 mi east of Unadilla. DRAINAGE AREA, 103 mi². PERIOD OF RECORD, November 1949 to September 1952 (monthend elevations and contents), October 1952 to September 1985 (mean daily elevations and monthend contents), October 1986 to current year (monthend elevations and contents). Prior to October 1970, published as "East Sidney Reservoir at East Sidney". REVISED RECORDS, WSP 2103: Drainage area. GAGE, water-stage recorder. Datum of gage is NGVD of 1929. Prior to Oct. 1, 1979, at datum 0.05 ft lower.

REMARKS.--Lake is formed by concrete dam and rockfill dike, completed by Corps of Engineers in June 1950; regulation of outflow began in November 1949; first used for flood regulation on Mar. 28, 1950. Usable capacity, 33,550 acre-ft between elevations 1,115.0 ft (sill of conduits) and 1,203.0 ft (crest of spillway). Dead storage 56 acre-ft. Discharge is controlled by the operation of five gates. Water is stored during high flows and released when downstream conditions warrant. Lake is used for flood control and recreation. Telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station.

COOPERATION. -- Capacity table furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 25,690 acre-ft, Apr. 3, 1993, elevation, 1,195.10 ft; minimum 56 acre-ft, Aug. 31, 1953, Sept. 7-26, Nov. 4, 1964, elevation, 1,115.0 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 6,561 acre-ft, Mar. 28, elevation, 1,161.98 ft; minimum, 1,592 acre-ft, Apr. 8, elevation, 1,139.69 ft.

01511000 WHITNEY POINT LAKE.--Lat 42°20'34", long 75°57'57", Broome County, Hydrologic Unit 02050102, on left bank at control-gate structure for Whitney Point Dam on Otselic River, 0.3 mi upstream from spillway, 0.9 mi upstream from mouth, and 1.0 mi north of Whitney Point. DRAINAGE AREA, 257 mi². PERIOD OF RECORD, October 1942 to September 1985 (mean daily elevations and monthend contents), October 1985 to current year (monthend elevations and contents). REVISED RECORDS, WSP 2103: Drainage area. GAGE, water-stage recorder. Datum of gage is NGVD of 1929 (levels by Corps of Engineers). Prior to October 1970, published as "Whitney Point Reservoir at Whitney Point".

REMARKS.--Lake is formed by earthfill dam with concrete spillway, completed by Corps of Engineers in 1942 for flood control; first used for flood regulation on Mar. 9, 1942. Usable capacity 86,440 acre-ft between elevations 950.0 ft (sill of gates) and 1,010.0 ft (crest of spillway). Dead storage, 28 acre-ft. Figures given herein represent total contents. Discharge is controlled by operation of three gates. Water is stored during high flows and released when downstream conditions warrant. Lake is used for flood control and recreation. Telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station.

COOPERATION .-- Capacity table furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 71,440 acre-ft, Mar. 23, 1948, elevation 1,005.0 ft; minimum, 36 acre-ft, Sept. 2-4, 1953, elevation, 950.4 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 15,978 acre-ft, June 6, 7, elevation, 975.51 ft; minimum, 5,014 acre-ft, Mar. 13, elevation, 965.79 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date        | Elevation<br>(feet) | Contents<br>(acre-<br>(feet) | Change in contents (equlivalent in cfs) | Elevation (feet) | Contents<br>(acre-<br>(feet) | Change<br>in contents<br>(equivalent<br>in cfs) |
|-------------|---------------------|------------------------------|-----------------------------------------|------------------|------------------------------|-------------------------------------------------|
|             | 014995              | 00 East Sidn                 | ey Lake                                 | 01511000         | Whitney Po                   | oint Lake                                       |
| Sept. 30    | 1,148.36            | 2,958                        |                                         | 973.16           | 12,888                       |                                                 |
| Oct. 31     | 1,147.10            | 2,723                        | - 3.8                                   | 973.47           | 13,282                       | + 6.4                                           |
| Nov. 30     | 1,147.03            | 2,710                        | - 0.2                                   | 973.32           | 13,091                       | - 3.2                                           |
| Dec. 31     | 1,140.26            | 1,664                        | - 17.0                                  | 966.13           | 5,343                        | - 126                                           |
| CAL YR 2001 |                     |                              | - 0                                     |                  |                              | - 0.1                                           |
| Jan. 31     | 1,140.55            | 1,701                        | + 0.6                                   | 967.27           | 6,471                        | + 18.4                                          |
| Feb. 28     | 1,140.76            | 1,729                        | + 0.5                                   | 966.21           | 5,421                        | - 18.9                                          |
| Mar. 31     | 1,142.97            | 2,040                        | + 5.1                                   | 966.22           | 5,431                        | + 0.2                                           |
| Apr. 30     | 1,150.75            | 3,439                        | + 23.5                                  | 973.29           | 13,053                       | + 128                                           |
| May 31      | 1,149.99            | 3,279                        | - 2.6                                   | 973.07           | 12,773                       | - 4.6                                           |
| June 30     | 1,151.06            | 3,505                        | + 3.8                                   | 973.12           | 12,837                       | + 1.1                                           |
| July 31     | 1,151.23            | 3,543                        | + 0.6                                   | 973.16           | 12,888                       | + 0.8                                           |
| Aug. 31     | 1,149.88            | 3,257                        | - 4.6                                   | 973.25           | 13,002                       | + 1.8                                           |
| Sept. 30    | 1,150.81            | 3,452                        | + 3.3                                   | 973.43           | 13,231                       | + 3.8                                           |
| WTR YR 2002 |                     |                              | + 0.7                                   |                  |                              | + 0.5                                           |

#### LAKES AND RESERVOIRS IN SUSQUEHANNA RIVER BASIN--Continued

01517900 TIOGA LAKE.--Lat 41°53′57", long 77°08′21", Tioga County, Hydrologic Unit 02050104, at Tioga Dam on Tioga River, 0.8 mi south of Tioga, and 1.7 mi upstream from Crooked Creek. DRAINAGE AREA, 280 mi<sup>2</sup>. PERIOD OF RECORD, November 1979 to current year. GAGE, water-stage recorder. Datum of gage is NGVD of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Reservoir is formed by rolled earth and rockfill dam. Flood flows are routed to Hammond Lake through a connecting channel with weir at elevation 1,101.0 ft and to Hammond Dam spillway with crest at elevation 1,131.0 ft. Storage began in November 1979. Capacity at elevation 1,131.0 ft is 62,000 acre-ft. Recreation lake elevation is 1,081.0 ft, capacity 9,500 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow is regulated by two service gates and low-flow by-pass system. U.S. Army Corps of Engineers telephone gage-height and satellite gage-height telemeter at station.

COOPERATION. -- Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 50,090 acre-ft, Apr. 3, 1993, elevation, 1,123.21 ft; minimum, 2,210 acre-ft, Oct. 25, 1980, elevation, 1,060.05 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 13,810 acre-ft, June 7, elevation, 1,088.78 ft; minimum, 9,220 acre ft, May 20, elevation, 1,080.38 ft.

01518498 HAMMOND LAKE.--Lat 41°53′56", long 77°08′52", Tioga County, Hydrologic Unit 02050104, at Hammond Dam on Crooked Creek, 3.0 mi upstream from mouth, and 0.8 mi southwest of Tioga. DRAINAGE AREA, 122 mi². PERIOD OF RECORD, November 1979 to current year. GAGE, water-stage recorder. Datum of gage is NGVD of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Reservoir is formed by rolled earth and rockfill dam with concrete chute spillway with uncontrolled weir at elevation 1,131.0 ft. Storage began in November 1979. Capacity at elevation 1,131.0 ft is 63,000 acre-ft. Recreation lake elevation is 1,086.0 ft, capacity 8,850 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow is regulated by two gates through a connecting channel that discharges into Tioga Lake, and a low-flow outlet to Crooked Creek. U.S. Army Corps of Engineers telephone gage-height and satellite gage-height telemeter at station.

COOPERATION.--Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 50,650 acre-ft, Apr.3, 1993, elevation, 1,123.55 ft; minimum, 2,430 acre-ft, Oct. 24, 1980, elevation, 1,074.00 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 11,840 acre-ft, June 7, elevation, 1,090.24 ft; minimum, 7,560 acre-ft, Sept. 26, elevation, 1,084.16 ft.

## MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

| Date        | Elevation (feet) | Contents<br>(acre-<br>(feet) | Char<br>in con<br>(equliv | tents<br>valent | Elevation<br>(feet) | Contents<br>(acre-<br>(feet) | in co<br>(equi | ange<br>ntents<br>valent<br>cfs) |
|-------------|------------------|------------------------------|---------------------------|-----------------|---------------------|------------------------------|----------------|----------------------------------|
|             | 015              | 17900 Tiog                   | a Lake                    |                 | 01518               | 3498 Hammon                  | d Lake         |                                  |
| Sept. 30    | 1,080.88         | 9,450                        |                           |                 | 1,086.49            | 9,150                        |                |                                  |
| Oct. 31     | 1,081.86         | 9,920                        | +                         | 7.6             | 1,086.83            | 9,360                        | +              | 3.4                              |
| Nov. 30     | 1,083.03         | 10,510                       | +                         | 9.9             | 1,087.54            | 9,860                        | +              | 8.4                              |
| Dec. 31     | 1,083.36         | 10,680                       | +                         | 2.8             | 1,087.42            | 9,770                        | -              | 1.5                              |
| CAL YR 2001 |                  |                              | +                         | 0.4             |                     |                              |                | 0                                |
| Jan. 31     | 1,082.38         | 10,180                       | _                         | 8.1             | 1,087.38            | 9,740                        | _              | 0.5                              |
| Feb. 29     | 1,082.30         | 10,140                       | -                         | 0.7             | 1,087.51            | 9,840                        | +              | 1.8                              |
| Mar. 31     | 1,081.74         | 9,860                        | -                         | 4.6             | 1,086.53            | 9,170                        | -              | 10.9                             |
| Apr. 30     | 1,081.34         | 9,670                        | -                         | 3.2             | 1,086.42            | 9,110                        | -              | 1.0                              |
| May 31      | 1,081.06         | 9,530                        | -                         | 2.3             | 1,086.51            | 9,160                        | +              | 0.8                              |
| June 30     | 1,081.47         | 9,730                        | +                         | 3.4             | 1,086.53            | 9,170                        | +              | 0.2                              |
| July 31     | 1,081.52         | 9,760                        | +                         | 0.5             | 1,086.15            | 8,940                        | -              | 3.7                              |
| Aug. 31     | 1,081.27         | 9,630                        | -                         | 2.1             | 1,084.95            | 8,070                        | -              | 14.1                             |
| Sept. 30    | 1,081.10         | 9,550                        | -                         | 1.3             | 1,084.60            | 7,840                        | -              | 3.9                              |
| WTR YR 2002 |                  |                              | +                         | 0.1             |                     |                              | _              | 1.8                              |

#### LAKES AND RESERVOIRS IN SUSQUEHANNA RIVER BASIN--Continued

01519995 COWANESQUE LAKE.--Lat 41°59′05", long 77°09′05", Tioga County, Hydrologic Unit 02050104, at Cowanesque Dam on Cowanesque River, 1.8 mi southwest of Lawrenceville, and 2.5 mi upstream from mouth. DRAINAGE AREA, 298 mi<sup>2</sup>. PERIOD OF RECORD, December 1979 to current year. GAGE, water-stage recorder. Datum of gage is NGVD of 1929 (levels by U.S. Army Corps of Engineers).

REMARKS.--Reservoir is formed by rolled earth and rockfill dam with concrete chute spillway with uncontrolled weir at elevation 1,117.0 ft. Storage began in December 1979. Capacity at elevation 1,117.0 ft is 89,110 acre-ft. Recreation lake elevation is 1,045.0 ft, capacity 7,330 acre-ft. Reservoir is used for flood control and recreation. Figures given herein represent total contents. Flow is regulated by two service gates and low-flow by-pass system. U.S. Army Corps of Engineers telephone gage-height and satellite gage-height and precipitation telemeter at station.

COOPERATION. -- Records provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 84,560 acre-ft, Apr. 2, 1993, elevation, 1,114.78 ft; minimum, 65 acre-ft, June 23, 1980, elevation, 1,011.50 ft.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 39,960 acre-ft, June 6, elevation, 1,086.47 ft; minimum, 31,790 acre-ft, Sept. 26, elevation, 1,079.26 ft.

01523000 ALMOND LAKE NEAR ALMOND, NY.--Lat 42°20′56", long 77°42′10", Steuben County, Hydrologic Unit 02050104, at Almond Dam on Canacadea Creek, 2.0 mi northeast of Almond, and 3.0 mi upstream from mouth. DRAINAGE AREA, 55.8 mi². PERIOD OF RECORD, July 1949 to September 1952 (monthly elevations and contents), October 1952 to September 1985 (mean daily elevations and monthend contents), October 1985 to current year (monthend elevations and contents). Prior to October 1970, published as "Almond Reservoir near Almond". REVISED RECORDS, WSP 2103: Drainage area. GAGE, Water-stage recorder. Datum of gage is NGVD of 1929 (levels by Corps of Engineers).

REMARKS.--Lake is formed by earthfill dam with concrete spillway, completed by Corps of Engineers in June 1949 for flood control; first used for flood regulation on Mar. 28, 1950. Usable capacity, 14,800 acre-ft between elevations 1,229.0 ft (sill of gates) and 1,300.0 ft (crest of spillway). No dead storage. Figures given herein represent usable contents. Discharge is controlled by the operation of three gates. Water is stored during high flows and released when downstream conditions warrant. Lake is used for flood control and recreation. Telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station.

COOPERATION. -- Capacity table furnished by Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 14,100 acre-ft, June 23, 1972, elevation, 1,298.58 ft; no contents for many days each year 1949-65.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 4,365 acre-ft, June 27, elevation, 1,272.48 ft; minimum, 1,667 acre-ft, May 20, elevation, 1,259.45 ft.

MONTHEND ELEVATION AND CONTENTS AT 2400, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date        | Elevation (feet) | Contents<br>(acre-<br>(feet) | Change in contents (equlivalent in cfs) | Elevation<br>(feet) | Contents<br>(acre-<br>(feet) | Change<br>in conten<br>(equivale<br>in cfs) |
|-------------|------------------|------------------------------|-----------------------------------------|---------------------|------------------------------|---------------------------------------------|
|             | 015199           | 995 Cowanes                  | que Lake                                | 0152                | 3000 Almond                  | l Lake                                      |
| Sept. 30    | 1,080.27         | 32,870                       |                                         | 1,260.05            | 1,758                        |                                             |
| Oct. 31     | 1,080.46         | 33,060                       | + 3.1                                   | 1,260.08            | 1,763                        | + 0.                                        |
| Nov. 30     | 1,080.35         | 32,950                       | - 1.8                                   | 1,260.67            | 1,857                        | + 1.                                        |
| Dec. 31     | 1,080.31         | 32,910                       | - 0.7                                   | 1,260.18            | 1,779                        | - 1.                                        |
| CAL YR 2001 |                  |                              | 0                                       |                     |                              | 0                                           |
| Jan. 31     | 1,080.22         | 32,820                       | - 1.5                                   | 1,262.25            | 2,125                        | + 5.                                        |
| Feb. 28     | 1,080.24         | 32,840                       | + 0.4                                   | 1,260.28            | 1,795                        | - 5.                                        |
| Mar. 31     | 1,080.12         | 32,720                       | - 2.0                                   | 1,259.92            | 1,738                        | - 0.                                        |
| Apr. 30     | 1,080.43         | 33,030                       | + 5.2                                   | 1,260.36            | 1,808                        | + 1.                                        |
| May 31      | 1,080.18         | 32,780                       | - 4.1                                   | 1,260.61            | 1,848                        | + 0.                                        |
| June 30     | 1,080.43         | 33,030                       | + 4.2                                   | 1,260.19            | 1,780                        | - 1.                                        |
| July 31     | 1,080.78         | 33,380                       | + 5.7                                   | 1,260.24            | 1,788                        | + 0.                                        |
| Aug. 31     | 1,080.14         | 32,740                       | - 10.4                                  | 1,260.30            | 1,798                        | + 0.                                        |
| Sept. 30    | 1,079.44         | 31,980                       | - 12.8                                  | 1,259.85            | 1,727                        | - 1.                                        |
| WTR YR 2002 |                  |                              | - 1.2                                   |                     |                              | 0                                           |

78 OHIO RIVER MAIN STEM

## 03011020 ALLEGHENY RIVER AT SALAMANCA, NY

LOCATION.--Lat 42°09'23", long 78°42'56", Cattaraugus County, Hydrologic Unit 05010001, on left bank 230 ft upstream from Main Street bridge in Salamanca, 1.3 mi downstream from Great Valley Creek, and 1.6 mi upstream from Little Valley Creek. DRAINAGE AREA.--1,608 mi².

PERIOD OF RECORD.--September 1903 to current year. Monthly discharge only for some periods, published in WSP 1305. Prior to October 1964, published as "at Red House."

REVISED RECORDS.--WSP 1385: 1907, 1909-12, 1913(M), 1914-15, 1916-17(M), 1925, 1927. WSP 1907: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,358.00 ft above NGVD of 1929 (Corps of Engineers bench mark). Prior to Sept. 3, 1917, nonrecording gage and Sept. 4, 1917 to Sept. 30, 1964, water-stage recorder at site 7.5 mi downstream at different datum. Oct. 1, 1964 to Sept. 30, 1967, at present site at datum 0.04 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair. U.S. Army Corps of Engineers telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station. Several measurements of water temperature were made during the year.

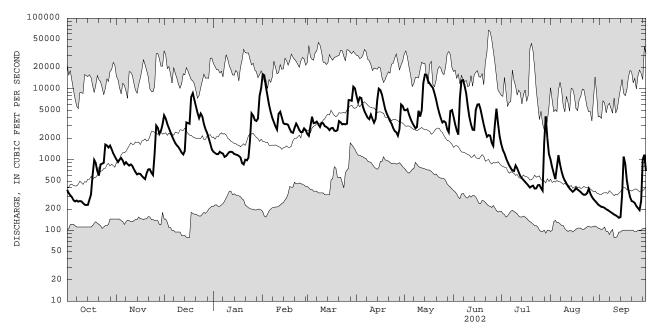
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 73,000 ft<sup>3</sup>/s, June 23, 1972, gage height, 24.01 ft, from floodmarks; minimum instantaneous discharge not determined.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 17,000 ft<sup>3</sup>/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Discharge Gage height Date Time $(ft^3/s)$ $(ft)$ |
|--------|------|-----------------------------------|---------------------|---------------------------------------------------|
| Feb. 1 | 1700 | *18,200                           | *10.34              | No other peak greater than base discharge.        |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Minimum discharge, 151  $\mathrm{ft^3/s}$ , Sept. 12, 13, 14, gage height, 2.58  $\mathrm{ft}$ .


|                                  | DAILY MEAN VALUES                            |                                      |                                                    |                                               |                          |                                                |                                      |                                              |                                      |                                            |                                        |                                   |
|----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------------|-----------------------------------------------|--------------------------|------------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------------|-----------------------------------|
| DAY                              | OCT                                          | NOV                                  | DEC                                                | JAN                                           | FEB                      | MAR                                            | APR                                  | MAY                                          | JUN                                  | JUL                                        | AUG                                    | SEP                               |
| 1                                | 376                                          | 1010                                 | 4250                                               | e1300                                         | 16200                    | 2330                                           | 8000                                 | 5020                                         | 4040                                 | 1660                                       | 1010                                   | 224                               |
| 2                                | 339                                          | 927                                  | 3820                                               | e1250                                         | 15600                    | 2180                                           | 6510                                 | 5000                                         | 3190                                 | 1380                                       | 783                                    | 216                               |
| 3                                | 314                                          | 1010                                 | 3200                                               | e1200                                         | 10800                    | 2960                                           | 7620                                 | 5200                                         | 2610                                 | 1230                                       | 641                                    | 214                               |
| 4                                | 297                                          | 1060                                 | 2800                                               | e1200                                         | 8020                     | 4060                                           | 7460                                 | 4340                                         | 2270                                 | 1060                                       | 533                                    | 209                               |
| 5                                | 269                                          | 975                                  | 2450                                               | e1300                                         | 5920                     | 3290                                           | 5610                                 | 3770                                         | 7410                                 | 936                                        | 813                                    | 200                               |
| 6                                | 258                                          | 863                                  | 2160                                               | e1250                                         | 4700                     | 3330                                           | 4860                                 | 3350                                         | 13200                                | 834                                        | 1160                                   | 194                               |
| 7                                | 265                                          | 926                                  | 1920                                               | 1220                                          | 3900                     | 3460                                           | 4360                                 | 3040                                         | 13400                                | 760                                        | 856                                    | 188                               |
| 8                                | 256                                          | 869                                  | 1720                                               | e1100                                         | 3390                     | 3160                                           | 3930                                 | 2790                                         | 10900                                | 704                                        | 675                                    | 181                               |
| 9                                | 261                                          | 828                                  | 1600                                               | 1130                                          | 2980                     | 2910                                           | 3750                                 | 2900                                         | 8490                                 | 696                                        | 567                                    | 175                               |
| 10                               | 258                                          | 861                                  | 1510                                               | 1210                                          | 2670                     | 3330                                           | 4360                                 | 4920                                         | 5690                                 | 831                                        | 506                                    | 168                               |
| 11                               | 244                                          | 817                                  | 1390                                               | 1290                                          | 4460                     | 3270                                           | 3800                                 | 4070                                         | 3990                                 | 758                                        | 462                                    | 164                               |
| 12                               | 232                                          | 734                                  | 1260                                               | 1300                                          | 4770                     | 2980                                           | 3340                                 | 5040                                         | 3150                                 | 668                                        | 419                                    | 158                               |
| 13                               | 229                                          | 669                                  | 1190                                               | 1280                                          | 3960                     | 2920                                           | 3780                                 | 12200                                        | 2660                                 | 588                                        | 391                                    | 151                               |
| 14                               | 230                                          | 622                                  | 1330                                               | 1210                                          | 3280                     | 2810                                           | 6990                                 | 16000                                        | 2640                                 | 548                                        | 371                                    | 155                               |
| 15                               | 274                                          | 640                                  | 3370                                               | 1190                                          | 3190                     | 2620                                           | 10100                                | 15800                                        | 5120                                 | 516                                        | 352                                    | 309                               |
| 16                               | 324                                          | 631                                  | 3290                                               | 1170                                          | 3200                     | 2790                                           | 9650                                 | 13000                                        | 6040                                 | 488                                        | 368                                    | 1110                              |
| 17                               | 607                                          | 590                                  | 3220                                               | 1130                                          | 3110                     | 2820                                           | 8290                                 | 12000                                        | 6090                                 | 459                                        | 397                                    | 878                               |
| 18                               | 994                                          | 558                                  | 7720                                               | 1080                                          | 2720                     | 2580                                           | 6600                                 | 11100                                        | 5170                                 | 433                                        | 379                                    | 512                               |
| 19                               | 900                                          | 533                                  | 8740                                               | 897                                           | 2450                     | 2540                                           | 5160                                 | 10400                                        | 3990                                 | 404                                        | 365                                    | 372                               |
| 20                               | 689                                          | 643                                  | 7040                                               | 860                                           | 2400                     | 2640                                           | 4480                                 | 8710                                         | 3120                                 | 421                                        | 349                                    | 297                               |
| 21                               | 597                                          | 733                                  | 5700                                               | e1000                                         | 2820                     | 3520                                           | 4020                                 | 7110                                         | 2530                                 | 431                                        | 330                                    | 261                               |
| 22                               | 857                                          | 735                                  | 4600                                               | e980                                          | 3250                     | 3390                                           | 3530                                 | 5570                                         | 2120                                 | 391                                        | 319                                    | 255                               |
| 23                               | 880                                          | 657                                  | 3890                                               | 1070                                          | 2960                     | 3160                                           | 3250                                 | 4560                                         | 2230                                 | 394                                        | 321                                    | 245                               |
| 24                               | 903                                          | 609                                  | 4500                                               | 1860                                          | 2620                     | 3210                                           | 2820                                 | 3840                                         | 2200                                 | 436                                        | 336                                    | 221                               |
| 25                               | 1640                                         | 1210                                 | 4090                                               | 4520                                          | 2460                     | 3160                                           | 2550                                 | 3360                                         | 1730                                 | 440                                        | 389                                    | 207                               |
| 26<br>27<br>28<br>29<br>30<br>31 | 1590<br>1490<br>1590<br>1410<br>1230<br>1110 | 3040<br>2820<br>2320<br>2570<br>3150 | e3200<br>e2700<br>e2400<br>e2000<br>e1700<br>e1400 | 4200<br>3650<br>3540<br>3830<br>7970<br>10300 | 2460<br>2780<br>2630<br> | 3240<br>6990<br>6950<br>6800<br>10800<br>10200 | 2450<br>2190<br>2720<br>6050<br>5740 | 3510<br>3380<br>2700<br>2440<br>4890<br>5040 | 1570<br>3100<br>5290<br>3260<br>2150 | 398<br>365<br>1750<br>4100<br>2050<br>1200 | 334<br>300<br>277<br>262<br>248<br>232 | 194<br>262<br>1020<br>1180<br>693 |
| TOTAL                            | 20913                                        | 33610                                | 100160                                             | 66487                                         | 129700                   | 120400                                         | 153970                               | 195050                                       | 139350                               | 27329                                      | 14745                                  | 10613                             |
| MEAN                             | 675                                          | 1120                                 | 3231                                               | 2145                                          | 4632                     | 3884                                           | 5132                                 | 6292                                         | 4645                                 | 882                                        | 476                                    | 354                               |
| MAX                              | 1640                                         | 3150                                 | 8740                                               | 10300                                         | 16200                    | 10800                                          | 10100                                | 16000                                        | 13400                                | 4100                                       | 1160                                   | 1180                              |
| MIN                              | 229                                          | 533                                  | 1190                                               | 860                                           | 2400                     | 2180                                           | 2190                                 | 2440                                         | 1570                                 | 365                                        | 232                                    | 151                               |
| CFSM                             | 0.42                                         | 0.70                                 | 2.01                                               | 1.33                                          | 2.88                     | 2.42                                           | 3.19                                 | 3.91                                         | 2.89                                 | 0.55                                       | 0.30                                   | 0.22                              |
| IN.                              | 0.48                                         | 0.78                                 | 2.32                                               | 1.54                                          | 3.00                     | 2.79                                           | 3.56                                 | 4.51                                         | 3.22                                 | 0.63                                       | 0.34                                   | 0.25                              |
| STATIS'                          | TICS OF N                                    | MONTHLY MI                           | EAN DATA                                           | FOR WATER                                     | YEARS 19                 | 04 - 2002,                                     | BY WATER                             | R YEAR (W                                    | ď)                                   |                                            |                                        |                                   |
| MEAN                             | 1330                                         | 2508                                 | 3072                                               | 3324                                          | 3197                     | 5898                                           | 5827                                 | 3469                                         | 2025                                 | 1082                                       | 713                                    | 821                               |
| MAX                              | 5801                                         | 8605                                 | 9147                                               | 10200                                         | 9683                     | 14850                                          | 15540                                | 9574                                         | 11520                                | 6074                                       | 3882                                   | 7477                              |
| (WY)                             | 1991                                         | 1928                                 | 1928                                               | 1913                                          | 1976                     | 1936                                           | 1940                                 | 1943                                         | 1972                                 | 1942                                       | 1977                                   | 1977                              |
| MIN                              | 124                                          | 146                                  | 189                                                | 255                                           | 550                      | 1983                                           | 970                                  | 796                                          | 299                                  | 150                                        | 119                                    | 118                               |
| (WY)                             | 1931                                         | 1931                                 | 1961                                               | 1961                                          | 1905                     | 1937                                           | 1946                                 | 1985                                         | 1934                                 | 1934                                       | 1930                                   | 1932                              |

e Estimated

# OHIO RIVER MAIN STEM 79

# 03011020 ALLEGHENY RIVER AT SALAMANCA, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1904 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 670660                 | 1012327             |                         |
| ANNUAL MEAN              | 1837                   | 2773                | 2769                    |
| HIGHEST ANNUAL MEAN      |                        |                     | 4174 1916               |
| LOWEST ANNUAL MEAN       |                        |                     | 1777 1999               |
| HIGHEST DAILY MEAN       | 14400 Apr 10           | 16200 Feb 1         | 67900 Jun 23 1972       |
| LOWEST DAILY MEAN        | 138 Aug 17             | 151 Sep 13          | 79 Sep 10 1971          |
| ANNUAL SEVEN-DAY MINIMUM | 144 Aug 14             | 165 Sep 8           | 84 Dec 11 1908          |
| ANNUAL RUNOFF (CFSM)     | 1.14                   | 1.72                | 1.72                    |
| ANNUAL RUNOFF (INCHES)   | 15.52                  | 23.42               | 23.39                   |
| 10 PERCENT EXCEEDS       | 4720                   | 6550                | 6700                    |
| 50 PERCENT EXCEEDS       | 958                    | 2000                | 1500                    |
| 90 PERCENT EXCEEDS       | 227                    | 289                 | 287                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

80 ALLEGHENY RIVER BASIN

## 03013946 CHAUTAUQUA LAKE AT BEMUS POINT, NY

LOCATION.--Lat 42°09'23", long 79°23'39", Chautauqua County, Hydrologic Unit 05010002, 6 ft east of lake shore, 30 ft south of the intersection of Pauline Avenue and Lakeside Avenue, and 950 ft southeast of the ferry landing at Bemus Point.
DRAINAGE AREA.--189 mi².

PERIOD OF RECORD.--October 1972 to September 1973; November 1974 to current year.

GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. Prior to Nov. 1974 at site 950 ft northwest at same datum.

REMARKS.--Lake regulated for flood control by Warner Dam. Area of water surface, 20.98 mi². Telephone gage-height telemeter at

station.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 1,311.23 ft, Mar. 5, 1976; minimum, 1,306.20 ft, Dec. 16, 1998. EXTREMES FOR CURRENT YEAR.--Maximum elevation, 1,309.65 ft, May 17, 18; minimum elevation, 1,306.60 ft, Dec. 14.

# ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY                              | OCT                                                            | NOV                                                 | DEC                                                 | JAN     | FEB                               | MAR     | APR                                                 | MAY                                                            | JUN                                                 | JUL                                                            | AUG                                                            | SEP                |
|----------------------------------|----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------|-----------------------------------|---------|-----------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------|
| 1                                | 1307.48                                                        | 1307.75                                             | 1306.99                                             | 1307.31 | 1308.53                           | 1307.76 | 1308.58                                             | 1308.37                                                        | 1308.48                                             | 1308.30                                                        | 1308.24                                                        | 1307.62            |
| 2                                | 1307.47                                                        | 1307.71                                             | 1306.99                                             | 1307.27 | 1308.82                           | 1307.70 | 1308.56                                             | 1308.35                                                        | 1308.39                                             | 1308.29                                                        | 1308.21                                                        | 1307.59            |
| 3                                | 1307.46                                                        | 1307.69                                             | 1306.96                                             | 1307.22 | 1308.77                           | 1307.76 | 1308.78                                             | 1308.32                                                        | 1308.36                                             | 1308.27                                                        | 1308.17                                                        | 1307.58            |
| 4                                | 1307.45                                                        | 1307.65                                             | 1306.93                                             | 1307.17 | 1308.73                           | 1307.84 | 1308.84                                             | 1308.28                                                        | 1308.35                                             | 1308.25                                                        | 1308.12                                                        | 1307.57            |
| 5                                | 1307.45                                                        | 1307.59                                             | 1306.90                                             | 1307.13 | 1308.65                           | 1307.81 | 1308.80                                             | 1308.27                                                        | 1308.54                                             | 1308.23                                                        | 1308.09                                                        | 1307.54            |
| 6                                | 1307.50                                                        | 1307.54                                             | 1306.87                                             | 1307.10 | 1308.56                           | 1307.78 | 1308.76                                             | 1308.27                                                        | 1308.58                                             | 1308.19                                                        | 1308.05                                                        | 1307.52            |
| 7                                | 1307.50                                                        | 1307.49                                             | 1306.84                                             | 1307.09 | 1308.47                           | 1307.77 | 1308.70                                             | 1308.28                                                        | 1308.51                                             | 1308.17                                                        | 1308.01                                                        | 1307.50            |
| 8                                | 1307.49                                                        | 1307.44                                             | 1306.81                                             | 1307.05 | 1308.39                           | 1307.77 | 1308.66                                             | 1308.28                                                        | 1308.44                                             | 1308.15                                                        | 1307.98                                                        | 1307.48            |
| 9                                | 1307.47                                                        | 1307.41                                             | 1306.77                                             | 1307.01 | 1308.31                           | 1307.80 | 1308.66                                             | 1308.32                                                        | 1308.38                                             | 1308.15                                                        | 1307.95                                                        | 1307.47            |
| 10                               | 1307.46                                                        | 1307.37                                             | 1306.73                                             | 1306.98 | 1308.25                           | 1307.90 | 1308.67                                             | 1308.37                                                        | 1308.31                                             | 1308.15                                                        | 1307.93                                                        | 1307.45            |
| 11                               | 1307.45                                                        | 1307.32                                             | 1306.69                                             | 1306.95 | 1308.28                           | 1307.92 | 1308.64                                             | 1308.37                                                        | 1308.28                                             | 1308.11                                                        | 1307.91                                                        | 1307.43            |
| 12                               | 1307.45                                                        | 1307.26                                             | 1306.65                                             | 1306.93 | 1308.23                           | 1307.90 | 1308.58                                             | 1308.55                                                        | 1308.26                                             | 1308.09                                                        | 1307.89                                                        | 1307.38            |
| 13                               | 1307.45                                                        | 1307.21                                             | 1306.63                                             | 1306.92 | 1308.19                           | 1307.91 | 1308.61                                             | 1308.95                                                        | 1308.26                                             | 1308.07                                                        | 1307.88                                                        | 1307.36            |
| 14                               | 1307.46                                                        | 1307.17                                             | 1306.65                                             | 1306.92 | 1308.11                           | 1307.92 | 1308.74                                             | 1309.35                                                        | 1308.26                                             | 1308.05                                                        | 1307.86                                                        | 1307.37            |
| 15                               | 1307.46                                                        | 1307.13                                             | 1306.77                                             | 1306.92 | 1308.04                           | 1307.91 | 1308.90                                             | 1309.53                                                        | 1308.30                                             | 1308.03                                                        | 1307.87                                                        | 1307.44            |
| 16                               | 1307.46                                                        | 1307.09                                             | 1306.79                                             | 1306.93 | 1308.00                           | 1307.94 | 1308.89                                             | 1309.48                                                        | 1308.34                                             | 1308.01                                                        | 1307.89                                                        | 1307.54            |
| 17                               | 1307.48                                                        | 1307.04                                             | 1306.86                                             | 1306.93 | 1307.97                           | 1307.93 | 1308.85                                             | 1309.61                                                        | 1308.34                                             | 1307.99                                                        | 1307.90                                                        | 1307.54            |
| 18                               | 1307.49                                                        | 1307.00                                             | 1307.15                                             | 1306.93 | 1307.92                           | 1307.91 | 1308.79                                             | 1309.62                                                        | 1308.34                                             | 1307.98                                                        | 1307.89                                                        | 1307.52            |
| 19                               | 1307.48                                                        | 1306.95                                             | 1307.25                                             | 1306.92 | 1307.86                           | 1307.87 | 1308.72                                             | 1309.55                                                        | 1308.34                                             | 1307.96                                                        | 1307.87                                                        | 1307.51            |
| 20                               | 1307.48                                                        | 1306.98                                             | 1307.31                                             | 1306.91 | 1307.83                           | 1307.89 | 1308.68                                             | 1309.44                                                        | 1308.33                                             | 1307.95                                                        | 1307.85                                                        | 1307.50            |
| 21                               | 1307.50                                                        | 1306.95                                             | 1307.34                                             | 1306.89 | 1307.89                           | 1307.94 | 1308.64                                             | 1309.34                                                        | 1308.32                                             | 1307.93                                                        | 1307.82                                                        | 1307.50            |
| 22                               | 1307.55                                                        | 1306.91                                             | 1307.35                                             | 1306.88 | 1307.95                           | 1307.92 | 1308.58                                             | 1309.23                                                        | 1308.31                                             | 1307.95                                                        | 1307.80                                                        | 1307.48            |
| 23                               | 1307.57                                                        | 1306.87                                             | 1307.40                                             | 1306.86 | 1307.93                           | 1307.91 | 1308.51                                             | 1309.12                                                        | 1308.30                                             | 1308.02                                                        | 1307.80                                                        | 1307.47            |
| 24                               | 1307.59                                                        | 1306.84                                             | 1307.55                                             | 1306.92 | 1307.90                           | 1307.89 | 1308.44                                             | 1309.01                                                        | 1308.30                                             | 1308.01                                                        | 1307.80                                                        | 1307.45            |
| 25                               | 1307.60                                                        | 1306.88                                             | 1307.55                                             | 1307.02 | 1307.87                           | 1307.89 | 1308.37                                             | 1308.90                                                        | 1308.29                                             | 1307.98                                                        | 1307.78                                                        | 1307.43            |
| 26<br>27<br>28<br>29<br>30<br>31 | 1307.63<br>1307.70<br>1307.73<br>1307.74<br>1307.76<br>1307.77 | 1306.91<br>1306.89<br>1306.87<br>1306.90<br>1306.95 | 1307.51<br>1307.46<br>1307.41<br>1307.38<br>1307.38 |         | 1307.85<br>1307.84<br>1307.82<br> |         | 1308.30<br>1308.23<br>1308.24<br>1308.38<br>1308.39 | 1308.89<br>1308.81<br>1308.70<br>1308.61<br>1308.57<br>1308.54 | 1308.28<br>1308.32<br>1308.34<br>1308.32<br>1308.31 | 1307.97<br>1307.97<br>1308.14<br>1308.29<br>1308.30<br>1308.28 | 1307.76<br>1307.74<br>1307.71<br>1307.69<br>1307.67<br>1307.64 | 1307.56<br>1307.55 |
| MEAN                             | 1307.53                                                        | 1307.19                                             | 1307.07                                             | 1307.07 | 1308.18                           | 1307.93 | 1308.62                                             | 1308.82                                                        | 1308.35                                             | 1308.10                                                        | 1307.90                                                        | 1307.49            |
| MAX                              | 1307.77                                                        | 1307.75                                             | 1307.55                                             | 1307.94 | 1308.82                           | 1308.59 | 1308.90                                             | 1309.62                                                        | 1308.58                                             | 1308.30                                                        | 1308.24                                                        | 1307.62            |
| MIN                              | 1307.45                                                        | 1306.84                                             | 1306.63                                             | 1306.86 | 1307.82                           | 1307.70 | 1308.23                                             | 1308.27                                                        | 1308.26                                             | 1307.93                                                        | 1307.64                                                        | 1307.36            |

CAL YR 2001 MEAN 1307.68 MAX 1308.52 MIN 1306.63 WTR YR 2002 MEAN 1307.85 MAX 1309.62 MIN 1306.63

#### ALLLEGHENY RIVER BASIN

## 03014500 CHADAKOIN RIVER AT FALCONER, NY

LOCATION.--Lat 42°06'45", long 79°12'15", Chautauqua County, Hydrologic Unit 05010002, on left bank 10 ft downstream from South Dow Street Bridge in Falconer, 1.8 mi upstream from mouth, and 6 mi downstream from Chautauqua Lake. DRAINAGE AREA.--194 mi<sup>2</sup>.

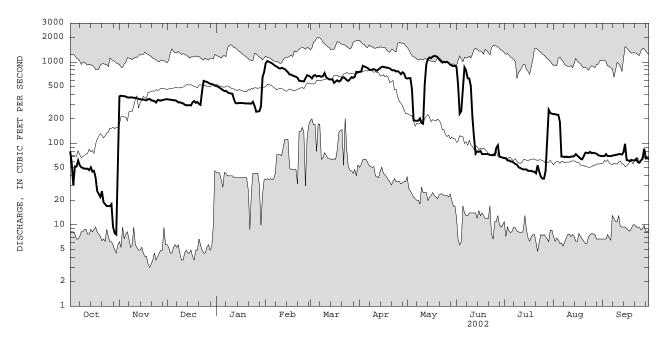
PERIOD OF RECORD.--November 1934 to current year. REVISED RECORDS.--WSP 803: 1936(M). WDR NY-98-3: 1997 (M).

GAGE.--Water-stage recorder, crest-stage gages, and concrete control. Datum of gage is 1,256.41 ft above NGVD of 1929. REMARKS.--No estimated daily discharges. Records good. Flow regulated by Chautauqua Lake. Diurnal fluctuation caused by mills upstream from station. Monthly figures for 1951-66 water years adjusted for regulation. Telephone gage-height telemeter at

upstream from station. Monthly figures for 1951-66 water years adjusted for regulation. Telephone gage-neight telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 2,250 ft<sup>3</sup>/s, Sept. 14, 1979, gage height, 4.93 ft; minimum discharge, 2.5 ft<sup>3</sup>/s, Sept. 18, 1995; minimum gage height, 0.05 ft, Oct. 3, 2001.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 1,200 ft<sup>3</sup>/s, May 18, gage height, 2.87 ft; minimum discharge, 3.9 ft<sup>3</sup>/s, Oct. 3,


gage height, 0.05 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 74 74 77 76 9.4 7.9 7.6 TOTAL 1176.9 MEAN 38.0 71.7 95.1 69.2 MAX 7.6 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1935 - 2002, BY WATER YEAR (WY) MEAN MAX (WY) MTN 8.12 5 69 6.38 36.3 53 1 58 5 15 1 8.55 7 44 17.8 (WY) 

82 ALLLEGHENY RIVER BASIN

# 03014500 CHADAKOIN RIVER AT FALCONER, NY

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1935 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 103807.9               | 140041.9            |                         |
| ANNUAL MEAN              | 284                    | 384                 | 361                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 527 1986                |
| LOWEST ANNUAL MEAN       |                        |                     | 222 1999                |
| HIGHEST DAILY MEAN       | 850 Apr 10             | 1190 May 18         | 2020 Mar 6 1976         |
| LOWEST DAILY MEAN        | 7.6 Oct 30             | 7.6 Oct 30          | 3.0 Nov 20 1960         |
| ANNUAL SEVEN-DAY MINIMUM | 13 Oct 24              | 13 Oct 24           | 3.7 Nov 18 1960         |
| 10 PERCENT EXCEEDS       | 622                    | 853                 | 828                     |
| 50 PERCENT EXCEEDS       | 316                    | 324                 | 285                     |
| 90 PERCENT EXCEEDS       | 30                     | 50                  | 36                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

# ALLLEGHENY RIVER BASIN

# LAKES IN ALLEGHENY RIVER BASIN

83

03013946 CHAUTAUQUA LAKE AT BEMUS POINT, NY (see station for daily mean elevation).

Date

Time

## STREAMS TRIBUTARY TO LAKE ERIE

## 04213500 CATTARAUGUS CREEK AT GOWANDA, NY

Gage height

(ft)

Discharge (ft<sup>3</sup>/s)

LOCATION.--Lat 42°27'50", long 78°56'07", Erie County, Hydrologic Unit 04120102, on right bank 380 ft downstream from bridge on State Highways 39 and 62 at Gowanda, 4.2 mi downstream from South Branch, and 17.8 mi upstream from mouth.

DRAINAGE AREA.--436 mi².

PERIOD OF RECORD.--November 1939 to March 1998, October 1999 to current year.

REVISED RECORDS.--WSP 1912; WDR NY-82-3: Drainage area. WDR NY 1971: 1956(M). WDR NY 1974: 1940-42 (M, P).

GAGE.--Water-stage recorder. Datum of gage is 738.85 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation at low and medium flow caused by powerplant 20 mi upstream from station. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

Date

Time

Discharge (ft<sup>3</sup>/s)

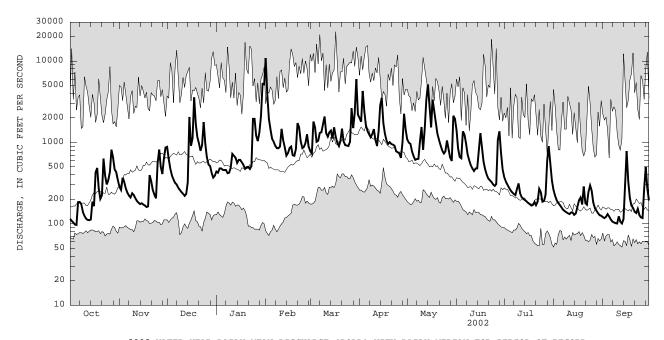
Gage height

(ft)

caused by powerplant 20 mi upstream from station. Telephone and satellite gage-neight telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 34,600 ft<sup>3</sup>/s, Mar. 7, 1956, gage height, 14.03 ft, present datum; minimum discharge, about 6 ft<sup>3</sup>/s, Aug. 21, 1941, result of regulation; minimum gage height, 0.90 ft, Oct. 26, 1951.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 8,000 ft<sup>3</sup>/s and maximum (\*):


| Date         | 110        | ie                  | (IC /S)                    |                     | (IC)        |                       | Date                | TILL                | =                   | (IC /S)    | (            | IC)                         |
|--------------|------------|---------------------|----------------------------|---------------------|-------------|-----------------------|---------------------|---------------------|---------------------|------------|--------------|-----------------------------|
| Feb. 1       | . 130      | 00                  | *12,600                    |                     | *8.29       |                       | Mar. 30             | 073                 | 0                   | 8,700      | 7.0          | 09                          |
| Minimum disc | harge, 95  | ft <sup>3</sup> /s, | Oct. 4, 5,                 | gage he             | eight, 1.1  | 9 ft.                 |                     |                     |                     |            |              |                             |
|              |            | DISCHA              | RGE, CUBIC                 | FEET PE             |             | WATER YE<br>Y MEAN VA |                     | R 2001 TO           | SEPTEMBE            | ER 2002    |              |                             |
| DAY          | OCT        | NOV                 | DEC                        | JAN                 | FEB         | MAR                   | APR                 | MAY                 | JUN                 | JUL        | AUG          | SEP                         |
| 1            | 115        | 284                 | 883                        | e440                | 10900       | 784                   | e2000<br>e1800      | 1090                | 1410                | 374        | e260         | 121                         |
| 2            | 109        | 261                 | 629                        | 425                 | 3910        | 732                   | e1800               | 997                 | 846                 | 332        | e220         | 118                         |
| 3            | 104        | 369                 | 474                        | e480                | 1960        | 1810                  | e4300               | 964                 | 665                 | 302        | e194         | 122                         |
| 4            | 98         | 328                 | 393                        | e480                | 1450        | 1530                  | 2420                | 775<br>676          | 641<br>1370         | 279        | e180         | 132<br>123                  |
| 5            | 97         | 273                 | 351                        | 460                 | 1110        | 1020                  | 1620                | 676                 | 1370                | 258        | e170         | 123                         |
| 6            | 185        | 241                 | 319                        | 457                 | 1020        | 1050                  | 1390                | 613                 | 1250                | 244        | e160         | 113                         |
| 7            | 186        | 222                 | 305                        | 459                 | 910         | 1310                  | 1260                | 625                 | 967                 | 234        | 149          | 107                         |
| 8            | 174        | 211                 | 278                        | e420                | 852         | 1340                  | 1160                | 629                 | 705                 | 226        | 144          | 104                         |
| 9            | 140        | 238                 | 261                        | 426                 | 848         | 1660                  | 1270                | 1020                | 597                 | 269        | 139          | 102                         |
| 10           | 125        | 226                 | 246                        | 492                 | 891         | 2090                  | 1460                | 1020<br>1550        | 597<br>524          | 314        | 135          | 101                         |
| 11<br>12     | 116        | 206                 | 234<br>221                 | 725<br>687          | 1470        | 1300                  | 1070<br>904         | 815<br>1470         | 479                 | 236        | 132          | 124                         |
| 12           | 112        | 191                 | 221                        | 687                 | 1060        | 1180                  | 904                 | 1470                | 446                 | 213        | 138          | 106                         |
| 13           | 111        | 182                 | 234                        | 651                 | 865         | 1330                  | 1390                | 3330                | 479                 | 203        | 138          | 101                         |
| 14           | 113        | 175                 | 325                        | 561                 | 691         | 1400                  | 2910                | 5160                | 481                 | 196        | 129          | 115                         |
| 14<br>15     | 187        | 179                 | 325<br>2060                | 611                 | 742         | 1120                  | 3530                | 5160<br>2710        | 481<br>828          | 196<br>189 | 134          | 250                         |
| 16<br>17     | 165        | 173                 | 908                        | 611                 | 861         | 1540                  | 1730                | 1540<br>3350        | 1300<br>868         | 181        | 162          | 785                         |
| 17           | 430        | 168                 | 1130                       | 570                 | 892         | 1180                  | 1730<br>1270        | 3350                | 868                 | 175        | 195          | 335                         |
| 18           | 486        | 161                 | 3590                       | 529                 | 697         | 990                   | 1050                | 2400                | 585                 | 168        | 211          | 209                         |
| 19           | 273        | 164                 | 1700                       | 474                 | 687         | 904                   | 959                 | 1760                | 468                 | 171        | 173          | 167                         |
| 19<br>20     | 203        | 397                 | 1700<br>1160               | 497                 | 839         | 1050                  | 959<br>1010         | 1760<br>1270        | 401                 | 171<br>186 | 288          | 157                         |
| 21<br>22     | 225        | 334                 | 969                        | 502                 | 1730        | 1480                  | 956                 | 1070                | 361                 | 170        | 180          | 141                         |
| 22           | 635        | 260                 | 790<br>930                 | 473                 | 1530        | 1030                  | 940                 | 914<br>797          | 342<br>327          | 187        | 172          | 136                         |
| 23           | 391        | 228                 | 930                        | 513                 | 1030        | 931                   | 917                 | 797                 | 327                 | 270        | 248          | 153                         |
| 24           | 305        | 206                 | 1780                       | 1950                | 851         | 917                   | 780                 | 732                 | 305                 | 245        | 297          | 128                         |
| 24<br>25     | 346        | 555                 | 971                        | 1950                | 882         | 906                   | 759                 | 732<br>776          | 293                 | 187        | 255          | 120                         |
| 26<br>27     | 436        | 819                 | 655<br>536<br>513          | 1210                | 983         | 1020                  | 736                 | 1060<br>820<br>649  | 309                 | 191        | 182          | 118                         |
| 27           | 815        | 495                 | 536                        | 1210<br>1040        | 983<br>1260 | 2640                  | 646                 | 820                 | 309<br>1080         | 191<br>230 | 156          | 118<br>270                  |
| 28           | 655        | 409                 | 513                        | 1320                | 886         | e1500                 | 996                 | 649                 | 1370                | e600       | 145          | 500                         |
| 29           | 466        | 635                 | e420                       | 2100                |             | e2300                 | 2250                | 594<br>2130         | 740                 | e900       | 135          | 269                         |
| 30           | 431        | 865                 | e370                       | 5260                |             | 6020                  | 1430                | 2130                | 464                 | e530       | 128          | 194                         |
| 31           | 345        |                     | e390                       | 5180                |             | e2200                 |                     | 1950                |                     | e340       | 126          |                             |
| TOTAL        | 8579       | 9455                | 24025                      | 31953               | 41807       | 46264                 | 44913               | 44236               | 20901               | 8600       | 5475         | 5521                        |
| MEAN         | 277        | 315                 | 775<br>3590<br>221<br>1.78 | 1031                | 1493        | 1492                  | 1497                | 1427                | 697                 | 277        | 177          | 184                         |
| MAX          | 815        | 865                 | 3590                       | 5260                | 10900       | 6020                  | 4300                | 5160                | 1410                | 900        | 297          | 785                         |
| MIN          | 97         | 161<br>0.72         | 221                        | 5260<br>420<br>2.36 | 687         | 732                   | 646<br>3.43         | 5160<br>594<br>3.27 | 1410<br>293<br>1.60 | 168        | 126          | 785<br>101<br>0.42          |
| CFSM         | 0.63       | 0.72                | 1.78                       | 2.36                | 3.42        | 3.42                  | 3.43                | 3.27                | 1.60                | 0.64       | 0.41         | 0.42                        |
| IN.          | 0.73       | 0.81                | 2.05                       | 2.73                | 3.57        | 3.95                  | 3.83                | 3.77                | 1.78                | 0.73       | 0.47         | 0.47                        |
| STATIST      | CICS OF MC | NTHLY ME            | AN DATA FO                 | R WATER             | YEARS 194   | 0 - 2002,             | BY WATER            | YEAR (WY            | )                   |            |              |                             |
| MEAN         | 407        | 713                 | 949                        | 850                 | 959         | 1572                  | 1453                | 745                 | 501                 | 297        | 247          | 316<br>2423<br>1977<br>85.8 |
| MAX          | 1573       | 1772                | 2089                       | 2305                | 2819        | 3824                  | 3686                | 1948                | 1436                | 867        | 1225         | 2423                        |
| (WY)         | 1946       | 1986                | 1991                       | 1998                | 1976        | 1945                  | 1947                | 1943                | 1989                | 1986       | 1977         | 1977                        |
| MIN          | 81.8       | 1986<br>118         | 2089<br>1991<br>111        | 1998<br>136         | 1976<br>222 | 1945<br>790           | 3686<br>1947<br>279 | 283                 | 1989<br>143         | 78.3       | 1977<br>79.5 | 85.8                        |
| (WY)         | 1964       | 1961                | 1961                       | 1961                | 1963        | 2001                  | 1946                | 1941                | 1955                | 1955       | 1941         | 1960                        |
| \··-/        |            |                     |                            |                     | 1,00        | 2002                  |                     |                     | 2200                |            |              | 2200                        |

e Estimated

85

# 04213500 CATTARAUGUS CREEK AT GOWANDA, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR | YEAR FO | OR 2002 WATE | R YEAR | WATER YEARS | 1940 - 2002 |
|--------------------------|-------------------|---------|--------------|--------|-------------|-------------|
| ANNUAL TOTAL             | 204946            |         | 291729       |        |             |             |
| ANNUAL MEAN              | 561               |         | 799          |        | 748         |             |
| HIGHEST ANNUAL MEAN      |                   |         |              |        | 1030        | 1977        |
| LOWEST ANNUAL MEAN       |                   |         |              |        | 532         | 1995        |
| HIGHEST DAILY MEAN       | 7440 Fel          | b 10    | 10900        | Feb 1  | 22900       | Mar 17 1942 |
| LOWEST DAILY MEAN        | 76 Au             | g 15    | 97           | Oct 5  | 52          | Sep 13 1945 |
| ANNUAL SEVEN-DAY MINIMUM | 79 Au             | g 10    | 106          | Sep 7  | 57          | Sep 7 1945  |
| ANNUAL RUNOFF (CFSM)     | 1.29              |         | 1.83         |        | 1.72        |             |
| ANNUAL RUNOFF (INCHES)   | 17.49             |         | 24.89        |        | 23.31       |             |
| 10 PERCENT EXCEEDS       | 1130              |         | 1640         |        | 1600        |             |
| 50 PERCENT EXCEEDS       | 346               |         | 500          |        | 423         |             |
| 90 PERCENT EXCEEDS       | 100               |         | 138          |        | 126         |             |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## STREAMS TRIBUTARY TO LAKE ERIE

## 04214500 BUFFALO CREEK AT GARDENVILLE, NY

LOCATION.--Lat 42°51'17", long 78°45'19", Erie County, Hydrologic Unit 04120103, on left bank 300 ft downstream from bridge on Union Road in Gardenville, 2.0 mi upstream from Cayuga Creek, and 10.1 mi upstream from mouth.

DRAINAGE AREA.--142 mi².

PERIOD OF RECORD.--October 1938 to current year.

REVISED RECORDS.--WSP 1337: 1939-52. WSP 1912; WDR NY-82-3: Drainage area. WDR NY-78-1: 1939-1976 (P).

GAGE.--Water-stage recorder. Datum of gage is 603.65 ft above NGVD of 1929. Prior to Sept. 26, 1968, water-stage recorder at site 400 ft downstream at same datum.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 11,300 ft³/s, Mar. 1, 1955, Mar. 7, 1956; maximum gage height 14.34 ft, Mar. 21, 1978 (ice jam); minimum discharge, 0.2 ft³/s, Sept. 1, 1964.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,750 ft³/s and maximum (\*):

Gage height

| Date                             | 7                                         | ime                                       | Discharg<br>(ft <sup>3</sup> /s)            |                                             | ge height<br>(ft)                           |                                             | Date                                        | Time                                        | e                                        | Discharge<br>(ft <sup>3</sup> /s)        |                                         | height                                      |
|----------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|---------------------------------------------|------------------------------------------|------------------------------------------|-----------------------------------------|---------------------------------------------|
| Feb.                             | 1 1                                       | 530                                       | *8,180                                      |                                             | *8.17                                       |                                             | Apr. 3                                      | 8 083                                       | 0                                        | 4,200                                    | 5.                                      | 98                                          |
| Minimum dis                      | scharge,                                  | 7.1 ft <sup>3</sup> /s                    | , Sept. 12                                  | . 13. 14                                    | , 15.                                       |                                             |                                             |                                             |                                          |                                          |                                         |                                             |
|                                  | ,                                         |                                           | ARGE, CUBI                                  |                                             |                                             | WATED VE                                    | יאף חרייחם פאי                              | TD 2001 TO                                  | CEDTEME                                  | ED 2002                                  |                                         |                                             |
|                                  |                                           | DISCI                                     | IARGE, CODI                                 | C PEBI F                                    |                                             | Y MEAN VA                                   |                                             | M 2001 10                                   | OEF TEME                                 | EK ZUUZ                                  |                                         |                                             |
| DAY                              | OCT                                       | NOV                                       | DEC                                         | JAN                                         | FEB                                         | MAR                                         | APR                                         | MAY                                         | JUN                                      | JUL                                      | AUG                                     | SEP                                         |
| 1<br>2<br>3<br>4<br>5            | 21<br>18<br>17<br>16<br>18                | 43<br>48<br>74<br>69<br>50                | 343<br>178<br>116<br>88<br>73               | e120<br>e105<br>e120<br>e115<br>e115        | 5900<br>1220<br>e500<br>e400<br>e270        | e200<br>e220<br>e800<br>e380<br>e180        | 338<br>391<br>2290<br>562<br>377            | 264<br>283<br>324<br>206<br>158             | 431<br>208<br>146<br>138<br>672          | e46<br>e42<br>39<br>36<br>33             | 22<br>18<br>16<br>15<br>15              | e12<br>e11<br>e11<br>e14<br>e13             |
| 6                                | 75                                        | 41                                        | 69                                          | e113                                        | 333                                         | e230                                        | 320                                         | 136                                         | 390                                      | 30                                       | 15                                      | e11                                         |
| 7<br>8<br>9<br>10                | 43<br>27<br>18<br>19                      | 36<br>35<br>40<br>36                      | 65<br>59<br>58<br>50                        | e110<br>e125<br>e110<br>e140<br>e350        | 302<br>292<br>312<br>431                    | e300<br>e850<br>e1200<br>e1100              | 271<br>240<br>257<br>306                    | 144<br>152<br>476<br>660                    | 267<br>165<br>126<br>104                 | 27<br>24<br>37<br>30                     | 14<br>14<br>13<br>13                    | e9.5<br>e8.5<br>e7.5<br>e7.5                |
| 11<br>12<br>13<br>14<br>15       | 18<br>19<br>19<br>19                      | 34<br>31<br>28<br>28<br>34                | 47<br>47<br>48<br>128<br>975                | e600<br>e340<br>e300<br>e250<br>e230        | 781<br>388<br>292<br>e190<br>e230           | 386<br>377<br>450<br>459<br>337             | 210<br>184<br>472<br>1140<br>1120           | 229<br>459<br>1410<br>2320<br>756           | 90<br>80<br>91<br>140<br>338             | 25<br>20<br>19<br>20<br>19               | e12<br>e12<br>e12<br>e12<br>e15         | e14<br>e8.5<br>7.3<br>7.5                   |
| 16<br>17<br>18<br>19<br>20       | 52<br>51<br>100<br>53<br>47               | 39<br>35<br>31<br>36<br>97                | 324<br>395<br>972<br>415<br>322             | e240<br>e225<br>e200<br>e150<br>e170        | e450<br>e440<br>e220<br>e220<br>e510        | 378<br>275<br>244<br>235<br>333             | 394<br>281<br>226<br>257<br>231             | 369<br>1040<br>604<br>413<br>286            | 282<br>196<br>144<br>102<br>78           | 18<br>17<br>16<br>16<br>16               | 19<br>19<br>15<br>17<br>16              | 93<br>50<br>26<br>18<br>16                  |
| 21<br>22<br>23<br>24<br>25       | 69<br>114<br>78<br>53<br>66               | 92<br>57<br>45<br>39<br>146               | 281<br>201<br>193<br>791<br>302             | e160<br>e170<br>e300<br>e1400<br>895        | e1100<br>e700<br>e350<br>e270<br>e320       | 526<br>318<br>247<br>253<br>261             | 209<br>180<br>189<br>152<br>144             | 256<br>205<br>170<br>162<br>181             | 73<br>69<br>64<br>e60<br>e57             | 16<br>16<br>117<br>40<br>23              | 15<br>25<br>31<br>42<br>47              | 14<br>14<br>18<br>16<br>15                  |
| 26<br>27<br>28<br>29<br>30<br>31 | 669<br>301<br>161<br>89<br>61<br>51       | 178<br>99<br>86<br>222<br>374             | 187<br>e145<br>e130<br>e135<br>e125<br>e115 | 430<br>364<br>459<br>618<br>1330<br>858     | e360<br>e340<br>e220<br>                    | 267<br>1050<br>463<br>476<br>1070<br>444    | 151<br>122<br>446<br>895<br>392             | 360<br>212<br>144<br>120<br>721<br>696      | e60<br>e200<br>e125<br>e84<br>e58        | 18<br>18<br>55<br>86<br>42<br>33         | 31<br>e20<br>e18<br>e16<br>e14<br>e13   | 14<br>86<br>196<br>65<br>40                 |
| TOTAL MEAN MAX MIN CFSM IN.      | 2412<br>77.8<br>669<br>16<br>0.55<br>0.63 | 2203<br>73.4<br>374<br>28<br>0.52<br>0.58 | 7377<br>238<br>975<br>47<br>1.68<br>1.93    | 11099<br>358<br>1400<br>105<br>2.52<br>2.91 | 17341<br>619<br>5900<br>190<br>4.36<br>4.54 | 14309<br>462<br>1200<br>180<br>3.25<br>3.75 | 12747<br>425<br>2290<br>122<br>2.99<br>3.34 | 13916<br>449<br>2320<br>120<br>3.16<br>3.65 | 5038<br>168<br>672<br>57<br>1.18<br>1.32 | 994<br>32.1<br>117<br>16<br>0.23<br>0.26 | 576<br>18.6<br>47<br>12<br>0.13<br>0.15 | 840.3<br>28.0<br>196<br>7.3<br>0.20<br>0.22 |
| STATIS                           | STICS OF                                  | MONTHLY M                                 | MEAN DATA F                                 | OR WATER                                    | YEARS 193                                   | 9 - 2002,                                   | BY WATER                                    | R YEAR (WY                                  | )                                        |                                          |                                         |                                             |
| MEAN<br>MAX<br>(WY)              | 91.5<br>381<br>1987                       | 199<br>686<br>1986                        | 286<br>706<br>1991                          | 259<br>725<br>1998                          | 308<br>835<br>1976                          | 487<br>1048<br>1942                         | 376<br>950<br>1947                          | 179<br>495<br>1984                          | 104<br>531<br>1989                       | 51.0<br>354<br>1992                      | 46.1<br>376<br>1992                     | 72.4<br>827<br>1977                         |

e Estimated

MIN

(WY)

9.32

1965

18.2

1961

17.4

1961

27.4

1961

40.2

1963

197

1981

68.8

1946

38.5

1941

15.6

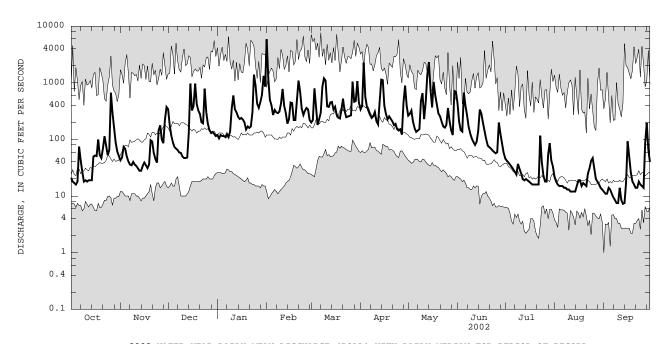
1955

6.89

1955

10.8

1966


6.25

1964

87

# 04214500 BUFFALO CREEK AT GARDENVILLE, NY--Continued

| SUMMARY STATISTICS                          | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1939 - 2002 |
|---------------------------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL                                | 57652.0                | 88852.3             | 204                     |
| ANNUAL MEAN                                 | 158                    | 243                 |                         |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN   | 130                    | 243                 | 301 1977<br>119 1999    |
| HIGHEST DAILY MEAN                          | 3900 Feb 10            | 5900 Feb 1          | 7650 Mar 7 1956         |
| LOWEST DAILY MEAN                           | 5.0 Aug 12             | 7.3 Sep 13          | 1.0 Sep 1 1964          |
| ANNUAL SEVEN-DAY MINIMUM                    | 5.4 Aug 10             | 8.7 Sep 8           | 2.6 Sep 13 1964         |
| ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | 1.11                   | 1.71                | 1.44                    |
|                                             | 15.10                  | 23.28               | 19.55                   |
| 10 PERCENT EXCEEDS                          | 366                    | 516                 | 460                     |
| 50 PERCENT EXCEEDS                          | 69                     | 125                 | 88                      |
| 90 PERCENT EXCEEDS                          | 14                     | 16                  | 15                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### STREAMS TRIBUTARY TO LAKE ERIE

## 04215000 CAYUGA CREEK NEAR LANCASTER, NY

LOCATION.--Lat 42°53'24", long 78°38'43", Erie County, Hydrologic Unit 04120103, on right bank 150 ft upstream from low dam in Como Lake Park, 700 ft downstream from bridge on Bowen Road, 800 ft downstream from Little Buffalo Creek, 2.0 mi southeast of Lancaster, and 8.7 mi upstream from mouth.

DRAINAGE AREA.--96.4 mi².

DERIOD OF RECORD. --September 1938 to September 1968. October 1971 to April 1974 (peak discharges only). May 1974 to current

Time

0630

Date

Apr. 3 Discharge (ft<sup>3</sup>/s)

3,230

Gage height

(ft)

7.01

1961

REVISED RECORDS.--WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder and low concrete dam as control. Datum of gage is 672.02 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Since August 1962, undetermined amount of flow diverted by Lancaster Country Club for irrigation upstream from station. Concrete dam configuration modified in September 1974 resulting in a lower point of zero flow. Telephone and satellite gage-height telemeters at station. Several

measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 9,440 ft<sup>3</sup>/s, Sept. 14, 1979, gage height, 10.48 ft; maximum gage height 13.35 ft, Jan. 23, 1999 (ice jam); practically no flow part of Aug. 8, 9, 1939, when stop logs were installed in the dam.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 2,800 ft<sup>3</sup>/s and maximum (\*):

Date

May 13

Time

2000

Discharge (ft<sup>3</sup>/s)

3,270

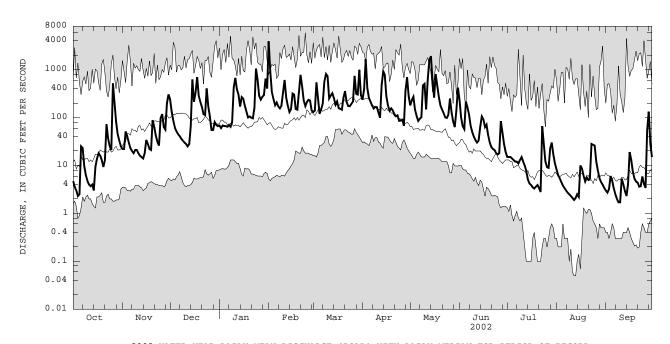
1955

Gage height

(ft)

7.02

| Illiani ale   | scharge, 1     |              | _           |              | _                  |             |             |              |              |               |               |               |
|---------------|----------------|--------------|-------------|--------------|--------------------|-------------|-------------|--------------|--------------|---------------|---------------|---------------|
|               |                | DISCHA       | RGE, CUBI   | C FEET PE    | R SECOND,<br>DAILY | WATER YE.   |             | R 2001 TO    | SEPTEMBE     | R 2002        |               |               |
| DAY           | OCT            | NOV          | DEC         | JAN          | FEB                | MAR         | APR         | MAY          | JUN          | JUL           | AUG           | SEP           |
| 1             | 4.7            | 22           | 236         | e68          | 3900               | e130        | 234         | 179          | 228          | 15            | 8.2           | 3.0           |
| 2             | 3.6            | 22           | 131         | e60          | 913                | e140        | 392         | 230          | 101          | 15            | 6.3           | 2.7           |
| 3             | 3.0            | 51           | 85          | e68          | 336                | 541         | 1650        | 271          | 66           | 15            | 5.4           | 3.2           |
| 4<br>5        | 2.3            | 41<br>30     | 61<br>51    | e66<br>e66   | 240                | 251         | 406<br>257  | 146          | 57<br>214    | 14            | 4.5<br>3.8    | 6.0           |
| 5             | 2.5            | 30           | 21          | 600          | e180               | e120        | 25 /        | 107          | 214          | 13            | 3.8           | 4.8           |
| 6             | 25             | 23           | 45          | e64          | 207                | e150        | 215         | 85           | 161          | 12            | 3.4           | 3.3           |
| 7             | 23             | 20           | 41          | e70          | 171                | 197         | 178         | 94           | 113          | 12            | 3.0           | 2.5           |
| 8             | 9.6            | 18           | 36          | e64          | 155                | 567         | 154         | 102          | 66           | 11            | 2.7           | 2.0           |
| 9             | 6.2            | 21           | 33          | e80          | 176                | 811         | 166         | 469          | 49           | 13            | 2.5           | 1.7           |
| 10            | 4.7            | 21           | 30          | e420         | 321                | 728         | 164         | 504          | 40           | 15            | 2.3           | 1.7           |
| 11            | 4.0            | 18           | 28          | 670          | 606                | e250        | 126         | 148          | 34           | 12            | 2.1           | 5.3           |
| 12            | 3.7            | 16           | 25          | 385          | 260                | 288         | 99          | 612          | 30           | 10            | 1.9           | 4.0           |
| 13            | 4.0            | 15           | 28          | 298          | e175               | 321         | 475         | 1570         | 33           | 7.6           | 2.1           | 2.9           |
| 14            | 3.0            | 14           | 66          | 169          | e130               | 254         | 916         | 1910         | 63           | 5.1           | 2.5           | 2.3           |
| 15            | 9.3            | 18           | 622         | 267          | 150                | 185         | 781         | 588          | 105          | 4.2           | 2.2           | 4.1           |
| 16            | 14             | 34           | 213         | 247          | 316                | 217         | 277         | 259          | 91           | 3.9           | 10            | 19            |
| 17            | 18             | 28           | 332         | 174          | 302                | 156         | 179         | 806          | 63           | 3.5           | 8.6           | 13            |
| 18            | 16             | 22           | 697         | 131          | e150               | 152         | 138         | 455          | 71           | 3.3           | 6.1           | 7.4           |
| 19            | 13             | 21           | 279         | e100         | e145               | 145         | 155         | 269          | 43           | 3.6           | 4.6           | 5.3           |
| 20            | 9.3            | 88           | 210         | e105         | 340                | 262         | 141         | 177          | 30           | 3.9           | 5.6           | 4.6           |
| 21            | 13             | 64           | 164         | 99           | 777                | 356         | 117         | 147          | 24           | 3.4           | 5.0           | 4.4           |
| 22            | 73             | 42           | 117         | 96           | 447                | 212         | 106         | 123          | 22           | 2.8           | 5.3           | 3.6           |
| 23<br>24      | 36<br>25       | 31           | 113         | 159          | 226                | 173<br>172  | 111         | 101          | 21           | 66            | 28<br>27      | 3.7           |
| 24<br>25      | 25<br>21       | 26<br>97     | 405<br>170  | e1050<br>623 | 172<br>209         | 193         | 85<br>86    | 98<br>114    | 18<br>17     | 30<br>12      | 26            | 5.9<br>4.1    |
| 2.5           | 21             | 91           | 170         | 023          | 209                | 193         | 00          | 114          | 17           | 12            | 20            | 4.1           |
| 26            | 517            | 118          | e105        | 282          | 233                | 217         | 90          | 250          | 18           | 9.2           | 12            | 3.4           |
| 27            | 214            | 63           | e55         | 237          | 226                | 738         | 67          | 129          | 84           | 8.9           | 7.7           | 54            |
| 28<br>29      | 84<br>45       | 56<br>197    | e55<br>e80  | 272<br>294   | e140               | 312<br>301  | 363<br>693  | 82<br>63     | 50<br>28     | 23<br>30      | 5.4<br>4.5    | 133<br>28     |
| 30            | 33             | 304          | e70         | 644          |                    | 990         | 279         | 139          | 19           | 17            | 4.0           | 15            |
| 31            | 25             |              | e66         | e400         |                    | 291         |             | 419          |              | 11            | 3.4           |               |
| moma r        | 1064.0         | 1 = 41       | 16.10       | 7700         | 11600              | 0000        | 0100        | 10646        | 1050         | 405.4         | 016 1         | 252.0         |
| TOTAL<br>MEAN | 1264.9<br>40.8 | 1541<br>51.4 | 4649<br>150 | 7728<br>249  | 11603<br>414       | 9820<br>317 | 9100<br>303 | 10646<br>343 | 1959<br>65.3 | 405.4<br>13.1 | 216.1<br>6.97 | 353.9<br>11.8 |
| MAX           | 517            | 304          | 697         | 1050         | 3900               | 990         | 1650        | 1910         | 228          | 66            | 28            | 133           |
| MIN           | 2.3            | 14           | 25          | 60           | 130                | 120         | 67          | 63           | 17           | 2.8           | 1.9           | 1.7           |
| CFSM          | 0.42           | 0.53         | 1.56        | 2.59         | 4.30               | 3.29        | 3.15        | 3.56         | 0.68         | 0.14          | 0.07          | 0.12          |
| IN.           | 0.49           | 0.59         | 1.79        | 2.98         | 4.48               | 3.79        | 3.51        | 4.11         | 0.76         | 0.16          | 0.08          | 0.14          |
| STATIS        | STICS OF M     | ONTHLY MEA   | AN DATA F   | OR WATER     | YEARS 1939         | 9 - 2002,   | BY WATER    | YEAR (WY     | )            |               |               |               |
| MEAN          | 59.0           | 127          | 185         | 178          | 217                | 337         | 250         | 110          | 55.5         | 24.4          | 30.0          | 47.1          |
| MAX           | 252            | 601          | 505         | 543          | 457                | 680         | 623         | 343          | 338          | 166           | 323           | 572           |
| (WY)          | 1987           | 1986         | 1978        | 1998         | 1976               | 1942        | 1940        | 2002         | 1989         | 1998          | 1977          | 1977          |
| MIN           | 2.90           | 4.34         | 5.60        | 9.85         | 25.1               | 146         | 36.5        | 18.7         | 5.88         | 1.06          | 1.87          | 0.80          |


e Estimated

(WY)

89

# 04215000 CAYUGA CREEK NEAR LANCASTER, NY--Continued

| SUMMARY STATISTICS                                                       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1939 - 2002      |
|--------------------------------------------------------------------------|------------------------|---------------------|------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN<br>HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN | 39378.45<br>108        | 59286.3<br>162      | 135<br>206 1956<br>78.5 1962 |
| HIGHEST DAILY MEAN LOWEST DAILY MEAN                                     | 2730 Feb 10            | 3900 Feb 1          | 5830 Feb 24 1985             |
|                                                                          | 0.05 Aug 12            | 1.7 Sep 9           | 0.05 Aug 12 2001             |
| ANNUAL SEVEN-DAY MINIMUM                                                 | 0.09 Aug 10            | 2.2 Aug 9           | 0.09 Aug 10 2001             |
| ANNUAL RUNOFF (CFSM)                                                     | 1.12                   | 1.68                | 1.40                         |
| ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS             | 15.20                  | 22.88               | 18.97                        |
|                                                                          | 253                    | 395                 | 310                          |
|                                                                          | 33                     | 66                  | 48                           |
| 90 PERCENT EXCEEDS                                                       | 2.3                    | 3.9                 | 3.9                          |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## STREAMS TRIBUTARY TO LAKE ERIE

## 04215500 CAZENOVIA CREEK AT EBENEZER, NY

LOCATION.--Lat 42°49'47", long 78°46'31", Erie County, Hydrologic Unit 04120103, on right bank 30 ft upstream from bridge on Ridge Road in Ebenezer, 4.0 mi upstream from mouth, and 5.0 mi southeast of Buffalo.

DRAINAGE AREA.--135 mi².

PERIOD OF RECORD.--June 1940 to current year.

REVISED RECORDS.--WSP 1912: Drainage area. WDR NY 1973: 1972 (M). WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 604.86 ft above NGVD of 1929. Prior to Apr. 4, 1955, at datum 2.00 ft higher. Apr. 4 to Oct. 12, 1955, nonrecording gage at temporary site 1.3 mi downstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are poor. Telephone gage-height telemeter at station. Several measurements of water temperature were made during the year.

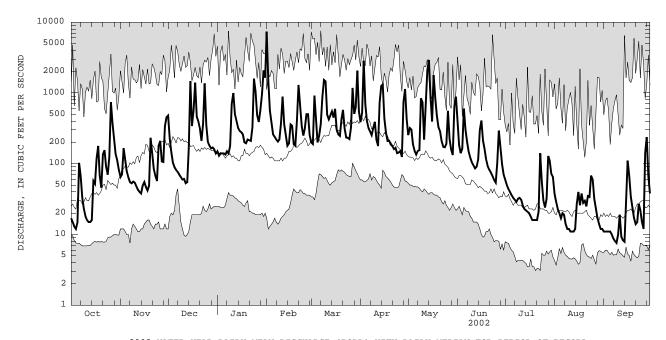
EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 13,500 ft³/s, Mar. 1, 1955, gage height, 15.82 ft, present datum; minimum discharge, 2.6 ft³/s, Nov. 7, 1953; minimum gage height, 1.76 ft, Sept. 15, 1991.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,000 ft³/s and maximum (\*):

| Date |   | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|------|---|--------------|-----------------------------------|---------------------|--------|------|-----------------------------------|---------------------|
| Feb. | 1 | 1215<br>0615 | *10,300<br>5,160                  | *12.36<br>8 73      | May 13 | 2330 | 4,290                             | 7.99                |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

Minimum discharge, 7.0 ft<sup>3</sup>/s, Sept. 10, gage height, 1.91 ft.


|         |           | DISCHA    | RGE, CUBI | C FEET PE |           | WAIER YE<br>Y MEAN VA |          | R 2001 10 | SEPIEMBE | R 2002 |      |        |
|---------|-----------|-----------|-----------|-----------|-----------|-----------------------|----------|-----------|----------|--------|------|--------|
| DAY     | OCT       | NOV       | DEC       | JAN       | FEB       | MAR                   | APR      | MAY       | JUN      | JUL    | AUG  | SEP    |
| 1       | 17        | 65        | 481       | e150      | 7390      | e200                  | 388      | 254       | 389      | 59     | 38   | 11     |
| 2       | 15        | 71        | 228       | e130      | 1530      | e190                  | 526      | 320       | 185      | 50     | 29   | 11     |
| 3       | 13        | 166       | 146       | e140      | 565       | 919                   | 2860     | 304       | 141      | 44     | 23   | 11     |
| 4       | 12        | 113       | 103       | e140      | 387       | 460                   | 695      | 187       | 165      | 40     | 20   | 11     |
| 5       | 15        | 78        | 89        | e140      | e260      | e200                  | 401      | 152       | 603      | 36     | 17   | 11     |
| 6       | 103       | 64        | 82        | e135      | e240      | e250                  | 321      | 135       | 304      | 33     | 20   | 10     |
| 7       | 67        | 55        | 77        | e150      | e220      | 363                   | 286      | 152       | 205      | 31     | 19   | 8.8    |
| 8       | 33        | 53        | 70        | e140      | 206       | 874                   | 254      | 156       | 147      | 29     | 14   | 8.1    |
| 9       | 23        | 56        | 65        | e180      | 221       | 1530                  | 323      | 844       | 121      | 32     | 12   | 7.6    |
| 10      | 18        | 54        | 60        | e700      | 375       | 1460                  | 392      | 739       | 105      | 33     | 12   | 10     |
| 11      | 16        | 48        | 61        | e1000     | 887       | 493                   | 217      | 220       | 95       | 31     | 11   | 19     |
| 12      | 15        | 43        | 53        | e500      | e360      | 423                   | 178      | 743       | 86       | 26     | 11   | 9.3    |
| 13      | 15        | 40        | 55        | e400      | e250      | 480                   | 738      | 2090      | 91       | 23     | 11   | 8.3    |
| 14      | 16        | 38        | 164       | e320      | e180      | 549                   | 1260     | 2940      | 116      | 22     | 12   | 7.9    |
| 15      | 57        | 49        | 1470      | e290      | e195      | 448                   | 1320     | 871       | 298      | 21     | 27   | 26     |
| 16      | 52        | 55        | 341       | e280      | 359       | 597                   | 438      | 395       | 408      | 20     | 40   | 111    |
| 17      | 119       | 47        | 566       | 260       | 344       | 305                   | 276      | 1790      | 213      | 18     | 26   | 67     |
| 18      | 179       | 42        | 1400      | 201       | e190      | 260                   | 210      | 856       | 163      | 16     | 38   | 34     |
| 19      | 68        | 49        | 463       | e195      | e180      | 248                   | 212      | 480       | 115      | 16     | 28   | 24     |
| 20      | 46        | 233       | 395       | e220      | 407       | 426                   | 187      | 330       | 92       | 16     | 30   | 17     |
| 21      | 136       | 138       | 310       | e215      | 1300      | 578                   | 178      | 288       | 82       | 16     | 25   | 14     |
| 22      | 156       | 84        | 211       | e210      | 700       | 316                   | 161      | 208       | 75       | 21     | 35   | 15     |
| 23      | 90        | 67        | 368       | e330      | 341       | 235                   | 168      | 174       | 67       | 141    | 34   | 27     |
| 24      | 70        | 57        | 1370      | 1600      | 250       | 233                   | 141      | 171       | 59       | 56     | 68   | 22     |
| 25      | 124       | 180       | 355       | 1050      | 317       | 223                   | 144      | 191       | 54       | 30     | 60   | 15     |
| 26      | 744       | 210       | 203       | 482       | 501       | 325                   | 151      | 560       | 102      | 24     | 32   | 12     |
| 27      | 382       | 108       | e180      | 390       | 501       | 1180                  | 125      | 225       | 295      | 32     | 23   | 141    |
| 28      | 231       | 106       | e165      | 571       | 254       | 508                   | 747      | 158       | 166      | 129    | 17   | 238    |
| 29      | 136       | 339       | e170      | 950       |           | 628                   | 1140     | 133       | 99       | 110    | 14   | 66     |
| 30      | 111       | 456       | e160      | 2090      |           | 2070                  | 427      | 651       | 70       | 72     | 12   | 38     |
| 31      | 82        |           | e140      | 1650      |           | 550                   |          | 884       |          | 65     | 12   |        |
| TOTAL   | 3161      | 3164      | 10001     | 15209     | 18910     | 17521                 | 14864    | 17601     | 5111     | 1292   | 770  | 1011.0 |
| MEAN    | 102       | 105       | 323       | 491       | 675       | 565                   | 495      | 568       | 170      | 41.7   | 24.8 | 33.7   |
| MAX     | 744       | 456       | 1470      | 2090      | 7390      | 2070                  | 2860     | 2940      | 603      | 141    | 68   | 238    |
| MIN     | 12        | 38        | 53        | 130       | 180       | 190                   | 125      | 133       | 54       | 16     | 11   | 7.6    |
| CFSM    | 0.76      | 0.78      | 2.39      | 3.63      | 5.00      | 4.19                  | 3.67     | 4.21      | 1.26     | 0.31   | 0.18 | 0.25   |
| IN.     | 0.87      | 0.87      | 2.76      | 4.19      | 5.21      | 4.83                  | 4.10     | 4.85      | 1.41     | 0.36   | 0.21 | 0.28   |
| STATIST | rics of M | ONTHLY ME | AN DATA F | OR WATER  | YEARS 194 | 0 - 2002,             | BY WATER | YEAR (WY  | )        |        |      |        |
| MEAN    | 111       | 245       | 343       | 307       | 344       | 543                   | 421      | 206       | 111      | 52.5   | 49.7 | 81.8   |
| MAX     | 410       | 705       | 868       | 816       | 859       | 1062                  | 1005     | 585       | 473      | 381    | 371  | 978    |
| (WY)    | 1946      | 1986      | 1991      | 1998      | 1976      | 1945                  | 1947     | 1984      | 1989     | 1992   | 1977 | 1977   |
| MIN     | 9.76      | 16.2      | 20.4      | 37.8      | 55.8      | 216                   | 79.9     | 43.6      | 17.5     | 6.11   | 9.62 | 7.93   |
| (WY)    | 1954      | 1961      | 1961      | 1961      | 1963      | 1981                  | 1946     | 1941      | 1955     | 1955   | 1966 | 1960   |

e Estimated

91

# 04215500 CAZENOVIA CREEK AT EBENEZER, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1940 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 71139.2                | 108615.0            |                         |
| ANNUAL MEAN              | 195                    | 298                 | 234                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 332 1977                |
| LOWEST ANNUAL MEAN       |                        |                     | 145 1999                |
| HIGHEST DAILY MEAN       | 4280 Feb 10            | 7390 Feb 1          | 7560 Mar 7 1956         |
| LOWEST DAILY MEAN        | 6.5 Aug 12             | 7.6 Sep 9           | 3.1 Jul 20 1955         |
| ANNUAL SEVEN-DAY MINIMUM | 6.8 Aug 10             | 9.5 Sep 4           | 3.5 Jul 17 1955         |
| ANNUAL RUNOFF (CFSM)     | 1.44                   | 2.20                | 1.73                    |
| ANNUAL RUNOFF (INCHES)   | 19.60                  | 29.93               | 23.56                   |
| 10 PERCENT EXCEEDS       | 457                    | 700                 | 545                     |
| 50 PERCENT EXCEEDS       | 80                     | 150                 | 99                      |
| 90 PERCENT EXCEEDS       | 12                     | 16                  | 15                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

92 LAKE ERIE

## 04215900 LAKE ERIE AT BUFFALO, NY

 $\texttt{LOCATION.--Lat } \ 42^{\circ}52^{\circ}39^{\circ}, \ \texttt{long } \ 78^{\circ}53^{\circ}26^{\circ}, \ \texttt{Erie County, Hydrologic Unit 04120200, near outer end of Buffalo River South Pier, at a superior of the super$ Buffalo.

Buffalo.
DRAINAGE AREA.--263,700 mi<sup>2</sup>.
PERIOD OF RECORD.--January 1860 to current year. Records prior to October 1960 in files of Lake Survey Center.
REVISED RECORDS.--WDR NY-75-1: 1974.
GAGE.--Water-stage recorder. Elevations are in feet International Great Lakes Datum (IGLD) of 1985. Prior to Oct. 1, 1991,
elevations are in feet (IGLD) of 1955, 0.67 ft lower. Prior to Feb. 5, 1899, nonrecording gages.
COOPERATION.--Records furnished by U.S. Department of Commerce, NOAA-NOS, Oceanographic Products and Services Division, Silver

Spring, Maryland.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 580.65 ft, datum then in use, Dec. 2, 1985; minimum elevation, 564.17 ft, datum then in use, Mar. 10, 1964.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 578.68 ft, Mar. 10; minimum elevation, 568.02 ft, Dec. 14.

### ELEVATION (FEET IGLD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY                              | OCT                                                      | NOV                                            | DEC                                                      | JAN                                                      | FEB                                            | MAR                                                      | APR                                            | MAY                                                      | JUN                                            | JUL                                                      | AUG                                                      | SEP                                            |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 570.37<br>570.26<br>570.41<br>570.54<br>569.75           | 570.39<br>570.52<br>570.37<br>570.51<br>570.22 | 571.25<br>570.40<br>570.50<br>570.38<br>570.38           | 570.72<br>570.71<br>570.69<br>571.49<br>571.16           | 571.84<br>571.01<br>571.43<br>571.22<br>571.66 | 571.25<br>570.61<br>572.08<br>571.80<br>571.38           | 571.44<br>570.97<br>571.65<br>571.38<br>571.32 | 571.49<br>571.82<br>572.01<br>571.57                     | 572.12<br>572.03<br>571.68<br>571.76<br>571.98 | 571.85<br>571.89<br>571.91<br>571.92<br>571.63           | 571.56<br>571.68<br>571.37<br>571.50<br>571.54           | 570.97<br>571.08<br>571.24<br>571.25<br>570.93 |
| 6                                | 571.21                                                   | 570.39                                         | 570.75                                                   | 570.39                                                   | 571.12                                         | 570.87                                                   | 571.32                                         | 571.59                                                   | 571.79                                         | 571.68                                                   | 571.09                                                   | 570.86                                         |
| 7                                | 570.57                                                   | 570.39                                         | 570.34                                                   | 570.36                                                   | 571.08                                         | 570.44                                                   | 571.17                                         | 571.62                                                   | 571.82                                         | 571.74                                                   | 571.24                                                   | 570.94                                         |
| 8                                | 570.04                                                   | 570.69                                         | 569.93                                                   | 571.37                                                   | 570.98                                         | 570.75                                                   | 571.16                                         | 570.98                                                   | 571.86                                         | 571.73                                                   | 571.23                                                   | 570.92                                         |
| 9                                | 570.25                                                   | 570.58                                         | 570.41                                                   | 571.10                                                   | 570.48                                         | 571.90                                                   | 571.48                                         | 571.90                                                   | 571.91                                         | 571.83                                                   | 571.29                                                   | 570.94                                         |
| 10                               | 570.23                                                   | 570.78                                         | 570.35                                                   | 570.64                                                   | 570.78                                         | 574.02                                                   | 571.29                                         | 572.22                                                   | 571.83                                         | 571.21                                                   | 571.29                                                   | 571.12                                         |
| 11                               | 570.23                                                   | 570.12                                         | 570.22                                                   | 570.91                                                   | 570.90                                         | 571.03                                                   | 571.17                                         | 571.44                                                   | 572.05                                         | 571.39                                                   | 571.34                                                   | 571.00                                         |
| 12                               | 570.02                                                   | 570.25                                         | 570.17                                                   | 570.96                                                   | 571.98                                         | 570.87                                                   | 571.40                                         | 571.38                                                   | 571.99                                         | 571.53                                                   | 571.39                                                   | 570.95                                         |
| 13                               | 570.11                                                   | 570.21                                         | 570.51                                                   | 571.18                                                   | 570.96                                         | 570.82                                                   | 571.42                                         | 571.78                                                   | 571.84                                         | 571.55                                                   | 571.33                                                   | 571.08                                         |
| 14                               | 570.70                                                   | 570.38                                         | 569.67                                                   | 570.22                                                   | 571.11                                         | 570.58                                                   | 571.41                                         | 572.32                                                   | 571.95                                         | 571.58                                                   | 571.40                                                   | 570.94                                         |
| 15                               | 570.91                                                   | 570.35                                         | 570.34                                                   | 571.60                                                   | 571.01                                         | 570.85                                                   | 571.51                                         | 572.04                                                   | 572.20                                         | 571.79                                                   | 571.39                                                   | 570.90                                         |
| 16                               | 570.64                                                   | 570.29                                         | 570.20                                                   | 570.57                                                   | 571.12                                         | 570.77                                                   | 571.52                                         | 572.17                                                   | 572.35                                         | 571.63                                                   | 571.65                                                   | 570.97                                         |
| 17                               | 571.62                                                   | 570.02                                         | 570.31                                                   | 571.24                                                   | 570.90                                         | 570.27                                                   | 571.58                                         | 571.88                                                   | 572.14                                         | 571.70                                                   | 571.44                                                   | 570.93                                         |
| 18                               | 570.35                                                   | 570.18                                         | 570.98                                                   | 571.02                                                   | 570.67                                         | 571.10                                                   | 571.54                                         | 571.90                                                   | 571.85                                         | 571.66                                                   | 571.64                                                   | 570.80                                         |
| 19                               | 570.63                                                   | 570.54                                         | 570.80                                                   | 570.40                                                   | 570.64                                         | 570.65                                                   | 571.61                                         | 571.98                                                   | 571.73                                         | 571.57                                                   | 571.32                                                   | 570.93                                         |
| 20                               | 570.27                                                   | 570.48                                         | 572.12                                                   | 570.96                                                   | 570.74                                         | 570.90                                                   | 571.56                                         | 571.90                                                   | 571.80                                         | 571.45                                                   | 571.17                                                   | 570.92                                         |
| 21                               | 570.38                                                   | 570.71                                         | 570.73                                                   | 571.04                                                   | 571.32                                         | 571.44                                                   | 570.97                                         | 572.06                                                   | 571.83                                         | 571.52                                                   | 571.10                                                   | 571.37                                         |
| 22                               | 570.18                                                   | 570.21                                         | 570.33                                                   | 570.61                                                   | 571.02                                         | 572.11                                                   | 571.43                                         | 571.90                                                   | 571.80                                         | 571.61                                                   | 571.39                                                   | 571.11                                         |
| 23                               | 570.36                                                   | 570.05                                         | 571.14                                                   | 570.39                                                   | 570.77                                         | 572.20                                                   | 571.72                                         | 571.91                                                   | 571.91                                         | 571.57                                                   | 570.83                                                   | 570.90                                         |
| 24                               | 570.26                                                   | 569.93                                         | 571.95                                                   | 570.42                                                   | 570.78                                         | 570.85                                                   | 571.40                                         | 572.00                                                   | 571.78                                         | 571.07                                                   | 571.31                                                   | 571.01                                         |
| 25                               | 573.26                                                   | 570.52                                         | 571.37                                                   | 570.97                                                   | 570.84                                         | 569.89                                                   | 572.02                                         | 571.65                                                   | 571.83                                         | 571.24                                                   | 571.21                                                   | 570.61                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 572.80<br>570.51<br>570.38<br>570.67<br>569.71<br>570.22 | 570.16<br>570.05<br>570.04<br>569.81<br>570.46 | 571.18<br>571.70<br>571.53<br>571.29<br>572.14<br>571.59 | 570.84<br>570.45<br>570.33<br>570.26<br>570.22<br>569.62 | 571.50<br>572.29<br><br>                       | 570.45<br>571.20<br>570.96<br>570.88<br>571.33<br>571.02 | 571.58<br>571.21<br>571.60<br>571.82<br>571.85 | 572.03<br>571.84<br>571.81<br>571.86<br>571.82<br>571.95 | 571.96<br>572.05<br>571.94<br>571.84<br>571.80 | 571.47<br>571.50<br>571.72<br>571.74<br>571.78<br>571.67 | 571.21<br>570.68<br>570.68<br>571.01<br>570.99<br>570.88 | 570.74<br>570.68<br>570.72<br>570.90<br>570.96 |
| MEAN                             | 570.58                                                   | 570.32                                         | 570.81                                                   | 570.74                                                   |                                                | 571.14                                                   | 571.45                                         | 571.82                                                   | 571.91                                         | 571.62                                                   | 571.26                                                   | 570.96                                         |
| MAX                              | 573.26                                                   | 570.78                                         | 572.14                                                   | 571.60                                                   |                                                | 574.02                                                   | 572.02                                         | 572.32                                                   | 572.35                                         | 571.92                                                   | 571.68                                                   | 571.37                                         |
| MIN                              | 569.71                                                   | 569.81                                         | 569.67                                                   | 569.62                                                   |                                                | 569.89                                                   | 570.97                                         | 570.98                                                   | 571.68                                         | 571.07                                                   | 570.68                                                   | 570.61                                         |

CAL YR 2001 MEAN 570.65 MAX 573.26 MIN 569.54

#### 04216000 NIAGARA RIVER AT BUFFALO, NY

LOCATION.--Lat 42°52'40", long 78°55'00", Erie County, Hydrologic Unit 04120104, at head of Niagara River at Buffalo, and 34.3 mi upstream from mouth. DRAINAGE AREA.--263,700  $\mathrm{mi}^2$ 

PERIOD OF RECORD.--danuary 1860 to September 1960 (monthly discharges only published in WSP 1912), October 1960 to current year. Records of January 1926 to September 1960 daily discharges available in files of U.S. Department of Commerce and U.S.

REVISED RECORDS:--WSP 1912: 1862(M), 1955 (M), 1936 (M), WDR NY-77-1: Drainage area.

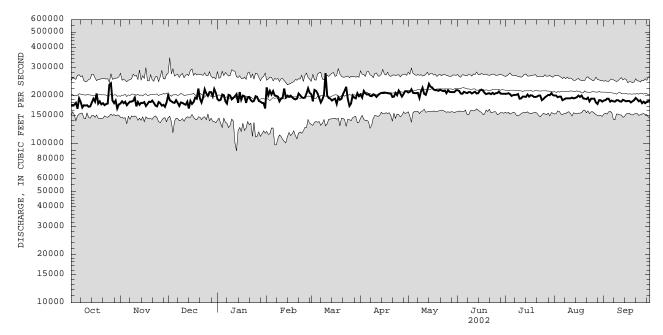
GAGE.--Discharge determined from several powerplants at Niagara Falls and discharge over the falls. Discharge before 1926 determined from records of Corps of Engineers gages at Buffalo and Cleveland.

determined from records of Corps of Engineers gages at Buffalo and Cleveland.

REMARKS.--Records do not include water diverted from Lake Michigan by Illinois and Michigan Canal during period of its operation prior to 1910 and by Chicago Sanitary and Ship Canal, which began operation in 1900, and from Lake Erie by Welland and New York State Canals before 1918. Records include water diverted into Lake Superior from Hudson Bay drainage by the Long Lake project, which began operation in July 1939, and by the Ogoki project, which began operation in July 1943. Figures of monthly mean discharge for 1860 to 1960 and daily discharge for 1961 to 1965, published in WSP 1912, are the official records of the U.S. Lake Survey, and have been coordinated with and concurred by the counterpart Canadian agencies, as have been the extremes for period of record through December 1976 and records October 1977 to current year.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 347,000 ft<sup>3</sup>/s, Dec. 2, 1985, result of high, storm-generated Lake Erie level: minimum daily, 90,000 ft<sup>3</sup>/s, Jan. 13, 1964, Aug. 29, 1984. Maximum monthly mean discharge, 268,400 ft<sup>3</sup>/s, June 1986; minimum monthly mean, 116,200 ft<sup>3</sup>/s, February 1936. Maximum and minimum instantaneous discharge not determined.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 276,000 ft<sup>3</sup>/s, Mar. 10; minimum daily discharge, 165,000 ft<sup>3</sup>/s, Oct. 5. Maximum and minimum instantaneous discharge not determined.


COOPERATION.--Records of daily discharge furnished by Detroit District Corps of Engineers and Canada Department of the Environment.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

|                                  |                                                          |                                                |                                                          |                                                          | DAI                            | LY MEAN V                                                | ALUES                                          |                                                          |                                                |                                                          |                                                          |                                                |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| DAY                              | OCT                                                      | NOV                                            | DEC                                                      | JAN                                                      | FEB                            | MAR                                                      | APR                                            | MAY                                                      | JUN                                            | JUL                                                      | AUG                                                      | SEP                                            |
| 1                                | 174000                                                   | 178000                                         | 201000                                                   | 190000                                                   | 225000                         | 204000                                                   | 203000                                         | 209000                                                   | 216000                                         | 205000                                                   | 200000                                                   | 186000                                         |
| 2                                | 174000                                                   | 184000                                         | 187000                                                   | 186000                                                   | 201000                         | 184000                                                   | 194000                                         | 211000                                                   | 214000                                         | 205000                                                   | 200000                                                   | 187000                                         |
| 3                                | 175000                                                   | 179000                                         | 184000                                                   | 188000                                                   | 214000                         | 217000                                                   | 214000                                         | 219000                                                   | 206000                                         | 207000                                                   | 195000                                                   | 191000                                         |
| 4                                | 180000                                                   | 183000                                         | 181000                                                   | 203000                                                   | 203000                         | 214000                                                   | 207000                                         | 208000                                                   | 205000                                         | 204000                                                   | 197000                                                   | 191000                                         |
| 5                                | 165000                                                   | 174000                                         | 180000                                                   | 201000                                                   | 213000                         | 206000                                                   | 203000                                         | 207000                                                   | 211000                                         | 199000                                                   | 197000                                                   | 183000                                         |
| 6                                | 192000                                                   | 179000                                         | 187000                                                   | 184000                                                   | 200000                         | 193000                                                   | 204000                                         | 207000                                                   | 209000                                         | 201000                                                   | 187000                                                   | 186000                                         |
| 7                                | 182000                                                   | 183000                                         | 180000                                                   | 178000                                                   | 199000                         | 181000                                                   | 199000                                         | 208000                                                   | 207000                                         | 202000                                                   | 189000                                                   | 184000                                         |
| 8                                | 168000                                                   | 183000                                         | 172000                                                   | 202000                                                   | 197000                         | 189000                                                   | 198000                                         | 193000                                                   | 210000                                         | 202000                                                   | 192000                                                   | 183000                                         |
| 9                                | 174000                                                   | 185000                                         | 181000                                                   | 200000                                                   | 184000                         | 202000                                                   | 203000                                         | 212000                                                   | 210000                                         | 204000                                                   | 192000                                                   | 187000                                         |
| 10                               | 173000                                                   | 194000                                         | 180000                                                   | 189000                                                   | 191000                         | 276000                                                   | 201000                                         | 224000                                                   | 206000                                         | 191000                                                   | 192000                                                   | 187000                                         |
| 11                               | 174000                                                   | 171000                                         | 177000                                                   | 193000                                                   | 193000                         | 200000                                                   | 196000                                         | 205000                                                   | 209000                                         | 192000                                                   | 192000                                                   | 184000                                         |
| 12                               | 170000                                                   | 182000                                         | 175000                                                   | 198000                                                   | 221000                         | 193000                                                   | 201000                                         | 202000                                                   | 211000                                         | 197000                                                   | 194000                                                   | 183000                                         |
| 13                               | 171000                                                   | 175000                                         | 183000                                                   | 204000                                                   | 195000                         | 191000                                                   | 205000                                         | 217000                                                   | 206000                                         | 197000                                                   | 192000                                                   | 188000                                         |
| 14                               | 181000                                                   | 180000                                         | 166000                                                   | 180000                                                   | 200000                         | 186000                                                   | 208000                                         | 237000                                                   | 207000                                         | 196000                                                   | 193000                                                   | 186000                                         |
| 15                               | 191000                                                   | 179000                                         | 185000                                                   | 210000                                                   | 197000                         | 189000                                                   | 208000                                         | 227000                                                   | 215000                                         | 203000                                                   | 195000                                                   | 184000                                         |
| 16                               | 183000                                                   | 182000                                         | 177000                                                   | 188000                                                   | 200000                         | 191000                                                   | 209000                                         | 225000                                                   | 218000                                         | 197000                                                   | 200000                                                   | 185000                                         |
| 17                               | 206000                                                   | 172000                                         | 182000                                                   | 200000                                                   | 195000                         | 177000                                                   | 208000                                         | 218000                                                   | 215000                                         | 201000                                                   | 196000                                                   | 185000                                         |
| 18                               | 178000                                                   | 177000                                         | 194000                                                   | 198000                                                   | 191000                         | 195000                                                   | 207000                                         | 216000                                                   | 208000                                         | 200000                                                   | 200000                                                   | 181000                                         |
| 19                               | 184000                                                   | 183000                                         | 191000                                                   | 180000                                                   | 189000                         | 188000                                                   | 206000                                         | 216000                                                   | 204000                                         | 196000                                                   | 192000                                                   | 184000                                         |
| 20                               | 176000                                                   | 182000                                         | 221000                                                   | 195000                                                   | 191000                         | 191000                                                   | 206000                                         | 214000                                                   | 206000                                         | 196000                                                   | 191000                                                   | 187000                                         |
| 21                               | 179000                                                   | 186000                                         | 191000                                                   | 196000                                                   | 206000                         | 204000                                                   | 196000                                         | 218000                                                   | 207000                                         | 197000                                                   | 190000                                                   | 193000                                         |
| 22                               | 174000                                                   | 180000                                         | 181000                                                   | 187000                                                   | 201000                         | 214000                                                   | 197000                                         | 215000                                                   | 204000                                         | 200000                                                   | 194000                                                   | 189000                                         |
| 23                               | 177000                                                   | 173000                                         | 195000                                                   | 183000                                                   | 195000                         | 227000                                                   | 208000                                         | 213000                                                   | 208000                                         | 200000                                                   | 184000                                                   | 184000                                         |
| 24                               | 178000                                                   | 171000                                         | 219000                                                   | 185000                                                   | 193000                         | 190000                                                   | 201000                                         | 215000                                                   | 204000                                         | 187000                                                   | 191000                                                   | 187000                                         |
| 25                               | 234000                                                   | 182000                                         | 206000                                                   | 198000                                                   | 194000                         | 172000                                                   | 215000                                         | 207000                                                   | 207000                                         | 190000                                                   | 191000                                                   | 179000                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 239000<br>186000<br>179000<br>186000<br>166000<br>176000 | 179000<br>173000<br>175000<br>170000<br>181000 | 199000<br>210000<br>210000<br>198000<br>220000<br>208000 | 196000<br>185000<br>183000<br>180000<br>179000<br>166000 | 206000<br>222000<br>208000<br> | 178000<br>200000<br>194000<br>192000<br>207000<br>198000 | 206000<br>197000<br>204000<br>213000<br>213000 | 216000<br>211000<br>210000<br>210000<br>210000<br>216000 | 207000<br>212000<br>206000<br>205000<br>205000 | 195000<br>198000<br>202000<br>201000<br>207000<br>201000 | 191000<br>181000<br>177000<br>187000<br>187000<br>183000 | 183000<br>179000<br>183000<br>185000<br>186000 |
| TOTAL                            | 5645000                                                  | 5375000                                        | 5921000                                                  | 5905000                                                  | 5624000                        | 6143000                                                  | 6130000                                        | 6616000                                                  | 6258000                                        | 6173000                                                  | 5942000                                                  | 5560000                                        |
| MEAN                             | 182100                                                   | 179200                                         | 191000                                                   | 190500                                                   | 200900                         | 198200                                                   | 204300                                         | 213400                                                   | 208600                                         | 199100                                                   | 191700                                                   | 185300                                         |
| MAX                              | 239000                                                   | 194000                                         | 221000                                                   | 210000                                                   | 225000                         | 276000                                                   | 215000                                         | 237000                                                   | 218000                                         | 207000                                                   | 200000                                                   | 193000                                         |
| MIN                              | 165000                                                   | 170000                                         | 166000                                                   | 166000                                                   | 184000                         | 172000                                                   | 194000                                         | 193000                                                   | 204000                                         | 187000                                                   | 177000                                                   | 179000                                         |
| STATI                            | STICS OF                                                 | MONTHLY M                                      | EAN DATA                                                 | FOR WATER                                                | YEARS 19                       | 26 - 2002                                                | , BY WATE                                      | R YEAR (W                                                | Y)                                             |                                                          |                                                          |                                                |
| MEAN                             | 200600                                                   | 200700                                         | 201300                                                   | 195500                                                   | 193100                         | 199200                                                   | 208000                                         | 216500                                                   | 216100                                         | 212200                                                   | 208300                                                   | 203900                                         |
| MAX                              | 254000                                                   | 248000                                         | 260900                                                   | 254000                                                   | 241600                         | 255500                                                   | 264200                                         | 264700                                                   | 268400                                         | 265200                                                   | 253500                                                   | 243700                                         |
| (WY)                             | 1987                                                     | 1987                                           | 1986                                                     | 1987                                                     | 1987                           | 1986                                                     | 1985                                           | 1974                                                     | 1986                                           | 1986                                                     | 1986                                                     | 1986                                           |
| MIN                              | 152700                                                   | 148100                                         | 149800                                                   | 138500                                                   | 116200                         | 142700                                                   | 152000                                         | 159100                                                   | 158000                                         | 154100                                                   | 155000                                                   | 153900                                         |
| (WY)                             | 1935                                                     | 1935                                           | 1965                                                     | 1964                                                     | 1936                           | 1934                                                     | 1935                                           | 1934                                                     | 1934                                           | 1934                                                     | 1934                                                     | 1934                                           |

# 04216000 NIAGARA RIVER AT BUFFALO, NY--Continued

| SUMMARY STATISTICS                        | FOR 2001 CALENDA   | AR YEAR | FOR 2002 W         | ATER YEAR | WATER YEAR       | RS 1926 - 2002 |
|-------------------------------------------|--------------------|---------|--------------------|-----------|------------------|----------------|
| ANNUAL TOTAL<br>ANNUAL MEAN               | 66729000<br>182800 |         | 71292000<br>195300 |           | 205100           |                |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN | 102000             |         | 1,5500             |           | 249600<br>155300 | 1986<br>1934   |
| HIGHEST DAILY MEAN                        | 239000             | Oct 26  | 276000             | Mar 10    | 347000           | Dec 2 1985     |
| LOWEST DAILY MEAN                         | 158000             | Sep 14  | 165000             | Oct 5     | 90000            | Jan 13 1964    |
| ANNUAL SEVEN-DAY MINIMUM                  | 167000             | Sep 13  | 173000             | Oct 8     | 105000           | Feb 6 1936     |
| 10 PERCENT EXCEEDS                        | 194000             |         | 213000             |           | 239000           |                |
| 50 PERCENT EXCEEDS                        | 182000             |         | 195000             |           | 206000           |                |
| 90 PERCENT EXCEEDS                        | 172000             |         | 178000             |           | 171000           |                |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

04216060 NIAGARA RIVER AT ANDERSON PARK, BUFFALO, NY

LOCATION.--Lat 42°54'53", long 78°54'12", Erie County, Hydrologic Unit 04120104, at Anderson Park (Broderick Park) dock at foot of Ferry Street on Squaw Island, Buffalo, 0.6 mi downstream from Peace Bridge.

DRAINAGE AREA.--263,700 mi².

PERIOD OF RECORD.--October 1984 to current year. Prior to October 1987, published as "at Bird Island."

GAGE.--Water-stage recorder. Datum of gage is International Great Lakes Datum (IGLD) of 1985. Prior to Oct. 1, 1991, datum of gage was International Great Lakes Datum (IGLD) of 1955, 0.67 ft lower.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 572.05, ft, datum then in use, Dec. 2, 1985; minimum, 563.45 ft, Jan.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 569.26 ft, Feb. 1; minimum elevation, 564.01 ft, Jan. 31.

### ELEVATION (FEET IGLD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY  | OCT    | NOV    | DEC | JAN    | FEB    | MAR    | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
|------|--------|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1    | 565.76 | 565.74 |     |        | 566.57 | 565.90 | 565.74 | 566.07 | 566.21 | 566.26 | 566.38 | 565.90 |
| 2    | 565.85 | 565.74 |     |        | 566.12 | 565.63 | 565.58 | 566.14 | 566.14 | 566.35 | 566.47 | 566.05 |
| 3    | 565.96 | 565.39 |     |        | 566.31 | 566.45 | 565.96 | 566.23 | 565.88 | 566.38 | 566.16 | 566.16 |
| 4    | 565.90 | 565.52 |     |        | 565.95 | 565.93 | 565.65 | 566.01 | 565.97 | 566.41 | 566.21 | 566.01 |
| 5    | 565.26 | 565.18 |     |        | 566.14 | 565.75 | 565.62 | 565.92 | 566.27 | 565.91 | 566.37 | 565.83 |
| 3    | 505.20 | 505.10 |     |        | 500.11 | 303.73 | 303.02 | 303.72 | 500.27 | 303.71 | 300.37 | 303.03 |
| 6    | 566.06 | 565.27 |     |        | 566.00 | 565.86 | 565.73 | 566.07 | 566.02 | 565.94 | 565.83 | 565.81 |
| 7    | 565.70 | 565.50 |     |        | 565.99 | 565.49 | 565.67 | 565.99 | 566.08 | 566.01 | 565.98 | 565.98 |
| 8    | 565.35 | 565.70 |     |        | 565.81 | 565.69 | 565.96 | 565.49 | 566.09 | 566.21 | 566.04 | 565.99 |
| 9    | 565.67 | 565.48 |     |        | 565.47 | 565.83 | 566.06 | 566.16 | 566.12 | 566.30 | 566.11 | 566.01 |
| 10   | 565.87 | 565.82 |     |        | 565.75 | 565.40 | 565.74 | 566.22 | 566.19 | 565.88 | 566.17 | 566.14 |
|      |        |        |     |        |        |        |        |        |        |        |        |        |
| 11   | 565.78 | 565.16 |     |        | 565.45 | 564.84 | 565.86 | 565.90 | 566.40 | 565.90 | 566.25 | 565.92 |
| 12   | 565.72 | 565.15 |     |        | 566.34 | 565.43 | 565.80 | 565.96 | 566.26 | 566.04 | 566.26 | 565.81 |
| 13   | 565.76 | 565.30 |     |        | 565.53 | 565.69 | 565.68 | 566.23 | 566.16 | 566.14 | 566.35 | 566.02 |
| 14   | 565.93 | 565.59 |     |        | 565.70 | 565.45 | 565.91 | 566.49 | 566.26 | 566.06 | 566.42 | 565.92 |
| 15   | 566.08 | 565.63 |     |        | 565.88 | 565.53 | 566.03 | 566.35 | 566.30 | 566.20 | 566.22 | 565.96 |
|      |        |        |     |        |        |        |        |        |        |        |        |        |
| 16   | 565.89 | 565.46 |     |        | 565.79 | 565.10 | 566.07 | 566.53 | 566.31 | 566.05 | 566.37 | 565.89 |
| 17   | 566.46 | 565.04 |     |        | 565.49 | 564.86 | 566.06 | 566.08 | 566.21 | 566.21 | 566.35 | 565.89 |
| 18   | 565.88 | 565.29 |     |        | 565.25 | 565.33 | 565.99 | 565.98 | 566.14 | 566.18 | 566.44 | 565.95 |
| 19   | 566.07 | 565.57 |     |        | 565.55 | 565.21 | 566.12 | 565.97 | 566.11 | 566.11 | 566.09 | 566.17 |
| 20   | 565.79 | 565.30 |     |        | 565.81 | 565.43 | 565.86 | 565.98 | 566.08 | 566.16 | 566.02 | 566.22 |
|      |        |        |     |        |        |        |        |        |        |        |        |        |
| 21   | 565.86 | 565.49 |     |        | 565.80 | 565.69 | 565.39 | 566.13 | 565.96 | 566.13 | 566.02 | 566.22 |
| 22   | 565.71 | 565.37 |     |        | 565.51 | 566.07 | 565.61 | 566.20 | 565.95 | 566.27 | 566.14 | 566.01 |
| 23   | 565.86 | 565.25 |     |        | 565.28 | 566.47 | 565.96 | 566.34 | 566.09 | 566.11 | 565.87 | 565.78 |
| 24   | 565.75 | 565.18 |     |        | 565.47 | 565.64 | 565.95 | 566.24 | 566.01 | 565.73 | 566.13 | 565.92 |
| 25   | 567.29 | 565.43 |     |        | 565.72 | 564.89 | 566.15 | 566.03 | 566.17 | 565.89 | 566.07 | 565.71 |
| 26   | 567.52 | 565.13 |     | 565.72 | 565.94 | 565.32 | 565.88 | 566.17 | 566.29 | 566.10 | 566.10 | 565.85 |
| 27   | 566.14 | 565.14 |     | 565.56 | 566.47 | 565.69 | 565.79 | 566.16 | 566.37 | 566.18 | 565.79 | 565.83 |
| 28   | 565.87 | 564.96 |     | 565.50 | 566.00 | 565.63 | 566.16 | 566.19 | 566.18 | 566.30 | 565.77 | 565.82 |
| 29   | 566.08 |        |     | 565.34 |        | 565.74 | 566.06 | 566.16 | 566.11 | 566.39 | 565.90 | 565.83 |
| 30   | 565.44 |        |     | 565.07 |        | 565.69 | 566.27 | 566.07 | 566.18 | 566.40 | 565.94 | 566.05 |
| 31   | 565.69 |        |     | 564.72 |        | 565.57 |        | 566.28 |        | 566.34 | 565.91 |        |
| 21   | 303.09 |        |     | 304.72 |        | 303.37 |        | 300.20 |        | 500.54 | 303.9I |        |
| MEAN | 565.93 |        |     |        | 565.82 | 565.59 | 565.88 | 566.12 | 566.15 | 566.15 | 566.13 | 565.96 |
| MAX  | 567.52 |        |     |        | 566.57 | 566.47 | 566.27 | 566.53 | 566.40 | 566.41 | 566.47 | 566.22 |
| MIN  | 565.26 |        |     |        | 565.25 | 564.84 | 565.39 | 565.49 | 565.88 | 565.73 | 565.77 | 565.71 |
|      |        |        |     |        |        |        |        |        |        |        |        |        |

## 04216218 BLACK ROCK CANAL AT BLACK ROCK LOCK, BUFFALO, NY

LOCATION.--Lat 42°56'01", long 78°54'18", Erie County, Hydrologic Unit 04120104, at Black Rock Lock adjacent to U.S. Army Corps of Engineers installation at foot of Hamilton Street, Buffalo and 0.2 mi downstream from International railroad bridge.
DRAINAGE AREA.--263,700 mi².

PERIOD OF RECORD.--October 1984 to March 1997, November 1998 to current year.

(GAGE.--Water stage recorder. Datum of gage is International Great Lakes Datum (IGLD) of 1985. Prior to Oct. 1, 1991, datum of gage was International Great Lakes Datum (IGLD) of 1955, 0.67 ft lower.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily elevation, 575.95 ft, datum then in use, Dec. 2, 1985; minimum daily, 569.15 ft, datum then in use, Oct. 19, 1989.

EXTREMES FOR CURRENT YEAR.--Maximum daily elevation, 573.78 ft, Mar. 10, but may have been higher during period of no gage-height record Nov. 29 to Jan. 24; minimum daily elevation, 569.54 ft, Jan. 31.

# ELEVATION (FEET IGLD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY   | OCT    | NOV    | DEC | JAN    | FEB    | MAR    | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
|-------|--------|--------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1     |        | 570.32 |     |        | 571.71 | 571.18 | 571.36 | 571.42 | 571.98 | 571.79 | 571.48 | 570.90 |
| 2     | 570.17 | 570.32 |     |        | 570.92 | 570.54 | 570.90 | 571.75 | 571.86 | 571.82 | 571.59 | 570.90 |
| 3     | 570.34 | 570.28 |     |        | 571.36 | 571.98 | 571.57 | 571.73 | 571.52 | 571.85 | 571.28 | 571.17 |
| 4     | 570.34 | 570.42 |     |        | 571.09 | 571.70 | 571.30 | 571.48 | 571.52 | 571.84 | 571.42 | 571.17 |
| 5     | 569.65 | 570.42 |     |        | 571.09 | 571.70 | 571.30 | 571.40 | 571.81 | 571.54 | 571.42 | 570.85 |
| 5     | 309.03 | 570.12 |     |        | 3/1.30 | 3/1.29 | 3/1.24 | 3/1.4/ | 3/1.01 | 5/1.54 | 3/1.44 | 570.65 |
| 6     | 571.11 | 570.31 |     |        | 571.04 | 570.78 | 571.23 | 571.50 |        | 571.59 | 570.99 | 570.79 |
| 7     | 570.43 | 570.31 |     |        | 571.00 | 570.37 | 571.09 | 571.52 |        | 571.68 | 571.15 | 570.86 |
| 8     | 569.95 | 570.63 |     |        | 570.90 | 570.67 | 571.09 | 570.87 |        | 571.65 | 571.15 | 570.85 |
| 9     | 570.17 | 570.47 |     |        | 570.37 | 571.80 | 571.40 | 571.85 |        | 571.76 | 571.21 | 570.87 |
| 10    | 570.16 | 570.69 |     |        | 570.70 | 573.78 | 571.21 | 572.14 |        | 571.14 | 571.21 | 571.06 |
|       |        |        |     |        |        |        |        |        |        |        |        |        |
| 11    | 570.16 | 570.03 |     |        | 570.79 | 570.95 | 571.09 | 571.32 | 571.97 | 571.29 | 571.27 | 570.89 |
| 12    | 569.94 | 570.16 |     |        | 571.94 | 570.79 | 571.33 | 571.28 | 571.94 | 571.46 | 571.31 | 570.88 |
| 13    | 570.03 | 570.14 |     |        | 570.87 | 570.75 | 571.32 | 571.68 | 571.77 | 571.46 | 571.27 | 571.02 |
| 14    | 570.63 | 570.31 |     |        | 571.05 | 570.48 | 571.32 | 572.17 | 571.87 | 571.50 | 571.34 | 570.88 |
| 15    | 570.81 | 570.29 |     |        | 570.95 | 570.77 | 571.42 | 571.95 | 572.17 | 571.73 | 571.30 | 570.82 |
|       |        |        |     |        |        |        |        |        |        |        |        |        |
| 16    | 570.58 | 570.20 |     |        | 571.04 | 570.66 | 571.45 | 572.07 | 572.27 | 571.55 | 571.58 | 570.89 |
| 17    | 571.51 | 569.93 |     |        | 570.79 | 570.18 | 571.51 | 571.77 | 572.07 |        | 571.35 | 570.85 |
| 18    | 570.26 | 570.10 |     |        | 570.59 | 571.02 | 571.47 | 571.76 | 571.78 |        | 571.56 | 570.72 |
| 19    | 570.56 | 570.47 |     |        | 570.57 | 570.57 | 571.52 | 571.87 | 571.67 |        | 571.24 | 570.85 |
| 20    | 570.19 | 570.37 |     |        | 570.68 | 570.83 | 571.49 | 571.78 | 571.73 |        | 571.08 | 570.85 |
|       |        |        |     |        |        |        |        |        |        |        |        |        |
| 21    | 570.29 | 570.65 |     |        | 571.24 | 571.36 | 570.91 | 571.94 | 571.77 |        | 571.02 | 571.27 |
| 22    | 570.08 | 570.14 |     |        | 570.92 | 572.02 | 571.36 | 571.78 | 571.73 |        | 571.31 | 571.01 |
| 23    | 570.28 | 569.97 |     |        | 570.69 | 572.14 | 571.66 | 571.79 | 571.87 |        | 570.76 | 570.83 |
| 24    | 570.19 | 569.85 |     |        | 570.70 | 570.77 | 571.34 | 571.87 | 571.71 |        | 571.22 | 570.94 |
| 25    | 573.13 | 570.48 |     | 570.92 | 570.76 | 569.79 | 571.95 | 571.53 | 571.77 |        | 571.13 | 570.54 |
|       |        |        |     |        |        |        |        |        |        |        |        |        |
| 26    | 572.65 | 570.08 |     | 570.77 | 571.44 | 570.36 | 571.51 | 571.90 | 571.89 |        | 571.13 | 570.67 |
| 27    | 570.40 | 569.98 |     | 570.38 | 572.17 | 571.12 | 571.14 | 571.71 | 572.02 |        | 570.60 | 570.58 |
| 28    | 570.30 | 569.95 |     | 570.26 | 571.44 | 570.89 | 571.53 | 571.66 | 571.87 |        | 570.61 | 570.63 |
| 29    | 570.59 |        |     | 570.17 |        | 570.81 | 571.74 | 571.73 | 571.77 |        | 570.94 | 570.83 |
| 30    | 569.62 |        |     | 570.14 |        | 571.26 | 571.77 | 571.74 | 571.74 |        | 570.91 | 570.91 |
| 31    | 570.16 |        |     | 569.54 |        | 570.95 |        | 571.97 |        | 571.60 | 570.80 |        |
| MEAN  |        |        |     |        | 571.05 | 571.05 | 571.37 | 571.72 |        |        | 571.18 | 570.88 |
| MAX   |        |        |     |        | 571.05 | 573.78 | 571.37 | 571.72 |        |        | 571.10 | 570.88 |
| MIN   |        |        |     |        | 572.17 | 569.79 | 571.95 | 572.17 |        |        | 571.59 | 570.54 |
| MITIM |        |        |     |        | 3/0.3/ | 309.19 | 5/0.90 | 3/0.8/ |        |        | 5/0.00 | 5/0.54 |

# 04216220 NIAGARA RIVER AT BLACK ROCK LOCK, BUFFALO, NY

LOCATION.--Lat. 42°56'02", long 78°54'17", Erie County, Hydrologic Unit 04120104, at Black Rock Lock adjacent to U.S. Army Corps of Engineers installation at foot of Hamilton Street, Buffalo and 0.2 mi downstream from International railroad bridge.

DRAINAGE AREA.--263,700 mi².

PERIOD OF RECORD.--October 1984 to March 1997, November 1998 to current year.

GAGE.--Water-stage recorder. Datum of gage is International Great Lakes Datum (IGLD) of 1985. Prior to Oct. 1, 1991, datum of gage was International Great Lakes Datum (IGLD) of 1955, 0.67 ft lower.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily elevation, 568.80 ft, datum then in use, Jan. 21, 1985, but may have been higher during period of no gage height record Nov. 11 to Dec. 10, 1984; minimum daily, 561.92 ft, Jan. 14, 1999.

EXTREMES FOR CURRENT YEAR.--Maximum daily elevation, 566.50 ft, Oct. 25, 26, but may have been higher during period of no gage height record Mar. 5 to June 11; minimum daily elevation, 563.77 ft, Jan. 8, but may have been lower during periods of no gage height height record Oct. 1-12 and Jan. 13-29.

ELEVATION (FEET IGLD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

|      |        |        |        |        | DAL    | DI LIDMIA AVI | 10110 |     |        |        |        |        |
|------|--------|--------|--------|--------|--------|---------------|-------|-----|--------|--------|--------|--------|
| DAY  | OCT    | NOV    | DEC    | JAN    | FEB    | MAR           | APR   | MAY | JUN    | JUL    | AUG    | SEP    |
| 1    |        | 564.61 | 565.32 | 564.67 | 565.68 |               |       |     |        | 565.40 | 565.71 | 565.46 |
| 2    |        | 564.73 | 564.69 | 564.62 | 565.08 |               |       |     |        | 565.48 | 565.79 | 565.54 |
| 3    |        | 564.66 | 564.67 | 564.56 | 565.17 | 565.50        |       |     |        | 565.46 | 565.66 | 565.67 |
| 4    |        | 564.83 | 564.55 | 564.53 | 565.06 | 565.42        |       |     |        | 565.52 | 565.73 | 565.66 |
| 5    |        | 564.62 | 564.56 | 564.76 | 565.37 |               |       |     |        | 565.39 | 565.82 | 565.51 |
| 6    |        | 564.68 | 564.86 | 564.48 | 564.88 |               |       |     |        | 565.39 | 565.53 | 565.46 |
| 7    |        | 564.68 | 564.61 | 563.80 | 564.81 |               |       |     |        | 565.47 | 565.66 | 565.48 |
| 8    |        | 564.84 | 564.22 | 563.77 | 564.79 |               |       |     |        | 565.48 | 565.58 | 565.50 |
| 9    |        | 564.84 | 564.49 | 564.56 | 564.47 |               |       |     |        | 565.55 | 565.61 | 565.47 |
| 10   |        | 564.90 | 564.46 | 564.44 | 564.65 |               |       |     |        | 565.16 | 565.59 | 565.58 |
| 11   |        | 564.47 | 564.43 | 564.30 | 564.74 |               |       |     |        | 565.32 | 565.65 | 565.63 |
| 12   |        | 564.45 | 564.30 | 564.43 | 565.43 |               |       |     | 565.59 | 565.38 | 565.65 | 565.56 |
| 13   | 564.75 | 564.38 | 564.65 |        | 564.82 |               |       |     | 565.43 | 565.42 | 565.64 | 565.67 |
| 14   | 565.12 | 564.60 | 564.06 |        | 564.87 |               |       |     | 565.55 | 565.45 | 565.75 | 565.48 |
| 15   | 565.32 | 564.55 | 564.56 |        | 564.77 |               |       |     | 565.70 | 565.64 | 565.71 | 565.50 |
| 16   | 565.04 | 564.52 | 564.30 |        | 564.80 |               |       |     | 565.78 | 565.50 | 565.88 | 565.52 |
| 17   | 565.76 | 564.29 | 564.48 |        | 564.76 |               |       |     | 565.61 | 565.62 | 565.74 | 565.51 |
| 18   | 564.96 | 564.44 | 564.97 |        | 564.54 |               |       |     | 565.43 | 565.58 | 565.90 | 565.43 |
| 19   | 565.02 | 564.66 | 564.87 |        | 564.56 |               |       |     | 565.34 | 565.56 | 565.74 | 565.48 |
| 20   | 564.81 | 564.72 | 565.65 |        | 564.62 |               |       |     | 565.39 | 565.54 | 565.54 | 565.45 |
| 21   | 564.90 | 564.77 | 564.74 |        | 564.97 |               |       |     | 565.34 | 565.57 | 565.49 | 565.79 |
| 22   | 564.75 | 564.52 | 564.45 |        | 564.83 |               |       |     | 565.35 | 565.63 | 565.69 | 565.56 |
| 23   | 564.81 | 564.34 | 564.85 |        | 564.63 |               |       |     | 565.43 | 565.63 | 565.35 | 565.52 |
| 24   | 564.70 | 564.22 | 565.41 |        |        |               |       |     | 565.28 | 565.30 | 565.68 | 565.61 |
| 25   | 566.50 | 564.63 | 565.10 |        |        |               |       |     | 565.38 | 565.42 | 565.67 | 565.30 |
| 26   | 566.50 | 564.52 | 564.92 |        | 564.99 |               |       |     | 565.43 | 565.62 | 565.63 | 565.32 |
| 27   | 565.02 | 564.34 | 565.26 |        | 565.60 |               |       |     | 565.52 | 565.60 | 565.30 | 565.33 |
| 28   | 564.82 | 564.41 | 565.21 |        | 565.11 |               |       |     | 565.43 | 565.82 | 565.34 | 565.41 |
| 29   | 564.99 | 564.16 | 564.99 |        |        |               |       |     | 565.43 | 565.84 | 565.58 | 565.47 |
| 30   | 564.42 | 564.54 | 565.52 | 564.41 |        |               |       |     | 565.35 | 565.94 | 565.53 | 565.48 |
| 31   | 564.60 |        | 565.22 | 563.99 |        |               |       |     |        | 565.82 | 565.43 |        |
| MEAN |        | 564.56 | 564.79 |        |        |               |       |     |        | 565.53 | 565.63 | 565.51 |
| MAX  |        | 564.90 | 565.65 |        |        |               |       |     |        | 565.94 | 565.90 | 565.79 |
| MIN  |        | 564.16 | 564.06 |        |        |               |       |     |        | 565.16 | 565.30 | 565.30 |

## 04216418 TONAWANDA CREEK AT ATTICA, NY

Time

Date

Discharge (ft<sup>3</sup>/s)

LOCATION.--Lat 42°51'50", long 78°17'02", Wyoming County, Hydrologic Unit 04120104, on right bank behind Village Hall and fire station, 150 ft downstream from bridge on State Highway 238 (Main Street) at Attica, and 0.4 mi upstream from Tannery Creek. DRAINAGE AREA.--76.9 mi².

PERIOD OF RECORD.--October 1977 to current year.

REVISED RECORDS.--WDR NY-79-1: 1978 (M). WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 954.63 ft above NGVD of 1929.

REMARKS.--No estimated daily discharges. Records fair. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,400 ft³/s, July 8, 1998, gage height, 12.71 ft, from high-water mark, from rating curve extended above 4,800 ft³/s; minimum discharge, 3.1 ft³/s, Aug. 26, Sept. 7, 1995; minimum gage height, 3.27 ft, Oct. 4, 2001. Sept. 13, 2002. Oct. 4, 2001, Sept. 13, 2002. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, about 6,000 ft<sup>3</sup>/s, June 23, 1972, gage height, about 12.0 ft, from

Date

Time

Discharge (ft<sup>3</sup>/s)

1983

Gage height

(ft)

information supplied by Village of Attica. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,900  $\rm ft^3/s$  and maximum (\*):

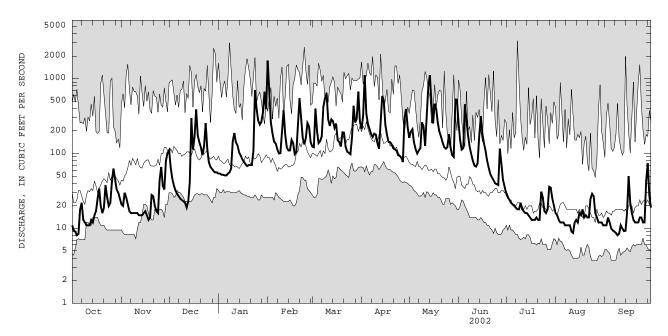
Gage height

(ft)

| Feb.                                       | 1 1                                        | 130                                      | *2,500                                    |                                          | *7.21                                     |                                          | Apr.                                      | 3 0530                                    |                                          | 2,340                                   | 7.                                         | 04                                         |
|--------------------------------------------|--------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|--------------------------------------------|--------------------------------------------|
| Minimum dis                                | scharge,                                   | 6.6 ft <sup>3</sup> /s,                  | Oct. 4, S                                 | ept. 13                                  | , gage heig                               | ht, 3.27                                 | ft.                                       |                                           |                                          |                                         |                                            |                                            |
|                                            |                                            | DISCHA                                   | RGE, CUBIC                                | FEET P                                   |                                           | WATER YE<br>MEAN VA                      |                                           | ER 2001 TO                                | SEPTEMBE                                 | R 2002                                  |                                            |                                            |
| DAY                                        | OCT                                        | NOV                                      | DEC                                       | JAN                                      | FEB                                       | MAR                                      | APR                                       | MAY                                       | JUN                                      | JUL                                     | AUG                                        | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | 11<br>9.5<br>9.0<br>8.1<br>8.5             | 21<br>20<br>30<br>26<br>21               | 111<br>65<br>46<br>37<br>32               | e54<br>e54<br>e52<br>e52<br>e51          | 1750<br>630<br>259<br>186<br>144          | 124<br>121<br>400<br>200<br>138          | 212<br>319<br>1110<br>340<br>249          | 162<br>196<br>211<br>140<br>114           | 257<br>152<br>113<br>118<br>454          | 29<br>26<br>24<br>22<br>21              | 16<br>15<br>13<br>12                       | 11<br>11<br>14<br>12<br>10                 |
| 6<br>7<br>8<br>9                           | 18<br>22<br>13<br>12<br>11                 | 17<br>16<br>16<br>16<br>16               | 29<br>27<br>25<br>24<br>23                | e51<br>e54<br>e56<br>63<br>144           | 136<br>114<br>100<br>101<br>194           | 147<br>170<br>420<br>545<br>642          | 215<br>183<br>166<br>184<br>179           | 100<br>110<br>118<br>261<br>231           | 271<br>174<br>122<br>97<br>80            | 20<br>19<br>18<br>18<br>22              | 12<br>11<br>11<br>11                       | 9.4<br>9.1<br>8.7<br>8.1<br>8.5            |
| 11<br>12<br>13<br>14<br>15                 | 11<br>11<br>13<br>12<br>15                 | 16<br>15<br>15<br>15<br>16               | 22<br>19<br>23<br>41<br>298               | 188<br>141<br>128<br>103<br>e94          | 377<br>e180<br>e120<br>e110<br>e110       | 284<br>233<br>286<br>272<br>220          | 137<br>116<br>268<br>588<br>510           | 126<br>328<br>796<br>1110<br>448          | 69<br>67<br>74<br>169<br>314             | 18<br>17<br>16<br>16<br>15              | 9.1<br>8.7<br>12<br>13                     | 11<br>10<br>9.2<br>9.3                     |
| 16<br>17<br>18<br>19<br>20                 | 17<br>25<br>34<br>20<br>16                 | 17<br>15<br>13<br>14<br>28               | 113<br>169<br>389<br>173<br>141           | e84<br>e78<br>e72<br>e68<br>e70          | 152<br>138<br>98<br>103<br>223            | 251<br>151<br>142<br>124<br>192          | 242<br>177<br>143<br>142<br>131           | 252<br>462<br>391<br>255<br>193           | 183<br>135<br>109<br>80<br>64            | 14<br>13<br>13<br>13<br>14              | 16<br>15<br>18<br>14<br>15                 | 50<br>22<br>16<br>13<br>12                 |
| 21<br>22<br>23<br>24<br>25                 | 19<br>38<br>26<br>20<br>22                 | 27<br>20<br>17<br>16<br>44               | 120<br>95<br>126<br>255<br>115            | e70<br>e70<br>110<br>e700<br>e400        | 547<br>279<br>162<br>132<br>162           | 190<br>123<br>106<br>102<br>98           | 117<br>113<br>110<br>95<br>93             | 167<br>140<br>121<br>116<br>122           | 53<br>48<br>44<br>40<br>39               | 13<br>13<br>31<br>26<br>17              | 14<br>14<br>25<br>29<br>27                 | 12<br>12<br>14<br>14<br>12                 |
| 26<br>27<br>28<br>29<br>30<br>31           | 42<br>63<br>46<br>33<br>30<br>25           | 66<br>37<br>33<br>80<br>102              | 76<br>e66<br>e62<br>e58<br>e56<br>e56     | 276<br>244<br>265<br>355<br>666<br>392   | 255<br>230<br>142<br>                     | 163<br>434<br>259<br>290<br>674<br>264   | 88<br>77<br>296<br>392<br>225             | 181<br>121<br>95<br>90<br>526<br>523      | 38<br>116<br>73<br>44<br>36              | 16<br>18<br>36<br>35<br>25<br>20        | 16<br>14<br>12<br>12<br>12<br>11           | 12<br>43<br>74<br>27<br>19                 |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 660.1<br>21.3<br>63<br>8.1<br>0.28<br>0.32 | 805<br>26.8<br>102<br>13<br>0.35<br>0.39 | 2892<br>93.3<br>389<br>19<br>1.21<br>1.40 | 5205<br>168<br>700<br>51<br>2.18<br>2.52 | 7134<br>255<br>1750<br>98<br>3.31<br>3.45 | 7765<br>250<br>674<br>98<br>3.26<br>3.76 | 7217<br>241<br>1110<br>77<br>3.13<br>3.49 | 8206<br>265<br>1110<br>90<br>3.44<br>3.97 | 3633<br>121<br>454<br>36<br>1.57<br>1.76 | 618<br>19.9<br>36<br>13<br>0.26<br>0.30 | 442.8<br>14.3<br>29<br>8.7<br>0.19<br>0.21 | 509.3<br>17.0<br>74<br>8.1<br>0.22<br>0.25 |
| STATIS<br>MEAN<br>MAX<br>(WY)<br>MIN       | 65.0<br>182<br>1987<br>10.8                | 117<br>353<br>1986<br>16.6               | 150<br>329<br>1978<br>34.5                | 143<br>361<br>1998<br>41.5               | YEARS 1978<br>154<br>293<br>1981<br>34.4  | 223<br>459<br>1979<br>122                | 215<br>366<br>1978<br>73.1                | 109<br>265<br>2002<br>36.4                | 64.3<br>278<br>1989<br>16.5              | 41.3<br>221<br>1998<br>10.1             | 33.1<br>192<br>1992<br>7.28                | 46.4<br>172<br>2000<br>6.19                |

e Estimated

1992


1990

1994

(WY)

# 04216418 TONAWANDA CREEK AT ATTICA, NY--Continued

| SUMMARY STATISTICS                        | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1978 - 2002 |
|-------------------------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL                              | 33748.8                | 45087.2             | 113                     |
| ANNUAL MEAN                               | 92.5                   | 124                 |                         |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN | 72.3                   | 121                 | 157 1978<br>72.8 1995   |
| HIGHEST DAILY MEAN                        | 1970 Apr 8             | 1750 Feb 1          | 3200 Jul 8 1998         |
| LOWEST DAILY MEAN                         | 4.0 Aug 12             | 8.1 Oct 4           | 3.7 Aug 24 1995         |
| ANNUAL SEVEN-DAY MINIMUM                  | 4.2 Aug 10             | 9.2 Sep 7           | 3.9 Aug 23 1995         |
| ANNUAL RUNOFF (CFSM)                      | 1.20                   | 1.61                | 1.47                    |
| ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | 16.33                  | 21.81               | 19.98                   |
|                                           | 187                    | 285                 | 250                     |
| 50 PERCENT EXCEEDS                        | 41                     | 64                  | 61                      |
| 90 PERCENT EXCEEDS                        | 8.6                    | 12                  | 14                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04217000 TONAWANDA CREEK AT BATAVIA, NY

LOCATION.--Lat 42°59'51", long 78°11'20", Genesee County, Hydrologic Unit 04120104, on right bank 150 ft downstream from municipal dam, 500 ft upstream from bridge on Walnut Street in Batavia, and 5.0 mi downstream from Little Tonawanda Creek. DRAINAGE AREA.--171 mi<sup>2</sup>.

PERIOD OF RECORD.--July 1944 to current year.

REVISED RECORDS.--WSP 1627: 1956-57. WSP 1912: Drainage area.

GAGE.--Water-stage recorder, crest stage gage, and concrete control. Datum of gage is 876.33 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diversion upstream from station by city of Batavia for municipal supply; sewage, which may include water from municipal and industrial wells upstream from gage, enters creek downstream from gage. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature

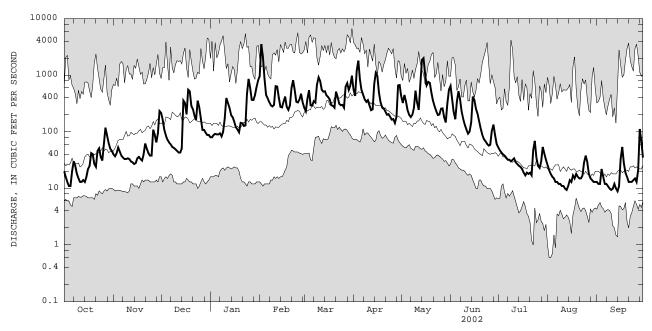
creek downstream from gage. Telephone and satellite gage height telemeters at station. State and a satellite gage height and uning the year.

COOPERATION.--City of Batavia maintains records of diversion.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,200 ft<sup>3</sup>/s, Mar. 31, 1960, gage height, 12.70 ft; maximum gage height, 13.85 ft, Apr. 6, 1947; minimum discharge, 0.4 ft<sup>3</sup>/s, Aug. 5, 6, 7, 1955; minimum gage height, 0.59 ft, July 26, 27, 1948.

EXTREMES OUTSIDE PERIOD OF RECORD.--From records of city of Batavia, maximum stage, 14.5 ft, in March 1942.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,800 ft<sup>3</sup>/s and maximum (\*):


|     | Date         |         | Time         |                              | (ft <sup>3</sup> /s) |          | height<br>ft) |                         | Date   | Time      |         | Discharge<br>(ft <sup>3</sup> /s) |     | height<br>(ft) |
|-----|--------------|---------|--------------|------------------------------|----------------------|----------|---------------|-------------------------|--------|-----------|---------|-----------------------------------|-----|----------------|
|     | Feb.<br>Apr. |         | 1300<br>0200 |                              | *4,040<br>2,370      |          | 0.14<br>7.10  |                         | May 14 | 2130      |         | 2,460                             |     | 7.29           |
| Min | imum di      | scharge | e, 8.0       | $\mathrm{ft}^3/\mathrm{s}$ , | Sept. 10,            | ll, gage | height,       | 1.32 ft.                |        |           |         |                                   |     |                |
|     |              |         |              | DISCHAF                      | RGE, CUBIC           | FEET PER |               | WATER YEA<br>Y MEAN VAI |        | 2001 TO S | EPTEMBE | R 2002                            |     |                |
|     | DAY          | 00      | CT           | NOV                          | DEC                  | JAN      | FEB           | MAR                     | APR    | MAY       | JUN     | JUL                               | AUG | SEP            |
|     | 1            | 2       | 20           | 40                           | 216                  | e80      | 954           | 266                     | 559    | 420       | 648     | 53                                | 26  | 13             |
|     | 2            | 1       | L6           | 37                           | 162                  | e80      | 3550          | 230                     | 430    | 323       | 395     | 47                                | 21  | 12             |
|     | 3            | 1       | L3           | 42                           | 108                  | e88      | 2140          | 384                     | 1200   | 448       | 222     | 43                                | 18  | 12             |
|     | 4            | 1       | L1           | 53                           | 85                   | 92       | 881           | 542                     | 1810   | 340       | 167     | 40                                | 16  | 22             |
|     | _            | -       | 1 1          | 4 =                          | 70                   | 0.0      | 4 4 17        | 004                     | 0.4.4  | 020       | 240     | 20                                | 1 = | 10             |

| DAY     | OCI       | NOV        | DEC        | JAN      | FEB       | MAR       | APR      | MAY      | JUN  | JUL  | AUG   | SEP   |
|---------|-----------|------------|------------|----------|-----------|-----------|----------|----------|------|------|-------|-------|
| 1       | 20        | 40         | 216        | e80      | 954       | 266       | 559      | 420      | 648  | 53   | 26    | 13    |
| 2       | 16        | 37         | 162        | e80      | 3550      | 230       | 430      | 323      | 395  | 47   |       | 12    |
| 3       |           |            |            |          |           |           |          |          |      |      | 21    |       |
| 4       | 13        | 42         | 108<br>85  | e88      | 2140      | 384       | 1200     | 448      | 222  | 43   | 18    | 12    |
|         | 11        | 53         |            | 92       | 881       | 542       | 1810     | 340      | 167  | 40   | 16    | 22    |
| 5       | 11        | 45         | 72         | 90       | 447       | 294       | 844      | 239      | 340  | 38   | 15    | 16    |
| 6       | 20        | 38         | 65         | 90       | 390       | 290       | 552      | 198      | 523  | 35   | 13    | 12    |
| 7       | 30        | 35         | 60         | 94       | 334       | 348       | 455      | 182      | 373  | 32   | 13    | 12    |
| 8       | 25        | 33         | 54         | 83       | 293       | 328       | 374      | 202      | 225  | 32   | 12    | 11    |
| 9       | 18        | 33         | 52         | 100      | 281       | 682       | 341      | 267      | 166  | 30   | 12    | 10    |
| 10      | 15        | 34         | 49         | 171      | 300       | 924       | 363      | 534      | 132  | 32   | 11    | 9.4   |
| 10      | 10        | 31         | 10         | -/-      | 300       | 721       | 303      | 331      | 132  | 32   |       | J. 1  |
| 11      | 13        | 33         | 46         | 395      | 643       | 790       | 292      | 323      | 110  | 34   | 11    | 9.9   |
| 12      | 13        | 30         | 43         | 321      | 632       | 552       | 241      | 244      | 93   | 29   | 9.9   | 12    |
| 13      | 14        | 29         | 43         | 263      | 403       | 512       | 250      | 703      | 101  | 27   | 9.4   | 10    |
| 14      | 13        | 27         | 51         | 197      | 276       | 521       | 700      | 1860     | 147  | 25   | 11    | 8.9   |
| 15      | 16        | 28         | 357        | e180     | 270       | 440       | 1100     | 2000     | 419  | 24   | 14    | 11    |
|         |           |            |            |          |           |           |          |          |      |      |       |       |
| 16      | 22        | 34         | 323        | e150     | 345       | 412       | 972      | 1050     | 364  | 22   | 13    | 33    |
| 17      | 25        | 36         | 203        | e120     | 419       | 374       | 492      | 665      | 252  | 19   | 17    | 54    |
| 18      | 42        | 33         | 554        | e110     | 276       | 295       | 331      | 760      | 209  | 17   | 15    | 28    |
| 19      | 40        | 31         | 520        | e98      | 244       | 288       | 270      | 730      | 155  | 19   | 18    | 19    |
| 20      | 27        | 40         | 286        | 144      | 293       | 267       | 259      | 487      | 113  | 18   | 16    | 16    |
| 21      | 24        | 62         | 249        | 142      | 595       | 513       | 228      | 351      | 88   | 19   | 15    | 13    |
| 22      | 46        | 50         | 192        | 127      | 818       | 412       | 200      | 280      | 74   | 17   | 15    | 13    |
| 23      | 51        | 42         | 162        | 130      | 546       | 313       | 205      | 232      | 68   | 47   | 17    | 13    |
| 24      | 36        | 38         | 355        | 465      | 338       | 295       | 184      | 198      | 61   | 69   | 29    | 14    |
| 25      | 31        | 38         | 269        | 861      | 329       | 300       | 164      | 202      | 57   | 35   | 38    | 15    |
| 25      | 31        | 30         | 209        | 901      | 329       | 300       | 104      | 202      | 57   | 35   | 30    | 15    |
| 26      | 64        | 109        | 167        | 598      | 372       | 266       | 168      | 256      | 59   | 25   | 29    | 13    |
| 27      | 118       | 88         | 108        | 367      | 472       | 625       | 143      | 259      | 105  | 23   | 18    | 21    |
| 28      | 86        | 65         | 108        | 364      | 330       | 722       | 184      | 180      | 134  | 30   | 15    | 112   |
| 29      | 63        | 94         | e96        | 444      |           | 550       | 661      | 146      | 88   | 54   | 14    | 68    |
| 30      | 50        | 233        | e88        | 624      |           | 659       | 673      | 318      | 61   | 41   | 13    | 35    |
| 31      | 46        |            | e88        | 819      |           | 979       |          | 556      |      | 32   | 13    |       |
|         |           |            |            |          |           |           |          |          |      |      |       |       |
| TOTAL   | 1019      | 1530       | 5231       | 7887     | 17171     | 14373     | 14645    | 14953    | 5949 | 1008 | 507.3 | 648.2 |
| MEAN    | 32.9      | 51.0       | 169        | 254      | 613       | 464       | 488      | 482      | 198  | 32.5 | 16.4  | 21.6  |
| MAX     | 118       | 233        | 554        | 861      | 3550      | 979       | 1810     | 2000     | 648  | 69   | 38    | 112   |
| MIN     | 11        | 27         | 43         | 80       | 244       | 230       | 143      | 146      | 57   | 17   | 9.4   | 8.9   |
| CFSM    | 0.19      | 0.30       | 0.99       | 1.49     | 3.59      | 2.71      | 2.85     | 2.82     | 1.16 | 0.19 | 0.10  | 0.13  |
| IN.     | 0.22      | 0.33       | 1.14       | 1.72     | 3.74      | 3.13      | 3.19     | 3.25     | 1.29 | 0.22 | 0.11  | 0.14  |
| STATIST | ICS OF MO | ONTHLY MEA | AN DATA FO | OR WATER | YEARS 194 | 4 - 2002, | BY WATER | YEAR (WY | )    |      |       |       |
| MEAN    | 83.3      | 169        | 259        | 266      | 320       | 528       | 457      | 208      | 108  | 57.3 | 48.0  | 64.0  |
| MAX     | 344       | 653        | 718        | 812      | 903       | 1206      | 1100     | 544      | 722  | 415  | 451   | 873   |
| (WY)    | 1946      | 1986       | 1978       | 1998     | 1976      | 1945      | 1947     | 1984     | 1989 | 1998 | 1977  | 1977  |
| MIN     | 9.03      | 15.3       | 13.6       | 17.5     | 50.9      | 244       | 82.1     | 65.8     | 20.1 | 6.17 | 7.91  | 5.63  |
| (WY)    | 1965      | 1961       | 1961       | 1961     | 1963      | 1965      | 1946     | 1995     | 1965 | 1955 | 1944  | 1955  |
| ( W I ) | 1900      | TAGT       | TAGT       | 1901     | TAGO      | 1903      | 1340     | 1333     | 1900 | 1900 | 1244  | 1900  |

e Estimated

# 04217000 TONAWANDA CREEK AT BATAVIA, NY--Continued

| SUMMARY STATISTICS                         | FOR 2001 CALENDAR YEAR   | FOR 2002 WATER YEAR    | WATER YEARS 1944 - 2002            |
|--------------------------------------------|--------------------------|------------------------|------------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN                | 65514.2<br>179           | 84921.5<br>233         | 213                                |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN  |                          |                        | 311 1976<br>124 1965               |
| HIGHEST DAILY MEAN                         | 2790 Apr 9               | 3550 Feb 2             | 6660 Mar 31 1960                   |
| LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM | 4.5 Aug 16<br>5.5 Aug 11 | 8.9 Sep 14<br>10 Sep 8 | 0.60 Aug 2 1955<br>1.1 Jul 31 1955 |
| ANNUAL RUNOFF (CFSM)                       | 1.05                     | 1.36                   | 1.25                               |
| ANNUAL RUNOFF (INCHES)                     | 14.25                    | 18.47                  | 16.96                              |
| 10 PERCENT EXCEEDS                         | 386                      | 557                    | 509                                |
| 50 PERCENT EXCEEDS                         | 71                       | 101                    | 98                                 |
| 90 PERCENT EXCEEDS                         | 10                       | 14                     | 15                                 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04218000 TONAWANDA CREEK AT RAPIDS, NY

LOCATION.--Lat 43°05'35", long 78°38'11", Niagara County, Hydrologic Unit 04120104, on right bank at downstream side of bridge on Rapids Road at Rapids, 4.6 mi east of Pendleton, 4.9 mi downstream from Beeman Creek, and 5.9 mi upstream from Mud Creek. DRAINAGE AREA.--349 mi<sup>2</sup>, includes 0.76 mi<sup>2</sup> in Mud Creek from which flow is diverted into Black Creek.
PERIOD OF RECORD.--August 1955 to September 1965, March 1978 to September 1979 (seasonal gage-height records only), October 1979

Time

1600

Date

Feb. 4

Discharge (ft<sup>3</sup>/s)

\*4,040

to current year.

REVISED RECORDS.--WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 571.19 ft above NGVD of 1929.

REMARKS.--Records fair. Telephone gage-height telemeter at station. Several measurements of water temperature were made during

the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,280 ft<sup>3</sup>/s, Apr. 1, 1960, gage height, 16.96 ft (does not include about 4,300 ft<sup>3</sup>/s bypassing the gage, as estimated and reported by the Buffalo District Corps of Engineers); minimum discharge, 4.5 ft<sup>3</sup>/s, July 28, 1983, gage height, 0.91 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,400 ft<sup>3</sup>/s and maximum (\*):

Date

May 16

Discharge (ft<sup>3</sup>/s)

3,150

Time

1500

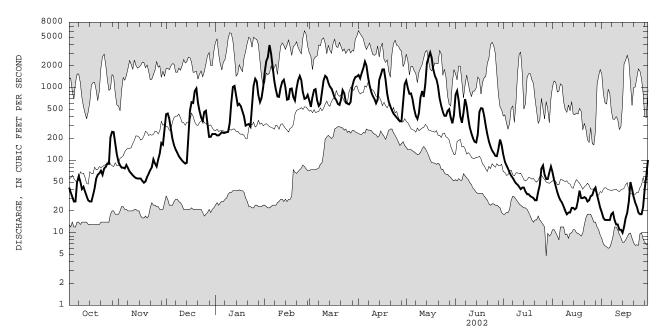
Gage height

(ft)

10.27

Gage height

(ft)


\*11.86

| nimum disc                       | harge, 9.                             | 8 $ft^3/s$ ,                    | Sept. 13                                    | , 14, gag                                 | e height,                             | 0.99 ft.                                   |                                      |                                        |                                 |                                  |                                  |                             |
|----------------------------------|---------------------------------------|---------------------------------|---------------------------------------------|-------------------------------------------|---------------------------------------|--------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------|----------------------------------|----------------------------------|-----------------------------|
|                                  |                                       | DISCHA                          | RGE, CUBI                                   | C FEET PE                                 |                                       | WATER YE<br>Y MEAN VA                      | AR OCTOBEI                           | R 2001 TO                              | SEPTEMBE                        | R 2002                           |                                  |                             |
| DAY                              | OCT                                   | NOV                             | DEC                                         | JAN                                       | FEB                                   | MAR                                        | APR                                  | MAY                                    | JUN                             | JUL                              | AUG                              | SEP                         |
| 1<br>2<br>3<br>4<br>5            | 42<br>36<br>31<br>27<br>27            | 95<br>85<br>79<br>79<br>77      | 431<br>441<br>370<br>266<br>194             | e230<br>e220<br>e220<br>e230<br>244       | 1630<br>2330<br>2650<br>3890<br>e2950 | 670<br>545<br>747<br>935<br>958            | 1500<br>1350<br>1610<br>1870<br>2300 | 1250<br>987<br>825<br>833<br>686       | 803<br>906<br>666<br>401<br>329 | 120<br>96<br>85<br>77<br>68      | 68<br>53<br>44<br>36<br>31       | 19<br>16<br>15<br>15        |
| 6                                | 50                                    | 86                              | 161                                         | 238                                       | e1900                                 | 667                                        | 2020                                 | 506                                    | 452                             | 61                               | 28                               | 15                          |
| 7                                | 60                                    | 78                              | 141                                         | 239                                       | e1250                                 | 561                                        | 1410                                 | 408                                    | 698                             | 57                               | 26                               | 18                          |
| 8                                | 51                                    | 70                              | 127                                         | 244                                       | 933                                   | 602                                        | 1060                                 | 371                                    | 557                             | 52                               | 23                               | 19                          |
| 9                                | 40                                    | 66                              | 114                                         | 247                                       | 756                                   | 855                                        | 874                                  | 448                                    | 376                             | 48                               | 20                               | 15                          |
| 10                               | 43                                    | 62                              | 106                                         | 326                                       | 749                                   | 1260                                       | 768                                  | 740                                    | 282                             | 46                               | 18                               | 13                          |
| 11                               | 37                                    | 59                              | 99                                          | 629                                       | 1000                                  | 1460                                       | 700                                  | 900                                    | 234                             | 43                               | 19                               | 13                          |
| 12                               | 32                                    | 57                              | 94                                          | 1030                                      | 1210                                  | 1390                                       | 609                                  | 747                                    | 201                             | 40                               | 19                               | 11                          |
| 13                               | 28                                    | 56                              | 90                                          | 1060                                      | 1290                                  | 1180                                       | 686                                  | 1130                                   | 180                             | 42                               | 22                               | 11                          |
| 14                               | 27                                    | 56                              | 92                                          | 770                                       | 1010                                  | 1040                                       | 1290                                 | 2200                                   | 176                             | 42                               | 22                               | 10                          |
| 15                               | 27                                    | 56                              | 195                                         | 575                                       | 686                                   | 973                                        | 1500                                 | 2620                                   | 229                             | 37                               | 21                               | 12                          |
| 16                               | 33                                    | 52                              | 481                                         | 600                                       | 698                                   | 843                                        | 1790                                 | 3070                                   | 464                             | 34                               | 22                               | 16                          |
| 17                               | 41                                    | 49                              | 631                                         | 555                                       | 962                                   | 723                                        | 1790                                 | 2610                                   | 523                             | 34                               | 28                               | 19                          |
| 18                               | 56                                    | 51                              | 618                                         | e470                                      | 978                                   | 675                                        | 1290                                 | 1800                                   | 518                             | 32                               | 38                               | 27                          |
| 19                               | 63                                    | 59                              | 902                                         | e400                                      | 745                                   | 599                                        | 829                                  | 1460                                   | 412                             | 31                               | 30                               | 50                          |
| 20                               | 66                                    | 65                              | 977                                         | e300                                      | 666                                   | 581                                        | 638                                  | 1310                                   | 301                             | 30                               | 30                               | 40                          |
| 21                               | 72                                    | 73                              | 621                                         | e310                                      | 974                                   | 687                                        | 554                                  | 1040                                   | 227                             | 28                               | 31                               | 31                          |
| 22                               | 63                                    | 80                              | 479                                         | 316                                       | 1270                                  | 926                                        | 488                                  | 709                                    | 181                             | 28                               | 30                               | 26                          |
| 23                               | 77                                    | 103                             | 390                                         | 291                                       | 1450                                  | 842                                        | 440                                  | 560                                    | 154                             | 37                               | 27                               | 23                          |
| 24                               | 81                                    | 90                              | 349                                         | 526                                       | 1260                                  | 637                                        | 413                                  | 466                                    | 136                             | 46                               | 28                               | 19                          |
| 25                               | 90                                    | 82                              | 464                                         | 1070                                      | 866                                   | 605                                        | 389                                  | 409                                    | 126                             | 77                               | 32                               | 18                          |
| 26<br>27<br>28<br>29<br>30<br>31 | 89<br>208<br>247<br>244<br>169<br>120 | 103<br>125<br>173<br>164<br>256 | 482<br>e320<br>e210<br>e210<br>e230<br>e230 | 1330<br>1220<br>786<br>634<br>727<br>1010 | 702<br>721<br>798<br><br>             | 590<br>634<br>1040<br>1250<br>1400<br>1430 | 365<br>344<br>344<br>616<br>1120     | 410<br>478<br>505<br>386<br>323<br>422 | 115<br>114<br>144<br>193<br>162 | 85<br>63<br>55<br>55<br>68<br>82 | 33<br>39<br>42<br>33<br>27<br>22 | 18<br>23<br>41<br>62<br>101 |
| TOTAL                            | 2277                                  | 2586                            | 10515                                       | 17047                                     | 36324                                 | 27305                                      | 30957                                | 30609                                  | 10260                           | 1699                             | 942                              | 731                         |
| MEAN                             | 73.5                                  | 86.2                            | 339                                         | 550                                       | 1297                                  | 881                                        | 1032                                 | 987                                    | 342                             | 54.8                             | 30.4                             | 24.4                        |
| MAX                              | 247                                   | 256                             | 977                                         | 1330                                      | 3890                                  | 1460                                       | 2300                                 | 3070                                   | 906                             | 120                              | 68                               | 101                         |
| MIN                              | 27                                    | 49                              | 90                                          | 220                                       | 666                                   | 545                                        | 344                                  | 323                                    | 114                             | 28                               | 18                               | 10                          |
| CFSM                             | 0.21                                  | 0.25                            | 0.97                                        | 1.58                                      | 3.72                                  | 2.52                                       | 2.96                                 | 2.83                                   | 0.98                            | 0.16                             | 0.09                             | 0.07                        |
| IN.                              | 0.24                                  | 0.28                            | 1.12                                        | 1.82                                      | 3.87                                  | 2.91                                       | 3.30                                 | 3.26                                   | 1.09                            | 0.18                             | 0.10                             | 0.08                        |
| STATIST                          | CICS OF MC                            | ONTHLY ME                       | AN DATA F                                   | OR WATER                                  | YEARS 195                             | 5 - 2002,                                  | BY WATER                             | YEAR (WY                               | )                               |                                  |                                  |                             |
| MEAN                             | 151                                   | 310                             | 480                                         | 540                                       | 675                                   | 943                                        | 906                                  | 424                                    | 215                             | 100                              | 83.1                             | 93.9                        |
| MAX                              | 642                                   | 1239                            | 1116                                        | 1581                                      | 1363                                  | 1650                                       | 1534                                 | 1046                                   | 1372                            | 511                              | 601                              | 614                         |
| (WY)                             | 1987                                  | 1986                            | 1987                                        | 1998                                      | 1981                                  | 1956                                       | 1960                                 | 1956                                   | 1989                            | 1998                             | 1992                             | 1992                        |
| MIN                              | 14.8                                  | 25.7                            | 23.3                                        | 29.4                                      | 103                                   | 452                                        | 334                                  | 144                                    | 45.6                            | 26.1                             | 15.9                             | 10.0                        |
| (WY)                             | 1965                                  | 1961                            | 1961                                        | 1961                                      | 1963                                  | 1981                                       | 1995                                 | 1993                                   | 1965                            | 1991                             | 1991                             | 1991                        |

e Estimated

# 04218000 TONAWANDA CREEK AT RAPIDS, NY--Continued

| SUMMARY STATISTICS                            | FOR 2001 CALENDAR YEAR  | FOR 2002 WATER YEAR   | WATER YEARS 1955 - 2002           |
|-----------------------------------------------|-------------------------|-----------------------|-----------------------------------|
| ANNUAL TOTAL                                  | 125779.0                | 171252                | 400                               |
| ANNUAL MEAN<br>HIGHEST ANNUAL MEAN            | 345                     | 469                   | 409<br>565 1998                   |
| LOWEST ANNUAL MEAN<br>HIGHEST DAILY MEAN      | 3550 Feb 12             | 3890 Feb 4            | 255 1965<br>6130 Apr 1 1960       |
| LOWEST DAILY MEAN<br>ANNUAL SEVEN-DAY MINIMUM | 9.0 Aug 19<br>10 Aug 14 | 10 Sep 14<br>12 Sep 9 | 4.8 Jul 28 1983<br>6.8 Sep 1 1991 |
| ANNUAL RUNOFF (CFSM)                          | 0.99                    | 1.34                  | 1.17                              |
| ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS     | 13.41<br>994            | 18.25<br>1250         | 15.91<br>1060                     |
| 50 PERCENT EXCEEDS                            | 143                     | 230                   | 195                               |
| 90 PERCENT EXCEEDS                            | 20                      | 27                    | 31                                |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04218518 ELLICOTT CREEK BELOW WILLIAMSVILLE, NY

LOCATION.--Lat 42°58'40", long 78°45'50", Erie County, Hydrologic Unit 04120104, on right bank 15 ft upstream from bridge on State Highway 324 (Sheridan Drive), 0.8 mi upstream from sewage treatment plant, 1.4 mi northwest of Williamsville, and 10.8 mi upstream from mouth.

DRAINAGE AREA.--81.6 mi<sup>2</sup>.
PERIOD OF RECORD.--October 1972 to current year.
REVISED RECORDS.--WDR NY-82-3: Drainage area.

REVISED RECORDS.--WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 586.41 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Regulation by seasonal manipulation of dam at Island Park 2.4 mi upstream by Village of Williamsville and by intermittent pumping from stone quarries into stream upstream from station. Records at medium and high flows may be comparable with those obtained at station 04218500 between October 1955 and September 1972. Telephone gage-height telemeter at station. Several measurements of water temperature were made during

the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,640 ft<sup>3</sup>/s, Feb. 25, 1985, gage height, 11.19 ft; no flow for part of July 27, 1976, gage height, 0.73 ft, result of pipeline construction.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ft<sup>3</sup>/s and maximum (\*):

|     | Date         |          | Time         |                     | (ft <sup>3</sup> /s) | Gage          | e height<br>(ft) |                         | Date   | Time      | ]       | Discharge<br>(ft <sup>3</sup> /s) |     | height<br>ft) |
|-----|--------------|----------|--------------|---------------------|----------------------|---------------|------------------|-------------------------|--------|-----------|---------|-----------------------------------|-----|---------------|
|     | Feb.<br>Apr. |          | 1730<br>0030 |                     | *2,020<br>1,180      | *7.83<br>5.75 |                  |                         | May 14 | 2030      |         | 1,590                             | 6.8 | 1             |
| Min | imum di      | scharge, | 4.6          | ft <sup>3</sup> /s, | Sept. 30,            | gage hei      | ight, 1.5        | O ft.                   |        |           |         |                                   |     |               |
|     |              |          |              | DISCHAF             | RGE, CUBIC           | FEET PER      |                  | WATER YEA<br>Y MEAN VAL |        | 2001 TO S | EPTEMBE | R 2002                            |     |               |
|     | DAY          | OCT      | ?            | NOV                 | DEC                  | JAN           | FEB              | MAR                     | APR    | MAY       | JUN     | JUL                               | AUG | SEP           |
|     | 1            | 26       | 5            | 40                  | 379                  | e120          | 898              | 152                     | 270    | 240       | 218     | 35                                | 30  | 13            |
|     | 2            | 23       | 3            | 62                  | 266                  | e120          | 1770             | 152                     | 300    | 204       | 138     | 33                                | 26  | 13            |
|     | 3            | 22       | )            | 87                  | 142                  | e120          | 846              | 335                     | 815    | 254       | 92      | 33                                | 27  | 13            |
|     | 4            | 23       |              | 92                  | 108                  | 123           | 323              | 377                     | 854    | 220       | 81      | 24                                | 27  | 14            |
|     | 5            | 45       |              | 71                  | 90                   | 121           | e185             | 194                     | 345    | 147       | 91      | 24                                | 25  | 14            |
|     |              |          |              |                     |                      |               |                  |                         |        |           |         |                                   |     |               |

| 1                                | 26                                  | 40                              | 379                                         | e120                                   | 898                              | 152                                    | 270                            | 240                                  | 218                        | 35                               | 30                               | 13                         |
|----------------------------------|-------------------------------------|---------------------------------|---------------------------------------------|----------------------------------------|----------------------------------|----------------------------------------|--------------------------------|--------------------------------------|----------------------------|----------------------------------|----------------------------------|----------------------------|
| 2                                | 23                                  | 62                              | 266                                         | e120                                   | 1770                             | 152                                    | 300                            | 204                                  | 138                        | 33                               | 26                               | 13                         |
| 3                                | 22                                  | 87                              | 142                                         | e120                                   | 846                              | 335                                    | 815                            | 254                                  | 92                         | 33                               | 27                               | 13                         |
| 4                                | 23                                  | 92                              | 108                                         | 123                                    | 323                              | 377                                    | 854                            | 220                                  | 81                         | 24                               | 27                               | 14                         |
| 5                                | 45                                  | 71                              | 90                                          | 121                                    | e185                             | 194                                    | 345                            | 147                                  | 91                         | 24                               | 25                               | 14                         |
| 6                                | 150                                 | 60                              | 80                                          | 124                                    | 184                              | 149                                    | 251                            | 121                                  | 118                        | 23                               | 20                               | 13                         |
| 7                                | 63                                  | 51                              | 69                                          | 130                                    | 183                              | 155                                    | 202                            | 111                                  | 112                        | 24                               | 22                               | 13                         |
| 8                                | 46                                  | 52                              | 63                                          | 128                                    | 169                              | 187                                    | 174                            | 114                                  | 89                         | 23                               | 21                               | 13                         |
| 9                                | 35                                  | 47                              | 54                                          | 135                                    | 174                              | 450                                    | 166                            | 174                                  | 71                         | 23                               | 18                               | 13                         |
| 10                               | 33                                  | 49                              | 50                                          | 226                                    | 238                              | 492                                    | 163                            | 334                                  | 61                         | 23                               | 20                               | 14                         |
| 11                               | 40                                  | 47                              | 50                                          | 431                                    | 406                              | 367                                    | 142                            | 245                                  | 54                         | 24                               | 21                               | 19                         |
| 12                               | 38                                  | 44                              | 50                                          | 510                                    | 379                              | 241                                    | 125                            | 217                                  | 48                         | 26                               | 21                               | 15                         |
| 13                               | 37                                  | 41                              | 53                                          | 413                                    | 286                              | 273                                    | 250                            | 797                                  | 47                         | 27                               | 26                               | 15                         |
| 14                               | 38                                  | 35                              | 93                                          | 291                                    | 182                              | 245                                    | 576                            | 1430                                 | 56                         | 27                               | 22                               | 15                         |
| 15                               | 35                                  | 42                              | 312                                         | 266                                    | 171                              | 186                                    | 711                            | 1110                                 | 93                         | 27                               | 26                               | 19                         |
| 16                               | 48                                  | 32                              | 386                                         | 349                                    | 236                              | 169                                    | 460                            | 409                                  | 99                         | 26                               | 26                               | 15                         |
| 17                               | 60                                  | 37                              | 251                                         | 298                                    | 359                              | 158                                    | 227                            | 360                                  | 85                         | 24                               | 27                               | 14                         |
| 18                               | 52                                  | 31                              | 403                                         | e200                                   | 255                              | 144                                    | 167                            | 472                                  | 76                         | 35                               | 25                               | 16                         |
| 19                               | 45                                  | 41                              | 416                                         | e140                                   | 183                              | 150                                    | 153                            | 315                                  | 74                         | 36                               | 25                               | 15                         |
| 20                               | 40                                  | 77                              | 242                                         | 144                                    | 217                              | 146                                    | 139                            | 201                                  | 59                         | 33                               | 25                               | 15                         |
| 21                               | 55                                  | 110                             | 183                                         | 132                                    | 486                              | 251                                    | 124                            | 148                                  | 51                         | 25                               | 19                               | 12                         |
| 22                               | 53                                  | 67                              | 139                                         | 127                                    | 544                              | 241                                    | 110                            | 125                                  | 47                         | 25                               | 22                               | 13                         |
| 23                               | 86                                  | 49                              | 116                                         | 144                                    | 337                              | 169                                    | 106                            | 107                                  | 43                         | 69                               | 22                               | 17                         |
| 24                               | 61                                  | 41                              | 141                                         | 424                                    | 211                              | 150                                    | 106                            | 93                                   | 40                         | 48                               | 20                               | 15                         |
| 25                               | 68                                  | 74                              | e170                                        | 706                                    | 192                              | 166                                    | 102                            | 104                                  | 40                         | 40                               | 18                               | 15                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 223<br>501<br>265<br>91<br>62<br>49 | 175<br>131<br>102<br>172<br>389 | e130<br>e100<br>e90<br>e110<br>e130<br>e120 | 419<br>296<br>258<br>233<br>279<br>401 | 209<br>209<br>171<br>            | 160<br>276<br>361<br>269<br>494<br>525 | 99<br>97<br>140<br>507<br>417  | 154<br>186<br>114<br>87<br>81<br>120 | 39<br>41<br>48<br>41<br>36 | 30<br>28<br>44<br>42<br>55<br>36 | 21<br>25<br>24<br>23<br>21<br>14 | 15<br>83<br>44<br>46<br>22 |
| TOTAL                            | 2413                                | 2348                            | 4986                                        | 7808                                   | 10003                            | 7784                                   | 8298                           | 8794                                 | 2188                       | 992                              | 709                              | 573                        |
| MEAN                             | 77.8                                | 78.3                            | 161                                         | 252                                    | 357                              | 251                                    | 277                            | 284                                  | 72.9                       | 32.0                             | 22.9                             | 19.1                       |
| MAX                              | 501                                 | 389                             | 416                                         | 706                                    | 1770                             | 525                                    | 854                            | 1430                                 | 218                        | 69                               | 30                               | 83                         |
| MIN                              | 22                                  | 31                              | 50                                          | 120                                    | 169                              | 144                                    | 97                             | 81                                   | 36                         | 23                               | 14                               | 12                         |
| CFSM                             | 0.95                                | 0.96                            | 1.97                                        | 3.09                                   | 4.38                             | 3.08                                   | 3.39                           | 3.48                                 | 0.89                       | 0.39                             | 0.28                             | 0.23                       |
| IN.                              | 1.10                                | 1.07                            | 2.27                                        | 3.56                                   | 4.56                             | 3.55                                   | 3.78                           | 4.01                                 | 1.00                       | 0.45                             | 0.32                             | 0.26                       |
| STATIST<br>MEAN<br>MAX<br>(WY)   | 72.7<br>196<br>1997                 | 140<br>342<br>1986              | 194<br>441<br>1978                          | OR WATER<br>172<br>426<br>1998         | YEARS 1973<br>193<br>377<br>1990 | - 2002,<br>268<br>519<br>1977          | BY WATER<br>209<br>363<br>1996 | YEAR (WY)  121 284 2002              | 77.4<br>275<br>1989        | 43.6<br>144<br>1976              | 54.5<br>397<br>1977              | 65.8<br>425<br>1977        |

119

94.8

47.5

24.2

11.8

13.5

9.76 1973

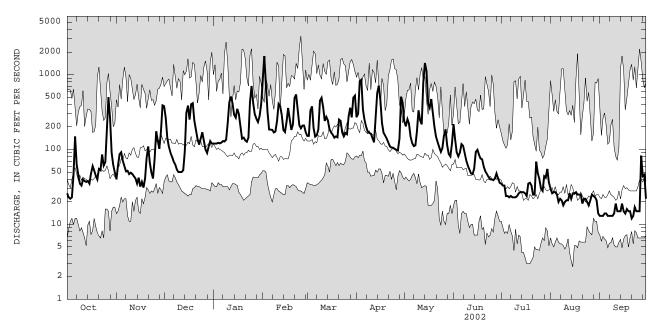
e Estimated

11.2

27.1

40.6

39.2


56.0

MTN

(WY)

# 04218518 ELLICOTT CREEK BELOW WILLIAMSVILLE, NY--Continued

| SUMMARY STATISTICS                                 | FOR 2001 CALENDAR YEAR   | FOR 2002 WATER YEAR   | WATER YEARS 1973 - 2002            |
|----------------------------------------------------|--------------------------|-----------------------|------------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN<br>HIGHEST ANNUAL MEAN | 39360.6<br>108           | 56896<br>156          | 134<br>177 1977                    |
| LOWEST ANNUAL MEAN<br>HIGHEST DAILY MEAN           | 1460 Feb 10              | 1770 Feb 2            | 91.2 1999<br>3280 Feb 25 1985      |
| LOWEST DAILY MEAN<br>ANNUAL SEVEN-DAY MINIMUM      | 7.5 Sep 15<br>7.7 Sep 13 | 12 Sep 21<br>13 Sep 1 | 2.7 Aug 15 1978<br>3.6 Jul 15 1978 |
| ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)        | 1.32<br>17.94            | 1.91<br>25.94         | 1.64<br>22.31                      |
| 10 PERCENT EXCEEDS<br>50 PERCENT EXCEEDS           | 248<br>67                | 378<br>97             | 300<br>74                          |
| 90 PERCENT EXCEEDS                                 | 14                       | 21                    | 18                                 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04219000 ERIE (BARGE) CANAL AT LOCK 30, MACEDON, NY

LOCATION.--Lat  $43^{\circ}04^{\circ}20^{\circ}$ , long  $77^{\circ}17^{\circ}45^{\circ}$ , Wayne County, Hydrologic Unit 04140201, on left bank in Macedon, 500 ft downstream from headgate in old Erie Canal, 700 ft downstream from bridge on State Highway 350, 0.2 mi downstream from Lock 30, and 2.6 upstream from Ganargua Creek.

PERIOD OF RECORD. --November 1919 to December 1920, October 1950 to September 1977, October 1977 to current year (navigation seasons only). Prior to October 1956, published as "Barge Canal at Lock 30, Macedon." REVISED RECORDS. -- WSP 1237: 1951

GAGE.--Water-stage recorder. Datum of gage is 447.58 ft above NGVD of 1929. Nov. 1, 1919 to Dec. 28, 1920, nonrecording gage at same site at different datum.

REMARKS.--Records good. This record represents net diversion from Niagara River basin into Oswego River basin through Erie (Barge) Canal. During the non-navigation period, when the pool upstream from Lock 30 is drained, discharge consists of leakage through guard gates, runoff from small areas tributary to canal upstream from station, or diversion for use downstream in the Canal system.

COOPERATION.—Records of gate openings, lockages, lock-valve openings, and elevations of water surface in Erie (Barge) Canal upstream and downstream from Lock 30 furnished by New York State Canal Corporation.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily discharge, 874 ft<sup>3</sup>/s, Dec. 3, 1969, maximum instantaneous discharge not

determined; no significant flow at times in many years.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ e257 ------------e262 ---------------e254 e254 ------\_\_\_ \_\_\_ \_\_\_ e257 e259 --------------e262 e257 75 e259 ---------------\_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ ------------\_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ ---------------------\_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ ---\_\_\_ ---\_\_\_ \_\_\_ \_\_\_ ---\_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ ---\_\_\_ \_\_\_ ---------------\_\_\_ \_\_\_ \_\_\_ \_\_\_ ---------------TOTAL \_\_\_ 274 MEAN ---------------------------------MAX ---MIN

e Estimated

Discharge (ft<sup>3</sup>/s)

\*447

Gage height

(ft)

\*3.48

#### STREAMS TRIBUTARY TO LAKE ONTARIO

## 0422026250 NORTHRUP CREEK AT NORTH GREECE, NY

LOCATION.--Lat 43°15'13", long 77°43'33", Monroe County, Hydrologic Unit 04130001, on right bank 75 ft downstream from bridge on State Highway 18 (Latta Road), 0.5 mi west of North Greece, and 5.1 mi upstream from mouth. DRAINAGE AREA.--10.1 mi<sup>2</sup>.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1989 to current year. REVISED RECORDS.--WDR NY-2001-3: Drainage area.

Time

2015

2145

Date

Apr. 13 May 13

REMARKS.--work NI-2001-3. Blankage area.

GAGE.--Water-stage recorder. Elevation of gage is 306 ft above NGVD of 1929, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Discharge includes undetermined diversion from Erie (Barge) Canal upstream from station. Unpublished water-quality records for prior years are available in files of Monroe County Department of Health.

Monroe County Department of Health.

COOPERATION.--Discharge measurements were provided by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 573 ft<sup>3</sup>/s, Apr. 22, 1991, gage height, 3.89 ft; maximum gage height, 4.90 ft,
Jan. 24, 1999 (ice jam); minimum discharge, 0.39 ft<sup>3</sup>/s, Aug. 19, 1993, gage height 0.46 ft.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 758 ft<sup>3</sup>/s, May 17, 1974, from rating curve extended above 15 ft<sup>3</sup>/s on

basis of contracted-opening measurement of peak flow.

Date

May 30

Time

0630

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 200  $\mathrm{ft^3/s}$  and maximum (\*):

Gage height

(ft)

3.15

Discharge (ft<sup>3</sup>/s)

350

| Minimum d                        | Minimum discharge, 2.1 ft <sup>3</sup> /s, Oct. 30, gage height, 0.71 ft. |                                 |                                             |                                    |                               |                                  |                                 |                                    |                                 |                                        |                                 |                                 |
|----------------------------------|---------------------------------------------------------------------------|---------------------------------|---------------------------------------------|------------------------------------|-------------------------------|----------------------------------|---------------------------------|------------------------------------|---------------------------------|----------------------------------------|---------------------------------|---------------------------------|
|                                  |                                                                           | DISCHA                          | ARGE, CUBI                                  | C FEET PE                          |                               | WATER YE<br>Y MEAN VA            |                                 | ER 2001 TO                         | SEPTEMBE                        | R 2002                                 |                                 |                                 |
| DAY                              | OCT                                                                       | NOV                             | DEC                                         | JAN                                | FEB                           | MAR                              | APR                             | MAY                                | JUN                             | JUL                                    | AUG                             | SEP                             |
| 1<br>2<br>3<br>4<br>5            | 6.6<br>6.2<br>6.1<br>6.0<br>6.2                                           | 2.6<br>2.7<br>2.9<br>3.0<br>3.4 | 11<br>7.3<br>6.0<br>5.3<br>5.0              | e8.0<br>e7.4<br>e10<br>e10<br>e9.4 | 91<br>45<br>20<br>e17<br>e17  | 9.0<br>8.8<br>14<br>10<br>e9.4   | 13<br>28<br>77<br>24<br>17      | 17<br>19<br>19<br>15               | 26<br>17<br>13<br>13            | 8.6<br>7.8<br>6.9<br>6.5               | 6.0<br>6.0<br>5.8<br>5.8        | 5.3<br>5.4<br>5.6<br>5.4<br>5.3 |
| 6<br>7<br>8<br>9<br>10           | 12<br>5.6<br>5.1<br>5.1<br>4.9                                            | 3.1<br>4.9<br>7.5<br>9.4        | 5.4<br>5.3<br>5.0<br>4.8<br>4.6             | e9.6<br>e10<br>11<br>11            | e16<br>e14<br>12<br>14<br>19  | 7.9<br>9.2<br>13<br>18<br>26     | 17<br>16<br>14<br>15            | 14<br>13<br>12<br>19<br>20         | 14<br>12<br>11<br>10<br>9.0     | 6.2<br>6.3<br>6.4<br>9.2<br>7.9        | 5.5<br>5.4<br>5.3<br>5.3        | 5.3<br>5.3<br>5.2<br>5.2        |
| 11<br>12<br>13<br>14<br>15       | 4.9<br>5.1<br>5.1<br>5.1<br>5.9                                           | 9.2<br>7.3<br>6.3<br>6.2<br>5.4 | 4.4<br>4.3<br>4.7<br>7.9<br>23              | 8.5<br>7.7<br>7.2<br>6.4<br>6.2    | 27<br>e16<br>e14<br>e15<br>12 | 14<br>13<br>12<br>11<br>9.6      | 10<br>8.9<br>78<br>71<br>51     | 13<br>17<br>141<br>168<br>41       | 8.6<br>11<br>9.9<br>39<br>48    | 7.3<br>7.1<br>7.0<br>6.9<br>6.7        | 5.6<br>5.3<br>5.4<br>5.3<br>5.8 | 5.4<br>5.2<br>4.9<br>5.2<br>6.4 |
| 16<br>17<br>18<br>19<br>20       | 4.9<br>6.0<br>5.0<br>4.7<br>4.4                                           | 5.1<br>4.7<br>4.3<br>4.3        | 12<br>17<br>26<br>17<br>12                  | 6.3<br>6.5<br>e6.4<br>e7.0         | 18<br>19<br>e14<br>11<br>14   | 10<br>9.7<br>10<br>9.8<br>16     | 22<br>16<br>12<br>10<br>8.9     | 23<br>20<br>18<br>15               | 34<br>19<br>14<br>11<br>9.8     | 6.6<br>6.5<br>6.5<br>6.8<br>6.5        | 6.0<br>5.8<br>5.7<br>5.5<br>5.8 | 6.5<br>5.6<br>5.5<br>5.4<br>5.5 |
| 21<br>22<br>23<br>24<br>25       | 4.8<br>5.9<br>4.3<br>4.3                                                  | 4.6<br>4.4<br>4.2<br>4.5<br>7.5 | 10<br>8.6<br>8.5<br>9.4<br>8.0              | e6.2<br>5.3<br>5.7<br>11           | 17<br>14<br>11<br>9.8<br>9.9  | 19<br>14<br>13<br>15             | 8.3<br>9.1<br>9.5<br>7.8<br>9.2 | 12<br>11<br>11<br>10<br>9.8        | 8.9<br>9.2<br>9.4<br>8.9<br>8.6 | 6.3<br>6.6<br>7.7<br>6.4<br>5.8        | 5.1<br>5.5<br>5.7<br>6.3<br>5.8 | 5.5<br>5.5<br>5.7<br>5.4<br>5.5 |
| 26<br>27<br>28<br>29<br>30<br>31 | 18<br>6.3<br>3.7<br>3.1<br>2.8<br>2.6                                     | 6.5<br>4.8<br>4.8<br>15<br>16   | 7.0<br>e7.0<br>e6.6<br>e6.4<br>e7.8<br>e8.0 | 9.6<br>7.9<br>7.4<br>7.0<br>9.1    | 9.2<br>9.1<br>9.6<br>         | 24<br>58<br>23<br>17<br>20<br>14 | 9.0<br>7.3<br>39<br>42<br>21    | 12<br>10<br>9.7<br>23<br>191<br>38 | 8.3<br>9.1<br>22<br>11<br>9.2   | 6.1<br>6.8<br>7.6<br>6.7<br>7.3<br>6.1 | 5.6<br>5.3<br>5.4<br>5.5<br>5.7 | 5.6<br>13<br>7.9<br>6.0<br>6.0  |
| TOTA<br>MEAN<br>MAX<br>MIN       |                                                                           | 181.8<br>6.06<br>16<br>2.6      | 275.3<br>8.88<br>26<br>4.3                  | 259.8<br>8.38<br>13<br>5.3         | 514.6<br>18.4<br>91<br>9.1    | 472.4<br>15.2<br>58<br>7.9       | 683.0<br>22.8<br>78<br>7.3      | 969.5<br>31.3<br>191<br>9.7        | 447.9<br>14.9<br>48<br>8.3      | 214.0<br>6.90<br>9.2<br>5.8            | 173.8<br>5.61<br>6.3<br>5.1     | 174.9<br>5.83<br>13<br>4.9      |
| STAT                             | ISTICS OF M                                                               | MONTHLY ME                      | EAN DATA F                                  | OR WATER                           | YEARS 199                     | 90 - 2002,                       | BY WATER                        | R YEAR (WY                         | ( )                             |                                        |                                 |                                 |
| MEAN<br>MAX<br>(WY)<br>MIN       | 8.71<br>30.9<br>1997<br>1.83                                              | 12.1<br>26.4<br>1997<br>2.49    | 12.4<br>23.7<br>1997<br>3.00                | 18.1<br>45.6<br>1998<br>6.39       | 20.7<br>38.9<br>1990<br>7.82  | 25.5<br>40.7<br>1993<br>15.2     | 21.4<br>31.7<br>1991<br>5.27    | 15.5<br>31.3<br>2002<br>4.77       | 8.27<br>16.8<br>1996<br>3.06    | 6.17<br>13.5<br>1998<br>1.96           | 5.94<br>11.8<br>1999<br>1.60    | 6.21<br>12.7<br>1999<br>1.92    |

e Estimated

1995

1992

1999

2000

1993

2002

1995

1993

1991

1993

1993

1994

(WY)

# STREAMS TRIBUTARY TO LAKE ONTARIO

# 0422026250 NORTHRUP CREEK AT NORTH GREECE, NY--Continued

| SUMMARY STATISTICS          | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1990 - 2002 |
|-----------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN | 4149.8<br>11.4         | 4542.3<br>12.4      | 13.4                    |
| HIGHEST ANNUAL MEAN         |                        |                     | 18.7 1998               |
| LOWEST ANNUAL MEAN          |                        |                     | 7.33 1995               |
| HIGHEST DAILY MEAN          | 127 Feb 9              | 191 May 30          | 420 Apr 22 1991         |
| LOWEST DAILY MEAN           | 2.6 Oct 31             | 2.6 Oct 31          | 1.1 Aug 19 1993         |
| ANNUAL SEVEN-DAY MINIMUM    | 2.8 Oct 29             | 2.8 Oct 29          | 1.4 Aug 22 1993         |
| 10 PERCENT EXCEEDS          | 20                     | 19                  | 25                      |
| 50 PERCENT EXCEEDS          | 7.5                    | 8.0                 | 8.5                     |
| 90 PERCENT EXCEEDS          | 5.0                    | 5.0                 | 2.9                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

# 0422026250 NORTHRUP CREEK AT NORTH GREECE, NY--Continued

## WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1989 to current year.

CHEMICAL DATA: Water years 1989 (a), 1990 to current year (e).

NUTRIENT DATA: Water years 1989 (a), 1990 to current year (e).

PERIOD OF DAILY RECORD.--

WATER TEMPERATURES: November 1994 to current year.
INSTRUMENTATION.--Automatic water sampler since October 1989. Water temperature recorder since November 1994 provides 15-minute-interval readings.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Prior to 1994 water year, data published in "Water Resources of Monroe County New York, Water Years 1989-93", U.S. Geological Survey Open-File Report 97-587. The non-daily water-quality records for this site were collected and reported in Geological Survey Open-file Report 3, 30... Inc. 10cal standard time.

EXTREMES FOR PERIOD OF DAILY RECORD.—
WATER TEMPERATURES: Maximum, 28.0°C, July 5, 1999; minimum, 0°C, on many days during winter period.

WATER TEMPERATURES: Maximum, 26.0°C, July 2, 3; minimum, 0°C, on many days during winter period.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DAY                              | MAX                                     | MIN                                  | MEAN                                   | MAX                                 | MIN                               | MEAN                               | MAX                              | MIN                             | MEAN                             | MAX                                    | MIN                             | MEAN                            |
|----------------------------------|-----------------------------------------|--------------------------------------|----------------------------------------|-------------------------------------|-----------------------------------|------------------------------------|----------------------------------|---------------------------------|----------------------------------|----------------------------------------|---------------------------------|---------------------------------|
|                                  |                                         | OCTOBER                              |                                        | N                                   | OVEMBER                           |                                    | DE                               | CEMBER                          |                                  |                                        | JANUARY                         | •                               |
| 1<br>2<br>3<br>4<br>5            | 14.5<br>16.5<br>17.5<br>17.5<br>17.0    | 12.0<br>14.5<br>15.5<br>17.0<br>14.5 | 13.5<br>15.5<br>16.5<br>17.0<br>15.5   | 11.0<br>13.5<br>13.0<br>11.0<br>9.5 | 8.5<br>11.0<br>10.5<br>9.5<br>7.5 | 9.5<br>12.5<br>11.5<br>10.0<br>8.0 | 9.0<br>8.5<br>7.0<br>8.5<br>10.5 | 8.5<br>6.5<br>5.5<br>5.5<br>8.5 | 9.0<br>8.0<br>6.5<br>7.0<br>10.0 | 0.0<br>0.0<br>0.0<br>0.0               | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0        |
| 6<br>7<br>8<br>9<br>10           | 14.5<br>11.5<br>9.5<br>10.5<br>13.5     | 11.5<br>9.0<br>8.5<br>8.0<br>10.5    | 13.0<br>10.0<br>9.0<br>9.5<br>12.0     | 8.0<br>10.0<br>11.0<br>10.0<br>8.5  | 7.0<br>8.0<br>8.5<br>7.5<br>7.0   | 7.5<br>9.0<br>9.5<br>8.5<br>8.0    | 11.0<br>8.0<br>5.0<br>4.5<br>3.5 | 8.0<br>5.0<br>3.5<br>3.5<br>2.5 | 10.0<br>6.5<br>4.0<br>4.0<br>3.0 | 0.0<br>0.0<br>0.0<br>0.0<br>2.0        | 0.0<br>0.0<br>0.0<br>0.0        | 0.0<br>0.0<br>0.0<br>0.0<br>0.5 |
| 11<br>12<br>13<br>14<br>15       | 15.0<br>16.0<br>17.5<br>17.5<br>16.5    | 13.5<br>15.0<br>15.5<br>16.5<br>14.0 | 14.5<br>15.5<br>16.5<br>17.0<br>15.0   | 8.0<br>6.5<br>7.0<br>9.0<br>11.5    | 5.5<br>5.5<br>5.0<br>7.0<br>9.0   | 7.0<br>6.0<br>6.0<br>8.0<br>10.5   | 3.5<br>4.5<br>8.0<br>8.0<br>5.0  | 2.0<br>2.0<br>4.5<br>5.0<br>3.5 | 3.0<br>3.0<br>6.5<br>7.0<br>4.0  | 3.0<br>3.5<br>3.0<br>1.5<br>2.5        | 2.0<br>2.0<br>1.5<br>0.5<br>1.5 | 2.5<br>2.5<br>2.0<br>1.0<br>2.0 |
| 16<br>17<br>18<br>19<br>20       | 14.0<br>12.5<br>10.0<br>11.5<br>12.5    | 12.5<br>9.0<br>8.5<br>9.0<br>11.0    | 13.5<br>11.0<br>9.0<br>10.5<br>12.0    | 11.5<br>9.5<br>8.0<br>10.0<br>9.0   | 9.5<br>6.5<br>5.5<br>7.0<br>6.0   | 11.0<br>8.0<br>7.0<br>8.5<br>7.0   | 4.0<br>5.0<br>5.0<br>5.0<br>5.0  | 3.0<br>3.5<br>5.0<br>4.5<br>3.5 | 3.5<br>4.5<br>5.0<br>4.5<br>4.5  | 2.0<br>1.5<br>1.0<br>0.0<br>0.0        | 1.0<br>1.0<br>0.0<br>0.0        | 1.5<br>1.0<br>0.0<br>0.0        |
| 21<br>22<br>23<br>24<br>25       | 13.0<br>13.0<br>14.0<br>15.5<br>15.5    | 11.5<br>11.5<br>11.5<br>14.0<br>11.0 | 12.5<br>12.0<br>13.0<br>15.0<br>13.5   | 6.0<br>6.5<br>7.0<br>10.0<br>12.0   | 5.0<br>5.0<br>5.0<br>5.5<br>10.0  | 5.5<br>5.5<br>6.0<br>7.5<br>11.5   | 3.5<br>2.5<br>3.5<br>3.5<br>2.0  | 2.5<br>1.5<br>2.0<br>2.0<br>1.0 | 3.0<br>2.0<br>2.5<br>3.0<br>1.5  | 0.0<br>1.0<br>4.0<br>4.0<br>2.5        | 0.0<br>0.0<br>1.0<br>2.5<br>1.5 | 0.0<br>0.5<br>2.0<br>3.5<br>2.0 |
| 26<br>27<br>28<br>29<br>30<br>31 | 11.0<br>8.0<br>8.0<br>9.0<br>9.0<br>8.5 | 8.0<br>7.5<br>7.0<br>6.5<br>7.0      | 9.0<br>8.0<br>7.5<br>8.0<br>8.0<br>7.5 | 11.0<br>9.5<br>9.5<br>8.0<br>9.0    | 9.0<br>8.5<br>7.5<br>7.0<br>8.0   | 10.0<br>9.0<br>8.5<br>7.5<br>8.5   | 1.0<br>0.5<br>0.0<br>0.0<br>0.0  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.5<br>0.0<br>0.0<br>0.0<br>0.0  | 3.5<br>4.0<br>5.5<br>5.0<br>4.0<br>2.0 | 2.0<br>2.0<br>3.0<br>4.0<br>2.0 | 2.5<br>3.0<br>4.0<br>4.5<br>2.5 |
| MONTH                            | 17.5                                    | 6.5                                  | 12.3                                   | 13.5                                | 5.0                               | 8.4                                | 11.0                             | 0.0                             | 4.1                              | 5.5                                    | 0.0                             | 1.2                             |

# STREAMS TRIBUTARY TO LAKE ONTARIO

# 0422026250 NORTHRUP CREEK AT NORTH GREECE, NY--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DAY                                                                                                   | MAX                                                                                                                                  | MIN<br>FEBRUARY                                                                                                                                                                      | MEAN                                                                                                                 | MAX                                                                                                                          | MIN<br>MARCH                                                                                                                                                 | MEAN                                                                                                                         | MAX                                                                                                                                        | MIN<br>APRIL                                                                                                                                 | MEAN                                                                                                                 | MAX                                                                                                                  | MIN<br>MAY                                                                                                           | MEAN                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5                                                                                 | 1.5<br>1.0<br>1.5<br>1.5                                                                                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                      | 0.5<br>0.5<br>1.0<br>0.5<br>0.0                                                                                      | 2.5<br>4.0<br>5.5<br>3.0<br>0.0                                                                                              | 0.0<br>0.5<br>3.0<br>0.0                                                                                                                                     | 1.0<br>2.5<br>4.5<br>1.0                                                                                                     | 8.0<br>6.0<br>5.5<br>5.5                                                                                                                   | 6.0<br>4.5<br>4.5<br>3.0<br>3.0                                                                                                              | 7.0<br>5.0<br>5.5<br>4.5<br>4.5                                                                                      | 12.5<br>11.5<br>10.5<br>14.0<br>15.0                                                                                 | 7.0<br>9.5                                                                                                           | 10.0<br>10.5<br>9.0<br>11.0<br>12.5                                                                                                  |
| 6<br>7<br>8<br>9<br>10                                                                                | 0.0<br>0.5<br>3.0<br>3.0<br>4.0                                                                                                      | 0.0<br>0.0<br>0.5<br>1.5                                                                                                                                                             | 0.0<br>0.0<br>2.0<br>2.0<br>2.5                                                                                      | 1.5<br>2.5<br>6.0<br>10.0<br>7.0                                                                                             | 0.0<br>1.5<br>1.5<br>5.5<br>1.0                                                                                                                              | 0.5<br>2.0<br>3.5<br>7.5<br>3.5                                                                                              | 6.5<br>5.5<br>8.5<br>11.5                                                                                                                  | 2.5<br>2.5<br>5.5<br>8.5<br>7.5                                                                                                              | 4.5<br>4.5<br>7.0<br>10.0<br>9.5                                                                                     | 16.0<br>16.5<br>14.5<br>15.0<br>15.5                                                                                 | 12.5<br>14.5<br>12.0<br>11.5<br>12.5                                                                                 | 14.5<br>15.5<br>12.5<br>13.5<br>14.0                                                                                                 |
| 11<br>12<br>13<br>14<br>15                                                                            | 3.5<br>1.5<br>1.0<br>0.5<br>2.5                                                                                                      | 0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                             | 1.0<br>0.5<br>0.0<br>0.0                                                                                             | 3.0<br>5.0<br>6.0<br>7.5<br>7.5                                                                                              | 0.0<br>2.5<br>3.0<br>4.5<br>4.5                                                                                                                              | 1.5<br>3.5<br>4.5<br>5.5<br>6.0                                                                                              | 14.0<br>14.0<br>13.0<br>13.5<br>17.0                                                                                                       |                                                                                                                                              | 10.5<br>12.5<br>12.0<br>12.0<br>14.5                                                                                 | 14.0<br>12.5<br>10.5<br>9.5<br>13.5                                                                                  | 10.5<br>10.5<br>9.0<br>8.5<br>8.0                                                                                    | 12.5<br>11.5<br>9.5<br>9.0<br>10.5                                                                                                   |
| 16<br>17<br>18<br>19<br>20                                                                            | 3.5<br>2.5<br>1.0<br>2.5<br>4.5                                                                                                      | 2.5<br>0.5<br>0.0<br>0.0<br>2.5                                                                                                                                                      | 3.0<br>1.5<br>0.5<br>1.5<br>3.5                                                                                      | 7.0<br>4.5<br>4.5<br>5.0<br>4.5                                                                                              | 4.0<br>2.5<br>4.0<br>3.5<br>3.5                                                                                                                              | 6.0<br>3.5<br>4.0<br>4.0                                                                                                     | 21.0<br>22.0<br>22.0<br>21.5<br>18.0                                                                                                       | 14.5<br>17.0<br>18.0<br>18.0<br>13.0                                                                                                         | 17.5<br>19.5<br>20.0<br>19.5<br>15.5                                                                                 | 14.5<br>14.0<br>11.5<br>10.5                                                                                         | 11.0<br>11.0<br>10.0<br>9.0<br>8.5                                                                                   | 12.5<br>12.0<br>10.5<br>9.5<br>9.5                                                                                                   |
| 21<br>22<br>23<br>24<br>25                                                                            | 4.5<br>4.0<br>2.5<br>4.5<br>6.5                                                                                                      | 4.0<br>2.0<br>0.5<br>1.0<br>3.5                                                                                                                                                      | 4.5<br>3.0<br>1.5<br>2.5<br>5.0                                                                                      | 4.5<br>2.0<br>2.5<br>4.0<br>3.0                                                                                              | 1.0<br>0.0<br>0.0<br>0.5<br>1.0                                                                                                                              | 3.5<br>1.0<br>1.0<br>2.5<br>2.0                                                                                              | 13.0<br>9.5<br>11.0<br>13.0<br>10.5                                                                                                        | 9.5<br>6.5<br>5.5<br>7.5<br>9.0                                                                                                              | 11.0<br>7.5<br>8.0<br>10.0                                                                                           | 12.0<br>14.0<br>16.5<br>15.5<br>14.0                                                                                 | 8.5<br>9.5<br>11.5<br>13.5<br>11.5                                                                                   | 10.5<br>11.5<br>14.0<br>15.0<br>13.0                                                                                                 |
| 26<br>27<br>28<br>29<br>30<br>31                                                                      | 6.5<br>4.0<br>1.5<br>                                                                                                                | 4.0<br>0.0<br>0.0<br>                                                                                                                                                                | 5.5<br>2.5<br>0.5<br>                                                                                                | 1.5<br>4.0<br>6.5<br>8.0<br>11.0<br>9.5                                                                                      | 1.0<br>1.0<br>1.5<br>4.5<br>6.5                                                                                                                              | 1.0<br>2.5<br>4.0<br>6.0<br>8.5<br>8.0                                                                                       | 10.0<br>11.5<br>10.0<br>7.5<br>10.0                                                                                                        | 7.5<br>6.5<br>7.5<br>6.5<br>7.0                                                                                                              | 8.5<br>9.0<br>8.5<br>7.0<br>8.0                                                                                      | 16.0<br>17.0<br>18.0<br>19.0<br>20.5<br>20.0                                                                         | 13.5<br>13.0<br>14.5<br>16.0<br>16.5<br>18.5                                                                         | 14.5<br>15.0<br>16.0<br>18.0<br>18.5                                                                                                 |
| MONTH                                                                                                 | 6.5                                                                                                                                  | 0.0                                                                                                                                                                                  | 1.7                                                                                                                  | 11.0                                                                                                                         | 0.0                                                                                                                                                          | 3.5                                                                                                                          | 22.0                                                                                                                                       | 2.5                                                                                                                                          | 10.1                                                                                                                 | 20.5                                                                                                                 | 7.0                                                                                                                  | 12.7                                                                                                                                 |
| DAY                                                                                                   | MAX                                                                                                                                  | MIN<br>JUNE                                                                                                                                                                          | MEAN                                                                                                                 | MAX                                                                                                                          | MIN<br>JULY                                                                                                                                                  | MEAN                                                                                                                         | MAX                                                                                                                                        | MIN<br>AUGUST                                                                                                                                | MEAN                                                                                                                 | MAX                                                                                                                  | MIN<br>SEPTEMBE                                                                                                      | MEAN<br>CR                                                                                                                           |
| 1<br>2<br>3<br>4<br>5                                                                                 | 20.0<br>19.0<br>16.5                                                                                                                 | 17.0<br>16.5                                                                                                                                                                         | 18.5<br>17.5                                                                                                         | 24.5                                                                                                                         | 22.0                                                                                                                                                         | 23.0                                                                                                                         |                                                                                                                                            | 23.0                                                                                                                                         | 24.0                                                                                                                 |                                                                                                                      |                                                                                                                      | 20.5                                                                                                                                 |
|                                                                                                       | 16.0<br>19.5                                                                                                                         | 14.0<br>13.5<br>16.0                                                                                                                                                                 | 17.5<br>15.0<br>14.5<br>17.5                                                                                         | 24.5<br>26.0<br>26.0<br>25.5<br>23.0                                                                                         | 23.5<br>24.0<br>23.0<br>20.5                                                                                                                                 | 24.5<br>25.0                                                                                                                 | 25.5<br>25.5<br>23.5<br>23.0<br>23.5                                                                                                       | 23.5                                                                                                                                         | 24.0<br>24.5<br>22.5<br>22.0<br>23.0                                                                                 | 21.5<br>21.5<br>22.5<br>22.0<br>20.5                                                                                 | 19.5<br>19.5<br>20.5<br>20.5<br>18.5                                                                                 | 20.5<br>21.5<br>21.0<br>20.0                                                                                                         |
| 6<br>7<br>8<br>9<br>10                                                                                |                                                                                                                                      | 13.5                                                                                                                                                                                 | 17.5                                                                                                                 | 23.0                                                                                                                         | 24.0<br>23.0                                                                                                                                                 | 24.5<br>25.0<br>24.5<br>21.5                                                                                                 | 25.5<br>23.5<br>23.0<br>23.5                                                                                                               | 23.5<br>21.5<br>20.5                                                                                                                         | 24.0<br>24.5<br>22.5<br>22.0<br>23.0<br>19.5<br>19.0<br>19.0<br>20.0                                                 | 21.5<br>22.5                                                                                                         | 19.5<br>19.5<br>20.5<br>20.5<br>18.5<br>17.5<br>18.0<br>19.5<br>20.0<br>20.5                                         | 20.5<br>21.5<br>21.0                                                                                                                 |
| 7<br>8<br>9                                                                                           | 19.5<br>18.5<br>17.0<br>19.0<br>20.0                                                                                                 | 13.5<br>16.0<br>15.5<br>14.0<br>15.0<br>18.5                                                                                                                                         | 17.5                                                                                                                 | 26.0<br>26.0<br>25.5<br>23.0<br>21.0<br>21.5<br>22.5<br>21.5<br>21.5<br>22.5<br>21.5                                         | 24.0<br>23.0<br>20.5<br>19.0<br>19.0<br>20.5<br>21.5                                                                                                         | 24.5<br>25.0<br>24.5<br>21.5<br>20.0<br>20.5<br>22.0<br>22.0<br>20.0<br>18.5<br>18.5<br>20.0                                 | 25.5<br>23.5                                                                                                                               | 23.5<br>21.5<br>20.5<br>22.0<br>19.0<br>18.0<br>18.0                                                                                         | 24.5<br>22.5<br>22.0<br>23.0<br>19.5<br>19.0<br>19.0<br>20.0<br>21.5<br>22.5<br>23.5<br>23.5                         | 21.5<br>21.5<br>22.5<br>22.0<br>20.5<br>19.5<br>21.0<br>22.0<br>22.5<br>23.0<br>22.0<br>18.0<br>19.5<br>20.0         | 19.5<br>19.5<br>20.5<br>20.5<br>18.5<br>17.5<br>18.0<br>19.5<br>20.0<br>20.5<br>18.0<br>16.5<br>17.0<br>18.5<br>20.0 | 20.5<br>21.5<br>21.0<br>20.0<br>18.5<br>19.5<br>20.5<br>21.5                                                                         |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                             | 19.5<br>18.5<br>17.0<br>19.0<br>20.0<br>19.5<br>22.0<br>21.5<br>19.0<br>18.5                                                         | 13.5<br>16.0<br>15.5<br>14.0<br>15.0<br>18.5<br>17.5<br>18.5<br>17.5                                                                                                                 | 17.5<br>17.0<br>15.5<br>17.0<br>19.5<br>18.5<br>20.0<br>19.5<br>18.0<br>17.5<br>16.5                                 | 23.0<br>21.0<br>21.5<br>23.5<br>22.5<br>21.5<br>19.5<br>20.0<br>21.5<br>22.0                                                 | 24.0<br>23.0<br>20.5<br>19.0<br>19.0<br>20.5<br>21.5<br>19.0<br>17.5<br>17.0<br>18.5<br>19.0<br>20.5                                                         | 24.5<br>25.0<br>24.5<br>21.5<br>20.0<br>20.5<br>22.0<br>20.0<br>21.5<br>20.0<br>20.0<br>20.5<br>21.5                         | 25.5<br>23.5<br>23.0<br>23.5<br>22.0<br>20.0<br>20.0<br>20.5<br>21.5<br>22.5<br>23.5<br>24.5                                               | 23.5<br>21.5<br>20.5<br>22.0<br>19.0<br>18.0<br>18.0<br>18.0<br>21.0<br>21.0<br>22.5<br>23.0                                                 | 19.0<br>19.0<br>20.0<br>21.5<br>22.5<br>23.5<br>23.5                                                                 | 22.0<br>22.5<br>23.0<br>22.0<br>18.0<br>19.5<br>20.0                                                                 | 19.5<br>20.0<br>20.5<br>18.0<br>16.5<br>17.0<br>18.5<br>20.0                                                         | 20.5<br>21.5<br>21.0<br>20.0<br>18.5<br>19.5<br>20.5<br>21.5<br>22.0<br>19.5<br>17.5<br>18.5                                         |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                     | 19.5<br>18.5<br>17.0<br>19.0<br>20.0<br>19.5<br>22.0<br>21.5<br>19.0<br>18.5<br>17.0<br>16.5<br>17.0<br>18.0<br>19.0                 | 13.5<br>16.0<br>15.5<br>14.0<br>15.0<br>18.5<br>17.5<br>18.5<br>17.5<br>16.0<br>16.0<br>15.5<br>15.0<br>15.0                                                                         | 17.5<br>17.0<br>15.5<br>17.0<br>19.5<br>18.5<br>20.0<br>19.5<br>18.0<br>17.5<br>16.5                                 | 23.0<br>21.0<br>21.5<br>23.5<br>22.5<br>21.5<br>19.5<br>20.0<br>21.5<br>22.0<br>23.0                                         | 24.0<br>23.0<br>20.5<br>19.0<br>19.0<br>20.5<br>21.5<br>19.0<br>17.5<br>17.0<br>18.5<br>19.0<br>20.5                                                         | 24.5<br>25.0<br>24.5<br>21.5<br>20.0<br>20.5<br>22.0<br>20.0<br>18.5<br>20.0<br>20.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.0 | 25.5<br>23.5<br>23.0<br>23.5<br>22.0<br>20.0<br>20.0<br>20.5<br>21.5<br>22.5<br>24.5<br>24.5                                               | 23.5<br>21.5<br>20.5<br>22.0<br>19.0<br>18.0<br>18.0<br>18.5<br>20.0<br>21.0<br>22.5<br>23.0<br>23.0<br>23.0<br>23.5<br>20.5                 | 19.0<br>19.0<br>20.0<br>21.5<br>22.5<br>23.5<br>23.5<br>23.5<br>24.0<br>24.0<br>23.5<br>21.0                         | 22.0<br>22.5<br>23.0<br>22.0<br>18.0<br>19.5<br>20.0<br>21.0<br>20.0<br>19.5<br>20.0<br>21.5                         | 19.5<br>20.0<br>20.5<br>18.0<br>16.5<br>17.0<br>18.5<br>20.0<br>19.0<br>18.0<br>19.0                                 | 20.5<br>21.5<br>21.0<br>20.0<br>18.5<br>19.5<br>20.5<br>21.5<br>22.0<br>19.5<br>17.5<br>19.0<br>20.5                                 |
| 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 | 19.5<br>18.5<br>17.0<br>19.0<br>20.0<br>19.5<br>22.0<br>21.5<br>19.0<br>18.5<br>17.0<br>16.5<br>17.0<br>18.0<br>19.0<br>20.0<br>21.5 | 13.5<br>16.0<br>15.5<br>14.0<br>15.0<br>18.5<br>17.5<br>18.5<br>17.5<br>16.5<br>17.0<br>16.0<br>15.5<br>15.0<br>15.0<br>15.5<br>16.5<br>19.0<br>20.5<br>20.0<br>19.5<br>21.5<br>20.0 | 17.5<br>17.0<br>15.5<br>17.0<br>19.5<br>18.5<br>20.0<br>19.5<br>18.0<br>17.5<br>16.5<br>16.0<br>16.5<br>17.0<br>18.5 | 23.0<br>21.0<br>21.5<br>23.5<br>22.5<br>21.5<br>19.5<br>20.0<br>21.5<br>22.0<br>23.0<br>23.5<br>24.0<br>23.5<br>22.5<br>22.5 | 24.0<br>23.0<br>20.5<br>19.0<br>19.0<br>20.5<br>21.5<br>19.0<br>20.5<br>21.5<br>20.5<br>21.0<br>22.0<br>21.0<br>22.0<br>21.0<br>21.5<br>21.5<br>21.5<br>21.5 | 24.5<br>25.0<br>24.5<br>21.5<br>20.0<br>20.5<br>22.0<br>20.0<br>18.5<br>20.0<br>20.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.0 | 25.5<br>23.5<br>23.0<br>23.5<br>22.0<br>20.0<br>20.0<br>20.5<br>21.5<br>22.5<br>24.5<br>24.5<br>24.5<br>24.5<br>24.5<br>24.5<br>22.5<br>22 | 23.5<br>20.5<br>20.5<br>22.0<br>19.0<br>18.0<br>18.0<br>18.5<br>20.0<br>21.0<br>22.5<br>23.0<br>23.0<br>23.0<br>23.5<br>20.5<br>20.5<br>20.5 | 19.0<br>19.0<br>20.0<br>21.5<br>22.5<br>23.5<br>23.5<br>23.5<br>24.0<br>24.0<br>23.5<br>21.0<br>21.0<br>21.0<br>20.5 | 22.0<br>22.5<br>23.0<br>22.0<br>18.0<br>19.5<br>20.0<br>21.0<br>20.0<br>21.5<br>22.5<br>22.5<br>21.0<br>19.5<br>27.5 | 19.5<br>20.0<br>20.5<br>18.0<br>16.5<br>17.0<br>18.5<br>20.0<br>19.0<br>21.0<br>21.0<br>21.0                         | 20.5<br>21.5<br>21.0<br>20.0<br>18.5<br>20.5<br>21.5<br>22.0<br>19.5<br>17.5<br>18.5<br>19.0<br>20.5<br>19.0<br>20.0<br>22.0<br>22.0 |

# 0422026250 NORTHRUP CREEK AT NORTH GREECE, NY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                        | Time                                                         | Ending<br>time                                               | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)        | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|-----------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT<br>05-06<br>06-09<br>NOV                                                | 1525<br>1125                                                 | 1025<br>1025                                                 | 11<br>6.1                                                          | 35<br>18                                       | 74<br>69                                                       | 97<br>62                                                 | 40                                                                           | 9<br>                                                            | .02                                                                      | .64<br>.57                                                                    | 2.6                                                             | .120<br>.110                                                             | .250                                                  |
| 21-25<br>25-26<br>26-28<br>28-29<br>29-30<br>NOV 30-                        | 1045<br>0945<br>1045<br>1645<br>1030                         | 0845<br>0945<br>1545<br>0945<br>0130                         | 4.5<br>8.5<br>4.9<br>7.3<br>20                                     | 3.4<br>7.0<br>3.4<br>6.4<br>6.3                | 112<br>101<br>111<br>125<br>103                                | 129<br>117<br>118<br>116<br>85                           | <br><br>                                                                     | <br><br>                                                         | .02<br>.02<br>.02<br>.06                                                 | .56<br>.57<br>.49<br>.59                                                      | 2.3<br>2.1<br>2.2<br>2.7<br>1.8                                 | .075<br>.098<br>.114<br>.140<br>.118                                     | .120<br>.160<br>.160<br>.190<br>.220                  |
| DEC 03<br>14-15<br>15-17<br>17-20                                           | 0230<br>1135<br>0735<br>1120                                 | 0930<br>0635<br>1035<br>1020                                 | 11<br>16<br>15<br>20                                               | 3.6<br>32<br>12<br>13                          | 126<br>117<br>128<br>121                                       | 87<br>82<br>72<br>77                                     | <br><br>                                                                     | <br><br>                                                         | .05<br>.13<br>.15<br>.14                                                 | .74<br>.78<br>1.0<br>.91                                                      | 2.0<br>2.3<br>1.5<br>1.8                                        | .110<br>.180<br>.106<br>.094                                             | .150<br>.340<br>.200<br>.160                          |
| JAN 31-<br>FEB 01<br>01-04<br>10-11<br>11-15                                | 1130<br>1930<br>1100<br>1135                                 | 1829<br>1030<br>1000<br>1034                                 | 53<br>37<br>27<br>19                                               | 81<br>43<br>16<br>8.4                          | 139<br>154<br>159<br>185                                       | 62<br>54<br>58<br>60                                     | <br><br>                                                                     | <br><br>                                                         | .23<br>.14<br>.21<br>.23                                                 | 1.9<br>1.1<br>.93<br>.85                                                      | 2.1<br>2.1<br>2.0<br>2.5                                        | .080<br>.048<br>.011<br>.043                                             | .470<br>.213<br>.149<br>.094                          |
| MAR<br>09-10<br>10-11<br>18-20<br>20-20<br>20-21<br>21-25<br>26-27<br>27-28 | 1840<br>0640<br>1040<br>1040<br>2240<br>1035<br>1045<br>0445 | 0540<br>0940<br>0940<br>2140<br>0940<br>0934<br>0344<br>0944 | 25<br>21<br>10<br>20<br>22<br>15<br>47<br>42                       | 34<br>15<br>2.7<br>14<br>12<br>5.7<br>35<br>31 | 158<br>198<br>183<br>169<br>145<br>211<br>179<br>141           | 57<br>57<br>66<br>63<br>53<br>61<br>50<br>48             | 50<br><br><br><br><br>73<br>42                                               | 10<br><br><br><br><br>14<br>9                                    | .13<br>.12<br>.11<br>.13<br>.17<br>.14<br>.15                            | 1.2<br>.95<br>.83<br>1.2<br>1.1<br>.86<br>1.4                                 | 1.6<br>1.6<br>2.5<br>2.2<br>1.6<br>2.0<br>1.7                   | .022<br>.020<br>.011<br>.016<br>.019<br>.018<br>.016                     | .173<br>.091<br>.060<br>.123<br>.096<br>.063<br>.177  |
| MAR 28-<br>APR 01<br>02-03<br>03-04<br>13-13<br>13-14<br>15-18<br>18-22     | 1050<br>1050<br>0450<br>1005<br>2205<br>0955                 | 0949<br>0349<br>0949<br>2105<br>1705<br>0854<br>0844         | 17<br>57<br>55<br>107<br>86<br>22<br>9.5                           | 5.2<br>72<br>54<br>79<br>100<br>27<br>14       | 174<br>112<br>92<br>95<br>78<br>105<br>171                     | 55<br>40<br>38<br>37<br>35<br>39<br>54                   | <br>116<br>76<br><br><br>                                                    | 24<br>13<br><br>                                                 | .04<br>.11<br>.09<br>.05<br>.07<br>.03                                   | .79<br>2.0<br>1.4<br>2.2<br>1.8<br>1.3                                        | 2.0<br>1.6<br>1.4<br>1.5<br>1.1<br>1.6<br>2.0                   | .013<br>.020<br>.023<br>.049<br>.042<br>.064                             | .076<br>.361<br>.248<br>.709<br>.300<br>.164          |
| MAY<br>13-13<br>13-16<br>16-20<br>29-30<br>30-31<br>MAY 31-                 | 1015<br>2210<br>1125<br>1535<br>0935                         | 2115<br>0910<br>0925<br>0834<br>0834                         | 195<br>99<br>18<br>187<br>77                                       | 200<br>60<br>12<br>170<br>76                   | 55<br>64<br>86<br>44<br>55                                     | 26<br>30<br>43<br>27<br>30                               | 294<br>88<br><br>272<br>85                                                   | 46<br>15<br><br>47<br>18                                         | .07<br>.05<br>.03<br>.18                                                 | 2.3<br>1.3<br>.99<br>2.1<br>1.3                                               | .75<br>1.2<br>3.4<br>1.1                                        | .057<br>.047<br>.057<br>.079                                             | .704<br>.233<br>.127<br>.768<br>.357                  |
| JUN 03<br>12-12<br>12-13<br>14-15<br>15-17<br>17-20<br>27-28                | 1125<br>0405<br>1605<br>0255<br>1855<br>1040<br>0950         | 0925<br>1505<br>0904<br>1755<br>0955<br>0840<br>0849         | 24<br>11<br>12<br>41<br>35<br>13                                   | 39<br>29<br>38<br>93<br>71<br>27<br>54         | 38<br>89<br>82<br>60<br>59<br>94<br>84                         | 75<br>55<br>49<br>32<br>31<br>53<br>52                   | 44<br>36<br>41<br>123<br>93<br><br>78                                        | 9<br>8<br>10<br>23<br>18<br>                                     | .03 <.01 .03 .02 .03 <.01 <.01                                           | 1.2<br>1.2<br>1.7<br>1.5<br>1.0                                               | 1.6<br>2.9<br>2.2<br>1.2<br>1.3<br>2.1<br>2.0                   | .090<br>.200<br>.170<br>.108<br>.078<br>.120                             | .238<br>.304<br>.312<br>.442<br>.337<br>.247          |
| JUN 28-<br>JUL 01<br>AUG                                                    | 0950                                                         | 0849                                                         | 12                                                                 | 42                                             | 85                                                             | 50                                                       | 54                                                                           | 12                                                               | <.01                                                                     | 1.2                                                                           | 1.7                                                             | .149                                                                     | .157                                                  |
| 01-05<br>SEP                                                                | 1010                                                         | 0909                                                         | 5.9                                                                | 16                                             | 61                                                             | 66                                                       |                                                                              |                                                                  | <.01                                                                     | .81                                                                           | 2.0                                                             | .171                                                                     | .241                                                  |
| 14-15<br>15-16<br>16-19<br>27-27<br>27-30                                   | 1400<br>1000<br>1050<br>0615<br>2215                         | 0900<br>0859<br>0949<br>2115<br>0915                         | 5.5<br>7.0<br>5.6<br>14<br>7.2                                     | 10<br>19<br>12<br>52<br>22                     | 42<br>39<br>45<br>42<br>47                                     | 50<br>42<br>46<br>51<br>52                               | <br><br>112<br>                                                              | <br><br>18<br>                                                   | <.10<br><.10<br><.10<br><.01<br>.01                                      | .64<br>.72<br>.52<br>.82<br>.76                                               | 1.9<br>1.8<br>1.6<br>1.6                                        | .109<br>.117<br>.111<br>.118<br>.116                                     | .187<br>.216<br>.186<br>.360<br>.242                  |

## 04221000 GENESEE RIVER AT WELLSVILLE, NY

LOCATION.--Lat 42°07'20", long 77°57'27", Allegany County, Hydrologic Unit 04130002, on left bank 35 ft upstream from concrete weir at Wellsville, 0.5 mi upstream from bridge on State Highway 17, 0.6 mi upstream from Crowner Brook and sewage treatment plant, 0.6 mi downstream from Dyke Creek, and 140.9 mi upstream from mouth.

DRAINAGE AREA.--288 mi<sup>2</sup>.

PERIOD OF RECORD.--August 1955 to September 1958, October 1972 to current year. Records for June 1916 to September 1972,

published as Genesee River at Scio (station 04221500) at site 5.2 mi downstream, are not equivalent because of difference in drainage areas.
REVISED RECORDS.--WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 1,470.00 ft above NGVD of 1929. October 1957 to September 1958, nonrecording gage at site 0.4 mi upstream at datum 3.00 ft higher. August 1955 to September 1957, at same site at datum 8.00 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 22,700 ft<sup>3</sup>/s, Jan. 19, 1996, gage height, 16.13 ft; minimum instantaneous

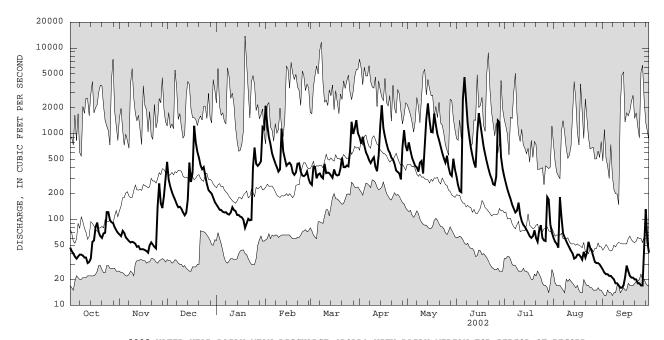
discharge not determined.

EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum discharge since June 1916, 38,500 ft<sup>3</sup>/s, June 23, 1972, gage height, 20.7 ft, present datum, from floodmark, on basis of contracted-opening measurement of peak flow 0.5 mi downstream.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 3,600 ft<sup>3</sup>/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date       | Time       | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|---------------------|------------|------------|-----------------------------------|---------------------|
| Jun. 6 | 0730 | *5.330                            | *9.06               | No other p | eak greate | r than base disch                 | narge.              |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


Minimum discharge, 14 ft<sup>3</sup>/s, Sept. 12, 13, gage height, 4.21 ft.

|                                  |                                  |                                 |                                             |                                          | DAIL                  | y mean va                                  | LUES                             |                                        |                                   |                                    |                                  |                             |
|----------------------------------|----------------------------------|---------------------------------|---------------------------------------------|------------------------------------------|-----------------------|--------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------|------------------------------------|----------------------------------|-----------------------------|
| DAY                              | OCT                              | NOV                             | DEC                                         | JAN                                      | FEB                   | MAR                                        | APR                              | MAY                                    | JUN                               | JUL                                | AUG                              | SEP                         |
| 1                                | 47                               | 67                              | 470                                         | e150                                     | 2120                  | 266                                        | 915                              | 630                                    | 315                               | 315                                | 61                               | 26                          |
| 2                                | 43                               | 64                              | 289                                         | e140                                     | 1280                  | 253                                        | 768                              | 794                                    | 250                               | 264                                | 55                               | 24                          |
| 3                                | 40                               | 74                              | 240                                         | e130                                     | 915                   | 414                                        | 924                              | 637                                    | 214                               | 224                                | 52                               | 23                          |
| 4                                | 37                               | 70                              | 209                                         | 129                                      | 754                   | 411                                        | 724                              | 528                                    | 208                               | 196                                | 47                               | 23                          |
| 5                                | 35                               | 62                              | 187                                         | 123                                      | 589                   | 303                                        | 608                              | 472                                    | 2500                              | 173                                | 182                              | 22                          |
| 6                                | 37                               | 59                              | 170                                         | 121                                      | 512                   | 336                                        | 557                              | 421                                    | 4570                              | 149                                | 108                              | 22                          |
| 7                                | 39                               | 56                              | 152                                         | 122                                      | 453                   | 345                                        | 493                              | 406                                    | 2400                              | 134                                | 69                               | 21                          |
| 8                                | 39                               | 54                              | 139                                         | 116                                      | 407                   | 316                                        | 455                              | 362                                    | 1310                              | 121                                | 62                               | 20                          |
| 9                                | 38                               | 55                              | 141                                         | 114                                      | 362                   | 302                                        | 497                              | 462                                    | 925                               | 127                                | 56                               | 18                          |
| 10                               | 36                               | 54                              | 133                                         | 121                                      | 384                   | 447                                        | 532                              | 484                                    | 697                               | 157                                | 51                               | 18                          |
| 11                               | 36                               | 52                              | 121                                         | 139                                      | 1150                  | 348                                        | 411                              | 344                                    | 555                               | 113                                | 47                               | 17                          |
| 12                               | 31                               | 48                              | 112                                         | 129                                      | 624                   | 353                                        | 366                              | 722                                    | 458                               | 96                                 | 43                               | 16                          |
| 13                               | 32                               | 49                              | 120                                         | 126                                      | 518                   | 347                                        | 553                              | 1490                                   | 404                               | 87                                 | 40                               | 16                          |
| 14                               | 35                               | 45                              | 170                                         | 113                                      | 424                   | 327                                        | 1230                             | 2260                                   | 999                               | 82                                 | 35                               | 17                          |
| 15                               | 55                               | 45                              | 462                                         | 113                                      | 446                   | 307                                        | 2150                             | 1450                                   | 1740                              | 76                                 | 36                               | 21                          |
| 16                               | 57                               | 45                              | 274                                         | 108                                      | 459                   | 384                                        | 1170                             | 1050                                   | 1280                              | 70                                 | 39                               | 29                          |
| 17                               | 82                               | 44                              | 352                                         | 106                                      | 432                   | 336                                        | 923                              | 1040                                   | 962                               | 64                                 | 39                               | 25                          |
| 18                               | 92                               | 43                              | 1240                                        | 99                                       | 353                   | 326                                        | 764                              | 1720                                   | 718                               | 61                                 | 37                               | 22                          |
| 19                               | 71                               | 41                              | 793                                         | e80                                      | 332                   | 332                                        | 652                              | 1270                                   | 577                               | 64                                 | 34                               | 21                          |
| 20                               | 64                               | 50                              | 615                                         | e90                                      | 354                   | 397                                        | 599                              | 981                                    | 472                               | 75                                 | 42                               | 21                          |
| 21                               | 61                               | 54                              | 522                                         | 102                                      | 449                   | 526                                        | 527                              | 842                                    | 396                               | 61                                 | 36                               | 20                          |
| 22                               | 69                               | 51                              | 431                                         | 98                                       | 453                   | 409                                        | 501                              | 706                                    | 337                               | 55                                 | 41                               | 20                          |
| 23                               | 70                               | 48                              | 387                                         | 99                                       | 363                   | 407                                        | 447                              | 598                                    | 302                               | 75                                 | 55                               | 18                          |
| 24                               | 122                              | 46                              | 409                                         | 402                                      | 326                   | 427                                        | 374                              | 518                                    | 258                               | 86                                 | 47                               | 18                          |
| 25                               | 122                              | 140                             | 327                                         | 693                                      | 321                   | 417                                        | 359                              | 461                                    | 252                               | 61                                 | 43                               | 17                          |
| 26<br>27<br>28<br>29<br>30<br>31 | 99<br>93<br>91<br>81<br>75<br>70 | 264<br>154<br>136<br>187<br>286 | 259<br>e220<br>e210<br>e200<br>e180<br>e160 | 447<br>422<br>445<br>481<br>1200<br>1140 | 331<br>363<br>297<br> | 622<br>1380<br>995<br>1160<br>1440<br>1020 | 345<br>294<br>700<br>1100<br>726 | 555<br>405<br>339<br>322<br>511<br>381 | 318<br>1430<br>1360<br>534<br>391 | 57<br>56<br>183<br>171<br>88<br>70 | 37<br>32<br>31<br>31<br>30<br>28 | 17<br>55<br>132<br>55<br>41 |
| TOTAL                            | 1899                             | 2443                            | 9694                                        | 7898                                     | 15771                 | 15653                                      | 20664                            | 23161                                  | 27132                             | 3611                               | 1546                             | 815                         |
| MEAN                             | 61.3                             | 81.4                            | 313                                         | 255                                      | 563                   | 505                                        | 689                              | 747                                    | 904                               | 116                                | 49.9                             | 27.2                        |
| MAX                              | 122                              | 286                             | 1240                                        | 1200                                     | 2120                  | 1440                                       | 2150                             | 2260                                   | 4570                              | 315                                | 182                              | 132                         |
| MIN                              | 31                               | 41                              | 112                                         | 80                                       | 297                   | 253                                        | 294                              | 322                                    | 208                               | 55                                 | 28                               | 16                          |
| CFSM                             | 0.21                             | 0.28                            | 1.09                                        | 0.88                                     | 1.96                  | 1.75                                       | 2.39                             | 2.59                                   | 3.14                              | 0.40                               | 0.17                             | 0.09                        |
| IN.                              | 0.25                             | 0.32                            | 1.25                                        | 1.02                                     | 2.04                  | 2.02                                       | 2.67                             | 2.99                                   | 3.50                              | 0.47                               | 0.20                             | 0.11                        |
| STATIST                          | CICS OF MO                       | ONTHLY ME                       | AN DATA F                                   | OR WATER                                 | YEARS 195             | 6 - 2002,                                  | BY WATER                         | YEAR (WY                               | )                                 |                                    |                                  |                             |
| MEAN                             | 220                              | 344                             | 438                                         | 379                                      | 470                   | 743                                        | 855                              | 456                                    | 296                               | 153                                | 114                              | 160                         |
| MAX                              | 784                              | 1001                            | 1016                                        | 1263                                     | 1443                  | 1689                                       | 1925                             | 1208                                   | 1269                              | 656                                | 666                              | 1246                        |
| (WY)                             | 1991                             | 1997                            | 1973                                        | 1996                                     | 1976                  | 1956                                       | 1958                             | 1996                                   | 1989                              | 1977                               | 1994                             | 1977                        |
| MIN                              | 25.0                             | 32.6                            | 50.5                                        | 52.1                                     | 94.4                  | 320                                        | 361                              | 113                                    | 45.3                              | 27.5                               | 23.0                             | 18.8                        |
| (WY)                             | 1958                             | 1999                            | 1999                                        | 1981                                     | 1958                  | 1981                                       | 1976                             | 1985                                   | 1991                              | 1993                               | 1999                             | 1995                        |

e Estimated

# 04221000 GENESEE RIVER AT WELLSVILLE, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1956 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 89586                  | 130287              |                         |
| ANNUAL MEAN              | 245                    | 357                 | 385                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 564 1956                |
| LOWEST ANNUAL MEAN       |                        |                     | 210 1999                |
| HIGHEST DAILY MEAN       | 4190 Apr 7             | 4570 Jun 6          | 13800 Jan 19 1996       |
| LOWEST DAILY MEAN        | 16 Aug 15              | 16 Sep 12           | 13 Sep 2 1991           |
| ANNUAL SEVEN-DAY MINIMUM | 18 Aug 12              | 17 Sep 8            | 15 Sep 3 1995           |
| ANNUAL RUNOFF (CFSM)     | 0.85                   | 1.24                | 1.34                    |
| ANNUAL RUNOFF (INCHES)   | 11.57                  | 16.83               | 18.14                   |
| 10 PERCENT EXCEEDS       | 561                    | 918                 | 874                     |
| 50 PERCENT EXCEEDS       | 107                    | 196                 | 200                     |
| 90 PERCENT EXCEEDS       | 29                     | 35                  | 39                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04223000 GENESEE RIVER AT PORTAGEVILLE, NY

LOCATION.--Lat 42°34'13", long 78°02'33", Wyoming County, Hydrologic Unit 04130002, on left bank at Portageville, 500 ft downstream from bridge on State Highway 436, 800 ft upstream from abandoned railroad bridge piers, 0.9 mi upstream from Upper Falls, and 89.8 mi upstream from mouth. DRAINAGE AREA.--984 mi<sup>2</sup>.

PERIOD OF RECORD.--August 1908 to current year. Prior to December 1945, published as "at St. Helena". Records published for both sites December 1945 to September 1950.

REVISED RECORDS.--WSP 264: 1908. WSP 564: 1916(M). WSP 2112; WDR NY-82-3: Drainage area. WDR NY 1972: 1950(M), 1951(M), 1956(M),

1959(M), 1964(M), 1967(M).

1959(M), 1964(M), 1967(M).

GAGE.--Water-stage recorder. Datum of gage is 1,080.00 ft above NGVD of 1929 (levels by Corps of Engineers). Prior to Aug. 24, 1911, nonrecording gage and Aug. 24, 1911 to Sept. 30, 1946, water-stage recorder at site 8 mi downstream at different datum. Oct. 1, 1946 to June 21, 1972, water-stage recorder at site 1,200 ft downstream at datum 2.60 ft higher (destroyed by flood of June 1972). July 12, 1972 to May 18, 1973, nonrecording gage at site 500 ft upstream at datum 11.48 ft higher.

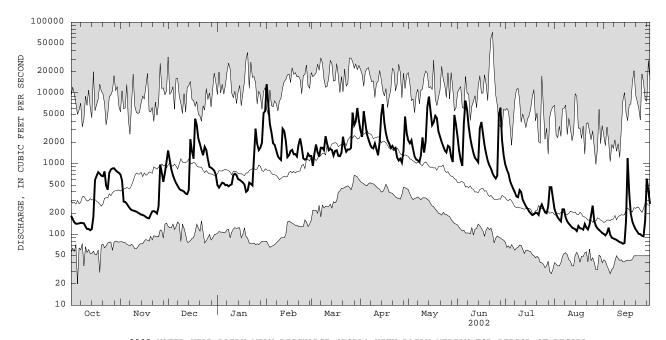
REMARKS.--Records fair except those for estimated daily discharges, which are poor. Since July 1928, some seasonal regulation by Rushford Lake. Diurnal fluctuation at low flow caused by powerplant. Monthly figures of discharge and runoff 1952 to 1966 water years adjusted for change in contents in Rushford Lake. Telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 90,000 ft<sup>3</sup>/s, June 23, 1972, gage height, 35.25 ft, site and datum then in use, from high-water mark, from rating curve extended above 25,000 ft<sup>3</sup>/s on basis of contracted-opening measurement of 71,000 ft<sup>3</sup>/s, 0.4 mi upstream and contracted-opening measurement of 98,200 ft<sup>3</sup>/s, 0.7 mi downstream from gage; minimum discharge, 18 ft<sup>3</sup>/s, Oct. 5, 17, 1913, gage height, 1.70 ft, site and datum then in use.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 15,000 ft<sup>3</sup>/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date     | Time        | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|---------------------|----------|-------------|-----------------------------------|---------------------|
| Feb. 1 | 1400 | *16.000                           | *15.89              | No other | neak greate | r than base dis                   | charge              |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


Minimum discharge, 73 ft<sup>3</sup>/s, Sept. 13, 14, gage height, 8.03 ft.

|         |           |            |           |           | DAIL      | Y MEAN VA | LUES     |          |       |       |      |      |
|---------|-----------|------------|-----------|-----------|-----------|-----------|----------|----------|-------|-------|------|------|
| DAY     | OCT       | NOV        | DEC       | JAN       | FEB       | MAR       | APR      | MAY      | JUN   | JUL   | AUG  | SEP  |
| 1       | 184       | 705        | 1540      | e500      | 13300     | 1290      | 2930     | 2140     | 2410  | 977   | 228  | 102  |
| 2       | 165       | 576        | 1120      | e460      | 6910      | 939       | 2400     | 1950     | 1540  | 826   | 196  | 97   |
| 3       | 149       | 291        | 833       | e500      | 3630      | 1400      | 5530     | 2160     | 1130  | 728   | 174  | 105  |
| 4       | 142       | 289        | 687       | e540      | 2760      | 1870      | 3800     | 1620     | 933   | 577   | 162  | 125  |
| 5       | 142       | 272        | 596       | e530      | 1950      | e1460     | 2610     | 1270     | 3800  | 503   | 153  | 99   |
| 6       | 144       | 250        | 533       | 497       | e1840     | e1260     | 2210     | 1150     | 7830  | 444   | 227  | 90   |
| 7       | 146       | 233        | 487       | 503       | 1540      | 1690      | 1890     | 1120     | 5770  | 397   | 227  | 88   |
| 8       | 145       | 222        | 443       | e480      | 1280      | 1680      | 1700     | 1060     | 3380  | 346   | 175  | 86   |
| 9       | 144       | 218        | 424       | e500      | 1190      | 1560      | 1650     | 1330     | 2320  | 337   | 153  | 84   |
| 10      | e130      | 215        | 417       | 514       | 1130      | 2450      | 1940     | 2360     | 1780  | 425   | 142  | 81   |
| 11      | e120      | 211        | 403       | 691       | 3130      | 1900      | 1590     | 1440     | 1420  | 397   | 134  | 78   |
| 12      | e120      | 204        | 378       | 722       | 2900      | 1550      | 1320     | 2130     | 1210  | 312   | 126  | 77   |
| 13      | e115      | 198        | 373       | 691       | 2110      | 1620      | 2010     | 6290     | 1130  | 278   | 122  | 74   |
| 14      | e120      | 191        | 426       | 605       | 1240      | 1570      | 4870     | 8890     | 1050  | 251   | 119  | 76   |
| 15      | e180      | 189        | 2220      | 593       | 1320      | 1310      | 6950     | 5590     | 3180  | 232   | 112  | 156  |
| 16      | 587       | 184        | 1490      | 567       | 1520      | 1520      | 3810     | 3530     | 3900  | 212   | 132  | 1200 |
| 17      | 673       | 177        | 1180      | 544       | 1570      | 1550      | 2670     | 3860     | 2580  | 199   | 123  | 382  |
| 18      | 760       | 171        | 4320      | 507       | 1360      | 1300      | 2160     | 4770     | 1830  | 188   | 121  | 193  |
| 19      | 722       | 169        | 3500      | e400      | 1370      | 1280      | 1940     | 4430     | 1380  | 193   | 117  | 151  |
| 20      | 679       | 190        | 2260      | e420      | 1270      | 1430      | 1670     | 2860     | 1100  | 204   | 141  | 132  |
| 21      | 667       | 212        | 1890      | e540      | 1870      | 2410      | 1790     | 2410     | 947   | 202   | 125  | 118  |
| 22      | 782       | 215        | 1560      | e520      | 2280      | 1750      | 1610     | 2030     | 856   | 189   | 118  | 110  |
| 23      | 492       | 209        | 1320      | 494       | 1710      | 1480      | 1680     | 1770     | 732   | 239   | 137  | 102  |
| 24      | 429       | 198        | 1740      | 1270      | 1190      | 1590      | 1230     | 1540     | 663   | 266   | 186  | 101  |
| 25      | 753       | 252        | 1570      | 3130      | 1140      | 1590      | 1110     | 1450     | 619   | 233   | 255  | 96   |
| 26      | 831       | 972        | 1150      | 1900      | 1170      | 1670      | 1180     | 1800     | 677   | 206   | 154  | 94   |
| 27      | 858       | 748        | e900      | 1560      | 1390      | 5290      | 1040     | 1720     | 4940  | 200   | 132  | 159  |
| 28      | 862       | 556        | e880      | 1690      | 1280      | 3520      | 1520     | 1250     | 6210  | 252   | 122  | 616  |
| 29      | 809       | 743        | e840      | 2000      |           | 3940      | 4650     | 1060     | 2150  | 466   | 116  | 416  |
| 30      | 772       | 1090       | e800      | 5210      |           | 6140      | 2730     | 4900     | 1320  | 467   | 111  | 270  |
| 31      | 743       |            | e700      | 5550      |           | 4050      |          | 3590     |       | 329   | 105  |      |
| TOTAL   | 13565     | 10350      | 36980     | 34628     | 65350     | 64059     | 74190    | 83470    | 68787 | 11075 | 4645 | 5558 |
| MEAN    | 438       | 345        | 1193      | 1117      | 2334      | 2066      | 2473     | 2693     | 2293  | 357   | 150  | 185  |
| MAX     | 862       | 1090       | 4320      | 5550      | 13300     | 6140      | 6950     | 8890     | 7830  | 977   | 255  | 1200 |
| MIN     | 115       | 169        | 373       | 400       | 1130      | 939       | 1040     | 1060     | 619   | 188   | 105  | 74   |
| CFSM    | 0.44      | 0.35       | 1.21      | 1.14      | 2.37      | 2.10      | 2.51     | 2.74     | 2.33  | 0.36  | 0.15 | 0.19 |
| IN.     | 0.51      | 0.39       | 1.40      | 1.31      | 2.47      | 2.42      | 2.80     | 3.16     | 2.60  | 0.42  | 0.18 | 0.21 |
| STATIST | TICS OF M | MONTHLY ME | AN DATA E | FOR WATER | YEARS 190 | 8 - 2002, | BY WATER | YEAR (WY | )     |       |      |      |
| MEAN    | 641       | 1075       | 1332      | 1411      | 1474      | 2864      | 2779     | 1514     | 903   | 444   | 321  | 406  |
| MAX     | 3320      | 4201       | 4314      | 4795      | 5838      | 7360      | 7780     | 4826     | 7006  | 1876  | 1875 | 4949 |
| (WY)    | 1918      | 1928       | 1928      | 1913      | 1976      | 1936      | 1940     | 1919     | 1972  | 1915  | 1977 | 1977 |
| MIN     | 74.1      | 110        | 160       | 100       | 229       | 945       | 450      | 294      | 118   | 64.8  | 64.5 | 50.1 |
| (WY)    | 1965      | 1965       | 1909      | 1961      | 1920      | 1937      | 1946     | 1934     | 1934  | 1934  | 1934 | 1913 |
|         |           |            |           |           |           |           |          |          |       |       |      |      |

e Estimated

# 04223000 GENESEE RIVER AT PORTAGEVILLE, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1908 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 307471                 | 472657              |                         |
| ANNUAL MEAN              | 842                    | 1295                | 1262                    |
| HIGHEST ANNUAL MEAN      |                        |                     | 2038 1916               |
| LOWEST ANNUAL MEAN       |                        |                     | 766 1962                |
| HIGHEST DAILY MEAN       | 14500 Apr 8            | 13300 Feb 1         | 72000 Jun 23 1972       |
| LOWEST DAILY MEAN        | 55 Aug 16              | 74 Sep 13           | 20 Oct 5 1913           |
| ANNUAL SEVEN-DAY MINIMUM | 59 Aug 12              | 79 Sep 8            | 34 Jul 25 1934          |
| ANNUAL RUNOFF (CFSM)     | 0.86                   | 1.32                | 1.28                    |
| ANNUAL RUNOFF (INCHES)   | 11.62                  | 17.87               | 17.43                   |
| 10 PERCENT EXCEEDS       | 1810                   | 3130                | 2900                    |
| 50 PERCENT EXCEEDS       | 480                    | 782                 | 605                     |
| 90 PERCENT EXCEEDS       | 90                     | 126                 | 135                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

584.00

586.00

588 00

590.00

DAY

2

5

MTN

436

782

1,210

1,730

#### 04224000 MOUNT MORRIS LAKE NEAR MOUNT MORRIS, NY

LOCATION.--Lat 42°44'00", long 77°54'40", Livingston County, Hydrologic Unit 04130002, at Mount Morris Dam on Genesee River, 2.0 mi northwest of Mount Morris, 5.0 mi upstream from Canaseraga Creek, and 69.3 mi upstream from mouth.

DRAINAGE AREA.--1,080 mi<sup>2</sup>.

PERIOD OF RECORD. -- January 1952 to current year. Prior to October 1970, published as "Mount Morris Reservoir near Mount Morris." REVISED RECORDS. -- WSP 1437: 1955. WSP 2112; WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929 (levels by U.S. Army Corps of Engineers). Prior to Apr. 8, 1952, reference point at same site and datum.

reference point at same site and datum.

REMARKS.--Lake is formed by a concrete gravity-type dam with overflow spillway, completed by U. S. Army Corps of Engineers in 1951 for flood control; first used for flood regulation on Nov. 24, 1951. Usable capacity, 336,800 acre-ft between elevation 585.0 ft, sill of conduits, and 760.0 ft, crest of spillway. Dead storage, 609 acre-ft. Discharge is controlled by the operation of nine gates. Water is stored during high flows and released when downstream conditions warrant.

COOPERATION.--Capacity table provided by U.S. Army Corps of Engineers.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 755.46 ft, June 25, 1972, contents, 322,600 acre-ft; minimum, 584.06 ft, Aug. 30, 1991, contents, 446.4 acre-ft.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 661.13 ft, Feb. 4, contents, 80,400 acre-ft; minimum recorded elevation, 584.83 ft, Oct. 14, contents 580 acre-ft, but may have been lower during periods of no gage height record.

Capacity table (elevation, in feet, and usable contents, in acre-feet)

(Furnished by U. S. Army Corps of Engineers in 1953)

630.00 30,500

8,250

11,600

19,800

660.00

680.00

700.00

730.00

78,200

119,800

166,300

245,200

590.09

598.44

588 94

616.26

638.25

590 21

588.94

589.24

588 63

588.91

593.92

588 11

605.00

610.00

620 00

|        | 330.00   | 1,750     |          | 050.00 | 50,                     | 500    | 750.0      | , 21      | 3,200  |        |        |
|--------|----------|-----------|----------|--------|-------------------------|--------|------------|-----------|--------|--------|--------|
|        | 595.00   | 3,410     |          | 640.00 | 43,                     | 700    | 750.0      | 30        | 5,100  |        |        |
|        | 600.00   | 5,610     |          |        | •                       |        |            |           | •      |        |        |
|        | 000.00   | 3,010     |          |        |                         |        |            |           |        |        |        |
|        |          | ELEVATION | (FEET NG |        | R YEAR OC'<br>LY MEAN V |        | L TO SEPTI | EMBER 200 | 2      |        |        |
| OCI    | r nov    | DEC       | JAN      | FEB    | MAR                     | APR    | MAY        | JUN       | JUL    | AUG    | SEP    |
| 586.78 | 3 590.16 |           |          | 639.51 | 596.61                  | 641.07 | 641.13     | 623.37    | 592.55 | 589.24 | 588.58 |
|        |          |           |          | 039.51 |                         |        |            |           |        |        |        |
| 586.58 |          |           |          |        | 594.36                  | 640.36 | 642.80     | 622.46    | 590.55 | 589.23 | 588.53 |
| 586.45 |          |           |          | 659.66 | 595.03                  | 644.16 | 644.17     | 619.70    | 590.14 | 589.21 | 588.49 |
| 586.29 |          |           |          | 660.91 | 602.37                  | 650.50 | 642.96     | 615.44    | 589.40 | 589.16 | 588.46 |
| 586.19 | 587.44   | 589.80    | 591.02   | 659.72 | 601.83                  | 653.41 | 640.84     | 613.65    | 589.34 | 589.09 | 588.42 |
| 586.28 | 3 587.26 | 589.38    | 590.65   | 657.02 | 600.24                  | 653.88 | 638.24     | 626.36    | 589.33 | 589.03 | 588.40 |
| 586.33 |          |           | 590.54   | 653.39 | 599.91                  | 650.85 | 634.57     | 636.63    | 589.32 | 589.09 | 588.37 |
| 586.31 |          |           | 589.87   | 649.35 | 602.48                  | 647.26 | 630.47     | 638.25    | 589.31 | 589.06 | 588.33 |
| 586.27 |          |           |          |        |                         |        | 626.11     |           |        | 588.95 | 588.28 |
|        |          |           | 589.97   | 645.01 | 602.02                  | 646.18 |            | 636.96    | 589.31 |        |        |
| 586.24 | 586.93   | 588.50    | 590.57   | 640.28 | 604.02                  | 643.31 | 623.15     | 634.21    | 589.31 | 588.90 | 588.25 |
| 586.19 | 586.91   | 588.45    |          | 635.40 | 609.53                  | 638.66 | 620.27     | 629.87    | 589.30 | 588.81 | 588.23 |
| 586.16 | 5 586.86 | 588.28    |          | 633.59 | 608.59                  | 633.37 | 614.65     | 624.36    | 589.30 | 588.77 | 588.20 |
| 586.15 |          |           |          | 630.52 | 606.15                  | 628.35 | 620.27     | 617.21    | 589.29 | 588.92 | 588.15 |
| 586.12 |          |           |          | 625.62 | 604.47                  | 628.22 | 637.05     | 608.18    | 589.26 | 588.93 | 588.11 |
| 586.16 |          |           | 591.53   | 619.02 | 600.81                  | 635.24 | 648.25     | 611.67    | 589.24 | 588.82 | 588.16 |
| 300.10 | 300.75   |           | 371.33   | 019.02 | 000.01                  | 055.21 | 010.23     | 011.07    | 303.21 | 300.02 | 300.10 |
|        | - 586.68 |           | 591.38   | 610.88 | 597.24                  | 640.75 | 651.86     | 622.44    | 589.21 | 588.84 | 593.92 |
|        | - 586.64 |           | 591.10   | 598.80 | 601.15                  | 640.11 | 652.05     | 626.67    | 589.17 | 588.87 | 590.72 |
|        | - 586.59 |           | 590.86   |        | 598.05                  | 637.31 | 652.16     | 625.58    | 589.09 | 588.85 | 589.25 |
|        |          |           |          |        | 596.64                  | 634.57 | 653.64     | 621.52    | 589.05 | 588.78 | 589.14 |
|        |          |           |          |        | 596.52                  | 635.24 | 652.80     | 615.56    | 589.02 | 588.74 | 588.97 |
|        | 300.03   | 020.55    |          |        | 330.32                  | 000.21 | 032.00     | 010.00    | 303.02 | 500.71 | 500.57 |
|        |          | 620.03    |          |        | 605.13                  | 637.54 | 650.14     | 605.35    | 588.99 | 588.73 | 588.81 |
|        |          | 617.93    |          | 608.07 | 608.52                  | 639.49 |            | 592.09    | 588.94 | 588.69 | 588.66 |
|        |          | 614.62    | 590.65   | 609.83 | 606.79                  | 639.79 |            | 591.07    | 589.02 | 588.94 | 588.54 |
|        |          | 611.11    |          | 606.61 | 604.35                  | 636.75 |            | 590.67    | 589.15 | 589.06 | 588.44 |
|        |          | 609.25    |          | 598.74 | 603.01                  | 631.78 | 630.17     | 590.36    | 593.37 | 589.19 | 588.38 |
|        |          | 005.25    |          | 330.71 | 003.01                  | 031.70 | 030.17     | 330.30    | 373.37 | 505.15 | 300.30 |
|        |          | 604.37    |          | 595.17 | 601.01                  | 627.17 | 623.21     | 590.21    | 598.44 | 589.19 | 588.36 |
|        |          |           |          | 596.06 | 613.97                  | 626.75 | 616.15     | 605.93    | 590.40 | 589.03 | 588.43 |
|        |          |           |          | 595.86 | 623.90                  | 628.33 | 605.88     | 620.64    | 590.54 | 588.87 | 590.83 |
|        |          |           |          |        | 627.41                  | 633.82 | 592.77     | 620.51    | 592.11 | 588.76 | 590.64 |
|        |          |           |          |        | 633.31                  | 638.59 | 608.47     | 611.00    | 591.79 | 588.69 | 589.36 |
| 590.41 | L        |           |          |        | 639.46                  |        | 620.90     |           | 589.58 | 588.63 |        |
|        |          |           |          |        |                         |        |            |           |        |        |        |

638.76

626 75

605.96

639.46

594 36

#### STREAMS TRIBUTARY TO LAKE ONTARIO

## 04224775 CANASERAGA CREEK ABOVE DANSVILLE, NY

LOCATION.--Lat 42°32'08", long 77°42'16", Livingston County, Hydrologic Unit 04130002, on right bank on Poags Hole Road, 0.7 mi upstream from Stony Brook, and 1.7 mi south of Dansville.

DRAINAGE AREA.--88.9 mi².

PERIOD OF RECORD.--August 1974 to current year.

REVISED RECORDS.--WDR NY-82-3: Drainage area. WDR NY-91-3: 1984, 1986(P).

GAGE.--Water-stage recorder. Datum of gage is 715.60 ft above NGVD of 1929.

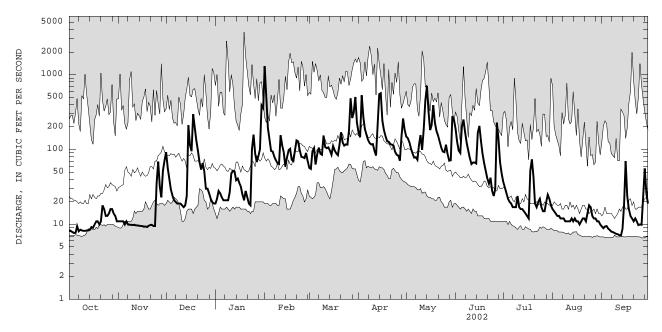
REMARKS.--Records fair. Satellite gage-height and precipitation telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,340 ft³/s, Jan. 19, 1996, gage height, 8.50 ft, from rating curve extended above 2,700 ft³/s; minimum discharge, 6.5 ft³/s, Aug. 17, 18, 1999.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft³/s and maximum (\*):

Discharge (ft<sup>3</sup>/s) Gage height (ft) Discharge (ft<sup>3</sup>/s) Gage height Time Date Date Time \*1,890 Feb. 1 1330 \*3.36 No other peak greater than base discharge.

Minimum discharge, 6.8 ft<sup>3</sup>/s, Sept. 12, 13, 14.


| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                                            |                                            |                                           |                                           |                                           |                                          |                                          |                                                |                                          |                                         |                                         |                                            |
|--------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------|--------------------------------------------|
| DAY                                                                                              | OCT                                        | NOV                                        | DEC                                       | JAN                                       | FEB                                       | MAR                                      | APR                                      | MAY                                            | JUN                                      | JUL                                     | AUG                                     | SEP                                        |
| 1<br>2<br>3<br>4<br>5                                                                            | 8.4<br>8.2<br>7.9<br>7.7<br>7.7            | 11<br>11<br>11<br>11<br>10                 | 92<br>57<br>40<br>29<br>24                | e19<br>e22<br>e28<br>e26<br>23            | 1300<br>572<br>195<br>136<br>e96          | 57<br>55<br>95<br>105<br>63              | 169<br>146<br>530<br>274<br>186          | 149<br>142<br>125<br>102<br>88                 | 190<br>128<br>97<br>90<br>202            | 37<br>31<br>26<br>22<br>20              | 16<br>15<br>14<br>13                    | 9.4<br>8.9<br>9.4<br>9.5<br>8.8            |
| 6<br>7<br>8<br>9<br>10                                                                           | 9.5<br>8.1<br>8.5<br>8.3<br>8.2            | 11<br>10<br>9.9<br>9.9<br>9.8              | 21<br>20<br>19<br>19                      | 21<br>21<br>e21<br>21<br>27               | e94<br>80<br>72<br>66<br>64               | 86<br>106<br>88<br>85<br>154             | 157<br>134<br>122<br>117<br>118          | 78<br>79<br>73<br>113<br>156                   | 252<br>171<br>123<br>97<br>77            | 19<br>17<br>17<br>17<br>24              | 12<br>12<br>12<br>11<br>11              | 8.4<br>8.0<br>7.9<br>7.7<br>7.5            |
| 11<br>12<br>13<br>14<br>15                                                                       | 8.2<br>8.3<br>8.3<br>8.5<br>9.2            | 9.9<br>9.7<br>9.7<br>9.6<br>9.5            | 18<br>17<br>18<br>24<br>211               | 48<br>52<br>51<br>39<br>41                | 155<br>113<br>91<br>59<br>79              | 108<br>104<br>107<br>97<br>85            | 96<br>83<br>207<br>549<br>565            | 99<br>187<br>448<br>706<br>320                 | 64<br>67<br>67<br>65<br>169              | 17<br>16<br>16<br>15<br>14              | 11<br>11<br>12<br>11<br>12              | 7.4<br>7.2<br>7.1<br>8.8                   |
| 16<br>17<br>18<br>19<br>20                                                                       | 9.0<br>10<br>11<br>11<br>10                | 9.5<br>9.3<br>9.4<br>9.2<br>9.6            | 114<br>95<br>296<br>191<br>131            | 36<br>32<br>25<br>21<br>28                | 98<br>102<br>73<br>70<br>95               | 111<br>97<br>89<br>84<br>115             | 243<br>180<br>149<br>129<br>127          | 182<br>213<br>390<br>232<br>177                | 207<br>129<br>88<br>66<br>52             | 13<br>12<br>52<br>74<br>43              | 11<br>11<br>10<br>11                    | 70<br>24<br>16<br>13                       |
| 21<br>22<br>23<br>24<br>25                                                                       | 11<br>18<br>16<br>13                       | 9.8<br>9.9<br>9.5<br>9.5<br>35             | 96<br>68<br>54<br>66<br>51                | 23<br>19<br>18<br>101<br>158              | 132<br>128<br>98<br>80<br>79              | 170<br>125<br>113<br>117<br>116          | 118<br>116<br>113<br>93<br>85            | 153<br>127<br>106<br>94<br>92                  | 41<br>35<br>42<br>28<br>24               | 19<br>17<br>20<br>22<br>17              | 12<br>11<br>14<br>18<br>17              | 11<br>12<br>11<br>9.8                      |
| 26<br>27<br>28<br>29<br>30<br>31                                                                 | 14<br>16<br>16<br>14<br>13                 | 69<br>32<br>23<br>52<br>71                 | e30<br>e30<br>e26<br>e22<br>e20<br>e19    | 88<br>68<br>82<br>101<br>387<br>356       | 77<br>90<br>70<br><br>                    | 180<br>483<br>263<br>312<br>503<br>229   | 83<br>71<br>148<br>260<br>181            | 116<br>87<br>71<br>72<br>280<br>250            | 30<br>229<br>141<br>68<br>48             | 15<br>15<br>20<br>25<br>22<br>18        | 13<br>12<br>12<br>11<br>11<br>10        | 9.9<br>23<br>56<br>26<br>19                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN.                                                       | 331.0<br>10.7<br>18<br>7.7<br>0.12<br>0.14 | 520.7<br>17.4<br>71<br>9.2<br>0.20<br>0.22 | 1937<br>62.5<br>296<br>17<br>0.70<br>0.81 | 2003<br>64.6<br>387<br>18<br>0.73<br>0.84 | 4364<br>156<br>1300<br>59<br>1.75<br>1.83 | 4502<br>145<br>503<br>55<br>1.63<br>1.88 | 5549<br>185<br>565<br>71<br>2.08<br>2.32 | 5507<br>178<br>706<br>71<br>2.00<br>2.30       | 3087<br>103<br>252<br>24<br>1.16<br>1.29 | 712<br>23.0<br>74<br>12<br>0.26<br>0.30 | 382<br>12.3<br>18<br>10<br>0.14<br>0.16 | 456.7<br>15.2<br>70<br>7.1<br>0.17<br>0.19 |
| STATIST<br>MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)                                                    | 52.3<br>175<br>1991<br>10.7<br>2002        | 85.9<br>194<br>1993<br>17.4<br>2002        | 105<br>252<br>1978<br>21.6<br>1999        | 109<br>411<br>1996<br>24.4<br>1984        | 135<br>432<br>1976<br>31.4<br>1980        | 194<br>419<br>1979<br>70.6<br>1984       | 213<br>519<br>1993<br>81.8<br>1981       | YEAR (WY<br>117<br>327<br>1996<br>26.2<br>1985 | 67.2<br>270<br>1989<br>16.8<br>1991      | 36.8<br>128<br>1992<br>10.8<br>1985     | 30.5<br>115<br>2000<br>7.52<br>1985     | 39.0<br>331<br>1977<br>6.83<br>1995        |

e Estimated

# STREAMS TRIBUTARY TO LAKE ONTARIO

# 04224775 CANASERAGA CREEK ABOVE DANSVILLE, NY--Continued

| SUMMARY STATISTICS                          | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1974 - 2002 |
|---------------------------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL                                | 25652.7                | 29351.4             | 98.1                    |
| ANNUAL MEAN                                 | 70.3                   | 80.4                |                         |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN   | 70.3                   | 00.1                | 154 1996<br>64.1 1999   |
| HIGHEST DAILY MEAN                          | 2400 Apr 8             | 1300 Feb 1          | 3680 Jan 19 1996        |
|                                             | 7.4 Sep 6              | 7.1 Sep 13          | 6.6 Sep 26 1995         |
| ANNUAL SEVEN-DAY MINIMUM                    | 7.5 Sep 13             | 7.5 Sep 7           | 6.7 Sep 2 1995          |
| ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | 0.79                   | 0.90                | 1.10                    |
|                                             | 10.73                  | 12.28               | 15.00                   |
| 10 PERCENT EXCEEDS                          | 144                    | 181                 | 211                     |
| 50 PERCENT EXCEEDS                          | 23                     | 36                  | 50                      |
| 90 PERCENT EXCEEDS                          | 8.3                    | 9.5                 | 13                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04227000 CANASERAGA CREEK AT SHAKERS CROSSING, NY

LOCATION.--Lat 42°44'13", long 77°50'27", Livingston County, Hydrologic Unit 04130002, on right bank 100 ft upstream from bridge on State Highway 408 at Shakers Crossing, 1.4 mi upstream from mouth, and 1.5 mi northeast of Mount Morris.

DRAINAGE AREA.--335 mi<sup>2</sup>.

PERIOD OF RECORD.--July 1915 to September 1922 (gage height only), November 1958 to September 1970, October 1974 to current vear.

REVISED RECORDS. -- WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 545.52 ft above NGVD of 1929. Prior to July 1981 at site 250 ft east on left bank of old filled-in channel at same datum, and prior to November 1958 at site 250 ft east and 40 ft north at datum 5.52 ft lower. April 1968 to September 1970, and since October 1974, auxiliary water-stage recorder 0.6 mi downstream

datum 5.2 It lower. April 1968 to September 1970, and since October 1974, auxiliary water-stage recorder 0.6 mi downstream from base gage.

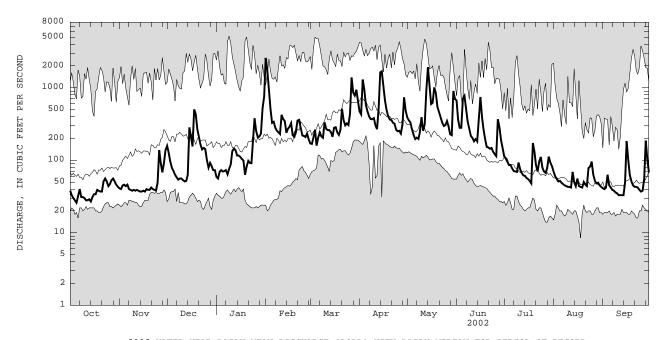
REMARKS.--No estimated daily values. Records good. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 5,510 ft<sup>3</sup>/s, Jan. 19, 1996, gage height 13.01 ft; maximum gage height 23.62 ft, present datum, May 17, 1916 (backwater from Genesee River); minimum discharge, 4.3 ft<sup>3</sup>/s, Aug. 19, 1970, gage height, 2.26 ft, result of temporary regulation.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23, 1972 reached an estimated discharge of 11,200 ft<sup>3</sup>/s from U. S. Army Corps of Engineers publication (Tropical Storm Agnes, June 1972).

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 3,000 ft<sup>3</sup>/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height (ft) | Date         | Time      | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|------------------|--------------|-----------|-----------------------------------|---------------------|
| Feb. 1 | 1530 | *3,380                            | *10.60           | No other pea | ık greate | r than base discha                | arge.               |


Minimum discharge, 25  $\mathrm{ft}^3/\mathrm{s}$ , Oct. 14, gage height, 3.44 ft.

| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                                  |                              |                                   |                                        |                       |                                         |                                 |                                        |                                 |                                   |                            |                              |
|--------------------------------------------------------------------------------------------------|----------------------------------|------------------------------|-----------------------------------|----------------------------------------|-----------------------|-----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|-----------------------------------|----------------------------|------------------------------|
| DAY                                                                                              | OCT                              | NOV                          | DEC                               | JAN                                    | FEB                   | MAR                                     | APR                             | MAY                                    | JUN                             | JUL                               | AUG                        | SEP                          |
| 1                                                                                                | 38                               | 41                           | 158                               | 59                                     | 2580                  | 171                                     | 472                             | 391                                    | 668                             | 113                               | 70                         | 41                           |
| 2                                                                                                | 33                               | 40                           | 126                               | 56                                     | 1770                  | 168                                     | 429                             | 355                                    | 365                             | 105                               | 60                         | 40                           |
| 3                                                                                                | 30                               | 45                           | 95                                | 69                                     | 904                   | 207                                     | 1300                            | 331                                    | 280                             | 95                                | 55                         | 42                           |
| 4                                                                                                | 28                               | 46                           | 78                                | 73                                     | 512                   | 264                                     | 938                             | 264                                    | 280                             | 86                                | 51                         | 63                           |
| 5                                                                                                | 26                               | 44                           | 71                                | 70                                     | 328                   | 159                                     | 573                             | 224                                    | 706                             | 86                                | 52                         | 45                           |
| 6                                                                                                | 32                               | 46                           | 63                                | 71                                     | 339                   | 206                                     | 473                             | 196                                    | 775                             | 77                                | 49                         | 42                           |
| 7                                                                                                | 40                               | 40                           | 58                                | 73                                     | 280                   | 243                                     | 403                             | 205                                    | 516                             | 71                                | 47                         | 39                           |
| 8                                                                                                | 31                               | 39                           | 54                                | 64                                     | 255                   | 213                                     | 370                             | 197                                    | 341                             | 70                                | 45                         | 38                           |
| 9                                                                                                | 31                               | 38                           | 56                                | 76                                     | 243                   | 204                                     | 368                             | 247                                    | 268                             | 69                                | 44                         | 36                           |
| 10                                                                                               | 30                               | 39                           | 56                                | 87                                     | 230                   | 333                                     | 381                             | 394                                    | 217                             | 93                                | 43                         | 35                           |
| 11                                                                                               | 28                               | 38                           | 53                                | 134                                    | 423                   | 271                                     | 303                             | 255                                    | 204                             | 75                                | 43                         | 33                           |
| 12                                                                                               | 28                               | 39                           | 51                                | 144                                    | 370                   | 260                                     | 268                             | 313                                    | 183                             | 67                                | 42                         | 33                           |
| 13                                                                                               | 29                               | 38                           | 52                                | 138                                    | 346                   | 260                                     | 515                             | 910                                    | 196                             | 62                                | 69                         | 33                           |
| 14                                                                                               | 27                               | 37                           | 63                                | 116                                    | 239                   | 245                                     | 1630                            | 1920                                   | 182                             | 61                                | 50                         | 33                           |
| 15                                                                                               | 31                               | 37                           | 284                               | 116                                    | 273                   | 210                                     | 1690                            | 1010                                   | 395                             | 57                                | 44                         | 49                           |
| 16                                                                                               | 34                               | 38                           | 210                               | 111                                    | 291                   | 281                                     | 1070                            | 598                                    | 746                             | 55                                | 56                         | 184                          |
| 17                                                                                               | 34                               | 37                           | 155                               | 104                                    | 325                   | 286                                     | 672                             | 621                                    | 397                             | 52                                | 44                         | 101                          |
| 18                                                                                               | 39                               | 40                           | 503                               | 99                                     | 221                   | 242                                     | 491                             | 1010                                   | 266                             | 48                                | 43                         | 62                           |
| 19                                                                                               | 38                               | 39                           | 429                               | 63                                     | 210                   | 224                                     | 403                             | 844                                    | 196                             | 173                               | 42                         | 51                           |
| 20                                                                                               | 37                               | 39                           | 267                               | 82                                     | 251                   | 265                                     | 365                             | 542                                    | 153                             | 130                               | 50                         | 45                           |
| 21                                                                                               | 37                               | 42                           | 206                               | 98                                     | 352                   | 513                                     | 358                             | 459                                    | 150                             | 85                                | 46                         | 43                           |
| 22                                                                                               | 51                               | 40                           | 164                               | 92                                     | 360                   | 357                                     | 329                             | 390                                    | 144                             | 70                                | 44                         | 43                           |
| 23                                                                                               | 56                               | 39                           | 141                               | 91                                     | 278                   | 303                                     | 319                             | 329                                    | 148                             | 96                                | 78                         | 42                           |
| 24                                                                                               | 51                               | 38                           | 148                               | 176                                    | 220                   | 323                                     | 264                             | 297                                    | 131                             | 111                               | 82                         | 39                           |
| 25                                                                                               | 44                               | 49                           | 142                               | 379                                    | 217                   | 306                                     | 251                             | 305                                    | 121                             | 79                                | 96                         | 37                           |
| 26<br>27<br>28<br>29<br>30<br>31                                                                 | 47<br>53<br>56<br>51<br>46<br>43 | 138<br>91<br>68<br>91<br>138 | 101<br>79<br>92<br>83<br>73<br>73 | 252<br>207<br>213<br>234<br>521<br>754 | 209<br>233<br>195<br> | 436<br>1390<br>854<br>779<br>940<br>656 | 255<br>233<br>313<br>738<br>481 | 347<br>293<br>228<br>222<br>903<br>697 | 114<br>368<br>285<br>190<br>145 | 70<br>67<br>78<br>112<br>93<br>83 | 63<br>52<br>48<br>49<br>45 | 38<br>55<br>187<br>101<br>68 |
| TOTAL                                                                                            | 1179                             | 1534                         | 4184                              | 4822                                   | 12454                 | 11569                                   | 16655                           | 15297                                  | 9130                            | 2589                              | 1645                       | 1698                         |
| MEAN                                                                                             | 38.0                             | 51.1                         | 135                               | 156                                    | 445                   | 373                                     | 555                             | 493                                    | 304                             | 83.5                              | 53.1                       | 56.6                         |
| MAX                                                                                              | 56                               | 138                          | 503                               | 754                                    | 2580                  | 1390                                    | 1690                            | 1920                                   | 775                             | 173                               | 96                         | 187                          |
| MIN                                                                                              | 26                               | 37                           | 51                                | 56                                     | 195                   | 159                                     | 233                             | 196                                    | 114                             | 48                                | 42                         | 33                           |
| CFSM                                                                                             | 0.11                             | 0.15                         | 0.40                              | 0.46                                   | 1.33                  | 1.11                                    | 1.66                            | 1.47                                   | 0.91                            | 0.25                              | 0.16                       | 0.17                         |
| IN.                                                                                              | 0.13                             | 0.17                         | 0.46                              | 0.54                                   | 1.38                  | 1.28                                    | 1.85                            | 1.70                                   | 1.01                            | 0.29                              | 0.18                       | 0.19                         |
| STATIST                                                                                          | CICS OF MO                       | ONTHLY MEA                   | AN DATA I                         | FOR WATER                              | YEARS 195             | 9 - 2002,                               | BY WATER                        | YEAR (WY                               | )                               |                                   |                            |                              |
| MEAN                                                                                             | 147                              | 220                          | 299                               | 316                                    | 408                   | 646                                     | 666                             | 350                                    | 206                             | 109                               | 84.7                       | 105                          |
| MAX                                                                                              | 601                              | 647                          | 906                               | 1181                                   | 1452                  | 1575                                    | 1537                            | 1081                                   | 913                             | 454                               | 297                        | 1162                         |
| (WY)                                                                                             | 1978                             | 1993                         | 1978                              | 1998                                   | 1976                  | 1979                                    | 1993                            | 1996                                   | 1989                            | 1992                              | 1992                       | 1977                         |
| MIN                                                                                              | 24.4                             | 31.3                         | 29.9                              | 30.9                                   | 74.6                  | 209                                     | 231                             | 109                                    | 48.1                            | 22.9                              | 19.9                       | 22.6                         |
| (WY)                                                                                             | 1965                             | 1965                         | 1961                              | 1961                                   | 1963                  | 1965                                    | 1995                            | 1995                                   | 1965                            | 1965                              | 1965                       | 1965                         |

# STREAMS TRIBUTARY TO LAKE ONTARIO

# 04227000 CANASERAGA CREEK AT SHAKERS CROSSING, NY--Continued

| SUMMARY STATISTICS                                 | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR  | WATER YEARS 1959 - 2002           |
|----------------------------------------------------|------------------------|----------------------|-----------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN<br>HIGHEST ANNUAL MEAN | 74291<br>204           | 82756<br>227         | 296<br>464 1998                   |
| LOWEST ANNUAL MEAN<br>HIGHEST DAILY MEAN           | 3630 Apr 9             | 2580 Feb 1           | 137 1965<br>5150 Jan 9 1998       |
| LOWEST DAILY MEAN<br>ANNUAL SEVEN-DAY MINIMUM      | 19 Aug 12<br>21 Aug 8  | 26 Oct 5<br>29 Oct 8 | 8.5 Aug 18 1970<br>15 Jul 26 1965 |
| ANNUAL RUNOFF (CFSM)                               | 0.61                   | 0.68                 | 0.88                              |
| ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS          | 8.25<br>438            | 9.19<br>507          | 12.02<br>700                      |
| 50 PERCENT EXCEEDS<br>90 PERCENT EXCEEDS           | 79<br>28               | 113<br>39            | 147<br>40                         |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04227500 GENESEE RIVER NEAR MOUNT MORRIS, NY

LOCATION.--Lat 42°46'00", long 77°50'21", Livingston County, Hydrologic Unit 04130002, on right bank 100 ft north of Jones Bridge Road, 0.8 mi downstream from Canaseraga Creek, 2.8 mi northeast of Mount Morris, and 63.0 mi upstream from mouth. DRAINAGE AREA.--1,424 mi<sup>2</sup>.

PERIOD OF RECORD.--May 1903 to April 1906, August 1908 to April 1914, July 1915 to current year. Prior to 1968, published as "at Jones Bridge."

REVISED RECORDS.--WSP 1277: 1952. WSP 1387: 1913. WSP 1437: 1955. WSP 2112; WDR NY-82-3: Drainage area. WDR NY-78-1: 1974-77 (M, m). WDR NY-01-3: 1991, 1992, 1996-2000 (M). GAGE.--Water-stage recorder. Datum of gage is 540.12 ft above NGVD of 1929. Prior to Sept. 11, 1915, nonrecording gage on bridge

at datum 2.85 ft lower.

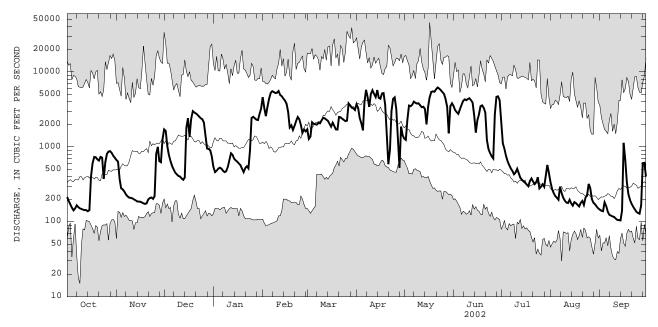
at datum 2.85 ft lower.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation at low flow caused by powerplant. Flow regulated to some extent by Rushford Lake since July 1928, and at high flows since November 1951 by Mount Morris Lake (see station 04224000). Monthly figures of discharge and runoff 1952 to 1966 water years adjusted for change in contents in Rushford Lake and Mount Morris Lake. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 55,100 ft<sup>3</sup>/s, May 17, 1916, gage height, 25.44 ft; maximum gage height, 25.80 ft, Mar. 13, 1920 (ice jam); minimum discharge, 18 ft<sup>3</sup>/s, Aug. 29, 1909. Maximum discharge since construction of Mt. Morris Reservoir in November 1951, 17,800 ft<sup>3</sup>/s, June 23, 1972, gage height, 24.50 ft, minimum discharge, 12 ft<sup>3</sup>/s, July 23, 1955, gage height, 0.22 ft, partially obstructed intake.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,250 ft<sup>3</sup>/s, May 22, gage height, 10.92 ft; minimum discharge, 100 ft<sup>3</sup>/s, Sept. 13, 14.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


|             |            | DISCHA    | RGE, COD.          | IC FEET FI |           | Y MEAN VA |          | 5K 2001 10 | SEFIEMBE | .R 2002 |      |      |
|-------------|------------|-----------|--------------------|------------|-----------|-----------|----------|------------|----------|---------|------|------|
| DAY         | OCT        | NOV       | DEC                | JAN        | FEB       | MAR       | APR      | MAY        | JUN      | JUL     | AUG  | SEP  |
| 1           | 214        | 667       | 1710               | e540       | 4610      | 1720      | 3730     | 1290       | 3510     | 2080    | 335  | 145  |
| 2           | 190        | 634       | 1630               | e460       | 3310      | 1280      | 3310     | 1240       | 3100     | 1110    | 272  | 140  |
| 3           | 171        | 369       | 1020               | e480       | 2570      | 1370      | 2420     | 2320       | 2910     | 935     | 241  | 138  |
| 4           | 154        | 279       | 772                | e510       | 3430      | 2130      | 2060     | 3560       | 2760     | 758     | 220  | 182  |
| 5           | 142        | 270       | 641                | 528        | 4410      | 2030      | 1660     | 3490       | 3170     | 644     | 209  | 162  |
| 3           | 172        | 270       | 041                | 320        | 4410      | 2030      | 1000     | 3420       | 3170     | 044     | 200  | 102  |
| 6           | 151        | 252       | 557                | 513        | 5250      | 2010      | 3940     | 3650       | 3610     | 572     | 197  | 135  |
| 7           | 166        | 231       | 499                | e480       | 5540      | 1980      | 5770     | 4020       | 4100     | 516     | 294  | 124  |
| 8           | 157        | 218       | 452                | e460       | 5390      | 2080      | 4600     | 3880       | 4310     | 478     | 240  | 121  |
| 9           | 151        | 210       | 429                | e470       | 5220      | 2060      | 3420     | 3780       | 4190     | 431     | 208  | 118  |
| 10          | 148        | 208       | 409                | 536        | 5270      | 2260      | 5080     | 3810       | 4350     | 454     | 191  | 116  |
| 11          | 145        | 205       | 402                | 658        | 5560      | 2450      | 5710     | 3580       | 4450     | 508     | 180  | 110  |
| 12          | 143        | 199       | 378                | 821        | 4920      | 2400      | 5080     | 3390       | 4210     | 445     | 178  | 106  |
| 13          | 143        | 194       | 363                | 783        | 4740      | 2310      | 4620     | 3440       | 3910     | 387     | 197  | 105  |
| 14          | 138        | 187       | 388                | 697        | 4410      | 2230      | 5730     | 3200       | 2630     | 364     | 176  | 104  |
| 15          | 143        | 186       | 1790               | 659        | 4150      | 2030      | 4520     | 1990       | 1550     | 347     | 164  | 141  |
| 13          | 143        | 100       | 1/30               | 039        | 4130      | 2030      | 4320     | 1990       | 1330     | 347     | 104  | 141  |
| 16          | 402        | 185       | 2410               | 636        | 3760      | 1860      | 4400     | 3430       | 2290     | 332     | 183  | 1130 |
| 17          | 608        | 181       | 1360               | 600        | 2940      | 2100      | 5160     | 4600       | 2730     | 314     | 177  | 674  |
| 18          | 732        | 176       | 2370               | e570       | 1820      | 1900      | 5240     | 5420       | 3490     | 298     | 168  | 339  |
| 19          | 726        | 173       | 3000               | e510       | 1940      | 1710      | 3660     | 5510       | 3580     | 351     | 160  | 231  |
| 20          | 681        | 176       | 2870               | e460       | 1680      | 1700      | 1300     | 5440       | 3310     | 379     | 179  | 195  |
|             |            |           |                    |            |           |           |          |            |          |         |      |      |
| 21          | 655        | 198       | 2790               | e520       | 1910      | 2500      | 588      | 5860       | 2850     | 345     | 190  | 173  |
| 22          | 734        | 207       | 2680               | e550       | 2220      | 2480      | 917      | 6210       | 1230     | 318     | 168  | 158  |
| 23          | 717        | 211       | 2540               | 515        | 2500      | 2370      | 2990     | 5990       | 932      | 338     | 211  | 147  |
| 24          | 374        | 202       | 2410               | 885        | 2330      | 2290      | 4380     | 5700       | 821      | 394     | 227  | 136  |
| 25          | 625        | 220       | 2340               | 2430       | 1960      | 2210      | 4600     | 5410       | 744      | 279     | 320  | 131  |
| 26          | 806        | 812       | 2120               | 2520       | 1540      | 2240      | 3210     | 5090       | 699      | 294     | 279  | 128  |
| 27          | 864        | 1000      | e1380              | 2410       | 1710      | 3790      | 1140     | 4350       | 2730     | 317     | 200  | 166  |
| 28          | 877        | 644       | e950               | 2310       | 1610      | 3570      | 526      | 3430       | 4660     | 293     | 179  | 606  |
| 29          | 831        | 623       | e940               | 2280       |           | 3340      | 1870     | 1520       | 4730     | 403     | 171  | 612  |
| 30          | 759        | 1260      | e900               | 2770       |           | 3280      | 1420     | 3500       | 4190     | 573     | 160  | 403  |
| 31          | 714        |           | e740               | 3280       |           | 3110      |          | 3810       |          | 448     | 151  |      |
| TOTAL       | 13461      | 10577     | 43240              | 31841      | 96700     | 70790     | 103051   | 121910     | 91746    | 15705   | 6425 | 7176 |
|             | 434        | 353       | 1395               | 1027       | 3454      | 2284      | 3435     | 3933       | 3058     | 507     | 207  | 239  |
| MEAN<br>MAX | 434<br>877 | 1260      | 3000               | 3280       | 5560      | 3790      | 5770     | 6210       | 4730     | 2080    | 335  | 1130 |
|             | 138        | 173       | 363                | 460        |           | 1280      | 526      | 1240       | 699      | 279     | 151  |      |
| MIN         | 138        | 1/3       | 303                | 460        | 1540      | 1280      | 526      | 1240       | 699      | 219     | 151  | 104  |
| STATIST     | rics of M  | ONTHLY ME | AN DATA I          | FOR WATER  | YEARS 195 | 2 - 2002, | BY WATER | R YEAR (WY | )        |         |      |      |
| MEAN        | 941        | 1425      | 1991               | 1807       | 2068      | 3705      | 4096     | 2143       | 1234     | 723     | 453  | 530  |
| MAX         | 4743       | 3720      | 5369               | 5659       | 5106      | 7755      | 7270     | 5677       | 4305     | 6801    | 2205 | 4130 |
| (WY)        | 1978       | 1968      | 1973               | 1998       | 1990      | 1976      | 1978     | 1996       | 1989     | 1972    | 1977 | 1977 |
| MIN         | 107        | 152       | 280                | 135        | 383       | 1365      | 1464     | 477        | 191      | 87.6    | 116  | 99.2 |
| (WY)        | 1961       | 1965      | 1961               | 1961       | 1958      | 1960      | 1995     | 1955       | 1955     | 1955    | 2001 | 1995 |
|             |            |           | · · · <del>-</del> |            |           |           |          |            |          |         |      |      |

e Estimated

## STREAMS TRIBUTARY TO LAKE ONTARIO

# 04227500 GENESEE RIVER NEAR MOUNT MORRIS, NY--Continued

| SUMMARY STATISTICS                                                                                                                                                                     | FOR 2001 CALE                                            | JDAR YEAR                  | FOR 2002 WA                                                | ATER YEAR                 | WATER YEAR                                                      | s 1952 - 2002                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------------|------------------------------------------------------------|---------------------------|-----------------------------------------------------------------|----------------------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 424531<br>1163<br>7230<br>74<br>78<br>3450<br>560<br>118 | Apr 17<br>Aug 12<br>Aug 10 | 612622<br>1678<br>6210<br>104<br>111<br>4390<br>821<br>167 | May 22<br>Sep 14<br>Sep 8 | 1757<br>2601<br>1057<br>16500<br>15<br>57<br>4710<br>945<br>184 | 1984<br>1965<br>Jun 24 1972<br>Oct 9 1980<br>Jul 27 1955 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04227980 CONESUS LAKE NEAR LAKEVILLE, NY

LOCATION.--Lat 42°47'39", long 77°43'15", Livingston County, Hydrologic Unit 04130003, on west shore of Conesus Lake at Geneseo Water Works pumping station, 300 ft east of State Highway 256, and 3.0 mi south of Lakeville.

DRAINAGE AREA.--69.8 mi².

PERIOD OF RECORD.--July 1963 to current year. Since 1930 in files of village of Geneseo.

REVISED RECORDS.--WSP 2112; WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. To convert elevations to adjustment of 1988, subtract 0.53 ft. Oct.

1, 1970 to Sept. 30, 1975, at datum 800.00 ft higher. Prior to Oct. 1, 1970, nonrecording gage at site 200 ft downstream at datum 796.59 ft higher.

REMARKS.--Lake elevation regulated by gates at outlet. Area of water surface, 5.08 mi². Daily average of about 2 ft³/s diverted from lake for water supply for Avon, Geneseo, and Lakeville Water District.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 822.50 ft, at present datum, June 24, 1972; minimum elevation, 816.11 ft, Dec. 22, 24, 1988.

22, 24, 1988. EXTREMES FOR CURRENT YEAR.--Maximum elevation, 819.29 ft, Apr. 15, 16; minimum elevation, 816.37 ft, Nov. 25.

#### ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DATLY MEAN VALUES

| DAY                              | OCT                                                      | NOV                                            | DEC                                            | JAN                                                      | FEB                                            | MAR                                                      | APR                                            | MAY                                                      | JUN                                            | JUL                                            | AUG                                                      | SEP                                            |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1                                | 817.05                                                   | 816.67                                         | 816.50                                         | 816.62                                                   | 817.28                                         | 818.48                                                   | 818.60                                         | 818.83                                                   | 818.89                                         | 818.65                                         | 818.07                                                   | 817.50                                         |
| 2                                | 817.04                                                   | 816.66                                         | 816.49                                         | 816.62                                                   | 817.58                                         | 818.48                                                   | 818.59                                         | 818.87                                                   | 818.81                                         | 818.64                                         | 818.05                                                   | 817.48                                         |
| 3                                | 817.03                                                   | 816.66                                         | 816.48                                         | 816.61                                                   | 817.70                                         | 818.50                                                   | 818.66                                         | 818.90                                                   | 818.76                                         | 818.62                                         | 818.03                                                   | 817.48                                         |
| 4                                | 817.01                                                   | 816.65                                         | 816.47                                         | 816.60                                                   | 817.78                                         | 818.51                                                   | 818.66                                         | 818.90                                                   | 818.77                                         | 818.59                                         | 818.01                                                   | 817.48                                         |
| 5                                | 817.00                                                   | 816.63                                         | 816.46                                         | 816.59                                                   | 817.84                                         | 818.51                                                   | 818.63                                         | 818.90                                                   | 818.90                                         | 818.56                                         | 817.98                                                   | 817.45                                         |
| 6                                | 817.01                                                   | 816.61                                         | 816.45                                         | 816.59                                                   | 817.87                                         | 818.52                                                   | 818.65                                         | 818.90                                                   | 818.88                                         | 818.53                                         | 817.94                                                   | 817.43                                         |
| 7                                | 816.98                                                   | 816.60                                         | 816.44                                         | 816.62                                                   | 817.90                                         | 818.54                                                   | 818.70                                         | 818.91                                                   | 818.83                                         | 818.50                                         | 817.90                                                   | 817.41                                         |
| 8                                | 816.96                                                   | 816.59                                         | 816.43                                         | 816.62                                                   | 817.93                                         | 818.55                                                   | 818.74                                         | 818.91                                                   | 818.83                                         | 818.47                                         | 817.87                                                   | 817.39                                         |
| 9                                | 816.93                                                   | 816.58                                         | 816.44                                         | 816.62                                                   | 817.95                                         | 818.57                                                   | 818.78                                         | 818.94                                                   | 818.83                                         | 818.46                                         | 817.84                                                   | 817.37                                         |
| 10                               | 816.91                                                   | 816.56                                         | 816.43                                         | 816.62                                                   | 817.99                                         | 818.62                                                   | 818.81                                         | 818.90                                                   | 818.82                                         | 818.43                                         | 817.82                                                   | 817.35                                         |
| 11<br>12<br>13<br>14<br>15       | 816.89<br>816.89<br>816.88<br>816.89                     | 816.54<br>816.52<br>816.51<br>816.49<br>816.49 | 816.41<br>816.41<br>816.40<br>816.42<br>816.47 | 816.63<br>816.64<br>816.64<br>816.64<br>816.65           | 818.06<br>818.11<br>818.14<br>818.16<br>818.18 | 818.63<br>818.64<br>818.65<br>818.65<br>818.67           | 818.83<br>818.84<br>818.89<br>819.05<br>819.26 | 818.83<br>818.81<br>818.86<br>818.99<br>818.97           | 818.81<br>818.82<br>818.81<br>818.84<br>818.90 | 818.40<br>818.37<br>818.34<br>818.32<br>818.30 | 817.79<br>817.77<br>817.76<br>817.74<br>817.73           | 817.33<br>817.30<br>817.27<br>817.26<br>817.28 |
| 16                               | 816.87                                                   | 816.49                                         | 816.47                                         | 816.65                                                   | 818.21                                         | 818.70                                                   | 819.26                                         | 818.87                                                   | 818.85                                         | 818.28                                         | 817.73                                                   | 817.32                                         |
| 17                               | 816.85                                                   | 816.48                                         | 816.49                                         | 816.66                                                   | 818.24                                         | 818.72                                                   | 819.21                                         | 818.77                                                   | 818.75                                         | 818.25                                         | 817.72                                                   | 817.31                                         |
| 18                               | 816.83                                                   | 816.46                                         | 816.57                                         | 816.67                                                   | 818.26                                         | 818.74                                                   | 819.12                                         | 818.70                                                   | 818.71                                         | 818.23                                         | 817.73                                                   | 817.29                                         |
| 19                               | 816.81                                                   | 816.46                                         | 816.60                                         | 816.67                                                   | 818.28                                         | 818.76                                                   | 819.02                                         | 818.63                                                   | 818.71                                         | 818.21                                         | 817.70                                                   | 817.28                                         |
| 20                               | 816.79                                                   | 816.46                                         | 816.62                                         | 816.67                                                   | 818.30                                         | 818.80                                                   | 818.92                                         | 818.63                                                   | 818.72                                         | 818.19                                         | 817.69                                                   | 817.26                                         |
| 21                               | 816.79                                                   | 816.44                                         | 816.63                                         | 816.67                                                   | 818.34                                         | 818.86                                                   | 818.80                                         | 818.67                                                   | 818.73                                         | 818.17                                         | 817.67                                                   | 817.25                                         |
| 22                               | 816.82                                                   | 816.42                                         | 816.64                                         | 816.67                                                   | 818.37                                         | 818.89                                                   | 818.69                                         | 818.71                                                   | 818.72                                         | 818.15                                         | 817.65                                                   | 817.23                                         |
| 23                               | 816.81                                                   | 816.41                                         | 816.65                                         | 816.67                                                   | 818.39                                         | 818.92                                                   | 818.60                                         | 818.74                                                   | 818.72                                         | 818.16                                         | 817.66                                                   | 817.22                                         |
| 24                               | 816.80                                                   | 816.41                                         | 816.65                                         | 816.69                                                   | 818.41                                         | 818.94                                                   | 818.59                                         | 818.76                                                   | 818.71                                         | 818.15                                         | 817.68                                                   | 817.20                                         |
| 25                               | 816.80                                                   | 816.43                                         | 816.65                                         | 816.74                                                   | 818.42                                         | 818.96                                                   | 818.60                                         | 818.79                                                   | 818.71                                         | 818.13                                         | 817.67                                                   | 817.17                                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 816.78<br>816.76<br>816.75<br>816.72<br>816.70<br>816.69 | 816.44<br>816.44<br>816.47<br>816.48           | 816.65<br>816.64<br>816.64<br>816.64<br>816.63 | 816.75<br>816.76<br>816.78<br>816.79<br>816.85<br>816.96 | 818.44<br>818.46<br>818.47<br>                 | 819.01<br>819.13<br>819.12<br>819.04<br>818.90<br>818.74 | 818.60<br>818.65<br>818.76<br>818.80           | 818.83<br>818.85<br>818.86<br>818.89<br>819.12<br>819.01 | 818.70<br>818.71<br>818.70<br>818.68<br>818.66 | 818.11<br>818.09<br>818.10<br>818.11<br>818.09 | 817.65<br>817.62<br>817.60<br>817.57<br>817.55<br>817.53 | 817.16<br>817.20<br>817.26<br>817.24<br>817.23 |
| MEAN                             | 816.87                                                   | 816.52                                         | 816.53                                         | 816.68                                                   | 818.11                                         | 818.73                                                   | 818.80                                         | 818.85                                                   | 818.78                                         | 818.31                                         | 817.77                                                   | 817.31                                         |
| MAX                              | 817.05                                                   | 816.67                                         | 816.65                                         | 816.96                                                   | 818.47                                         | 819.13                                                   | 819.26                                         | 819.12                                                   | 818.90                                         | 818.65                                         | 818.07                                                   | 817.50                                         |
| MIN                              | 816.69                                                   | 816.41                                         | 816.40                                         | 816.59                                                   | 817.28                                         | 818.48                                                   | 818.59                                         | 818.63                                                   | 818.66                                         | 818.09                                         | 817.53                                                   | 817.16                                         |

CAL YR 2001 MEAN 817.81 MAX 820.00 MIN 816.40 WTR YR 2002 MEAN 817.77 MAX 819.26 MIN 816.40

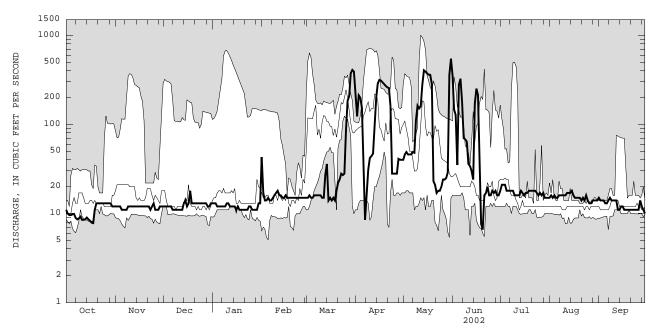
## 04227995 CONESUS CREEK NEAR LAKEVILLE, NY

LOCATION.--Lat 42°51'20", long 77°43'00", Livingston County, Hydrologic Unit 04130003, on right bank 100 ft upstream from bridge on West Lake Road (State Highway 256), 1.5 mi downstream from Lakeville, and 10.7 mi upstream from mouth. DRAINAGE AREA.--69.8 mi<sup>2</sup>.

DRAINAGE AREA.--69.8 mi.
PERIOD OF RECORD.--April 1996 to current year.
GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 810 ft above NGVD of 1929, from topographic map.
REMARKS.--No estimated daily discharges. Records good. Flow regulated by Conesus Lake (see station 04227980). Several

measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,030 ft<sup>3</sup>/s, May 12, 1996, gage height, 5.55 ft; minimum discharge, 3.9


ft<sup>3</sup>/s, June 13, 1998, gage height, 0.36 ft.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 589 ft<sup>3</sup>/s, May 30, gage height, 4.06 ft; minimum discharge, 5.9 ft<sup>3</sup>/s, June 21, gage height, 0.44 ft.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES NOV AUG SEP DAY OCT DEC FEB MAR APR MAY NUL JUL JAN 9 6 9.8 9.9 8.9 8.5 8 8 9.2 8.5 8.5 8.6 9.0 8.6 8.3 7.9 7.8 12 6.6 TOTAL 327.6 4099.5 2649.2 11.8 12.5 18 11.9 13 15.2 18 12.4 15 MEAN 10.6 16.2 68 4 88 3 17 4 MAX 7.8 MIN 8.5 6.6 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 2002, BY WATER YEAR (WY) 36.9 48.3 67.2 MEAN 17.3 24.8 51.6 26.4 12.4 14.4 MAX 32.4 71.7 88.3 85.6 15.2 23.7 (WY) 9.86 10.1 9.62 MIN 10.6 11.9 12.6 66.6 93.1 24.8 13.1 11.3 11.2 

# 04227995 CONESUS CREEK NEAR LAKEVILLE, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1996 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 15192.2                | 16670.3             |                         |
| ANNUAL MEAN              | 41.6                   | 45.7                | 54.1                    |
| HIGHEST ANNUAL MEAN      |                        |                     | 82.1 1998               |
| LOWEST ANNUAL MEAN       |                        |                     | 39.1 1999               |
| HIGHEST DAILY MEAN       | 709 Apr 10             | 545 May 31          | 997 May 12 1996         |
| LOWEST DAILY MEAN        | 7.0 Apr 22             | 6.6 Jun 20          | 5.1 Feb 5 1998          |
| ANNUAL SEVEN-DAY MINIMUM | 8.4 Oct 12             | 8.4 Oct 12          | 6.7 Jan 31 1998         |
| 10 PERCENT EXCEEDS       | 91                     | 156                 | 147                     |
| 50 PERCENT EXCEEDS       | 13                     | 15                  | 15                      |
| 90 PERCENT EXCEEDS       | 11                     | 11                  | 9.8                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04228500 GENESEE RIVER AT AVON, NY

LOCATION.--Lat 42°55'04", long 77°45'27", Livingston County, Hydrologic Unit 04130003, on right bank 250 ft downstream from bridge on U.S. Highway 20 (State Highway 5), 0.3 mi west of Avon, 0.8 mi downstream from Conesus Creek, and 35.6 mi upstream

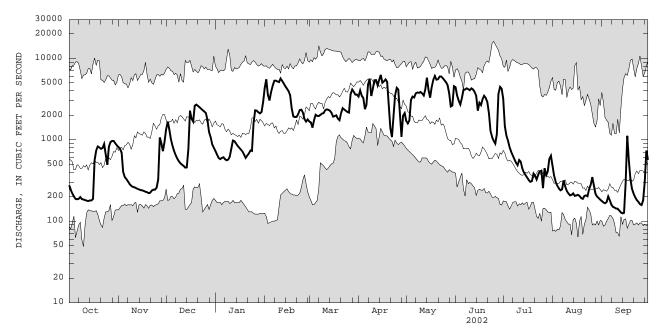
DRAINAGE AREA.--1,673 mi<sup>2</sup>.

PERIOD OF RECORD.--August 1955 to current year.

REVISED RECORDS.--WSP 2112; WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 500.11 ft above NGVD of 1929. REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation at low flow caused by REMARKS.--Records good except those for estimated daily discharges, which are fair. Diurnal fluctuation at low flow caused by powerplant. Flow regulated to some extent by Rushford Lake, at high flows by Mount Morris Lake (see station 04224000), and by Conesus Lake (see station 04227980). Monthly figures of discharge and runoff August 1955 to September 1965 adjusted for change in contents in Rushford Lake and Mount Morris Lake. Telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 16,500 ft<sup>3</sup>/s, June 25, 1972, gage height 40.67 ft; minimum discharge, 47 ft<sup>3</sup>/s, Oct. 10-11, 1980, gage height, 13.70 ft.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 6,610 ft<sup>3</sup>/s, Apr. 15, gage height, 28.49 ft; minimum discharge, 125 ft<sup>3</sup>/s, Sept. 13, 14, 15, gage height, 13.97 ft.

|                                  |                                        | DISCHA                           | RGE, CUBI                                     | C FEET P                                     | ER SECOND,<br>DAIL       | WATER YE<br>Y MEAN VA                        |                                      | R 2001 TO                                    | SEPTEMBE                            | R 2002                                 |                                        |                                 |
|----------------------------------|----------------------------------------|----------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
| DAY                              | OCT                                    | NOV                              | DEC                                           | JAN                                          | FEB                      | MAR                                          | APR                                  | MAY                                          | JUN                                 | JUL                                    | AUG                                    | SEP                             |
| 1                                | 276                                    | 815                              | 1350                                          | e730                                         | 4310                     | 1680                                         | 3400                                 | 1710                                         | 4430                                | 3180                                   | 477                                    | 177                             |
| 2                                | 245                                    | 775                              | 1680                                          | e660                                         | 5540                     | 1640                                         | 4040                                 | 1590                                         | 3500                                | 1470                                   | 360                                    | 170                             |
| 3                                | 219                                    | 697                              | 1340                                          | e600                                         | 3560                     | 1410                                         | 3480                                 | 1740                                         | 3030                                | 1120                                   | 303                                    | 166                             |
| 4                                | 202                                    | 402                              | 1010                                          | e580                                         | 3040                     | 1750                                         | 3270                                 | 3100                                         | 2720                                | 976                                    | 272                                    | 172                             |
| 5                                | 188                                    | 348                              | 840                                           | e600                                         | 3870                     | 2030                                         | 2380                                 | 3400                                         | 3270                                | 809                                    | 252                                    | 202                             |
| 6                                | 186                                    | 330                              | 732                                           | e610                                         | 4640                     | 1970                                         | 2700                                 | 3320                                         | 4120                                | 713                                    | 240                                    | 181                             |
| 7                                | 188                                    | 308                              | 651                                           | e580                                         | 5310                     | 1960                                         | 4810                                 | 3730                                         | 4150                                | 641                                    | 246                                    | 160                             |
| 8                                | 198                                    | 286                              | 588                                           | e560                                         | 5340                     | 2020                                         | 5620                                 | 3820                                         | 4300                                | 578                                    | 317                                    | 150                             |
| 9                                | 187                                    | 273                              | 544                                           | e570                                         | 5210                     | 2100                                         | 3460                                 | 3780                                         | 4190                                | 523                                    | 265                                    | 147                             |
| 10                               | 185                                    | 264                              | 514                                           | e620                                         | 5110                     | 2130                                         | 4260                                 | 3870                                         | 4070                                | 488                                    | 235                                    | 143                             |
| 11                               | 182                                    | 261                              | 495                                           | e780                                         | 5670                     | 2310                                         | 5390                                 | 3720                                         | 4290                                | 566                                    | 219                                    | 142                             |
| 12                               | 179                                    | 256                              | 478                                           | e980                                         | 5290                     | 2370                                         | 5410                                 | 3500                                         | 4150                                | 539                                    | 208                                    | 135                             |
| 13                               | 177                                    | 250                              | 455                                           | e960                                         | 4900                     | 2340                                         | 4670                                 | 4190                                         | 3890                                | 445                                    | 211                                    | 128                             |
| 14                               | 180                                    | 245                              | 458                                           | e900                                         | 4530                     | 2280                                         | 5510                                 | 5790                                         | 3470                                | 398                                    | 220                                    | 125                             |
| 15                               | 180                                    | 241                              | 764                                           | e840                                         | 4250                     | 2150                                         | 6290                                 | 4110                                         | 2280                                | 370                                    | 205                                    | 127                             |
| 16                               | 188                                    | 239                              | 2280                                          | e800                                         | 3960                     | 1930                                         | 5030                                 | 3300                                         | 2850                                | 345                                    | 207                                    | 294                             |
| 17                               | 562                                    | 235                              | 1810                                          | e760                                         | 3540                     | 1960                                         | 5230                                 | 4420                                         | 2680                                | 320                                    | 211                                    | 1120                            |
| 18                               | 738                                    | 230                              | 1670                                          | e720                                         | 2430                     | 2000                                         | 5520                                 | 5450                                         | 3150                                | 305                                    | 204                                    | 559                             |
| 19                               | 828                                    | 227                              | 2630                                          | e660                                         | 1940                     | 1820                                         | 5130                                 | 6090                                         | 3470                                | 311                                    | 192                                    | 327                             |
| 20                               | 806                                    | 221                              | 2710                                          | e600                                         | 1900                     | 1740                                         | 2790                                 | 5490                                         | 3270                                | 386                                    | 188                                    | 248                             |
| 21                               | 774                                    | 224                              | 2610                                          | e640                                         | 1910                     | 2120                                         | 1390                                 | 5560                                         | 2920                                | 364                                    | 204                                    | 217                             |
| 22                               | 791                                    | 238                              | 2510                                          | e680                                         | 2060                     | 2450                                         | 1080                                 | 5990                                         | 2130                                | 326                                    | 208                                    | 196                             |
| 23                               | 890                                    | 244                              | 2410                                          | e740                                         | 2320                     | 2360                                         | 1880                                 | 5990                                         | 1280                                | 373                                    | 203                                    | 182                             |
| 24                               | 669                                    | 244                              | 2310                                          | 730                                          | 2350                     | 2280                                         | 3530                                 | 5720                                         | 1080                                | 410                                    | 248                                    | 173                             |
| 25                               | 494                                    | 258                              | 2230                                          | 1610                                         | 2170                     | 2200                                         | 4360                                 | 5410                                         | 969                                 | 417                                    | 280                                    | 162                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 826<br>937<br>968<br>968<br>908<br>854 | 326<br>1070<br>910<br>726<br>942 | 2130<br>1740<br>1240<br>e1070<br>e880<br>e800 | 2300<br>2280<br>2180<br>2110<br>2200<br>2930 | 1800<br>1680<br>1780<br> | 2160<br>3650<br>4160<br>3900<br>3590<br>3590 | 4140<br>2210<br>1090<br>1980<br>2130 | 5100<br>4700<br>3750<br>2570<br>2640<br>4560 | 898<br>1170<br>3690<br>4480<br>4250 | 255<br>449<br>369<br>407<br>584<br>639 | 348<br>273<br>217<br>200<br>193<br>184 | 158<br>181<br>307<br>739<br>567 |
| TOTAL                            | 15173                                  | 12085                            | 42929                                         | 32510                                        | 100410                   | 72050                                        | 112180                               | 128110                                       | 94147                               | 19076                                  | 7590                                   | 7755                            |
| MEAN                             | 489                                    | 403                              | 1385                                          | 1049                                         | 3586                     | 2324                                         | 3739                                 | 4133                                         | 3138                                | 615                                    | 245                                    | 258                             |
| MAX                              | 968                                    | 1070                             | 2710                                          | 2930                                         | 5670                     | 4160                                         | 6290                                 | 6090                                         | 4480                                | 3180                                   | 477                                    | 1120                            |
| MIN                              | 177                                    | 221                              | 455                                           | 560                                          | 1680                     | 1410                                         | 1080                                 | 1590                                         | 898                                 | 255                                    | 184                                    | 125                             |
| STATIST                          | rics of M                              | ONTHLY ME                        | AN DATA E                                     | FOR WATER                                    | YEARS 195                | 5 - 2002,                                    | BY WATER                             | YEAR (WY                                     | )                                   |                                        |                                        |                                 |
| MEAN                             | 1033                                   | 1565                             | 2215                                          | 2022                                         | 2343                     | 4050                                         | 4544                                 | 2369                                         | 1364                                | 819                                    | 507                                    | 577                             |
| MAX                              | 5146                                   | 3756                             | 5942                                          | 6715                                         | 6036                     | 8916                                         | 7846                                 | 6516                                         | 4906                                | 7032                                   | 2408                                   | 4569                            |
| (WY)                             | 1978                                   | 1997                             | 1973                                          | 1998                                         | 1990                     | 1956                                         | 1993                                 | 1996                                         | 1989                                | 1972                                   | 1992                                   | 1977                            |
| MIN                              | 145                                    | 182                              | 325                                           | 155                                          | 397                      | 1813                                         | 1672                                 | 613                                          | 281                                 | 172                                    | 142                                    | 111                             |
| (WY)                             | 1964                                   | 1965                             | 1961                                          | 1961                                         | 1958                     | 1960                                         | 1995                                 | 1985                                         | 1999                                | 1962                                   | 1965                                   | 1955                            |

e Estimated

# 04228500 GENESEE RIVER AT AVON, NY

| SUMMARY STATISTICS                                                                                                     | FOR 2001 CALENDAR YEAR                                        | FOR 2002 WATER YEAR                                          | WATER YEARS 1955 - 2002                                                     |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN<br>HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN                                               | 484142<br>1326                                                | 644015<br>1764                                               | 1948<br>2846 1978<br>1130 1965                                              |
| HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 7290 Apr 18<br>101 Aug 13<br>105 Aug 10<br>3830<br>680<br>155 | 6290 Apr 15<br>125 Sep 14<br>135 Sep 9<br>4380<br>968<br>199 | 16200 Jun 25 1972<br>49 Oct 10 1980<br>88 Aug 1 1955<br>5290<br>1090<br>221 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04229500 HONEOYE CREEK AT HONEOYE FALLS, NY

LOCATION.--Lat 42°57'26", long 77°35'21", Monroe County, Hydrologic Unit 04130003, on right bank 25 ft downstream from bridge on State Highway 65 at Honeoye Falls, and 15.3 mi upstream from mouth. DRAINAGE AREA.--196 mi<sup>2</sup>.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1945 to September 1970, October 1972 to current year.

Discharge

 $(ft^3/s)$ 

\*1,330

Time

0600

Date

Feb. 2

PERIOD OF RECORD.--October 1945 to September 1970, October 1972 to current year.

REVISED RECORDS.--WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 610.00 ft above NGVD of 1929. Prior to Sept. 30, 1970, water-stage recorder at same site at datum 609.76 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Outlet of Honeoye Lake not controlled. Some diversion from, and regulation of Hemlock and Canadice Lakes for water supply of city of Rochester. Diurnal fluctuation at low flow caused by mills upstream from station. Prior to 1967 water year, published monthly figures adjusted for change in contents in, and diversion from, Hemlock and Canadice Lakes. During low-water periods the village of Honeoye Falls pumps water from two deep wells with maximum pumping capacity of 600 gal/min (1.33 ft<sup>3</sup>/s). This pumped water enters creek upstream from gage. Satellite gage-height telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,630 ft<sup>3</sup>/s, Mar. 28, 1950, gage height, 6.42 ft, datum then in use; minimum discharge, no flow, Aug. 12, 15, 2001.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 23, 1972, reached a stage of about 6.3 ft, present datum; discharge, about 6,600 ft<sup>3</sup>/s, from rating curve extended above 2,700 ft<sup>3</sup>/s.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,200 ft<sup>3</sup>/s and maximum (\*):

Date

May 14

Time

1100

Discharge (ft<sup>3</sup>/s)

1,290

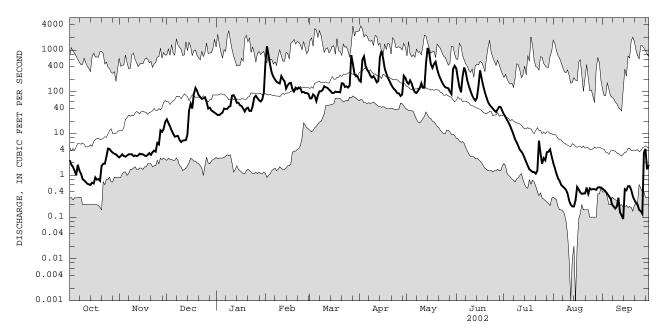
Gage height

(ft)

3.31

Gage height

(ft)


\*3.36

|     | reb.                               | 2 06                                   | 00                                  | ^1,330                                | ^.                                 | 3.36                               |                                        | May 14                              | 110                                   | U                                   | 1,290                                  | 3                                            | 3.31                                 |
|-----|------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|------------------------------------|------------------------------------|----------------------------------------|-------------------------------------|---------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|
| Min | imum dis                           | charge, 0                              | .09 ft <sup>3</sup> /s              | s, Sept. 13                           | 3, 14, 15.                         |                                    |                                        |                                     |                                       |                                     |                                        |                                              |                                      |
|     |                                    |                                        | DISCH                               | ARGE, CUBIO                           | C FEET PE                          |                                    | WATER YE<br>Y MEAN VA                  |                                     | R 2001 TO                             | SEPTEMBE                            | R 2002                                 |                                              |                                      |
|     | DAY                                | OCT                                    | NOV                                 | DEC                                   | JAN                                | FEB                                | MAR                                    | APR                                 | MAY                                   | JUN                                 | JUL                                    | AUG                                          | SEP                                  |
|     | 1<br>2<br>3<br>4<br>5              | 2.3<br>1.8<br>1.6<br>1.3               | 2.7<br>2.9<br>3.2<br>2.9<br>2.8     | 22<br>18<br>15<br>12<br>9.9           | e30<br>e28<br>e28<br>e30<br>e32    | 506<br>1240<br>730<br>440<br>287   | e70<br>e70<br>87<br>e80<br>e60         | 188<br>175<br>588<br>711<br>418     | 169<br>155<br>189<br>158<br>118       | 370<br>211<br>129<br>98<br>231      | 29<br>25<br>21<br>18<br>15             | 2.0<br>1.5<br>1.1<br>0.85<br>0.74            | 0.48<br>0.45<br>0.41<br>0.36<br>0.32 |
|     | 6<br>7<br>8<br>9<br>10             | 1.8<br>1.3<br>1.1<br>0.82<br>0.76      | 3.0<br>3.2<br>3.2<br>3.2<br>2.9     | 8.5<br>8.7<br>8.8<br>7.1<br>6.3       | 40<br>39<br>39<br>44<br>46         | e230<br>e200<br>175<br>166<br>159  | 83<br>103<br>103<br>111<br>136         | 338<br>298<br>245<br>219<br>238     | 98<br>94<br>108<br>122<br>161         | 384<br>297<br>184<br>135<br>104     | 12<br>9.4<br>7.3<br>6.2<br>5.1         | 0.59<br>0.54<br>0.50<br>0.45<br>0.37         | 0.28<br>0.20<br>0.18<br>0.16<br>0.18 |
|     | 11<br>12<br>13<br>14<br>15         | 0.70<br>0.63<br>0.61<br>0.59<br>0.67   | 3.0<br>2.9<br>3.0<br>3.3<br>3.2     | 6.8<br>6.9<br>7.1<br>9.6<br>36        | 81<br>84<br>71<br>55<br>55         | 240<br>204<br>e180<br>e120<br>145  | 129<br>125<br>113<br>104<br>94         | 207<br>170<br>183<br>690<br>967     | 126<br>126<br>482<br>1130<br>860      | 82<br>69<br>62<br>72<br>139         | 4.1<br>3.7<br>3.2<br>2.6<br>2.1        | 0.25<br>0.20<br>0.18<br>0.18<br>0.25         | 0.29<br>0.13<br>0.11<br>0.09<br>0.47 |
|     | 16<br>17<br>18<br>19<br>20         | 0.64<br>0.90<br>0.79<br>0.82<br>0.74   | 3.2<br>3.0<br>2.9<br>3.1<br>3.4     | 52<br>40<br>89<br>125<br>106          | 48<br>46<br>40<br>e34<br>e40       | 161<br>164<br>115<br>104<br>126    | 94<br>102<br>99<br>100<br>98           | 635<br>373<br>278<br>220<br>182     | 462<br>376<br>469<br>527<br>352       | 328<br>206<br>137<br>97<br>73       | 1.7<br>1.4<br>1.3<br>1.2               | 0.53<br>0.46<br>0.39<br>0.36<br>0.37         | 0.44<br>0.55<br>0.55<br>0.45<br>0.32 |
|     | 21<br>22<br>23<br>24<br>25         | 1.7<br>1.9<br>1.9<br>2.8<br>4.4        | 3.1<br>3.6<br>3.9<br>3.7<br>6.0     | 84<br>75<br>68<br>70<br>74            | 42<br>35<br>35<br>46<br>73         | 119<br>127<br>121<br>98<br>100     | 162<br>158<br>132<br>136<br>127        | 151<br>129<br>116<br>105<br>93      | 260<br>210<br>173<br>146<br>130       | 57<br>49<br>44<br>40<br>36          | 1.1<br>1.3<br>6.8<br>3.4<br>1.9        | 0.37<br>0.51<br>0.36<br>0.49<br>0.46         | 0.26<br>0.22<br>0.20<br>0.15<br>0.14 |
|     | 26<br>27<br>28<br>29<br>30<br>31   | 4.3<br>3.8<br>3.5<br>3.3<br>3.2<br>2.9 | 5.5<br>12<br>11<br>13<br>19         | 57<br>e40<br>e42<br>e36<br>e34<br>e32 | 81<br>71<br>63<br>59<br>66<br>97   | 94<br>94<br>90<br>                 | 143<br>756<br>469<br>270<br>237<br>234 | 92<br>80<br>87<br>243<br>217        | 126<br>122<br>102<br>88<br>348<br>421 | 33<br>38<br>44<br>43<br>35          | 2.6<br>2.3<br>3.6<br>3.7<br>4.2<br>2.8 | 0.47<br>0.47<br>0.45<br>0.51<br>0.52<br>0.51 | 0.12<br>3.5<br>4.3<br>1.4<br>1.8     |
|     | TOTAL<br>MEAN<br>MAX<br>MIN        | 54.57<br>1.76<br>4.4<br>0.59           | 141.8<br>4.73<br>19<br>2.7          | 1206.7<br>38.9<br>125<br>6.3          | 1578<br>50.9<br>97<br>28           | 6535<br>233<br>1240<br>90          | 4785<br>154<br>756<br>60               | 8636<br>288<br>967<br>80            | 8408<br>271<br>1130<br>88             | 3827<br>128<br>384<br>33            | 204.2<br>6.59<br>29<br>1.1             | 16.93<br>0.55<br>2.0<br>0.18                 | 18.51<br>0.62<br>4.3<br>0.09         |
|     | STATIS'                            | rics of M                              | ONTHLY M                            | EAN DATA FO                           | OR WATER                           | EARS 194                           | 6 - 2002,                              | BY WATER                            | YEAR (WY                              | )                                   |                                        |                                              |                                      |
|     | MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 40.3<br>443<br>1978<br>0.45<br>1964    | 74.0<br>345<br>1978<br>2.06<br>1961 | 126<br>493<br>1946<br>2.04<br>1961    | 131<br>486<br>1998<br>2.15<br>1961 | 165<br>664<br>1976<br>10.3<br>1958 | 295<br>685<br>1976<br>107<br>1965      | 330<br>1146<br>1993<br>50.0<br>1946 | 175<br>608<br>1996<br>23.7<br>1995    | 76.9<br>344<br>1989<br>3.19<br>1995 | 31.7<br>377<br>1992<br>0.94<br>2001    | 21.6<br>336<br>1992<br>0.24<br>2001          | 20.4<br>538<br>1977<br>0.62<br>2002  |

e Estimated

# 04229500 HONEOYE CREEK AT HONEOYE FALLS, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1946 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 29942.38               | 35411.71            |                         |
| ANNUAL MEAN              | 82.0                   | 97.0                | 124                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 238 1993                |
| LOWEST ANNUAL MEAN       |                        |                     | 46.4 1965               |
| HIGHEST DAILY MEAN       | 1700 Apr 9             | 1240 Feb 2          | 3820 Apr 2 1993         |
| LOWEST DAILY MEAN        | 0.00 Aug 12            | 0.09 Sep 14         | 0.00 Aug 12 2001        |
| ANNUAL SEVEN-DAY MINIMUM | 0.01 Aug 10            | 0.16 Sep 8          | 0.01 Aug 10 2001        |
| 10 PERCENT EXCEEDS       | 248                    | 239                 | 325                     |
| 50 PERCENT EXCEEDS       | 12                     | 38                  | 52                      |
| 90 PERCENT EXCEEDS       | 0.28                   | 0.46                | 2.3                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR. ZERO FLOWS ARE PLOTTED AS 0.001 DISCHARGE, WHICH MAY INCLUDE THE LOWEST DAILY MEAN FOR PERIOD OF RECORD.

# 04229500 HONEOYE CREEK AT HONEOYE FALLS, NY--Continued

# WATER-QUALITY RECORDS

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954, 1998 to current year (e).

CHEMICAL DATA: Water years 1954 (a), 1998 to current year (e).

NUTRIENT DATA: Water years 1954 (a), 1998 to current year (e).

INSTRUMENTATION.--Automatic water sampler since March 1998.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Water-quality records for this site were collected and reported in local standard time.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                                                                                       |                                                                              |                                                                              | WILL                                                               | QUADITI D                                                             | AIA, WAIL                                                      | IC IDAIC OC                                                    | TODER 200                                                                    | I TO DEFT                                                        | EPIDER 200                                                               | 2                                                                             |                                                                      |                                                                              |                                                                              |
|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Date                                                                                                  | Time                                                                         | Ending<br>time                                                               | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                               | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)       | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)      | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)     | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                        |
| OCT<br>05<br>09<br>15<br>18-21<br>22-25<br>25-29<br>OCT 29-                                           | 0805<br>0845<br>0905<br>0920<br>0850<br>0835                                 | <br><br>0820<br>0750<br>0835                                                 | 1.1<br>.83<br>.68<br>.80<br>2.5<br>3.9                             | 4.2<br>3.4<br>3.3<br>6.4<br>8.0<br>3.0                                | 41<br>46<br>51<br>49<br>46<br>40                               | 22<br>21<br>21<br>22<br>20<br>19                               | <br><br><br>                                                                 | <br><br><br><br>                                                 | <.01<br><.01<br><.01<br><.01<br><.01<br><.01                             | .24<br>.31<br>.36<br>.14<br>.50                                               | <.02<br><.02<br><.02<br><.04<br>.03<br><.02                          | .009<br>.009<br>.013<br>.011<br>.016                                         | .030<br>.030<br>.035<br>.045<br>.055                                         |
| NOV 01<br>01-05<br>05-09<br>09-13<br>13-15<br>21-22<br>26-26<br>26-29<br>29-30                        | 1040<br>0925<br>0935<br>0920<br>0915<br>1035<br>1005<br>1905<br>0935         | 0840<br>0825<br>0835<br>0820<br>0815<br>1735<br>1805<br>0905<br>1635         | 3.0<br>2.9<br>3.1<br>3.0<br>3.2<br>3.4<br>4.8<br>11                | 2.2<br>4.3<br>2.5<br>1.7<br>2.1<br>3.2<br>4.7<br>7.3<br>5.1           | 39<br>44<br>44<br>52<br>41<br>50<br>59<br>47<br>62             | 21<br>27<br>32<br>49<br>49<br>83<br>86<br>75                   | <br><br><br><br><br><br>                                                     | <br><br><br><br><br><br>                                         | .01<br>.06<br>.02<br>.02<br><.01<br><.01<br><.01<br>.03                  | .17<br>.22<br>.31<br>.24<br>.26<br>.29<br>.18<br>.37                          | <.02<br>.02<br>.03<br>.02<br><.02<br><.02<br>.03<br><.03             | .015<br>.013<br>.014<br>.010<br>.008<br>.006<br>.008<br>.009                 | .030<br>.035<br>.025<br>.020<br>.025<br>.020<br>.025<br>.035<br>.060         |
| NOV 30-<br>DEC 03<br>03-06<br>06-10<br>13<br>13-14<br>14-15<br>15-17<br>17-18<br>18-20<br>27-31<br>27 | 1735<br>0955<br>0855<br>0925<br>0940<br>1340<br>2140<br>1020<br>2220<br>0915 | 0835<br>0855<br>0755<br><br>1240<br>2040<br>0840<br>2120<br>0920<br>0815     | 20<br>11<br>8.1<br>7.2<br>6.9<br>27<br>50<br>65<br>123<br>37<br>40 | 7.6<br>5.1<br>3.4<br>3.7<br>3.6<br>21<br>19<br>38<br>63<br>7.2<br>6.0 | 58<br>59<br>68<br>65<br>63<br>74<br>70<br>56<br>57<br>39       | 86<br>92<br>91<br>85<br>85<br>83<br>94<br>68<br>70<br>55<br>59 | <br><br><br><br><br>29<br>34<br>                                             | <br><br><br><br><br><br><6<br><6                                 | .02 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01                              | .37<br>.14<br>.32<br>.11<br>.25<br>.13<br>.34<br>.81<br>1.1<br>.59<br><.10    | .06<br>.02<br><.02<br><.02<br>.03<br>.19<br>.18<br>.62<br>.94<br>.27 | .014<br>.007<br>.007<br>.004<br>.006<br>.012<br>.008<br>.011<br>.015<br>.007 | .050<br>.025<br>.025<br>.015<br>.030<br>.070<br>.060<br>.095<br>.130<br>.030 |
| DEC 31-<br>JAN 03<br>03-07<br>07-10<br>10-14<br>14-18<br>18-22<br>22-24<br>24-26<br>26-28<br>28-31    | 0910<br>0935<br>0920<br>0935<br>0945<br>0915<br>0925<br>0925<br>1325<br>0925 | 0810<br>0835<br>0820<br>0835<br>0845<br>0815<br>0825<br>1225<br>0825         | 30<br>34<br>41<br>73<br>49<br>38<br>36<br>69<br>72<br>66           | 6.0<br>4.5<br>4.1<br>11<br>6.7<br>4.0<br>4.0<br>7.5                   | 47<br>38<br>53<br>64<br>58<br>61<br>53<br>54<br>72<br>61       | 60<br>47<br>51<br>60<br>53<br>54<br>48<br>47<br>58<br>43       | <br><br><br><br><br>                                                         | <br><br><br><br><br><br>                                         | <.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01             | .10<br><.10<br>.31<br>.40<br>.46<br>.28<br>.51<br>.31                         | .28<br>.18<br>.20<br>.60<br>.67<br>.40<br>.25<br>.33<br>.55          | .004<br>.003<br>.004<br>.008<br>.006<br>.004<br>.004<br>.004                 | .025<br>.015<br>.020<br>.035<br>.020<br>.015<br>.020<br>.035<br>.030         |
| JAN 31-<br>FEB 02<br>02-04<br>04-07<br>21-25<br>25-28<br>FEB 28-                                      | 0955<br>1755<br>0945<br>0925<br>0905                                         | 1654<br>0855<br>0945<br>0824<br>0804                                         | 636<br>747<br>286<br>115<br>95                                     | 200<br>84<br>16<br>9.3<br>7.9                                         | 62<br>41<br>44<br>47<br>45                                     | 29<br>25<br>37<br>34<br>31                                     | <br><br><br>                                                                 | <br><br>                                                         | <.01<br>.01<br><.01<br><.01<br><.01                                      | .63<br>.64<br>.43<br>.32                                                      | .78<br>.99<br>.64<br>.52                                             | .013<br>.012<br>.008<br>.005<br><.003                                        | .290<br>.128<br>.061<br>.034                                                 |
| MAR 04<br>04-06<br>07-10<br>11-14<br>14-18<br>18-20<br>20-21<br>21-22<br>22-25<br>25-26               | 0925<br>0925<br>0940<br>0925<br>0955<br>0935<br>1235<br>1005<br>0205<br>0935 | 0824<br>0225<br>1640<br>0824<br>0854<br>1135<br>0834<br>0105<br>0905<br>1134 | 78<br>68<br>111<br>117<br>98<br>98<br>119<br>173<br>140<br>122     | 5.7<br>7.7<br>12<br>8.3<br>10<br>6.1<br>8.8<br>18<br>8.6<br>5.4       | 46<br>47<br>55<br>55<br>51<br>56<br>52<br>59<br>57             | 31<br>33<br>35<br>32<br>31<br>32<br>33<br>33<br>33<br>31<br>30 | <br><br><br><br><br><br>                                                     | <br><br><br><br><br><br>                                         | <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01                                  | .48<br>.32<br>.32<br>.40<br>.39<br>.42<br>.38<br>.42<br>.31                   | .19<br>.23<br>.28<br>.28<br>.19<br>.16<br>.23<br>.24<br>.20          | .003<br>.004<br><.003<br>.003<br><.003<br><.003<br><.003<br><.003<br><.003   | .025<br>.036<br>.030<br>.027<br>.034<br>.030<br>.026<br>.043<br>.029         |
| APR<br>01-04<br>11-12<br>12-14<br>15-18<br>18-22<br>22-25<br>25-28<br>28-29<br>29-29                  | 0940<br>0910<br>1210<br>0900<br>0900<br>0835<br>0825<br>1625<br>0825         | 0839<br>1109<br>0810<br>0759<br>0759<br>0734<br>1525<br>0725                 | 396<br>188<br>256<br>578<br>193<br>112<br>85<br>160<br>259         | 48<br>19<br>81<br>62<br>22<br>7.1<br>7.3<br>32<br>64                  | 38<br>58<br>62<br>36<br>29<br>30<br>31<br>35<br>33             | 22<br>36<br>39<br>23<br>18<br>19<br>19                         | 39<br><br>168<br>64<br><br><br>34<br>54                                      | 6<br><br>17<br>7<br><br><br>6<br>8                               | <.01<br>.03<br>.02<br><.01<br>.01<br>.02<br>.03<br><.01<br><.01          | .55<br>.79<br>1.3<br>.65<br>.60<br>.47<br>.36<br>.54                          | .34<br>.27<br>.44<br>.36<br>.12<br>.08<br>.03                        | .005<br>.003<br>.007<br>.007<br>.007<br>.009<br>.005                         | .103<br>.050<br>.300<br>.123<br>.077<br>.036<br>.036                         |

STREAMS TRIBUTARY TO LAKE ONTARIO 131

04229500 HONEOYE CREEK AT HONEOYE FALLS, NY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date              | Time         | Ending<br>time | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|-------------------|--------------|----------------|--------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| APR 29-<br>MAY 02 | 2025         | 0725           | 192                                                                | 20                                      | 32                                                             | 18                                                       |                                                                              |                                                                  | <.01                                                                     | .65                                                                           | .17                                                             | .006                                                                     | .056                                                  |
| 02-05             | 0845         | 0744           | 165                                                                | 15                                      | 40                                                             | 23                                                       |                                                                              |                                                                  | <.01                                                                     | .39                                                                           | .13                                                             | .005                                                                     | .051                                                  |
| 06-09<br>09-12    | 0905<br>0845 | 0804<br>0744   | 101<br>135                                                         | 12<br>16                                | 44<br>36                                                       | 23<br>19                                                 |                                                                              |                                                                  | <.01<br><.01                                                             | .57<br>.59                                                                    | .07<br>.05                                                      | .005                                                                     | .049<br>.047                                          |
| 12-13             | 0845         | 0744           | 220                                                                | 26                                      | 35                                                             | 19                                                       |                                                                              |                                                                  | .01                                                                      | .56                                                                           | .12                                                             | .007                                                                     | .089                                                  |
| 13-14             | 0815         | 1314           | 800                                                                | 140                                     | 30                                                             | 14                                                       |                                                                              |                                                                  | .02                                                                      | .99                                                                           | .56                                                             | .012                                                                     | .279                                                  |
| 14-16<br>16-20    | 1415<br>0930 | 0715<br>0829   | 876<br>445                                                         | 83<br>32                                | 24<br>28                                                       | 13<br>16                                                 |                                                                              |                                                                  | <.01<br>.01                                                              | .73<br>.52                                                                    | .64<br>.29                                                      | .011<br>.009                                                             | .196<br>.096                                          |
| 24-28             | 0815         | 0714           | 127                                                                | 13                                      | 22                                                             | 14                                                       |                                                                              |                                                                  | <.01                                                                     | .50                                                                           | .05                                                             | .005                                                                     | .033                                                  |
| 28-31             | 0835         | 0935           | 227                                                                | 52                                      | 26                                                             | 15                                                       | 51                                                                           | 10                                                               | <.01                                                                     | .73                                                                           | .12                                                             | .006                                                                     | .152                                                  |
| MAY 31-<br>JUN 03 | 1005         | 0805           | 292                                                                | 49                                      | 26                                                             | 14                                                       | 46                                                                           | 6                                                                | .02                                                                      | .82                                                                           | .26                                                             | .013                                                                     | .141                                                  |
| 03-04             | 0850         | 2250           | 107                                                                | 14                                      | 27                                                             | 14                                                       |                                                                              |                                                                  | .01                                                                      | .62                                                                           | .09                                                             | .009                                                                     | .069                                                  |
| 04-05             | 2350         | 1949           | 187                                                                | 39                                      | 29                                                             | 15                                                       | 40                                                                           | <6                                                               | <.01                                                                     | .69                                                                           | .16                                                             | .009                                                                     | .117                                                  |
| 05-06<br>06-10    | 2050<br>0820 | 0750<br>0719   | 400<br>228                                                         | 170<br>36                               | 25<br>27                                                       | 13<br>14                                                 | 40                                                                           | <br>7                                                            | .01<br>.01                                                               | 1.1<br>.70                                                                    | .38<br>.23                                                      | .012<br>.015                                                             | .392<br>.128                                          |
| 10-13             | 0805         | 0704           | 80                                                                 | 14                                      | 27                                                             | 13                                                       |                                                                              |                                                                  | <.01                                                                     | .61                                                                           | .07                                                             | .008                                                                     | .064                                                  |
| 13-14             | 0840         | 0739           | 62                                                                 | 15                                      | 33                                                             | 17                                                       |                                                                              |                                                                  | <.01                                                                     | .68                                                                           | .16                                                             | .011                                                                     | .079                                                  |
| 14-16<br>16-17    | 0840<br>0840 | 0740<br>0739   | 149<br>300                                                         | 40<br>91                                | 28<br>32                                                       | 12<br>13                                                 |                                                                              |                                                                  | .02<br>.01                                                               | .84<br>1.1                                                                    | .20<br>.43                                                      | .013                                                                     | .129<br>.267                                          |
| 17-20             | 0940         | 0740           | 126                                                                | 21                                      | 34                                                             | 17                                                       |                                                                              |                                                                  | .02                                                                      | .75                                                                           | .40                                                             | .018                                                                     | .089                                                  |
| 20-24             | 0840         | 0739           | 52                                                                 | 11                                      | 29                                                             | 12                                                       |                                                                              |                                                                  | .02                                                                      | .62                                                                           | .05                                                             | .009                                                                     | .057                                                  |
| 24-27<br>27-27    | 0845<br>0840 | 0144<br>2340   | 35<br>42                                                           | 10<br>42                                | 31<br>26                                                       | 14<br>11                                                 |                                                                              |                                                                  | .02<br>.02                                                               | .63<br>1.0                                                                    | .12<br>.14                                                      | .007<br>.018                                                             | .052<br>.154                                          |
| JUN 28-           | 0010         |                | 12                                                                 | 12                                      | 20                                                             | 11                                                       |                                                                              |                                                                  | .02                                                                      |                                                                               | •                                                               | .010                                                                     |                                                       |
| JUL 01            | 0040         | 0740           | 40                                                                 | 11                                      | 30                                                             | 11                                                       |                                                                              |                                                                  | .01                                                                      | .74                                                                           | .11                                                             | .013                                                                     | .067                                                  |
| 01-05<br>05-08    | 0905<br>0830 | 0804<br>0729   | 22<br>11                                                           | 13<br>11                                | 30<br>35                                                       | 13<br>31                                                 |                                                                              |                                                                  | .03                                                                      | .74<br>.77                                                                    | .09<br>.21                                                      | .014<br>.018                                                             | .061<br>.069                                          |
| 08-11             | 0935         | 0834           | 5.8                                                                | 4.7                                     | 33                                                             | 27                                                       |                                                                              |                                                                  | .01                                                                      | .77                                                                           | .19                                                             | .018                                                                     | .049                                                  |
| 11-15             | 0910         | 0809           | 3.2                                                                | 7.2                                     | 32                                                             | 27                                                       |                                                                              |                                                                  | .03                                                                      | .79                                                                           | .08                                                             | .016                                                                     | .051                                                  |
| 15-18<br>18-22    | 0835<br>0815 | 0734<br>0714   | 1.7<br>1.2                                                         | 9.2<br>7.4                              | 40<br>48                                                       | 27<br>42                                                 |                                                                              |                                                                  | .02                                                                      | .70<br>.62                                                                    | .06<br>.10                                                      | .019<br>.018                                                             | .034                                                  |
| 22-25             | 0905         | 0804           | 4.0                                                                | 11                                      | 51                                                             | 33                                                       |                                                                              |                                                                  | .02                                                                      | .82                                                                           | .17                                                             | .025                                                                     | .075                                                  |
| 25-29             | 0855         | 0754           | 2.7                                                                | 6.8                                     | 44                                                             | 29                                                       | 11                                                                           | <5                                                               | .02                                                                      | .63                                                                           | .09                                                             | .019                                                                     | .055                                                  |
| JUL 29-<br>AUG 01 | 0915         | 0814           | 3.5                                                                | 6.4                                     | 34                                                             | 17                                                       | 13                                                                           | <5                                                               | .02                                                                      | .76                                                                           | .10                                                             | .019                                                                     | .056                                                  |
| 01-05             | 0845         | 0744           | 1.3                                                                | 6.8                                     | 38                                                             | 22                                                       |                                                                              |                                                                  | .02                                                                      | .68                                                                           | .12                                                             | .023                                                                     | .069                                                  |
| 05-08             | 0825         | 0724           | .59                                                                | 5.7<br>6.6                              | 46                                                             | 26<br>28                                                 |                                                                              |                                                                  | .02                                                                      | .80                                                                           | .12                                                             | .020                                                                     | .068<br>.078                                          |
| 08-12<br>12-15    | 0825<br>0840 | 0724<br>0739   | .37<br>.18                                                         | 9.1                                     | 49<br>68                                                       | 47                                                       |                                                                              |                                                                  | .03                                                                      | .78<br>.72                                                                    | .13<br>.20                                                      | .027<br>.026                                                             | .078                                                  |
| 15-19             | 0840         | 0739           | .43                                                                | 10                                      | 60                                                             | 31                                                       |                                                                              |                                                                  | .04                                                                      | .77                                                                           | . 23                                                            | .035                                                                     | .077                                                  |
| 19-22<br>22-26    | 0905         | 0804           | .37                                                                | 9.1<br>9.4                              | 64                                                             | 38                                                       |                                                                              |                                                                  | .04                                                                      | .74                                                                           | .20                                                             | .027                                                                     | .076                                                  |
| 26-30             | 0725<br>0905 | 0624<br>0804   | . 46<br>. 48                                                       | 8.2                                     | 59<br>51                                                       | 28<br>26                                                 |                                                                              |                                                                  | .03                                                                      | .88<br>.74                                                                    | .19<br>.11                                                      | .027<br>.019                                                             | .080<br>.062                                          |
| AUG 30-           |              |                |                                                                    |                                         |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| SEP 03<br>03-05   | 0820<br>0805 | 0719<br>0705   | . 49<br>. 37                                                       | 8.9<br>9.1                              | 47<br>44                                                       | 30<br>29                                                 |                                                                              |                                                                  | <.01<br>.02                                                              | .76<br>1.0                                                                    | .10                                                             | .017<br>.015                                                             | .076<br>.062                                          |
| 05-05             | 0805         | 0705           | . 23                                                               | 5.7                                     | 90                                                             | 29<br>50                                                 |                                                                              |                                                                  | .02                                                                      | .73                                                                           | .11                                                             | .015                                                                     | .062                                                  |
| 09-12             | 1105         | 0805           | .21                                                                | 8.7                                     | 59                                                             | 31                                                       |                                                                              |                                                                  | .05                                                                      | 1.1                                                                           | .15                                                             | .024                                                                     | .100                                                  |
| 12-16<br>16-19    | 0840<br>0815 | 0739<br>0714   | .24<br>.50                                                         | 6.3<br>5.7                              | 61<br>43                                                       | 35<br>16                                                 |                                                                              |                                                                  | .03                                                                      | .79<br>.72                                                                    | .14                                                             | .021                                                                     | .083<br>.075                                          |
| 19-23             | 0835         | 0714           | .29                                                                | 6.5                                     | 43<br>54                                                       | 20                                                       |                                                                              |                                                                  | .01                                                                      | .72                                                                           | .10<br>.06                                                      | .020                                                                     | .075                                                  |
| 23-26             | 0745         | 0644           | .15                                                                | 5.7                                     | 60                                                             | 28                                                       |                                                                              |                                                                  | .02                                                                      | .64                                                                           | .05                                                             | .013                                                                     | .066                                                  |
| 26-27<br>27-27    | 0850<br>0450 | 0350<br>1950   | .12                                                                | 3.8                                     | 68<br>56                                                       | 33<br>27                                                 |                                                                              |                                                                  | .02                                                                      | .54<br>.76                                                                    | .06<br>.23                                                      | .011<br>.040                                                             | .059                                                  |
| 27-27             | 2050         | 0750           | 4.1<br>2.8                                                         | 13<br>6.6                               | 45                                                             | 17                                                       |                                                                              |                                                                  | <.01                                                                     | .56                                                                           | . 23                                                            | .020                                                                     | .130<br>.070                                          |
| SEP 30-<br>OCT 03 | 0825         | 0724           | 1.9                                                                | 3.9                                     | 30                                                             | 17                                                       |                                                                              |                                                                  | .02                                                                      | .66                                                                           | .08                                                             | .011                                                                     | .054                                                  |
|                   |              |                |                                                                    |                                         |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |

## 04230380 OATKA CREEK AT WARSAW, NY

LOCATION.--Lat 42°44'39", long 78°08'16", Wyoming County, Hydrologic Unit 04130003, on right bank 400 ft downstream from bridge on Court Street, Warsaw.

DRAINAGE AREA.--39.1 mi².

PERIOD OF RECORD.--December 1963 to current year.

REVISED RECORDS.--WSP 2112; WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 987.15 ft above NGVD of 1929 (levels by Corps of Engineers).

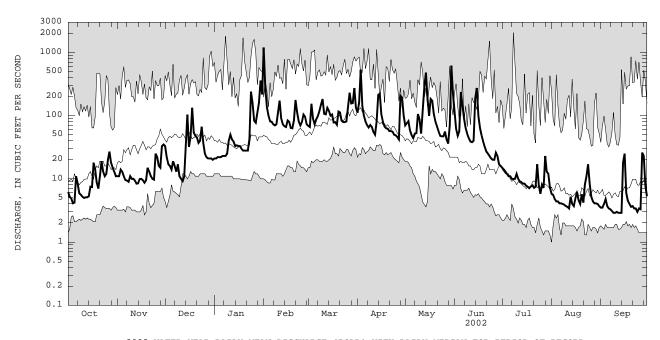
REMARKS.--Records fair. Telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station.

Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,110 ft³/s, July 8, 1998, gage height 9.90 ft; minimum discharge, 0.90 ft³/s, Aug. 1. 1965.

Aug. 1, 1965.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 690 ft<sup>3</sup>/s and maximum (\*):


| Da      | te       | Time         | Disch<br>(ft <sup>3</sup> |             | age height<br>(ft) |                              | Date              | Time         | Γ         | oischarge<br>(ft <sup>3</sup> /s) |            | height<br>ft) |
|---------|----------|--------------|---------------------------|-------------|--------------------|------------------------------|-------------------|--------------|-----------|-----------------------------------|------------|---------------|
|         | . 1      | 1400<br>0445 | *1,9<br>1,1               |             | *6.40<br>4.56      |                              | May 30<br>Jun. 14 | 0400<br>2300 |           | 1,490<br>1,320                    | 5.3<br>5.0 |               |
| Minimum | discharg | ge, 2.7      | ft <sup>3</sup> /s, Sept. | 9, 10, 11,  | , 12, 13, 1        | 14, 25.                      |                   |              |           |                                   |            |               |
|         |          | 1            | DISCHARGE, C              | UBIC FEET I |                    | , WATER YEAR<br>LY MEAN VALU |                   | R 2001 TO    | SEPTEMBER | 2002                              |            |               |
| DAY     | C        | CT           | NOV DE                    | C JAN       | FEB                | MAR                          | APR               | MAY          | JUN       | JUL                               | AUG        | SEP           |

|                                            |                                            |                                            |                                              |                                           | DAIL                                      | MEAN VAI                                 | ついたり                                     |                                          |                                           |                                            |                                            |                                            |
|--------------------------------------------|--------------------------------------------|--------------------------------------------|----------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
| DAY                                        | OCT                                        | NOV                                        | DEC                                          | JAN                                       | FEB                                       | MAR                                      | APR                                      | MAY                                      | JUN                                       | JUL                                        | AUG                                        | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | 6.2<br>5.2<br>4.9<br>4.1<br>4.2            | 11<br>11<br>14<br>13                       | 33<br>22<br>17<br>16<br>14                   | e21<br>e21<br>e22<br>22<br>22             | 1200<br>276<br>137<br>100<br>81           | 69<br>66<br>154<br>89<br>73              | 111<br>161<br>535<br>143<br>99           | 70<br>76<br>82<br>58<br>49               | 109<br>62<br>48<br>57<br>237              | 15<br>14<br>13<br>12<br>11                 | 5.8<br>5.6<br>4.8<br>4.4<br>4.4            | 3.5<br>3.5<br>4.0<br>4.8<br>3.7            |
| 6<br>7<br>8<br>9<br>10                     | 11<br>8.4<br>5.9<br>5.6<br>5.2             | 9.6<br>9.4<br>9.0<br>11                    | 19<br>16<br>13<br>17<br>11                   | 23<br>23<br>23<br>25<br>40                | 80<br>73<br>70<br>73<br>113               | 87<br>98<br>118<br>150<br>183            | 81<br>71<br>65<br>71<br>66               | 44<br>52<br>53<br>106<br>87              | 150<br>89<br>63<br>51<br>44               | 11<br>10<br>9.9<br>10<br>12                | 4.1<br>4.1<br>4.0<br>3.9<br>3.7            | 3.4<br>3.3<br>3.1<br>2.9<br>2.9            |
| 11<br>12<br>13<br>14<br>15                 | 5.0<br>5.1<br>5.1<br>5.3<br>7.5            | 10<br>9.4<br>8.4<br>8.5<br>9.9             | 10<br>9.2<br>11<br>38<br>104                 | 50<br>42<br>39<br>33<br>34                | 173<br>e90<br>73<br>e68<br>66             | 107<br>105<br>133<br>119<br>100          | 55<br>50<br>81<br>213<br>223             | 52<br>122<br>283<br>481<br>187           | 39<br>38<br>40<br>186<br>274              | 10<br>9.1<br>8.9<br>8.4<br>8.4             | 3.6<br>3.4<br>5.2<br>4.0<br>3.7            | 3.0<br>2.9<br>2.9<br>2.9<br>2.9            |
| 16<br>17<br>18<br>19<br>20                 | 7.4<br>18<br>14<br>8.7<br>7.0              | 10<br>9.5<br>8.7<br>9.5<br>15              | 32<br>46<br>133<br>54<br>48                  | 33<br>33<br>e30<br>e28<br>e28             | 84<br>80<br>e64<br>63<br>84               | 104<br>78<br>79<br>72<br>116             | 104<br>79<br>67<br>63<br>62              | 99<br>184<br>172<br>105<br>80            | 99<br>64<br>49<br>39<br>32                | 7.8<br>7.5<br>7.1<br>7.6<br>7.9            | 4.9<br>6.2<br>4.6<br>4.0<br>5.7            | 25<br>6.0<br>4.5<br>4.0<br>3.6             |
| 21<br>22<br>23<br>24<br>25                 | 11<br>19<br>13<br>11                       | 13<br>11<br>10<br>9.7<br>25                | 45<br>37<br>40<br>67<br>37                   | 28<br>28<br>43<br>e240<br>159             | 177<br>113<br>81<br>70<br>79              | 112<br>83<br>79<br>79<br>81              | 57<br>57<br>56<br>50<br>49               | 67<br>56<br>48<br>47<br>47               | 27<br>25<br>23<br>21<br>20                | 7.2<br>7.5<br>17<br>7.9<br>5.8             | 4.2<br>8.1<br>11<br>17<br>8.4              | 3.7<br>3.4<br>3.4<br>3.0<br>3.4            |
| 26<br>27<br>28<br>29<br>30<br>31           | 20<br>27<br>18<br>15<br>13                 | 22<br>16<br>15<br>33<br>35                 | e25<br>e22<br>e21<br>e21<br>e21<br>e20       | 83<br>77<br>113<br>160<br>360<br>217      | 104<br>96<br>73<br>                       | 134<br>230<br>156<br>158<br>273<br>133   | 46<br>42<br>205<br>191<br>100            | 56<br>42<br>36<br>70<br>618<br>224       | 20<br>26<br>23<br>17<br>16                | 8.1<br>7.2<br>23<br>13<br>12<br>7.3        | 5.2<br>4.4<br>4.1<br>4.1<br>4.0<br>3.7     | 3.3<br>26<br>23<br>7.8<br>5.3              |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 313.8<br>10.1<br>27<br>4.1<br>0.26<br>0.30 | 397.6<br>13.3<br>35<br>8.4<br>0.34<br>0.38 | 1019.2<br>32.9<br>133<br>9.2<br>0.84<br>0.97 | 2100<br>67.7<br>360<br>21<br>1.73<br>2.00 | 3841<br>137<br>1200<br>63<br>3.51<br>3.65 | 3618<br>117<br>273<br>66<br>2.98<br>3.44 | 3253<br>108<br>535<br>42<br>2.77<br>3.09 | 3753<br>121<br>618<br>36<br>3.10<br>3.57 | 1988<br>66.3<br>274<br>16<br>1.69<br>1.89 | 316.6<br>10.2<br>23<br>5.8<br>0.26<br>0.30 | 164.3<br>5.30<br>17<br>3.4<br>0.14<br>0.16 | 190.2<br>6.34<br>26<br>2.9<br>0.16<br>0.18 |
| STATIST                                    | rics of M                                  | ONTHLY ME                                  | EAN DATA F                                   | OR WATER                                  | YEARS 1964                                | 1 - 2002,                                | BY WATER                                 | YEAR (WY)                                |                                           |                                            |                                            |                                            |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)         | 24.5<br>76.7<br>1978<br>2.76<br>1965       | 49.1<br>131<br>1986<br>5.09<br>1965        | 66.6<br>130<br>1978<br>17.2<br>1965          | 68.9<br>234<br>1979<br>15.1<br>1981       | 78.7<br>235<br>1976<br>22.5<br>1980       | 122<br>228<br>1979<br>49.2<br>1981       | 112<br>185<br>1996<br>33.2<br>1995       | 53.3<br>129<br>1984<br>16.9<br>1995      | 31.7<br>165<br>1989<br>6.36<br>1965       | 19.2<br>145<br>1998<br>2.52<br>1965        | 13.3<br>86.8<br>1992<br>2.36<br>1965       | 18.7<br>166<br>1977<br>1.81<br>1964        |

e Estimated

# STREAMS TRIBUTARY TO LAKE ONTARIO 04230380 OATKA CREEK AT WARSAW, NY--Continued

| SUMMARY STATISTICS                        | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1964 - 2002 |
|-------------------------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL                              | 14453.0                | 20954.7             | 54.9                    |
| ANNUAL MEAN                               | 39.6                   | 57.4                |                         |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN | 33.0                   | 37.1                | 83.3 1998<br>29.6 1965  |
| HIGHEST DAILY MEAN                        | 1150 Apr 8             | 1200 Feb 1          | 2050 Jul 8 1998         |
|                                           | 1.8 Aug 10             | 2.9 Sep 9           | 1.0 Aug 1 1965          |
| ANNUAL SEVEN-DAY MINIMUM                  | 1.8 Aug 9              | 2.9 Sep 8           | 1.4 Jul 26 1965         |
| ANNUAL RUNOFF (CFSM)                      | 1.01                   | 1.47                | 1.40                    |
| ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS | 13.75                  | 19.94               | 19.08                   |
|                                           | 74                     | 133                 | 122                     |
| 50 PERCENT EXCEEDS                        | 20                     | 25                  | 29                      |
| 90 PERCENT EXCEEDS                        | 3.3                    | 4.2                 | 5.1                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04230500 OATKA CREEK AT GARBUTT, NY

LOCATION.--Lat 43°00'36", long 77°47'30", Monroe County, Hydrologic Unit 04130003, on right bank 40 ft downstream from bridge on Union Street in Garbutt, 1.5 mi west of Scottsville, and 4.2 mi upstream from mouth. DRAINAGE AREA.--200 mi<sup>2</sup>.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1945 to current year.

REVISED RECORDS.--WSP 2112; WDR NY-82-3: Drainage area. WDR NY 1971: 1960(M). WDR NY 1993: 1991. WDR NY 1997: 1996 (P).

GAGE.--Water-stage recorder. Datum of gage is 560.86 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station. Several measurements of water temperature were made during the

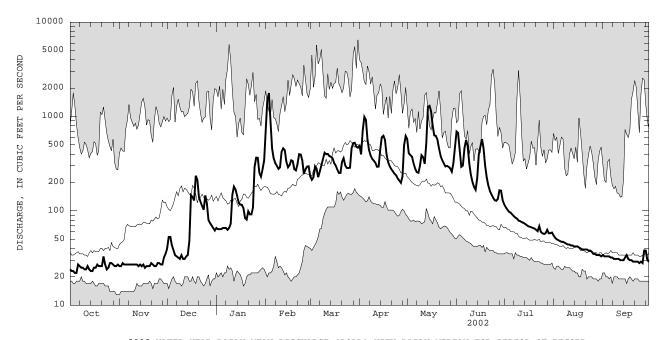
year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 7,050 ft<sup>3</sup>/s, Mar. 31, 1960, gage height, 8.64 ft; minimum discharge, 3.3 ft<sup>3</sup>/s, Sept. 11, 12, 1958; minimum gage height, 1.88 ft, June 19, 1959, result of regulation.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,500 ft<sup>3</sup>/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date     | Time        | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|---------------------|----------|-------------|-----------------------------------|---------------------|
| Feb. 3 | 0430 | *2,080                            | *5.77               | No other | peak greate | r than base disc                  | charge.             |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


Minimum discharge, 20 ft<sup>3</sup>/s, Oct. 4, gage height, 2.16 ft.

|                                  |                                  | DISCHAP                    | GE, CUBIC                              | , reel Pe                              |                                   | Y MEAN VA                              |                                 | K 2001 10                              | SEF LEMBE                       | . 2002                           |                                  |                                  |
|----------------------------------|----------------------------------|----------------------------|----------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------------|
| DAY                              | OCT                              | NOV                        | DEC                                    | JAN                                    | FEB                               | MAR                                    | APR                             | MAY                                    | JUN                             | JUL                              | AUG                              | SEP                              |
| 1                                | 24                               | 26                         | 40                                     | 66                                     | 671                               | 232                                    | 490                             | 579                                    | 695                             | 117                              | 55                               | 34                               |
| 2                                | 23                               | 26                         | 53                                     | 64                                     | 1490                              | 214                                    | 398                             | 408                                    | 671                             | 109                              | 52                               | 33                               |
| 3                                | 23                               | 28                         | 53                                     | 64                                     | 1780                              | 227                                    | 709                             | 390                                    | 453                             | 103                              | 50                               | 33                               |
| 4                                | 22                               | 27                         | 43                                     | 64                                     | 902                               | 297                                    | 994                             | 376                                    | 294                             | 98                               | 49                               | 33                               |
| 5                                | 22                               | 27                         | 38                                     | 66                                     | e460                              | 281                                    | 923                             | 317                                    | 303                             | 96                               | 48                               | 33                               |
| 6                                | 27                               | 27                         | 34                                     | 66                                     | e360                              | 228                                    | 580                             | 280                                    | 464                             | 92                               | 47                               | 32                               |
| 7                                | 26                               | 27                         | 33                                     | 66                                     | e320                              | 262                                    | 441                             | 258                                    | 566                             | 88                               | 47                               | 32                               |
| 8                                | 25                               | 27                         | 32                                     | 63                                     | 300                               | 307                                    | 385                             | 254                                    | 485                             | 85                               | 46                               | 31                               |
| 9                                | 25                               | 27                         | 31                                     | 66                                     | 279                               | 356                                    | 356                             | 301                                    | 320                             | 83                               | 45                               | 31                               |
| 10                               | 24                               | 27                         | 34                                     | 73                                     | 290                               | 414                                    | 340                             | 389                                    | 243                             | 79                               | 44                               | 31                               |
| 11<br>12<br>13<br>14<br>15       | 24<br>26<br>24<br>23<br>23       | 27<br>27<br>26<br>27<br>26 | 31<br>31<br>33<br>34<br>48             | 147<br>181<br>168<br>144<br>121        | 424<br>461<br>440<br>e330<br>e290 | 399<br>402<br>382<br>376<br>362        | 323<br>294<br>295<br>448<br>603 | 371<br>315<br>530<br>1270<br>1300      | 203<br>180<br>167<br>222<br>399 | 78<br>76<br>75<br>73<br>71       | 44<br>43<br>43<br>42<br>42       | 31<br>30<br>30<br>30<br>30<br>32 |
| 16                               | 25                               | 27                         | 147                                    | 117                                    | 306                               | 323                                    | 628                             | 1130                                   | 477                             | 69                               | 42                               | 34                               |
| 17                               | 25                               | 25                         | 140                                    | 116                                    | 345                               | 304                                    | 570                             | 806                                    | 577                             | 68                               | 41                               | 31                               |
| 18                               | 27                               | 26                         | 129                                    | 107                                    | 338                               | 275                                    | 395                             | 633                                    | 463                             | 67                               | 40                               | 30                               |
| 19                               | 26                               | 26                         | 236                                    | 84                                     | 277                               | 253                                    | 328                             | 626                                    | 304                             | 66                               | 39                               | 30                               |
| 20                               | 26                               | 26                         | 214                                    | 81                                     | 269                               | 253                                    | 297                             | 570                                    | 227                             | 65                               | 39                               | 29                               |
| 21                               | 26                               | 28                         | 140                                    | 99                                     | 314                               | 331                                    | 276                             | 458                                    | 186                             | 63                               | 39                               | 29                               |
| 22                               | 33                               | 27                         | 125                                    | 92                                     | 400                               | 362                                    | 262                             | 382                                    | 162                             | 61                               | 39                               | 29                               |
| 23                               | 27                               | 26                         | 113                                    | 92                                     | 396                               | 304                                    | 248                             | 344                                    | 149                             | 69                               | 38                               | 29                               |
| 24                               | 24                               | 26                         | 103                                    | 109                                    | 341                               | 286                                    | 239                             | 318                                    | 138                             | 60                               | 38                               | 28                               |
| 25                               | 25                               | 28                         | 146                                    | 292                                    | 248                               | 285                                    | 221                             | 296                                    | 130                             | 58                               | 37                               | 29                               |
| 26<br>27<br>28<br>29<br>30<br>31 | 28<br>28<br>27<br>26<br>26<br>27 | 28<br>27<br>27<br>32<br>35 | e120<br>e80<br>e74<br>e70<br>e66<br>62 | 367<br>366<br>254<br>231<br>277<br>343 | 276<br>295<br>297<br>             | 287<br>464<br>524<br>529<br>480<br>469 | 210<br>199<br>233<br>496<br>623 | 301<br>294<br>283<br>261<br>319<br>465 | 128<br>134<br>165<br>164<br>130 | 57<br>58<br>63<br>58<br>58<br>59 | 35<br>35<br>34<br>34<br>34<br>33 | 28<br>38<br>38<br>30<br>29       |
| TOTAL                            | 787                              | 816                        | 2533                                   | 4446                                   | 12899                             | 10468                                  | 12804                           | 14824                                  | 9199                            | 2322                             | 1294                             | 937                              |
| MEAN                             | 25.4                             | 27.2                       | 81.7                                   | 143                                    | 461                               | 338                                    | 427                             | 478                                    | 307                             | 74.9                             | 41.7                             | 31.2                             |
| MAX                              | 33                               | 35                         | 236                                    | 367                                    | 1780                              | 529                                    | 994                             | 1300                                   | 695                             | 117                              | 55                               | 38                               |
| MIN                              | 22                               | 25                         | 31                                     | 63                                     | 248                               | 214                                    | 199                             | 254                                    | 128                             | 57                               | 33                               | 28                               |
| CFSM                             | 0.13                             | 0.14                       | 0.41                                   | 0.72                                   | 2.30                              | 1.69                                   | 2.13                            | 2.39                                   | 1.53                            | 0.37                             | 0.21                             | 0.16                             |
| IN.                              | 0.15                             | 0.15                       | 0.47                                   | 0.83                                   | 2.40                              | 1.95                                   | 2.38                            | 2.76                                   | 1.71                            | 0.43                             | 0.24                             | 0.17                             |
| STATIST                          | CICS OF MC                       | NTHLY MEA                  | AN DATA FO                             | OR WATER                               | YEARS 194                         | 6 - 2002,                              | BY WATER                        | YEAR (WY)                              |                                 |                                  |                                  |                                  |
| MEAN                             | 76.4                             | 137                        | 218                                    | 236                                    | 301                               | 541                                    | 502                             | 251                                    | 137                             | 76.7                             | 57.5                             | 60.0                             |
| MAX                              | 400                              | 567                        | 798                                    | 881                                    | 868                               | 1048                                   | 1069                            | 581                                    | 760                             | 355                              | 294                              | 748                              |
| (WY)                             | 1978                             | 1986                       | 1978                                   | 1998                                   | 1976                              | 1956                                   | 1947                            | 1984                                   | 1989                            | 1998                             | 1992                             | 1977                             |
| MIN                              | 18.0                             | 17.2                       | 20.1                                   | 22.9                                   | 33.4                              | 244                                    | 117                             | 99.7                                   | 45.6                            | 31.8                             | 22.5                             | 19.2                             |
| (WY)                             | 1966                             | 1965                       | 1961                                   | 1961                                   | 1958                              | 1965                                   | 1946                            | 1995                                   | 1949                            | 1965                             | 1965                             | 1965                             |

e Estimated

# 04230500 OATKA CREEK AT GARBUTT, NY--Continued

| SUMMARY STATISTICS                                       | FOR 2001 CALENDAR YEAR  | FOR 2002 WATER YEAR    | WATER YEARS 1946 - 2002            |
|----------------------------------------------------------|-------------------------|------------------------|------------------------------------|
| ANNUAL TOTAL                                             | 60646                   | 73329                  | 215                                |
| ANNUAL MEAN<br>HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN | 166                     | 201                    | 215<br>371 1978<br>117 1965        |
| HIGHEST DAILY MEAN                                       | 2640 Apr 9<br>21 Sep 10 | 1780 Feb 3<br>22 Oct 4 | 6500 Mar 31 1960<br>13 Oct 30 1966 |
| ANNUAL SEVEN-DAY MINIMUM                                 | 21 Sep 14               | 24 Oct 1               | 14 Oct 26 1966                     |
| ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)              | 0.83<br>11.28           | 1.00<br>13.64          | 1.08<br>14.64                      |
| 10 PERCENT EXCEEDS<br>50 PERCENT EXCEEDS                 | 444<br>70               | 463<br>96              | 510<br>108                         |
| 90 PERCENT EXCEEDS                                       | 25                      | 27                     | 30                                 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04230500 OATKA CREEK AT GARBUTT, NY--Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD.--Water years 1954, 1962, 1971, 1975 to 1977, 1989-90, 1997 to current year.

CHEMICAL DATA: Water years 1954 (a), 1962 (a), 1971 (a), 1975 (b), 1976-77 (e), 1989 (c), 1990 (d), 1997 to current year (e).

NUTRIENT DATA: Water years 1954 (a), 1962 (a), 1971 (a), 1975 (b), 1976-77 (e), 1989 (c), 1990 (d), 1997 to current year (e).

SEDIMENT DATA: Water years 1975 to 1977 (e), 1989 (c), 1990 (d), 1991 (a).

PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1959 to March 1961.
SUSPENDED SEDIMENT DISCHARGE: 1975 to September 1977.

INSTRUMENTATION. --Automatic water sampler since July 1997.

COOPERATION. --Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

ROCHESTEY, N.1.
REMARKS.--Water-quality records for this site were collected and reported in local standard time.

EXTREMES FOR PERIOD OF DAILY RECORD.-SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean, 282 mg/L, Aug. 17, 1997, minimum daily mean, 0 mg/L, Apr. 14, 1975.
SUSPENDED-SEDIMENT DISCHARGE: Maximum daily, 2,980 tons, Mar. 5, 1976, minimum daily, 0 ton, Apr, 14, 1975.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                                             | Time                                                                                 | Ending<br>time                                                                       | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)        | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                               | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                  | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608)    | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)    | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)  | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                        |
|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|
| OCT<br>01-05<br>05-09<br>09-11<br>11-15<br>15-18<br>18-22<br>22-25<br>25-29<br>OCT 29-           | 0915<br>0850<br>0935<br>0915<br>0935<br>1010<br>0940<br>0920                         | 0815<br>0750<br>0835<br>0815<br>0835<br>0910<br>0840<br>0920                         | 23<br>25<br>24<br>24<br>25<br>26<br>27<br>27                              | 1.3<br>2.3<br>1.7<br>3.2<br>2.0<br>2.7<br>2.2                         | 64<br>68<br>59<br>62<br>59<br>66<br>64<br>59                   | 546<br>544<br>520<br>555<br>544<br>528<br>569<br>545                      | 5<br><3<br>5<br><3<br>4<br>6<br><3                                           | <br><3<br><3<br><3<br><3<br><3<br><3<br><3                       | <.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01                | .30<br><.10<br><.10<br>N.23<br>.25<br><.10<br>.30                             | 1.0<br>1.1<br>1.1<br>1.0<br>.92<br>.92<br>.89                      | .005<br>.005<br>.005<br>.004<br>.006<br>.005<br>.006                      | .020<br>.020<br>.015<br>.020<br>.020<br>.020<br>.020                         |
| NOV 01<br>01-05<br>05-09<br>09-13<br>13-15<br>15-19<br>21-25<br>26-29                            | 1130<br>1020<br>1035<br>1005<br>1020<br>0955<br>1120<br>1055                         | 0930<br>0920<br>0935<br>0905<br>0920<br>0855<br>1020<br>0955                         | 26<br>27<br>27<br>27<br>26<br>26<br>27<br>27                              | 1.9<br>3.5<br>2.1<br>35<br>2.6<br>2.7<br>1.5<br>2.6                   | 63<br>59<br>67<br>62<br>58<br>59<br>57                         | 562<br>533<br>542<br>554<br>533<br>532<br>519<br>571                      | <3 4 4 3 4                                                                   | <3 <3 <3 <3 <3                                                   | <.01<br>.01<br><.01<br>.03<br>.02<br><.01<br><.01                           | .20 <.10 .17 <.10 .11 <.10 .41 <.10                                           | .98<br>.93<br>.90<br>.95<br>.95<br>.98<br>.93                      | .007<br>.003<br>.004<br>.007<br>.004<br>.004<br>.005                      | .020<br>.020<br>.015<br>.015<br>.015<br>.020<br>.015                         |
| DEC<br>03<br>06-10<br>06<br>10-13<br>13-14<br>14-16<br>16-17<br>17-19<br>19-20<br>27<br>27-31    | 1040<br>1035<br>1040<br>1055<br>1015<br>1415<br>1815<br>1105<br>2005<br>0955<br>1005 | 0935<br><br>0955<br>1315<br>1715<br>0915<br>1905<br>1005<br><br>0905                 | 54<br>32<br>34<br>32<br>32<br>74<br>173<br>162<br>250<br>80<br>71         | 1.0<br>2.5<br>1.0<br>2.2<br>2.3<br>17<br>21<br>17<br>20<br>3.5<br>2.6 | 66<br>74<br>68<br>70<br>69<br>70<br>78<br>71<br>78<br>74       | 382<br>504<br>449<br>535<br>511<br>499<br>193<br>208<br>170<br>268<br>359 | <3<br><br><3<br>3<br>3<br>31<br>36<br>24<br>33<br>                           | <3<br><br><3<br><3<br><3<br>6<br>8<br>7<br>10<br>                | <.01 <.01 <.01 <.01 <.01 <.01 01 02 02 02 <.01                              | <.10<br>.23<br><.10<br>.12<br>.12<br>.39<br>.63<br>.83<br><.10<br><.10        | 1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>1.7<br>1.6<br>2.4<br>2.1<br>1.9 | .009<br>.008<br>.009<br>.006<br>.007<br>.008<br>.014<br>.015<br>.017      | .020<br>.025<br>.015<br>.020<br>.020<br>.065<br>.100<br>.075<br>.090         |
| DEC 31-<br>JAN 03<br>03-07<br>07-10<br>10-14<br>14-18<br>18-22<br>22-23<br>25-26<br>26-28<br>FEB | 0945<br>1020<br>1005<br>1005<br>1035<br>0945<br>1005<br>1010<br>2210                 | 0845<br>0920<br>0905<br>0905<br>0935<br>0845<br>2205<br>2110                         | 64<br>65<br>65<br>151<br>120<br>91<br>90<br>350<br>347                    | 2.9<br>3.3<br>3.1<br>7.4<br>4.4<br>3.6<br>2.3<br>27                   | 79<br>73<br>82<br>108<br>84<br>81<br>86<br>83                  | 394<br>349<br>338<br>214<br>233<br>292<br>270<br>115<br>125               | <6<br>4<br>12<br><br><6<br>4<br>35<br>23                                     | <6 <3 <3 3 <6 <3 <5 <3                                           | .01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01<br>.03<br><.01          | .10<br>.39<br>.43<br>.43<br>.48<br>.26<br>.53<br>.71                          | 1.9<br>1.8<br>2.0<br>2.2<br>2.1<br>2.1<br>3.3<br>2.9               | .010<br>.008<br>.009<br>.012<br>.011<br>.010<br>.008                      | .025<br>.025<br>.025<br>.045<br>.035<br>.025<br>.025                         |
| 04-07<br>07-11<br>11-15<br>15-19<br>19-21<br>21-25<br>25-28<br>FEB 28-                           | 1025<br>1010<br>1125<br>1100<br>0950<br>1025<br>0950                                 | 0924<br>0909<br>1024<br>0909<br>0850<br>0924<br>0849                                 | 496<br>301<br>400<br>322<br>271<br>364<br>430                             | 20<br>5.5<br>11<br>4.0<br>4.2<br>7.0<br>3.9                           | 66<br>70<br>65<br>61<br>73<br>62<br>58                         | 118<br>173<br>120<br>145<br>166<br>125<br>159                             | <br><br><br><br>9<br>6                                                       | <br><br><br><br><5<br><6                                         | <.01<br>.02<br>.01<br>.02<br><.01<br><.01                                   | .70<br>.41<br>.44<br>.40<br>.37<br>.38                                        | 3.6<br>3.8<br>3.9<br>3.6<br>3.8<br>3.3                             | .017<br>.012<br>.017<br>.010<br>.011<br>.010                              | .094<br>.069<br>.062<br>.045<br>.026<br>.045                                 |
| MAR 04<br>04-07<br>07-11<br>11-14<br>14-18<br>18-21<br>21-22<br>22-25<br>25-26<br>26-27<br>27-28 | 1010<br>1005<br>1035<br>1005<br>1035<br>1010<br>1045<br>0645<br>1010<br>2210<br>1610 | 0909<br>0904<br>0934<br>0904<br>0904<br>0909<br>0545<br>0945<br>2110<br>1509<br>0610 | 239<br>264<br>352<br>390<br>332<br>262<br>356<br>308<br>284<br>420<br>513 | 2.6<br>4.0<br>9.1<br>11<br>2.7<br>5.4<br>3.6<br>3.2<br>2.0<br>7.6     | 62<br>71<br>66<br>58<br>56<br>58<br>62<br>59<br>64<br>66       | 164<br>145<br>116<br>111<br>124<br>141<br>113<br>126<br>147<br>127<br>95  | 4<br>6<br>8<br>8<br>6<br>4<br>5<br>4<br>4<br>10<br>16                        | <3 <3 <3 <3 <5 <5 <4 <3 <3 3 3                                   | <.01<br>.02<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01 | .39<br>.46<br>.45<br>.53<br>.40<br>.36<br>.43<br>.37<br>.30                   | 3.2<br>2.9<br>2.8<br>2.6<br>2.7<br>2.6<br>2.6<br>2.6<br>2.9<br>2.9 | .006<br>.005<br>.005<br>.004<br><.003<br><.003<br><.003<br><.003<br><.003 | .025<br>.033<br>.038<br>.029<br>.021<br>.017<br>.024<br>.026<br>.014<br>.024 |

N presumptive evidence of presence of material

# 04230500 OATKA CREEK AT GARBUTT, NY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                                                        | Time                                                                                 | Ending<br>time                                                                       | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)         | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                               | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                  | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)           | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)     | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                        |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| MAR 28- APR 01 01-02 02-04 04-08 08-11 11-13 13-15 18-18 25-28 28-29 29-30 APR 30-                          | 0910<br>1010<br>1910<br>1020<br>0855<br>0850<br>1250<br>0940<br>0910<br>0110<br>0855 | 0809<br>1810<br>0910<br>0819<br>0754<br>1150<br>0350<br>0940<br>0010<br>0809<br>1955 | 500<br>435<br>701<br>693<br>353<br>297<br>417<br>405<br>208<br>279<br>586  | 8.9<br>4.8<br>41<br>24<br>3.6<br>6.3<br>12<br>5.5<br>7.5<br>8.8       | 56<br>52<br>58<br>71<br>62<br>69<br>82<br>50<br>56<br>54<br>51 | 88<br>98<br>87<br>131<br>129<br>144<br>132<br>114<br>171<br>173<br>83     | 51<br>8<br>43<br>25<br><br>9<br>18<br>64<br>13<br><br>40                     | <6 <3 9 4 <3 4 7 <3 8                                            | .01 <.01 .04 .02 .01 <.01 .02 .01 .02 .01 .05 .02 .03                    | .50<br>.53<br>.75<br>.61<br>.43<br>.67<br>.90<br>.63<br>.59                   | 2.5<br>2.4<br>2.8<br>2.9<br>3.1<br>2.8<br>2.5<br>2.2<br>2.6<br>2.5<br>2.0 | .003<br>.004<br>.009<br>.009<br>.006<br>.007<br>.008<br>.013<br>.007<br>.006 | .046<br>.056<br>.125<br>.102<br>.028<br>.034<br>.058<br>.037<br>.056<br>.035 |
| MAY 02<br>02-06<br>06-09<br>09-12<br>12-13<br>13-14<br>14-16<br>16-20<br>20-24<br>24-28<br>28-31<br>MAY 31- | 2055<br>0925<br>0940<br>0915<br>1315<br>0905<br>1205<br>1040<br>0925<br>0855         | 0755<br>0824<br>0839<br>1215<br>0415<br>1104<br>0805<br>0840<br>0725<br>0754         | 555<br>359<br>263<br>355<br>332<br>860<br>1300<br>731<br>414<br>299<br>307 | 26<br>8.6<br>4.8<br>8.5<br>8.5<br>58<br>43<br>17<br>7.1<br>5.7<br>5.3 | 40<br>49<br>57<br>64<br>53<br>45<br>38<br>46<br>48<br>49       | 80<br>118<br>169<br>124<br>151<br>80<br>62<br>85<br>124<br>150            | 25<br>13<br>6<br>15<br>15<br>75<br>52<br>24<br>10<br>7                       | 6<br>3<br><3<br><3<br>3<br>12<br>8<br>4<br><3<br><3              | .01 <.01 <.01 <.01 <.01 .01 .03 .02 .01 .02 <.01 <.01                    | .71<br>.49<br>.43<br>.58<br>.55<br>1.2<br>.92<br>.77<br>.44<br>.49            | 1.7<br>2.0<br>2.1<br>1.9<br>1.9<br>1.7<br>2.0<br>2.5<br>2.4<br>2.2        | .009<br>.006<br>.005<br>.004<br>.005<br>.014<br>.024<br>.018<br>.010<br>.006 | .086<br>.043<br>.036<br>.043<br>.041<br>.191<br>.125<br>.078<br>.034<br>.021 |
| JUN 03<br>03-06<br>06-10<br>10-13<br>13-14<br>16-17<br>17-20<br>20-24<br>26-27<br>27-29<br>JUN 29-          | 1035<br>0925<br>0905<br>0835<br>0920<br>0920<br>1025<br>0935<br>0015                 | 0835<br>0824<br>0805<br>0734<br>0020<br>0819<br>0924<br>0834<br>0815                 | 629<br>337<br>460<br>198<br>164<br>513<br>403<br>171<br>129                | 36<br>12<br>26<br>11<br>7.9<br>75<br>31<br>10<br>7.9                  | 32<br>41<br>40<br>46<br>55<br>41<br>39<br>50<br>59             | 64<br>126<br>96<br>171<br>180<br>77<br>103<br>188<br>250<br>229           | 50<br>18<br>33<br>15<br>12<br>82<br>42<br>14<br>10                           | 10<br>4<br>6<br>3<br><7<br>14<br>8<br>4<br><3<br><3              | .03 <.01 <.01 <.01 <.01 .02 .01 <.01 <.01 <.01 <.01                      | 1.1<br>.56<br>.80<br>.58<br>.52<br>1.5<br>.80<br>.50<br>.45                   | 1.4<br>1.9<br>1.9<br>2.1<br>2.3<br>2.1<br>1.8<br>2.2<br>2.4               | .019<br>.020<br>.021<br>.014<br>.034<br>.043<br>.029<br>.017<br>.010         | .165<br>.062<br>.096<br>.039<br>.048<br>.024<br>.134<br>.060<br>.043         |
| JUL 01<br>01-05<br>05-08<br>08-11<br>11-15<br>15-18<br>18-22<br>22-25<br>25-29<br>JUL 29-                   | 0115<br>1030<br>0900<br>1020<br>0955<br>0910<br>0850<br>0940                         | 0814<br>0830<br>0759<br>0919<br>0854<br>0809<br>0749<br>0839                         | 142<br>105<br>91<br>81<br>75<br>69<br>65<br>63<br>59                       | 5.3<br>4.2<br>5.9<br>1.9<br>5.6<br>4.8<br>4.6<br>4.9<br>5.8           | 57<br>48<br>52<br>54<br>54<br>54<br>66<br>61<br>56             | 222<br>237<br>295<br>311<br>317<br>353<br>374<br>365<br>354               | 11<br>17<br>44<br>10<br>13<br>11<br>10<br>12                                 | 4<br><8<br><6<br><3<br>3<br><3<br><3<br><3                       | <.01<br>.03<br>.02<br><.01<br>.02<br><.01<br><.01<br><.01                | .47<br>.49<br>.49<br>.53<br>.47<br>.39<br>.47<br>.50                          | 2.3<br>1.8<br>2.3<br>2.3<br>2.4<br>2.2<br>2.4<br>2.2<br>2.0               | .011<br>.006<br>.004<br>.004<br>.004<br>.007<br>.005<br>.006                 | .036<br>.035<br>.030<br>.023<br>.031<br>.034<br>.040<br>.031                 |
| AUG 01<br>01-05<br>05-08<br>08-12<br>12-15<br>15-19<br>19-22<br>22-26<br>26-30<br>AUG 30-                   | 0950<br>0915<br>0905<br>0750<br>0910<br>0935<br>0940<br>0910                         | 0849<br>0814<br>0705<br>0649<br>0809<br>0834<br>0839<br>0709                         | 58<br>50<br>47<br>44<br>43<br>41<br>39<br>38<br>34                         | 4.7<br>5.1<br>4.7<br>5.3<br>6.1<br>2.5<br>4.9<br>5.1<br>4.0           | 59<br>59<br>60<br>59<br>60<br>56<br>57<br>61                   | 375<br>370<br>391<br>382<br>409<br>386<br>400<br>398<br>427               | 15<br>11<br>9<br>9<br>10<br>17<br>63<br>8                                    | 4 <3 <3 <3 <3 <5 13 <4                                           | .02<br>.01<br>.02<br>.03<br><.01<br><.01<br>.02<br>.05<br><.01           | .51<br>.42<br>.46<br>.52<br>.44<br>.47<br>.44<br>.37                          | 2.0<br>2.0<br>2.0<br>2.0<br>1.9<br>1.8<br>1.9                             | .009<br>.007<br>.005<br>.008<br>.005<br>.006<br>.005<br>.008                 | .035<br>.033<br>.034<br>.040<br>.036<br>.024<br>.029<br>.410                 |
| SEP 03<br>03-05<br>05-09<br>09-12<br>12-16<br>16-19<br>19-23<br>23-26<br>26-27<br>27-27                     | 0855<br>0835<br>0845<br>1020<br>0940<br>0855<br>0905<br>0820<br>0940<br>0540<br>2140 | 0754<br>0735<br>0744<br>0919<br>0839<br>0754<br>0804<br>0719<br>0440<br>2040<br>0840 | 33<br>33<br>32<br>31<br>31<br>31<br>29<br>29<br>28<br>39<br>34             | 5.5<br>15<br>3.8<br>3.9<br>3.1<br>5.1<br>9.6<br>2.8<br>2.6<br>3.6     | 58<br>60<br>62<br>66<br>59<br>61<br>65<br>59<br>61<br>59       | 429<br>395<br>462<br>437<br>397<br>464<br>451<br>435<br>458<br>455<br>461 | 13<br>9<br>8<br>9<br>7<br>7<br>24<br>8<br>11<br>8                            | <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <3 <                         | <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01                                  | .42<br>.40<br>.33<br>.46<br>.41<br>.63<br>.36<br>.36<br>.36                   | 1.8<br>1.6<br>1.9<br>1.7<br>1.7<br>1.5<br>1.6<br>1.6                      | .005<br>.006<br>.007<br>.007<br>.006<br>.007<br>.006<br>.006<br>.004<br>.007 | .035<br>.028<br>.040<br>.033<br>.024<br>.022<br>.061<br>.036<br>.034<br>.028 |
| SEP 30-<br>OCT 03                                                                                           | 0855                                                                                 | 0754                                                                                 | 29                                                                         | 2.8                                                                   | 60                                                             | 454                                                                       |                                                                              | <3                                                               | <.10                                                                     | .42                                                                           | 1.5                                                                       | .007                                                                         |                                                                              |

## 04230650 GENESEE RIVER AT BALLANTYNE BRIDGE, NEAR MORTIMER, NY

LOCATION.--Lat 43°05'32", long 77°40'50", Monroe County, Hydrologic Unit 04130003, on right bank 400 ft upstream from Ballantyne Bridge on State Highway 252, 1.6 mi west of Mortimer, and 2.8 mi upstream from Erie (Barge) Canal.

DRAINAGE AREA.--2,210 mi².

PERIOD OF RECORD.--October 1973 to current year.

REVISED RECORD.--WDR NY-82-3: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 500.00 ft above NGVD of 1929.

REMARKS.--River regulated for operation of Erie (Barge) Canal, downstream powerplants, and at high stages by Mount Morris Lake (see station 04224000). Satellite gage-height telemeter at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 20.57 ft, Jan. 10, 1998; minimum recorded, 8.20 ft, Nov. 9, 1979, but may have been lower as a result of extreme regulation.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 14.86 ft, May 14; minimum elevation, 9.84 ft, Apr. 23.

|                                  | GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002  DAILY MEAN VALUES  AV OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP |                                           |                                                    |                                                    |                                           |                                                    |                                           |                                                    |                                           |                                                    |                                           |                                           |  |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|--|--|
| DAY                              | OCT                                                                                                                                 | NOV                                       | DEC                                                | JAN                                                | FEB                                       | MAR                                                | APR                                       | MAY                                                | JUN                                       | JUL                                                | AUG                                       | SEP                                       |  |  |
| 1<br>2<br>3<br>4<br>5            | 11.66<br>11.64<br>11.56<br>11.57                                                                                                    | 11.70<br>11.69<br>11.67<br>11.59<br>11.45 | 12.06<br>12.04<br>11.87<br>11.73<br>11.82          | 11.71<br>11.78<br>11.67<br>11.67<br>11.83          | 12.58<br>14.05<br>13.27<br>12.78<br>12.93 | 11.93<br>11.92<br>11.81<br>12.00<br>12.22          | 12.68<br>12.41<br>12.28<br>12.55<br>11.99 | 11.09<br>11.25<br>12.20<br>12.53<br>12.70          | 13.29<br>12.78<br>12.57<br>12.25<br>12.40 | 12.41<br>12.01<br>11.90<br>11.91<br>11.86          | 11.85<br>11.70<br>11.61<br>11.63<br>11.71 | 11.89<br>11.81<br>11.73<br>11.66<br>11.66 |  |  |
| 6<br>7<br>8<br>9<br>10           | 11.68<br>11.68<br>11.57<br>11.51<br>11.54                                                                                           | 11.16<br>11.07<br>10.90<br>10.79<br>10.90 | 11.92<br>11.94<br>12.01<br>12.04<br>11.90          | 11.80<br>11.80<br>11.75<br>11.80<br>11.82          | 13.09<br>13.30<br>13.19<br>13.17<br>13.06 | 12.08<br>12.09<br>12.17<br>12.27<br>12.20          | 11.55<br>13.04<br>13.52<br>12.68<br>12.84 | 12.56<br>12.68<br>12.74<br>12.66<br>12.71          | 13.00<br>12.99<br>13.00<br>12.80<br>12.70 | 11.72<br>11.75<br>11.77<br>11.79<br>11.85          | 11.73<br>11.69<br>11.77<br>11.86<br>11.88 | 11.66<br>11.84<br>11.96<br>11.95<br>11.75 |  |  |
| 11<br>12<br>13<br>14<br>15       | 11.56<br>11.57<br>11.56<br>11.53<br>11.62                                                                                           | 10.92<br>10.91<br>10.93<br>10.99<br>11.00 | 11.91<br>11.86<br>11.90<br>11.90<br>12.04          | 11.90<br>11.93<br>11.81<br>11.79<br>11.81          | 13.44<br>13.41<br>13.24<br>13.08<br>12.84 | 12.29<br>12.22<br>12.40<br>12.24<br>12.26          | 13.31<br>13.26<br>12.99<br>13.46<br>14.28 | 12.69<br>12.53<br>12.92<br>14.43<br>14.10          | 12.75<br>12.71<br>12.66<br>12.57<br>12.28 | 11.83<br>11.73<br>11.85<br>11.74<br>11.81          | 11.87<br>11.84<br>11.82<br>11.82<br>11.85 | 11.66<br>11.61<br>11.60<br>11.61<br>11.69 |  |  |
| 16<br>17<br>18<br>19<br>20       | 11.54<br>11.64<br>11.64<br>11.64<br>11.67                                                                                           | 10.99<br>10.99<br>10.97<br>10.96<br>10.97 | 12.30<br>12.02<br>11.96<br>12.27<br>12.20          | 11.86<br>11.78<br>11.72<br>11.68<br>11.81          | 12.68<br>12.51<br>12.31<br>12.11<br>12.21 | 12.07<br>11.99<br>12.05<br>11.91<br>12.00          | 13.74<br>13.64<br>13.53<br>13.25<br>11.76 | 13.33<br>13.62<br>13.77<br>14.07<br>13.72          | 12.59<br>12.52<br>12.67<br>12.66<br>12.45 | 11.81<br>11.76<br>11.61<br>11.68<br>11.69          | 11.89<br>11.80<br>11.76<br>11.70          | 11.77<br>11.88<br>11.80<br>11.71<br>11.79 |  |  |
| 21<br>22<br>23<br>24<br>25       | 11.65<br>11.59<br>11.63<br>11.66<br>11.58                                                                                           | 10.96<br>10.99<br>11.02<br>11.03<br>11.07 | 12.18<br>12.14<br>12.17<br>12.04<br>12.16          | 11.89<br>11.94<br>11.87<br>11.80<br>12.08          | 12.19<br>12.29<br>12.40<br>12.31<br>12.10 | 12.21<br>12.38<br>12.26<br>12.10<br>12.03          | 10.99<br>10.27<br>10.94<br>12.49<br>12.83 | 13.57<br>13.69<br>13.65<br>13.47<br>13.32          | 12.31<br>12.13<br>11.78<br>11.88<br>11.93 | 11.80<br>11.85<br>11.89<br>11.72<br>11.68          | 11.61<br>11.59<br>11.57<br>11.61<br>11.66 | 11.64<br>11.68<br>11.74<br>11.75<br>11.76 |  |  |
| 26<br>27<br>28<br>29<br>30<br>31 | 11.70<br>11.68<br>11.70<br>11.69<br>11.68<br>11.69                                                                                  | 11.17<br>11.85<br>12.01<br>11.94<br>12.03 | 12.05<br>11.88<br>11.76<br>11.70<br>11.58<br>11.67 | 12.30<br>12.30<br>12.17<br>12.11<br>12.15<br>12.35 | 11.95<br>11.96<br>12.06<br>               | 12.13<br>12.81<br>13.15<br>13.02<br>12.73<br>12.70 | 12.92<br>11.93<br>11.11<br>11.07<br>11.40 | 13.21<br>13.02<br>12.70<br>12.40<br>12.43<br>13.23 | 11.81<br>11.84<br>12.60<br>12.90<br>12.78 | 11.61<br>11.73<br>11.91<br>11.80<br>11.81<br>11.86 | 11.78<br>11.86<br>11.71<br>11.58<br>11.73 | 11.62<br>11.60<br>11.65<br>11.94<br>11.78 |  |  |
| MEAN<br>MAX<br>MIN               | 11.62<br>11.70<br>11.51                                                                                                             | 11.22<br>12.03<br>10.79                   | 11.97<br>12.30<br>11.58                            | 11.89<br>12.35<br>11.67                            | 12.73<br>14.05<br>11.95                   | 12.25<br>13.15<br>11.81                            | 12.49<br>14.28<br>10.27                   | 13.00<br>14.43<br>11.09                            | 12.52<br>13.29<br>11.78                   | 11.81<br>12.41<br>11.61                            | 11.74<br>11.90<br>11.57                   | 11.74<br>11.96<br>11.60                   |  |  |

CAL YR 2001 MEAN 11.75 MAX 14.96 MIN 10.79 WTR YR 2002 MEAN 12.08 MAX 14.43 MIN 10.27

Discharge

Gage height

#### STREAMS TRIBUTARY TO LAKE ONTARIO

## 04231000 BLACK CREEK AT CHURCHVILLE, NY

LOCATION.--Lat  $43^{\circ}06^{\circ}02^{\circ}$ , long  $77^{\circ}52^{\circ}57^{\circ}$ , Monroe County, Hydrologic Unit 04130003, on right bank at east end of Carrol Street in Churchville, 100 ft downstream from mainline tracks of Penn Central Transportation Co., and 0.3 mi downstream from Black DRAINAGE AREA.--130 mi<sup>2</sup>.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1945 to current year.

Discharge

REVISED RECORDS.--October 1945 to current year.

REVISED RECORDS.--WDR NY-82-3: Drainage area. WDR NY-2000-3: 1998 (M), 1999 (M).

GAGE.--Water-stage recorder. Datum of gage is 551.88 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Prior to May 1952, small diversion by Penn Central Transportation Co. and slight regulation by pumping operations upstream from station. Telephone gage-height telemeter and satellite gage-height and precipitation telemeter at station. Several measurements of water temperature were made during

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,880 ft<sup>3</sup>/s, Mar. 31, 1960, gage height, 9.44 ft; minimum discharge, 0.17 ft<sup>3</sup>/s, Aug. 12, 2001; minimum gage height, 0.93 ft, Aug. 5, 6, 7, Sept. 15, 1959.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 800 ft<sup>3</sup>/s and maximum (\*):

Gage height

| Date                       | e Tim                           | ne                         | (ft <sup>3</sup> /s)            | cas                          | (ft)                              |                                  | Date                            | Time                             |                                 | (ft <sup>3</sup> /s)         |                                 | ft)                             |
|----------------------------|---------------------------------|----------------------------|---------------------------------|------------------------------|-----------------------------------|----------------------------------|---------------------------------|----------------------------------|---------------------------------|------------------------------|---------------------------------|---------------------------------|
| Feb.<br>Apr.               | 3 173<br>4 150                  |                            | 1,090<br>820                    |                              | 5.17<br>4.47                      |                                  | Apr. 16<br>May 15               | 0100<br>1000                     |                                 | 981<br>*1,380                | 4.<br>*5.                       | 89<br>85                        |
| Minimum di                 | scharge, 1.                     | $5 \text{ ft}^3/\text{s},$ | Sept. 14,                       | gage hei                     | ight, 1.10                        | ) ft.                            |                                 |                                  |                                 |                              |                                 |                                 |
|                            |                                 | DISCHA                     | RGE, CUBIC                      | FEET PE                      |                                   | WATER YE<br>Y MEAN VA            |                                 | 2001 TO S                        | EPTEMBE                         | ER 2002                      |                                 |                                 |
| DAY                        | OCT                             | NOV                        | DEC                             | JAN                          | FEB                               | MAR                              | APR                             | MAY                              | JUN                             | JUL                          | AUG                             | SEP                             |
| 1<br>2<br>3<br>4<br>5      | 8.8<br>7.1<br>6.2<br>4.8<br>3.9 | 19<br>18<br>16<br>17<br>16 | 94<br>72<br>50<br>38<br>32      | 32<br>30<br>29<br>30<br>31   | e230<br>e450<br>951<br>792<br>380 | 115<br>108<br>e120<br>136<br>e90 | 264<br>225<br>419<br>759<br>624 | 335<br>251<br>240<br>224<br>173  | 468<br>341<br>209<br>148<br>141 | 50<br>40<br>35<br>30<br>27   | 16<br>13<br>11<br>9.2<br>8.0    | 2.6<br>2.4<br>2.3<br>2.1<br>1.9 |
| 6<br>7<br>8<br>9<br>10     | 13<br>18<br>14<br>11<br>9.1     | 16<br>15<br>16<br>15<br>16 | 29<br>26<br>24<br>23<br>22      | 33<br>36<br>34<br>37<br>52   | e250<br>211<br>187<br>166<br>190  | e80<br>92<br>103<br>e160<br>e260 | 380<br>288<br>236<br>209<br>187 | 136<br>125<br>121<br>140<br>192  | 157<br>161<br>138<br>108<br>89  | 25<br>23<br>22<br>21<br>21   | 6.5<br>5.4<br>3.9<br>4.5<br>5.6 | 1.8<br>1.9<br>2.0<br>1.9        |
| 11<br>12<br>13<br>14<br>15 | 8.1<br>5.8<br>6.0<br>7.5<br>5.8 | 14<br>13<br>13<br>13       | 20<br>19<br>21<br>27<br>69      | 99<br>132<br>114<br>84<br>68 | 256<br>313<br>e330<br>231<br>189  | 287<br>231<br>204<br>191<br>165  | 159<br>134<br>178<br>435<br>812 | 199<br>179<br>383<br>991<br>1330 | 87<br>81<br>73<br>114<br>216    | 19<br>16<br>14<br>12<br>11   | 5.9<br>5.2<br>4.2<br>3.4<br>4.3 | 2.3<br>1.7<br>1.7<br>1.6<br>3.3 |
| 16<br>17<br>18<br>19<br>20 | 5.0<br>8.4<br>7.1<br>9.4<br>8.5 | 12<br>12<br>13<br>13       | 122<br>120<br>149<br>190<br>175 | 65<br>65<br>60<br>39<br>45   | 199<br>268<br>259<br>203<br>180   | 137<br>116<br>107<br>105<br>115  | 866<br>522<br>321<br>224<br>170 | 951<br>530<br>382<br>334<br>294  | 282<br>301<br>243<br>181<br>132 | 12<br>11<br>8.6<br>9.3       | 10<br>11<br>8.1<br>6.6<br>6.8   | 6.2<br>6.2<br>5.5<br>4.9<br>4.7 |
| 21<br>22<br>23<br>24<br>25 | 9.7<br>8.7<br>12<br>13<br>15    | 15<br>15<br>15<br>13<br>19 | 113<br>83<br>70<br>73<br>84     | 42<br>39<br>41<br>60<br>115  | 228<br>276<br>265<br>197<br>155   | 153<br>192<br>165<br>139<br>144  | 135<br>120<br>113<br>107<br>102 | 229<br>180<br>149<br>128<br>118  | 86<br>67<br>60<br>54<br>50      | 9.7<br>8.9<br>21<br>23<br>20 | 6.3<br>6.4<br>6.6<br>6.7<br>6.6 | 4.9<br>4.8<br>4.4<br>3.9<br>3.4 |

| 1,17,27,7 | 70        | / 1          | エンし    | 100       | J J 1      | JJ1     | 000      | 1000      | 400  | 50   | 10   | ± /  |
|-----------|-----------|--------------|--------|-----------|------------|---------|----------|-----------|------|------|------|------|
| MIN       | 3.9       | 12           | 19     | 29        | 126        | 80      | 98       | 118       | 48   | 8.6  | 3.0  | 1.6  |
| CFSM      | 0.13      | 0.14         | 0.50   | 0.50      | 2.13       | 1.33    | 2.32     | 2.43      | 1.11 | 0.16 | 0.05 | 0.04 |
| IN.       | 0.15      | 0.16         | 0.58   | 0.58      | 2.22       | 1.54    | 2.59     | 2.80      | 1.24 | 0.18 | 0.06 | 0.04 |
| STATIST   | TICS OF M | MONTHLY MEAN | DATA I | FOR WATER | YEARS 1946 | - 2002, | BY WATER | YEAR (WY) |      |      |      |      |
| MEAN      | 40.2      | 75.8         | 122    | 129       | 188        | 326     | 253      | 129       | 64.5 | 26.9 | 21.6 | 25.2 |
| MAX       | 235       | 405          | 497    | 484       | 460        | 664     | 497      | 325       | 348  | 143  | 201  | 284  |
| (WY)      | 1946      | 1971         | 1978   | 1998      | 1981       | 1971    | 1947     | 1956      | 1989 | 1992 | 1992 | 1977 |
| MIN       | 2.61      | 6.07         | 5.68   | 6.15      | 15.4       | 122     | 51.6     | 38.1      | 10.7 | 3.75 | 2.35 | 1.66 |
| (WY)      | 1964      | 1965         | 1961   | 1961      | 1958       | 1989    | 1946     | 1949      | 1949 | 1965 | 2001 | 1959 |

---

2.0

631.5

20.4

6.2

4.9

3.9

3.0

206.5

6.66

3.4

142.7

4.76 17

TOTAL

MEAN

MAX

511.9

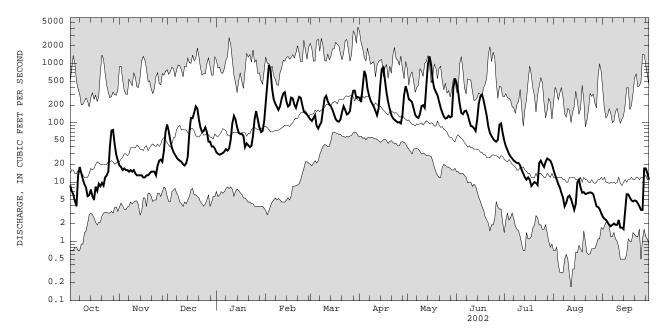
16.5 76

2.2

---

18.2 71

65.4


65.1

---

e Estimated

# 04231000 BLACK CREEK AT CHURCHVILLE, NY--Continued

| SUMMARY STATISTICS          | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1946 - 2002 |
|-----------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN | 32315.05<br>88.5       | 42386.6<br>116      | 116                     |
| HIGHEST ANNUAL MEAN         |                        |                     | 207 1978                |
| LOWEST ANNUAL MEAN          |                        |                     | 52.3 1953               |
| HIGHEST DAILY MEAN          | 939 Mar 23             | 1330 May 15         | 4120 Mar 31 1960        |
| LOWEST DAILY MEAN           | 0.17 Aug 12            | 1.6 Sep 14          | 0.17 Aug 12 2001        |
| ANNUAL SEVEN-DAY MINIMUM    | 0.63 Aug 7             | 1.9 Sep 8           | 0.47 Aug 3 1959         |
| ANNUAL RUNOFF (CFSM)        | 0.68                   | 0.89                | 0.90                    |
| ANNUAL RUNOFF (INCHES)      | 9.25                   | 12.13               | 12.17                   |
| 10 PERCENT EXCEEDS          | 261                    | 278                 | 289                     |
| 50 PERCENT EXCEEDS          | 37                     | 50                  | 48                      |
| 90 PERCENT EXCEEDS          | 2.8                    | 5.1                 | 6.8                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954, 1956, 1961, 1962, 1965 to 1976, 1998 to current year.

CHEMICAL DATA: Water years 1954 (a), 1956 (a), 1961 (b), 1962 (e), 1965 (a), 1966 to 1974 (d), 1975-76 (e), 1998 to current vear (e).

04231000 BLACK CREEK AT CHURCHVILLE, NY--Continued

NUTRIENT DATA: Water years 1954 (a), 1956 (a), 1961 (b), 1962 (e), 1965 (a), 1966 to 1974 (d), 1975-76 (e), 1998 to current year (e). SEDIMENT DATA: Water years 1975-76 (e)

SEDIMENT DATA: Water years 1975-76 (e)
PERIOD OF DAILY RECORD.-WATER TEMPERATURES: October 1961 to September 1962.
INSTRUMENTATION.--Automatic water sampler since April 1998.
COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.
REMARKS.--Water-quality records for this site were collected and reported in local standard time.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                  | Time         | Ending<br>time | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|-----------------------|--------------|----------------|--------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT<br>01-05<br>05-07 | 0945<br>0920 | 0845<br>0020   | 6.1<br>9.6                                                         | 2.7<br>5.4                              | 89<br>88                                                       | 577<br>628                                               |                                                                              |                                                                  | .05<br>.12                                                               | .72<br>.63                                                                    | .27                                                             | .004                                                                     | .065<br>.070                                          |
| 07-09                 | 0120         | 0820           | 15                                                                 | 4.7                                     | 88                                                             | 626                                                      |                                                                              |                                                                  | .06                                                                      | .56                                                                           | .47                                                             | .006                                                                     | .070                                                  |
| 09-11                 | 1010         | 0910<br>0845   | 9.4<br>6.7                                                         | 4.0                                     | 80<br>79                                                       | 594<br>654                                               |                                                                              |                                                                  | .02                                                                      | .61<br>.68                                                                    | .48                                                             | .003<br><.003                                                            | .050<br>.050                                          |
| 11-15<br>15-18        | 0945<br>1010 | 0910           | 6.3                                                                | 5.1<br>7.6                              | 80                                                             | 600                                                      |                                                                              |                                                                  | .05                                                                      | .49                                                                           | .53<br>.46                                                      | .003                                                                     | .060                                                  |
| 18-22                 | 1050         | 0950           | 9.0                                                                | 6.3                                     | 88                                                             | 639                                                      |                                                                              |                                                                  | .03                                                                      | .65                                                                           | .40                                                             | .004                                                                     | .050                                                  |
| 22-25<br>25-28        | 1010<br>1350 | 0910<br>0150   | 12<br>50                                                           | 5.2<br>9.4                              | 78<br>71                                                       | 680<br>684                                               |                                                                              |                                                                  | .02<br>.04                                                               | .73<br>.73                                                                    | .35<br>.43                                                      | .004                                                                     | .055<br>.070                                          |
| 28-29                 | 0250         | 0950           | 66                                                                 | 9.4                                     | 76                                                             | 638                                                      |                                                                              |                                                                  | .02                                                                      | .84                                                                           | 1.2                                                             | .035                                                                     | .065                                                  |
| OCT 29-<br>NOV 01     | 1220         | 1020           | 27                                                                 | 8.4                                     | 82                                                             | 486                                                      |                                                                              |                                                                  | .04                                                                      | .51                                                                           | 2.4                                                             | .028                                                                     | .065                                                  |
| 01-05                 | 1105         | 1020           | 17                                                                 | 8.2                                     | 85                                                             | 536                                                      |                                                                              |                                                                  | .12                                                                      | .80                                                                           | 2.4                                                             | .028                                                                     | .060                                                  |
| 05-09                 | 1055         | 0955           | 16                                                                 | 6.5                                     | 93                                                             | 584                                                      |                                                                              |                                                                  | .12                                                                      | .55                                                                           | 1.5                                                             | .000                                                                     | .040                                                  |
| 09-13<br>13-15        | 1035<br>1050 | 0935<br>0950   | 14<br>13                                                           | 3.4<br>4.7                              | 94<br>82                                                       | 624<br>602                                               |                                                                              |                                                                  | .14                                                                      | .72<br>.37                                                                    | 1.1<br>.82                                                      | .021<br>.018                                                             | .040                                                  |
| 15-19                 | 1025         | 0925           | 12                                                                 | 6.3                                     | 86                                                             | 641                                                      |                                                                              |                                                                  | .09                                                                      | .76                                                                           | .79                                                             | .016                                                                     | .045                                                  |
| 21-25<br>26-28        | 1205         | 1105<br>1325   | 15<br>23                                                           | 6.0<br>10                               | 87<br>94                                                       | 658<br>685                                               |                                                                              |                                                                  | .07<br>.08                                                               | .66<br>.63                                                                    | . 75                                                            | .014<br>.016                                                             | .040                                                  |
| 28-29                 | 1125<br>1425 | 1025           | 23<br>26                                                           | 9.5                                     | 91                                                             | 697                                                      |                                                                              |                                                                  | .11                                                                      | .70                                                                           | .76<br>.81                                                      | .016                                                                     | .060                                                  |
| NOV 29-               |              |                |                                                                    |                                         |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| DEC 01<br>01-03       | 1050<br>1050 | 0950<br>0950   | 67<br>74                                                           | 8.1<br>8.0                              | 82<br>83                                                       | 615<br>482                                               |                                                                              |                                                                  | .06<br>.03                                                               | .59<br>.74                                                                    | .84<br>2.0                                                      | .026<br>.022                                                             | .065<br>.070                                          |
| 03-06                 | 1105         | 1005           | 37                                                                 | 5.4                                     | 90                                                             | 428                                                      |                                                                              |                                                                  | .03                                                                      | .60                                                                           | 2.2                                                             | .020                                                                     | .045                                                  |
| 06-10<br>10-13        | 1105<br>1115 | 1005<br>1015   | 24<br>20                                                           | 14<br>5.6                               | 93<br>89                                                       | 462<br>486                                               |                                                                              |                                                                  | .05<br>.04                                                               | .83<br>.65                                                                    | 1.9<br>1.6                                                      | .017<br>.018                                                             | .045                                                  |
| 13-14                 | 1045         | 1345           | 21                                                                 | 6.5                                     | 91                                                             | 486                                                      |                                                                              |                                                                  | .04                                                                      | .49                                                                           | 1.5                                                             | .018                                                                     | .040                                                  |
| 14-16                 | 1445         | 0945           | 73                                                                 | 10                                      | 84                                                             | 474                                                      |                                                                              |                                                                  | .03                                                                      | .38                                                                           | 1.5                                                             | .019                                                                     | .060                                                  |
| 16-17<br>17-20        | 1045<br>1135 | 0945<br>0135   | 123<br>160                                                         | 13<br>14                                | 76<br>81                                                       | 440<br>299                                               |                                                                              |                                                                  | <.01<br>.01                                                              | .42<br>.77                                                                    | 1.5<br>2.4                                                      | .017<br>.017                                                             | .060<br>.070                                          |
| 20-20                 | 0235         | 1035           | 192                                                                | 14                                      | 82                                                             | 286                                                      |                                                                              |                                                                  | <.01                                                                     | .85                                                                           | 3.1                                                             | .020                                                                     | .080                                                  |
| 27<br>27-31           | 1025<br>1035 | <br>0935       | 36<br>43                                                           | 5.4<br>3.2                              | 76<br>72                                                       | 276<br>312                                               |                                                                              |                                                                  | .02<br><.01                                                              | .41<br>.54                                                                    | 3.2<br>3.0                                                      | .015<br>.015                                                             | .035                                                  |
| DEC 31-               | 1033         | 0933           | 43                                                                 | 3.2                                     | 12                                                             | 312                                                      |                                                                              |                                                                  | <.01                                                                     | .54                                                                           | 3.0                                                             | .013                                                                     | .030                                                  |
| JAN 03                | 1020         | 0920           | 32                                                                 | 3.0                                     | 83                                                             | 349                                                      |                                                                              |                                                                  | <.01                                                                     | .82                                                                           | 3.0                                                             | .013                                                                     | .030                                                  |
| 03-07<br>07-10        | 1045<br>1035 | 0945<br>0935   | 31<br>37                                                           | 2.0<br>2.4                              | 85<br>88                                                       | 371<br>357                                               |                                                                              |                                                                  | <.01<br><.01                                                             | .47<br>.70                                                                    | 2.9<br>2.7                                                      | .014<br>.015                                                             | .030                                                  |
| 10-14                 | 1035         | 0935           | 104                                                                | 3.9                                     | 75                                                             | 268                                                      |                                                                              |                                                                  | <.01                                                                     | .71                                                                           | 2.3                                                             | .016                                                                     | .040                                                  |
| 14-18<br>18-22        | 1110<br>1105 | 1010<br>0905   | 67<br>44                                                           | 3.3<br>2.3                              | 74<br>86                                                       | 253<br>306                                               |                                                                              |                                                                  | <.01<br><.01                                                             | .58<br>.50                                                                    | 2.5<br>2.5                                                      | .012<br>.012                                                             | .025<br>.025                                          |
| 22-24                 | 1035         | 0935           | 42                                                                 | 1.8                                     | 88                                                             | 311                                                      |                                                                              |                                                                  | <.01                                                                     | .50                                                                           | 2.6                                                             | .013                                                                     | .025                                                  |
| 24-26                 | 1025         | 1325           | 115                                                                | 4.6                                     | 72                                                             | 290                                                      |                                                                              |                                                                  | <.01                                                                     | .54                                                                           | 2.5                                                             | .011                                                                     | .020                                                  |
| 26-28<br>FEB          | 1425         | 0925           | 120                                                                | 6.6                                     | 69                                                             | 209                                                      |                                                                              |                                                                  | <.01                                                                     | .64                                                                           | 1.4                                                             | .012                                                                     | .035                                                  |
| 04-07                 | 1050         | 0949           | 388                                                                | 7.0                                     | 52                                                             | 147                                                      |                                                                              |                                                                  | <.01                                                                     | .61                                                                           | 3.0                                                             | .019                                                                     | .050                                                  |
| 07-11<br>11-12        | 1040<br>1155 | 1140<br>2255   | 193<br>294                                                         | 2.8<br>7.5                              | 189<br>60                                                      | 66<br>132                                                | <br>116                                                                      | 34                                                               | <.01<br>.03                                                              | .53<br>.29                                                                    | 3.1<br>3.1                                                      | .011                                                                     | .025<br>.027                                          |
| 21-25                 | 1045         | 0944           | 236                                                                | 4.8                                     | 64                                                             | 150                                                      |                                                                              |                                                                  | .02                                                                      | .61                                                                           | 2.4                                                             | .005                                                                     | .039                                                  |
| 25-28                 | 1015         | 0914           | 142                                                                | 3.5                                     | 62                                                             | 174                                                      |                                                                              |                                                                  | <.01                                                                     | .52                                                                           | 2.3                                                             | .005                                                                     | .031                                                  |
| FEB 28-<br>MAR 04     | 1035         | 0934           | 118                                                                | 3.0                                     | 61                                                             | 188                                                      |                                                                              |                                                                  | <.01                                                                     | .33                                                                           | 2.5                                                             | .005                                                                     | .022                                                  |
| 04-07                 | 1035         | 0934           | 95                                                                 | 4.8                                     | 74                                                             | 193                                                      |                                                                              |                                                                  | .02                                                                      | .63                                                                           | 2.4                                                             | .006                                                                     | .034                                                  |
| 07-08<br>08-11        | 1055<br>0655 | 0555<br>0955   | 92<br>196                                                          | 3.5<br>10                               | 67<br>63                                                       | 197<br>177                                               |                                                                              |                                                                  | <.01<br><.01                                                             | .51<br>.56                                                                    | 2.7<br>2.2                                                      | .006<br>.004                                                             | .030                                                  |
| 14-14                 | 1105         | 1205           | 193                                                                | 5.4                                     | 63                                                             | 159                                                      |                                                                              |                                                                  | <.01                                                                     | .66                                                                           | 2.1                                                             | .005                                                                     | .021                                                  |
| 18-18                 | 1105         | 1205           | 108                                                                | 2.0                                     | 63<br>76                                                       | 182<br>172                                               |                                                                              |                                                                  | .01                                                                      | .58                                                                           | 2.1                                                             | .004                                                                     | .017                                                  |
| 25-25<br>26-28        | 1035<br>1015 | 1135<br>1114   | 141<br>252                                                         | 2.9<br>4.9                              | 76<br>56                                                       | 138                                                      |                                                                              |                                                                  | <.01<br><.01                                                             | .50<br>.48                                                                    | 1.7                                                             | .004                                                                     | .017<br>.027                                          |
| 28-29                 | 1135         | 0235           | 371                                                                | 7.1                                     | 59                                                             | 138                                                      |                                                                              |                                                                  | <.01                                                                     | .70                                                                           | 1.9                                                             | <.003                                                                    | .031                                                  |

# 04231000 BLACK CREEK AT CHURCHVILLE, NY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                                                 | Time                                                                                 | Ending<br>time                                                                       | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)        | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                           | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                  | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)    | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)        | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                        |
|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| MAR 29- APR 01 01-02 02-04 04-08 08-11 11-13 13-15 15-18 18-22 22-25 29-30 APR 30-                   | 0335<br>1040<br>1340<br>1050<br>0855<br>0920<br>1320<br>1010<br>1010<br>0940<br>0935 | 1035<br>1239<br>0940<br>0849<br>0754<br>1220<br>0819<br>0909<br>0909<br>0839<br>1434 | 291<br>228<br>441<br>467<br>201<br>138<br>441<br>684<br>188<br>111<br>367 | 7.3<br>5.7<br>13<br>14<br>5.8<br>6.7<br>16<br>21<br>5.9<br>3.5    | 59<br>59<br>59<br>76<br>62<br>55<br>86<br>42<br>50<br>56<br>48 | 139<br>131<br>128<br>154<br>139<br>137<br>123<br>92<br>120<br>157         | <br><br><br><br><br>                                                         | <br><br><br><br><br>                                             | .01<br>.01<br><.01<br>.01<br><.01<br><.01<br>.02<br><.01<br>.03          | .59<br>.72<br>.69<br>.69<br>.72<br>.79<br>1.1<br>.81<br>.86                   | 1.9<br>1.8<br>1.7<br>2.1<br>2.3<br>1.8<br>1.4<br>1.1<br>1.1<br>1.8 | <.003<br><.003<br>.004<br>.005<br>.004<br><.003<br>.006<br>.008<br>.011<br>.009 | .028<br>.028<br>.041<br>.210<br>.030<br>.029<br>.056<br>.064<br>.057         |
| MAY 02<br>02-06<br>06-09<br>15-16<br>16-20<br>20-24<br>24-28<br>28-30<br>30-31<br>MAY 31-            | 1535<br>0950<br>1005<br>1315<br>1110<br>0955<br>0915<br>0940<br>0140                 | 0835<br>0849<br>0904<br>1015<br>0910<br>0854<br>0814<br>0040<br>1040                 | 337<br>211<br>125<br>1210<br>462<br>196<br>124<br>130<br>452              | 7.9<br>6.0<br>9.2<br>35<br>12<br>6.7<br>11<br>15                  | 47<br>51<br>61<br>32<br>41<br>56<br>60<br>56<br>39             | 123<br>132<br>170<br>72<br>97<br>129<br>168<br>178                        | <br><br><br><br><br><br>38                                                   | <br><br><br><br><br><br>11                                       | .01<br>.02<br><.01<br>.02<br>.03<br><br>.02<br><.01                      | .70<br>.66<br>.67<br>.95<br>.83<br>.72<br>.74<br>.73                          | 1.2<br>1.3<br>1.2<br>1.4<br>1.9<br>1.9                             | .008<br>.005<br>.004<br>.017<br>.014<br>.009<br>.010                            | .040<br>.039<br>.042<br>.100<br>.059<br>.029<br>.042<br>.048                 |
| JUN 03<br>03-06<br>06-10<br>10-13<br>13-14<br>14-17<br>17-20<br>24-27<br>27-29                       | 1055<br>0945<br>0925<br>0905<br>0945<br>0545<br>1050<br>0915<br>0945                 | 0855<br>0844<br>0824<br>0804<br>0445<br>0845<br>0949<br>0814                         | 414<br>155<br>136<br>84<br>75<br>225<br>218<br>50<br>84                   | 25<br>14<br>14<br>33<br>47<br>41<br>48<br>7.8                     | 36<br>44<br>50<br>52<br>56<br>50<br>51<br>64<br>59             | 106<br>134<br>163<br>180<br>179<br>173<br>138<br>209<br>229               | <br><br>44<br><br><br>                                                       | <br><br>10<br><br><br>                                           | .03<br>.03<br>.04<br>.04<br>.04<br>.02                                   | 1.2<br>.91<br>.84<br>1.1<br>1.3<br>1.7<br>.97                                 | .81<br>1.2<br>1.4<br>1.3<br>1.1<br>1.4<br>1.4                      | .023<br>.021<br>.017<br>.020<br>.027<br>.033<br>.038<br>.015                    | .121<br>.084<br>.068<br>.124<br>.161<br>.179<br>.202<br>.058                 |
| JUN 29-<br>JUL 01<br>01-05<br>05-08<br>08-11<br>11-15<br>15-18<br>18-22<br>22-25<br>25-29<br>JUL 29- | 0945<br>1100<br>0930<br>1055<br>1025<br>0940<br>0920<br>0955<br>1005                 | 0845<br>0900<br>0829<br>0954<br>0924<br>0839<br>0819<br>0854                         | 73<br>36<br>24<br>21<br>14<br>9.6<br>9.5<br>19                            | 22<br>18<br>7.4<br>3.3<br>7.3<br>5.4<br>4.2<br>5.0<br>5.3         | 59<br>83<br>84<br>63<br>40<br>69<br>79<br>74<br>73             | 225<br>214<br>243<br>259<br>170<br>323<br>331<br>331<br>368               | <br><br><br><br><br><br>12                                                   | <br><br><br><br><br><br><br><10                                  | .02<br>.04<br>.05<br>.04<br>.05<br>.04<br>.05                            | 1.1<br>1.1<br>.93<br>.88<br>.85<br>.68<br>.63<br>.89                          | 1.1<br>.79<br>.74<br>.64<br>.72<br>.46<br>.37<br>.35               | .023<br>.023<br>.014<br>.015<br>.017<br>.022<br>.017<br>.016                    | .121<br>.089<br>.060<br>.055<br>.069<br>.054<br>.051<br>.053                 |
| AUG 01<br>01-05<br>05-08<br>15-15<br>19-22<br>22-26<br>26-30<br>AUG 30-                              | 1015<br>0945<br>0940<br>0950<br>1010<br>0925<br>0955                                 | 0914<br>0844<br>0640<br>0950<br>0909<br>0724<br>0854                                 | 21<br>11<br>6.1<br>3.6<br>6.5<br>6.6<br>4.4                               | 6.0<br>4.7<br>4.8<br>3.0<br>10<br>4.3<br>8.6                      | 74<br>52<br>76<br>81<br>77<br>77<br>86                         | 388<br>249<br>406<br>373<br>350<br>358<br>400                             | 11<br><br><br><br>                                                           | <5<br><br><br><br>                                               | .03<br>.03<br>.04<br>.07<br>.03<br>.05                                   | .68<br>.75<br>.75<br>.68<br>1.1<br>.64                                        | .53<br>.42<br>.32<br>.18<br>.16<br>.18                             | .014<br>.011<br>.010<br>.028<br>.014<br>.023                                    | .055<br>.059<br>.060<br>.061<br>.089<br>.046                                 |
| 03-05<br>03-05<br>05-09<br>09-12<br>12-16<br>16-19<br>19-23<br>23-26<br>26-27<br>27-27               | 0925<br>0910<br>0915<br>0950<br>1010<br>0920<br>0935<br>0855<br>1005<br>0605<br>1805 | 0824<br>0810<br>0814<br>0849<br>0909<br>0819<br>0834<br>0754<br>0505<br>1705<br>0905 | 2.8<br>2.2<br>1.9<br>2.0<br>2.6<br>5.8<br>4.8<br>3.7<br>3.6<br>15         | 3.2<br>15<br>2.2<br>5.7<br>3.0<br>2.5<br>2.9<br>2.6<br>2.8<br>8.8 | 84<br>85<br>86<br>85<br>78<br>89<br>85<br>80<br>81<br>79       | 437<br>450<br>443<br>431<br>380<br>455<br>451<br>433<br>465<br>423<br>447 | <br><br><br><br><br><br><br>                                                 | <br><br><br><br><br><br><br>                                     | .03<br>.02<br>.02<br>.03<br>.03<br>.02<br>.02<br>.03<br>.02              | .56<br>.60<br>.53<br>.64<br>.58<br>.69<br>.65<br>.58<br>.63                   | .20<br>.23<br>.19<br>.24<br>.14<br>.16<br>.12<br>.35<br>.15        | .015<br>.012<br>.014<br>.013<br>.014<br>.007<br>.006<br>.008                    | .047<br>.042<br>.064<br>.049<br>.046<br>.042<br>.045<br>.041<br>.034<br>.054 |
| SEP 30-<br>OCT 03                                                                                    | 0935                                                                                 | 0834                                                                                 | 9.9                                                                       | 3.5                                                               | 79                                                             | 490                                                                       |                                                                              |                                                                  | .03                                                                      | .79                                                                           | .24                                                                | .008                                                                            | .056                                                                         |

#### 04232000 GENESEE RIVER AT ROCHESTER, NY

LOCATION.--Lat 43°10'50", long 77°37'40", Monroe County, Hydrologic Unit 04130003, on right bank 40 ft downstream from Rochester Gas and Electric Corporation plant, 5,100 ft upstream from bridge on Driving Park Avenue in Rochester, and 6.4 mi upstream

DRAINAGE AREA. -- 2,467 mi<sup>2</sup>

PERIOD OF RECORD. --April 1904 to September 1918, December 1919 to current year. Published as "at Driving Park Avenue," 1919-68. REVISED RECORDS.--WSP 1912; WDR NY-82-3: Drainage area.

GAGE. --Water-stage recorder. Datum of gage is 244.24 ft above NGVD of 1929 (245.00 ft, Barge Canal datum). April 1904 to December 1910, nonrecording gage and December 1910 to September 1918, water-stage recorder at site 5 mi upstream at datum 506.85 ft, Barge Canal datum. December 1919 to Apr. 4, 1927, water-stage recorder in plant 5, and Apr. 4, 1927 to June 19, 1956, at present site at datum 5.76 ft higher than present datum. June 20, 1956 to Sept. 30, 1969, at present site at datum 2.76 ft higher than present datum. Oct. 1, 1969 to Sept. 30, 1985, at present site at datum 2.00 ft higher than present datum. REMARKS.--Records fair except those for estimated daily discharges, which are poor. Extensive diurnal fluctuation caused by powerplants upstream from station. New York State Erie (Barge) Canal crosses river 5.4 mi upstream from station. Water diverted by the canal from Lake Erie is discharged into river from the west, the canal again diverting a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again diverting as a smaller amount of the canal again account of the canal again diverting as a smaller amount of the canal

water from river to the east. Additional regulation is provided by Rushford Lake, Mount Morris Lake (see station 04224000), and Conesus Lake (see station 04227980).

and Conesus Lake (see station 04227980).

EXTREMES FOR PERIOD OF RECORD.—-Maximum discharge, 48,300 ft<sup>3</sup>/s, Mar. 30, 1916, gage height 15.3 ft, site and datum then in use; maximum at present site, 34,400 ft<sup>3</sup>/s, Mar. 19, 1942; maximum gage height, 17.08 ft, Apr. 2, 1940, datum then in use; minimum discharge, less than 10 ft<sup>3</sup>/s, occurred during low-water periods in some years when power plant was shut down.

EXTREMES OUTSIDE PERIOD OF RECORD.—-Maximum discharge on Mar. 18, 1865, was about 54,000 ft<sup>3</sup>/s.

EXTREMES FOR CURRENT YEAR.—-Maximum discharge, 10,900 ft<sup>3</sup>/s, May 14, gage height, 10.96 ft, result of regulation; minimum daily discharge, 265 ft<sup>3</sup>/s, Nov. 13; minimum instantaneous discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                  |                                            |                                 |                                            |                                              | DAI                      | LY MEAN V                                    | ALUES                                |                                              |                                        |                                              |                                             |                                 |
|----------------------------------|--------------------------------------------|---------------------------------|--------------------------------------------|----------------------------------------------|--------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------|
| DAY                              | OCT                                        | NOV                             | DEC                                        | JAN                                          | FEB                      | MAR                                          | APR                                  | MAY                                          | JUN                                    | JUL                                          | AUG                                         | SEP                             |
| 1                                | e525                                       | 945                             | 1430                                       | 893                                          | 5700                     | 2250                                         | 4880                                 | 2590                                         | 7620                                   | 4890                                         | e818                                        | e495                            |
| 2                                | e507                                       | 955                             | 1770                                       | 772                                          | 9490                     | 2240                                         | 5320                                 | 2160                                         | 6270                                   | 2260                                         | e806                                        | 511                             |
| 3                                | e427                                       | 1010                            | 1540                                       | 763                                          | 7570                     | 1870                                         | 5690                                 | 3090                                         | 4900                                   | e1780                                        | e625                                        | 585                             |
| 4                                | e394                                       | 763                             | 1060                                       | 690                                          | 5720                     | 2130                                         | 6030                                 | 4150                                         | 4330                                   | e1310                                        | e455                                        | e493                            |
| 5                                | e367                                       | 673                             | 850                                        | 798                                          | 5720                     | 2540                                         | 5380                                 | 4740                                         | 4500                                   | e1320                                        | e443                                        | e496                            |
| 6                                | e407                                       | 405                             | 736                                        | 847                                          | 6080                     | 2600                                         | 4240                                 | 4540                                         | 6230                                   | e1180                                        | e401                                        | e372                            |
| 7                                | e400                                       | 387                             | 690                                        | 776                                          | 6700                     | 2570                                         | 5890                                 | 4880                                         | 6330                                   | e1030                                        | e395                                        | e291                            |
| 8                                | e516                                       | 376                             | 552                                        | 697                                          | 6710                     | 2690                                         | 6980                                 | 4990                                         | 6230                                   | e1010                                        | e398                                        | e338                            |
| 9                                | e448                                       | 348                             | 622                                        | 728                                          | 6490                     | 2940                                         | 5260                                 | 5250                                         | 5880                                   | e984                                         | e420                                        | 475                             |
| 10                               | e383                                       | 292                             | 592                                        | 797                                          | 6350                     | 3250                                         | 5150                                 | 5360                                         | 5450                                   | e775                                         | e435                                        | 505                             |
| 11                               | e380                                       | 308                             | 516                                        | 977                                          | 7150                     | 3470                                         | 6380                                 | 5250                                         | 5710                                   | e876                                         | e419                                        | e478                            |
| 12                               | e406                                       | 297                             | 464                                        | 1340                                         | 7140                     | 3590                                         | 6490                                 | 4970                                         | 5750                                   | e762                                         | e385                                        | e355                            |
| 13                               | e385                                       | 265                             | 490                                        | 1450                                         | 6550                     | 3390                                         | 5970                                 | 6370                                         | 5360                                   | e733                                         | e401                                        | e360                            |
| 14                               | e389                                       | 276                             | 488                                        | 1250                                         | 5900                     | 3380                                         | 7060                                 | 9830                                         | 5350                                   | e689                                         | e364                                        | e361                            |
| 15                               | e413                                       | 274                             | 885                                        | 1150                                         | 5480                     | 3100                                         | 8900                                 | 9150                                         | 4440                                   | e631                                         | e383                                        | e365                            |
| 16                               | e469                                       | 280                             | 2530                                       | 1020                                         | 5150                     | 2810                                         | 7820                                 | 7170                                         | 5130                                   | e639                                         | e397                                        | 545                             |
| 17                               | e667                                       | 271                             | 2430                                       | 1090                                         | 4710                     | 2650                                         | 7390                                 | 7360                                         | 5150                                   | e695                                         | e497                                        | 1100                            |
| 18                               | 890                                        | 275                             | 2010                                       | 959                                          | 3920                     | 2750                                         | 7160                                 | 7930                                         | 5050                                   | e737                                         | e445                                        | 992                             |
| 19                               | 927                                        | 280                             | 3310                                       | 654                                          | 2760                     | 2490                                         | 6680                                 | 9070                                         | 5240                                   | e519                                         | e423                                        | 580                             |
| 20                               | 926                                        | 273                             | 3640                                       | 694                                          | 2790                     | 2300                                         | 4760                                 | 8440                                         | 4870                                   | e605                                         | e413                                        | 566                             |
| 21                               | 1050                                       | 275                             | 3310                                       | 784                                          | 2760                     | 2850                                         | 2620                                 | 7870                                         | 4390                                   | e536                                         | e478                                        | 561                             |
| 22                               | 951                                        | 270                             | 3120                                       | 848                                          | 3090                     | 3660                                         | 1990                                 | 7360                                         | 3440                                   | e574                                         | e487                                        | 436                             |
| 23                               | 938                                        | 298                             | 2910                                       | 933                                          | 3390                     | 3510                                         | 1930                                 | 7300                                         | e2170                                  | e785                                         | e497                                        | 412                             |
| 24                               | 915                                        | 283                             | 2730                                       | 903                                          | 3470                     | 3310                                         | 4020                                 | 7670                                         | e1530                                  | e838                                         | e504                                        | 424                             |
| 25                               | 748                                        | 294                             | 2510                                       | 1710                                         | 3060                     | 3080                                         | 4840                                 | 7160                                         | e1710                                  | e791                                         | e525                                        | 443                             |
| 26<br>27<br>28<br>29<br>30<br>31 | 1020<br>1240<br>1220<br>1240<br>994<br>912 | 344<br>652<br>975<br>873<br>889 | 2450<br>2040<br>1370<br>1100<br>933<br>923 | 2990<br>3060<br>2800<br>2660<br>2670<br>3750 | 2570<br>2270<br>2430<br> | 3080<br>5220<br>6480<br>5810<br>5410<br>5080 | 4890<br>3330<br>1900<br>2770<br>3370 | 6950<br>6320<br>5370<br>4370<br>3910<br>5920 | e1530<br>e1590<br>4560<br>6050<br>5580 | e667<br>e568<br>e835<br>e811<br>e912<br>e921 | e502<br>e567<br>620<br>e477<br>e306<br>e281 | 474<br>749<br>593<br>818<br>915 |
| TOTAL                            | 21454                                      | 14106                           | 50001                                      | 41453                                        | 141120                   | 102500                                       | 155090                               | 187490                                       | 142340                                 | 31663                                        | 14567                                       | 16088                           |
| MEAN                             | 692                                        | 470                             | 1613                                       | 1337                                         | 5040                     | 3306                                         | 5170                                 | 6048                                         | 4745                                   | 1021                                         | 470                                         | 536                             |
| MAX                              | 1240                                       | 1010                            | 3640                                       | 3750                                         | 9490                     | 6480                                         | 8900                                 | 9830                                         | 7620                                   | 4890                                         | 818                                         | 1100                            |
| MIN                              | 367                                        | 265                             | 464                                        | 654                                          | 2270                     | 1870                                         | 1900                                 | 2160                                         | 1530                                   | 519                                          | 281                                         | 291                             |
| STATIS                           | TICS OF M                                  | ONTHLY ME                       | AN DATA I                                  | FOR WATER                                    | YEARS 19                 | 04 - 2002,                                   | BY WATER                             | YEAR (W                                      | Y)                                     |                                              |                                             |                                 |
| MEAN                             | 1450                                       | 2111                            | 2742                                       | 2853                                         | 3241                     | 6153                                         | 5986                                 | 3539                                         | 2088                                   | 1303                                         | 962                                         | 988                             |
| MAX                              | 7095                                       | 7383                            | 9973                                       | 8830                                         | 9157                     | 14300                                        | 14160                                | 10230                                        | 7311                                   | 8524                                         | 3927                                        | 6722                            |
| (WY)                             | 1978                                       | 1928                            | 1928                                       | 1913                                         | 1925                     | 1945                                         | 1940                                 | 1943                                         | 1972                                   | 1972                                         | 1992                                        | 1977                            |
| MIN                              | 338                                        | 436                             | 502                                        | 152                                          | 560                      | 2213                                         | 1561                                 | 1140                                         | 479                                    | 350                                          | 229                                         | 199                             |
| (WY)                             | 1914                                       | 1910                            | 1910                                       | 1961                                         | 1920                     | 1937                                         | 1946                                 | 1915                                         | 1915                                   | 1913                                         | 1913                                        | 1913                            |

e Estimated

# 04232000 GENESEE RIVER AT ROCHESTER, NY--Continued

| SUMMARY STATISTICS                                                                                                                                                  | FOR 2001 CALEN                                       | IDAR YEAR                 | FOR 2002 WA                                          | ATER YEAR                  | WATER YEAR                                                 | S 1904 - 2002                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|---------------------------|------------------------------------------------------|----------------------------|------------------------------------------------------------|----------------------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 682681<br>1870<br>11900<br>216<br>248<br>5820<br>890 | Apr 9<br>Sep 13<br>Sep 10 | 917872<br>2515<br>9830<br>265<br>274<br>6290<br>1240 | May 14<br>Nov 13<br>Nov 13 | 2800<br>4426<br>1663<br>46300<br>91<br>104<br>6810<br>1580 | 1978<br>1999<br>Mar 31 1916<br>Jan 9 1961<br>Jan 26 1961 |
| 90 PERCENT EXCEEDS                                                                                                                                                  | 281                                                  |                           | 388                                                  |                            | 592                                                        |                                                          |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

LOCATION.--Lat 43°01'40", long 77°28'42", Ontario County, Hydrologic Unit 04140101, on right bank 90 ft upstream from bridge on Railroad Mills Road, 1.5 mi northwest of Fishers, and 4.0 mi southwest of Fairport.

DRAINAGE AREA.--39.2 mi<sup>2</sup>.

04232034 IRONDEQUOIT CREEK AT RAILROAD MILLS NEAR FISHERS, NY

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1991 to current year.

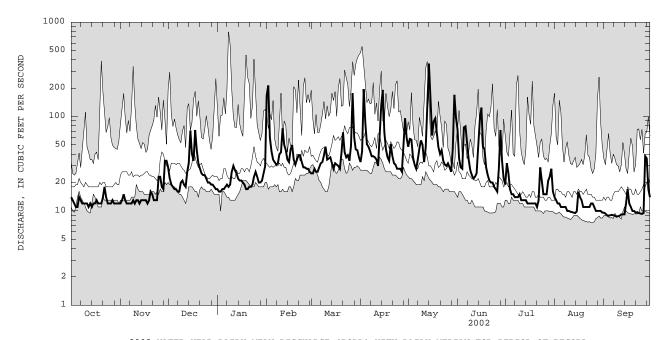
GAGE.--Water-stage recorder. Elevation of gage is 450 ft above NGVD of 1929, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Unpublished water-quality records for prior years are available in files of Monroe County Department of Health. Telephone gage-height telemeter at station. Several measurements of water temperature were made during the year.

COOPERATION.--Discharge measurements were provided by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, about 1,000 ft<sup>3</sup>/s, Jan. 8, 1998, gage height 10.40 ft; minimum discharge, 6.8 ft<sup>3</sup>/s, Aug. 21, 1995, gage height, 3.96 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft<sup>3</sup>/s and maximum (\*):


| I       | ate       | Time     |                         | charge<br><sup>3</sup> /s) |       | height<br>ft) |          | Date                   | Time     | D         | ischarge<br>(ft <sup>3</sup> /s) |          | height<br>ft) |
|---------|-----------|----------|-------------------------|----------------------------|-------|---------------|----------|------------------------|----------|-----------|----------------------------------|----------|---------------|
| Fe      | eb. 2     | 0115     | 3                       | 301                        | 6.    | .95           |          | May 14                 | 1200     |           | *430                             | *7.      | 74            |
| Minimur | discharge | e, 8.2 f | t <sup>3</sup> /s, Sept | . 8, 9, 10                 | , 11, | gage he       | ight, 4  | 1.06 ft.               |          |           |                                  |          |               |
|         |           | Ι        | DISCHARGE,              | CUBIC FEET                 | PER   |               | WATER Y  | YEAR OCTOBER<br>VALUES | 2001 TO  | SEPTEMBER | 2002                             |          |               |
| DA      | Y O       | CT       | NOV I                   | DEC JA                     | N     | FEB           | MAR      | APR                    | MAY      | JUN       | JUL                              | AUG      | SEP           |
|         | 2         | 14<br>13 | 12<br>13                | 29 1<br>22 1               | 6     | 166<br>214    | 25<br>25 | 33<br>43               | 48<br>58 | 73<br>36  | 19<br>32                         | 14<br>13 | 9.6<br>9.4    |
|         | 3 .       | 12       | 15                      | 19 1                       | 6     | 60            | 28       | 196                    | 57       | 29        | 25                               | 12       | 9.0           |

| DAY                              | OC.I.                            | NOV                        | DEC                                | JAN                              | FEB                        | MAR                               | APR                        | MAY                               | JUN                         | JUL                              | AUG                               | SEP                         |
|----------------------------------|----------------------------------|----------------------------|------------------------------------|----------------------------------|----------------------------|-----------------------------------|----------------------------|-----------------------------------|-----------------------------|----------------------------------|-----------------------------------|-----------------------------|
| 1                                | 14                               | 12                         | 29                                 | 17                               | 166                        | 25                                | 33                         | 48                                | 73                          | 19                               | 14                                | 9.6                         |
| 2                                | 13                               | 13                         | 22                                 | 16                               | 214                        | 25                                | 43                         | 58                                | 36                          | 32                               | 13                                | 9.4                         |
| 3                                | 12                               | 15                         | 19                                 | 16                               | 60                         | 28                                | 196                        | 57                                | 29                          | 25                               | 12                                | 9.0                         |
| 4                                | 11                               | 13                         | 18                                 | 17                               | 43                         | 26                                | 86                         | 37                                | 28                          | 17                               | 12                                | 8.9                         |
| 5                                | 11                               | 12                         | 17                                 | 17                               | e35                        | e26                               | 51                         | 31                                | 77                          | 15                               | 11                                | 9.0                         |
| 6                                | 14                               | 12                         | 17                                 | 18                               | 33                         | 29                                | 48                         | 28                                | 79                          | 15                               | 11                                | 9.1                         |
| 7                                | 13                               | 12                         | 16                                 | 19                               | 31                         | 32                                | 43                         | 35                                | 52                          | 14                               | 11                                | 9.0                         |
| 8                                | 12                               | 12                         | 16                                 | 18                               | 32                         | 33                                | 38                         | 46                                | 35                          | 14                               | 11                                | 8.9                         |
| 9                                | 12                               | 13                         | 20                                 | 19                               | 40                         | 39                                | 38                         | 56                                | 27                          | 14                               | 10                                | 8.7                         |
| 10                               | 12                               | 12                         | 21                                 | 26                               | 42                         | 48                                | 37                         | 50                                | 24                          | 15                               | 10                                | 8.8                         |
| 11                               | 12                               | 13                         | 19                                 | 30                               | 75                         | 35                                | 35                         | 33                                | 22                          | 13                               | 9.8                               | 8.9                         |
| 12                               | 11                               | 13                         | 18                                 | 27                               | 50                         | 36                                | 30                         | 47                                | 23                          | 13                               | 9.7                               | 9.2                         |
| 13                               | 12                               | 12                         | 26                                 | 25                               | 44                         | 37                                | 57                         | 163                               | 25                          | 13                               | 9.6                               | 9.2                         |
| 14                               | 11                               | 13                         | 32                                 | 22                               | 35                         | 32                                | 132                        | 364                               | 51                          | 13                               | 9.5                               | 9.2                         |
| 15                               | 12                               | 13                         | 71                                 | 21                               | 33                         | 28                                | 192                        | 142                               | 92                          | 12                               | 9.9                               | 12                          |
| 16<br>17<br>18<br>19<br>20       | 12<br>13<br>12<br>12<br>12       | 13<br>13<br>12<br>13<br>16 | 40<br>34<br>72<br>44<br>32         | 21<br>20<br>19<br>17<br>17       | 45<br>50<br>35<br>31<br>35 | 32<br>31<br>30<br>28<br>41        | 68<br>45<br>37<br>34<br>51 | 63<br>89<br>96<br>69<br>47        | 125<br>48<br>45<br>29<br>24 | 12<br>12<br>12<br>12<br>12       | 16<br>14<br>13<br>11              | 17<br>12<br>11<br>10<br>10  |
| 21                               | 14                               | 15                         | 28                                 | 18                               | 39                         | 68                                | 38                         | 40                                | 21                          | 11                               | 11                                | 9.6                         |
| 22                               | 18                               | 13                         | 25                                 | 18                               | 39                         | 42                                | 32                         | 44                                | 20                          | 13                               | 11                                | 9.7                         |
| 23                               | 14                               | 13                         | 24                                 | 19                               | 33                         | 37                                | 31                         | 34                                | 20                          | 29                               | 11                                | 9.5                         |
| 24                               | 12                               | 13                         | 24                                 | 23                               | 29                         | 39                                | 28                         | 31                                | 18                          | 21                               | 12                                | 9.4                         |
| 25                               | 12                               | 23                         | 22                                 | 26                               | 29                         | 34                                | 28                         | 30                                | 17                          | 15                               | 12                                | 9.3                         |
| 26<br>27<br>28<br>29<br>30<br>31 | 12<br>13<br>12<br>12<br>12<br>12 | 23<br>18<br>17<br>34<br>34 | 20<br>20<br>e19<br>19<br>e18<br>17 | 23<br>20<br>20<br>21<br>25<br>30 | 28<br>28<br>26<br>         | 49<br>177<br>60<br>45<br>44<br>37 | 28<br>26<br>51<br>96<br>59 | 32<br>29<br>26<br>45<br>170<br>98 | 16<br>28<br>72<br>34<br>22  | 15<br>15<br>21<br>23<br>28<br>16 | 11<br>10<br>10<br>10<br>10<br>9.6 | 9.5<br>38<br>36<br>17<br>14 |
| TOTAL MEAN MAX MIN CFSM IN.      | 386                              | 460                        | 819                                | 645                              | 1380                       | 1273                              | 1711                       | 2138                              | 1212                        | 511                              | 346.1                             | 360.9                       |
|                                  | 12.5                             | 15.3                       | 26.4                               | 20.8                             | 49.3                       | 41.1                              | 57.0                       | 69.0                              | 40.4                        | 16.5                             | 11.2                              | 12.0                        |
|                                  | 18                               | 34                         | 72                                 | 30                               | 214                        | 177                               | 196                        | 364                               | 125                         | 32                               | 16                                | 38                          |
|                                  | 11                               | 12                         | 16                                 | 16                               | 26                         | 25                                | 26                         | 26                                | 16                          | 11                               | 9.5                               | 8.7                         |
|                                  | 0.32                             | 0.39                       | 0.67                               | 0.53                             | 1.26                       | 1.05                              | 1.45                       | 1.76                              | 1.03                        | 0.42                             | 0.28                              | 0.31                        |
|                                  | 0.37                             | 0.44                       | 0.78                               | 0.61                             | 1.31                       | 1.21                              | 1.62                       | 2.03                              | 1.15                        | 0.48                             | 0.33                              | 0.34                        |
| STATIST                          | CICS OF MC                       | ONTHLY MEA                 | AN DATA FO                         | OR WATER                         | YEARS 199                  | 1 - 2002,                         | BY WATER                   | YEAR (WY)                         |                             |                                  |                                   |                             |
| MEAN                             | 23.5                             | 33.2                       | 36.6                               | 45.0                             | 44.6                       | 68.3                              | 66.4                       | 40.8                              | 28.4                        | 22.1                             | 18.8                              | 18.5                        |
| MAX                              | 53.7                             | 67.5                       | 73.0                               | 112                              | 69.7                       | 98.0                              | 143                        | 69.0                              | 56.5                        | 52.5                             | 58.0                              | 35.8                        |
| (WY)                             | 1997                             | 1993                       | 1997                               | 1998                             | 1998                       | 1993                              | 1993                       | 2002                              | 1996                        | 1992                             | 1992                              | 1992                        |
| MIN                              | 12.5                             | 15.3                       | 20.7                               | 20.8                             | 27.8                       | 41.1                              | 27.4                       | 20.2                              | 12.3                        | 12.1                             | 9.03                              | 9.92                        |
| (WY)                             | 2002                             | 2002                       | 1999                               | 2002                             | 1995                       | 2002                              | 1995                       | 1995                              | 1995                        | 2001                             | 1995                              | 1995                        |

e Estimated

04232034 IRONDEQUOIT CREEK AT RAILROAD MILLS NEAR FISHERS, NY--Continued

| - 2002           |
|------------------|
|                  |
| 1993<br>1995     |
| 8 1998<br>4 1995 |
| 0 1995           |
|                  |
|                  |
| 2                |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04232034 IRONDEQUOIT CREEK AT RAILROAD MILLS NEAR FISHERS, NY, -- Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1992 to current year.

CHEMICAL DATA: Water years 1992 to current year (e).
NUTRIENT DATA: Water years 1992 to current year (e).
PERIOD OF DAILY RECORD.--

WATER TEMPERATURES: February 1995 to current year.
INSTRUMENTATION.--Automatic water sampler since July 1991. Water temperature recorder since February 1995 provides 15-minute-interval readings.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Prior to 1994 water year, data published in "Water Resources of Monroe County New York, Water Years 1989-93", U.S. Geological Survey Open-File Report 97-587. The non-daily water-quality records for this site were collected and reported in Geological Survey Open-File Report 7, 55...

Local standard time.

EXTREMES FOR PERIOD OF RECORD.-
WATER TEMPERATURES: Maximum, 23.5°C, July 3, 2002; minimum 0°C, many days during winter period.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 23.5°C, July 3; minimum 0°C, Jan. 31, Feb. 1, 2.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DAY                              | MAX                                  | MIN                                     | MEAN                                 | MAX                                  | MIN                                | MEAN                               | MAX                                    | MIN                             | MEAN                                   | MAX                                    | MIN                                    | MEAN                                   |
|----------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                  |                                      | OCTOBER                                 |                                      | N                                    | OVEMBER                            |                                    |                                        | DECEMBER                        |                                        |                                        | JANUARY                                |                                        |
| 1<br>2<br>3<br>4<br>5            | 11.5<br>13.0<br>14.0<br>15.0<br>14.5 | 9.5<br>11.0<br>12.0<br>13.5<br>13.0     | 10.5<br>12.0<br>13.0<br>14.0<br>14.0 | 10.0<br>11.5<br>11.5<br>10.5<br>10.0 | 8.5<br>10.0<br>10.5<br>10.0<br>8.5 | 9.0<br>11.0<br>11.0<br>10.0<br>9.0 | 9.0<br>9.0<br>8.0<br>7.5<br>9.0        | 9.0<br>8.0<br>7.0<br>7.5        | 9.0<br>8.5<br>7.5<br>7.0<br>8.5        | 2.0<br>2.0<br>2.5<br>3.0<br>3.5        | 1.5<br>1.5<br>2.0<br>2.5<br>3.0        | 2.0<br>1.5<br>2.0<br>2.5<br>3.0        |
| 6<br>7<br>8<br>9<br>10           | 13.0<br>11.0<br>9.0<br>9.0<br>10.5   | 11.0<br>9.0<br>8.0<br>7.0<br>8.5        | 12.5<br>10.0<br>8.5<br>8.0<br>9.5    | 9.0<br>9.0<br>9.5<br>9.5<br>8.5      | 8.0<br>8.5<br>8.5<br>8.5<br>7.5    | 8.5<br>9.0<br>9.0<br>9.0<br>8.0    | 9.5<br>9.0<br>7.5<br>6.0<br>5.5        | 9.0<br>7.5<br>6.0<br>5.5<br>5.0 | 9.5<br>8.0<br>6.5<br>6.0<br>5.0        | 3.5<br>3.5<br>2.5<br>3.5<br>4.0        | 3.5<br>2.5<br>2.0<br>2.5<br>3.5        | 3.5<br>3.0<br>2.5<br>3.0<br>4.0        |
| 11<br>12<br>13<br>14<br>15       | 12.0<br>13.0<br>14.5<br>15.0<br>14.5 | 10.5<br>12.0<br>12.5<br>14.0<br>12.5    | 11.5<br>12.5<br>13.5<br>14.5<br>13.5 | 8.5<br>7.5<br>7.0<br>8.5<br>10.0     | 7.5<br>6.5<br>6.0<br>7.0<br>8.5    | 8.0<br>7.0<br>6.5<br>7.5<br>9.5    | 5.0<br>5.5<br>7.0<br>7.0               | 4.5<br>4.5<br>5.5<br>7.0<br>5.5 | 5.0<br>5.0<br>6.0<br>7.0<br>6.0        | 4.0<br>4.0<br>4.0<br>3.5<br>4.0        | 3.5<br>3.5<br>3.5<br>3.0<br>3.5        | 4.0<br>3.5<br>3.5<br>3.5<br>3.5        |
| 16<br>17<br>18<br>19<br>20       | 13.0<br>11.5<br>10.0<br>10.5<br>12.0 | 11.5<br>9.5<br>8.5<br>8.5<br>10.5       | 12.0<br>10.5<br>9.0<br>9.5<br>11.0   | 11.0<br>10.0<br>8.0<br>8.5<br>8.5    | 10.0<br>8.0<br>7.0<br>7.5<br>7.5   | 10.5<br>9.0<br>7.5<br>8.0<br>8.0   | 5.5<br>5.5<br>6.0<br>5.5<br>5.5        | 5.0<br>5.0<br>5.5<br>5.5        | 5.0<br>5.5<br>5.5<br>5.5<br>5.5        | 4.0<br>3.5<br>3.5<br>2.5<br>2.5        | 3.5<br>3.5<br>2.5<br>2.0<br>2.0        | 3.5<br>3.5<br>3.0<br>2.5<br>2.5        |
| 21<br>22<br>23<br>24<br>25       | 12.0<br>12.0<br>12.5<br>13.5<br>13.0 | 10.5<br>11.5<br>11.0<br>12.5<br>12.0    | 11.0<br>11.5<br>11.5<br>13.0<br>13.0 | 7.5<br>7.0<br>7.0<br>7.5<br>10.0     | 6.5<br>6.5<br>6.0<br>6.0<br>7.5    | 7.0<br>6.5<br>6.5<br>6.5<br>9.0    | 5.0<br>4.5<br>4.5<br>5.0<br>4.5        | 4.5<br>4.0<br>4.0<br>4.5<br>4.0 | 5.0<br>4.5<br>4.0<br>4.5<br>4.0        | 3.0<br>3.5<br>5.0<br>5.0<br>4.0        | 2.5<br>3.0<br>3.5<br>4.0<br>3.0        | 2.5<br>3.0<br>4.0<br>4.5<br>3.5        |
| 26<br>27<br>28<br>29<br>30<br>31 | 12.0<br>10.0<br>9.0<br>9.5<br>8.5    | 10.0<br>9.0<br>8.5<br>7.5<br>8.5<br>8.0 | 11.0<br>9.0<br>8.5<br>8.0<br>9.0     | 10.0<br>9.5<br>9.0<br>8.5<br>9.0     | 9.5<br>9.0<br>8.5<br>8.0<br>8.5    | 9.5<br>9.0<br>9.0<br>8.5<br>9.0    | 4.0<br>3.0<br>3.0<br>2.5<br>2.5<br>2.0 | 3.0<br>2.5<br>2.5<br>2.0<br>1.5 | 3.5<br>2.5<br>2.5<br>2.5<br>2.0<br>2.0 | 4.0<br>4.5<br>5.5<br>5.5<br>5.0<br>3.0 | 2.5<br>3.0<br>3.5<br>4.5<br>3.0<br>0.0 | 3.5<br>4.0<br>4.5<br>5.0<br>3.5<br>1.0 |
| MONTH                            | 15.0                                 | 7.0                                     | 11.1                                 | 11.5                                 | 6.0                                | 8.5                                | 9.5                                    | 1.5                             | 5.4                                    | 5.5                                    | 0.0                                    | 3.2                                    |

# 04232034 IRONDEQUOIT CREEK AT RAILROAD MILLS NEAR FISHERS, NY, -- Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                  |                                      | I DMF DI                             | MIUILE,                              | WAIDK (DD                                    | G. C/, W                               | AIDIC IDAIC                          | OCTOBER 2                            | 2001 10                                      |                                      | . 2002                               |                                      |                                      |
|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|
| DAY                              | MAX                                  | MIN                                  | MEAN                                 | MAX                                          | MIN                                    | MEAN                                 | MAX                                  | MIN                                          | MEAN                                 | MAX                                  | MIN                                  | MEAN                                 |
|                                  |                                      | FEBRUARY                             |                                      |                                              |                                        |                                      |                                      | APRIL                                        |                                      |                                      | MAY                                  |                                      |
| 1<br>2<br>3<br>4<br>5            | 1.5<br>1.0<br>2.0<br>2.0<br>1.5      | 0.0<br>0.0<br>0.5<br>1.0<br>0.5      | 1.0<br>0.5<br>1.5<br>2.0<br>1.0      | 3.5<br>4.5<br>5.5<br>4.5<br>2.5              | 2.5<br>2.5<br>4.5<br>2.5<br>1.5        | 3.0<br>3.0<br>5.0<br>3.5<br>2.0      | 8.5<br>7.0<br>6.0<br>5.5<br>5.0      | 7.0<br>5.5<br>5.5<br>4.0<br>4.0              | 7.5<br>6.0<br>5.5<br>5.0<br>4.5      | 11.5<br>11.0<br>10.5<br>12.5<br>14.0 | 7.5<br>10.0<br>9.5<br>8.5<br>9.5     | 9.5<br>10.5<br>10.0<br>10.5<br>12.0  |
| 6<br>7<br>8<br>9<br>10           | 3.5                                  | 1.0<br>1.0<br>2.5<br>3.0<br>2.5      | 1.5<br>2.0<br>3.0<br>3.5<br>3.5      | 4.0<br>3.5<br>6.0<br>8.0                     | 2.0<br>3.0<br>3.0<br>5.5<br>3.5        | 3.0<br>3.5<br>4.0<br>6.5<br>5.5      | 7.0<br>6.5<br>9.0<br>11.0            | 3.5<br>3.5<br>6.0<br>8.5<br>8.5              | 5.0<br>5.0<br>7.5<br>10.0            | 15.0<br>15.5<br>14.5<br>14.0<br>16.0 | 11.5<br>13.5<br>12.5<br>12.0<br>12.5 | 14.5<br>14.0<br>13.0                 |
| 15                               | 4.0<br>2.0<br>2.0<br>2.0<br>4.0      | 1.5<br>1.0<br>1.5<br>1.0<br>2.0      | 2.5<br>1.5<br>1.5<br>1.5<br>2.5      | 3.5<br>4.5<br>5.5<br>6.5<br>7.5              | 2.0<br>3.5<br>3.5<br>5.0<br>5.5        | 3.0<br>4.0<br>4.5<br>5.5<br>6.5      | 13.0<br>14.0<br>13.5<br>13.0<br>16.5 | 8.0<br>10.0<br>11.5<br>11.5                  | 10.5<br>12.0<br>12.5<br>12.0<br>14.5 | 14.5<br>13.0<br>11.5<br>10.0<br>12.5 | 11.0<br>11.0<br>10.0<br>9.5<br>8.5   | 13.0<br>11.5<br>11.0<br>9.5<br>10.5  |
| 18                               | 4.0<br>3.5<br>2.5<br>3.5<br>4.5      | 3.5<br>2.5<br>1.5<br>1.5<br>3.5      | 3.5<br>3.0<br>2.0<br>2.5<br>3.5      | 7.5<br>6.0<br>5.5<br>5.5                     | 6.0<br>4.5<br>5.0<br>5.0               | 7.0<br>5.0<br>5.0<br>5.0<br>5.0      | 19.5<br>20.5<br>20.5<br>20.0<br>17.5 | 14.5<br>16.0<br>16.5<br>16.5                 | 17.0<br>18.0<br>18.5<br>18.0<br>16.0 | 13.0<br>13.0<br>12.0<br>10.5<br>11.0 | 11.5<br>12.0<br>10.5<br>10.0<br>9.5  | 12.0<br>12.5<br>11.0<br>10.5<br>10.0 |
| 21<br>22<br>23<br>24<br>25       | 5.0<br>4.5<br>3.5<br>4.5<br>5.5      | 4.5<br>3.5<br>2.5<br>2.5<br>4.0      | 4.5<br>4.0<br>3.0<br>3.5<br>4.5      | 5.0<br>4.0<br>4.0<br>4.5<br>4.5              |                                        |                                      | 14.0<br>10.5<br>11.0<br>12.5<br>12.0 |                                              |                                      |                                      |                                      | 10.0<br>11.0<br>12.5<br>13.5         |
| 26<br>27<br>28<br>29<br>30<br>31 |                                      |                                      | 5.5<br>4.5<br>3.0<br>                | 4.0<br>3.5<br>6.5<br>8.0<br>10.5<br>9.5      | 3.5<br>2.0<br>2.5<br>4.5<br>7.5<br>6.5 |                                      |                                      |                                              |                                      | 14.5<br>15.5<br>16.0<br>17.5<br>19.5 |                                      | 14.0<br>15.0<br>16.5<br>18.0         |
| MONTH                            | 6.0                                  | 0.0                                  | 2.7                                  | 10.5                                         | 1.5                                    | 4.6                                  | 20.5                                 | 3.5                                          | 10.4                                 |                                      | 7.5                                  | 12.6                                 |
| DAY                              | MAX                                  | MIN                                  | MEAN                                 | MAX                                          | MIN                                    | MEAN                                 | MAX                                  | MIN                                          | MEAN                                 | MAX                                  | MIN                                  | MEAN                                 |
|                                  |                                      | JUNE                                 |                                      |                                              | JULY                                   |                                      |                                      | AUGUST                                       |                                      |                                      | SEPTEMBE                             | ER.                                  |
| 1<br>2<br>3<br>4<br>5            | 18.5<br>18.0<br>16.5<br>15.0<br>18.0 | 17.0<br>16.5<br>14.5<br>13.5<br>14.0 | 18.0<br>17.0<br>15.5<br>14.0<br>15.5 | 20.0<br>23.0<br>23.5<br>22.5<br>20.5         | 18.0<br>19.0<br>21.0<br>20.5<br>18.0   | 19.0<br>21.0<br>22.0<br>21.5<br>19.0 | 21.0<br>21.0<br>20.5<br>19.0         | 18.5<br>18.5<br>18.0<br>16.5<br>17.5         | 20.0<br>20.0<br>19.0<br>18.0<br>18.5 | 17.0<br>17.0<br>17.0<br>17.0<br>16.5 | 14.5<br>15.0<br>15.5<br>15.5         |                                      |
| 6<br>7<br>8<br>9<br>10           | 18.0<br>17.0<br>17.5<br>18.0<br>18.0 | 16.0<br>15.0<br>14.5<br>16.0<br>16.0 | 17.0<br>16.0<br>16.0<br>17.0         | 18.0<br>18.5<br>19.0<br>18.5<br>18.0         | 16.5<br>16.0<br>16.5<br>17.0<br>16.0   | 17.5<br>17.0<br>18.0<br>17.5<br>17.0 | 18.5<br>17.5<br>17.0<br>17.5<br>18.0 | 16.0<br>15.0<br>14.0<br>14.0                 | 17.0<br>16.0<br>15.5<br>16.0<br>16.0 | 15.5<br>16.0<br>17.0<br>17.0         | 13.0<br>13.5<br>14.0<br>14.5<br>15.0 | 14.5<br>14.5<br>15.5<br>16.0<br>16.0 |
| 11<br>12<br>13<br>14<br>15       | 19.0                                 | 16.5                                 | 18.0<br>17.5<br>16.5<br>16.5<br>16.5 | 17.0<br>17.0<br>17.5<br>18.0<br>18.5         | 15.0<br>14.5<br>15.0<br>15.5           |                                      | 18.5<br>18.5<br>19.5<br>19.5         | 15.5<br>16.0                                 | 17.0<br>17.5                         | 16.5<br>14.5                         | 14.5<br>13.0                         | 16.0<br>14.0<br>14.0<br>14.0<br>14.5 |
| 16<br>17<br>18<br>19<br>20       | 16.5<br>16.0<br>17.0<br>17.0         | 16.0<br>15.0<br>14.5<br>14.5         | 16.0<br>15.5<br>15.5<br>16.0<br>16.5 | 18.5<br>19.0<br>19.0<br>18.0<br>19.0         | 16.5<br>17.0<br>18.0<br>17.0<br>16.0   | 17.5<br>18.0<br>18.5<br>17.5         | 20.5<br>20.5<br>20.5<br>18.5<br>18.5 | 17.5<br>18.5<br>18.0<br>16.5<br>16.0         | 19.0<br>19.0<br>19.0<br>17.0         | 16.0<br>15.5<br>15.0<br>16.5<br>17.5 | 15.0<br>13.5<br>14.0<br>14.5<br>16.0 | 15.0<br>14.5<br>14.5<br>15.5<br>16.5 |
| 21<br>22<br>23<br>24<br>25       | 18.5<br>18.5<br>19.5<br>19.5         | 16.0<br>17.0<br>17.0<br>17.5         | 17.5<br>17.5<br>18.0<br>18.5<br>18.0 | 18.5<br>20.0<br>19.5<br>18.5<br>17.0         | 15.5<br>17.0<br>17.0<br>16.5<br>14.5   | 17.0<br>18.0<br>18.5<br>17.5<br>16.0 | 17.5<br>16.5<br>18.5<br>17.0<br>17.0 | 14.5<br>15.5<br>16.0<br>16.0                 | 16.0<br>16.0<br>17.0<br>16.5<br>16.0 | 17.5<br>17.0<br>16.0<br>14.0<br>13.5 | 16.5<br>16.0<br>14.0<br>12.5<br>12.5 | 17.0<br>16.5<br>15.5<br>13.5<br>13.0 |
| 26<br>27<br>28<br>29<br>30<br>31 | 19.0<br>19.0<br>20.5<br>20.0<br>20.0 | 17.5<br>18.0<br>18.5<br>18.5<br>17.5 | 18.5<br>18.5<br>19.5<br>19.0<br>19.0 | 17.0<br>18.0<br>19.5<br>20.5<br>22.0<br>21.0 | 16.0<br>16.5<br>18.5<br>19.5<br>18.5   | 16.5<br>17.0<br>18.0<br>19.5<br>20.5 | 17.0<br>17.5<br>15.5<br>15.0<br>16.0 | 14.5<br>15.5<br>13.5<br>14.0<br>13.0<br>14.0 | 16.0<br>16.0<br>14.5<br>14.5<br>14.5 | 14.0<br>15.0<br>15.0<br>13.5<br>14.5 | 13.0<br>13.5<br>13.5<br>11.5<br>12.5 | 13.5<br>14.0<br>14.5<br>12.5<br>13.5 |
| MONTH                            | 20.5                                 | 13.5                                 | 17.1                                 | 23.5                                         | 14.5                                   | 18.0                                 | 21.0                                 | 13.0                                         | 17.0                                 | 17.5                                 | 11.5                                 | 14.9                                 |

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                                            | Time                                                                 | Ending<br>time                                                       | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)            | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)   | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------|
| OCT<br>09-11<br>21-21<br>21-22<br>22-25<br>NOV                                                  | 0740<br>1250<br>2050<br>0745                                         | 0740<br>1950<br>0650<br>0645                                         | 12<br>13<br>22<br>15                                               | 3.4<br>6.3<br>13<br>7.7                            | 107<br>101<br>98<br>96                                         | 356<br>362<br>335<br>323                                   | <br><br>                                                                     | <br><br>                                                         | <.01<br><.01<br><.01<br><.01                                             | <.10<br>.21<br><.10<br>.44                                                    | 1.2<br>1.0<br>1.0                                               | .011<br>.005<br>.006                                                     | .030<br>.020<br>.040<br>.035                                         |
| 29<br>DEC                                                                                       | 0840                                                                 |                                                                      | 43                                                                 | 26                                                 | 116                                                            | 297                                                        |                                                                              |                                                                  | .01                                                                      | .63                                                                           | 1.0                                                             | .010                                                                     | .085                                                                 |
| 14-15<br>15-17<br>17-18<br>18-20<br>JAN 31-                                                     | 1640<br>1240<br>0940<br>1240                                         | 1140<br>0740<br>1140<br>0840                                         | 70<br>47<br>53<br>54                                               | 96<br>44<br>24<br>44                               | 99<br>94<br>111<br>101                                         | 201<br>198<br>221<br>187                                   | 155<br>64<br><br>58                                                          | 31<br>12<br><br>11                                               | <.01<br><.01<br><.01<br><.01                                             | .39<br>.48<br>.95<br>1.2                                                      | .92<br>1.3<br>1.3<br>1.8                                        | .012<br>.011<br>.010<br>.010                                             | .250<br>.110<br>.070<br>.100                                         |
| FEB 02<br>02-04<br>04-07<br>07-11<br>11-15                                                      | 1725<br>0125<br>0855<br>0845<br>0940                                 | 0024<br>0425<br>0754<br>0744<br>0839                                 | 134<br>122<br>37<br>38<br>38                                       | 200<br>73<br>9.1<br>12<br>25                       | 206<br>76<br>121<br>116<br>124                                 | 159<br>101<br>195<br>205<br>159                            | <br><br><br>                                                                 | <br><br><br>                                                     | <.01<br>.01<br><.01<br><.01<br><.01                                      | 1.0<br>.89<br>.38<br>.54<br>.53                                               | 1.4<br>1.4<br>1.4<br>1.3                                        | .005<br>.006<br>.008<br>.005                                             | .360<br>.153<br>.033<br>.045<br>.074                                 |
| MAR<br>08-10<br>10-11<br>11-14<br>14-18<br>18-20<br>20-21<br>21-25<br>26-27<br>27-28<br>MAR 28- | 1245<br>1245<br>0825<br>0905<br>0855<br>0555<br>0905<br>0905<br>1205 | 1145<br>0745<br>0724<br>0804<br>0455<br>0754<br>0804<br>1104<br>0804 | 42<br>46<br>37<br>30<br>29<br>62<br>44<br>130<br>120               | 3.6<br>5.6<br>4.6<br>2.0<br>1.8<br>14<br>6.6<br>34 | 117<br>130<br>122<br>102<br>112<br>123<br>118<br>138<br>90     | 182<br>163<br>181<br>187<br>204<br>187<br>155<br>166<br>85 | <br><br><br><br><br>                                                         | <br><br><br><br><br>                                             | <.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01             | .27<br>.30<br>.31<br>.26<br>.25<br>.44<br>.30<br>.62                          | .90<br>.83<br>.94<br>.89<br>1.0<br>1.0<br>.96                   | .005<br>.004<br>.005<br>.004<br>.005<br>.005<br>.005                     | .014<br>.017<br>.011<br>.021<br>.011<br>.046<br>.023<br>.088<br>.111 |
| APR 01<br>02-03<br>03-04<br>04-08<br>13-15<br>15-18                                             | 1005<br>1505<br>1805<br>0850<br>1145<br>0815                         | 0904<br>1704<br>0805<br>0649<br>0644<br>0714                         | 45<br>142<br>150<br>54<br>130<br>85                                | 7.4<br>27<br>53<br>9.7<br>49<br>24                 | 325<br>112<br>71<br>84<br>103<br>85                            | 66<br>146<br>70<br>117<br>129<br>112                       | <br>42<br><br>66<br>26                                                       | <br>10<br><br>14<br>6                                            | <.01<br><.01<br><.01<br>.01<br><.01<br><.01                              | .37<br>.58<br>.71<br>.37<br>3.5                                               | 1.0<br>1.0<br>.90<br>.86<br>.82                                 | .004<br>.007<br>.007<br>.005<br>.006                                     | .034<br>.068<br>.119<br>.026<br>.113                                 |
| MAY<br>12-13<br>13-13<br>13-14<br>14-16<br>16-20<br>20-24<br>JUN                                | 0755<br>0355<br>1045<br>1045<br>0745<br>0725                         | 0255<br>0655<br>0944<br>0645<br>0644<br>0624                         | 70<br>124<br>241<br>191<br>84<br>42                                | 12<br>39<br>35<br>44<br>16<br>5.7                  | 104<br>106<br>54<br>63<br>76<br>96                             | 188<br>130<br>62<br>73<br>103<br>158                       | <br>59<br><br><br>                                                           | 102<br><br><br>                                                  | <.01<br><.01<br>.03<br><.01<br><.01                                      | .50<br>1.0<br>.73<br>1.0<br>.58                                               | .95<br>.74<br>.73<br>.65<br>.70                                 | .007<br>.008<br>.008<br>.007<br>.007                                     | .033<br>.109<br>.074<br>.119<br>.046                                 |
| 05-05<br>05-06<br>06-10<br>14-16<br>16-17<br>17-20                                              | 0210<br>1410<br>0750<br>0340<br>0740<br>0740                         | 1310<br>0709<br>0649<br>0640<br>0639<br>0639                         | 74<br>96<br>46<br>87<br>110<br>39                                  | 22<br>51<br>18<br>70<br>140<br>89                  | 88<br>76<br>82<br>84<br>62<br>100                              | 182<br>121<br>148<br>139<br>81<br>165                      | 62<br><br><br>                                                               | <br>16<br><br><br>                                               | <.01<br><.01<br><.01<br><.01<br><.01<br><.01                             | .63<br>.89<br>.60<br>1.3<br>2.6<br>1.4                                        | 1.1<br>.99<br>1.0<br>1.3<br>1.1                                 | .007<br>.006<br>.010<br>.009<br>.009                                     | .064<br>.138<br>.049<br>.179<br>.430<br>.233                         |
| 15-18<br>22-23<br>23-25<br>SEP                                                                  | 0725<br>1325<br>1025                                                 | 0624<br>0925<br>0125                                                 | 12<br>16<br>27                                                     | 4.3<br>46<br>39                                    | 105<br>110<br>92                                               | 317<br>324<br>218                                          | <br>86<br>65                                                                 | 13<br>13                                                         | <.01<br><.01<br><.01                                                     | <.10<br>.80<br>.70                                                            | 1.5<br>1.4<br>1.0                                               | .013<br>.010<br>.010                                                     | .030<br>.105<br>.094                                                 |
| 15-16<br>16-19<br>27-27<br>27-30                                                                | 0350<br>0735<br>0355<br>1955                                         | 0650<br>0634<br>1855<br>0655                                         | 15<br>13<br>36<br>29                                               | 12<br>15<br>26<br>37                               | 103<br>110<br>100<br>88                                        | 336<br>329<br>352<br>236                                   | <br><br>131                                                                  | <br><br><br>26                                                   | .02<br>.01<br>.01                                                        | .31<br>.40<br>.66<br>1.1                                                      | 1.4<br>1.3<br>1.3<br>.85                                        | .095<br>.011<br>.009<br>.008                                             | .037<br>.062<br>.129<br>.195                                         |
| SEP 30-<br>OCT 02                                                                               | 0755                                                                 | 2154                                                                 | 12                                                                 | 11                                                 | 105                                                            | 346                                                        |                                                                              |                                                                  | <.10                                                                     | .52                                                                           | 1.3                                                             | .010                                                                     | .090                                                                 |

## 0423204920 EAST BRANCH ALLEN CREEK AT PITTSFORD, NY

LOCATION.--Lat 43°06'11", long 77°32'01", Monroe County, Hydrologic Unit 04140101, on left bank 25 ft upstream from culvert of abandoned Conrail railroad, 0.2 mi downstream from State Highway 31, 0.7 mi northwest of Pittsford and 1.8 mi upstream from

DRAINAGE AREA.--9.50 mi<sup>2</sup>, flow from 2.54 mi<sup>2</sup> noncontributing.

## WATER-DISCHARGE RECORDS

Time

Date

Discharge (ft<sup>3</sup>/s)

PERIOD OF RECORD.--April 1990 to current year.

REVISED RECORDS.--WDR NY-92-3: Drainage area. WDR NY-2000-3: 1998.

GAGE.--Water-stage recorder. Datum of gage is 400.00 ft above NGVD of 1929.

REMARKS.--No estimated daily discharges. Records poor. Unpublished water-quality records for prior years are available in files of Monroe County Department of Health. Discharge includes undetermined diversion from Erie (Barge) Canal upstream from station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 459 ft<sup>3</sup>/s, July 8, 1998, gage height 9.03 ft, from rating curve extended above 210 ft<sup>3</sup>/s; minimum daily discharge, 0.55 ft<sup>3</sup>/s, Nov. 25, 1999; minimum instantaneous discharge not determined.

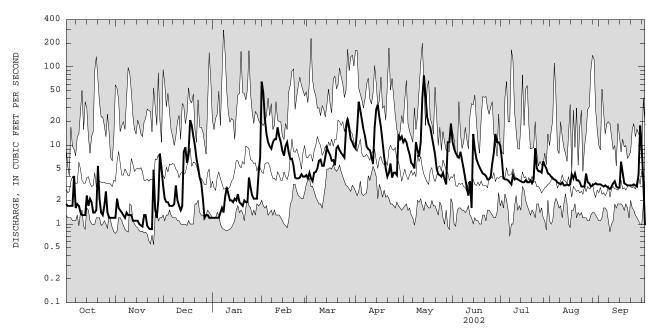
EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 150 ft<sup>3</sup>/s and maximum (\*):

Date

Time

Discharge (ft<sup>3</sup>/s)

Gage height (ft)


Gage height

| Feb. 1                             | 193                                  | 30                                   | *110                                 | *:                                     | 3.80                                 |                                      |                                      |                                      |                                      |                                        |                                      |                                      |
|------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|
| Minimum disch                      | narge, 0.                            | .80 ft <sup>3</sup> /s,              | Sept. 30                             | , gage he                              | eight, 0.9                           | 91 ft.                               |                                      |                                      |                                      |                                        |                                      |                                      |
|                                    |                                      | DISCHA                               | RGE, CUBIC                           | FEET PE                                |                                      | WATER YE<br>Y MEAN VA                |                                      | R 2001 TO                            | SEPTEMBE                             | R 2002                                 |                                      |                                      |
| DAY                                | OCT                                  | NOV                                  | DEC                                  | JAN                                    | FEB                                  | MAR                                  | APR                                  | MAY                                  | JUN                                  | JUL                                    | AUG                                  | SEP                                  |
| 1<br>2<br>3<br>4<br>5              | 1.8<br>1.7<br>1.7<br>1.7             | 1.2<br>2.1<br>1.6<br>1.5             | 3.1<br>2.1<br>1.9<br>1.9             | 1.2<br>1.2<br>1.2<br>1.2               | 65<br>47<br>22<br>14<br>11           | 4.2<br>3.8<br>4.5<br>3.8<br>3.5      | 9.1<br>16<br>36<br>28<br>21          | 11<br>12<br>11<br>9.0<br>7.7         | 11<br>9.1<br>8.0<br>7.4<br>7.0       | 10<br>6.7<br>3.8<br>3.7<br>3.7         | 4.3<br>4.0<br>3.8<br>3.7<br>3.6      | 3.2<br>3.2<br>3.1<br>3.0<br>3.1      |
| 6<br>7<br>8<br>9<br>10             | 4.1<br>1.6<br>1.8<br>1.7             | 1.3<br>1.2<br>1.4<br>1.3             | 1.7<br>1.7<br>1.8<br>3.1<br>2.0      | 1.4<br>1.6<br>1.4<br>2.2<br>2.9        | 9.8<br>9.1<br>11<br>12<br>12         | 4.5<br>4.6<br>5.1<br>6.4<br>6.6      | 16<br>13<br>9.7<br>9.0<br>8.7        | 6.0<br>5.7<br>5.1<br>11<br>8.7       | 8.3<br>6.4<br>5.0<br>3.8<br>2.9      | 3.6<br>3.4<br>3.2<br>4.2<br>3.7        | 3.4<br>3.3<br>3.2<br>3.4<br>3.1      | 3.0<br>2.9<br>2.8<br>3.0<br>3.3      |
| 11<br>12<br>13<br>14<br>15         | 1.3<br>1.3<br>1.3<br>2.3             | 1.3<br>1.1<br>1.1<br>1.1             | 1.7<br>1.5<br>1.7<br>8.3<br>9.5      | 2.4<br>2.0<br>2.0<br>1.9<br>2.1        | 17<br>13<br>11<br>8.5<br>7.4         | 5.5<br>5.5<br>7.1<br>9.4<br>8.3      | 7.1<br>5.8<br>17<br>29<br>33         | 7.2<br>11<br>40<br>78<br>41          | 2.3<br>3.5<br>1.6<br>14<br>9.0       | 3.8<br>3.7<br>3.6<br>3.5<br>3.4        | 3.1<br>3.2<br>3.1<br>3.2<br>4.3      | 3.5<br>3.0<br>2.9<br>2.9<br>6.2      |
| 16<br>17<br>18<br>19<br>20         | 2.1<br>1.9<br>1.4<br>1.4             | 1.0<br>0.96<br>0.93<br>1.3           | 6.0<br>8.3<br>21<br>18               | 2.0<br>2.4<br>1.9<br>1.8               | 9.9<br>11<br>8.1<br>6.7<br>6.8       | 7.6<br>6.4<br>6.5<br>5.6<br>9.2      | 23<br>17<br>11<br>7.2<br>5.1         | 23<br>19<br>17<br>13<br>10           | 6.7<br>5.9<br>5.3<br>4.8<br>4.4      | 3.4<br>3.6<br>3.4<br>3.4               | 3.8<br>4.4<br>3.6<br>3.6<br>3.4      | 4.5<br>3.3<br>3.2<br>3.1<br>3.1      |
| 21<br>22<br>23<br>24<br>25         | 5.5<br>2.1<br>1.4<br>1.3             | 0.95<br>0.88<br>0.86<br>0.86<br>4.9  | 9.9<br>6.8<br>5.3<br>3.9<br>3.3      | 2.0<br>1.9<br>1.9<br>3.9<br>2.9        | 5.5<br>3.9<br>3.8<br>3.8<br>3.9      | 9.8<br>8.7<br>8.0<br>7.5<br>7.0      | 4.0<br>4.5<br>5.9<br>3.9<br>4.5      | 7.7<br>5.1<br>4.3<br>4.2<br>4.0      | 4.3<br>4.1<br>3.7<br>3.7<br>4.0      | 3.3<br>3.7<br>9.2<br>5.1<br>4.7        | 3.0<br>3.0<br>3.0<br>4.4<br>3.4      | 3.1<br>3.1<br>3.2<br>3.1<br>3.0      |
| 26<br>27<br>28<br>29<br>30<br>31   | 2.6<br>1.4<br>1.2<br>1.2<br>1.2      | 1.5<br>1.2<br>2.0<br>7.9<br>4.9      | 2.1<br>1.2<br>1.3<br>1.3<br>1.2      | 2.3<br>2.1<br>2.1<br>2.1<br>4.4<br>7.1 | 4.3<br>4.0<br>4.0<br>                | 16<br>22<br>16<br>12<br>11<br>9.7    | 4.5<br>4.2<br>14<br>12<br>13         | 4.5<br>3.7<br>3.2<br>11<br>11        | 5.9<br>8.1<br>14<br>11<br>11         | 4.7<br>4.5<br>6.3<br>5.6<br>5.1<br>4.4 | 3.3<br>3.0<br>3.1<br>3.2<br>3.3      | 4.3<br>18<br>9.4<br>3.4<br>0.97      |
| TOTAL<br>MEAN<br>MAX<br>MIN        | 56.2<br>1.81<br>5.5<br>1.2           | 51.44<br>1.71<br>7.9<br>0.86         | 147.5<br>4.76<br>21<br>1.2           | 68.4<br>2.21<br>7.1<br>1.2             | 345.5<br>12.3<br>65<br>3.8           | 245.8<br>7.93<br>22<br>3.5           | 392.2<br>13.1<br>36<br>3.9           | 424.1<br>13.7<br>78<br>3.2           | 196.2<br>6.54<br>14<br>1.6           | 138.0<br>4.45<br>10<br>3.2             | 107.4<br>3.46<br>4.4<br>3.0          | 117.87<br>3.93<br>18<br>0.97         |
| STATISTI                           | ICS OF MO                            | ONTHLY MEA                           | AN DATA FO                           | R WATER Y                              | YEARS 199                            | 0 - 2002,                            | BY WATER                             | YEAR (WY                             | )                                    |                                        |                                      |                                      |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 5.60<br>16.9<br>1997<br>1.81<br>2002 | 7.17<br>16.3<br>1997<br>1.43<br>1999 | 7.99<br>18.1<br>1991<br>1.89<br>1999 | 9.84<br>28.5<br>1998<br>2.21<br>2002   | 10.4<br>19.4<br>2000<br>3.60<br>1993 | 18.1<br>26.7<br>1991<br>7.93<br>2002 | 13.8<br>23.8<br>2000<br>3.32<br>1995 | 8.76<br>20.4<br>1996<br>2.39<br>1993 | 5.61<br>14.6<br>1996<br>1.95<br>2001 | 5.88<br>18.5<br>1998<br>2.95<br>1997   | 5.54<br>21.7<br>1992<br>2.97<br>1991 | 4.28<br>6.76<br>1992<br>2.22<br>1995 |

151

# 0423204920 EAST BRANCH ALLEN CREEK AT PITTSFORD, NY--Continued

| SUMMARY STATISTICS                        | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1990 - 2002 |
|-------------------------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL ANNUAL MEAN                  | 2204.94<br>6.04        | 2290.61<br>6.28     | 8.55                    |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN | 0.01                   | 0.20                | 11.0 1998<br>5.28 1995  |
| HIGHEST DAILY MEAN                        | 74 Mar 23              | 78 May 14           | 295 Jan 8 1998          |
| LOWEST DAILY MEAN                         | 0.86 Nov 23            | 0.86 Nov 23         | 0.55 Nov 25 1999        |
| ANNUAL SEVEN-DAY MINIMUM                  | 1.0 Nov 18             | 1.0 Nov 18          | 0.68 Nov 19 1999        |
| 10 PERCENT EXCEEDS                        | 15                     | 12                  | 18                      |
| 50 PERCENT EXCEEDS                        | 3.0                    | 3.8                 | 4.2                     |
| 90 PERCENT EXCEEDS                        | 1.3                    | 1.3                 | 1.6                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 0423204920 EAST BRANCH ALLEN CREEK AT PITTSFORD, NY--Continued

#### WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1990 to current year.

CHEMICAL DATA: Water years 1990 to current year (e).

NUTRIENT DATA: Water years 1990 to current year (e).

PERIOD OF DAILY RECORD.-
WATER TEMPERATURES: November 1994 to current year.

INSTRUMENTATION.--Automatic water sampler since 1990. Water-temperature recorder since November 1994 provides 15-minute-interval readings.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Prior to 1994 water year, data published in "Water Resources of Monroe County New York, Water Years 1989-93", U.S. Geological Survey Open-File Report 97-587. The non-daily water-quality records for this site were collected and reported in local standard time.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum, 27.5°C, July 15, 1997, July 5, 31, 1999; minimum, 0°C, on many days during winter period. EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURES: Maximum, 26.5°C, Aug. 1, 2; minimum, 0°C, Jan. 19, 31, Feb. 13, Mar. 4, 5.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DAY                              | MAX                                  | MIN                                    | MEAN                                 | MAX                                  | MIN                               | MEAN                               | MAX                               | MIN                             | MEAN                             | MAX                                    | MIN                                    | MEAN                            |
|----------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|------------------------------------|-----------------------------------|---------------------------------|----------------------------------|----------------------------------------|----------------------------------------|---------------------------------|
|                                  |                                      | OCTOBER                                |                                      | No                                   | OVEMBER                           |                                    | DE                                | ECEMBER                         |                                  |                                        | JANUARY                                | •                               |
| 1<br>2<br>3<br>4<br>5            | 14.5<br>16.5<br>17.5<br>17.5<br>16.5 | 11.0<br>14.0<br>14.5<br>16.0<br>14.5   | 13.0<br>15.0<br>16.0<br>16.5<br>15.5 | 11.0<br>14.0<br>13.0<br>11.5<br>10.0 | 8.5<br>11.0<br>10.5<br>9.5<br>8.0 | 9.5<br>12.5<br>11.5<br>10.5<br>8.5 | 10.0<br>9.0<br>8.0<br>9.5<br>11.0 | 9.0<br>6.5<br>5.0<br>5.5<br>9.5 | 9.5<br>8.5<br>7.0<br>7.5<br>10.0 | 1.0<br>1.0<br>1.0<br>1.0<br>2.0        | 0.5<br>0.5<br>0.5<br>0.5               | 0.5<br>0.5<br>0.5<br>1.0        |
| 6<br>7<br>8<br>9<br>10           | 15.0<br>11.5<br>10.5<br>11.0<br>13.5 | 11.5<br>9.5<br>8.0<br>7.5<br>10.0      | 13.0<br>10.5<br>9.0<br>9.0<br>11.5   | 9.0<br>10.0<br>11.5<br>10.5<br>9.0   | 7.5<br>8.0<br>8.0<br>7.5<br>7.0   | 8.0<br>9.0<br>9.5<br>8.5<br>8.0    | 10.5<br>7.5<br>6.0<br>6.0<br>5.5  | 7.5<br>6.0<br>4.0<br>4.5<br>3.0 | 10.0<br>7.0<br>5.0<br>5.0<br>4.5 | 3.0<br>2.0<br>1.5<br>3.5<br>4.5        | 2.0<br>0.5<br>0.5<br>1.0<br>3.0        | 2.0<br>1.5<br>1.0<br>2.0<br>4.0 |
| 11<br>12<br>13<br>14<br>15       | 15.0<br>15.0<br>17.0<br>17.0<br>15.5 | 12.5<br>14.5<br>14.5<br>15.5<br>12.5   | 13.5<br>15.0<br>15.5<br>16.5<br>14.0 | 9.0<br>7.0<br>7.5<br>9.5<br>11.5     | 6.0<br>5.5<br>5.0<br>7.0<br>9.5   | 7.5<br>6.0<br>6.0<br>8.5<br>10.5   | 5.5<br>6.0<br>8.5<br>8.5<br>6.0   | 3.5<br>2.5<br>6.0<br>5.5<br>5.0 | 4.5<br>4.5<br>7.5<br>7.5<br>5.5  | 4.0<br>4.5<br>4.0<br>3.0<br>3.5        | 3.0<br>3.0<br>2.5<br>1.5<br>3.0        | 3.5<br>3.5<br>3.0<br>2.5<br>3.5 |
| 16<br>17<br>18<br>19<br>20       | 14.0<br>12.0<br>10.5<br>11.5<br>13.0 | 12.0<br>9.0<br>8.0<br>8.0<br>11.0      | 12.5<br>10.5<br>9.0<br>10.0<br>11.5  | 12.0<br>9.5<br>8.5<br>10.5<br>9.5    | 9.5<br>7.0<br>5.5<br>7.0<br>6.5   | 11.5<br>8.0<br>7.0<br>8.5<br>7.5   | 5.5<br>6.0<br>6.0<br>5.5<br>5.0   | 4.5<br>5.0<br>5.0<br>5.0<br>4.5 | 5.0<br>5.5<br>5.5<br>5.0<br>5.0  | 3.0<br>3.5<br>2.0<br>1.5<br>2.0        | 2.0<br>2.0<br>0.5<br>0.0<br>0.5        | 2.5<br>2.5<br>1.5<br>0.5<br>1.0 |
| 21<br>22<br>23<br>24<br>25       | 16.5<br>13.0<br>14.0<br>15.5<br>14.5 | 10.5<br>11.0<br>11.0<br>14.0<br>11.0   | 12.5<br>12.0<br>12.5<br>14.5<br>13.5 | 7.0<br>7.5<br>7.0<br>9.5<br>13.5     | 5.5<br>5.5<br>5.0<br>5.0<br>9.5   | 6.5<br>6.5<br>6.0<br>6.5<br>11.0   | 4.5<br>4.0<br>5.0<br>4.5<br>2.5   | 3.5<br>3.0<br>3.0<br>2.5<br>2.0 | 4.0<br>3.5<br>4.0<br>3.5<br>2.0  | 3.0<br>3.5<br>5.0<br>5.0<br>4.0        | 1.0<br>1.5<br>2.5<br>3.5<br>2.0        | 1.5<br>2.5<br>3.5<br>4.5<br>3.0 |
| 26<br>27<br>28<br>29<br>30<br>31 | 11.0<br>9.0<br>8.5<br>9.5<br>9.5     | 9.0<br>8.0<br>7.5<br>6.5<br>7.5<br>7.0 | 10.0<br>8.5<br>8.0<br>8.0<br>9.0     | 11.0<br>10.0<br>9.5<br>9.5<br>11.5   | 9.0<br>8.5<br>8.0<br>7.0<br>9.0   | 10.0<br>9.5<br>9.0<br>8.5<br>9.5   | 2.5<br>1.5<br>2.0<br>1.5<br>1.0   | 1.0<br>0.5<br>0.5<br>0.5<br>0.5 | 1.5<br>1.0<br>1.0<br>1.0<br>0.5  | 4.5<br>5.5<br>6.0<br>5.0<br>4.0<br>2.5 | 2.5<br>2.0<br>3.0<br>4.0<br>2.5<br>0.0 | 3.0<br>3.5<br>4.5<br>4.5<br>3.0 |
| MONTH                            | 17.5                                 | 6.5                                    | 12.0                                 | 14.0                                 | 5.0                               | 8.7                                | 11.0                              | 0.5                             | 4.9                              | 6.0                                    | 0.0                                    | 2.4                             |

0423204920 EAST BRANCH ALLEN CREEK AT PITTSFORD, NY--Continued
TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                                                                         |                                                                                                                                                                                                                                     | TEMPER                                                                                                                                                                                                | PATURE,                                                                                                                       | WATER (DEG                                                                                                                                              | . C),                                                                                                                                      | WATER YEAR                                                                                                                                                                                                                                                                                              | OCTOBER                                                                                                            | 2001 TO                                                                                                                                                                         | SEPTEMBER                                                                                                                                              | 2002                                                                                                                                             |                                                                                                                                                               |                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY                                                                                     | MAX                                                                                                                                                                                                                                 | MIN                                                                                                                                                                                                   | MEAN                                                                                                                          | MAX                                                                                                                                                     | MIN                                                                                                                                        | I MEAN                                                                                                                                                                                                                                                                                                  | MAX                                                                                                                | MIN                                                                                                                                                                             | MEAN                                                                                                                                                   | MAX                                                                                                                                              | MIN                                                                                                                                                           | MEAN                                                                                                                                                                                                                                                       |
|                                                                                         |                                                                                                                                                                                                                                     | FEBRUARY                                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                         | MARCH                                                                                                                                      | I                                                                                                                                                                                                                                                                                                       |                                                                                                                    | APRIL                                                                                                                                                                           |                                                                                                                                                        |                                                                                                                                                  | MAY                                                                                                                                                           |                                                                                                                                                                                                                                                            |
| 1<br>2<br>3<br>4<br>5                                                                   | 2.5<br>1.5<br>2.0<br>2.0<br>2.0                                                                                                                                                                                                     | 1.0<br>1.0<br>1.0<br>0.5                                                                                                                                                                              | 1.5<br>1.0<br>1.5<br>1.0                                                                                                      | 3.5<br>5.0<br>5.5<br>2.0<br>1.5                                                                                                                         | 1.0<br>0.5<br>2.0<br>0.0                                                                                                                   | 3.0<br>4.5<br>1.5                                                                                                                                                                                                                                                                                       | 8.0<br>6.5<br>6.5<br>6.0<br>5.5                                                                                    | 6.0<br>5.0                                                                                                                                                                      | 7.0<br>6.0<br>6.0<br>5.0<br>4.5                                                                                                                        | 12.5<br>11.5<br>11.0<br>14.0<br>16.0                                                                                                             | 7.5<br>10.0<br>9.0<br>8.0<br>9.5                                                                                                                              | 9.5<br>10.5<br>9.5<br>10.5<br>12.5                                                                                                                                                                                                                         |
| 6<br>7<br>8<br>9<br>10                                                                  | 2.5<br>3.0<br>4.0<br>3.5<br>4.5                                                                                                                                                                                                     | 0.5<br>0.5<br>2.0<br>2.0<br>2.5                                                                                                                                                                       | 1.5<br>2.0<br>2.5<br>2.5<br>3.5                                                                                               | 4.0<br>3.0<br>7.0<br>9.0<br>6.5                                                                                                                         | 0.5<br>2.0<br>2.5<br>5.5                                                                                                                   | 2.5<br>4.5<br>7.0                                                                                                                                                                                                                                                                                       | 7.0<br>6.5<br>8.5<br>12.0<br>12.5                                                                                  | 4.0<br>6.0<br>8.0                                                                                                                                                               | 5.0<br>5.5<br>7.0<br>9.5<br>9.5                                                                                                                        | 17.0<br>17.5<br>15.0<br>16.0<br>16.5                                                                                                             | 13.0<br>14.0<br>12.5<br>12.0<br>12.5                                                                                                                          | 15.0<br>15.5<br>13.5<br>13.5<br>14.0                                                                                                                                                                                                                       |
| 11<br>12<br>13<br>14<br>15                                                              | 4.0<br>2.5<br>2.0<br>2.5<br>4.0                                                                                                                                                                                                     | 1.0<br>1.0<br>0.0<br>0.5<br>1.5                                                                                                                                                                       | 2.0<br>2.0<br>1.0<br>1.5<br>2.5                                                                                               | 5.0<br>5.5<br>6.5<br>7.0<br>7.5                                                                                                                         | 1.0<br>3.0<br>2.5<br>4.0<br>4.5                                                                                                            | 4.0<br>4.5<br>5.0                                                                                                                                                                                                                                                                                       | 14.5<br>15.5<br>13.5<br>13.0<br>15.0                                                                               | 10.5<br>11.5<br>11.5                                                                                                                                                            | 11.0<br>13.0<br>13.0<br>12.0<br>13.5                                                                                                                   | 16.0<br>13.0<br>11.5<br>10.0<br>11.0                                                                                                             | 11.0<br>11.5<br>10.0<br>9.5<br>9.5                                                                                                                            | 13.0<br>12.0<br>10.5<br>10.0                                                                                                                                                                                                                               |
| 16<br>17<br>18<br>19<br>20                                                              | 4.0<br>3.0<br>3.5<br>4.0<br>4.5                                                                                                                                                                                                     | 2.5<br>1.5<br>0.5<br>1.0<br>3.5                                                                                                                                                                       | 3.0<br>2.0<br>1.5<br>2.5<br>4.0                                                                                               | 7.0<br>6.5<br>5.5<br>5.5                                                                                                                                | 4.5<br>3.5<br>4.5<br>4.0<br>4.0                                                                                                            | 5.0<br>5.0<br>4.5                                                                                                                                                                                                                                                                                       | 18.0<br>21.0<br>22.5<br>22.0<br>17.5                                                                               | 15.5<br>18.0                                                                                                                                                                    | 15.5<br>18.0<br>19.5<br>19.5                                                                                                                           | 13.0<br>12.5<br>11.5<br>11.0<br>11.0                                                                                                             | 10.5<br>11.5<br>10.5<br>10.0<br>9.5                                                                                                                           | 11.5<br>12.0<br>11.0<br>10.5<br>10.0                                                                                                                                                                                                                       |
| 21<br>22<br>23<br>24<br>25                                                              | 5.0<br>4.0<br>3.5<br>6.0<br>7.0                                                                                                                                                                                                     | 4.0<br>2.0<br>1.5<br>1.0<br>3.0                                                                                                                                                                       | 4.5<br>3.5<br>2.0<br>3.5<br>5.0                                                                                               | 5.5<br>4.0<br>3.5<br>5.0<br>4.5                                                                                                                         | 2.0<br>1.0<br>1.0<br>2.0<br>2.0                                                                                                            | 2.5<br>2.0<br>3.0                                                                                                                                                                                                                                                                                       | 13.0<br>9.5<br>12.0<br>14.5<br>11.0                                                                                | 7.5                                                                                                                                                                             | 8.5<br>9.0                                                                                                                                             | 12.0<br>14.5<br>17.0<br>16.0                                                                                                                     | 9.0<br>9.0<br>10.5<br>13.5<br>11.5                                                                                                                            | 10.5<br>11.5<br>13.5<br>15.0<br>14.0                                                                                                                                                                                                                       |
| 26<br>27<br>28<br>29<br>30<br>31                                                        | 6.5<br>4.0<br>3.5<br>                                                                                                                                                                                                               | 4.0<br>0.5<br>0.5<br>                                                                                                                                                                                 | 5.0<br>3.0<br>2.0<br>                                                                                                         | 3.5<br>3.5<br>5.0<br>6.0<br>8.0<br>9.0                                                                                                                  | 2.5<br>2.5<br>2.0<br>3.5<br>5.5                                                                                                            | 3.0<br>3.5<br>5.0<br>6.5                                                                                                                                                                                                                                                                                | 10.5<br>13.5<br>11.5<br>9.5<br>10.0                                                                                | 6.5<br>8.0                                                                                                                                                                      | 9.5                                                                                                                                                    | 17.0<br>18.5<br>19.0<br>22.0<br>19.5                                                                                                             | 14.0<br>13.0<br>14.0<br>15.5<br>17.5<br>18.0                                                                                                                  | 15.0<br>15.5<br>16.5<br>18.0<br>18.5<br>18.5                                                                                                                                                                                                               |
|                                                                                         |                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                               |                                                                                                                                                         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                         |                                                                                                                    | 2 5                                                                                                                                                                             | 10.4                                                                                                                                                   | 00.0                                                                                                                                             | 7.5                                                                                                                                                           | 12.9                                                                                                                                                                                                                                                       |
| MONTH                                                                                   | 7.0                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                   | 2.4                                                                                                                           | 9.0                                                                                                                                                     | 0.0                                                                                                                                        | 3.9                                                                                                                                                                                                                                                                                                     | 22.5                                                                                                               | 3.5                                                                                                                                                                             | 10.4                                                                                                                                                   | 22.0                                                                                                                                             | 7.5                                                                                                                                                           |                                                                                                                                                                                                                                                            |
| MONTH                                                                                   | 7.0<br>MAX                                                                                                                                                                                                                          | 0.0<br>MIN                                                                                                                                                                                            | 2.4<br>MEAN                                                                                                                   | 9.0<br>MAX                                                                                                                                              | 0.0                                                                                                                                        |                                                                                                                                                                                                                                                                                                         | 22.5<br>MAX                                                                                                        |                                                                                                                                                                                 | 10.4<br>MEAN                                                                                                                                           | 22.0<br>MAX                                                                                                                                      | MIN                                                                                                                                                           | MEAN                                                                                                                                                                                                                                                       |
|                                                                                         |                                                                                                                                                                                                                                     |                                                                                                                                                                                                       |                                                                                                                               |                                                                                                                                                         |                                                                                                                                            |                                                                                                                                                                                                                                                                                                         | MAX                                                                                                                |                                                                                                                                                                                 |                                                                                                                                                        |                                                                                                                                                  |                                                                                                                                                               | MEAN                                                                                                                                                                                                                                                       |
|                                                                                         |                                                                                                                                                                                                                                     | MIN                                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                         | MIN                                                                                                                                        | MEAN  24.0  24.5  24.5  24.5                                                                                                                                                                                                                                                                            | MAX                                                                                                                | MIN<br>AUGUST<br>24.0<br>25.0                                                                                                                                                   |                                                                                                                                                        |                                                                                                                                                  | MIN<br>SEPTEMBE                                                                                                                                               | MEAN                                                                                                                                                                                                                                                       |
| DAY  1 2 3 4                                                                            | MAX<br>20.0<br>19.0<br>18.5<br>17.0                                                                                                                                                                                                 | MIN<br>JUNE<br>17.5<br>17.0<br>16.0<br>15.5                                                                                                                                                           | MEAN<br>18.5<br>18.0<br>17.0<br>16.5                                                                                          | MAX<br>25.0<br>25.5<br>25.5<br>25.5                                                                                                                     | MIN<br>JULY<br>23.0<br>24.0<br>23.5<br>23.5                                                                                                | MEAN  24.0 24.5 5.24.5 6.24.5 6.22.5 6.22.0 6.22.0 6.22.0 6.22.0 6.22.0 6.22.0                                                                                                                                                                                                                          | MAX<br>26.5<br>26.5<br>25.5<br>25.5                                                                                | MIN 24.0 25.0 23.5 22.5 24.0 22.0 22.0 21.5 20.5                                                                                                                                | MEAN  25.0  25.5  24.5  24.0                                                                                                                           | MAX<br>22.5<br>23.0<br>23.5<br>23.0                                                                                                              | MIN<br>SEPTEMBE<br>20.5<br>20.5<br>21.0<br>21.0                                                                                                               | MEAN<br>ER<br>21.5<br>21.5<br>22.5<br>22.0                                                                                                                                                                                                                 |
| DAY  1 2 3 4 5 6 7 8 9                                                                  | MAX 20.0 19.0 18.5 17.0 20.0 19.0 18.5 20.5 21.0                                                                                                                                                                                    | MIN JUNE 17.5 17.0 16.0 15.5 17.0 16.5 15.0 15.5 18.5                                                                                                                                                 | MEAN  18.5 18.0 17.0 16.5 18.5 17.5 16.5 17.5 19.5                                                                            | 25.0<br>25.5<br>25.5<br>25.5<br>23.5<br>23.5<br>23.5<br>24.5<br>23.5                                                                                    | MIN<br>JULY<br>23.0<br>24.0<br>23.5<br>21.5<br>21.5<br>21.5<br>21.5                                                                        | MEAN  24.0 24.5 24.5 24.5 24.5 22.5  22.0 22.0 22.0 22.0 21.0 21.0 21.5 22.5                                                                                                                                                                                                                            | MAX  26.5 26.5 25.5 25.5 25.5 23.0                                                                                 | MIN AUGUST 24.0 25.0 23.5 22.5 24.0 22.0 21.5 20.5 20.5 21.5                                                                                                                    | MEAN  25.0 25.5 24.5 24.0 25.0  22.5 22.0 21.5                                                                                                         | MAX  22.5 23.0 23.5 23.0 21.5 21.5 22.5 23.5 23.5                                                                                                | MIN SEPTEMBE 20.5 20.5 21.0 21.0 20.0 18.5 19.0 20.5 20.5                                                                                                     | MEAN 21.5 21.5 22.5 22.0 21.0 20.0 21.0 21.5 22.0                                                                                                                                                                                                          |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14                                                   | MAX  20.0 19.0 18.5 17.0 20.0  19.0 18.5 20.5 21.0 21.0 22.5 21.5 19.5                                                                                                                                                              | MIN JUNE 17.5 17.0 16.0 15.5 17.0 16.5 15.0 15.5 18.5 17.0 18.5 17.0                                                                                                                                  | MEAN  18.5 18.0 17.0 16.5 18.5 17.5 19.5 19.5 19.5 19.5 18.5                                                                  | MAX  25.0 25.5 25.5 25.5 23.5  23.0 23.5 24.5 22.5 22.5 23.0 23.5 24.0                                                                                  | MIN JULY 23.0 24.0 23.5 23.5 21.5 21.0 20.5 21.0 20.0 20.0 20.0 20.0                                                                       | MEAN  24.0 24.5 24.5 24.5 24.5 22.5  22.0 22.0 22.0 22.0 21.0 21.0 21.0 21.                                                                                                                                                                                                                             | MAX  26.5 26.5 25.5 25.5 25.5 24.0 23.0 22.0 24.0 24.5 25.0 25.5 26.0                                              | MIN AUGUST 24.0 25.0 23.5 22.5 24.0 21.5 20.5 20.5 20.5 21.5 22.0 23.0 23.0 23.0 23.5 24.0                                                                                      | MEAN  25.0 25.5 24.5 24.0 25.0  22.5 22.0 21.5 22.0 23.0 23.5 24.0 24.5                                                                                | MAX  22.5 23.0 23.5 23.0 21.5 21.5 22.5 23.5 23.5 23.5 23.5 21.0                                                                                 | MIN SEPTEMBE 20.5 20.5 21.0 21.0 20.0 18.5 19.0 20.5 20.5 21.0 19.5 18.5 19.0 19.0                                                                            | MEAN 21.5 21.5 22.5 22.0 21.0 21.0 21.0 21.5 22.0 21.0 21.5 22.0 22.0 20.0 21.0                                                                                                                                                                            |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18                                       | MAX  20.0 19.0 18.5 17.0 20.0  19.0 18.5 21.0 21.0 22.5 21.5 19.0 18.0  17.0 18.0 17.0 18.0                                                                                                                                         | MIN  JUNE  17.5 17.0 16.0 15.5 17.0  16.5 15.0 15.5 17.0  18.5 17.0  18.5 17.0  18.5 17.5 17.5 17.5 17.5 17.5 17.5                                                                                    | MEAN  18.5 18.0 17.0 16.5 18.5 17.5 19.5 19.5 19.5 19.5 18.0 17.5 16.5 16.5 16.5 17.0                                         | MAX  25.0 25.5 25.5 25.5 23.5  23.0 23.5 24.5 22.5 22.5 23.0 24.0 24.0 24.0 25.5 25.0 23.5                                                              | MIN JULY 23.0 24.0 23.5 21.5 21.0 20.5 21.0 20.0 21.0 20.0 21.5 21.5 22.0 20.5 21.5                                                        | MEAN  24.0 24.5 24.5 24.5 22.5 22.0 22.0 22.0 21.0 21.0 21.0 21.0 21.5 22.5 22.0 22.0 21.0 21.0 21.0 21.0 21.0 21.0                                                                                                                                                                                     | MAX  26.5 26.5 25.5 25.5 25.5 24.0 23.0 24.0 24.5 25.0 25.5 26.0 25.5 26.0 25.5                                    | MIN AUGUST 24.0 25.0 23.5 22.5 24.0 22.0 21.5 20.5 20.5 20.5 22.0 23.0 23.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0                               | MEAN  25.0 25.5 24.5 24.0 25.0  22.5 22.0 21.5 22.0 23.0 23.5 24.0 24.5 24.5 24.5 24.5                                                                 | MAX  22.5 23.0 23.5 23.0 21.5 21.5 22.5 23.5 23.5 23.5 20.5 21.0 21.0 20.5 20.5 20.5                                                             | MIN SEPTEMBE 20.5 20.5 21.0 21.0 20.0  18.5 19.0 20.5 20.5 21.0  19.5 18.5 19.0 20.5                                                                          | MEAN ER  21.5 21.5 22.5 22.0 21.0 21.0 21.5 22.0 21.0 21.5 22.0 21.0 21.5 20.0 21.5 20.0 20.5                                                                                                                                                              |
| DAY  1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | MAX  20.0 19.0 18.5 17.0 20.0 19.0 21.0 21.0 22.5 21.5 19.0 18.0 17.0 18.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 20.0 21.0 21 | MIN  JUNE  17.5 17.0 16.0 15.5 17.0  16.5 15.0 18.5 17.0  18.5 17.0  18.5 17.5 17.5 17.5 17.5 17.5 17.5 17.5 17                                                                                       | MEAN  18.5 18.0 17.0 16.5 17.5 19.5 19.5 19.5 19.5 18.5 16.5 17.5 16.5 16.5 17.5 16.5 11.0  20.5 20.5 21.0                    | MAX  25.0 25.5 25.5 23.5  23.0 23.5 24.5 23.5 22.5  22.5 23.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24                                                     | MIN JULY 23.0 24.0 23.5 21.5 21.0 20.5 21.5 22.0 21.0 20.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5                                         | MEAN  24.0 24.5 24.5 24.5 24.5 24.5 22.5 22.0 22.0 22.0 21.0 21.0 21.5 22.5 22.5 22.0 21.0 21.5 22.5 22.5 22.0 21.0 21.5 22.5 22.5 22.5 22.0 21.0 21.5 22.5 22.5 22.5 22.0 21.0 21.5 22.5 22.5 22.5 22.5 22.0 23.0 23.0 23.0 23.0 23.0 23.0 24.0 23.0 23.0 23.0 23.0 24.0 23.0 23.0 23.0 24.5 24.5 24.5 | MAX  26.5 26.5 25.5 25.5 25.5 24.0 23.0 24.0 24.5 25.5 26.0 25.5 26.0 25.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5      | MIN AUGUST 24.0 25.0 23.5 24.0 21.5 20.5 20.5 21.5 22.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0                                                                                      | MEAN  25.0 25.5 24.5 24.0 25.0 21.5 22.0 23.0 23.5 24.5 24.5 24.5 24.5 24.5 24.5 25.0 23.0 23.0 24.5 24.5 25.0 21.5 22.0 21.5 22.0 21.5 22.0 23.0 23.0 | MAX  22.5 23.0 21.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 21.0 21.0 20.5 20.5 21.5 22.5 21.5 22.5 21.5 21.5 21.5 21                                 | MIN SEPTEMBE 20.5 20.5 21.0 20.0 18.5 19.0 20.5 21.0 19.5 18.5 19.0 20.5 21.0 20.5 21.0 19.5 18.5 19.0 20.5 21.0 19.5 19.0 20.5 19.0 20.5 19.0 18.5 19.0 20.5 | MEAN  21.5 21.5 22.5 22.0 21.0  20.0 21.0 21.5 22.0 22.0  21.0 21.5 22.0 21.0 21.5 22.0 21.0 21.5 21.5 21.5 21.5 21.5 21.5 21.5 21.5                                                                                                                       |
| DAY  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29      | MAX  20.0 19.0 18.5 17.0 20.0 19.0 18.5 21.0 21.0 22.5 21.5 19.0 18.0 17.0 17.0 19.0 20.0 21.0 22.0 23.0 24.0 23.0 22.5 23.0                                                                                                        | MIN  JUNE  17.5 17.0 16.0 15.5 17.0  16.5 15.0 15.5 17.0  18.5 17.0  18.5 17.5 17.5 17.5 17.5 17.5 17.0  16.5 15.5 17.0  16.5 19.5 10.0 17.5 15.5 15.0 17.5 15.5 16.0  17.5 15.5 16.0  17.5 17.5 17.0 | MEAN  18.5 18.0 17.0 16.5 18.5 17.5 19.5 19.5 19.5 19.5 18.0 17.5 16.5 16.5 17.0 18.0 19.0 19.5 20.5 21.0 22.0 22.0 22.0 22.0 | MAX  25.0 25.5 25.5 25.5 23.5  23.0 23.5 24.5 23.5 22.5  22.5 23.0 24.0 24.0 24.0 24.0 24.5 25.0 23.5 24.0 24.0 24.5 25.0 23.5 24.0 24.5 25.0 23.5 24.0 | MIN JULY 23.0 24.0 23.5 21.5 21.0 20.5 21.5 21.0 20.0 21.0 20.5 21.5 21.5 21.5 22.5 22.5 22.5 22.0 21.0 23.0 23.0 22.5 21.5 22.5 22.0 21.0 | MEAN  24.0 24.5 24.5 24.5 24.5 22.5 22.0 22.0 22.0 22.0 22.0 22.1 22.0 22.5 22.0 22.0 22.5 22.0 22.5 22.0 22.5 22.0 22.5 22.0 22.5 22.5                                                                                                                                                                 | MAX  26.5 26.5 25.5 25.5 25.5 24.0 23.0 24.0 24.5 25.0 25.5 26.0 25.5 26.0 25.5 23.5 23.5 23.5 23.5 23.5 23.5 23.5 | MIN AUGUST 24.0 25.0 23.5 22.5 24.0 22.0 21.5 20.5 20.5 21.5 22.0 23.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 22.0 23.0 23.5 24.0 23.5 24.0 23.5 24.0 23.5 24.0 20.5 21.5 | MEAN  25.0 25.5 24.5 24.0 25.0  21.5 22.0 21.5 22.0 23.6 24.5 24.5 24.5 24.5 24.5 22.0 23.0 23.0 23.0 23.0 23.0 23.0                                   | MAX  22.5 23.0 21.5 23.5 23.5 23.5 23.5 23.5 20.5 21.5 21.0 21.0 20.5 20.5 21.5 22.5 20.5 21.5 21.7 21.5 21.7 21.7 21.7 21.7 21.7 21.7 21.7 21.7 | MIN SEPTEMBE 20.5 20.5 21.0 20.0 18.5 19.0 20.5 21.0 19.5 18.5 19.0 20.5 21.0 19.5 18.5 19.0 20.5 21.0 19.5 19.0 19.0 19.0 20.5 19.5 19.0 19.0 19.0 20.5      | MEAN ER  21.5 21.5 22.5 22.0 21.0  20.0 21.0 21.5 22.0 22.0  21.0 21.5 20.0 20.5 20.0 21.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.5 20.0 20.0 |

# 0423204920 EAST BRANCH ALLEN CREEK AT PITTSFORD, NY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                                                                                | Time                                                                                 | Ending<br>time                                                                       | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)           | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                                  | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940)                  | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)              | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608)          | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| OCT<br>05-06<br>06-08<br>21-22<br>22-25                                                                                             | 2205<br>0405<br>1210<br>0710                                                         | 0305<br>0605<br>0610<br>0310                                                         | 3.7<br>2.4<br>7.1<br>1.5                                                     | 16<br>6.5<br>15<br>2.6                                                   | 123<br>117<br>98<br>133                                                         | 175<br>88<br>155<br>205                                               | <br><br>                                                                     | <br><br>                                                         | .06<br><.01<br>.02<br><.01                                                        | .36<br>.41<br>.49<br>.44                                                      | .50<br>.38<br>.31<br>.22                                        | .024<br>.018<br>.023<br>.025                                             | .090<br>.050<br>.075<br>.045                                                                             |
| NOV<br>21-25<br>28-29                                                                                                               | 0835<br>1715                                                                         | 0735<br>0715                                                                         | .88<br>6.0                                                                   | 2.0<br>12                                                                | 191<br>105                                                                      | 167<br>106                                                            |                                                                              |                                                                  | .02                                                                               | .51<br>.54                                                                    | .15<br>.54                                                      | .010<br>.018                                                             | .030                                                                                                     |
| NOV 29-<br>DEC 03<br>14-14<br>15-17<br>17-20<br>JAN                                                                                 | 0805<br>1210<br>0010<br>0805                                                         | 0705<br>2310<br>0710<br>0705                                                         | 4.0<br>15<br>7.5<br>17                                                       | 5.2<br>37<br>26<br>31                                                    | 137<br>102<br>132<br>143                                                        | 106<br>77<br>77<br>67                                                 | <br>61<br>25<br>                                                             | 13<br>6<br>                                                      | .02<br>.05<br>.04<br>.05                                                          | .48<br>.69<br>.55<br>.76                                                      | . 45<br>. 48<br>. 63<br>. 99                                    | .017<br>.014<br>.019<br>.020                                             | .050<br>.150<br>.090<br>.130                                                                             |
| 07-08<br>07<br>08-10                                                                                                                | 0805<br>0810<br>2005                                                                 | 1905<br><br>0105                                                                     | 1.5<br>1.8<br>2.2                                                            | 11<br>45<br>13                                                           | 631<br>1820<br>570                                                              | 170<br>150<br>153                                                     | 334<br>                                                                      | 10<br>                                                           | .06<br>.18<br>.09                                                                 | .99<br>.85<br>.89                                                             | 1.1<br>1.1<br>1.0                                               | .008<br>.007<br>.004                                                     | .055<br>.080<br>.055                                                                                     |
| JAN 31-<br>FEB 01<br>11-11                                                                                                          | 0835<br>0835                                                                         | 1135<br>0935                                                                         | 20<br>17                                                                     | 48<br>16                                                                 | 512<br>239                                                                      | 77<br>71                                                              |                                                                              |                                                                  | .05                                                                               | 1.0<br>.62                                                                    | .77<br>2.0                                                      | .007<br>.015                                                             | .130<br>.073                                                                                             |
| MAR<br>09-09<br>10-11<br>11-13<br>13-14<br>14-18<br>18-20<br>20-20<br>20-21<br>21-25<br>25-26<br>26-26<br>26-26<br>26-28<br>MAR 28- | 1605<br>0005<br>0850<br>1650<br>0805<br>0805<br>1405<br>0820<br>0810<br>0810<br>2010 | 2305<br>0805<br>1550<br>0650<br>0704<br>0705<br>1304<br>0704<br>0709<br>1910<br>0710 | 7.8<br>6.4<br>5.5<br>10<br>7.7<br>5.8<br>9.4<br>11<br>8.2<br>6.8<br>14<br>22 | 78<br>16<br>8.6<br>12<br>5.2<br>6.0<br>24<br>16<br>11<br>6.0<br>30<br>51 | 301<br>448<br>302<br>275<br>250<br>236<br>188<br>200<br>245<br>67<br>312<br>176 | 87<br>90<br>88<br>69<br>71<br>80<br>76<br>79<br>63<br>166<br>69<br>54 | 200                                                                          | 31                                                               | .03<br>.01<br><.01<br><.01<br><.01<br><.01<br>.03<br><.01<br><.01<br><.01<br><.01 | 1.2<br>.57<br>.51<br>.60<br>.65<br>.49<br>.55<br>.54<br>.54                   | .98 1.0 1.2 1.4 1.3 1.1 .94 1.3 1.4 1.2                         | <.003 <.003 <.003 <.003 <.003 <.003 <.004 .005 <.003 <.003 <.004 .005    | . 262<br>. 051<br>. 033<br>. 048<br>. 027<br>. 032<br>. 062<br>. 050<br>. 052<br>. 047<br>. 090<br>. 147 |
| APR 01<br>01-02<br>02-03<br>03-04<br>04-08<br>08-11<br>13-13<br>13-15<br>15-18                                                      | 0820<br>0810<br>0810<br>0510<br>0815<br>0705<br>0715<br>1915<br>0750                 | 0719<br>0710<br>0410<br>0709<br>0614<br>0604<br>1815<br>0615                         | 12<br>8.8<br>24<br>34<br>18<br>8.9<br>20<br>29<br>22                         | 21<br>10<br>25<br>55<br>26<br>8.1<br>47<br>61<br>39                      | 178<br>177<br>155<br>119<br>150<br>168<br>141<br>110                            | 105<br>63<br>59<br>44<br>54<br>64<br>62<br>47<br>38                   | <br><br>57<br><br><br>102<br>64<br>41                                        | <br><br>10<br><br><br>20<br>11                                   | .01<br>.03<br>.23<br>.02<br>.02<br>.05<br>.02                                     | .61<br>.57<br>.78<br>.98<br>.72<br>.61<br>1.4<br>1.2                          | 1.6<br>1.6<br>1.4<br>1.2<br>1.7<br>1.5<br>.89<br>.97            | .005<br>.004<br>.005<br>.010<br>.007<br>.004<br>.005<br>.009             | .078<br>.046<br>.082<br>.193<br>.089<br>.038<br>.175<br>.168                                             |
| MAY<br>09-09<br>09-12<br>12-12<br>12-13<br>13-14<br>14-16<br>16-19<br>20-24<br>JUN                                                  | 0055<br>0720<br>0720<br>2320<br>1005<br>0705<br>0710<br>0650                         | 0554<br>0619<br>2220<br>0620<br>0604<br>0605<br>1410<br>0549                         | 15<br>8.2<br>12<br>15<br>64<br>53<br>18<br>6.4                               | 42<br>9.4<br>44<br>17<br>98<br>78<br>17<br>4.9                           | 107<br>135<br>111<br>103<br>69<br>70<br>105<br>103                              | 84<br>78<br>78<br>65<br>37<br>29<br>52<br>68                          | 99<br><br>49<br><br>138<br><br>                                              | 20<br><br>12<br><br>22<br><br>                                   | .08<br>.02<br>.04<br>.04<br>.03<br>.03<br>.02                                     | .35<br>.64<br>1.4<br>.74<br>1.6<br>1.7<br>.81                                 | .67<br>.65<br>.55<br>.53<br>.52<br>1.0<br>1.3                   | .011<br>.006<br>.009<br>.011<br>.014<br>.022<br>.016                     | .175<br>.050<br>.146<br>.081<br>.280<br>.248<br>.088                                                     |
| 14-14<br>14-17<br>17-20<br>27-28<br>JUN 28-                                                                                         | 0305<br>2305<br>0705<br>1455                                                         | 2205<br>0604<br>0604<br>0555                                                         | 16<br>7.8<br>5.2<br>15                                                       | 62<br>32<br>16<br>48                                                     | 79<br>103<br>146<br>82                                                          | 59<br>67<br>94<br>70                                                  | <br><br><br>69                                                               | <br><br><br>15                                                   | .08<br>.04<br>.03<br>.06                                                          | 1.4<br>1.1<br>.68<br>1.1                                                      | .67<br>.76<br>1.1<br>1.2                                        | .025<br>.027<br>.033<br>.027                                             | .249<br>.136<br>.085<br>.164                                                                             |
| JUL 01<br>23-23<br>23-25<br>25-29                                                                                                   | 0655<br>0050<br>0950<br>0705                                                         | 0554<br>0850<br>0550<br>0604                                                         | 12<br>9.9<br>5.9<br>5.0                                                      | 39<br>26<br>25<br>15                                                     | 105<br>61<br>80<br>77                                                           | 57<br>114<br>97<br>135                                                | 53<br><br><br>                                                               | 10<br><br><br>                                                   | .03<br>.04<br><.01<br><.01                                                        | 1.1<br>.77<br>.63<br>.59                                                      | .85<br>.65<br>.45<br>.51                                        | .035<br>.026<br>.029<br>.039                                             | .171<br>.126<br>.100<br>.102                                                                             |
| SEP<br>27-27<br>27-30                                                                                                               | 0325<br>1925                                                                         | 1825<br>0625                                                                         | 21<br>6.8                                                                    | 19<br>19                                                                 | 73<br>63                                                                        | 124<br>55                                                             |                                                                              |                                                                  | .02                                                                               | .93<br>.91                                                                    | .19<br>.31                                                      | .028                                                                     | .172<br>.153                                                                                             |

## 04232050 ALLEN CREEK NEAR ROCHESTER, NY

LOCATION.--Lat  $43^{\circ}07^{\circ}49^{\circ}$ , long  $77^{\circ}31^{\circ}08^{\circ}$ , Monroe County, Hydrologic Unit 04140101, on right bank 525 ft downstream from Penn Central Transportation Co. bridge, near Rochester, and about 1.3 mi upstream from Irondequoit Creek. DRAINAGE AREA.--30.1 mi<sup>2</sup>, flow from 3.5 mi<sup>2</sup> noncontributing.

## WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--November 1959 to current year. REVISED RECORDS.--WDR NY 1974: 1972(M), 1973(M, P). WDR NY-76-1: 1960-75 (M, P), 1960-63, 1972-74.

REVISED RECORDS.--WDR NY 1974: 1972(M), 1973(M, P). WDR NY-76-1: 1960-75 (M, P), 1960-63, 1972-74.

GAGE.--Water-stage recorder and concrete control. Datum of gage is 323.54 ft above NGVD of 1929.

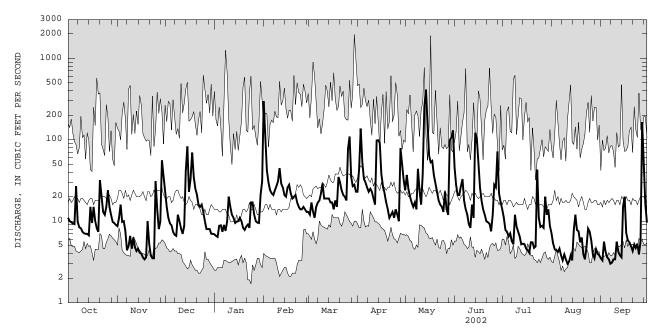
REMARKS.--Records fair. Unpublished water-quality records for prior years are available in files of Monroe County Department of Health. Discharge prior to January 1980 included undetermined diversion (maximum 20 ft³/s) from Erie (Barge) Canal upstream from station. January 1980 to present, diversion reduced to a maximum of 3 ft³/s for use by several golf courses adjacent to stream. Telephone gage-height telemeter at station. Several measurements of water temperature were made during the year.

COOPERATION.--Many discharge measurements were provided by the Monroe County Health Laboratory at Rochester, N.Y.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,280 ft³/s, May 17, 1974, gage height, 7.42 ft, from rating curve extended above 1,000 ft³/s on basis of contracted-opening measurement of peak discharge and step-backwater analysis; minimum daily discharge, 1.7 ft³/s, Jan. 24, 1963; minimum instantaneous discharge not determined.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft³/s and maximum (\*):

| Date             | Time         | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|------------------|--------------|-----------------------------------|---------------------|----------|------|-----------------------------------|---------------------|
| Feb. 1<br>May 14 | 1715<br>0100 | 479<br>*644                       | 3.96<br>*4.11       | Sept. 27 | 1715 | 491                               | 3.82                |


Minimum discharge, 2.2 ft<sup>3</sup>/s, Aug. 11, gage height, 2.09 ft.

|                                    |                                      | DISCHA                              | RGE, CUB                             | IC FEET PE                          | ER SECOND,<br>DAILY                  | WATER YE<br>Y MEAN VA               |                                      | R 2001 TO                           | SEPTEMBE                             | R 2002                               |                                        |                                      |
|------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|--------------------------------------|
| DAY                                | OCT                                  | NOV                                 | DEC                                  | JAN                                 | FEB                                  | MAR                                 | APR                                  | MAY                                 | JUN                                  | JUL                                  | AUG                                    | SEP                                  |
| 1<br>2<br>3<br>4<br>5              | 11<br>10<br>9.7<br>9.4<br>9.2        | 8.7<br>11<br>16<br>9.8              | 24<br>15<br>11<br>9.4<br>8.9         | 6.9<br>6.6<br>6.4<br>8.8            | 298<br>124<br>42<br>30<br>24         | 13<br>12<br>17<br>13<br>11          | 23<br>44<br>138<br>53<br>33          | 24<br>37<br>25<br>20<br>17          | 46<br>28<br>21<br>21<br>27           | 14<br>11<br>7.8<br>7.4<br>6.5        | 7.1<br>5.3<br>4.5<br>4.4<br>4.2        | 3.5<br>3.3<br>5.6<br>4.2<br>3.6      |
| 6<br>7<br>8<br>9<br>10             | 27<br>9.8<br>8.4<br>8.2<br>7.4       | 7.6<br>4.4<br>4.9<br>6.6<br>4.6     | 7.4<br>6.8<br>6.6<br>12              | e7.4<br>e9.0<br>e7.6<br>9.9<br>20   | 22<br>21<br>24<br>27<br>31           | 15<br>17<br>18<br>22<br>29          | 30<br>26<br>23<br>25<br>23           | 15<br>17<br>14<br>44<br>24          | 33<br>18<br>14<br>12<br>9.2          | 7.1<br>5.7<br>5.2<br>12<br>8.6       | 4.6<br>3.8<br>3.3<br>3.9<br>3.4        | 3.4<br>3.0<br>3.1<br>3.4             |
| 11<br>12<br>13<br>14<br>15         | 7.1<br>7.0<br>7.0<br>6.7<br>15       | 6.3<br>4.8<br>4.3<br>4.6<br>4.1     | 8.1<br>7.0<br>8.8<br>41<br>83        | 15<br>12<br>11<br>9.5<br>9.9        | 45<br>e29<br>e26<br>21<br>20         | 19<br>19<br>19<br>19                | 19<br>16<br>98<br>99                 | 16<br>38<br>253<br>414<br>163       | 8.3<br>16<br>11<br>122<br>106        | 7.4<br>6.5<br>5.2<br>5.3<br>5.2      | 2.9<br>3.2<br>3.8<br>3.3<br>7.7        | 5.6<br>4.2<br>3.8<br>3.6             |
| 16<br>17<br>18<br>19<br>20         | 9.5<br>15<br>10<br>8.2<br>7.4        | 4.0<br>3.6<br>3.4<br>3.6            | 23<br>33<br>70<br>35<br>25           | 10<br>11<br>10<br>8.3<br>7.8        | 26<br>28<br>22<br>19<br>20           | 17<br>14<br>18<br>15<br>35          | 38<br>27<br>22<br>17<br>14           | 64<br>53<br>55<br>37<br>29          | 50<br>26<br>18<br>14<br>12           | 4.6<br>4.4<br>4.1<br>5.5<br>5.5      | 12<br>7.8<br>7.5<br>5.5<br>6.3         | 20<br>7.1<br>5.8<br>5.5<br>4.9       |
| 21<br>22<br>23<br>24<br>25         | 32<br>21<br>13<br>12<br>15           | 5.3<br>3.8<br>3.5<br>3.5<br>31      | 21<br>16<br>15<br>16<br>13           | 8.6<br>9.1<br>8.3<br>17             | 21<br>17<br>15<br>14<br>14           | 30<br>24<br>21<br>20<br>18          | 11<br>12<br>13<br>11<br>14           | 23<br>18<br>16<br>15<br>13          | 10<br>9.7<br>9.3<br>7.5              | 4.7<br>4.9<br>43<br>11<br>8.5        | 3.9<br>3.4<br>4.8<br>8.1<br>7.4        | 4.3<br>5.2<br>4.7<br>5.3<br>3.9      |
| 26<br>27<br>28<br>29<br>30<br>31   | 24<br>15<br>12<br>9.8<br>9.5<br>9.0  | 14<br>8.0<br>9.9<br>56<br>37        | e10<br>e8.0<br>e8.0<br>e8.0<br>e7.0  | 12<br>10<br>9.6<br>9.5<br>21        | 15<br>14<br>13<br>                   | 77<br>110<br>35<br>27<br>28<br>23   | 12<br>10<br>79<br>51<br>32           | 23<br>14<br>12<br>99<br>107<br>131  | 28<br>26<br>72<br>22<br>17           | 8.8<br>8.3<br>20<br>12<br>14<br>8.7  | 5.8<br>3.9<br>3.5<br>4.5<br>4.0<br>3.8 | 5.7<br>165<br>52<br>16<br>9.6        |
| TOTAL<br>MEAN<br>MAX<br>MIN        | 375.3<br>12.1<br>32<br>6.7           | 304.3<br>10.1<br>56<br>3.4          | 574.0<br>18.5<br>83<br>6.6           | 349.1<br>11.3<br>31<br>6.4          | 1022<br>36.5<br>298<br>13            | 772<br>24.9<br>110<br>11            | 1105<br>36.8<br>138<br>10            | 1830<br>59.0<br>414<br>12           | 826.0<br>27.5<br>122<br>7.5          | 282.9<br>9.13<br>43<br>4.1           | 157.6<br>5.08<br>12<br>2.9             | 383.7<br>12.8<br>165<br>3.0          |
| STATIST                            | TICS OF M                            | ONTHLY ME                           | AN DATA I                            | FOR WATER                           | YEARS 1960                           | 0 - 2002,                           | BY WATER                             | YEAR (WY                            | .)                                   |                                      |                                        |                                      |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 24.4<br>74.8<br>1978<br>7.99<br>1962 | 29.8<br>102<br>1973<br>7.42<br>1961 | 29.7<br>89.7<br>1978<br>4.80<br>1961 | 25.0<br>108<br>1998<br>4.40<br>1963 | 34.9<br>94.9<br>1981<br>10.4<br>1989 | 56.4<br>131<br>1960<br>22.6<br>1981 | 45.2<br>80.7<br>1969<br>11.2<br>1995 | 32.9<br>103<br>1974<br>8.94<br>1995 | 27.0<br>78.4<br>1972<br>8.58<br>2001 | 22.2<br>79.7<br>1998<br>6.29<br>2001 | 23.6<br>50.7<br>1992<br>5.08<br>2002   | 22.4<br>60.5<br>1977<br>6.07<br>1961 |

e Estimated

# 04232050 ALLEN CREEK NEAR ROCHESTER, NY--Continued

| SUMMARY STATISTICS                        | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1960 - 2002 |
|-------------------------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN               | 7769.0<br>21.3         | 7981.9<br>21.9      | 30.9                    |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN |                        |                     | 50.6 1978<br>16.1 1995  |
| HIGHEST DAILY MEAN                        | 301 Mar 23             | 414 May 14          | 1970 Mar 30 1960        |
| LOWEST DAILY MEAN                         | 2.4 Aug 9              | 2.9 Aug 11          | 1.7 Jan 24 1963         |
| ANNUAL SEVEN-DAY MINIMUM                  | 2.8 Aug 6              | 3.4 Aug 8           | 2.3 Feb 15 1962         |
| 10 PERCENT EXCEEDS                        | 55                     | 39                  | 56                      |
| 50 PERCENT EXCEEDS                        | 9.9                    | 12                  | 19                      |
| 90 PERCENT EXCEEDS                        | 4.3                    | 4.2                 | 7.3                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04232050 ALLEN CREEK NEAR ROCHESTER, NY--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1971-72, 1979-81, 1983 to current year.

CHEMICAL DATA: Water years 1971-72 (a), 1979 (a), 1980 (d), 1981 (e), 1983 to current year (e).

NUTRIENT DATA: Water years 1971-72 (a), 1979 (a), 1980 (d), 1981 (e), 1983 to current year (e).

PERIOD OF DAILY RECORD.--

WATER TEMPERATURES: November 1994 to current year.
INSTRUMENTATION.--Automatic water sampler since October 1983. Water temperature recorder since November 1994 provides 15-minute-interval readings.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

Rochester, N.Y.

REMARKS.--Records for October 1983 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 1984-88", U.S. Geological Survey Open-File Report 93-370, and in "Water Resources of Monroe County New York, Water Years 1989-93", U.S. Geological Survey Open-File Report 97-587. Prior to October 1983, unpublished records are available in the files of the U.S. Geological Survey. The non-daily water-quality records for this site were collected and reported in local standard time.

EXTREMES FOR PERIOD OF DAILY RECORD.-
WATER TEMPERATURES: Maximum, 26.5°C, July 5, 1999; minimum, 0°C, many days during winter period.

EXTREMES FOR CURRENT YEAR --

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURES: Maximum recorded mean, 23.5°C, Aug. 2; minimum recorded, 0°C, several days during winter period.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DAY                              | MAX                                         | MIN                                  | MEAN                                    | MAX                                  | MIN                                | MEAN                                | MAX                                    | MIN                                    | MEAN                              | MAX                                    | MIN                                    | MEAN                                   |
|----------------------------------|---------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|------------------------------------|-------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                  |                                             | OCTOBER                              |                                         | N                                    | OVEMBER                            |                                     | DE                                     | CEMBER                                 |                                   |                                        | JANUARY                                |                                        |
| 1<br>2<br>3<br>4<br>5            | 15.0<br>16.0<br>17.0<br>17.0                | 11.5<br>13.5<br>13.5<br>15.0<br>14.0 | 13.5<br>14.5<br>15.5<br>16.0<br>15.0    | 11.5<br>13.0<br>12.0<br>12.0<br>10.5 | 9.0<br>11.0<br>10.5<br>10.0<br>9.0 | 10.5<br>12.0<br>11.5<br>10.5<br>9.5 | 10.5<br>10.0<br>9.0<br>10.0<br>11.5    | 9.5<br>8.0<br>6.5<br>7.0<br>9.5        | 10.0<br>9.0<br>8.0<br>8.5<br>10.5 | 2.5<br>2.5<br>3.0<br>4.5<br>4.5        | 1.0<br>0.5<br>1.0<br>2.0<br>3.0        | 1.5<br>1.5<br>2.0<br>3.0<br>3.5        |
| 6<br>7<br>8<br>9<br>10           | 14.5<br>12.0<br>12.0<br>12.0<br>13.5        | 11.5<br>10.5<br>9.5<br>8.5<br>10.5   | 13.5<br>11.5<br>10.5<br>10.5<br>12.0    | 10.0<br>10.5<br>11.5<br>10.0<br>9.5  | 8.5<br>8.5<br>8.5<br>8.0<br>7.5    | 9.0<br>9.5<br>10.0<br>9.0<br>8.5    | 11.0<br>8.5<br>7.0<br>7.5<br>7.0       | 8.5<br>7.0<br>5.0<br>5.5<br>5.0        | 10.5<br>7.5<br>6.0<br>6.5<br>6.0  | 4.5<br>3.5<br>3.5<br>5.5<br>5.0        | 3.5<br>2.0<br>1.5<br>2.5<br>3.5        | 4.0<br>3.0<br>2.5<br>4.0<br>4.0        |
| 11<br>12<br>13<br>14<br>15       | 15.0<br>15.0<br>16.5<br>16.0<br>15.0        | 12.0<br>13.5<br>13.5<br>15.0<br>12.5 | 13.5<br>14.5<br>15.0<br>15.5<br>14.0    | 8.5<br>8.0<br>8.5<br>10.0<br>12.0    | 6.5<br>6.0<br>5.5<br>7.5<br>10.0   | 8.0<br>7.0<br>7.0<br>9.0<br>11.0    | 7.0<br>7.0<br>9.5<br>9.5<br>6.0        | 4.5<br>4.5<br>6.5<br>6.0<br>5.0        | 5.5<br>5.5<br>8.0<br>8.5<br>5.5   | 5.0<br>5.5<br>5.0<br>4.5<br>5.0        | 4.0<br>4.0<br>3.5<br>3.0<br>4.0        | 4.5<br>4.5<br>4.0<br>3.5<br>4.5        |
| 16<br>17<br>18<br>19<br>20       | 14.5<br>13.0<br>12.0<br>12.5<br>13.5        | 12.0<br>10.5<br>9.5<br>9.5<br>11.0   | 13.0<br>11.5<br>10.5<br>11.0<br>12.0    | 12.5<br>9.5<br>9.5<br>10.5<br>9.5    | 9.5<br>7.5<br>6.0<br>7.0<br>7.5    | 11.5<br>8.5<br>7.5<br>9.0<br>8.5    | 6.0<br>6.5<br>6.5<br>6.0               | 5.0<br>5.5<br>6.0<br>5.5<br>5.0        | 5.5<br>6.0<br>6.5<br>6.0<br>5.5   | 4.5<br>4.0<br>3.5<br>3.0<br>3.5        | 3.5<br>3.0<br>2.0<br>1.0               | 4.0<br>3.5<br>2.5<br>2.0<br>2.5        |
| 21<br>22<br>23<br>24<br>25       | 15.0<br>13.5<br>14.0<br>15.0<br>14.0        | 10.5<br>12.0<br>11.5<br>13.0<br>11.5 | 12.5<br>12.5<br>13.0<br>14.0<br>13.0    | 8.5<br>9.0<br>8.5<br>10.0<br>13.0    | 6.5<br>6.5<br>5.5<br>5.5<br>10.0   | 7.5<br>7.5<br>7.0<br>7.5<br>11.5    | 5.5<br>5.0<br>6.0<br>6.0<br>4.5        | 4.0<br>4.0<br>4.0<br>4.0<br>3.5        | 5.0<br>4.5<br>5.0<br>5.0<br>4.0   | 3.5<br>4.5<br>6.0<br>6.0<br>4.5        | 2.0<br>3.5<br>3.5<br>4.0<br>3.0        | 3.0<br>4.0<br>5.0<br>5.5<br>4.0        |
| 26<br>27<br>28<br>29<br>30<br>31 | 11.5<br>10.0<br>9.5<br>11.0<br>10.5<br>10.0 | 9.5<br>9.0<br>8.5<br>8.0<br>8.5      | 10.5<br>9.5<br>9.0<br>9.5<br>9.5<br>9.0 | 11.5<br>10.5<br>10.5<br>9.0<br>10.5  | 10.0<br>9.5<br>9.0<br>7.5<br>9.0   | 11.0<br>10.0<br>9.5<br>8.5<br>9.5   | 4.0<br>3.0<br>3.5<br>3.5<br>2.0<br>2.5 | 2.5<br>2.0<br>2.0<br>2.0<br>0.5<br>1.0 | 3.5<br>2.5<br>3.0<br>2.5<br>1.5   | 5.5<br>6.0<br>7.0<br>6.0<br>5.0<br>3.5 | 3.5<br>3.5<br>4.5<br>5.0<br>3.5<br>0.0 | 4.5<br>4.5<br>5.5<br>5.5<br>4.0<br>2.0 |
| MONTH                            | 17.0                                        | 8.0                                  | 12.4                                    | 13.0                                 | 5.5                                | 9.2                                 | 11.5                                   | 0.5                                    | 5.9                               | 7.0                                    | 0.0                                    | 3.6                                    |

# 04232050 ALLEN CREEK NEAR ROCHESTER, NY--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DAY                                                                                                                                 | MAX                             | MIN<br>FEBRUARY                 | MEAN                                                                                                                                 | MAX                                     | MIN<br>MARCH                           | MEAN                                                                                                                                                         | MAX                                  | MIN<br>APRIL                         | MEAN                                                                                                                                         | MAX                                  | MIN<br>MAY                         | MEAN                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 1<br>2<br>3<br>4<br>5                                                                                                               | 2.5<br>2.5<br>3.0<br>2.0<br>2.0 | 1.0<br>1.0<br>1.5<br>0.5        | 1.5<br>1.5<br>2.0<br>1.5<br>1.0                                                                                                      | 4.0<br>5.5<br>6.0<br>3.5<br>3.5         | 1.5<br>2.0<br>3.5<br>1.0<br>0.0        | 3.0<br>4.0<br>5.5<br>2.5<br>2.0                                                                                                                              | 8.0<br>6.5<br>6.5<br>6.0<br>5.5      | 6.5<br>5.5<br>5.0<br>4.0<br>4.0      | 7.0<br>6.0<br>6.0<br>5.0                                                                                                                     | 12.5<br>11.0<br>11.0<br>13.5<br>14.5 | 7.5<br>9.5<br>8.5<br>8.0<br>9.0    | 10.0<br>10.0<br>9.5<br>10.5                                                                                                          |
| 6<br>7<br>8<br>9<br>10                                                                                                              | 3.0<br>4.0<br>4.5<br>4.0<br>5.0 | 1.0<br>1.0<br>2.5<br>2.5<br>2.5 | 2.0<br>2.5<br>3.5<br>3.5<br>4.0                                                                                                      | 5.0<br>4.0<br>7.0<br>9.5<br>7.5         | 1.5<br>2.5<br>3.0<br>6.0<br>2.0        | 3.0<br>3.0<br>5.0<br>8.0<br>4.5                                                                                                                              | 7.5<br>7.0<br>8.5<br>11.0            | 3.5<br>3.5<br>6.0<br>8.0<br>8.0      | 5.0<br>5.5<br>7.0<br>9.5<br>9.5                                                                                                              | 15.0<br>15.5<br>13.5<br>14.0<br>15.5 | 11.5<br>13.0<br>11.5<br>11.5       | 13.5<br>14.0<br>12.5<br>13.0<br>13.5                                                                                                 |
| 11<br>12<br>13<br>14<br>15                                                                                                          | 4.5<br>3.0<br>2.5<br>3.0<br>4.5 | 1.0<br>1.0<br>1.0<br>0.0<br>2.0 | 2.5<br>2.0<br>1.5<br>1.5<br>3.0                                                                                                      | 4.5<br>5.5<br>6.5<br>7.5<br>8.0         | 1.0<br>3.5<br>3.5<br>4.5<br>4.5        | 3.0<br>4.5<br>5.0<br>6.0<br>6.5                                                                                                                              | 13.0<br>14.0<br>12.5<br>13.0<br>15.5 | 7.5<br>9.5<br>11.5<br>11.0<br>12.0   | 10.0<br>11.5<br>12.0<br>12.0<br>13.5                                                                                                         | 14.0<br>12.5<br>11.0<br>10.5<br>13.0 | 10.5<br>11.0<br>10.0<br>9.5<br>9.0 | 12.5<br>11.5<br>10.5<br>10.0<br>11.0                                                                                                 |
| 16<br>17<br>18<br>19<br>20                                                                                                          | 4.5<br>4.0<br>3.5<br>4.0<br>5.0 | 3.5<br>2.0<br>0.5<br>1.0<br>4.0 | 4.0<br>3.0<br>2.0<br>2.5<br>4.5                                                                                                      | 7.5<br>6.0<br>5.5<br>6.0<br>5.5         | 4.5<br>3.0<br>5.0<br>4.5<br>4.5        | 6.0<br>4.5<br>5.5<br>5.0<br>5.0                                                                                                                              | 18.5<br>20.0<br>19.5<br>19.0<br>15.5 | 13.0<br>14.5<br>15.5<br>15.5<br>12.0 | 15.5<br>17.0<br>17.5<br>17.0                                                                                                                 | 13.5<br>13.0<br>11.5<br>10.5<br>11.0 | 10.5<br>11.0<br>10.0<br>9.5<br>9.0 | 12.0<br>12.0<br>10.5<br>10.0<br>9.5                                                                                                  |
| 21<br>22<br>23<br>24<br>25                                                                                                          | 5.5<br>5.0<br>4.0<br>6.0<br>7.0 | 4.5<br>3.0<br>2.5<br>2.5<br>4.0 | 5.0<br>4.0<br>3.0<br>4.0<br>5.5                                                                                                      | 5.5<br>4.0<br>4.0<br>5.5<br>4.5         | 2.5<br>1.0<br>1.5<br>2.5<br>2.5        | 4.5<br>2.5<br>2.5<br>4.0<br>3.5                                                                                                                              | 12.0<br>10.0<br>12.0<br>13.5<br>11.0 | 9.5<br>8.0<br>7.0<br>7.5<br>9.0      | 10.5<br>8.5<br>9.5<br>10.5<br>10.0                                                                                                           | 12.0<br>14.5<br>16.0<br>14.5<br>15.5 | 8.5<br>9.0<br>10.0<br>12.0<br>10.0 | 10.0<br>11.5<br>13.0<br>13.0<br>13.0                                                                                                 |
| 26<br>27<br>28<br>29<br>30<br>31                                                                                                    | 6.5<br>5.0<br>4.5<br>           | 5.0<br>2.0<br>1.5<br>           | 6.0<br>4.0<br>3.0<br>                                                                                                                | 4.0<br>4.0<br>6.5<br>7.5<br>10.0<br>9.0 | 2.5<br>2.5<br>2.5<br>4.0<br>6.5<br>5.5 | 3.0<br>3.0<br>4.5<br>6.0<br>8.0<br>7.5                                                                                                                       | 11.0<br>12.0<br>10.0<br>9.5<br>10.0  | 8.0<br>7.0<br>8.5<br>8.0<br>7.5      | 9.0<br>9.5<br>9.5<br>8.5<br>8.5                                                                                                              | 16.0<br>17.0<br>17.5                 | 13.0<br>11.5<br>13.0<br>           | 14.0<br>14.0<br>15.0<br>17.0<br>18.5<br>18.5                                                                                         |
| MONTH                                                                                                                               | 7.0                             | 0.0                             | 3.0                                                                                                                                  | 10.0                                    | 0.0                                    | 4.5                                                                                                                                                          | 20.0                                 | 3.5                                  | 10.0                                                                                                                                         |                                      |                                    | 12.4                                                                                                                                 |
|                                                                                                                                     |                                 |                                 |                                                                                                                                      |                                         |                                        |                                                                                                                                                              |                                      |                                      |                                                                                                                                              |                                      |                                    |                                                                                                                                      |
| DAY                                                                                                                                 | MAX                             | MIN<br>JUNE                     | MEAN                                                                                                                                 | MAX                                     | MIN<br>JULY                            | MEAN                                                                                                                                                         | MAX                                  | MIN<br>AUGUST                        | MEAN                                                                                                                                         | MAX                                  | MIN<br>SEPTEMBE                    | MEAN<br>CR                                                                                                                           |
| DAY  1 2 3 4 5                                                                                                                      | MAX                             |                                 | MEAN  18.0 17.0 15.0 14.0 17.0                                                                                                       | MAX                                     |                                        | MEAN 22.0 23.0 22.5 22.5 19.5                                                                                                                                |                                      |                                      | MEAN 23.0 23.5 22.0 21.5 22.0                                                                                                                | MAX                                  |                                    |                                                                                                                                      |
| 1<br>2<br>3<br>4                                                                                                                    | <br><br>                        | JUNE                            | 18.0<br>17.0<br>15.0<br>14.0                                                                                                         |                                         | JULY                                   | 22.0<br>23.0<br>22.5<br>22.5                                                                                                                                 | <br><br>                             | AUGUST                               | 23.0<br>23.5<br>22.0<br>21.5                                                                                                                 |                                      | SEPTEMBE                           | 19.5<br>19.5<br>20.0<br>20.0                                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8                                                                                                |                                 | JUNE                            | 18.0<br>17.0<br>15.0<br>14.0<br>17.0<br>16.0<br>15.5<br>16.0<br>17.0                                                                 | <br><br><br><br><br>                    | JULY                                   | 22.0<br>23.0<br>22.5<br>22.5<br>19.5<br>19.5<br>20.5<br>20.0                                                                                                 | <br><br><br><br>                     | AUGUST                               | 23.0<br>23.5<br>22.0<br>21.5<br>22.0<br>19.5<br>19.0<br>18.5<br>19.0                                                                         | <br><br><br><br>                     | SEPTEMBE                           | 19.5<br>19.5<br>20.0<br>20.0<br>19.0<br>17.5<br>18.5<br>19.5<br>20.0                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                             |                                 | JUNE                            | 18.0<br>17.0<br>15.0<br>14.0<br>17.0<br>16.0<br>17.0<br>17.0<br>17.0<br>18.5<br>17.5<br>17.5                                         |                                         | JULY                                   | 22.0<br>23.0<br>22.5<br>22.5<br>19.5<br>19.5<br>19.5<br>20.0<br>19.0<br>18.5<br>18.5<br>19.0<br>20.0                                                         | <br><br><br><br><br>                 | AUGUST                               | 23.0<br>23.5<br>22.0<br>21.5<br>22.0<br>19.5<br>19.0<br>19.5<br>19.0<br>19.5<br>20.5<br>21.5<br>22.0<br>22.5                                 |                                      | SEPTEMBE                           | 19.5<br>19.5<br>20.0<br>20.0<br>19.0<br>17.5<br>18.5<br>20.0<br>20.5<br>19.0<br>17.0<br>17.0                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                     |                                 | JUNE                            | 18.0<br>17.0<br>15.0<br>14.0<br>17.0<br>16.0<br>17.0<br>17.0<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5                         |                                         | JULY                                   | 22.0<br>23.0<br>22.5<br>22.5<br>19.5<br>19.5<br>19.5<br>20.0<br>19.0<br>18.5<br>18.5<br>19.0<br>20.0<br>21.0                                                 |                                      | AUGUST                               | 23.0<br>23.5<br>22.0<br>21.5<br>22.0<br>19.5<br>19.0<br>19.5<br>20.5<br>21.5<br>22.0<br>22.5<br>23.0<br>22.5<br>22.0<br>22.5<br>22.0         |                                      | SEPTEMBE                           | 19.5<br>19.5<br>20.0<br>20.0<br>19.0<br>17.5<br>18.5<br>20.0<br>20.5<br>19.0<br>17.0<br>17.0<br>17.5<br>18.0<br>19.0                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 |                                 | JUNE                            | 18.0<br>17.0<br>15.0<br>14.0<br>17.0<br>16.0<br>17.0<br>17.0<br>18.5<br>17.5<br>17.5<br>17.5<br>17.5<br>17.5<br>15.5<br>15.5<br>17.5 |                                         | JULY                                   | 22.0<br>23.0<br>22.5<br>22.5<br>19.5<br>19.5<br>19.5<br>20.0<br>19.0<br>18.5<br>18.5<br>19.0<br>20.0<br>21.0<br>20.5<br>21.5<br>20.5<br>20.5<br>21.5<br>20.5 |                                      | AUGUST                               | 23.0<br>23.5<br>22.0<br>21.5<br>22.0<br>19.5<br>19.0<br>19.5<br>20.5<br>21.5<br>22.0<br>22.5<br>23.0<br>22.5<br>23.0<br>22.5<br>20.5<br>20.5 |                                      | SEPTEMBE                           | 19.5<br>19.5<br>20.0<br>20.0<br>19.0<br>17.5<br>18.5<br>19.0<br>20.5<br>19.0<br>17.5<br>18.0<br>19.0<br>17.5<br>18.0<br>19.0<br>20.5 |

# 04232050 ALLEN CREEK NEAR ROCHESTER, NY--Continued

| Date                                                                           | Time                                                 | Ending<br>time                                       | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|--------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT<br>06-06<br>06-09<br>21-22<br>22-25                                        | 0010<br>1210<br>1155<br>0735                         | 1110<br>0710<br>0655<br>0635                         | 35<br>11<br>46<br>14                                               | 30<br>9.3<br>43<br>5.3                  | 140<br>149<br>87<br>150                                        | 83<br>209<br>56<br>72                                    | 43<br><br>59<br>                                                             | 10<br><br>13<br>                                                 | .02<br><.01<br>.01<br><.01                                               | .64<br>.44<br><.10<br>.52                                                     | .82<br>.71<br>.54                                               | .020<br>.015<br>.030                                                     | .130<br>.065<br>.170                                  |
| NOV<br>21-25<br>25-26<br>26-28<br>28-29                                        | 0855<br>0755<br>0830<br>0830                         | 0655<br>0755<br>0730<br>0730                         | 3.8<br>35<br>9.4<br>18                                             | 2.1<br>32<br>6.5<br>9.8                 | 219<br>110<br>182<br>186                                       | 89<br>45<br>68<br>69                                     | <br><br>                                                                     | <br><br>                                                         | <.01<br><.01<br><.01<br>.01                                              | .41<br>.92<br>.48<br>.63                                                      | .48<br>.37<br>.49<br>.57                                        | .010<br>.028<br>.020<br>.023                                             | .025<br>.150<br>.060<br>.075                          |
| NOV 29-<br>DEC 03<br>03-06<br>14-15<br>15-17<br>17-20                          | 0835<br>0815<br>1435<br>1035<br>0845                 | 0735<br>0715<br>0935<br>0835<br>0745                 | 31<br>9.4<br>117<br>29<br>47                                       | 6.1<br>9.0<br>24<br>35<br>16            | 153<br>228<br>175<br>143<br>146                                | 58<br>89<br>67<br>50<br>57                               | <br><br><br>45<br>                                                           | <br><br><br>9<br>                                                | <.01<br><.01<br>.03<br><.01<br>.02                                       | .62<br>.40<br>.58<br>.66                                                      | .64<br>.74<br>.68<br>.67                                        | .019<br>.022<br>.016<br>.016                                             | .085<br>.050<br>.130<br>.140<br>.080                  |
| JAN<br>09-10<br>10-14<br>29-30<br>30-31                                        | 1140<br>0825<br>2335<br>1135                         | 0740<br>0725<br>1035<br>0735                         | 16<br>14<br>18<br>21                                               | 98<br>4.0<br>5.3<br>7.8                 | 870<br>548<br>468<br>819                                       | 111<br>82<br>88<br>73                                    | 105<br><br><br>                                                              | 36<br><br>                                                       | .02<br><.01<br>.03<br>.04                                                | 3.6<br>.46<br>.50<br>.47                                                      | .99<br>.92<br>.94<br>.92                                        | .005<br>.006<br>.005                                                     | .360<br>.030<br>.030<br>.030                          |
| JAN 31-<br>FEB 01<br>01-02<br>04-07<br>10-11<br>11-15                          | 0915<br>2115<br>0850<br>1235<br>0900                 | 2015<br>1615<br>0749<br>0735<br>0759                 | 182<br>181<br>24<br>45<br>27                                       | 68<br>53<br>16<br>15<br>9.5             | 705<br>271<br>538<br>347<br>460                                | 49<br>47<br>81<br>70<br>65                               | <br><br><br>                                                                 | <br><br><br>                                                     | .06<br>.05<br>.01<br>.02                                                 | .61<br>.97<br>.64<br>.80                                                      | .76<br>1.30<br>1.9<br>1.2                                       | .008<br>.023<br>.017<br>.011<br>.008                                     | .200<br>.165<br>.088<br>.081                          |
| MAR<br>11-14<br>20-20<br>20-21<br>21-25<br>26-27<br>27-28                      | 0845<br>0235<br>2035<br>0825<br>1135<br>0235         | 0744<br>1934<br>0735<br>0724<br>0135<br>0734         | 19<br>35<br>37<br>23<br>149<br>78                                  | 5.7<br>8.6<br>31<br>8.0<br>93<br>46     | 477<br>352<br>272<br>547<br>458<br>281                         | 77<br>73<br>55<br>71<br>59<br>45                         | <br>34<br><br>203<br><1                                                      | <br><10<br><br>38<br><1                                          | <.01<br><.01<br><.01<br><.01<br>.04                                      | .55<br>.60<br>.74<br>.52<br>1.8                                               | .93<br>1.1<br>.70<br>1.0<br>.84<br>.82                          | <.003<br>.003<br>.005<br>.003<br>.008                                    | .031<br>.051<br>.093<br>.038<br>.348                  |
| MAR 28-<br>APR 01<br>02-03<br>03-04<br>13-13<br>13-15<br>15-18<br>18-22<br>MAY | 0840<br>1135<br>0835<br>0340<br>1940<br>0730<br>0725 | 0739<br>0735<br>0735<br>1840<br>0640<br>0629<br>0624 | 26<br>120<br>87<br>68<br>126<br>40<br>15                           | 10<br>51<br>51<br>30<br>64<br>20<br>7.7 | 315<br>218<br>202<br>252<br>172<br>187<br>256                  | 104<br>51<br>55<br>67<br>44<br>46<br>64                  | <br>84<br>63<br>66<br>94<br>                                                 | 16<br>11<br>13<br>17<br>                                         | <.01<br>.04<br>.01<br>.03<br>.02<br>.01<br><.01                          | .59<br>1.1<br>.90<br>1.1<br>1.4<br>.90                                        | 1.2<br>.95<br>.91<br>1.1<br>.64<br>.94                          | .004<br>.006<br>.006<br>.006<br>.010<br>.011                             | .054<br>.178<br>.165<br>.120<br>.196<br>.118          |
| 08-09<br>09-13<br>13-14<br>14-16<br>16-20<br>20-24<br>JUN                      | 2235<br>0735<br>0750<br>0150<br>0740<br>0750         | 0635<br>0634<br>0049<br>0650<br>0639<br>0649         | 45<br>32<br>347<br>253<br>48<br>20                                 | 15<br>14<br>91<br>41<br>9.7<br>3.4      | 198<br>170<br>94<br>115<br>154<br>203                          | 63<br>50<br>28<br>31<br>50<br>72                         | <br><br><br>                                                                 | <br><br><br>                                                     | .05<br>.02<br><.01<br>.02<br>.01                                         | 1.0<br>.68<br>1.5<br>.95<br>.79                                               | .89<br>.66<br>.48<br>.79<br>1.1                                 | .012<br>.007<br>.017<br>.019<br>.015                                     | .107<br>.053<br>.305<br>.164<br>.059                  |
| 05-06<br>06-10<br>13-15<br>15-17<br>17-20<br>27-28                             | 2235<br>0745<br>2345<br>0345<br>0745<br>1520         | 0635<br>0644<br>0245<br>0645<br>0644<br>0620         | 30<br>17<br>125<br>65<br>18<br>65                                  | 13<br>6.2<br>72<br>38<br>10<br>57       | 136<br>182<br>96<br>104<br>181<br>110                          | 52<br>67<br>39<br>37<br>62<br>46                         | <br><br><br><br>93                                                           | <br><br><br><br>21                                               | .04<br>.01<br>.07<br>.03<br>.02                                          | .79<br>.65<br>1.3<br>1.0<br>.70<br>1.4                                        | 1.0<br>1.1<br>.88<br>.68<br>1.1                                 | .016<br>.022<br>.029<br>.024<br>.029                                     | .086<br>.060<br>.285<br>.151<br>.079                  |
| JUN 28-<br>JUL 01<br>01-05<br>23-23<br>23-25                                   | 0720<br>0735<br>0420<br>1620                         | 0619<br>0634<br>1520<br>0620                         | 28<br>9.5<br>71<br>13                                              | 25<br>12<br>69<br>16                    | 133<br>186<br>95<br>72                                         | 48<br>72<br>70<br>72                                     | <br>117<br>                                                                  | <br><br>23<br>                                                   | .03<br>.02<br>.02<br>.01                                                 | .94<br>.75<br>1.7<br>.93                                                      | 2.0<br>1.0<br>.76<br>.77                                        | .033<br>.039<br>.026<br>.031                                             | .113<br>.097<br>.258<br>.092                          |
| AUG<br>01-05<br>15-15<br>15-19                                                 | 0730<br>0740<br>1940                                 | 0629<br>1840<br>0639                                 | 5.1<br>6.2<br>9.2                                                  | 6.2<br>18<br>13                         | 161<br>135<br>109                                              | 92<br>107<br>85                                          | <br>                                                                         | <br><br>                                                         | .01<br><.01<br><.01                                                      | .63<br>.96<br>.63                                                             | .77<br>.70<br>.73                                               | .036<br>.029<br>.030                                                     | .076<br>.104<br>.079                                  |
| SEP<br>14-16<br>16-19<br>27-28<br>28-30                                        | 1540<br>0735<br>1540<br>1940                         | 0640<br>0634<br>1840<br>0640                         | 15<br>8.5<br>158<br>16                                             | 24<br>7.9<br>23<br>30                   | 97<br>105<br>91<br>109                                         | 93<br>82<br>90<br>59                                     | <br><br><br>64                                                               | <br><br><br>11                                                   | <.01<br><.01<br>.01<br><.01                                              | .75<br>.49<br>1.0<br>.88                                                      | .69<br>.69<br>.55                                               | .023<br>.025<br>.023<br>.018                                             | .158<br>.079<br>.238<br>.181                          |

Date

Time

#### 0423205010 IRONDEQUOIT CREEK ABOVE BLOSSOM ROAD, ROCHESTER, NY

LOCATION.--Lat  $43^{\circ}08^{\circ}42^{\circ}$ , long  $77^{\circ}30^{\circ}44^{\circ}$ , Monroe County, Hydrologic Unit 04140101, on right bank 4,000 ft upstream from bridge on Blossom Road, 1.8 mi east of Rochester, 1.7 mi downstream from Allen Creek, and 4.4 mi upstream from mouth. DRAINAGE AREA.--142 mi<sup>2</sup>., flow from 7.78 mi<sup>2</sup>. noncontributing.

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Occasional discharge measurements water years 1977-80. December 1980 to current year.

GAGE.--Water-stage recorder. Datum of gage is 247.87 ft above NGVD of 1929 (levels by Corps of Engineers). Prior to Oct. 1,
1991, at site 0.8 mi downstream at datum 1.56 ft lower.

1991, at site 0.8 mi downstream at datum 1.56 ft lower.

REMARKS.—Records good except those for estimated daily discharges, which are fair. Discharge includes undetermined diversion from Erie (Barge) Canal. Unpublished water-quality records for prior years are available in files of Monroe County Department of Health. Telephone gage-height telemeter at station. Several measurements of water temperature were made during the year.

COOPERATION.—Discharge measurements were provided by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 3,300 ft<sup>3</sup>/s, Jan. 8, 1998, gage height, 9.95 ft; minimum discharge, 25 ft<sup>3</sup>/s, Sept. 8, 9, 10, 14, 2002, gage height, 2.14 ft.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 900 ft<sup>3</sup>/s and maximum (\*):

Date

Time

Discharge (ft<sup>3</sup>/s)

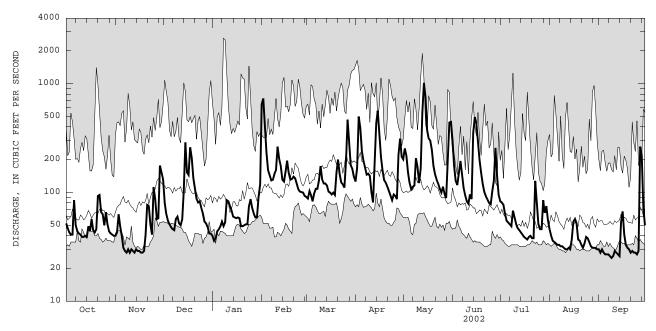
Gage height

(ft.)

Gage height

(ft.)

Discharge (ft<sup>3</sup>/s)


| Feb. 1                           | . 19                                                                                             | 15                           | 979                                   | 8                                 | .18                  |                                        | May 14                        | 1545                                   |                                | *1,090                               | *8.                              | 41                           |  |
|----------------------------------|--------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------|-----------------------------------|----------------------|----------------------------------------|-------------------------------|----------------------------------------|--------------------------------|--------------------------------------|----------------------------------|------------------------------|--|
| Minimum disc                     | harge, 2                                                                                         | 5 ft <sup>3</sup> /s,        | Sept. 8, 9                            | , 10, 14,                         | gage hei             | ght, 2.1                               | 4 ft.                         |                                        |                                |                                      |                                  |                              |  |
|                                  | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                              |                                       |                                   |                      |                                        |                               |                                        |                                |                                      |                                  |                              |  |
| DAY                              | OCT                                                                                              | NOV                          | DEC                                   | JAN                               | FEB                  | MAR                                    | APR                           | MAY                                    | JUN                            | JUL                                  | AUG                              | SEP                          |  |
| 1                                | 52                                                                                               | 40                           | 131                                   | e40                               | 652                  | 91                                     | 126                           | 202                                    | 300                            | 83                                   | e46                              | 30                           |  |
| 2                                | 47                                                                                               | 43                           | 80                                    | e36                               | 733                  | 88                                     | 168                           | 254                                    | 176                            | 81                                   | e40                              | 28                           |  |
| 3                                | 43                                                                                               | 63                           | 63                                    | e38                               | 381                  | 103                                    | 500                           | 217                                    | 128                            | 77                                   | 36                               | 30                           |  |
| 4                                | 41                                                                                               | 49                           | 55                                    | e44                               | 232                  | 94                                     | 391                           | 153                                    | 117                            | 64                                   | 35                               | 28                           |  |
| 5                                | 41                                                                                               | 40                           | 51                                    | e46                               | e160                 | 83                                     | 238                           | 122                                    | 149                            | 55                                   | 34                               | 27                           |  |
| 6                                | 85                                                                                               | 31                           | 48                                    | 49                                | e144                 | 98                                     | 196                           | 107                                    | 195                            | 53                                   | 33                               | 27                           |  |
| 7                                | 50                                                                                               | 29                           | 46                                    | 54                                | 129                  | 108                                    | 169                           | 113                                    | 143                            | 51                                   | 33                               | 27                           |  |
| 8                                | 44                                                                                               | 28                           | 45                                    | 49                                | 131                  | 108                                    | 146                           | 116                                    | 109                            | 49                                   | 32                               | 26                           |  |
| 9                                | 42                                                                                               | 30                           | 57                                    | 53                                | 148                  | 129                                    | 149                           | 207                                    | 93                             | 68                                   | 32                               | 25                           |  |
| 10                               | 41                                                                                               | 28                           | 60                                    | 85                                | 161                  | 175                                    | 142                           | 171                                    | 83                             | 59                                   | 31                               | 26                           |  |
| 11                               | 39                                                                                               | 30                           | 52                                    | 83                                | 264                  | 132                                    | 101                           | 122                                    | 79                             | 51                                   | 30                               | 29                           |  |
| 12                               | 39                                                                                               | 29                           | 50                                    | 75                                | 203                  | 121                                    | 81                            | 168                                    | 96                             | 47                                   | 30                               | 28                           |  |
| 13                               | 40                                                                                               | 28                           | 57                                    | 68                                | 174                  | 121                                    | 211                           | 537                                    | 87                             | 45                                   | 31                               | 27                           |  |
| 14                               | 39                                                                                               | 30                           | 103                                   | 60                                | 131                  | 116                                    | 434                           | 1020                                   | 353                            | 43                                   | 30                               | 26                           |  |
| 15                               | 49                                                                                               | 29                           | 289                                   | 59                                | 126                  | 102                                    | 565                           | 752                                    | 494                            | 41                                   | 37                               | 53                           |  |
| 16                               | 44                                                                                               | 29                           | 153                                   | 58                                | 156                  | 100                                    | 328                           | 375                                    | 431                            | 39                                   | 54                               | 67                           |  |
| 17                               | 57                                                                                               | 28                           | 145                                   | 59                                | 196                  | 96                                     | 213                           | 314                                    | 296                            | 38                                   | 57                               | 41                           |  |
| 18                               | 45                                                                                               | 28                           | 260                                   | 58                                | 151                  | 100                                    | 159                           | 300                                    | 200                            | 37                                   | 52                               | 33                           |  |
| 19                               | 43                                                                                               | 29                           | 207                                   | 49                                | 131                  | 95                                     | 130                           | 247                                    | 152                            | 39                                   | 37                               | 31                           |  |
| 20                               | 46                                                                                               | 41                           | 135                                   | 49                                | 133                  | 152                                    | 123                           | 176                                    | 120                            | 40                                   | 36                               | 30                           |  |
| 21                               | 93                                                                                               | 77                           | 109                                   | 50                                | 140                  | 201                                    | 113                           | 147                                    | 101                            | 38                                   | 33                               | 28                           |  |
| 22                               | 95                                                                                               | 75                           | 88                                    | 51                                | 135                  | 149                                    | 103                           | 131                                    | 92                             | 38                                   | 31                               | 29                           |  |
| 23                               | 66                                                                                               | 51                           | 81                                    | 51                                | 120                  | 124                                    | 94                            | 120                                    | 86                             | 128                                  | 34                               | 28                           |  |
| 24                               | 63                                                                                               | 41                           | 83                                    | 75                                | 107                  | 119                                    | 85                            | 108                                    | 80                             | 81                                   | 39                               | 28                           |  |
| 25                               | 50                                                                                               | 112                          | 72                                    | 87                                | 102                  | 111                                    | 96                            | 100                                    | 78                             | 51                                   | 38                               | 27                           |  |
| 26<br>27<br>28<br>29<br>30<br>31 | 66<br>51<br>44<br>42<br>41<br>40                                                                 | 87<br>57<br>58<br>177<br>153 | 64<br>e54<br>e52<br>e48<br>e42<br>e42 | 72<br>64<br>59<br>59<br>91<br>119 | 101<br>100<br>93<br> | 193<br>467<br>281<br>178<br>165<br>139 | 93<br>87<br>222<br>313<br>213 | 113<br>97<br>89<br>e230<br>e440<br>446 | 102<br>128<br>257<br>143<br>95 | 46<br>46<br>e85<br>e65<br>e75<br>e56 | 35<br>32<br>31<br>31<br>31<br>30 | 29<br>264<br>218<br>72<br>50 |  |
| TOTAL                            | 1578                                                                                             | 1570                         | 2822                                  | 1890                              | 5434                 | 4339                                   | 5989                          | 7694                                   | 4963                           | 1769                                 | 1111                             | 1412                         |  |
| MEAN                             | 50.9                                                                                             | 52.3                         | 91.0                                  | 61.0                              | 194                  | 140                                    | 200                           | 248                                    | 165                            | 57.1                                 | 35.8                             | 47.1                         |  |
| MAX                              | 95                                                                                               | 177                          | 289                                   | 119                               | 733                  | 467                                    | 565                           | 1020                                   | 494                            | 128                                  | 57                               | 264                          |  |
| MIN                              | 39                                                                                               | 28                           | 42                                    | 36                                | 93                   | 83                                     | 81                            | 89                                     | 78                             | 37                                   | 30                               | 25                           |  |
| CFSM                             | 0.38                                                                                             | 0.39                         | 0.68                                  | 0.45                              | 1.45                 | 1.04                                   | 1.49                          | 1.85                                   | 1.23                           | 0.43                                 | 0.27                             | 0.35                         |  |
| IN.                              | 0.44                                                                                             | 0.44                         | 0.78                                  | 0.52                              | 1.51                 | 1.20                                   | 1.66                          | 2.13                                   | 1.38                           | 0.49                                 | 0.31                             | 0.39                         |  |
| STATIST                          | CICS OF M                                                                                        | ONTHLY MI                    | EAN DATA FO                           | OR WATER                          | ZEARS 1981           | - 2002,                                | BY WATER                      | YEAR (WY)                              |                                |                                      |                                  |                              |  |
| MEAN                             | 86.6                                                                                             | 114                          | 135                                   | 141                               | 173                  | 223                                    | 222                           | 149                                    | 98.2                           | 73.1                                 | 76.6                             | 71.3                         |  |
| MAX                              | 191                                                                                              | 224                          | 253                                   | 446                               | 347                  | 348                                    | 468                           | 292                                    | 186                            | 194                                  | 253                              | 132                          |  |
| (WY)                             | 1997                                                                                             | 1986                         | 1997                                  | 1998                              | 1981                 | 1993                                   | 1993                          | 1984                                   | 1989                           | 1998                                 | 1992                             | 1992                         |  |
| MIN                              | 39.5                                                                                             | 52.3                         | 49.5                                  | 60.8                              | 67.1                 | 122                                    | 82.8                          | 62.1                                   | 46.9                           | 42.2                                 | 35.8                             | 39.8                         |  |
| (WY)                             | 1983                                                                                             | 2002                         | 1990                                  | 1989                              | 1989                 | 1988                                   | 1995                          | 1995                                   | 1988                           | 1983                                 | 2002                             | 1995                         |  |

e Estimated

161

# 0423205010 IRONDEQUOIT CREEK ABOVE BLOSSOM ROAD, ROCHESTER, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1981 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 40809                  | 40571               |                         |
| ANNUAL MEAN              | 112                    | 111                 | 131                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 182 1993                |
| LOWEST ANNUAL MEAN       |                        |                     | 80.1 1995               |
| HIGHEST DAILY MEAN       | 926 Mar 23             | 1020 May 14         | 2620 Jan 8 1998         |
| LOWEST DAILY MEAN        | 28 Aug 11              | 25 Sep 9            | 25 Sep 9 2002           |
| ANNUAL SEVEN-DAY MINIMUM | 29 Nov 12              | 27 Sep 4            | 27 Sep 4 2002           |
| ANNUAL RUNOFF (CFSM)     | 0.83                   | 0.83                | 0.98                    |
| ANNUAL RUNOFF (INCHES)   | 11.31                  | 11.24               | 13.25                   |
| 10 PERCENT EXCEEDS       | 261                    | 217                 | 257                     |
| 50 PERCENT EXCEEDS       | 67                     | 77                  | 86                      |
| 90 PERCENT EXCEEDS       | 34                     | 30                  | 44                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 0423205010 IRONDEQUOIT CREEK ABOVE BLOSSOM ROAD, ROCHESTER, NY--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. --Water years 1980-81, 1983 to current year.

CHEMICAL DATA: Water years 1980-81, 1983 to current year (e).

NUTRIENT DATA: Water years 1980-81, 1983 to current year (e).

PERIOD OF DAILY RECORD. -
WATER TEMPERATURES: November 1994 to September 2001.

INSTRUMENTATION. --Automatic water sampler since October 1983.

INSTRUMENTATION.--Automatic water sampler since October 1983.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Records for October 1983 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 1984-88", U.S. Geological Survey Open-File Report 93-370 and in "Water Resources of Monroe County New York, Water Years 1989-93", U.S. Geological Survey Open-File Report 97-587. Prior to October 1983, unpublished records are available in the files of the U.S. Geological Survey. The non-daily water-quality records for this site were collected and reported in local standard time.

EXTREMES FOR PERIOD OF DAILY RECORD.-
WATER TEMPERATURES: Maximum, 27.0°C, July 5, 6, 1999; minimum 0.0°C, many days during winter period.

| Date                                                                                                        | Time                                                                                 | Ending<br>time                                                               | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                                | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940)     | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                  | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)    |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------|
| OCT<br>01-05<br>05-05<br>06-09<br>09-11<br>11-15<br>15-18<br>18-21<br>21-22<br>22-25<br>25-29               | 0755<br>0850<br>0050<br>0810<br>0815<br>0815<br>0815<br>0815<br>1215<br>0800<br>0750 | 0655<br>2350<br>0750<br>0710<br>0715<br>0715<br>1115<br>0700<br>0750         | 45<br>41<br>50<br>41<br>40<br>50<br>45<br>135<br>67<br>52          | 8.4<br>10<br>14<br>4.0<br>9.1<br>7.9<br>7.1<br>44<br>11                | <br><br><br><br><br>                                         | <br><br><br><br>                                  | 150<br>129<br>74<br>144<br>140<br>130<br>132<br>92<br>115<br>135   | 220<br>182<br>97<br>220<br>234<br>216<br>238<br>129<br>163<br>182         | <br><br><br><br><br>92                                                       | <br><br><br><br><br>15                                           | <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01                                  | .36<br>.32<br>.34<br>.35<br>.35<br>.24<br>.28<br><.10<br><.10                 | .84<br>.89<br>.85<br>.90<br>.79<br>.55<br>.68<br>.55               |
| OCT 29-<br>NOV 01<br>01-05<br>05-09<br>09-13<br>13-15<br>15<br>21-25<br>25-26<br>26-28<br>28-29             | 0855<br>0850<br>0855<br>0850<br>0900<br>0950<br>0915<br>0815<br>0855<br>1455         | 0755<br>0750<br>0755<br>0750<br>0800<br><br>0715<br>0815<br>1355<br>0755     | 41<br>49<br>30<br>29<br>29<br>29<br>62<br>134<br>63<br>77          | 6.6<br>7.2<br>6.3<br>6.3<br>5.1<br>2.3<br>9.1<br>39                    | <br><br><br><br><br>                                         | <br><br><br><br>                                  | 145<br>143<br>146<br>158<br>750<br>166<br>160<br>113<br>142<br>146 | 235<br>227<br>235<br>255<br>230<br>250<br>201<br>151<br>188<br>180        | <br><br><br><br><br><br>                                                     | <br><br><br><br><br>                                             | <.01 <.01 .02 .02 <.01 .01 <.01 <.01 <.01 <.01 <.01                      | <.10<br>.45<br><.10<br><.10<br>.39<br>.26<br>.46<br>.82<br>.32                | .71<br>.61<br>.59<br>.64<br>.68<br>.66<br>.67<br>.58<br>.65        |
| NOV 29-<br>DEC 03<br>03-06<br>06-10<br>10-13<br>13-14<br>14-15<br>15-16<br>17-20<br>20-24<br>24-27<br>27-31 | 0855<br>0840<br>0905<br>0905<br>0810<br>1210<br>0810<br>0915<br>0845<br>0805         | 0755<br>0740<br>0805<br>0805<br>1110<br>0710<br>0710<br>0815<br>0745<br>0705 | 132<br>54<br>50<br>52<br>61<br>240<br>226<br>208<br>98<br>70<br>53 | 7.0<br>2.7<br>5.3<br>4.9<br>5.4<br>90<br>50<br>29<br>8.7<br>6.3<br>4.1 | 1300<br>949<br>949<br>                                       | <br><br>241<br>189<br>179<br><br>                 | 117<br>166<br>170<br>161<br>156<br>116<br>116<br>129<br>150<br>152 | 131<br>213<br>240<br>213<br>214<br>158<br>119<br>127<br>169<br>184<br>218 | <br><br>8<br>185<br>67<br><br>                                               | <br><br>2<br>29<br>11<br><br>                                    | <.01 <.01 <.01 <.01 <.01 <.01 <.02 <.01 <.01 <.02 <.01 <.01 <.01         | .52<br>.32<br>.36<br>.33<br>.66<br>.78<br>.99<br>.19<br>.26                   | .67<br>.88<br>.98<br>.92<br>.91<br>.80<br>.74<br>1.1<br>1.3<br>1.3 |
| DEC 31-<br>JAN 03<br>03-07<br>07-10<br>10-14<br>14-18<br>18-22<br>22-24<br>24-28<br>28-31<br>JAN 31-        | 0845<br>0855<br>0910<br>0850<br>0850<br>0840<br>0900<br>0905                         | 0745<br>0755<br>0810<br>0750<br>0750<br>0740<br>0800<br>0805<br>0800         | 46<br>48<br>56<br>76<br>59<br>51<br>51<br>75                       | 4.2<br>4.6<br>4.0<br>3.9<br>3.8<br>3.5<br>3.0<br>5.3<br>4.6            | <br><br><br><br>                                             | <br><br><br><br>                                  | 186<br>173<br>291<br>268<br>216<br>272<br>249<br>228<br>242        | 233<br>217<br>206<br>194<br>211<br>223<br>212<br>188<br>180               | <br><br><br><br>                                                             | <br><br><br><br>                                                 | <.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01             | .40<br>.31<br>.55<br>.38<br>.49<br>.55<br>.32<br>.40                          | 1.4<br>1.3<br>1.2<br>1.1<br>1.1<br>1.1<br>1.1<br>1.1<br>.94        |
| FEB 01<br>01-03<br>04-07<br>07-10<br>10-11<br>11-15<br>15-19<br>19-21<br>21-25<br>25-28                     | 0950<br>2150<br>0915<br>0900<br>1300<br>0940<br>0850<br>0850<br>0855                 | 2050<br>1250<br>0814<br>1200<br>0800<br>0839<br>0749<br>0750<br>0754         | 417<br>686<br>168<br>138<br>217<br>179<br>158<br>132<br>122        | 98<br>78<br>14<br>6.3<br>14<br>15<br>7.3<br>4.9<br>5.3<br>5.0          | <br><br><br><br><br>                                         | <br><br><br><br><br>                              | 442<br>152<br>250<br>249<br>235<br>245<br>230<br>202<br>185<br>190 | 113<br>86<br>141<br>156<br>137<br>124<br>137<br>141<br>152                | <br><br><br><br><br><br><br>                                                 | <br><br><br><br><br><br><br>                                     | <.01<br>.01<br>.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.         | 1.5<br>.93<br>.56<br>.49<br>.59<br>.50<br>.51<br>.43<br>.51                   | .98<br>1.5<br>1.7<br>1.5<br>1.4<br>1.6<br>1.4<br>1.3               |

0423205010 IRONDEQUOIT CREEK ABOVE BLOSSOM ROAD, ROCHESTER, NY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                                                        | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)     | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)<br>(01092) |
|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------|
| OCT<br>01-05<br>05-05<br>06-09<br>09-11<br>11-15<br>15-18<br>18-21<br>21-22<br>22-25<br>25-29               | .020<br>.020<br>.020<br>.020<br>.017<br>.015<br>.015<br>.016<br>.016         | .070<br>.060<br>.075<br>.055<br>.050<br>.065<br>.040<br>.150         | <br><br><br><br><br><br>                                         |
| OCT 29-<br>NOV 01<br>01-05<br>05-09<br>09-13<br>13-15<br>15<br>21-25<br>26-28<br>28-29<br>NOV 29-           | .020<br>.014<br>.014<br>.013<br>.011<br>.009<br>.009<br>.012<br>.014         | .060<br>.045<br>.040<br>.035<br>.040<br>.070<br>.045<br>.150<br>.075 | <br><br><br><br><br><br>                                         |
| NOV 29-<br>DEC 03<br>03-06<br>06-10<br>10-13<br>13-14<br>14-15<br>15-16<br>17-20<br>20-24<br>24-27<br>27-31 | .016<br>.018<br>.015<br>.012<br>.011<br>.011<br>.014<br>.013<br>.014<br>.011 | .090<br>.050<br>.042<br>.035<br>.035<br>.380<br>.160<br>.100<br>.050 | <br><br><br>5<br>60<br>25<br><br>                                |
| DEC 31-<br>JAN 03<br>03-07<br>07-10<br>10-14<br>14-18<br>18-22<br>22-24<br>24-28<br>28-31<br>JAN 31-        | .008<br>.007<br>.007<br>.008<br>.007<br>.007<br>.008<br>.006                 | .025<br>.025<br>.025<br>.030<br>.020<br>.025<br>.025                 | <br><br><br><br><br>                                             |
| FEB 01<br>01-03<br>04-07<br>07-10<br>10-11<br>11-15<br>15-19<br>19-21<br>21-25<br>25-28                     | .007<br>.010<br>.010<br>.008<br>.008<br>.008<br>.007<br>.007<br>.007         | .270<br>.191<br>.066<br>.040<br>.070<br>.058<br>.047<br>.026<br>.044 | <br><br><br><br><br><br>                                         |

# 0423205010 IRONDEQUOIT CREEK ABOVE BLOSSOM ROAD, ROCHESTER, NY--Continued

| Date                                                                                                                          | Time                                                                                                 | Ending<br>time                                                                                       | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)                     | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                                        | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940)                        | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                        | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625)     | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)                  |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| FEB 28- MAR 04 04-07 07-11 11-14 14-18 18-20 20-20 20-21 21-25 25-26 26-27 27-28 MAR 28-                                      | 0905<br>0850<br>0950<br>0910<br>0915<br>0855<br>0555<br>0850<br>0900<br>1200<br>0300                 | 0804<br>0749<br>0804<br>0809<br>0814<br>0455<br>1955<br>0755<br>0749<br>1059<br>0200<br>0759         | 94<br>93<br>134<br>122<br>101<br>97<br>156<br>215<br>140<br>106<br>322<br>424          | 5.0<br>5.3<br>9.4<br>7.1<br>6.3<br>3.7<br>9.0<br>.4<br>15<br>6.7<br>66<br>110  | <br><br><br><br><br><br>                                     | <br><br><br><br><br><br>                          | 266<br>281<br>303<br>242<br>193<br>195<br>198<br>180<br>241<br>212<br>276<br>190      | 166<br>167<br>139<br>138<br>149<br>145<br>133<br>101<br>124<br>146<br>104<br>81 | <br><br><br><br><br><br>143                                                  | <br><br><br><br><br><br>25<br>28                                 | <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01                                  | .40<br>.42<br>.44<br>.59<br>.47<br>.55<br>.65<br>.74<br>.56                       | 1.1<br>1.2<br>.99<br>.96<br>1.1<br>1.0<br>1.1<br>.90<br>1.1<br>1.1<br>1.0        |
| APR 01<br>01-02<br>02-03<br>03-04<br>04-08<br>08-11<br>11-13<br>13-15<br>15-18<br>18-22<br>22-25<br>25-27<br>28-29            | 0905<br>0915<br>1215<br>0915<br>0855<br>0830<br>0805<br>0405<br>0755<br>0745<br>0740<br>0805<br>0005 | 0804<br>1114<br>0815<br>0815<br>0654<br>0729<br>0304<br>0705<br>0654<br>0644<br>0639<br>2305<br>0704 | 171<br>123<br>327<br>493<br>221<br>143<br>84<br>320<br>126<br>92<br>93<br>252          | 16<br>7.1<br>43<br>120<br>26<br>8.4<br>6.6<br>100<br>58<br>17<br>6.5<br>6.8    | <br><br><br><br><br><br><br><br>                             | <br><br><br><br><br><br><br>                      | 165<br>166<br>158<br>135<br>157<br>170<br>162<br>140<br>125<br>136<br>155<br>154      | 104<br>126<br>95<br>71<br>95<br>121<br>126<br>94<br>79<br>109<br>129<br>130     | <br>80<br><br><br>165<br>85<br><br>97                                        | <br>14<br><br><br>23<br>12<br><br><br>17                         | .07 <.01 <.01 <.01 <.01 .02 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.03      | .57<br>.61<br>.88<br>1.4<br>.69<br>.46<br>.76<br>1.4<br>.99<br>.71<br>.55<br>.49  | 1.1<br>1.2<br>1.0<br>.90<br>1.2<br>1.1<br>1.1<br>.87<br>.90<br>.81<br>.97        |
| APR 29-<br>MAY 02<br>02-06<br>06-08<br>08-09<br>09-12<br>12-13<br>13-14<br>14-15<br>16-20<br>20-24<br>24-28<br>28-29<br>29-31 | 0805<br>0810<br>0800<br>2300<br>0755<br>0355<br>0810<br>1710<br>0810<br>0810<br>0805<br>0750         | 0704<br>0709<br>2159<br>0700<br>0255<br>0655<br>1610<br>2209<br>0709<br>0709<br>0704<br>0949         | 227<br>179<br>112<br>183<br>160<br>211<br>836<br>829<br>288<br>137<br>103<br>82<br>365 | 32<br>24<br>9.5<br>31<br>41<br>39<br>190<br>150<br>57<br>14<br>8.7<br>26<br>28 | <br><br><br>496<br>526<br><br>                               | <br><br><br><br>164<br>180<br>222<br>             | 129<br>129<br>159<br>145<br>132<br>124<br>83<br>81<br>106<br>131<br>143<br>136<br>103 | 91<br>101<br>146<br>143<br>106<br>98<br>52<br>54<br>82<br>120<br>144<br>134     | 40<br><br><br>60<br><br><br>400<br>296<br>82<br><br>                         | 8<br><br><br>11<br><br><br>51<br>37<br>16<br><br>                | <.01<br>.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><.01<br><         | .81<br>.73<br>.58<br>1.00<br>1.2<br>1.0<br>2.6<br>1.8<br>1.2<br>.90<br>.64<br>.69 | .70<br>.74<br>.83<br>.95<br>.74<br>.74<br>.73<br>.83<br>.92<br>1.1<br>1.1<br>.88 |
| MAY 31-<br>JUN 03<br>03-05<br>05-06<br>06-10<br>10-13<br>13-13<br>14-15<br>15-17<br>17-20<br>20-21<br>24-27<br>27-28          | 0925<br>0800<br>0500<br>0810<br>0800<br>0810<br>0010<br>1210<br>0805<br>0725<br>0825<br>0750         | 0725<br>0400<br>0659<br>0709<br>0659<br>2310<br>1110<br>0709<br>0704<br>1825<br>0724<br>0649         | 277<br>119<br>178<br>125<br>87<br>86<br>401<br>437<br>192<br>109<br>89<br>171          | 65<br>19<br>36<br>33<br>18<br>16<br>100<br>120<br>42<br>30<br>41<br>71         | <br><br><br>721<br>667<br><br>                               | <br><br><br>169<br>169<br><br>                    | 94<br>130<br>124<br>114<br>135<br>131<br>90<br>79<br>105<br>117<br>137                | 75 118 126 104 142 142 88 62 88 115 151 98                                      | 102<br><br>54<br>48<br><br>195<br>203<br><br>55                              | 16<br><br>10<br>9<br><br>20<br>25<br><br>12                      | .01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <                                 | 1.2<br>.75<br>.79<br>.80<br>.71<br>.64<br>.90<br>1.7<br>.93<br>1.0                | .80<br>1.0<br>1.1<br>.90<br>1.1<br>1.1<br>.99<br>1.0<br>1.0<br>1.1               |
| JUN 28-<br>JUL 01<br>01-05<br>05-08<br>08-11<br>11-15<br>15-18<br>18-22<br>22-23<br>23-23<br>23-25<br>25-29                   | 0750<br>0755<br>0745<br>0750<br>0750<br>0750<br>0755<br>0755                                         | 0649<br>0654<br>0644<br>0649<br>0649<br>0704<br>0654<br>0054<br>1555<br>0655                         | 147<br>74<br>52<br>59<br>46<br>39<br>39<br>39<br>126<br>88<br>50                       | 81<br>29<br>18<br>9.7<br>14<br>11<br>10<br>8.0<br>46<br>47<br>16               | <br><br><br><br><br>                                         | <br><br><br><br><br>                              | 105<br>143<br>134<br>127<br>139<br>151<br>123<br>143<br>126<br>101                    | 95<br>161<br>167<br>168<br>193<br>226<br>181<br>211<br>207<br>151<br>178        | 112<br><br><br><br><br>88<br>76<br>                                          | 20<br><br><br><br><br>15<br>12                                   | <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01                                  | 1.4<br>.77<br>.62<br>.73<br>.53<br>.30<br>.24<br>.42<br>.92<br>.93                | .96 1.1 1.0 1.1 1.1 .98 .77 .86 1.1 .83 .89                                      |

0423205010 IRONDEQUOIT CREEK ABOVE BLOSSOM ROAD, ROCHESTER, NY--Continued

| Date                                                                                                                            | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)             | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)<br>(01092) |
|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|
| FEB 28- MAR 04 04-07 07-11 11-14 14-18 18-20 20-20 20-21 21-25 25-26 26-27 27-28 MAR 28-                                        | .006<br>.004<br>.004<br>.003<br>.004<br>.003<br>.006<br>.005<br>.004                 | .026<br>.037<br>.039<br>.039<br>.023<br>.034<br>.071<br>.100<br>.070<br>.022<br>.208 |                                                                  |
| APR 01<br>01-02<br>02-03<br>03-04<br>04-08<br>08-11<br>11-13<br>13-15<br>15-18<br>18-22<br>22-25<br>25-27<br>28-29              | .004<br>.004<br>.004<br>.006<br>.006<br>.007<br>.007<br>.015<br>.011<br>.009<br>.005 | .056<br>.038<br>.132<br>.335<br>.126<br>.046<br>.038<br>.297<br>.181<br>.074<br>.070 | <br><br><br><br><br><br>                                         |
| APR 29-<br>MAY 02<br>02-06<br>06-08<br>08-09<br>09-12<br>12-13<br>13-14<br>14-15<br>16-20<br>20-24<br>24-28<br>28-29<br>29-31   | .006<br>.006<br>.006<br>.007<br>.008<br>.007<br>.013<br>.013<br>.016<br>.012<br>.010 | .088<br>.081<br>.047<br>.099<br>.153<br>.133<br>.631<br>.459<br>.183<br>.041<br>.047 | <br><br><br>108<br>74<br>30<br><br>17<br>51                      |
| MAY 31-<br>JUN 03<br>03-05<br>05-06<br>06-10<br>10-13<br>13-13<br>14-15<br>15-17<br>17-20<br>20-21<br>24-27<br>27-28<br>JUN 28- | .018<br>.015<br>.016<br>.020<br>.021<br>.022<br>.026<br>.028<br>.035<br>.033         | .175<br>.074<br>.125<br>.115<br>.071<br>.083<br>.362<br>.355<br>.161<br>.130<br>.152 | 33<br><br><br><br>83<br>56<br><br>                               |
| JUL 01<br>01-05<br>05-08<br>08-11<br>11-15<br>15-18<br>18-22<br>22-23<br>23-23<br>23-25<br>25-29                                | .037<br>.037<br>.031<br>.026<br>.024<br>.021<br>.014<br>.018<br>.018                 | .147<br>.140<br>.093<br>.082<br>.066<br>.049<br>.079<br>.045<br>.147<br>.156         | <br><br><br><br><br>                                             |

# 0423205010 IRONDEQUOIT CREEK ABOVE BLOSSOM ROAD, ROCHESTER, NY--Continued

| Date              | Time | Ending<br>time | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) |
|-------------------|------|----------------|--------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| JUL 29-           |      |                |                                                                    |                                         |                                                              |                                                   |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |
| AUG 01            | 0755 | 0654           | 50                                                                 | 19                                      |                                                              |                                                   | 119                                                            | 165                                                      |                                                                              |                                                                  | <.01                                                                     | .62                                                                           | .85                                                             |
| 01-05             | 0755 | 0654           | 36                                                                 | 7.2                                     |                                                              |                                                   | 145                                                            | 213                                                      |                                                                              |                                                                  | <.01                                                                     | .41                                                                           | .94                                                             |
| 05-08             | 0750 | 0649           | 33                                                                 | 8.6                                     |                                                              |                                                   | 149                                                            | 224                                                      |                                                                              |                                                                  | .01                                                                      | .48                                                                           | .84                                                             |
| 08-12             | 0750 | 0649           | 31                                                                 | 4.4                                     |                                                              |                                                   | 149                                                            | 251                                                      |                                                                              |                                                                  | <.01                                                                     | .35                                                                           | .92                                                             |
| 12-15             | 0750 | 0649           | 30                                                                 | 6.0                                     |                                                              |                                                   | 147                                                            | 238                                                      |                                                                              |                                                                  | <.01                                                                     | .36                                                                           | .78                                                             |
| 15-19             | 0800 | 0659           | 51                                                                 | 14                                      |                                                              |                                                   | 120                                                            | 197                                                      |                                                                              |                                                                  | .01                                                                      | .44                                                                           | .82                                                             |
| 19-22             | 0800 | 0659           | 35                                                                 | 7.7                                     |                                                              |                                                   | 139                                                            | 208                                                      |                                                                              |                                                                  | <.02                                                                     | .75                                                                           | .88                                                             |
| 22-26             | 0720 | 0619           | 36                                                                 | 11                                      |                                                              |                                                   | 142                                                            | 239                                                      |                                                                              |                                                                  | <.01                                                                     | .39                                                                           | .94                                                             |
| 26-30             | 0810 | 0709           | 32                                                                 | 10                                      |                                                              |                                                   | 148                                                            | 240                                                      |                                                                              |                                                                  | <.01                                                                     | .36                                                                           | .94                                                             |
| AUG 30-           |      |                |                                                                    |                                         |                                                              |                                                   |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |
| SEP 03            | 0745 | 0644           | 29                                                                 | 8.5                                     |                                                              |                                                   | 148                                                            | 250                                                      |                                                                              |                                                                  | <.01                                                                     | .34                                                                           | .93                                                             |
| 03-05             | 0800 | 0700           | 28                                                                 | 8.4                                     |                                                              |                                                   | 158                                                            | 246                                                      |                                                                              |                                                                  | .01                                                                      | .38                                                                           | .91                                                             |
| 05-09             | 0800 | 0659           | 26                                                                 | 5.8                                     |                                                              |                                                   | 145                                                            | 250                                                      |                                                                              |                                                                  | <.01                                                                     | .38                                                                           | .92                                                             |
| 09-12             | 0730 | 0629           | 27                                                                 | 7.6                                     |                                                              |                                                   | 145                                                            | 234                                                      |                                                                              |                                                                  | <.01                                                                     | .45                                                                           | .89                                                             |
| 12-14             | 0755 | 2255           | 27                                                                 | 6.3                                     |                                                              |                                                   | 140                                                            | 237                                                      |                                                                              |                                                                  | <.01                                                                     | .34                                                                           | .88                                                             |
| 14-16             | 2355 | 0654           | 56                                                                 | 15                                      |                                                              |                                                   | 117                                                            | 202                                                      |                                                                              |                                                                  | <.10                                                                     | .53                                                                           | .95                                                             |
| 16-19             | 0800 | 0659           | 43                                                                 | 11                                      |                                                              |                                                   | 124                                                            | 205                                                      |                                                                              |                                                                  | <.01                                                                     | .42                                                                           | .81                                                             |
| 19-23             | 0750 | 0649           | 30                                                                 | 7.5                                     |                                                              |                                                   | 150                                                            | 241                                                      |                                                                              |                                                                  | <.10                                                                     | .39                                                                           | .82                                                             |
| 23-26             | 0745 | 0644           | 28                                                                 | 5.8                                     |                                                              |                                                   | 141                                                            | 252                                                      |                                                                              |                                                                  | <.01                                                                     | .32                                                                           | .91                                                             |
| 26-27             | 0800 | 0300           | 30                                                                 | 6.0                                     |                                                              |                                                   | 143                                                            | 245                                                      |                                                                              |                                                                  | <.01                                                                     | .38                                                                           | .84                                                             |
| 27-27             | 0400 | 1900           | 202                                                                | 48                                      |                                                              |                                                   | 108                                                            | 183                                                      | 236                                                                          | 32                                                               | .01                                                                      | 1.1                                                                           | .75                                                             |
| 27-30             | 2000 | 0700           | 167                                                                | 55                                      |                                                              |                                                   | 100                                                            | 111                                                      | 116                                                                          | 19                                                               | .01                                                                      | .88                                                                           | .58                                                             |
| SEP 30-<br>OCT 03 | 0800 | 0659           | 38                                                                 | 7.0                                     |                                                              |                                                   | 138                                                            | 198                                                      |                                                                              |                                                                  | .01                                                                      | .41                                                                           | .75                                                             |
|                   |      |                |                                                                    |                                         |                                                              |                                                   |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |

| Date                                                                                                                                      | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)                                                     | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                                                                        | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)<br>(01092) |
|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| JUL 29- AUG 01 01-05 05-08 08-12 12-15 15-19 19-22 22-26 26-30 AUG 30- SEP 03 03-05 05-09 09-12 12-14 14-16 16-19 19-23 23-26 26-27 27-27 | .027<br>.024<br>.019<br>.016<br>.017<br>.020<br>.022<br>.021<br>.019<br>.016<br>.018<br>.015<br>.015<br>.018<br>.019<br>.018 | .075<br>.058<br>.052<br>.046<br>.052<br>.060<br>.058<br>.062<br>.047<br>.063<br>.055<br>.075<br>.060<br>.089<br>.060<br>.089<br>.055<br>.051 |                                                                  |
| 27-30<br>SEP 30-<br>OCT 03                                                                                                                | .021                                                                                                                         | .259                                                                                                                                         |                                                                  |

167

#### 0423205025 IRONDEQUOIT CREEK AT EMPIRE BOULEVARD, ROCHESTER, NY

LOCATION.--Lat  $43^{\circ}10^{\circ}34^{\circ}$ , long  $77^{\circ}31^{\circ}37^{\circ}$ , Monroe County, Hydrologic Unit 04140101, on right bank 25 ft upstream from bridge on Empire Boulevard (Route 404), 200 ft upstream from mouth at south end of Irondequoit Bay, and 1.5 mi east of Rochester. DRAINAGE AREA.--151 mi<sup>2</sup>, flow from 7.78 mi<sup>2</sup> noncontributing.

#### WATER-DISCHARGE RECORDS

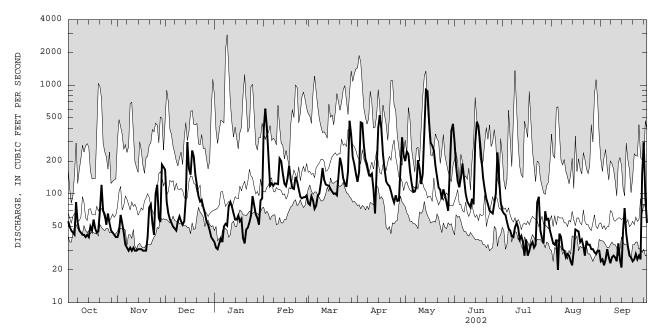
PERIOD OF RECORD.--June 1990 to current year.

GAGE.--Doppler velocity meter, water-stage recorder, and crest-stage gage. Datum of gage is 242.66 ft above NGVD of 1929 (levels by Corps of Engineers).

(levels by Corps of Engineers).

REMARKS.--Records poor. Records affected by backwater from Irondequoit Bay. Discharge includes undetermined diversion from Erie (Barge) Canal. Undetermined discharge (usually less than 5 percent of the total flow) bypasses gage through culvert 900 ft west of main channel. Unpublished gage-height record for March 1989 to May 1990 is available in files of U.S. Geological Survey. Unpublished water-quality records are available in files of Monroe County Department of Health. Telephone gage-height telemeter at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,400 ft<sup>3</sup>/s, Jan. 9, 1999, maximum gage height, 6.64 ft, Apr. 23, 1993 (backwater from Irondequoit Bay); minimum daily discharge, 20 ft<sup>3</sup>/s, Aug. 5, 2002; minimum instantaneous discharge not determined. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 904 ft<sup>3</sup>/s, May 14; minimum daily discharge, 20 ft<sup>3</sup>/s, Aug. 5; maximum and minimum instantaneous discharges not determined.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|         |           | DISCHA    | KGE, COBI  | , FEET FE |            | Y MEAN VA |          | K 2001 10 | SEFIENDE | K 2002 |      |      |
|---------|-----------|-----------|------------|-----------|------------|-----------|----------|-----------|----------|--------|------|------|
| DAY     | OCT       | NOV       | DEC        | JAN       | FEB        | MAR       | APR      | MAY       | JUN      | JUL    | AUG  | SEP  |
| 1       | e56       | e40       | 166        | e36       | 385        | 82        | 129      | 200       | e300     | e70    | 40   | 24   |
| 2       | e50       | e45       | 84         | e32       | 607        | 79        | 160      | 245       | e180     | e66    | 35   | 25   |
| 3       | e46       | e64       | e66        | 31        | 407        | 95        | 454      | 232       | e130     | e64    | 34   | 22   |
|         |           |           |            |           |            |           |          |           |          |        |      |      |
| 4       | e44       | e54       | e58        | 35        | 211        | 87        | 446      | 162       | e115     | e55    | 38   | 25   |
| 5       | e42       | e44       | e54        | 39        | 119        | 73        | 276      | 126       | e140     | 48     | 20   | 31   |
| 6       | 84        | e34       | e50        | 36        | 125        | 78        | 208      | 104       | e190     | 46     | 43   | 26   |
| 7       | e54       | e32       | e48        | 50        | 119        | 96        | 186      | 105       | e140     | 41     | 40   | 23   |
| 8       | e46       | e30       | e46        | 53        | 125        | 101       | 154      | 117       | e100     | 40     | 31   | 26   |
| 9       | e44       | e32       | e56        | 51        | 124        | 127       | 146      | 204       | e85      | 49     | 30   | 27   |
| 10      | e42       | e30       | e62        | 77        | 123        | 173       | 153      | 171       | e80      | 54     | 26   | 26   |
| 10      | e42       | e30       | e62        | //        | 123        | 1/3       | 153      | 1/1       | e80      | 54     | 20   | 20   |
| 11      | e42       | e32       | e56        | 84        | 211        | 134       | 111      | 123       | e75      | 49     | 28   | 24   |
| 12      | e40       | e30       | e52        | 76        | 200        | 122       | 66       | 152       | e90      | 38     | 27   | 35   |
| 13      | e42       | e30       | e56        | 66        | 154        | e120      | 151      | 380       | e80      | 41     | 24   | 25   |
| 14      | e40       | e31       | e90        | 58        | 124        | 119       | 405      | 904       | e290     | 36     | 22   | 21   |
| 15      | e50       | e31       | e300       | 58        | 118        | 111       | 528      | 877       | e460     | 27     | 30   | 45   |
| 13      | 230       | CJI       | 2300       | 30        | 110        | 111       | 320      | 077       | C 100    | 2,     | 30   | 13   |
| 16      | e46       | e31       | e170       | 63        | 140        | 105       | 400      | 455       | e420     | 38     | 47   | 74   |
| 17      | e58       | e30       | e150       | 56        | 181        | 100       | 232      | 294       | e300     | 27     | 46   | 43   |
| 18      | e48       | e30       | e250       | 59        | 136        | 101       | 169      | 277       | e200     | 30     | 45   | 33   |
| 19      | e44       | e30       | e220       | 39        | 113        | 97        | 130      | 252       | e140     | 34     | 36   | 27   |
| 20      | e46       | e40       | e150       | 35        | 111        | 144       | 122      | 181       | e110     | 36     | 38   | 26   |
| 20      | 640       | 640       | e130       | 35        | 111        | 144       | 122      | 101       | EIIO     | 30     | 30   | 20   |
| 21      | e70       | e75       | e120       | 47        | 143        | 215       | 118      | 143       | e90      | 32     | 33   | 24   |
| 22      | 121       | 80        | e95        | 49        | 130        | 183       | 105      | 114       | e80      | 34     | 27   | 25   |
| 23      | e70       | e54       | e85        | 55        | 110        | 138       | 92       | 109       | e70      | 84     | 37   | 28   |
| 24      | e65       | e42       | e88        | 63        | 94         | 125       | 83       | 89        | e68      | 94     | 34   | 25   |
| 25      | e52       | 100       | e75        | 95        | 91         | 116       | 97       | 110       | e66      | 46     | 34   | 27   |
| 25      | e32       | 100       | e/5        | 95        | 91         | 110       | 91       | 110       | 600      | 40     | 34   | 21   |
| 26      | e66       | 121       | e66        | 79        | 93         | 161       | 86       | 97        | e80      | 39     | 31   | 25   |
| 27      | e54       | e60       | e56        | 65        | 93         | 470       | 87       | 83        | e100     | 35     | 31   | 152  |
| 28      | e46       | e55       | e52        | 60        | 97         | 346       | 175      | 70        | e240     | 69     | 29   | 298  |
| 29      | e44       | 186       | e46        | 52        |            | 217       | 331      | 152       | e140     | 58     | 28   | 92   |
| 30      | e42       | 176       | e40        | 87        |            | 187       | 226      | 382       | e85      | 59     | 30   | 54   |
| 31      | e40       |           | e38        | 91        |            | 153       |          | e440      |          | 46     | 30   |      |
| 31      | 640       |           | 636        | 91        |            | 153       |          | 6440      |          | 40     | 30   |      |
| TOTAL   | 1634      | 1669      | 2945       | 1777      | 4684       | 4455      | 6026     | 7350      | 4644     | 1485   | 1024 | 1358 |
| MEAN    | 52.7      | 55.6      | 95.0       | 57.3      | 167        | 144       | 201      | 237       | 155      | 47.9   | 33.0 | 45.3 |
| MAX     | 121       | 186       | 300        | 95        | 607        | 470       | 528      | 904       | 460      | 94     | 47   | 298  |
| MIN     | 40        | 30        | 38         | 31        | 91         | 73        | 66       | 70        | 66       | 27     | 20   | 21   |
| LITIA   | 40        | 30        | 30         | 31        | 21         | 75        | 00       | 70        | 00       | 27     | 20   | 21   |
| STATIST | rics of M | ONTHLY ME | AN DATA FO | OR WATER  | YEARS 1990 | 0 - 2002, | BY WATER | YEAR (WY  | )        |        |      |      |
| MEAN    | 89.2      | 111       | 137        | 166       | 170        | 268       | 237      | 141       | 100      | 79.5   | 79.2 | 72.9 |
| MAX     | 187       | 208       | 247        | 442       | 226        | 351       | 481      | 254       | 172      | 201    | 262  | 132  |
|         |           |           |            |           |            |           |          |           |          |        |      |      |
| (WY)    | 1997      | 1993      | 1997       | 1998      | 2001       | 1993      | 1993     | 2000      | 2000     | 1998   | 1992 | 1992 |
| MIN     | 52.2      | 55.6      | 66.2       | 57.3      | 85.6       | 144       | 82.0     | 63.8      | 49.9     | 47.1   | 33.0 | 38.1 |
| (WY)    | 1995      | 2002      | 1999       | 2002      | 1995       | 2002      | 1995     | 1995      | 1995     | 2001   | 2002 | 1995 |

e Estimated

# 0423205025 IRONDEQUOIT CREEK AT EMPIRE BOULEVARD, ROCHESTER, NY--Continued

| SUMMARY STATISTICS                                                                                                                                                                     | FOR 2001 CALENDAR | YEAR FOR 2002 V                                                      | WATER YEAR               | WATER YEARS 1990                                                      | - 2002                                     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------|--------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 28 Au             | 39051<br>107<br>ar 24 904<br>ag 13 20<br>by 12 25<br>216<br>70<br>30 | May 14<br>Aug 5<br>Sep 1 | 138<br>183<br>80.3<br>2900 Jan<br>20 Aug<br>25 Sep<br>276<br>90<br>45 | 1993<br>1995<br>9 1998<br>5 2002<br>1 2002 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

169

#### 0423205025 IRONDEQUOIT CREEK AT EMPIRE BOULEVARD, ROCHESTER, NY--Continued

WATER-OUALITY RECORDS

PERIOD OF RECORD. -- Water years 1989 to current year.

CHEMICAL DATA: Water years 1989 to current year (e).
NUTRIENT DATA: Water years 1989 to current year (e).
PERIOD OF DAILY RECORD.--

MTN

MEAN

WATER TEMPERATURES: November 1994 to current year.

INSTRUMENTATION. --Automatic water sampler since September 1989. Water-temperature recorder since November 1994 provides 15-minute-interval readings; since July 2000, provides 5-minute-interval readings.

COOPERATION. --Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Prior to 1994 water year, data published in "Water Resources of Monroe County New York, Water Years 1989-93", U.S. Geological Survey Open-File Report 97-587. The non-daily water-quality records for this site were collected and reported in local standard time.

MAY

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURES: Maximum recorded, 29.0°C, July 15, 1995, Aug. 9, 2001; minimum recorded, 0°C, on many days during winter period.

DVA

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURES: Maximum recorded, 27.5°C, Aug. 2; minimum recorded, 0°C, several days during winter period.

MTN

MAY

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN

MAY

MTN

MEAN

MAY

MIN

MEAN

| DAY                              | MAX                                      | MIN                                    | MEAN                                    | MAX                               | MIN                              | MEAN                               | MAX                              | MIN                             | MEAN                            | MAX                                    | MIN                                    | MEAN                                   |
|----------------------------------|------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------|----------------------------------|------------------------------------|----------------------------------|---------------------------------|---------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
|                                  |                                          | OCTOBER                                | !                                       | N                                 | OVEMBER                          |                                    | DI                               | ECEMBER                         |                                 |                                        | JANUARY                                |                                        |
| 1<br>2<br>3<br>4<br>5            | 15.5<br>17.5<br>18.0<br>18.0<br>16.5     | 11.5<br>12.5<br>13.5<br>14.5<br>14.5   | 13.5<br>14.5<br>16.0<br>16.5<br>15.5    | 10.0<br>12.0<br>11.5<br>11.5      | 7.5<br>9.5<br>10.5<br>9.5<br>8.0 | 8.5<br>11.0<br>11.0<br>10.5<br>8.5 | 9.5<br>9.5<br>8.0<br>8.0         | 9.0<br>8.0<br>6.5<br>6.0<br>8.0 | 9.5<br>9.0<br>7.0<br>7.0<br>9.0 | 0.0<br>0.5<br>1.5                      | <br>0.0<br>0.0<br>0.0                  | 0.0<br>0.0<br>0.5                      |
| 6<br>7<br>8<br>9<br>10           | 14.5<br>12.0<br>11.5<br>10.5<br>13.0     | 12.0<br>10.0<br>9.0<br>8.0<br>9.0      | 13.5<br>11.0<br>10.0<br>9.0<br>10.5     | 9.5<br>9.5<br>10.5<br>9.5<br>9.0  | 7.0<br>8.0<br>8.0<br>7.5<br>6.5  | 8.0<br>8.5<br>9.0<br>8.5<br>7.5    | 10.0<br>8.5<br>7.0<br>5.5<br>5.0 | 8.5<br>7.0<br>5.0<br>4.5<br>3.5 | 9.5<br>8.0<br>5.5<br>5.0<br>4.5 | 2.0<br>2.0<br>1.0<br>2.5<br>4.0        | 1.5<br>1.0<br>0.0<br>0.5<br>2.0        | 2.0<br>1.5<br>0.5<br>1.5<br>3.0        |
| 11<br>12<br>13<br>14<br>15       | 13.5<br>14.5<br>18.0<br>16.0<br>15.5     | 11.0<br>13.0<br>13.5<br>15.0<br>13.0   | 12.5<br>14.0<br>15.5<br>15.5            | 8.0<br>7.5<br>7.5<br>8.5<br>10.5  | 6.0<br>5.0<br>4.5<br>6.5<br>8.5  | 7.0<br>6.0<br>6.0<br>7.0<br>9.5    | <br><br>                         |                                 | <br><br>                        | 4.0<br>4.0<br>3.5<br>2.5<br>3.0        | 3.0<br>3.0<br>2.5<br>2.0<br>2.5        | 3.5<br>3.5<br>3.0<br>2.0<br>3.0        |
| 16<br>17<br>18<br>19<br>20       | 14.0<br>12.0<br>11.5<br>10.5<br>13.5     | 12.0<br>9.5<br>8.0<br>8.5<br>10.0      | 13.0<br>10.5<br>10.0<br>9.5<br>11.0     | 12.5<br>10.5<br>9.0<br>9.5<br>9.0 | 10.0<br>8.0<br>6.5<br>6.5<br>6.5 | 10.5<br>9.5<br>7.5<br>8.0<br>7.5   | <br><br>                         | <br><br>                        | <br><br>                        | 3.0<br>2.5<br>2.0<br>0.5<br>1.0        | 2.0<br>1.5<br>0.5<br>0.0               | 2.5<br>2.0<br>1.5<br>0.5               |
| 21<br>22<br>23<br>24<br>25       | 12.5<br>14.0<br>13.5<br>15.0<br>14.0     | 10.0<br>12.0<br>11.0<br>13.0<br>11.5   | 11.5<br>12.5<br>12.0<br>13.5<br>13.0    | 7.5<br>8.5<br>8.5<br>9.0<br>11.5  | 5.5<br>7.0<br>6.5<br>6.0<br>9.0  | 6.5<br>7.5<br>7.5<br>7.5<br>10.5   | <br><br>                         |                                 | <br><br>                        | 1.5<br>3.5<br>4.0<br>4.5<br>4.5        | 0.5<br>1.0<br>2.0<br>4.0<br>3.0        | 1.0<br>2.0<br>3.0<br>4.0<br>3.5        |
| 26<br>27<br>28<br>29<br>30<br>31 | 11.5<br>9.0<br>8.0<br>9.0<br>10.5<br>8.0 | 9.0<br>7.5<br>7.0<br>6.5<br>7.5<br>7.0 | 10.5<br>8.5<br>7.5<br>7.5<br>8.5<br>7.5 | 11.5<br>10.0<br>9.5<br>8.5<br>9.5 | 10.0<br>9.0<br>8.5<br>8.0<br>8.5 | 10.5<br>9.5<br>9.0<br>8.5<br>9.0   | <br><br><br>                     | <br><br>                        | <br><br><br>                    | 4.5<br>5.0<br>5.5<br>5.0<br>4.5<br>3.0 | 2.5<br>2.5<br>3.0<br>4.0<br>3.0<br>0.5 | 3.0<br>3.5<br>4.0<br>4.5<br>3.5<br>1.5 |
| MONTH                            | 18.0                                     | 6.5                                    | 11.9                                    | 12.5                              | 4.5                              | 8.5                                |                                  |                                 |                                 |                                        |                                        |                                        |

# 0423205025 IRONDEQUOIT CREEK AT EMPIRE BOULEVARD, ROCHESTER, NY--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                                                                                                                                                   |                                                                                                                                                                                              | IEMPEI                                                                                                                                  | MIUNE,                                                                                                                                                                                                                       | WAIER (DEC                                                                                                                                                                                                                                                 | J. C), W.                                                                                                                                                                      | AIEK IEAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | OCTOBER                                                                                                                                                                                                                                      | 2001 10                                                                                                                                                                           | SEFIENDER                                                                                                                                                                                    | 2002                                                                                                                                                                                                 |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY                                                                                                                                                               | MAX                                                                                                                                                                                          | MIN                                                                                                                                     | MEAN                                                                                                                                                                                                                         | MAX                                                                                                                                                                                                                                                        | MIN                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                          | MIN                                                                                                                                                                               | MEAN                                                                                                                                                                                         | MAX                                                                                                                                                                                                  | MIN                                                                                                                                                                                                                 | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                   |                                                                                                                                                                                              | FEBRUARY                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                            | MARCH                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              | APRIL                                                                                                                                                                             |                                                                                                                                                                                              |                                                                                                                                                                                                      | MAY                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5                                                                                                                                             | 2.0<br>0.5<br>1.0<br>1.0<br>0.0                                                                                                                                                              | 0.5<br>0.0<br>0.5<br>0.0                                                                                                                | 1.0<br>0.5<br>1.0<br>0.5<br>0.0                                                                                                                                                                                              | 4.0<br>1.5                                                                                                                                                                                                                                                 | 0.5<br>1.5<br>4.0<br>0.5<br>0.0                                                                                                                                                | 1.5<br>3.0<br>5.0<br>2.5<br>0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.0<br>7.0<br>6.0<br>5.5<br>5.0                                                                                                                                                                                                              | 7.0<br>6.0<br>5.5<br>4.5<br>4.0                                                                                                                                                   | 8.0<br>6.5<br>6.0<br>5.0<br>4.5                                                                                                                                                              | 11.0                                                                                                                                                                                                 | 8.0<br>10.5<br>9.5<br>9.0<br>11.0                                                                                                                                                                                   | 10.0<br>10.5<br>10.0<br>11.0<br>12.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6<br>7<br>8<br>9<br>10                                                                                                                                            | 1.5<br>2.5<br>4.0<br>4.0                                                                                                                                                                     | 0.0<br>0.5<br>2.0<br>2.5<br>2.5                                                                                                         | 0.5<br>1.5<br>3.0<br>3.5<br>3.0                                                                                                                                                                                              | 3.0<br>3.0<br>6.0<br>9.5<br>8.0                                                                                                                                                                                                                            | 1.0<br>2.5<br>2.5<br>6.0<br>3.0                                                                                                                                                | 2.0<br>3.0<br>4.0<br>7.5<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.0<br>6.0<br>8.0<br>10.5<br>11.5                                                                                                                                                                                                            | 3.5<br>4.0<br>5.5<br>8.0<br>9.0                                                                                                                                                   | 5.0                                                                                                                                                                                          | 15.5<br>16.5<br>15.5<br>14.5<br>15.5                                                                                                                                                                 | 15.0<br>14.0<br>13.0                                                                                                                                                                                                | 14.5<br>13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11<br>12<br>13<br>14<br>15                                                                                                                                        | 1.5                                                                                                                                                                                          |                                                                                                                                         | 2.5<br>1.0<br>1.0<br>0.5<br>2.0                                                                                                                                                                                              | 4.0<br><br>8.0<br>7.5                                                                                                                                                                                                                                      | 1.5<br><br>5.0<br>6.0                                                                                                                                                          | 3.0<br><br>6.5<br>6.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.5<br>14.5<br>14.0<br>12.5<br>14.5                                                                                                                                                                                                         | 9.0<br>11.0<br>12.0<br>11.5<br>12.5                                                                                                                                               |                                                                                                                                                                                              | 15.0<br>14.0<br>11.5<br>10.0<br>12.5                                                                                                                                                                 | 11.5                                                                                                                                                                                                                | 12.5<br>11.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 16<br>17<br>18<br>19<br>20                                                                                                                                        | 2.5<br>2.5<br>3.5                                                                                                                                                                            | 0.5<br>0.5<br>2.5                                                                                                                       | 3.5<br>3.0<br>1.5<br>1.5<br>3.0                                                                                                                                                                                              | 7.5<br>6.0<br>5.5<br>5.5<br>5.0                                                                                                                                                                                                                            | 5.5<br>4.0<br>4.5<br>4.5                                                                                                                                                       | 7.0<br>5.0<br>5.0<br>5.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18.5<br>20.5<br>21.5<br>21.0                                                                                                                                                                                                                 |                                                                                                                                                                                   | 16.0<br>18.5<br>20.0<br>20.0<br>17.5                                                                                                                                                         | 13.5<br>13.5<br>12.5<br>11.0<br>11.0                                                                                                                                                                 | 11.0<br>12.0<br>11.0<br>9.5<br>9.0                                                                                                                                                                                  | 12.5<br>12.5<br>11.5<br>10.5<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 22<br>23<br>24                                                                                                                                                    | 4.5<br>4.5<br>3.5<br>5.0<br>6.5                                                                                                                                                              | 3.5<br>3.0<br>2.0<br>1.5<br>3.5                                                                                                         | 4.0<br>4.0<br>2.5<br>3.0<br>4.5                                                                                                                                                                                              |                                                                                                                                                                                                                                                            | 3.5<br>1.5<br>1.0<br>2.0<br>3.0                                                                                                                                                | 4.5<br>4.5<br>2.5<br>2.0<br>3.5<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 15.0<br>12.0<br>11.0<br>12.5<br>12.0                                                                                                                                                                                                         | 12.0<br>8.5<br>7.5<br>9.0<br>10.5                                                                                                                                                 | 13.0<br>10.0<br>9.0<br>10.5<br>11.0                                                                                                                                                          | 11.5<br>13.5<br>15.5<br>15.5<br>16.0                                                                                                                                                                 | 10.0<br>12.0<br>14.5                                                                                                                                                                                                | 14.0<br>15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 26<br>27<br>28<br>29<br>30<br>31                                                                                                                                  | 6.0<br>4.5<br>3.0<br>                                                                                                                                                                        | 4.5<br>2.5<br>1.0<br>                                                                                                                   | 5.5<br>3.5<br>2.0<br>                                                                                                                                                                                                        | 3.0<br>3.5<br>5.5<br>7.5<br>10.0<br>9.5                                                                                                                                                                                                                    | 2.5<br>2.5<br>2.0<br>4.5<br>7.0<br>7.5                                                                                                                                         | 3.0<br>3.0<br>4.0<br>5.5<br>8.5<br>8.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.0<br>11.5<br>11.5<br>10.0<br>9.5                                                                                                                                                                                                          | 9.5<br>9.0<br>10.0<br>8.5<br>8.0                                                                                                                                                  | 10.0<br>10.5<br>10.5<br>9.0<br>9.0                                                                                                                                                           | 17.0<br>18.0<br>19.0<br>20.0<br>20.0                                                                                                                                                                 | 15.0<br>14.5<br>16.0<br>17.5<br>18.5<br>19.0                                                                                                                                                                        | 15.5<br>16.0<br>17.5<br>18.5<br>19.0<br>19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MONTH                                                                                                                                                             | 6.5                                                                                                                                                                                          | 0.0                                                                                                                                     | 2.2                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21.5                                                                                                                                                                                                                                         | 3.5                                                                                                                                                                               |                                                                                                                                                                                              | 20.0                                                                                                                                                                                                 | 8.0                                                                                                                                                                                                                 | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                            |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                              |                                                                                                                                                                                   |                                                                                                                                                                                              |                                                                                                                                                                                                      |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DAY                                                                                                                                                               | MAX                                                                                                                                                                                          | MIN                                                                                                                                     | MEAN                                                                                                                                                                                                                         | MAX                                                                                                                                                                                                                                                        | MIN                                                                                                                                                                            | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                          | MIN                                                                                                                                                                               | MEAN                                                                                                                                                                                         | MAX                                                                                                                                                                                                  | MIN                                                                                                                                                                                                                 | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DAY                                                                                                                                                               | MAX                                                                                                                                                                                          | MIN<br>JUNE                                                                                                                             | MEAN                                                                                                                                                                                                                         | MAX                                                                                                                                                                                                                                                        | MIN<br>JULY                                                                                                                                                                    | MEAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              | MIN<br>AUGUST                                                                                                                                                                     | MEAN                                                                                                                                                                                         |                                                                                                                                                                                                      | MIN<br>SEPTEMBE                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DAY  1 2 3 4 5                                                                                                                                                    | MAX<br>20.5<br>20.5<br>18.5<br>17.0<br>19.0                                                                                                                                                  |                                                                                                                                         | MEAN 19.5 19.5 17.5 16.0 17.0                                                                                                                                                                                                | MAX  24.5 25.5 26.5 27.0 25.5                                                                                                                                                                                                                              |                                                                                                                                                                                | 23.0<br>24.5<br>25.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              | AUGUST<br>24.0<br>25.0<br>24.0                                                                                                                                                    | 25.5<br>26.0<br>25.5<br>24.5                                                                                                                                                                 |                                                                                                                                                                                                      | 19.5<br>20.0<br>21.0<br>20.5                                                                                                                                                                                        | 21.5<br>21.5<br>22.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4                                                                                                                                                  | 20.5<br>20.5<br>18.5<br>17.0                                                                                                                                                                 | JUNE<br>18.0<br>18.5<br>17.0<br>15.5                                                                                                    | 19.5<br>19.5<br>17.5<br>16.0                                                                                                                                                                                                 | 24.5<br>25.5<br>26.5<br>27.0                                                                                                                                                                                                                               | JULY 22.5 23.0 24.0 24.5 23.5                                                                                                                                                  | 23.0<br>24.5<br>25.0<br>25.5<br>24.0<br>22.5<br>22.0<br>22.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.0<br>27.5<br>27.0                                                                                                                                                                                                                         | AUGUST  24.0 25.0 24.0 23.5 23.5 22.0 20.5 20.5                                                                                                                                   | 25.5<br>26.0<br>25.5<br>24.5<br>25.0                                                                                                                                                         | 23.0<br>23.5<br>23.5<br>23.5                                                                                                                                                                         | 19.5<br>20.0<br>21.0<br>20.5<br>20.0                                                                                                                                                                                | 21.5<br>21.5<br>22.0<br>22.0<br>21.0<br>20.0<br>20.5<br>21.5<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                   | 20.5<br>20.5<br>18.5<br>17.0<br>19.0<br>18.0<br>18.5<br>19.5<br>20.5<br>21.5                                                                                                                 | JUNE  18.0 18.5 17.0 15.5 15.5  17.0 15.5 20.0 19.5                                                                                     | 19.5<br>19.5<br>17.5<br>16.0<br>17.0<br>17.5<br>17.0<br>18.0<br>19.5<br>20.0<br>21.5<br>21.0                                                                                                                                 | 24.5<br>25.5<br>26.5<br>27.0<br>25.5                                                                                                                                                                                                                       | JULY 22.5 23.0 24.0 24.5 23.5 22.0 21.0 21.0 21.5 22.0 21.0 20.5 20.5                                                                                                          | 23.0<br>24.5<br>25.0<br>25.5<br>24.0<br>22.5<br>22.0<br>22.5<br>22.5<br>22.0<br>21.5<br>21.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.0<br>27.5<br>27.0<br>26.0<br>26.5<br>23.0<br>23.5<br>23.5<br>24.0<br>24.5                                                                                                                                                                 | AUGUST  24.0 25.0 24.0 23.5 23.5 23.5 20.5 20.5 20.0 20.0 21.0 22.0                                                                                                               | 25.5<br>26.0<br>25.5<br>24.5<br>25.0<br>23.0<br>21.5<br>21.5<br>21.5<br>22.0                                                                                                                 | 23.0<br>23.5<br>23.5<br>23.5<br>22.0<br>22.0<br>24.0<br>24.0<br>24.5                                                                                                                                 | SEPTEMBE  19.5 20.0 21.0 20.5 20.0  18.5 18.5 19.5 20.0 20.5                                                                                                                                                        | 21.5<br>21.5<br>22.0<br>22.0<br>21.0<br>20.0<br>20.5<br>21.5<br>22.0<br>22.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                           | 20.5<br>20.5<br>18.5<br>17.0<br>19.0<br>18.5<br>19.5<br>20.5<br>21.5<br>23.0<br>22.5<br>21.0<br>20.0                                                                                         | JUNE  18.0 18.5 17.0 15.5 15.5  17.0 15.5 19.0  20.0 19.5 18.5 17.5                                                                     | 19.5<br>19.5<br>17.5<br>16.0<br>17.0<br>17.5<br>17.0<br>18.0<br>19.5<br>20.0<br>21.5<br>21.0<br>19.5<br>18.5                                                                                                                 | 24.5<br>25.5<br>26.5<br>27.0<br>25.5<br>23.5<br>23.5<br>23.0<br>23.0<br>23.0<br>22.5<br>23.0<br>23.0                                                                                                                                                       | JULY 22.5 23.0 24.0 24.5 23.5 22.0 21.0 21.5 22.0 21.0 20.5 20.0 20.5                                                                                                          | 23.0<br>24.5<br>25.0<br>25.5<br>24.0<br>22.5<br>22.0<br>22.5<br>22.5<br>22.0<br>21.5<br>21.0<br>21.0<br>22.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 27.0<br>27.5<br>27.0<br>26.0<br>26.5<br>23.0<br>23.5<br>23.5<br>24.0<br>24.5<br>25.0<br>26.0<br>26.0                                                                                                                                         | AUGUST  24.0 25.0 24.0 23.5 23.5 20.5 20.5 20.0 20.0 21.0 22.0 22.5 23.5                                                                                                          | 25.5<br>26.0<br>25.5<br>24.5<br>25.0<br>23.0<br>21.5<br>21.5<br>21.5<br>22.0<br>22.5<br>23.0<br>24.0<br>25.0                                                                                 | 23.0<br>23.5<br>23.5<br>23.5<br>22.0<br>22.0<br>24.0<br>24.0<br>24.5<br>22.0<br>21.0<br>21.0<br>21.0                                                                                                 | SEPTEMBE  19.5 20.0 21.0 20.5 20.0  18.5 18.5 19.5 20.0 20.5                                                                                                                                                        | 21.5<br>21.5<br>22.0<br>22.0<br>21.0<br>20.0<br>20.5<br>21.5<br>22.0<br>21.0<br>19.0<br>19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                                                             | 20.5<br>20.5<br>18.5<br>17.0<br>19.0<br>18.0<br>18.5<br>20.5<br>21.5<br>23.0<br>22.5<br>21.0<br>17.5<br>17.0<br>17.5<br>18.5<br>19.5                                                         | JUNE  18.0 18.5 17.0 15.5 15.5  17.0 15.5 16.5 18.5 19.0  20.0 19.5 18.5 17.5 17.0  16.5 16.0 16.5                                      | 19.5<br>19.5<br>17.5<br>16.0<br>17.0<br>17.5<br>17.0<br>18.0<br>19.5<br>20.0<br>21.5<br>21.0<br>19.5<br>17.5<br>17.0<br>16.5<br>17.0                                                                                         | 24.5<br>25.5<br>26.5<br>27.0<br>25.5<br>23.5<br>23.5<br>23.0<br>23.0<br>23.0<br>23.0<br>22.5<br>24.0<br>24.5<br>25.5<br>24.0                                                                                                                               | JULY  22.5 23.0 24.0 24.5 23.5  22.0 21.0 21.5 22.0 21.0 20.5 20.0 20.5 21.5 22.0 23.0                                                                                         | 23.0<br>24.5<br>25.0<br>25.5<br>24.0<br>22.5<br>22.5<br>22.0<br>21.5<br>21.0<br>21.0<br>22.0<br>22.5<br>21.0<br>21.0<br>22.5<br>23.0<br>24.0<br>23.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27.0<br>27.5<br>27.0<br>26.0<br>26.5<br>25.0<br>23.0<br>23.5<br>24.0<br>24.5<br>25.0<br>26.0<br>26.5<br>26.0<br>26.5<br>26.5                                                                                                                 | AUGUST  24.0 25.0 24.0 23.5 23.5 22.0 20.5 20.0 20.0 21.0 22.5 23.5 24.5 23.0 24.0 22.5 22.5                                                                                      | 25.5<br>26.0<br>25.5<br>24.5<br>25.0<br>21.5<br>21.5<br>21.5<br>22.0<br>22.5<br>23.0<br>24.0<br>25.0<br>25.0<br>25.0<br>25.0                                                                 | 23.0<br>23.5<br>23.5<br>23.5<br>22.0<br>22.0<br>24.0<br>24.0<br>24.5<br>22.0<br>21.0<br>21.0<br>21.5<br>21.5<br>21.5<br>21.5                                                                         | SEPTEMBE  19.5 20.0 21.0 20.5 20.0  18.5 18.5 19.5 20.0 20.5  19.0 17.0 18.0 18.5 18.5 17.0 17.0 17.5                                                                                                               | 21.5<br>21.5<br>22.0<br>22.0<br>21.0<br>20.0<br>20.5<br>21.5<br>22.0<br>21.0<br>19.0<br>19.0<br>19.0<br>19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>27<br>28<br>29<br>30 | 20.5<br>20.5<br>18.5<br>17.0<br>19.0<br>18.0<br>18.5<br>20.5<br>21.5<br>23.0<br>22.5<br>21.0<br>17.5<br>17.0<br>17.5<br>18.5<br>21.0<br>22.0<br>23.5<br>21.0<br>22.0<br>23.5<br>21.0         | JUNE  18.0 18.5 17.0 15.5 15.5  17.0 15.5 18.5 19.0  20.0 19.5 18.5 17.5 17.0  16.5 18.0  19.5 21.0 22.0 21.0  22.0 21.5 21.5 21.5 21.5 | 19.5<br>19.5<br>17.5<br>16.0<br>17.0<br>17.5<br>17.0<br>18.0<br>19.5<br>20.0<br>21.5<br>21.0<br>19.5<br>17.5<br>17.0<br>16.5<br>17.0<br>18.0<br>19.5<br>22.0<br>22.5<br>22.0<br>23.0<br>22.5<br>22.0<br>22.5<br>22.5<br>22.5 | 24.5<br>25.5<br>26.5<br>27.0<br>25.5<br>23.5<br>23.5<br>23.0<br>23.0<br>23.0<br>23.5<br>24.0<br>24.5<br>25.5<br>24.0<br>25.0<br>25.0<br>25.0<br>25.0<br>26.0<br>27.0<br>28.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29.0<br>29                 | JULY  22.5 23.0 24.0 24.5 23.5  22.0 21.0 21.5 22.0 20.5 21.5 22.0 21.5 22.5 22.0 21.5 22.5 22.5 22.5 22.5 22.5 22.5 22.5                                                      | 23.0<br>24.5<br>25.0<br>25.5<br>24.0<br>22.5<br>22.0<br>22.5<br>22.0<br>21.5<br>21.0<br>22.0<br>22.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>23.5<br>23.0<br>24.0<br>24.0<br>25.0<br>26.0<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5 | 27.0<br>27.5<br>27.0<br>26.0<br>26.5<br>25.0<br>23.0<br>23.5<br>24.0<br>26.5<br>26.0<br>26.5<br>25.5<br>24.5<br>24.5<br>22.5<br>24.5<br>22.5<br>24.5<br>22.5<br>23.5<br>24.5<br>26.0<br>26.5<br>26.0<br>26.5<br>26.0<br>26.5<br>26.0<br>26.5 | AUGUST  24.0 25.0 24.0 23.5 23.5 22.0 20.5 20.0 20.0 21.0 22.5 23.5 24.5 23.0 24.0 21.5 20.5 21.5 20.5 21.5 20.5 21.5 20.5 21.5 20.5 21.7 20.5 20.5 20.5 20.5 20.5 20.5 20.5 20.5 | 25.5<br>26.0<br>25.5<br>24.5<br>25.0<br>21.5<br>21.5<br>22.0<br>22.5<br>23.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5 | 23.0<br>23.5<br>23.5<br>22.0<br>22.0<br>24.0<br>24.0<br>24.5<br>22.0<br>21.0<br>21.0<br>21.0<br>21.0<br>22.5<br>22.5<br>22.5<br>24.0<br>22.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5 | SEPTEMBE  19.5 20.0 21.0 20.5 20.0  18.5 18.5 19.5 20.0 20.5  19.0 17.0 17.0 18.5 19.0 17.0 17.5 19.0 20.5 19.0 17.5 19.0 17.5 19.0 17.5 19.0 18.0 17.5 19.0                                                        | 21.5<br>21.5<br>22.0<br>22.0<br>21.0<br>20.0<br>20.5<br>21.5<br>22.0<br>22.0<br>21.0<br>19.0<br>19.0<br>19.0<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>19.0<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>19.0<br>20.5<br>19.0<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>19.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.5<br>10.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29 | 20.5<br>20.5<br>18.5<br>17.0<br>19.0<br>18.0<br>19.5<br>20.5<br>21.5<br>21.0<br>22.0<br>22.5<br>21.0<br>22.0<br>22.0<br>22.0<br>22.5<br>23.0<br>22.5<br>21.0<br>22.5<br>21.0<br>22.5<br>21.0 | JUNE  18.0 18.5 17.0 15.5 15.5 17.0 15.5 18.5 19.0 20.0 19.5 17.5 17.0 16.5 18.5 17.0 21.0 22.0 21.0 22.0 22.5 21.5                     | 19.5<br>19.5<br>17.5<br>16.0<br>17.0<br>17.5<br>17.0<br>18.0<br>19.5<br>20.0<br>21.5<br>21.0<br>19.5<br>17.0<br>16.5<br>17.0<br>19.5<br>22.0<br>22.5<br>22.0<br>23.0<br>22.5<br>22.0                                         | 24.5<br>25.5<br>26.5<br>27.0<br>25.5<br>23.5<br>23.5<br>23.0<br>23.0<br>23.0<br>22.5<br>24.0<br>25.5<br>25.5<br>24.0<br>25.0<br>25.0<br>25.0<br>22.5<br>24.0<br>25.0<br>25.0<br>25.0<br>26.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27.0<br>27 | JULY  22.5 23.0 24.0 24.5 23.5  22.0 21.0 20.5 20.0 20.5 21.5 22.0 21.5 22.0 20.5 21.5 22.0 20.5 21.5 22.0 20.5 21.5 22.0 20.5 22.5 23.0 22.5 22.5 22.0 20.5 22.5 22.5 22.5 22 | 23.0<br>24.5<br>25.0<br>25.5<br>24.0<br>22.5<br>22.5<br>22.0<br>21.5<br>21.0<br>21.0<br>22.0<br>24.0<br>24.0<br>24.0<br>23.5<br>23.0<br>24.0<br>24.0<br>23.5<br>23.0<br>24.0<br>25.5<br>25.5<br>26.0<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5<br>27.5 | 27.0<br>27.5<br>27.0<br>26.0<br>26.5<br>25.0<br>23.5<br>24.0<br>24.5<br>25.0<br>26.0<br>26.5<br>25.5<br>24.5<br>24.5<br>24.5<br>24.5<br>22.5<br>24.5<br>24                                                                                   | AUGUST  24.0 25.0 24.0 23.5 23.5 20.5 20.5 20.0 20.0 21.0 22.5 23.5 24.5 23.0 24.0 23.0 22.5 21.5 20.5 21.5 20.5 21.5 20.5 21.8 20.5 21.8 20.5 21.8                               | 25.5<br>26.0<br>25.5<br>24.5<br>25.0<br>21.5<br>21.5<br>21.5<br>22.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>25.0<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5         | 23.0<br>23.5<br>23.5<br>23.5<br>22.0<br>22.0<br>24.0<br>24.5<br>22.0<br>21.0<br>21.0<br>21.2<br>22.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5<br>21.5                                                 | SEPTEMBE  19.5 20.0 21.0 20.5 20.0  18.5 18.5 19.5 20.0 20.5  19.0 17.0 18.0 17.0 18.5 19.0 20.5 19.0 17.5 19.0 20.5 19.0 17.5 19.0 17.5 19.0 18.5 19.0 17.5 19.0 18.6 18.7 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 | 21.5<br>21.5<br>22.0<br>22.0<br>21.0<br>20.0<br>20.5<br>21.5<br>22.0<br>22.0<br>21.0<br>19.0<br>19.0<br>19.0<br>19.0<br>20.0<br>21.5<br>21.5<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

0423205025 IRONDEQUOIT CREEK AT EMPIRE BOULEVARD, ROCHESTER, NY--Continued

| Date                                                                                                                          | Time                                                                                         | Ending<br>time                                                                               | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)                   | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                                    | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | ANC<br>WATER<br>UNFLTRD<br>FET<br>FIELD<br>MG/L AS<br>CACO3<br>(00410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940)                   | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                            | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608)              | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625)    | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)                  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| OCT<br>01-05<br>05-06<br>06-07<br>07-09<br>09-11<br>11-15<br>15-18<br>18-21<br>21-22<br>22-25<br>25-29<br>OCT 29-             | 0840<br>0945<br>0545<br>0145<br>0855<br>0855<br>0905<br>0945<br>1345<br>0845                 | 0740<br>0445<br>0045<br>0845<br>0755<br>0755<br>0805<br>1245<br>0745<br>0745                 | 48<br>53<br>82<br>49<br>43<br>42<br>57<br>50<br>93<br>77<br>54                       | 10<br>18<br>19<br>11<br>5.3<br>14<br>13<br>11<br>25<br>13                  | <br><br><br><br><br>                                         | <br><br><br><br>                                                       | 158<br>130<br>133<br>141<br>142<br>146<br>136<br>136<br>106<br>109               | 215<br>168<br>174<br>202<br>208<br>210<br>186<br>208<br>160<br>161                  | <br><br><br><br><br>                                                         | <br><br><br><br>                                                 | <.01 <.01 .01 .01 .01 .01 .01 .01 <.01 <                                              | .57<br>.43<br>.53<br>.37<br><.10<br>.45<br>.39<br>.39<br>.44<br>.66              | .75<br>.74<br>.80<br>.75<br>.83<br>.70<br>.51<br>.52<br>.54<br>.44               |
| NOV 01<br>01-05<br>05-09<br>09-13<br>13-15<br>15-19<br>19-21<br>21-25<br>25-26<br>26-28<br>28-29<br>NOV 29-                   | 1010<br>0940<br>0945<br>0930<br>0945<br>0930<br>1040<br>0955<br>0855<br>0945<br>1845         | 0910<br>0840<br>0845<br>0830<br>0845<br>0830<br>0940<br>0755<br>0855<br>1745                 | 41<br>51<br>34<br>31<br>31<br>30<br>46<br>65<br>146<br>74                            | 9.3<br>11<br>7.4<br>7.8<br>7.1<br>9.7<br>4.7<br>7.1<br>24<br>12            | <br><br><br><br><br>                                         | <br><br><br><br><br><br>                                               | 146<br>143<br>151<br>158<br>156<br>160<br>152<br>160<br>121<br>137               | 210<br>223<br>217<br>222<br>233<br>234<br>205<br>187<br>154<br>175                  | <br><br><br><br><br>                                                         | <br><br><br><br><br>                                             | <.01 .02 .02 .04 .02 <.01 <.01 <.01 <.01 .02                                          | .48<br>.56<br><.10<br>.44<br><.10<br>.38<br>.67<br>.38<br>.91<br>.45             | .58<br>.59<br>.50<br>.55<br>.61<br>.61<br>.60<br>.61<br>.60                      |
| DEC 03<br>03-06<br>06-10<br>10-13<br>13-14<br>14-15<br>15-17<br>17-20<br>20-24<br>24-27<br>27-31<br>DEC 31-                   | 0940<br>0930<br>1025<br>1015<br>0920<br>1320<br>0955<br>0940<br>0920<br>0935                 | 0840<br>0830<br>0925<br>0915<br>1220<br>1220<br>0820<br>0855<br>0840<br>0720<br>0835         | 151<br>57<br>51<br>56<br>71<br>200<br>200<br>207<br>106<br>73<br>47                  | 7.6<br>6.1<br>7.7<br>9.5<br>6.4<br>67<br>47<br>28<br>11<br>8.2<br>6.7      | 1300<br>996<br>907                                           | 247<br>191<br>176<br>                                                  | 119<br>162<br>172<br>168<br>160<br>118<br>113<br>129<br>152<br>153<br>194        | 128<br>204<br>221<br>66<br>204<br>143<br>109<br>121<br>164<br>171<br>212            | <br><br><br>13<br>118<br>73<br><br>                                          | <br><br><br>3<br>17<br>11<br><br>                                | .02<br>.01<br><.01<br><.01<br><.01<br><.01<br><.01<br>.01<br>.02<br><.01              | .59<br>.45<br>.40<br>.47<br>.29<br>.39<br>.82<br>.71<br><.10<br>.47              | .74<br>.87<br>.94<br>.94<br>.93<br>.78<br>.70<br>1.1<br>1.4                      |
| JAN 03<br>03-07<br>07-10<br>10-14<br>14-18<br>18-22<br>24-28<br>28-31<br>JAN 31-                                              | 0945<br>0945<br>1005<br>0945<br>0935<br>0925<br>1000<br>0945                                 | 0845<br>0845<br>0905<br>0845<br>0835<br>0820<br>0900                                         | 34<br>36<br>55<br>74<br>59<br>44<br>77<br>69                                         | 7.3<br>5.9<br>6.0<br>6.3<br>7.1<br>6.5<br>7.0                              | <br><br><br><br><br>                                         | <br><br><br><br><br>                                                   | 193<br>167<br>269<br>281<br>215<br>267<br>228<br>227                             | 212<br>204<br>196<br>186<br>201<br>208<br>180<br>178                                | <br><br><br><br><br>                                                         | <br><br><br><br><br>                                             | .01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <                                              | .36<br>.57<br>.54<br>.43<br>.37<br>.54<br>.42                                    | 1.3<br>1.2<br>1.1<br>1.1<br>1.1<br>1.1<br>1.0<br>.86                             |
| FEB 02<br>02-04<br>04-07<br>07-10<br>10-11<br>11-15<br>15-19<br>19-21<br>21-25<br>25-28                                       | 1020<br>0220<br>1005<br>0950<br>1750<br>1030<br>0950<br>0945<br>0930<br>0945                 | 0120<br>0919<br>0904<br>1650<br>0850<br>0929<br>0849<br>0845<br>0829                         | 296<br>458<br>136<br>126<br>153<br>164<br>144<br>115<br>115                          | 70<br>90<br>22<br>8.2<br>9.1<br>15<br>7.6<br>6.8<br>5.7<br>5.5             | <br><br><br><br><br><br>                                     | <br><br><br><br><br><br><br>                                           | 378<br>165<br>246<br>253<br>232<br>249<br>242<br>205<br>181<br>192               | 94<br>67<br>132<br>147<br>140<br>118<br>138<br>131<br>138                           | <br><br><br><br><br><br><br>                                                 | <br><br><br><br><br><br><br>                                     | .02<br>.02<br>.02<br>.02<br><.01<br>.01<br><.01<br><.01<br><.01<br><.01               | 1.1<br>1.2<br>.67<br>.50<br>.51<br>.52<br>.49<br>.49<br>.48                      | .82<br>1.2<br>3.2<br>1.5<br>1.4<br>1.5<br>1.4<br>1.3<br>1.2                      |
| FEB 28- MAR 04 04-07 07-11 11-14 14-18 18-20 20-21 21-25 25-26 26-27 27-28                                                    | 1010<br>0935<br>0945<br>1000<br>0950<br>0935<br>0935<br>0935<br>0940<br>1540<br>0640         | 0909<br>0834<br>0844<br>0859<br>0849<br>0835<br>0834<br>0834<br>1439<br>0540<br>0839         | 87<br>80<br>130<br>131<br>107<br>99<br>199<br>153<br>116<br>330<br>454               | 5.5<br>4.9<br><1.0<br>7.4<br>8.5<br>.2<br>.2<br>12<br>7.2<br>34<br>80      | <br><br><br><br><br>                                         | <br><br><br><br><br><br>                                               | 260<br>266<br>327<br>269<br>200<br>202<br>197<br>240<br>232<br>268<br>184        | 160<br>165<br>139<br>138<br>143<br>141<br>123<br>118<br>144<br>116<br>71            | <br><br><br><br><br>54                                                       | <br><br><br><br><br><br>11<br>19                                 | <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01                                               | .45<br>.46<br>.49<br>.56<br>.61<br>.58<br>.65<br>.54<br>.61                      | 1.1<br>1.0<br>.91<br>.95<br>.99<br>.98<br>1.0<br>.99<br>1.00                     |
| MAR 28-<br>APR 01<br>01-02<br>02-03<br>03-04<br>04-08<br>08-11<br>11-13<br>13-15<br>15-18<br>18-22<br>22-24<br>25-27<br>28-29 | 0950<br>0955<br>1555<br>1255<br>0940<br>0740<br>0900<br>0900<br>0840<br>0840<br>0830<br>0845 | 0849<br>1454<br>1155<br>0855<br>0739<br>0639<br>0800<br>0739<br>0739<br>0739<br>0730<br>2345 | 198<br>129<br>328<br>501<br>248<br>148<br>76<br>359<br>348<br>127<br>95<br>91<br>223 | 23<br>21<br>33<br>88<br>30<br>27<br>38<br>82<br>65<br>38<br>14<br>22<br>35 | <br><br><br><br><br><br><br>                                 | <br><br><br><br><br><br><br><br>                                       | 166<br>137<br>170<br>134<br>158<br>184<br>170<br>141<br>126<br>149<br>145<br>159 | 101<br>112<br>101<br>65<br>88<br>117<br>128<br>92<br>75<br>115<br>113<br>123<br>104 | <br>54<br>117<br><br><br>147<br>120<br>94<br>55<br>                          | <br>10<br>20<br><br>10<br>20<br>15<br>10                         | <.01 <.01 <.01 <.01 <.01 .02 .01 .02 <.01 .02 <.01 .02 <.01 .02 <.01 .02 <.01 .02 .03 | .64<br>.69<br>.79<br>1.1<br>.69<br>.77<br>1.2<br>1.2<br>1.1<br>.97<br>.69<br>.75 | 1.1<br>.96<br>1.0<br>.84<br>1.0<br>1.1<br>1.1<br>.92<br>.75<br>.81<br>.95<br>.93 |

# 0423205025 IRONDEQUOIT CREEK AT EMPIRE BOULEVARD, ROCHESTER, NY--Continued

| Date                                                                                                                          | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)             | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)<br>(01092) |
|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|
| OCT<br>01-05<br>05-06<br>06-07<br>07-09<br>09-11<br>11-15<br>15-18<br>18-21<br>21-22<br>22-25<br>25-29<br>OCT 29-             | .021<br>.017<br>.024<br>.017<br>.018<br>.014<br>.013<br>.013<br>.013                 | .085<br>.085<br>.095<br>.070<br>.065<br>.075<br>.085<br>.065<br>.110                 | <br><br><br><br><br><br>                                         |
| NOV 01<br>01-05<br>05-09<br>09-13<br>13-15<br>15-19<br>19-21<br>21-25<br>25-26<br>26-28<br>28-29<br>NOV 29-                   | .016<br>.012<br>.013<br>.013<br>.011<br>.010<br>.009<br>.009<br>.011<br>.016         | .075<br>.075<br>.050<br>.050<br>.050<br>.060<br>.075<br>.060<br>.120                 | <br><br><br><br><br>                                             |
| DEC 03<br>03-06<br>06-10<br>10-13<br>13-14<br>14-15<br>15-17<br>17-20<br>20-24<br>24-27<br>27-31<br>DEC 31-                   | .021<br>.022<br>.018<br>.014<br>.013<br>.013<br>.013<br>.016<br>.015<br>.013         | .110<br>.075<br>.065<br>.055<br>.060<br>.250<br>.180<br>.110<br>.070                 | <br><br>10<br>40<br>25<br>                                       |
| JAN 03<br>03-07<br>07-10<br>10-14<br>14-18<br>18-22<br>24-28<br>28-31<br>JAN 31-                                              | .011<br>.009<br>.008<br>.010<br>.008<br>.007<br>.008                                 | .040<br>.035<br>.040<br>.040<br>.035<br>.030<br>.045                                 | <br><br><br><br><br><br>                                         |
| FEB 02<br>02-04<br>04-07<br>07-10<br>10-11<br>11-15<br>15-19<br>19-21<br>21-25<br>25-28<br>FEB 28-                            | .006<br>.010<br>.011<br>.049<br>.008<br>.009<br>.008<br>.006                         | .200<br>.260<br>.112<br>.051<br>.055<br>.061<br>.045<br>.040                         | <br><br><br><br><br><br><br>                                     |
| MAR 04<br>04-07<br>07-11<br>11-14<br>14-18<br>18-20<br>20-21<br>21-25<br>25-26<br>26-27<br>27-28                              | .006<br>.006<br>.003<br>.004<br><.003<br>.004<br>.005<br>.005                        | .039<br>.034<br>.046<br>.039<br>.044<br>.038<br>.060<br>.042<br>.040<br>.120         | <br><br><br><br><br><br>                                         |
| MAR 28-<br>APR 01<br>01-02<br>02-03<br>03-04<br>04-08<br>08-11<br>11-13<br>13-15<br>15-18<br>18-22<br>22-24<br>25-27<br>28-29 | .005<br>.005<br>.006<br>.006<br>.006<br>.008<br>.008<br>.010<br>.014<br>.014<br>.008 | .082<br>.091<br>.116<br>.259<br>.098<br>.101<br>.117<br>.258<br>.220<br>.147<br>.070 | <br><br><br><br><br>                                             |

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

0423205025 IRONDEQUOIT CREEK AT EMPIRE BOULEVARD, ROCHESTER, NY--Continued

| Date                                                                                                                 | Time                                                                                                 | Ending<br>time                                                                                       | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)                           | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | ANC WATER UNFLITED FET FIELD MG/L AS CACO3 (00410) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940)                              | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                                  | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625)    | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)                         |
|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| APR 29- MAY 02 02-06 06-08 08-09 09-12 12-13 13-14 14-16 16-20 20-24 24-28 28-29 29-30 30-31 MAY 31-                 | 0905<br>0850<br>0835<br>2335<br>0835<br>0435<br>0855<br>2055<br>0850<br>0910<br>0905<br>0830<br>1130 | 0804<br>0749<br>2234<br>0735<br>0335<br>0735<br>1955<br>0765<br>0749<br>0809<br>0809<br>0429<br>0429 | 234<br>184<br>107<br>185<br>160<br>182<br>699<br>826<br>285<br>129<br>92<br>66<br>295<br>398 | 24<br>27<br>31<br>27<br>30<br>29<br>63<br>59<br>25<br>18<br>20<br>23<br>43<br>59 | <br><br><br><br><br><br><br><br>                             | <br><br><br><br>166<br>172<br>221<br><br>          | 131<br>141<br>165<br>165<br>130<br>140<br>91<br>77<br>104<br>130<br>145<br>146<br>128<br>80 | 89<br>101<br>140<br>154<br>103<br>109<br>57<br>46<br>78<br>110<br>132<br>141<br>117<br>62 | <br>50<br><br><br>102<br>88<br>36<br><br><br>61<br>72                        | <br>9<br><br>17<br>13<br>8<br><br>14<br>16                       | <.01 <.01 <.01 <.01 .01 .01 .01 .02 <.01 .02 <.01 .02 <.01 .02           | .70<br>.78<br>.74<br>.76<br>.84<br>.86<br>1.1<br>.87<br>.72<br>.70<br>.71<br>.94 | .69<br>.71<br>.74<br>.78<br>.70<br>.65<br>.61<br>.67<br>.82<br>.92<br>.88<br>.78<br>.76 |
| JUN 03<br>03-05<br>05-06<br>06-10<br>10-13<br>13-13<br>14-15<br>15-17<br>17-20<br>20-24<br>24-27<br>27-28<br>JUN 28- | 1010<br>0850<br>0550<br>0915<br>0845<br>0850<br>0050<br>1250<br>0915<br>0825<br>0915                 | 0810<br>0450<br>0749<br>0814<br>0744<br>2350<br>1150<br>0749<br>0814<br>0724<br>0814<br>1145         | 267<br>123<br>155<br>119<br>75<br>80<br>447<br>408<br>191<br>84<br>75<br>162                 | 41<br>26<br>24<br>25<br>20<br>22<br>51<br>49<br>16<br>35<br>27                   | <br><br><br><br>775<br>659<br><br>                           | <br><br><br><br>180<br>174<br><br>                 | 90<br>120<br>131<br>118<br>138<br>134<br>93<br>75<br>100<br>125<br>143<br>119               | 65<br>101<br>113<br>103<br>128<br>129<br>85<br>56<br>81<br>113<br>149<br>116              | 57<br><br><br><br>68<br>71<br><br>43<br><br>49                               | 57<br><br><br><br>11<br>12<br><br>10<br><br>11                   | .02<br>.01<br>.01<br>.02<br>.02<br>.03<br>.01<br>.01<br>.01              | .96<br>.87<br>.76<br>.81<br>.84<br>.94<br>.99<br>.94<br>.93<br>.97               | .57<br>.74<br>.86<br>.78<br>.84<br>.98<br>.83<br>.82<br>.85<br>.92<br>.93               |
| JUL 01<br>01-05<br>05-08<br>08-11<br>11-15<br>15-18<br>18-22<br>22-22<br>23-23<br>23-25<br>25-29<br>JUL 29-          | 1245<br>0900<br>0825<br>0920<br>0830<br>0935<br>0850<br>0900<br>0000<br>1500<br>0900                 | 0745<br>0759<br>0724<br>0819<br>0729<br>0834<br>0749<br>2300<br>1400<br>0800<br>0759                 | 128<br>62<br>45<br>48<br>40<br>30<br>34<br>33<br>48<br>94                                    | 38<br>26<br>19<br>12<br>14<br>15<br>24<br>23<br>22<br>32<br>29                   | <br><br><br><br><br>                                         | <br><br><br><br><br>                               | 104<br>144<br>139<br>132<br>140<br>157<br>144<br>151<br>121<br>112                          | 90<br>144<br>148<br>154<br>176<br>203<br>235<br>208<br>164<br>156<br>163                  | 48<br><br><br><br><br>50                                                     | 10<br><br><br><br><br><br>9                                      | .01<br>.03<br>.02<br><.01<br>.01<br><.01<br><.01<br>.01<br>.04<br>.02    | 1.1<br>.84<br>.75<br>.78<br>.61<br>.42<br>.55<br>.64<br>.69<br>.94               | .74<br>.79<br>.72<br>.76<br>.80<br>.65<br>.89<br>.59<br>.55<br>.68                      |
| AUG 01<br>01-05<br>05-08<br>08-12<br>12-15<br>15-19<br>19-22<br>26-30<br>AUG 30-                                     | 0850<br>0850<br>0835<br>0830<br>0835<br>0850<br>0900<br>0940                                         | 0749<br>0749<br>0734<br>0729<br>0734<br>0749<br>0759<br>0839                                         | 52<br>36<br>34<br>29<br>25<br>43<br>35<br>30                                                 | 31<br>31<br>23<br>20<br>25<br>28<br>34<br>24                                     | <br><br><br><br><br>                                         | <br><br><br><br><br>                               | 120<br>146<br>155<br>153<br>159<br>132<br>135<br>145                                        | 159<br>184<br>211<br>219<br>233<br>201<br>190<br>240                                      | 49<br><br><br><br><br>                                                       | <10<br><br><br><br><br>                                          | .02<br>.01<br><.01<br><.01<br><.01<br><.01<br>.02<br><.01                | .90<br>.85<br>.93<br>.70<br>.65<br>.79<br>.87                                    | .69<br>.61<br>.51<br>.57<br>.65<br>.67                                                  |
| SEP 03<br>03-05<br>05-09<br>09-12<br>12-14<br>15-16<br>16-19<br>19-23<br>23-26<br>26-27<br>27-27<br>28-30<br>SEP 30- | 0840<br>0835<br>0845<br>0810<br>0830<br>0030<br>0830<br>0915<br>0830<br>0920<br>0520<br>2120         | 0739<br>0735<br>0744<br>0709<br>2330<br>0729<br>0729<br>0814<br>0729<br>0420<br>2020<br>0820         | 27<br>23<br>27<br>28<br>25<br>53<br>44<br>25<br>27<br>24<br>128<br>90                        | 20<br>22<br>23<br>20<br>16<br>18<br>17<br>14<br>16<br>11<br>24<br>80             | <br><br><br><br><br>                                         |                                                    | 155<br>160<br>153<br>156<br>147<br>140<br>123<br>149<br>148<br>139<br>138<br>90             | 244<br>244<br>243<br>245<br>233<br>225<br>193<br>248<br>238<br>227<br>218<br>111          | <br><br><br><br><br><br><br>178                                              | <br><br><br><br><br><br><br><br>26                               | <.01 <.01 <.01 <.01 <.10 <.10 <.10 <.10                                  | .62<br>.75<br>.77<br>.72<br>.66<br>.68<br>.67<br>.59<br>.56<br>.46<br>1.0        | .73<br>.73<br>.73<br>.69<br>.67<br>.72<br>.74<br>.69<br>.72<br>.66<br>.72<br>.58        |
| OCT 03                                                                                                               | 0840                                                                                                 | 0739                                                                                                 | 39                                                                                           | 15                                                                               |                                                              |                                                    | 141                                                                                         | 181                                                                                       |                                                                              |                                                                  | .01                                                                      | .82                                                                              | .67                                                                                     |

# 0423205025 IRONDEQUOIT CREEK AT EMPIRE BOULEVARD, ROCHESTER, NY--Continued

| Date                                                                                                                            | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)     | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)<br>(01092) |
|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|
| APR 29-<br>MAY 02<br>02-06<br>06-08<br>08-09<br>09-12<br>MAY                                                                    | .007<br>.007<br>.009<br>.009                                                 | .093<br>.100<br>.106<br>.103<br>.113                                                 | <br><br>                                                         |
| 12-13<br>13-14<br>14-16<br>16-20<br>20-24<br>24-28<br>28-29<br>29-30<br>30-31                                                   | .010<br>.012<br>.012<br>.013<br>.012<br>.011<br>.011<br>.011                 | .122<br>.204<br>.186<br>.094<br>.078<br>.081<br>.105<br>.145                         | 29<br>23<br>18<br><br>19<br>31<br>32                             |
| MAY 31-<br>JUN 03<br>03-05<br>05-06<br>06-10<br>10-13<br>13-13<br>14-15<br>15-17<br>17-20<br>20-24<br>24-27<br>27-28            | .018<br>.017<br>.016<br>.021<br>.024<br>.026<br>.027<br>.028<br>.035<br>.038 | .143<br>.116<br>.113<br>.106<br>.102<br>.111<br>.205<br>.195<br>.142<br>.146<br>.141 | 24<br><br><br>33<br>31<br>                                       |
| JUN 28-<br>JUL 01<br>01-05<br>05-08<br>08-11<br>11-15<br>15-18<br>18-22<br>22-22<br>23-23<br>23-25<br>25-29<br>JUL 29-          | .043<br>.043<br>.043<br>.367<br>.034<br>.031<br>.023<br>.029<br>.025<br>.027 | .165<br>.160<br>.134<br>.109<br>.090<br>.087<br>.124<br>.112<br>.097<br>.135         |                                                                  |
| AUG 01<br>01-05<br>05-08<br>08-12<br>12-15<br>15-19<br>19-22<br>26-30<br>AUG 30-                                                | .035<br>.036<br>.026<br>.025<br>.022<br>.026<br>.026                         | .139<br>.151<br>.136<br>.138<br>.139<br>.127<br>.171                                 | <br><br><br><br><br>                                             |
| AUG 30-<br>SEP 03<br>03-05<br>05-09<br>09-12<br>12-14<br>15-16<br>16-19<br>19-23<br>23-26<br>26-27<br>27-27<br>28-30<br>SEP 30- | .018<br>.020<br>.016<br>.015<br>.016<br>.018<br>.020<br>.018<br>.015<br>.015 | .124<br>.109<br>.136<br>.107<br>.108<br>.105<br>.103<br>.081<br>.099<br>.108<br>.228 |                                                                  |
| OCT 03                                                                                                                          | .024                                                                         | .154                                                                                 |                                                                  |

#### 04232400 SENECA LAKE AT WATKINS GLEN, NY

LOCATION.--Lat 42°23'00", long 76°52'05", Schuyler County, Hydrologic Unit 04140201, on east bank about 300 ft from lake on shorter of two boat slips at Watkins Glen.

DRAINAGE AREA.--704 mi<sup>2</sup>.

PERIOD OF RECORD.--October 1956 to current year.

REVISED RECORDS.--WSP 2112: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929 (1.59 ft Barge Canal datum). To convert elevations to NAVD adjustment GAGE. --Water-Stage recorder. Datum of gage is NGVD of 1929 (1.59 it Barge Canal datum). To convert elevations to NAVD adjustmen of 1988, subtract 0.62 ft. Prior to Oct. 1, 1975, at datum 438.41 ft higher.

REMARKS.--Area of water surface, 67.6 mi<sup>2</sup>. Diversion from Susquehanna River basin enters lake through Keuka Lake Outlet at Dresden. Lake elevation regulated by taintor gates on Seneca River at Lock 4,
Waterloo, for operation of Erie (Barge) Canal and power generation by New York State Electric and Gas Corp.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 448.95 ft, April 26, 27, 1993; minimum elevation, 442.64 ft, Mar. 14, 1978.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 446.10 ft, May 15, 17; minimum elevation, 443.67 ft, Nov. 24, 25.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY                              | OCT                                                      | NOV                                            | DEC                                                      | JAN                                                      | FEB                                            | MAR                                                      | APR                                            | MAY                                                      | JUN                                            | JUL                                                      | AUG                                                      | SEP                                            |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4                 | 444.33<br>444.32<br>444.28<br>444.28                     | 443.93<br>443.93<br>444.00<br>443.99           | 443.85<br>443.87<br>443.82<br>443.81                     | 443.90<br>443.88<br>443.88<br>443.86                     | 443.95<br>444.08<br>444.08<br>444.12           | 443.89<br>443.85<br>443.88<br>443.89                     | 444.45<br>444.49<br>444.54<br>444.59           | 445.63<br>445.66<br>445.67<br>445.67                     | 445.78<br>445.76<br>445.69<br>445.60           | 445.50<br>445.50<br>445.48<br>445.48                     | 445.03<br>445.03<br>445.03<br>445.01                     | 444.64<br>444.59<br>444.59<br>444.62           |
| 5                                | 444.32                                                   | 443.99                                         | 443.83                                                   | 443.85                                                   | 444.09                                         | 443.83                                                   | 444.61                                         | 445.68                                                   | 445.57                                         | 445.54                                                   | 444.99                                                   | 444.65                                         |
| 6<br>7<br>8<br>9                 | 444.29<br>444.30<br>444.28<br>444.17                     | 443.97<br>443.92<br>443.87<br>443.90           | 443.85<br>443.86<br>443.85<br>443.87                     | 443.86<br>443.93<br>443.86<br>443.85                     | 444.08<br>444.06<br>444.07<br>444.07           | 443.83<br>443.82<br>443.77<br>443.74                     | 444.65<br>444.64<br>444.66<br>444.70           | 445.66<br>445.68<br>445.69<br>445.64                     | 445.63<br>445.63<br>445.52<br>445.49           | 445.50<br>445.45<br>445.45<br>445.39                     | 445.10<br>445.00<br>444.96<br>444.90                     | 444.58<br>444.56<br>444.53<br>444.53           |
| 10                               | 444.12                                                   | 443.87                                         | 443.84                                                   | 443.87                                                   | 444.03                                         | 443.78                                                   | 444.76                                         | 445.68                                                   | 445.49                                         | 445.46                                                   | 444.85                                                   | 444.52                                         |
| 11<br>12<br>13<br>14<br>15       | 444.15<br>444.15<br>444.17<br>444.10<br>444.14           | 443.89<br>443.86<br>443.81<br>443.77<br>443.78 | 443.84<br>443.80<br>443.81<br>443.85<br>443.91           | 443.88<br>443.86<br>443.88<br>443.87                     | 444.16<br>444.08<br>444.13<br>444.06<br>444.04 | 443.78<br>443.78<br>443.78<br>443.81<br>443.80           | 444.76<br>444.75<br>444.85<br>444.98<br>445.13 | 445.67<br>445.69<br>445.82<br>446.02<br>446.08           | 445.45<br>445.43<br>445.41<br>445.42<br>445.46 | 445.41<br>445.31<br>445.26<br>445.23                     | 444.83<br>444.82<br>444.83<br>444.79<br>444.80           | 444.59<br>444.53<br>444.39<br>444.42<br>444.41 |
| 16<br>17<br>18<br>19<br>20       | 444.16<br>444.09<br>444.15<br>444.06<br>444.06           | 443.82<br>443.80<br>443.76<br>443.72<br>443.77 | 443.89<br>443.87<br>443.97<br>443.98<br>443.99           | 443.88<br>443.87<br>443.86<br>443.85<br>443.84           | 444.06<br>444.10<br>444.09<br>444.05<br>444.03 | 443.86<br>443.84<br>443.82<br>443.86<br>443.88           | 445.19<br>445.23<br>445.27<br>445.29<br>445.33 | 446.03<br>446.03<br>446.05<br>446.04<br>446.00           | 445.53<br>445.59<br>445.59<br>445.57<br>445.51 | 445.24<br>445.19<br>445.16<br>445.19<br>445.16           | 444.79<br>444.79<br>444.79<br>444.81<br>444.81           | 444.57<br>444.51<br>444.45<br>444.45           |
| 21<br>22<br>23<br>24<br>25       | 444.08<br>444.09<br>444.08<br>444.08<br>444.09           | 443.75<br>443.72<br>443.69<br>443.68<br>443.70 | 444.02<br>444.00<br>443.96<br>443.97<br>443.96           | 443.83<br>443.81<br>443.77<br>443.80<br>443.78           | 444.03<br>444.03<br>444.02<br>444.00<br>443.97 | 443.94<br>443.95<br>443.95<br>443.98<br>444.01           | 445.35<br>445.37<br>445.38<br>445.38<br>445.39 | 445.94<br>445.88<br>445.80<br>445.79<br>445.80           | 445.48<br>445.49<br>445.50<br>445.49           | 445.15<br>445.08<br>445.14<br>445.19<br>445.11           | 444.78<br>444.69<br>444.82<br>444.77<br>444.84           | 444.46<br>444.48<br>444.51<br>444.46<br>444.47 |
| 26<br>27<br>28<br>29<br>30<br>31 | 444.04<br>444.06<br>444.08<br>444.01<br>444.03<br>444.00 | 443.74<br>443.73<br>443.76<br>443.76<br>443.80 | 443.96<br>443.95<br>443.93<br>443.92<br>443.90<br>443.89 | 443.76<br>443.77<br>443.76<br>443.77<br>443.81<br>443.85 | 443.96<br>443.95<br>443.93<br>                 | 444.03<br>444.19<br>444.26<br>444.30<br>444.36<br>444.41 | 445.43<br>445.44<br>445.48<br>445.58<br>445.59 | 445.82<br>445.84<br>445.84<br>445.83<br>445.84<br>445.80 | 445.44<br>445.46<br>445.52<br>445.52<br>445.48 | 445.02<br>444.98<br>445.05<br>445.03<br>445.09<br>445.07 | 444.77<br>444.80<br>444.77<br>444.70<br>444.73<br>444.67 | 444.43<br>444.46<br>444.63<br>444.52<br>444.49 |
| MEAN<br>MAX<br>MIN               | 444.15<br>444.33<br>444.00                               | 443.82<br>444.00<br>443.68                     | 443.90<br>444.02<br>443.80                               | 443.84<br>443.93<br>443.76                               | 444.05<br>444.16<br>443.93                     | 443.93<br>444.41<br>443.74                               | 445.04<br>445.59<br>444.45                     | 445.82<br>446.08<br>445.63                               | 445.53<br>445.78<br>445.41                     | 445.26<br>445.54<br>444.98                               | 444.85<br>445.10<br>444.67                               | 444.52<br>444.65<br>444.39                     |

CAL YR 2001 MEAN 444.46 MAX 446.50 MIN 443.43 WTR YR 2002 MEAN 444.56 MAX 446.08 MIN 443.68

#### 04232482 KEUKA LAKE OUTLET AT DRESDEN, NY

LOCATION.--Lat 42°40'49", long 76°57'15", Yates County, Hydrologic Unit 04140201, on right bank at upstream side of bridge on Milo Street in Dresden, and 0.4 mi upstream from mouth.

DRAINAGE AREA.--207 mi<sup>2</sup>.

PERIOD OF RECORD.--Papril 1965 to current year.

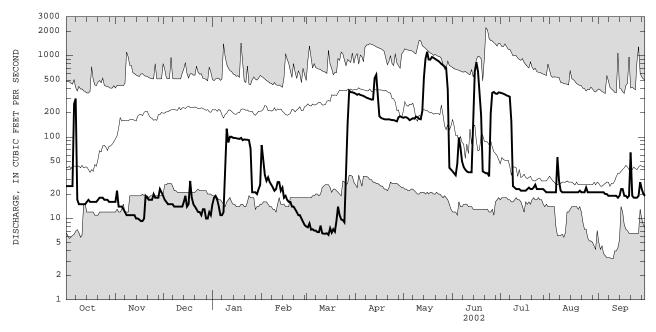
REVISED RECORD.--WDR NY-86-3: 1984 (P).

REVISED RECORD.--WDR NY-86-3: 1984 (P).

GAGE.--Water-stage recorder. Datum of gage is 445.35 ft above NGVD of 1929. Prior to Sept. 6, 1991 at datum 0.68 ft lower, and prior to Oct. 1, 1982, at datum 1.32 ft higher.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow regulated by village of Penn Yan. During each year a large part of flow from 45.5 mi<sup>2</sup> of Mud Creek drainage area (Susquehanna River basin) is diverted into Keuka Lake (Oswego River basin) for power development. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,000 ft<sup>3</sup>/s, Jun. 22, 1972, gage height 8.37 ft, datum then in use, from rating curve extended above 730 ft<sup>3</sup>/s on basis of contracted-opening measurement at Mays Mill, adjusted for intervening area; minimum discharge, 3.2 ft<sup>3</sup>/s, part or all of each day, Sept. 6-10, 1982, gage height, 1.47 ft.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,170 ft<sup>3</sup>/s, May 15, gage height, 4.29 ft; minimum discharge, 5.6 ft<sup>3</sup>/s, Mar. 11.

| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                                    |                                    |                                        |                                    |                                    |                                       |                                    |                                      |                                    |                                    |                                     |                                     |
|--------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|----------------------------------------|------------------------------------|------------------------------------|---------------------------------------|------------------------------------|--------------------------------------|------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|
| DAY                                                                                              | OCT                                | NOV                                | DEC                                    | JAN                                | FEB                                | MAR                                   | APR                                | MAY                                  | JUN                                | JUL                                | AUG                                 | SEP                                 |
| 1<br>2<br>3<br>4<br>5                                                                            | 25<br>25<br>25<br>25<br>25<br>25   | 16<br>22<br>14<br>14<br>14         | 19<br>17<br>16<br>15<br>15             | e15<br>e18<br>e19<br>17<br>14      | 80<br>52<br>e34<br>29<br>e32       | 8.0<br>7.8<br>8.7<br>7.3<br>7.4       | 342<br>332<br>339<br>331<br>326    | 173<br>176<br>175<br>170<br>162      | 38<br>36<br>34<br>47<br>99         | 352<br>347<br>341<br>335<br>326    | 21<br>21<br>21<br>21<br>21          | 21<br>21<br>21<br>21<br>20          |
| 6<br>7<br>8<br>9<br>10                                                                           | 257<br>298<br>17<br>15<br>15       | 13<br>12<br>11<br>11<br>11         | 15<br>15<br>14<br>14<br>14             | 11<br>11<br>e12<br>36<br>127       | 28<br>26<br>24<br>22<br>23         | 7.1<br>7.1<br>6.8<br>6.8<br>8.2       | 321<br>312<br>305<br>300<br>294    | 166<br>171<br>169<br>179<br>175      | 74<br>50<br>43<br>40<br>38         | 320<br>314<br>155<br>25<br>24      | 57<br>29<br>22<br>21<br>21          | 20<br>19<br>19<br>19                |
| 11<br>12<br>13<br>14<br>15                                                                       | 15<br>15<br>15<br>16<br>17         | 11<br>11<br>11<br>10<br>10         | 14<br>14<br>14<br>16<br>19             | 86<br>101<br>101<br>98<br>98       | e28<br>e28<br>e22<br>e24<br>e18    | 6.6<br>6.5<br>6.5<br>6.6<br>6.3       | 289<br>290<br>535<br>586<br>310    | 168<br>166<br>209<br>542<br>926      | 37<br>37<br>37<br>183<br>641       | 23<br>23<br>23<br>22<br>22         | 21<br>21<br>21<br>21<br>21          | 19<br>19<br>18<br>19<br>23          |
| 16<br>17<br>18<br>19<br>20                                                                       | 16<br>16<br>16<br>16<br>16         | 9.7<br>9.3<br>9.3<br>10<br>19      | 14<br>15<br>29<br>18<br>15             | 97<br>96<br>95<br>e98<br>e92       | 19<br>17<br>e16<br>e16<br>14       | 7.6<br>6.7<br>7.4<br>6.9<br>9.4       | 181<br>173<br>169<br>166<br>165    | 1120<br>901<br>896<br>965<br>946     | 834<br>642<br>377<br>185<br>38     | 22<br>22<br>23<br>24<br>23         | 21<br>21<br>21<br>21<br>22          | 23<br>19<br>19<br>18<br>19          |
| 21<br>22<br>23<br>24<br>25                                                                       | 17<br>18<br>18<br>18<br>17         | 18<br>17<br>17<br>17<br>20         | 14<br>13<br>12<br>12<br>11             | 94<br>93<br>93<br>92<br>72         | 14<br>13<br>12<br>11               | 14<br>11<br>9.7<br>9.6<br>9.0         | 165<br>166<br>164<br>162<br>162    | 916<br>888<br>867<br>831<br>793      | 37<br>36<br>36<br>33<br>196        | 23<br>24<br>26<br>23<br>23         | 21<br>21<br>21<br>24<br>21          | 65<br>19<br>18<br>18                |
| 26<br>27<br>28<br>29<br>30<br>31                                                                 | 17<br>17<br>16<br>16<br>16         | 18<br>18<br>18<br>23<br>21         | e13<br>e13<br>e10<br>e10<br>e12<br>e11 | 21<br>21<br>21<br>20<br>23<br>26   | 10<br>9.1<br>8.3<br>               | 26<br>146<br>372<br>357<br>356<br>351 | 159<br>156<br>175<br>181<br>176    | 769<br>735<br>707<br>382<br>42<br>40 | 351<br>359<br>344<br>340<br>354    | 23<br>23<br>23<br>22<br>21<br>21   | 21<br>21<br>21<br>21<br>21<br>21    | 19<br>28<br>23<br>20<br>19          |
| TOTAL<br>MEAN<br>MAX<br>MIN                                                                      | 1071<br>34.5<br>298<br>15          | 435.3<br>14.5<br>23<br>9.3         | 453<br>14.6<br>29<br>10                | 1818<br>58.6<br>127<br>11          | 640.4<br>22.9<br>80<br>8.3         | 1807.0<br>58.3<br>372<br>6.3          | 7732<br>258<br>586<br>156          | 15525<br>501<br>1120<br>40           | 5596<br>187<br>834<br>33           | 3018<br>97.4<br>352<br>21          | 700<br>22.6<br>57<br>21             | 643<br>21.4<br>65<br>18             |
| STATIST                                                                                          | ICS OF M                           | ONTHLY MEA                         | AN DATA FO                             | OR WATER                           | YEARS 196                          | 65 - 2002,                            | BY WATER                           | YEAR (WY)                            |                                    |                                    |                                     |                                     |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)                                                               | 108<br>404<br>1978<br>14.6<br>1989 | 179<br>534<br>1978<br>14.5<br>2002 | 223<br>532<br>1978<br>14.6<br>2002     | 200<br>523<br>1998<br>18.3<br>1966 | 201<br>421<br>1978<br>19.2<br>1967 | 296<br>601<br>1976<br>31.8<br>1989    | 331<br>831<br>2001<br>34.9<br>1995 | 271<br>1003<br>1996<br>22.2<br>1988  | 182<br>676<br>1972<br>17.2<br>1980 | 107<br>892<br>1972<br>21.1<br>1985 | 80.0<br>450<br>1972<br>13.7<br>1983 | 78.5<br>256<br>1987<br>7.14<br>1982 |

e Estimated

#### 04232482 KEUKA LAKE OUTLET AT DRESDEN, NY--Continued

| ANNUAL TOTAL 43907.3 39438.7  ANNUAL MEAN 120 108 190  HIGHEST ANNUAL MEAN 362  LOWEST ANNUAL MEAN 81.1 | .965 - 2002                                             |
|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------|
| HIGHEST DAILY MEAN 1410 Apr 10 1120 May 16 2200 Ju LOWEST DAILY MEAN 9.3 Nov 17 6.3 Mar 15 3.2 Se       | 1978<br>1981<br>Jun 22 1972<br>Jep 9 1982<br>Jep 4 1982 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04233000 CAYUGA INLET NEAR ITHACA, NY

LOCATION.--Lat 42°23'35", long 76°32'43", Tompkins County, Hydrologic Unit 04140201, on left bank 0.8 mi upstream from Enfield (formerly Butternut) Creek, and 5.0 mi south of Ithaca.

DRAINAGE AREA.--35.2 mi².

PERIOD OF RECORD.--March 1937 to current year.

REVISED RECORDS.--WSP 2112: Drainage area. WDR NY 1974: 1973.

REVISED RECORDS.--WSP 2112: Drainage area. WDR NY 1974: 1973.

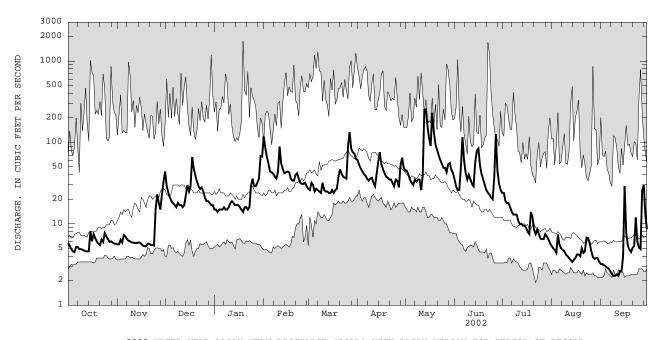
GAGE.--Water-stage recorder and concrete control. Datum of gage is 437.16 ft above NGVD of 1929 (levels by Corps of Engineers). 
REMARKS.--Records fair. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,800 ft<sup>3</sup>/s, Jun. 23, 1972, gage height, 8.10 ft, from rating curve extended above 1,600 ft<sup>3</sup>/s on basis of slope-area measurements at gage heights 5.5 ft and 7.58 ft; minimum discharge, 1.7 ft<sup>3</sup>/s, July 22, 1955.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 700 ft<sup>3</sup>/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date       | Time        | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|---------------------|------------|-------------|-----------------------------------|---------------------|
| May 13 | 1645 | *877                              | *3.30               | No other p | peak greate | er than base disc                 | charge.             |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


Minimum instantaneous discharge not determined.

|                                            |                                             | DIDCINA                                    | ton, cobi                               | C IDDI II                               | DAIL:                                     | Y MEAN VA                                 |                                          | 10 2001 10                                | DEI TEMEL                                 | IC ZOOZ                                      |                                              |                                            |
|--------------------------------------------|---------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------------|
| DAY                                        | OCT                                         | NOV                                        | DEC                                     | JAN                                     | FEB                                       | MAR                                       | APR                                      | MAY                                       | JUN                                       | JUL                                          | AUG                                          | SEP                                        |
| 1<br>2<br>3<br>4<br>5                      | 5.8<br>5.4<br>4.9<br>4.6<br>4.5             | 5.6<br>5.6<br>6.4<br>5.9<br>7.3            | 44<br>29<br>24<br>21<br>19              | 15<br>e15<br>e14<br>15<br>15            | 119<br>86<br>66<br>55<br>44               | 27<br>26<br>32<br>30<br>25                | 61<br>53<br>48<br>44<br>41               | 45<br>45<br>40<br>35<br>32                | 35<br>29<br>26<br>26<br>49                | 24<br>24<br>19<br>18                         | e5.4<br>e5.0<br>e4.8<br>e4.4<br>e7.4         | e3.2<br>e3.2<br>e3.1<br>e3.0<br>e2.9       |
| 6<br>7<br>8<br>9<br>10                     | 5.2<br>5.2<br>4.9<br>4.9                    | 7.0<br>6.5<br>6.2<br>6.1<br>5.9            | 18<br>17<br>16<br>18<br>17              | 15<br>16<br>15<br>15<br>16              | 43<br>41<br>38<br>36<br>44                | 27<br>26<br>25<br>24<br>32                | 39<br>36<br>34<br>36<br>37               | 30<br>35<br>33<br>35<br>35                | 116<br>60<br>42<br>35<br>40               | 16<br>14<br>13<br>13                         | e5.6<br>e5.0<br>e4.8<br>e4.6<br>e4.2         | e2.8<br>e2.6<br>e2.4<br>e2.3<br>e2.3       |
| 11<br>12<br>13<br>14<br>15                 | 4.7<br>4.6<br>4.6<br>4.6<br>8.1             | 5.9<br>5.8<br>5.8<br>5.9                   | 17<br>16<br>17<br>22<br>30              | 18<br>19<br>18<br>17<br>17              | 89<br>e55<br>47<br>42<br>43               | 26<br>25<br>25<br>24<br>24                | 32<br>29<br>41<br>58<br>76               | 26<br>39<br>252<br>256<br>159             | 35<br>31<br>29<br>57<br>79                | 11<br>10<br>e10<br>e9.5<br>e9.5              | e4.0<br>e3.8<br>e3.6<br>e3.4<br>e3.6         | e2.4<br>e2.3<br>e2.6<br>e2.6<br>3.9        |
| 16<br>17<br>18<br>19<br>20                 | 6.1<br>7.5<br>6.7<br>6.1<br>5.7             | 5.7<br>5.4<br>5.3<br>5.3<br>5.7            | 25<br>29<br>66<br>48<br>39              | 17<br>16<br>15<br>14<br>16              | 44<br>43<br>36<br>34<br>34                | 26<br>24<br>26<br>27<br>38                | 54<br>47<br>42<br>38<br>37               | 111<br>91<br>232<br>136<br>95             | 84<br>52<br>41<br>35<br>30                | e9.0<br>e8.0<br>e7.5<br>14                   | e3.8<br>e4.2<br>e4.2<br>e4.0<br>e5.0         | 29<br>7.7<br>5.4<br>4.8<br>4.5             |
| 21<br>22<br>23<br>24<br>25                 | 5.5<br>6.4<br>6.0<br>7.7<br>7.0             | 5.7<br>5.5<br>5.5<br>5.4<br>15             | 33<br>29<br>27<br>28<br>25              | 16<br>15<br>16<br>29<br>36              | 40<br>42<br>36<br>32<br>31                | 47<br>41<br>38<br>37<br>36                | 35<br>35<br>32<br>29<br>35               | 81<br>70<br>61<br>55<br>49                | 26<br>24<br>23<br>21<br>20                | e8.5<br>e7.5<br>e8.5<br>e7.5<br>e6.6         | e4.4<br>e4.6<br>6.8<br>6.7<br>5.8            | 5.1<br>5.4<br>12<br>6.0<br>5.1             |
| 26<br>27<br>28<br>29<br>30<br>31           | 6.5<br>6.0<br>6.1<br>5.9<br>5.7             | 23<br>18<br>15<br>23<br>33                 | 21<br>19<br>19<br>18<br>17<br>17        | 29<br>29<br>32<br>36<br>68<br>67        | 31<br>32<br>29<br>                        | 89<br>134<br>84<br>76<br>73<br>63         | 34<br>28<br>52<br>65<br>49               | 49<br>43<br>54<br>56<br>46<br>42          | 37<br>127<br>45<br>31<br>26               | e6.5<br>e6.5<br>e7.5<br>e7.0<br>e6.5<br>e5.8 | e4.6<br>e3.9<br>e3.7<br>e3.8<br>e3.8<br>e3.4 | 4.9<br>26<br>30<br>13<br>8.6               |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 177.4<br>5.72<br>8.1<br>4.5<br>0.16<br>0.19 | 268.3<br>8.94<br>33<br>5.3<br>0.25<br>0.28 | 785<br>25.3<br>66<br>16<br>0.72<br>0.83 | 691<br>22.3<br>68<br>14<br>0.63<br>0.73 | 1312<br>46.9<br>119<br>29<br>1.33<br>1.39 | 1257<br>40.5<br>134<br>24<br>1.15<br>1.33 | 1277<br>42.6<br>76<br>28<br>1.21<br>1.35 | 2368<br>76.4<br>256<br>26<br>2.17<br>2.50 | 1311<br>43.7<br>127<br>20<br>1.24<br>1.39 | 350.9<br>11.3<br>24<br>5.8<br>0.32<br>0.37   | 142.3<br>4.59<br>7.4<br>3.4<br>0.13<br>0.15  | 209.1<br>6.97<br>30<br>2.3<br>0.20<br>0.22 |
| STATIS                                     | TICS OF M                                   | MONTHLY MEA                                | AN DATA F                               | OR WATER                                | YEARS 1937                                | 7 - 2002,                                 | BY WATER                                 | YEAR (WY)                                 |                                           |                                              |                                              |                                            |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)         | 19.7<br>106<br>1956<br>3.76<br>1965         | 30.7<br>112<br>1997<br>4.56<br>1965        | 39.1<br>118<br>1973<br>6.09<br>1961     | 37.1<br>131<br>1998<br>6.32<br>1961     | 47.7<br>113<br>1976<br>11.8<br>1980       | 87.7<br>182<br>1945<br>25.0<br>1965       | 86.7<br>310<br>1993<br>21.8<br>1946      | 51.4<br>132<br>1984<br>15.7<br>2001       | 27.4<br>162<br>1972<br>5.47<br>1955       | 14.6<br>57.4<br>1972<br>3.77<br>1955         | 11.5<br>66.2<br>1942<br>3.24<br>1966         | 11.5<br>61.0<br>1975<br>2.98<br>1964       |

e Estimated

# 04233000 CAYUGA INLET NEAR ITHACA, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1937 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 7649.6                 | 10149.0             |                         |
| ANNUAL MEAN              | 21.0                   | 27.8                | 38.6                    |
| HIGHEST ANNUAL MEAN      |                        |                     | 61.7 1978               |
| LOWEST ANNUAL MEAN       |                        |                     | 15.3 1965               |
| HIGHEST DAILY MEAN       | 270 Apr 8              | 256 May 14          | 1750 Jan 19 1996        |
| LOWEST DAILY MEAN        | 2.5 Aug 9              | 2.3 Sep 9           | 1.9 Jul 22 1955         |
| ANNUAL SEVEN-DAY MINIMUM | 2.6 Aug 6              | 2.4 Sep 7           | 2.2 Aug 28 1939         |
| ANNUAL RUNOFF (CFSM)     | 0.60                   | 0.79                | 1.10                    |
| ANNUAL RUNOFF (INCHES)   | 8.08                   | 10.73               | 14.89                   |
| 10 PERCENT EXCEEDS       | 41                     | 55                  | 84                      |
| 50 PERCENT EXCEEDS       | 11                     | 20                  | 20                      |
| 90 PERCENT EXCEEDS       | 3.7                    | 4.6                 | 5.3                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04233300 SIXMILE CREEK AT BETHEL GROVE, NY

LOCATION.--Lat 42°24'11", long 76°26'07", Tompkins County, Hydrologic Unit 04140201, on left bank at bridge on German Cross Road, 3.4 mi southeast of Ithaca.

DRAINAGE AREA.--39.0 mi².

PERIOD OF RECORD.--March 1995 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 700 ft above NGVD of 1929, from topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Telephone gage-height telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,200 ft³/s, Jan. 19, 1996, gage height, 9.78 ft; minimum discharge, 1.5 ft³/s, Aug. 2, 1995.

Time

1930

Date

May 13

Discharge (ft<sup>3</sup>/s)

\*1,190

Date

Discharge  $(ft^3/s)$ 

Time

No other peak greater than base discharge.

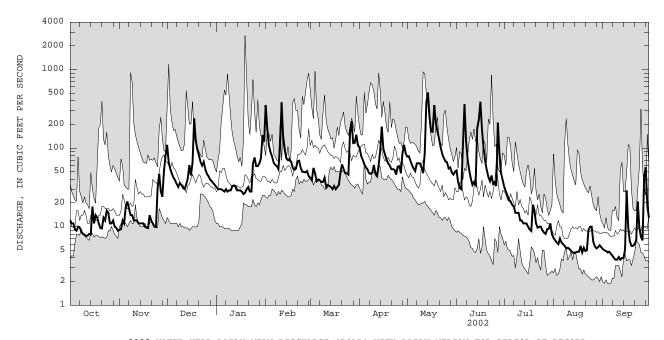
Gage height

(ft)

 $ft^3/s$ , Aug. 2, 1995. EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000  $ft^3/s$  and maximum (\*):

Gage height

(ft)


\*4.71

| Minimum discharge, 3.2 ft <sup>3</sup> /s, Sept. 12. |                                            |                                                    |                                       |                                           |                                           |                                               |                                           |                                                  |                                           |                                            |                                            |                                            |
|------------------------------------------------------|--------------------------------------------|----------------------------------------------------|---------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------|-------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|
|                                                      |                                            | DISCHA                                             | RGE, CUBIC                            | FEET PE                                   |                                           | WATER YE<br>MEAN VA                           |                                           | R 2001 TO                                        | SEPTEMBE                                  | R 2002                                     |                                            |                                            |
| DAY                                                  | OCT                                        | NOV                                                | DEC                                   | JAN                                       | FEB                                       | MAR                                           | APR                                       | MAY                                              | JUN                                       | JUL                                        | AUG                                        | SEP                                        |
| 1<br>2<br>3<br>4<br>5                                | 12<br>11<br>11<br>9.3<br>8.9               | 9.1<br>9.3<br>12<br>11<br>18                       | 110<br>66<br>54<br>47<br>42           | e32<br>e30<br>e30<br>30<br>29             | 354<br>177<br>108<br>89<br>78             | 42<br>39<br>56<br>48<br>e38                   | 102<br>80<br>71<br>62<br>57               | 78<br>79<br>69<br>61<br>55                       | 52<br>37<br>31<br>30<br>113               | 32<br>28<br>25<br>22<br>21                 | 7.2<br>6.7<br>6.3<br>6.0<br>7.1            | 5.2<br>5.0<br>4.9<br>4.7<br>4.8            |
| 6<br>7<br>8<br>9<br>10                               | 10<br>9.8<br>8.7<br>8.1<br>7.9             | 21<br>17<br>14<br>14                               | 39<br>35<br>32<br>36<br>34            | 28<br>30<br>e28<br>29<br>29               | e65<br>61<br>59<br>54<br>101              | 40<br>39<br>37<br>37<br>42                    | 54<br>48<br>47<br>49<br>61                | 51<br>64<br>64<br>64<br>57                       | 364<br>123<br>71<br>52<br>41              | 19<br>18<br>15<br>15                       | 6.3<br>6.0<br>5.7<br>5.3<br>5.4            | 4.5<br>4.3<br>4.0<br>3.8<br>3.8            |
| 11<br>12<br>13<br>14<br>15                           | 7.6<br>7.7<br>8.1<br>8.0                   | 12<br>12<br>11<br>11                               | 31<br>30<br>35<br>41<br>61            | 33<br>33<br>33<br>29<br>29                | 383<br>130<br>94<br>e74<br>e70            | e32<br>34<br>33<br>32<br>30                   | 47<br>44<br>60<br>95<br>187               | 48<br>86<br>380<br>510<br>250                    | 34<br>37<br>34<br>179<br>228              | 12<br>12<br>11<br>11                       | 5.2<br>4.9<br>4.7<br>4.6<br>4.7            | 4.1<br>3.8<br>4.0<br>4.0<br>5.1            |
| 16<br>17<br>18<br>19<br>20                           | 11<br>14<br>13<br>11<br>9.6                | 11<br>10<br>9.7<br>9.6<br>14                       | 45<br>66<br>239<br>125<br>95          | 29<br>28<br>26<br>e27<br>e30              | 73<br>67<br>56<br>53<br>55                | 33<br>30<br>32<br>34<br>49                    | 97<br>83<br>71<br>64<br>60                | 162<br>161<br>352<br>208<br>161                  | 389<br>172<br>102<br>69<br>53             | 10<br>9.2<br>8.8<br>19<br>16               | 4.8<br>4.8<br>5.7<br>4.7<br>5.4            | 29<br>9.8<br>6.5<br>5.7<br>5.7             |
| 21<br>22<br>23<br>24<br>25                           | 9.5<br>13<br>12<br>16<br>15                | 12<br>11<br>10<br>9.9<br>31                        | 80<br>67<br>60<br>67<br>54            | e32<br>28<br>28<br>64<br>76               | 68<br>69<br>56<br>50                      | 62<br>54<br>48<br>48<br>46                    | 54<br>54<br>53<br>46<br>58                | 132<br>102<br>84<br>75<br>68                     | 43<br>38<br>45<br>35<br>37                | 11<br>9.7<br>10<br>10<br>9.0               | 4.9<br>5.0<br>9.1<br>10                    | 6.0<br>6.8<br>21<br>9.6<br>7.4             |
| 26<br>27<br>28<br>29<br>30<br>31                     | 11<br>11<br>12<br>10<br>9.7<br>8.9         | 47<br>28<br>24<br>50<br>80                         | 47<br>e44<br>e40<br>e38<br>e36<br>e34 | 59<br>59<br>64<br>75<br>147<br>121        | 49<br>51<br>44<br><br>                    | 154<br>220<br>116<br>117<br>148<br>109        | 59<br>48<br>86<br>110<br>86               | 66<br>55<br>57<br>49<br>46<br>50                 | 33<br>211<br>85<br>48<br>39               | 8.4<br>8.1<br>9.3<br>9.4<br>11<br>8.0      | 6.4<br>5.6<br>5.3<br>5.5<br>5.8<br>5.5     | 6.7<br>43<br>57<br>18<br>13                |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN.           | 332.8<br>10.7<br>18<br>7.6<br>0.27<br>0.32 | 551.6<br>18.4<br>80<br>9.1<br>0.47<br>0.52         | 1830<br>59.0<br>239<br>30<br>1.50     | 1345<br>43.4<br>147<br>26<br>1.10<br>1.27 | 2638<br>94.2<br>383<br>44<br>2.40<br>2.50 | 1879<br>60.6<br>220<br>30<br>1.54<br>1.78     | 2093<br>69.8<br>187<br>44<br>1.78<br>1.98 | 3744<br>121<br>510<br>46<br>3.07<br>3.54         | 2825<br>94.2<br>389<br>30<br>2.40<br>2.67 | 433.9<br>14.0<br>32<br>8.0<br>0.36<br>0.41 | 184.6<br>5.95<br>10<br>4.6<br>0.15<br>0.17 | 311.2<br>10.4<br>57<br>3.8<br>0.26<br>0.29 |
| STATIS MEAN MAX (WY) MIN (WY)                        | 21.8<br>52.9<br>1997<br>9.19<br>1998       | MONTHLY MEA<br>44.3<br>125<br>1997<br>11.5<br>1999 | 61.9<br>184<br>1997<br>14.8<br>1999   | 82.8<br>186<br>1996<br>26.5<br>2001       | 91.1<br>134<br>2000<br>51.8<br>2001       | - 2002,<br>105<br>174<br>1998<br>60.6<br>2002 | 110<br>197<br>2001<br>51.5<br>1995        | YEAR (WY)<br>77.1<br>165<br>1996<br>19.5<br>1999 | 49.9<br>94.2<br>2002<br>6.77<br>1999      | 20.1<br>40.2<br>1996<br>4.10<br>1999       | 12.9<br>47.4<br>1996<br>3.93<br>1999       | 14.0<br>27.3<br>1996<br>4.38<br>1995       |

e Estimated

# 04233300 SIXMILE CREEK AT BETHEL GROVE, NY--Continued

| SUMMARY STATISTICS                          | FOR 2001 CALENDAR YEAR   | FOR 2002 WATER YEAR    | WATER YEARS 1995 - 2002 |
|---------------------------------------------|--------------------------|------------------------|-------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN                 | 17631.4<br>48.3          | 18168.1<br>49.8        | 59.4                    |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN   |                          |                        | 81.3 1996<br>38.1 1999  |
| HIGHEST DAILY MEAN                          | 851 Jun 23               | 510 May 14             | 2700 Jan 19 1996        |
| LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM  | 4.8 Aug 15<br>5.4 Aug 10 | 3.8 Sep 9<br>3.9 Sep 8 | 2.0 Aug 31 1999         |
| ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) | 1.23<br>16.69            | 1.27<br>17.20          | 1.51<br>20.53           |
| 10 PERCENT EXCEEDS<br>50 PERCENT EXCEEDS    | 80<br>23                 | 102<br>33              | 123<br>32               |
| 90 PERCENT EXCEEDS                          | 7.6                      | 5.8                    | 8.1                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04233300 SIXMILE CREEK AT BETHEL GROVE, NY--Continued

#### WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1996 to current year.

PERIOD OF DAILY RECORD. -

MEAN

MAX

MIN

SUSPENDED-SOLIDS CONCENTRATION: October 1996 to September 1998.

SUSPENDED-SOLIDS DISCHARGE: October 1996 to September 1998.

SUSPENDED-SEDIMENT CONCENTRATION: December 1998 to September 1999. SUSPENDED-SEDIMENT DISCHARGE: December 1998 to September 1999.

INSTRUMENTATION. -- Automatic water sampler since 1995.

COOPERATION.--Water-quality samples were collected and analyzed by personnel from the City of Ithaca Environmental Laboratories.

Records of daily suspended sediment (mg/L) furnished by the City of Ithaca Environmental Laboratories.

EXTREMES FOR PERIOD OF RECORD.-
SUSPENDED-SOLIDS CONCENTRATION: Maximum daily mean 1,480 mg/L on Nov. 8, 1996; minimum daily mean 1 mg/L on many days during

the 1998 water year.

SUSPENDED-SOLIDS DISCHARGE: Maximum daily mean 7,050 tons on Nov. 8, 1996; minimum daily mean 0.02 tons on several days in

October 1997 and September 1998.

SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean 1,680 mg/L on Mar. 4, 1999; minimum daily mean 3 mg/L Apr. 28 to May 2. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily mean 6,800 tons on Mar. 4, 1999; minimum daily mean 0.13 tons Aug. 26, 1999.

EXTREMES FOR CURRENT YEAR.--

SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean during period December to September, 1,680 mg/L onMar. 4, 1999; minimum daily mean 3 mg/L Apr. 28 to May 2.

SUSPENDED-SEDIMENT DISCHARGE: Maximum daily mean during period December to September, 6,080 tons onMar. 4, 1999; minimum

daily mean 0.13 tons Aug. 26, 1999. SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUES

| DAY                              | OCT                              | NOV                             | DEC                                    | JAN                                    | FEB                | MAR                                  | APR                          | MAY                        | JUN                         | JUL                              | AUG                              | SEP                          |
|----------------------------------|----------------------------------|---------------------------------|----------------------------------------|----------------------------------------|--------------------|--------------------------------------|------------------------------|----------------------------|-----------------------------|----------------------------------|----------------------------------|------------------------------|
| 1                                | 91                               | 79                              | 412                                    | 113                                    | 404                | 55                                   | 64                           | 84                         | 39                          | 38                               | 46                               | 53                           |
| 2                                | 89                               | 83                              | 176                                    | 107                                    | 264                | 55                                   | 61                           | 80                         | 40                          | 40                               | 48                               | 54                           |
| 3                                | 86                               | 87                              | 134                                    | 100                                    | 202                | 55                                   | 59                           | 76                         | 46                          | 43                               | 45                               | 55                           |
| 4                                | 82                               | 92                              | 120                                    | 95                                     | 146                | 56                                   | 58                           | 71                         | 71                          | 46                               | 41                               | 55                           |
| 5                                | 80                               | 122                             | 107                                    | 93                                     | 114                | 55                                   | 56                           | 67                         | 235                         | 47                               | 37                               | 57                           |
| 6                                | 79                               | 128                             | 94                                     | 91                                     | 86                 | 53                                   | 53                           | 66                         | 212                         | 43                               | 33                               | 59                           |
| 7                                | 79                               | 117                             | 80                                     | 90                                     | 63                 | 46                                   | 49                           | 74                         | 61                          | 39                               | 30                               | 58                           |
| 8                                | 78                               | 106                             | 79                                     | 88                                     | 45                 | 41                                   | 48                           | 81                         | 49                          | 35                               | 31                               | 56                           |
| 9                                | 77                               | 99                              | 104                                    | 84                                     | 46                 | 43                                   | 54                           | 83                         | 38                          | 36                               | 32                               | 55                           |
| 10                               | 77                               | 97                              | 117                                    | 78                                     | 149                | 46                                   | 58                           | 83                         | 29                          | 37                               | 33                               | 54                           |
| 11                               | 76                               | 95                              | 85                                     | 73                                     | 382                | 48                                   | 54                           | 81                         | 31                          | 37                               | 35                               | 53                           |
| 12                               | 75                               | 92                              | 57                                     | 68                                     | 203                | 46                                   | 66                           | 134                        | 33                          | 38                               | 36                               | 52                           |
| 13                               | 75                               | 90                              | 65                                     | 63                                     | 158                | 46                                   | 126                          | 897                        | 35                          | 39                               | 37                               | 51                           |
| 14                               | 82                               | 88                              | 79                                     | 58                                     | 143                | 52                                   | 146                          | 216                        | 194                         | 39                               | 38                               | 51                           |
| 15                               | 109                              | 88                              | 94                                     | 53                                     | 133                | 56                                   | 205                          | 75                         | 330                         | 40                               | 39                               | 62                           |
| 16                               | 83                               | 87                              | 108                                    | 49                                     | 127                | 51                                   | 114                          | 78                         | 719                         | 40                               | 40                               | 136                          |
| 17                               | 93                               | 87                              | 134                                    | 52                                     | 122                | 45                                   | 89                           | 196                        | 274                         | 41                               | 41                               | 89                           |
| 18                               | 93                               | 86                              | 289                                    | 56                                     | 117                | 43                                   | 83                           | 570                        | 131                         | 43                               | 42                               | 53                           |
| 19                               | 85                               | 86                              | 188                                    | 60                                     | 112                | 54                                   | 79                           | 456                        | 35                          | 45                               | 45                               | 52                           |
| 20                               | 80                               | 85                              | 113                                    | 66                                     | 107                | 65                                   | 76                           | 332                        | 28                          | 43                               | 51                               | 53                           |
| 21                               | 86                               | 84                              | 72                                     | 71                                     | 101                | 71                                   | 72                           | 252                        | 28                          | 41                               | 57                               | 54                           |
| 22                               | 92                               | 83                              | 113                                    | 77                                     | 94                 | 74                                   | 69                           | 176                        | 27                          | 41                               | 58                               | 61                           |
| 23                               | 89                               | 82                              | 160                                    | 90                                     | 81                 | 71                                   | 68                           | 99                         | 26                          | 46                               | 59                               | 69                           |
| 24                               | 106                              | 81                              | 193                                    | 127                                    | 67                 | 67                                   | 69                           | 41                         | 25                          | 50                               | 60                               | 62                           |
| 25                               | 103                              | 180                             | 162                                    | 153                                    | 59                 | 64                                   | 74                           | 37                         | 21                          | 48                               | 61                               | 65                           |
| 26<br>27<br>28<br>29<br>30<br>31 | 88<br>86<br>87<br>84<br>80<br>77 | 255<br>189<br>124<br>131<br>344 | 128<br>123<br>123<br>122<br>121<br>119 | 137<br>116<br>106<br>179<br>365<br>344 | 73<br>84<br>70<br> | 198<br>151<br>110<br>99<br>110<br>85 | 79<br>84<br>137<br>114<br>88 | 38<br>38<br>39<br>39<br>39 | 40<br>480<br>80<br>64<br>49 | 46<br>44<br>42<br>40<br>42<br>44 | 61<br>55<br>50<br>51<br>52<br>53 | 68<br>220<br>185<br>88<br>70 |

# 04233300 SIXMILE CREEK AT BETHEL GROVE, NY--Continued SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                  | DAILY MEAN VALUES                      |                                 |                             |                                 |                               |                                   |                                 |                                        |                                 |                                          |                                             |                                      |
|----------------------------------|----------------------------------------|---------------------------------|-----------------------------|---------------------------------|-------------------------------|-----------------------------------|---------------------------------|----------------------------------------|---------------------------------|------------------------------------------|---------------------------------------------|--------------------------------------|
| DAY                              | OCT                                    | NOV                             | DEC                         | JAN                             | FEB                           | MAR                               | APR                             | MAY                                    | JUN                             | JUL                                      | AUG                                         | SEP                                  |
| 1<br>2<br>3<br>4<br>5            | 2.4<br>2.8<br>2.5<br>2.1<br>1.9        | 2.0<br>2.1<br>2.9<br>2.8<br>6.1 | 130<br>32<br>19<br>15       | 11<br>10<br>9.8<br>7.8<br>7.1   | 360<br>130<br>59<br>35<br>24  | 6.3<br>5.7<br>8.4<br>7.3<br>6.2   | 17<br>13<br>11<br>9.8<br>8.7    | 18<br>17<br>14<br>12<br>10             | 5.5<br>3.9<br>3.9<br>5.8<br>180 | 3.3<br>3.0<br>2.9<br>2.7<br>2.7          | 0.91<br>0.87<br>0.76<br>0.66<br>0.70        | 0.75<br>0.73<br>0.72<br>0.70<br>0.75 |
| 6<br>7<br>8<br>9<br>10           | 2.2<br>2.1<br>1.8<br>1.7<br>1.6        | 7.3<br>5.3<br>4.0<br>3.6<br>3.3 | 9.8<br>7.6<br>6.9<br>10     | 6.8<br>7.3<br>8.3<br>6.6<br>6.0 | 17<br>10<br>7.1<br>6.7<br>110 | 5.6<br>4.8<br>4.1<br>4.3<br>5.2   | 7.8<br>6.4<br>6.0<br>7.1<br>9.6 | 9.2<br>13<br>14<br>14<br>13            | 250<br>20<br>9.5<br>5.3<br>3.2  | 2.2<br>1.8<br>1.4<br>1.4                 | 0.57<br>0.49<br>0.48<br>0.46<br>0.48        | 0.71<br>0.66<br>0.62<br>0.58<br>0.56 |
| 11<br>12<br>13<br>14<br>15       | 1.6<br>1.5<br>1.6<br>1.8<br>5.2        | 3.2<br>2.9<br>2.7<br>2.6<br>2.7 | 7.4<br>4.7<br>6.1<br>8.9    | 6.6<br>6.2<br>5.6<br>4.5<br>4.1 | 490<br>71<br>40<br>29<br>26   | 4.5<br>4.2<br>4.1<br>4.6<br>4.6   | 6.9<br>7.8<br>21<br>39<br>130   | 11<br>40<br>1600<br>360<br>51          | 2.8<br>3.3<br>3.2<br>160<br>290 | 1.3<br>1.2<br>1.2<br>1.2                 | 0.48<br>0.48<br>0.47<br>0.47<br>0.50        | 0.58<br>0.54<br>0.56<br>0.55<br>0.96 |
| 16<br>17<br>18<br>19<br>20       | 2.4<br>3.4<br>3.2<br>2.5<br>2.1        | 2.6<br>2.5<br>2.3<br>2.2<br>3.2 | 13<br>25<br>200<br>65<br>29 | 3.8<br>3.9<br>3.9<br>5.7<br>6.5 | 25<br>22<br>18<br>16<br>16    | 4.6<br>3.6<br>3.7<br>4.9<br>8.7   | 30<br>20<br>16<br>14<br>12      | 34<br>88<br>640<br>260<br>140          | 810<br>130<br>37<br>6.7<br>4.0  | 1.1<br>1.0<br>1.0<br>2.3<br>1.8          | 0.52<br>0.54<br>0.65<br>0.57<br>0.75        | 11<br>2.4<br>0.94<br>0.81<br>0.82    |
| 21<br>22<br>23<br>24<br>25       | 2.2<br>3.2<br>2.9<br>4.7<br>4.1        | 2.8<br>2.5<br>2.3<br>2.2        | 16<br>20<br>26<br>35<br>24  | 6.4<br>5.8<br>6.7<br>23<br>32   | 19<br>18<br>12<br>9.1<br>8.0  | 12<br>11<br>9.2<br>8.7<br>7.9     | 11<br>10<br>9.7<br>8.5          | 90<br>49<br>23<br>8.3<br>6.9           | 3.2<br>2.8<br>3.2<br>2.4<br>2.1 | 1.2<br>1.1<br>1.3<br>1.4                 | 0.75<br>0.78<br>1.5<br>1.7                  | 0.87<br>1.2<br>3.9<br>1.6<br>1.3     |
| 26<br>27<br>28<br>29<br>30<br>31 | 2.7<br>2.6<br>2.7<br>2.4<br>2.1<br>1.8 | 33<br>14<br>8.0<br>18<br>96     | 16<br>17<br>13<br>13<br>13  | 22<br>19<br>18<br>37<br>150     | 9.7<br>12<br>8.3<br>          | 160<br>97<br>35<br>32<br>44<br>25 | 12<br>11<br>42<br>37<br>20      | 6.7<br>5.6<br>5.9<br>5.1<br>4.8<br>5.3 | 6.8<br>490<br>19<br>8.4<br>5.2  | 1.0<br>0.96<br>1.1<br>1.0<br>1.2<br>0.94 | 1.0<br>0.84<br>0.72<br>0.75<br>0.81<br>0.77 | 1.2<br>42<br>34<br>4.3<br>2.3        |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 77.8<br>2.5<br>5.2<br>1.5              | 267.1<br>8.9<br>96.0<br>2.0     | 833.4<br>26.9<br>200<br>4.7 | 571.4<br>18.4<br>150<br>3.8     | 1607.9<br>57.4<br>490<br>6.7  | 547.2<br>17.7<br>160<br>3.6       | 566.3<br>18.9<br>130<br>6.0     | 3568.8<br>115<br>1600<br>4.8           | 2477.2<br>82.6<br>810<br>2.1    | 48.60<br>1.6<br>3.3<br>0.94              | 23.13<br>0.75<br>1.7<br>0.46                | 118.61<br>4.0<br>42.0<br>0.54        |

#### 04233500 CAYUGA INLET (CAYUGA LAKE) AT ITHACA, NY

(Formerly published as Cayuga Lake at Ithaca)

LOCATION.--Lat 42°26'45", long 76°30'45", Tompkins County, Hydrologic Unit 04140201, on left bank of natural channel 40 ft upstream from flood-control channel of Cayuga Inlet, at north end of Taughannock Boulevard, and 1.0 mi upstream from mouth of Inlet, at Ithaca.

DRAINAGE AREA.--Cayuga Inlet 143 mi²; Cayuga Lake at mouth 1,564 mi²; Cayuga Lake portion 785 mi².

PERIOD OF RECORD.--August 1905 to December 1909, August 1956 to current year in reports of Geological Survey. January 1910 to September 1925 in reports of State Engineer and Surveyor. REVISED RECORDS. -- WSP 2112: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929 (1.43 ft Barge Canal datum). To convert elevations to NAVD adjustment of 1988, subtract 0.62 ft. Prior to September 1925, non-recording gage at several sites within 1 mi of present site. Prior to October 1968, at datum 378.57 ft higher. October 1968 to September 1975, at datum 376.57 ft higher. REMARKS.--Lake elevation regulated at Mud Lock by New York State Thruway Authority. Area of water surface, 66.9 mi<sup>2</sup>. Seneca River (Cayuga and Seneca Canal) enters lake 0.5 mi upstream from Mud Lock and is included in second drainage area given

above. Telephone gage-height telemeter at station.

EXTREMES FOR PERIOD OF RECORD. --(1905-25 and since 1956): Maximum elevation, 386.46 ft, April 26, 1993; minimum elevation not determined; minimum daily elevation, 377.64 ft, present datum, Mar. 28, 1960.

EXTREMES FOR CURRENT YEAR. --Maximum recorded elevation, 383.68 ft, May 31, but may have been higher during period of no gage height record, Apr. 19 to May 29; minimum elevation, 379.15 ft, Mar. 2.

#### ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY                              | OCT                                                      | NOV                                            | DEC                                            | JAN                                                      | FEB                                            | MAR                                                      | APR                                            | MAY              | JUN                                            | JUL                                                      | AUG                                                      | SEP                                            |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 382.40<br>382.38<br>382.33<br>382.20<br>382.19           | 381.80<br>381.77<br>381.79<br>381.70<br>381.71 | 380.39<br>380.36<br>380.25<br>380.22<br>380.19 | 379.39<br>379.37<br>379.38<br>379.38<br>379.37           | 380.24<br>380.44<br>380.38<br>380.44<br>380.42 | 379.44<br>379.36<br>379.43<br>379.47<br>379.40           | 380.69<br>380.66<br>380.75<br>380.81<br>380.82 | <br><br>         | 383.28<br><br>383.22<br>383.07<br>383.05       | 382.54<br>382.53<br>382.50                               | 382.67<br>382.65<br>382.68<br>382.62<br>382.67           | 382.37<br>382.36<br>382.36<br>382.42<br>382.42 |
| 6<br>7<br>8<br>9<br>10           | 382.18<br>382.17<br>382.12<br>381.97<br>382.03           | 381.63<br>381.53<br>381.42<br>381.42<br>381.28 | 380.15<br>380.12<br>380.02<br>379.96<br>379.82 | 379.40<br>379.50<br>379.41<br>379.41<br>379.45           | 380.39<br>380.36<br>380.36<br>380.27<br>380.08 | 379.46<br>379.51<br>379.48<br>379.46<br>379.61           | 380.86<br>380.83<br>380.84<br>380.92<br>381.05 | <br><br>         | 383.19<br>383.18<br>383.07<br>382.97<br>382.87 | 382.45<br>382.46<br>382.60                               | 382.76<br>382.63<br>382.61<br>382.54<br>382.51           | 382.35<br>382.32<br>382.30<br>382.30<br>382.30 |
| 11<br>12<br>13<br>14<br>15       | 382.04<br>382.01<br>382.06<br>381.98<br>382.16           | 381.23<br>381.10<br>380.95<br>380.88<br>380.85 | 379.78<br>379.65<br>379.63<br>379.66<br>379.70 | 379.48<br>379.46<br>379.50<br>379.48<br>379.51           | 380.35<br>380.14<br>380.23<br>380.09<br>380.03 | 379.62<br>379.62<br>379.62<br>379.68<br>379.66           | 381.04<br>381.00<br>381.15<br>381.33<br>381.57 | <br><br>         | 382.79<br>382.77<br>382.77<br>382.83<br>383.00 | 382.55<br>382.51<br>382.50<br>382.50<br>382.53           | 382.50<br>382.50<br>382.48<br>382.45<br>382.48           | 382.47<br>382.28<br>382.22<br>382.19<br>382.25 |
| 16<br>17<br>18<br>19<br>20       | 382.23<br>382.36<br>382.57<br>382.39<br>382.28           | 380.85<br>380.78<br>380.70<br>380.63<br>380.69 | 379.59<br>379.51<br>379.67<br>379.65<br>379.67 | 379.53<br>379.51<br>379.54<br>379.52<br>379.53           | 380.03<br>380.03<br>379.92<br>379.80<br>379.74 | 379.79<br>379.73<br>379.70<br>379.80<br>379.79           | 381.71<br>381.80<br>381.88<br>                 | <br><br>         | 383.22<br>383.30<br>383.26<br>383.20<br>383.11 | 382.59<br>382.52<br>382.58<br>382.60<br>382.61           | 382.46<br>382.49<br>382.49<br>382.52<br>382.52           | 382.42<br>382.36<br>382.36<br>382.28<br>382.29 |
| 21<br>22<br>23<br>24<br>25       | 382.26<br>382.28<br>382.25<br>382.25<br>382.15           | 380.61<br>380.56<br>380.49<br>380.43<br>380.39 | 379.70<br>379.60<br>379.47<br>379.46<br>379.45 | 379.55<br>379.60<br>379.60<br>379.71<br>379.77           | 379.75<br>379.74<br>379.71<br>379.59<br>379.50 | 379.93<br>379.95<br>379.95<br>380.01<br>380.07           | <br><br>                                       |                  | 383.03<br>382.93<br>382.81<br>382.74<br>382.65 | 382.56<br>382.53<br>382.65<br>382.68<br>382.60           | 382.46<br>382.40<br>382.53<br>382.49<br>382.59           | 382.32<br>382.37<br>382.43<br>382.38<br>382.39 |
| 26<br>27<br>28<br>29<br>30<br>31 | 382.11<br>382.16<br>382.13<br>382.05<br>382.04<br>381.89 | 380.47<br>380.40<br>380.40<br>380.33<br>380.34 | 379.43<br>379.38<br>379.36<br>379.39<br>379.37 | 379.79<br>379.82<br>379.85<br>379.91<br>380.00<br>380.03 | 379.50<br>379.52<br>379.49<br>                 | 380.11<br>380.39<br>380.47<br>380.50<br>380.61<br>380.65 | <br><br>                                       | 383.32<br>383.30 | 382.58<br><br>382.75<br>382.66<br>382.52       | 382.46<br>382.56<br>382.58<br>382.62<br>382.69<br>382.66 | 382.50<br>382.57<br>382.49<br>382.46<br>382.48<br>382.42 | 382.34<br>382.40<br>382.59<br>382.45<br>382.42 |
| MEAN<br>MAX<br>MIN               | 382.18<br>382.57<br>381.89                               | 380.97<br>381.80<br>380.33                     | 379.74<br>380.39<br>379.36                     | 379.57<br>380.03<br>379.37                               | 380.02<br>380.44<br>379.49                     | 379.82<br>380.65<br>379.36                               |                                                |                  |                                                |                                                          | 382.54<br>382.76<br>382.40                               | 382.36<br>382.59<br>382.19                     |

#### 04234000 FALL CREEK NEAR ITHACA, NY

LOCATION.--Lat 42°27'12", long 76°28'23", Tompkins County, Hydrologic Unit 04140201, on left bank in Forest Home, 0.2 mi east of Ithaca, 0.5 mi upstream from Cornell University dam, and 2.2 mi upstream from mouth.

DRAINAGE AREA.--126 mi<sup>2</sup>.

PERIOD OF RECORD. --July 1908 to June 1909 (gage heights only), February 1925 to current year.
REVISED RECORDS.--WSP 874: 1935-38. WSP 1912: Drainage area.
GAGE.--Water-stage recorder and concrete control. Datum of gage is 795.13 ft above NGVD of 1929. July 1908 to June 1909,

GAGE.—Water-stage recorder and concrete control. Datum of gage is 795.13 ft above NGVD of 1929. July 1908 to June 1909, nonrecording gage at bridge 1.2 mi downstream at different datum.

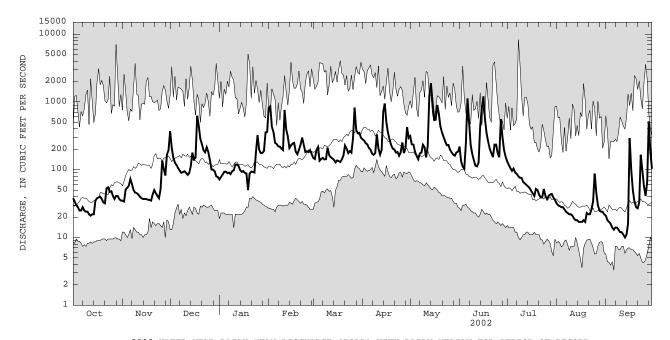
REMARKS.—Records good except those for estimated daily discharges, which are fair. Diversion from point about 1 mi upstream from station by Cornell University for water supply and at several sites for irrigation purposes. Records of diversion from Fall Creek are in files of Cornell University. Telephone gage-height telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 15,500 ft<sup>3</sup>/s, July 8, 1935, gage height, 9.52 ft, from average of computed flow over each of four dams; maximum gage height, 11.16 ft, Feb. 21, 1971 (ice jam); minimum discharge, 2.1 ft<sup>3</sup>/s, Sept. 6, 7, 1999, gage height, 0.12 ft.

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 1,900 ft<sup>3</sup>/s and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date     | Time       | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|---------------------|----------|------------|-----------------------------------|---------------------|
| May 13 | 2100 | *2,570                            | *4.17               | No other | peak great | er than base dis                  | charge.             |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


Minimum discharge, 3.6 ft<sup>3</sup>/s, Sept. 6, gage height, 0.16 ft.

|                                  | DAILY MEAN VALUES                |                                |                                         |                                        |                       |                                        |                                 |                                        |                                 |                                  |                                    |                               |
|----------------------------------|----------------------------------|--------------------------------|-----------------------------------------|----------------------------------------|-----------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|----------------------------------|------------------------------------|-------------------------------|
| DAY                              | OCT                              | NOV                            | DEC                                     | JAN                                    | FEB                   | MAR                                    | APR                             | MAY                                    | JUN                             | JUL                              | AUG                                | SEP                           |
| 1                                | 38                               | 35                             | 372                                     | e72                                    | 820                   | 150                                    | 281                             | 313                                    | 220                             | 132                              | 32                                 | 21                            |
| 2                                | 34                               | 34                             | 211                                     | e78                                    | 865                   | 144                                    | 270                             | 238                                    | 133                             | 117                              | 30                                 | 18                            |
| 3                                | 30                               | 51                             | 150                                     | e85                                    | 427                   | 196                                    | 245                             | 235                                    | 111                             | 105                              | 29                                 | 17                            |
| 4                                | 28                               | 54                             | 127                                     | 93                                     | 359                   | 217                                    | 237                             | 185                                    | 103                             | 96                               | 28                                 | 16                            |
| 5                                | 25                               | 58                             | 117                                     | 94                                     | e250                  | 136                                    | 209                             | 160                                    | 243                             | 104                              | 28                                 | 14                            |
| 6                                | 25                               | 73                             | 106                                     | 89                                     | e240                  | 144                                    | 199                             | 143                                    | 1130                            | 91                               | 26                                 | 13                            |
| 7                                | 28                               | 61                             | 97                                      | 91                                     | 221                   | 150                                    | 173                             | 174                                    | 472                             | 87                               | 24                                 | 14                            |
| 8                                | 25                               | 50                             | 90                                      | 86                                     | 219                   | 142                                    | 166                             | 179                                    | 231                             | 80                               | 23                                 | 14                            |
| 9                                | 24                               | 46                             | 92                                      | 95                                     | 205                   | 143                                    | 176                             | 234                                    | 170                             | 76                               | 22                                 | 13                            |
| 10                               | 24                               | 45                             | 95                                      | 98                                     | 195                   | 213                                    | 331                             | 216                                    | 138                             | 76                               | 22                                 | 12                            |
| 11                               | 22                               | 43                             | 90                                      | 119                                    | 762                   | 164                                    | 204                             | 153                                    | 115                             | 66                               | 21                                 | 12                            |
| 12                               | 21                               | 40                             | 84                                      | 119                                    | e390                  | 153                                    | 167                             | 224                                    | 112                             | 63                               | 19                                 | 11                            |
| 13                               | 22                               | 38                             | 90                                      | 114                                    | e310                  | 147                                    | 197                             | 1230                                   | 127                             | 60                               | 18                                 | 10                            |
| 14                               | 22                               | 37                             | 113                                     | 99                                     | e210                  | 140                                    | 720                             | 1890                                   | 442                             | 57                               | e18                                | 11                            |
| 15                               | 35                               | 37                             | 179                                     | 93                                     | e230                  | 128                                    | 949                             | 975                                    | 808                             | 54                               | e17                                | 16                            |
| 16                               | 38                               | 37                             | 142                                     | 96                                     | 243                   | 137                                    | 502                             | 543                                    | 1210                            | 49                               | 17                                 | 293                           |
| 17                               | 39                               | 36                             | 151                                     | 90                                     | 249                   | 134                                    | 352                             | 545                                    | 556                             | 45                               | 17                                 | 100                           |
| 18                               | 40                               | 36                             | 628                                     | 88                                     | e185                  | 130                                    | 277                             | 902                                    | 350                             | 41                               | 18                                 | 50                            |
| 19                               | 37                               | 35                             | 443                                     | e50                                    | e170                  | 142                                    | 230                             | 670                                    | 260                             | 52                               | 17                                 | 34                            |
| 20                               | 33                               | 43                             | 284                                     | e88                                    | 197                   | 163                                    | 205                             | 430                                    | 204                             | 50                               | 23                                 | 28                            |
| 21                               | 32                               | 50                             | 236                                     | 94                                     | 234                   | 228                                    | 199                             | 352                                    | 176                             | 43                               | 22                                 | 27                            |
| 22                               | 53                               | 45                             | 194                                     | 93                                     | 299                   | 205                                    | 179                             | 303                                    | 154                             | 39                               | 22                                 | 33                            |
| 23                               | 55                               | 41                             | 181                                     | 91                                     | 232                   | 176                                    | 183                             | 259                                    | 234                             | 39                               | 26                                 | 166                           |
| 24                               | 47                               | 38                             | 214                                     | 183                                    | 182                   | 189                                    | 161                             | 230                                    | 235                             | 52                               | 34                                 | 96                            |
| 25                               | 48                               | 52                             | 183                                     | 323                                    | 188                   | 179                                    | 180                             | 232                                    | 175                             | 41                               | 88                                 | 57                            |
| 26<br>27<br>28<br>29<br>30<br>31 | 41<br>37<br>41<br>41<br>37<br>35 | 136<br>102<br>82<br>167<br>193 | 140<br>101<br>e100<br>e95<br>e80<br>e78 | 198<br>176<br>177<br>190<br>356<br>362 | 182<br>195<br>171<br> | 290<br>829<br>385<br>347<br>350<br>297 | 252<br>176<br>207<br>424<br>295 | 198<br>180<br>167<br>161<br>180<br>185 | 153<br>560<br>307<br>194<br>154 | 37<br>41<br>43<br>44<br>39<br>36 | 46<br>30<br>e25<br>e24<br>24<br>22 | 41<br>65<br>517<br>183<br>103 |
| TOTAL                            | 1057                             | 1795                           | 5263                                    | 4080                                   | 8430                  | 6548                                   | 8346                            | 12086                                  | 9477                            | 1955                             | 812                                | 2005                          |
| MEAN                             | 34.1                             | 59.8                           | 170                                     | 132                                    | 301                   | 211                                    | 278                             | 390                                    | 316                             | 63.1                             | 26.2                               | 66.8                          |
| MAX                              | 55                               | 193                            | 628                                     | 362                                    | 865                   | 829                                    | 949                             | 1890                                   | 1210                            | 132                              | 88                                 | 517                           |
| MIN                              | 21                               | 34                             | 78                                      | 50                                     | 170                   | 128                                    | 161                             | 143                                    | 103                             | 36                               | 17                                 | 10                            |
| CFSM                             | 0.27                             | 0.47                           | 1.35                                    | 1.04                                   | 2.39                  | 1.68                                   | 2.21                            | 3.09                                   | 2.51                            | 0.50                             | 0.21                               | 0.53                          |
| IN.                              | 0.31                             | 0.53                           | 1.55                                    | 1.20                                   | 2.49                  | 1.93                                   | 2.46                            | 3.57                                   | 2.80                            | 0.58                             | 0.24                               | 0.59                          |
| STATIST                          | TICS OF MO                       | ONTHLY MEA                     | AN DATA F                               | OR WATER                               | YEARS 1925            | 5 - 2002,                              | BY WATER                        | YEAR (WY                               | )                               |                                  |                                    |                               |
| MEAN                             | 101                              | 175                            | 205                                     | 191                                    | 220                   | 408                                    | 411                             | 213                                    | 122                             | 71.3                             | 50.5                               | 64.0                          |
| MAX                              | 594                              | 497                            | 555                                     | 575                                    | 595                   | 1037                                   | 1313                            | 532                                    | 615                             | 608                              | 269                                | 561                           |
| (WY)                             | 1982                             | 1928                           | 1997                                    | 1998                                   | 1981                  | 1936                                   | 1993                            | 1996                                   | 1972                            | 1935                             | 1994                               | 1977                          |
| MIN                              | 9.57                             | 16.5                           | 31.9                                    | 38.4                                   | 44.1                  | 160                                    | 100                             | 62.0                                   | 25.6                            | 14.9                             | 8.93                               | 7.09                          |
| (WY)                             | 1965                             | 1965                           | 1961                                    | 1961                                   | 1934                  | 1965                                   | 1946                            | 1934                                   | 1999                            | 1999                             | 1965                               | 1964                          |

e Estimated

# 04234000 FALL CREEK NEAR ITHACA, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1925 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 53494                  | 61854               |                         |
| ANNUAL MEAN              | 147                    | 169                 | 186                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 271 1978                |
| LOWEST ANNUAL MEAN       |                        |                     | 83.6 1965               |
| HIGHEST DAILY MEAN       | 1920 Apr 9             | 1890 May 14         | 8280 Jul 8 1935         |
| LOWEST DAILY MEAN        | 10 Sep 20              | 10 Sep 13           | 3.3 Sep 6 1999          |
| ANNUAL SEVEN-DAY MINIMUM | 12 Sep 17              | 12 Sep 8            | 4.6 Aug 31 1999         |
| ANNUAL RUNOFF (CFSM)     | 1.16                   | 1.34                | 1.48                    |
| ANNUAL RUNOFF (INCHES)   | 15.79                  | 18.26               | 20.05                   |
| 10 PERCENT EXCEEDS       | 288                    | 350                 | 416                     |
| 50 PERCENT EXCEEDS       | 70                     | 115                 | 100                     |
| 90 PERCENT EXCEEDS       | 20                     | 24                  | 23                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

Discharge (ft<sup>3</sup>/s)

Gage height (ft)

#### STREAMS TRIBUTARY TO LAKE ONTARIO

#### 04234232 GREAT BROOK BELOW VICTOR, NY

LOCATION.--Lat 42°58'41", long 77°23'47", Ontario County, Hydrologic Unit 04140201, on right bank 0.1 mi upstream from State Highway 96, at east boundary line of village of Victor, and 0.5 mi upstream from mouth.

DRAINAGE AREA.--16.8 mi².

PERIOD OF RECORD.--November 1993 to current year.

REVISED RECORDS.--WDR NY-96-3: 1994-95 (M). WDR NY-98-3: 1994-97.

GAGE.--Water-stage recorder and double V-notch sharp-crested weir as control. Elevation of gage is 560 ft above NGVD of 1929, from tapographic more

Time

Date

Discharge (ft<sup>3</sup>/s)

from topographic map.

REMARKS.--Records fair. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 837 ft<sup>3</sup>/s, Jan. 8, 1998, gage height, 7.09 ft; minimum discharge 0.83 ft<sup>3</sup>/s, Aug. 3, 1999, gage height, 1.22 ft.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 250 ft<sup>3</sup>/s and maximum (\*):

Date

Time

Gage height (ft)

|     | Feb. 1<br>Apr. 14                          |                                              | 300<br>230                                 | 294<br>*317                                |                                            | 4.69<br>4.82                                |                                            | May 14<br>May 30                           | 004<br>040                                  |                                            | 288<br>254                                |                                            | .66<br>.46                                  |
|-----|--------------------------------------------|----------------------------------------------|--------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------------|---------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------------|
| Mir | nimum disc                                 | harge, 0                                     | 0.91 ft <sup>3</sup> /s                    | , Sept. 1                                  | 0, gage h                                  | eight, 1.                                   | 27 ft.                                     |                                            |                                             |                                            |                                           |                                            |                                             |
|     |                                            |                                              | DISCHA                                     | RGE, CUBI                                  | C FEET PE                                  |                                             | WATER YE<br>Y MEAN VA                      |                                            | R 2001 TO                                   | SEPTEMBE                                   | R 2002                                    |                                            |                                             |
|     | DAY                                        | OCT                                          | NOV                                        | DEC                                        | JAN                                        | FEB                                         | MAR                                        | APR                                        | MAY                                         | JUN                                        | JUL                                       | AUG                                        | SEP                                         |
|     | 1<br>2<br>3<br>4<br>5                      | e2.6<br>e2.4<br>e2.2<br>e2.1<br>e2.0         | e3.0<br>4.1<br>e6.0<br>e4.5<br>e4.4        | 5.5<br>3.8<br>3.3<br>3.0<br>2.8            | 2.6<br>2.5<br>2.5<br>2.7<br>2.8            | 142<br>44<br>17<br>12<br>9.6                | 6.4<br>5.9<br>8.3<br>6.8<br>5.0            | 10<br>20<br>77<br>27<br>18                 | 15<br>28<br>19<br>11<br>8.2                 | 21<br>10<br>7.5<br>7.5<br>39               | 3.4<br>2.8<br>2.4<br>2.1<br>2.0           | 1.8<br>1.6<br>1.6<br>1.5                   | 1.0<br>1.0<br>1.00<br>0.99<br>1.00          |
|     | 6<br>7<br>8<br>9<br>10                     | e4.5<br>e2.5<br>e2.1<br>e2.0<br>e1.8         | e4.0<br>e2.2<br>e2.4<br>e3.0<br>e2.3       | e2.7<br>2.5<br>2.3<br>4.0<br>4.1           | 3.2<br>e3.5<br>e3.2<br>4.3<br>7.6          | 8.3<br>7.7<br>8.2<br>10                     | 7.0<br>9.2<br>10<br>14<br>17               | 18<br>16<br>13<br>13                       | 7.1<br>13<br>11<br>23<br>16                 | 22<br>13<br>8.4<br>6.6<br>5.7              | 1.9<br>1.8<br>1.7<br>1.7                  | 1.5<br>1.3<br>1.2<br>1.3                   | 1.00<br>0.99<br>0.96<br>0.94<br>0.94        |
|     | 11<br>12<br>13<br>14<br>15                 | e1.8<br>e1.7<br>e1.7<br>e1.6<br>e2.0         | e2.8<br>e2.4<br>e2.1<br>e2.2<br>e1.9       | 3.6<br>3.2<br>3.9<br>11<br>29              | 9.4<br>7.0<br>6.0<br>4.6<br>4.5            | 36<br>e16<br>e12<br>9.2<br>8.8              | 10<br>10<br>10<br>8.6<br>7.6               | 8.6<br>8.0<br>26<br>79<br>91               | 7.9<br>28<br>113<br>167<br>46               | 4.7<br>6.6<br>6.4<br>40<br>68              | 1.5<br>1.4<br>1.4<br>1.3                  | 1.1<br>1.1<br>1.2<br>1.2                   | 1.2<br>1.1<br>1.1<br>1.1<br>3.4             |
|     | 16<br>17<br>18<br>19<br>20                 | e1.8<br>e2.4<br>e2.0<br>e2.0<br>e1.8         | 2.0<br>1.9<br>1.8<br>e2.0<br>3.7           | 9.3<br>10<br>41<br>15<br>8.5               | 4.4<br>4.4<br>e3.4<br>e3.0<br>3.3          | 16<br>18<br>10<br>8.7                       | 8.8<br>7.4<br>8.4<br>7.5                   | 24<br>15<br>10<br>8.5<br>6.8               | 21<br>28<br>41<br>23<br>16                  | 57<br>19<br>11<br>8.0<br>6.4               | 1.3<br>1.3<br>1.2<br>1.2                  | 3.0<br>4.1<br>2.3<br>1.5                   | 4.2<br>2.1<br>1.7<br>1.5                    |
|     | 21<br>22<br>23<br>24<br>25                 | e4.5<br>e5.0<br>e2.8<br>e2.4<br>e3.2         | 2.6<br>2.1<br>1.9<br>1.9<br>5.8            | 6.4<br>6.4<br>5.7<br>5.6<br>4.6            | 3.5<br>3.7<br>4.1<br>6.0<br>7.5            | 13<br>14<br>8.8<br>7.3<br>7.4               | 22<br>13<br>10<br>9.3<br>8.5               | 6.0<br>6.5<br>6.8<br>5.6<br>6.7            | 9.6<br>8.3<br>7.6<br>6.9                    | 5.2<br>4.6<br>4.2<br>3.8<br>3.5            | 1.2<br>2.6<br>14<br>5.1<br>2.1            | 1.3<br>1.2<br>1.4<br>2.0<br>1.8            | 1.3<br>1.3<br>1.4<br>1.4                    |
|     | 26<br>27<br>28<br>29<br>30<br>31           | e6.0<br>e5.0<br>e4.0<br>e3.5<br>e3.4<br>e3.2 | 4.5<br>3.4<br>3.7<br>13<br>7.5             | 3.8<br>3.4<br>3.3<br>2.9<br>2.9            | 5.9<br>4.7<br>4.6<br>4.6<br>9.1            | 7.5<br>8.0<br>6.9<br>                       | 41<br>72<br>21<br>15<br>16<br>10           | 6.2<br>5.2<br>36<br>35<br>18               | 9.3<br>6.3<br>5.3<br>8.1<br>121<br>38       | 3.3<br>9.8<br>16<br>6.6<br>4.3             | 2.1<br>1.8<br>6.1<br>6.1<br>4.3<br>2.2    | 1.4<br>1.3<br>1.2<br>1.2<br>1.2            | 1.3<br>17<br>9.7<br>3.1<br>2.3              |
|     | TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 86.0<br>2.77<br>6.0<br>1.6<br>0.17           | 105.1<br>3.50<br>13<br>1.8<br>0.21<br>0.23 | 216.9<br>7.00<br>41<br>2.3<br>0.42<br>0.48 | 153.6<br>4.95<br>15<br>2.5<br>0.29<br>0.34 | 492.4<br>17.6<br>142<br>6.9<br>1.05<br>1.09 | 423.7<br>13.7<br>72<br>5.0<br>0.81<br>0.94 | 630.9<br>21.0<br>91<br>5.2<br>1.25<br>1.40 | 874.6<br>28.2<br>167<br>5.3<br>1.68<br>1.94 | 429.1<br>14.3<br>68<br>3.3<br>0.85<br>0.95 | 82.3<br>2.65<br>14<br>1.2<br>0.16<br>0.18 | 47.7<br>1.54<br>4.1<br>1.1<br>0.09<br>0.11 | 68.72<br>2.29<br>17<br>0.94<br>0.14<br>0.15 |
|     | STATIST                                    | ICS OF M                                     | ONTHLY ME.                                 | AN DATA F                                  | OR WATER                                   | YEARS 199                                   | 4 - 2002,                                  | BY WATER                                   | YEAR (WY                                    | )                                          |                                           |                                            |                                             |
|     | MEAN<br>MAX                                | 6.62<br>27.1                                 | 9.12<br>28.3                               | 10.1                                       | 16.0<br>49.7                               | 16.6<br>25.2                                | 23.4<br>42.4                               | 19.6<br>30.2                               | 12.7<br>28.2                                | 8.08<br>15.9                               | 4.11<br>12.6                              | 2.96                                       | 3.77<br>7.66                                |

e Estimated

1997

2.74

1999

1997

3.31

1999

1997

3.42

1999

1998

4.95

2002

1998

8.70

1995

1994

13.0

2000

1996

7.19 1995

2002

2.80

1995

1996

1.53

1995

1998

1.60

1999

1994

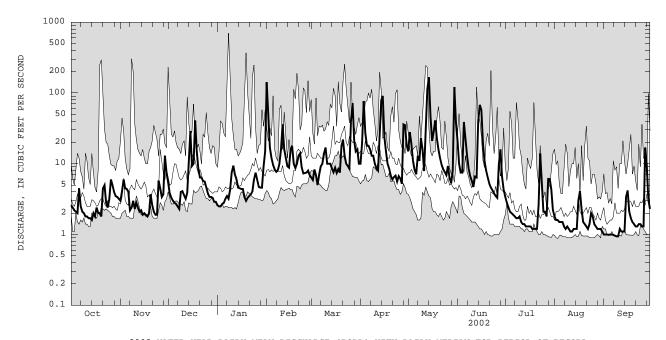
1.20

1995

1997

1.22

1995


(WY)

MIN

(WY)

# 04234232 GREAT BROOK BELOW VICTOR, NY--Continued

| SUMMARY STATISTICS                        | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1994 - 2002 |
|-------------------------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN               | 3233.78<br>8.86        | 3611.02<br>9.89     | 10.9                    |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN |                        |                     | 15.6 1998<br>6.01 1995  |
| HIGHEST DAILY MEAN                        | 113 Apr 8              | 167 May 14          | 702 Jan 8 1998          |
| LOWEST DAILY MEAN                         | 0.90 Aug 9             | 0.94 Sep 9          | 0.88 Aug 3 1999         |
| ANNUAL SEVEN-DAY MINIMUM                  | 0.92 Aug 6             | 0.97 Sep 4          | 0.92 Aug 6 2001         |
| ANNUAL RUNOFF (CFSM)                      | 0.53                   | 0.59                | 0.65                    |
| ANNUAL RUNOFF (INCHES)                    | 7.16                   | 8.00                | 8.85                    |
| 10 PERCENT EXCEEDS                        | 23                     | 19                  | 21                      |
| 50 PERCENT EXCEEDS                        | 3.6                    | 4.6                 | 5.0                     |
| 90 PERCENT EXCEEDS                        | 1.1                    | 1.3                 | 1.5                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04234500 CANANDAIGUA LAKE AT CANANDAIGUA, NY

LOCATION.--Lat 42°53'30", long 77°17'22", Ontario County, Hydrologic Unit 04140201, at comfort station in middle of city pier at northern end of Canandaigua Lake, 1 mi southeast of Canandaigua.

DRAINAGE AREA.--184 mi².

PERIOD OF RECORD.--November 1939 to current year. December 1927 to November 1939, records for site on west side of E. T. Waldorf's boathouse collected by, and in files of, city of Canandaigua.

REVISED RECORDS.--WSP 2112: Drainage area. WDR NY 1971: 1970. WDR NY-86-3: 1985.

GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. To convert elevations to NAVD adjustment of 1988, subtract 0.50 ft. June 26, 1946 to Sept. 30, 1975, at datum 681.17 ft higher, and prior to June 26, 1946, nonrecording gage at E. T. Waldorf's boathouse at same datum. boathouse at same datum.

REMARKS.--Lake elevation regulated by one gate on West outlet, which is a 1.5 mi long canal, and by two gates on East outlet, which is the natural outlet. Sill elevations of West and East outflow structures are 684.37 ft and 684.94 ft, respectively. Water diverted for municipal supply for villages of Newark, Palmyra, and Gorham. Records of diversion in files of city of Canandaigua. Area of water surface, 16.6 mi<sup>2</sup>.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 692.11 ft, present datum, June 24, 1972; minimum daily, 685.62 ft, present

datum, Jan. 30, 1942. EXTREMES FOR CURRENT YEAR.--Maximum elevation, 688.96 ft, May 31; minimum elevation, 686.53 ft, Nov. 19, Jan. 24, 30.

# ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY                              | OCT                                                      | NOV                                            | DEC                                            | JAN                                            | FEB                                            | MAR                                                      | APR                                            | MAY                                                      | JUN                                            | JUL                                                      | AUG                                                      | SEP                                            |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 687.29<br>687.28<br>687.29<br>687.26<br>687.22           | 686.87<br>686.85<br>686.84<br>686.82<br>686.80 | 686.73<br>686.72<br>686.72<br>686.70<br>686.70 | 686.72<br>686.71<br>686.70<br>686.69<br>686.67 | 686.97<br>687.15<br>687.24<br>687.27<br>687.30 | 687.59<br>687.64<br>687.61<br>687.61<br>687.61           | 688.48<br>688.51<br>688.57<br>688.59<br>688.57 | 688.71<br>688.71<br>688.68<br>688.64<br>688.60           | 688.72<br>688.62<br>688.55<br>688.57<br>688.64 | 688.54<br>688.52<br>688.50<br>688.49<br>688.44           | 688.11<br>688.09<br>688.06<br>688.05<br>688.02           | 687.61<br>687.57<br>687.57<br>687.52<br>687.48 |
| 6<br>7<br>8<br>9<br>10           | 687.23<br>687.19<br>687.16<br>687.17<br>687.13           | 686.79<br>686.77<br>686.77<br>686.75<br>686.74 | 686.69<br>686.66<br>686.67<br>686.68           | 686.67<br>686.69<br>686.68<br>686.67           | 687.31<br>687.32<br>687.32<br>687.34<br>687.40 | 687.61<br>687.63<br>687.66<br>687.70<br>687.72           | 688.53<br>688.51<br>688.49<br>688.46<br>688.47 | 688.59<br>688.60<br>688.61<br>688.71<br>688.66           | 688.67<br>688.70<br>688.71<br>688.70<br>688.68 | 688.42<br>688.41<br>688.40<br>688.37<br>688.31           | 687.95<br>687.93<br>687.90<br>687.89<br>687.88           | 687.47<br>687.46<br>687.44<br>687.42<br>687.41 |
| 11<br>12<br>13<br>14<br>15       | 687.11<br>687.09<br>687.09<br>687.20<br>687.07           | 686.72<br>686.71<br>686.72<br>686.69<br>686.69 | 686.65<br>686.66<br>686.65<br>686.72           | 686.67<br>686.68<br>686.66<br>686.66           | 687.38<br>687.46<br>687.43<br>687.46<br>687.47 | 687.72<br>687.73<br>687.74<br>687.73<br>687.74           | 688.52<br>688.56<br>688.55<br>688.67<br>688.79 | 688.60<br>688.64<br>688.75<br>688.79                     | 688.68<br>688.66<br>688.64<br>688.68<br>688.75 | 688.30<br>688.30<br>688.28<br>688.26<br>688.25           | 687.85<br>687.84<br>687.83<br>687.83                     | 687.34<br>687.34<br>687.32<br>687.32<br>687.30 |
| 16<br>17<br>18<br>19<br>20       | 687.09<br>687.05<br>687.01<br>687.02<br>686.97           | 686.67<br>686.66<br>686.65<br>686.66<br>686.65 | 686.72<br>686.74<br>686.80<br>686.84<br>686.85 | 686.65<br>686.65<br>686.64<br>686.63           | 687.47<br>687.48<br>687.49<br>687.50<br>687.53 | 687.75<br>687.79<br>687.82<br>687.81<br>687.85           | 688.79<br>688.76<br>688.72<br>688.67<br>688.62 | 688.79<br>688.75<br>688.76<br>688.76<br>688.72           | 688.77<br>688.73<br>688.67<br>688.61<br>688.57 | 688.22<br>688.21<br>688.19<br>688.17<br>688.15           | 687.80<br>687.80<br>687.81<br>687.78<br>687.77           | 687.34<br>687.33<br>687.32<br>687.33<br>687.31 |
| 21<br>22<br>23<br>24<br>25       | 686.98<br>687.00<br>687.03<br>686.99<br>687.01           | 686.65<br>686.63<br>686.61<br>686.64<br>686.67 | 686.84<br>686.87<br>686.85<br>686.83           | 686.64<br>686.62<br>686.63<br>686.61<br>686.65 | 687.52<br>687.54<br>687.55<br>687.56<br>687.59 | 687.89<br>687.93<br>687.95<br>687.95                     | 688.61<br>688.61<br>688.61<br>688.61<br>688.64 | 688.66<br>688.61<br>688.62<br>688.63<br>688.63           | 688.56<br>688.55<br>688.55<br>688.51<br>688.52 | 688.15<br>688.15<br>688.15<br>688.14<br>688.14           | 687.76<br>687.76<br>687.73<br>687.74<br>687.74           | 687.27<br>687.25<br>687.23<br>687.21<br>687.18 |
| 26<br>27<br>28<br>29<br>30<br>31 | 686.99<br>686.93<br>686.92<br>686.90<br>686.86<br>686.89 | 686.63<br>686.63<br>686.70<br>686.71           | 686.82<br>686.81<br>686.80<br>686.78<br>686.77 | 686.64<br>686.63<br>686.64<br>686.63<br>686.78 | 687.58<br>687.59<br>687.58<br>                 | 688.04<br>688.21<br>688.29<br>688.36<br>688.41<br>688.44 | 688.62<br>688.68<br>688.75<br>688.74           | 688.65<br>688.65<br>688.64<br>688.66<br>688.76<br>688.78 | 688.54<br>688.55<br>688.55<br>688.55<br>688.54 | 688.16<br>688.11<br>688.14<br>688.14<br>688.13<br>688.12 | 687.72<br>687.68<br>687.67<br>687.65<br>687.62<br>687.61 | 687.17<br>687.19<br>687.24<br>687.24           |
| MEAN<br>MAX<br>MIN               | 687.08<br>687.29<br>686.86                               | 686.71<br>686.87<br>686.61                     | 686.75<br>686.87<br>686.65                     | 686.66<br>686.78<br>686.61                     | 687.42<br>687.59<br>686.97                     | 687.85<br>688.44<br>687.59                               | 688.61<br>688.79<br>688.46                     | 688.68<br>688.79<br>688.59                               | 688.62<br>688.77<br>688.51                     | 688.27<br>688.54<br>688.11                               | 687.83<br>688.11<br>687.61                               | 687.35<br>687.61<br>687.17                     |

CAL YR 2001 MEAN 687.71 MAX 689.58 MIN 686.61 WTR YR 2002 MEAN 687.65 MAX 688.79 MIN 686.61

#### 04235000 CANANDAIGUA OUTLET AT CHAPIN, NY

LOCATION.--Lat 42°55'05", long 77°13'59", Ontario County, Hydrologic Unit 04140201, on right bank at Chapin, 25 ft upstream from bridge on State Highway 488, and 4.1 mi downstream from Canandaigua Lake.

DRAINAGE AREA.--195 mi².

PERIOD OF RECORD.--November 1939 to current year. Prior to October 1964, published as "Canandaigua Lake Outlet."

REVISED RECORDS.--WSP 2112: Drainage area.

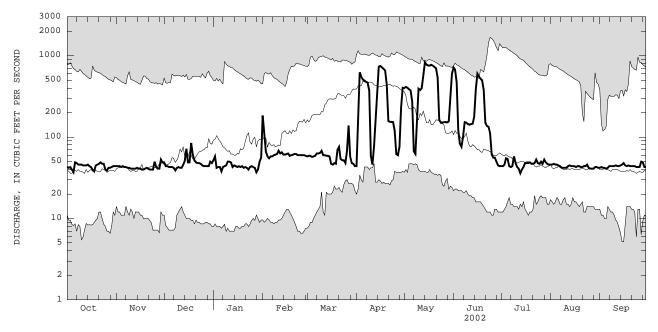
GAGE.--Water-stage recorder. Datum of gage is 671.44 ft above NGVD of 1929. Prior to June 25, 1974, at site 0.1 mi upstream at datum 676.90 ft above NGVD of 1929.

GAGE.—Water-stage recorder. Datum of gage is 671.44 ft above NGVD of 1929. Prior to June 25, 1974, at site U.1 mi upstream a datum 676.90 ft above NGVD of 1929.

REMARKS.—Records good except those for estimated daily discharges, which are fair. Flow regulated by Canandaigua Lake (see station 04234500), from which water is diverted for municipal supply by villages of Newark, Palmyra, and Gorham. Monthly runoff adjusted for change in contents in Canandaigua Lake from October 1945 to September 1966. Telephone gage-height telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 1,710 ft<sup>3</sup>/s, June 24, 1972, gage height, 11.08 ft, present datum, at site then in use; minimum discharge, 4.4 ft<sup>3</sup>/s, Sept. 24, 1991.

EXTREMES FOR CURRENT YEAR.—Maximum discharge, 852 ft<sup>3</sup>/s, May 14, gage height, 5.60 ft; minimum discharge, 25 ft<sup>3</sup>/s, Jan. 28.


DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|         | DISCHARGE, CUBIC FEET PER SECOND, WATER TEAR OCTOBER 2001 TO SEPTEMBER 2002  DAILY MEAN VALUES |            |           |          |            |           |          |          |      |      |      |      |
|---------|------------------------------------------------------------------------------------------------|------------|-----------|----------|------------|-----------|----------|----------|------|------|------|------|
| DAY     | OCT                                                                                            | NOV        | DEC       | JAN      | FEB        | MAR       | APR      | MAY      | JUN  | JUL  | AUG  | SEP  |
| 1       | 43                                                                                             | 44         | 49        | e52      | 185        | 58        | 44       | 401      | 716  | 44   | 46   | 42   |
| 2       | 42                                                                                             | 44         | 44        | e58      | 112        | 59        | 165      | 415      | 673  | 44   | 46   | 43   |
| 3       | 43                                                                                             | 44         | 44        | e42      | 66         | 59        | 627      | 405      | 470  | 46   | 47   | 42   |
| 4       | 40                                                                                             | 43         | 43        | 43       | 58         | 57        | 548      | 387      | 121  | 55   | 46   | 42   |
| 5       | 37                                                                                             | 44         | 43        | 43       | 55         | 58        | 509      | 376      | 83   | 54   | 46   | 41   |
|         |                                                                                                |            | 13        | 13       |            |           |          |          |      | 51   | 10   |      |
| 6       | 49                                                                                             | 43         | 43        | 38       | 58         | 59        | 496      | 275      | 76   | 44   | 45   | 42   |
| 7       | 48                                                                                             | 43         | 42        | 43       | 58         | 63        | 478      | 67       | 102  | 43   | 44   | 44   |
| 8       | 46                                                                                             | 42         | 39        | 44       | 60         | 63        | 468      | 62       | 153  | 44   | 42   | 44   |
| 9       | 46                                                                                             | 42         | 42        | 45       | 61         | 64        | 373      | 153      | 151  | 58   | 42   | 44   |
| 10      | 46                                                                                             | 41         | 43        | 50       | 62         | 68        | 59       | 394      | 145  | 48   | 42   | 44   |
| 11      | 45                                                                                             | 41         | 42        | 50       | 68         | 60        | 46       | 380      | 142  | 43   | 42   | 45   |
| 12      | 45                                                                                             | 41         | 42        | 49       | 63         | 60        | 77       | 398      | 145  | 41   | 44   | 44   |
| 13      | 45                                                                                             | 41         | 46        | 43       | 65         | 59        | 190      | 562      | 146  | 36   | 45   | 44   |
| 14      | 46                                                                                             | 42         | 51        | 45       | 61         | 59        | 388      | 830      | 180  | 40   | 44   | 45   |
| 15      | 44                                                                                             | 41         | 72        | 44       | 61         | 58        | 734      | 779      | 384  | 43   | 44   | 46   |
|         |                                                                                                |            |           |          |            |           |          |          |      |      |      |      |
| 16      | 43                                                                                             | 41         | 49        | 43       | 62         | 47        | 749      | 759      | 602  | 48   | 44   | 48   |
| 17      | 40                                                                                             | 40         | 49        | 44       | 63         | 46        | 719      | 756      | 553  | 48   | 43   | 45   |
| 18      | 38                                                                                             | 40         | 85        | 43       | 59         | 48        | 690      | 776      | 522  | 48   | 44   | 44   |
| 19      | 45                                                                                             | 41         | 61        | e44      | 60         | 47        | 657      | 756      | 500  | 49   | 44   | 45   |
| 20      | 46                                                                                             | 42         | 52        | e42      | 61         | 70        | 442      | 727      | 378  | 47   | 43   | 44   |
| 21      | 47                                                                                             | 41         | 49        | 43       | 62         | 76        | 158      | 700      | 151  | 47   | 43   | 44   |
| 22      | 49                                                                                             | 40         | 48        | 42       | 62         | 54        | 154      | 540      | 137  | 48   | 44   | 44   |
| 23      | 47                                                                                             | 40         | 48        | 40       | 60         | 52        | 154      | 162      | 134  | 53   | 44   | 44   |
| 24      | 47                                                                                             | 40         | 47        | 43       | 60         | 52        | 153      | 152      | 111  | 48   | 46   | 43   |
| 25      | 40                                                                                             | 50         | 45        | 44       | 60         | 48        | 120      | 151      | 61   | 47   | 42   | 43   |
|         |                                                                                                |            | 15        |          |            |           |          |          |      |      |      | 15   |
| 26      | 39                                                                                             | 43         | 44        | 43       | 60         | 68        | 62       | 153      | 56   | 50   | 41   | 43   |
| 27      | 42                                                                                             | 41         | 44        | 42       | 60         | 139       | 60       | 153      | 56   | 47   | 41   | 50   |
| 28      | 42                                                                                             | 41         | 44        | 37       | 59         | 57        | 76       | 152      | 50   | 53   | 41   | 49   |
| 29      | 43                                                                                             | 53         | 44        | 40       |            | 48        | 229      | 156      | 45   | 49   | 43   | 43   |
| 30      | 44                                                                                             | 49         | e50       | 50       |            | 47        | 405      | 314      | 44   | 47   | 43   | 43   |
| 31      | 44                                                                                             |            | e48       | 56       |            | 44        |          | 604      |      | 46   | 42   |      |
| TOTAL   | 1361                                                                                           | 1278       | 1492      | 1385     | 1881       | 1847      | 10030    | 12895    | 7087 | 1458 | 1353 | 1324 |
| MEAN    | 43.9                                                                                           | 42.6       | 48.1      | 44.7     | 67.2       | 59.6      | 334      | 416      | 236  | 47.0 | 43.6 | 44.1 |
| MAX     | 49                                                                                             | 53         | 85        | 58       | 185        | 139       | 749      | 830      | 716  | 58   | 47   | 50   |
| MIN     | 37                                                                                             | 40         | 39        | 37       | 55         | 44        | 44       | 62       | 44   | 36   | 41   | 41   |
| STATIST | rics of M                                                                                      | ONTHLY MEA | AN DATA F | OR WATER | YEARS 1940 | 0 - 2002, | BY WATER | YEAR (WY | )    |      |      |      |
| MEAN    | 74.8                                                                                           | 93.7       | 129       | 145      | 158        | 286       | 400      | 266      | 147  | 87.7 | 61.0 | 51.6 |
| MAX     | 613                                                                                            | 419        | 521       | 522      | 518        | 748       | 1036     | 725      | 566  | 852  | 483  | 363  |
| (WY)    | 1978                                                                                           | 1978       | 1973      | 1998     | 1976       | 1976      | 1993     | 1943     | 1972 | 1972 | 1992 | 1977 |
| MIN     | 13.0                                                                                           | 12.9       | 11.1      | 8.38     | 9.47       | 28.9      | 61.4     | 46.7     | 20.7 | 17.3 | 16.2 | 13.3 |
| (WY)    | 1992                                                                                           | 1964       | 1967      | 1967     | 1967       | 1967      | 1946     | 1995     | 1955 | 1963 | 1991 | 1991 |
|         |                                                                                                |            |           |          |            |           |          |          |      |      |      |      |

e Estimated

#### 04235000 CANANDAIGUA OUTLET AT CHAPIN, NY--Continued

| SUMMARY STATISTICS                                                                                                                                                                     | FOR 2001 CALENDAR | YEAR FOR 200                                           | 2 WATER YEAR                     | WATER YEARS | 1940 - 2002                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------|----------------------------------|-------------|-----------------------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 37 Oc             | 4339<br>11<br>pr 12 83<br>ct 5 3<br>ov 17 4<br>39<br>4 | 0 May 14<br>6 Jul 13<br>1 Nov 17 | 5.2         | 1993<br>1965<br>Jun 24 1972<br>Sep 15 1948<br>Feb 23 1967 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04235396 OWASCO LAKE NEAR AUBURN, NY

LOCATION.--Lat 42°54'14", long 76°32'22", Cayuga County, Hydrologic Unit 04140201, on right bank near downstream side of bridge in Emerson Park, 0.2 mi south of city limits of Auburn, and 1.0 mi upstream from State dam.

DRAINAGE AREA.--205 mi².

PERIOD OF RECORD.--October 1967 to current year. Records since 1912 collected by, and in files of, city of Auburn.

GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929. To convert elevations to adjustment of 1988, subtract 0.49 ft. Prior to May 1, 1982, nonrecording gage read once daily by employees of city of Auburn Water Division at same site and datum from reference mark at elevation 718.59 ft above NGVD of 1929.

REMARKS.--Lake elevation regulated by gates on outlet at State dam. Area of water surface, 10.6 mi². Telephone gage-height telemeter at station.

at station.

COOPERATION.--Records furnished by city of Auburn until April 30, 1982.

EXTREMES FOR PERIOD OF RECORD.--Maximum observed elevation, 716.48 ft, June 25, 1972; minimum observed elevation, 708.45 ft, Mar.

22, 23, 1993.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum observed elevation since 1912, 716.91 ft, Mar. 23, 1936, Apr. 9, 1940.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 713.22 ft, Apr. 15; minimum elevation, 710.52 ft, Jan. 15.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| Differ village village           |                                                          |                                                |                                                          |                                                          |                                                |                                                          |                                                |                                                          |                                                |                                                          |                                                          |                                                |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| DAY                              | OCT                                                      | NOV                                            | DEC                                                      | JAN                                                      | FEB                                            | MAR                                                      | APR                                            | MAY                                                      | JUN                                            | JUL                                                      | AUG                                                      | SEP                                            |
| 1<br>2<br>3<br>4<br>5            | 711.35<br>711.33<br>711.32<br>711.29<br>711.27           | 710.92<br>710.92<br>710.94<br>710.94<br>710.94 | 711.42<br>711.52<br>711.59<br>711.62<br>711.66           | 711.75<br>711.67<br>                                     | 711.78<br>712.18<br>712.34<br>712.38<br>712.39 | 711.51<br>711.46<br>711.38<br>711.38<br>711.45           | <br><br>712.82<br>712.87                       | 712.80<br>712.84<br>712.82<br>712.83<br>712.81           | 712.51<br>712.40<br>712.45<br>712.56<br>712.62 | 712.60<br>712.64<br>712.64<br>712.65<br>712.63           | 712.43<br>712.40<br>712.39<br>712.36<br>712.32           | 711.70<br>711.68<br>711.65<br>711.61<br>711.57 |
| 6<br>7<br>8<br>9<br>10           | 711.25<br>711.21<br>711.18<br>711.17<br>711.13           | 710.95<br>710.95<br>710.96<br>710.94<br>710.94 | 711.70<br>711.72<br>711.74<br>711.78<br>711.81           | 711.33<br>711.26<br><br>711.11<br>711.01                 | 712.32<br>712.23<br>712.15<br>712.10<br>712.09 | 711.45<br>711.45<br>711.47<br>711.50<br>711.48           | 712.87<br>712.87<br>712.87<br>712.86<br>712.90 | 712.79<br>712.78<br>712.76<br>712.87<br>712.71           | 712.76<br>712.84<br>712.86<br>712.83<br>712.80 | 712.63<br>712.63<br>712.63<br>712.62<br>712.59           | 712.26<br>712.24<br>712.22<br>712.19<br>712.17           | 711.54<br>711.53<br>711.51<br>711.48<br>711.46 |
| 11<br>12<br>13<br>14<br>15       | 711.10<br>711.07<br>711.06<br>711.08<br>711.04           | 710.92<br>710.91<br>710.92<br>710.91<br>710.91 | 711.82<br>711.85<br>711.86<br>711.88<br>711.97           | 710.94<br>710.87<br>710.78<br>710.71<br>710.67           | 712.17<br>712.27<br>712.20<br>712.16<br>712.10 | 711.50<br>711.51<br>711.50<br>711.48<br>711.47           | 712.93<br>712.92<br>712.83<br>713.01<br>712.99 | 712.61<br>712.46<br>712.52<br>712.28<br>712.06           | 712.78<br>712.74<br>712.77<br>712.74<br>712.76 | 712.58<br>712.58<br>712.57<br>712.55<br>712.53           | 712.15<br>712.12<br>712.14<br>712.10<br>712.05           | 711.36<br>711.35<br>711.32<br>711.31<br>711.31 |
| 16<br>17<br>18<br>19<br>20       | 711.05<br>711.02<br>710.99<br>710.98<br>710.96           | 710.91<br>710.91<br>710.91<br>710.91<br>710.91 | 712.02<br>712.08<br>712.22<br>712.40<br>712.47           | 710.70<br>710.70<br>710.71<br>710.73<br>710.74           | 712.01<br>711.94<br>711.90<br>711.82<br>711.79 | 711.41<br>711.40<br>711.39<br>711.34<br>711.35           | 712.91<br>712.83<br>712.71<br>712.82<br>712.90 | 711.83<br>711.69<br>711.61<br>711.53<br>712.15           | 712.90<br>712.46<br>712.10<br>712.36<br>712.45 | 712.48<br>712.48<br>712.46<br>712.46<br>712.44           | 712.02<br>712.01<br>712.02<br>711.98<br>711.96           | 711.37<br>711.38<br>711.37<br>711.36<br>711.35 |
| 21<br>22<br>23<br>24<br>25       | 710.96<br>711.00<br>711.02<br>711.00<br>711.01           | 710.93<br>710.92<br>710.92<br>710.93<br>710.97 | 712.47<br>712.45<br>712.42<br>712.36<br>712.32           | 710.76<br>710.76<br>710.78<br>710.79<br>710.91           | 711.82<br>711.83<br>711.82<br>711.79<br>711.75 | 711.36<br>711.43<br>711.52<br>711.56<br>711.60           | 712.83<br>712.78<br>712.71<br>712.64<br>712.61 | 712.55<br>712.63<br>712.60<br>712.54<br>712.49           | 712.46<br>712.53<br>712.57<br>712.60<br>712.64 | 712.44<br>712.44<br>712.45<br>712.45<br>712.45           | 711.93<br>711.93<br>711.87<br>711.88<br>711.89           | 711.32<br>711.32<br>711.37<br>711.36<br>711.34 |
| 26<br>27<br>28<br>29<br>30<br>31 | 710.99<br>710.95<br>710.96<br>710.95<br>710.92<br>710.94 | 711.00<br>711.04<br>711.06<br>711.16<br>711.23 | 712.27<br>712.19<br>712.12<br>712.03<br>711.94<br>711.85 | 710.98<br>711.04<br>711.10<br>711.16<br>711.29<br>711.51 | 711.68<br>711.63<br>711.57<br>                 | 711.68<br>711.95<br>712.19<br>712.34<br>712.42<br>712.48 | 712.61<br>712.63<br>712.66<br>712.71<br>712.77 | 712.58<br>712.71<br>712.75<br>712.80<br>712.61<br>712.46 | 712.66<br>712.68<br>712.64<br>712.62<br>712.57 | 712.47<br>712.40<br>712.43<br>712.44<br>712.43<br>712.43 | 711.86<br>711.82<br>711.82<br>711.78<br>711.75<br>711.73 | 711.34<br>711.38<br>711.50<br>711.53<br>711.54 |
| MEAN<br>MAX<br>MIN               | 711.08<br>711.35<br>710.92                               | 710.96<br>711.23<br>710.91                     | 711.99<br>712.47<br>711.42                               |                                                          | 712.01<br>712.39<br>711.57                     | 711.59<br>712.48<br>711.34                               |                                                | 712.50<br>712.87<br>711.53                               | 712.62<br>712.90<br>712.10                     | 712.52<br>712.65<br>712.40                               | 712.06<br>712.43<br>711.73                               | 711.44<br>711.70<br>711.31                     |

CAL YR 2001 MEAN 711.58 MAX 713.27 MIN 709.02

#### 04235440 OWASCO OUTLET AT GENESEE STREET, AUBURN, NY

LOCATION.--Lat  $42^{\circ}55^{\circ}56^{\circ}$ , long  $76^{\circ}33^{\circ}55^{\circ}$ , Cayuga County, Hydrologic Unit 04140201, on left bank in city of Auburn combined sewer overflow building, approximately 200 ft upstream from Genesee Street, and 2.5 mi downstream from State Dam at outlet of

Owasco Lake.

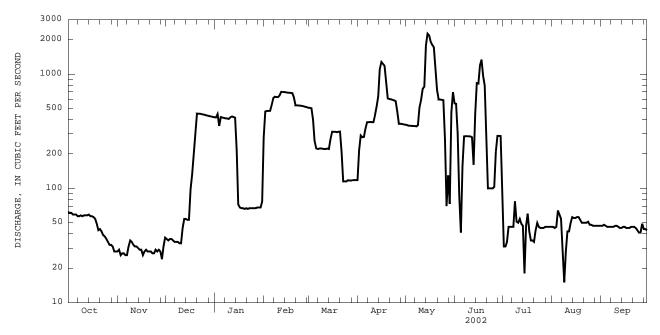
DRAINAGE AREA. --207 mi².

PERIOD OF RECORD.--October 1998 to current year. Records for November 1912 to September 1966, published as "Owasco Lake Outlet" and October 1966 to September 1998, published as "Owasco Outlet near Auburn" (station 04235500) at site 2.6 mi downstream, are not equivalent because of regulation between sites.

GAGE.--Water-stage recorder. Elevation of gage is 670 ft above NGVD of 1929, from topographic map.

REMARKS.--No estimated daily discharges. Records good. Diurnal fluctuation caused by mills in Auburn; regulation at State Dam at outlet of lake. Telephone gage-height telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,630 ft³/s, May 15, 2002, gage height, 5.73 ft; minimum discharge, 1.6 ft³/s, Mar. 30, 31, July 22, 1999.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 2,630 ft³/s, May 15, gage height, 5.73 ft; minimum discharge, 2.0 ft³/s, Jan. 4, May 13.

May 13.

| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                                  |                            |                                        |                                  |                                 |                                        |                                 |                                      |                                 |                                  |                                  |                            |
|--------------------------------------------------------------------------------------------------|----------------------------------|----------------------------|----------------------------------------|----------------------------------|---------------------------------|----------------------------------------|---------------------------------|--------------------------------------|---------------------------------|----------------------------------|----------------------------------|----------------------------|
| DAY                                                                                              | OCT                              | NOV                        | DEC                                    | JAN                              | FEB                             | MAR                                    | APR                             | MAY                                  | JUN                             | JUL                              | AUG                              | SEP                        |
| 1                                                                                                | 62                               | 28                         | 37                                     | 419                              | 278                             | 507                                    | 118                             | 361                                  | 555                             | 106                              | 46                               | 47                         |
| 2                                                                                                | 61                               | 29                         | 36                                     | 417                              | 471                             | 507                                    | 216                             | 359                                  | 550                             | 31                               | 46                               | 47                         |
| 3                                                                                                | 61                               | 26                         | 35                                     | 447                              | 476                             | 503                                    | 290                             | 353                                  | 301                             | 31                               | 45                               | 48                         |
| 4                                                                                                | 59                               | 27                         | 36                                     | 352                              | 476                             | 400                                    | 280                             | 353                                  | 85                              | 34                               | 46                               | 47                         |
| 5                                                                                                | 59                               | 27                         | 36                                     | 420                              | 477                             | 260                                    | 282                             | 352                                  | 41                              | 46                               | 64                               | 46                         |
| 6                                                                                                | 59                               | 26                         | 35                                     | 417                              | 538                             | 224                                    | 333                             | 351                                  | 156                             | 46                               | 59                               | 46                         |
| 7                                                                                                | 57                               | 26                         | 34                                     | 414                              | 617                             | 221                                    | 379                             | 351                                  | 285                             | 46                               | 54                               | 46                         |
| 8                                                                                                | 57                               | 31                         | 34                                     | 410                              | 634                             | 223                                    | 379                             | 349                                  | 286                             | 46                               | 31                               | 46                         |
| 9                                                                                                | 58                               | 35                         | 34                                     | 409                              | 629                             | 224                                    | 381                             | 357                                  | 286                             | 77                               | 15                               | 46                         |
| 10                                                                                               | 57                               | 34                         | 33                                     | 405                              | 629                             | 222                                    | 379                             | 516                                  | 285                             | 51                               | 28                               | 47                         |
| 11                                                                                               | 58                               | 32                         | 33                                     | 419                              | 651                             | 221                                    | 380                             | 599                                  | 285                             | 50                               | 42                               | 47                         |
| 12                                                                                               | 58                               | 31                         | 45                                     | 426                              | 700                             | 221                                    | 440                             | 747                                  | 280                             | 54                               | 42                               | 46                         |
| 13                                                                                               | 58                               | 31                         | 54                                     | 421                              | 697                             | 223                                    | 521                             | 777                                  | 161                             | 49                               | 50                               | 45                         |
| 14                                                                                               | 59                               | 30                         | 54                                     | 415                              | 697                             | 221                                    | 640                             | 1780                                 | 448                             | 47                               | 56                               | 45                         |
| 15                                                                                               | 57                               | 29                         | 53                                     | 213                              | 692                             | 270                                    | 1110                            | 2260                                 | 834                             | 18                               | 55                               | 46                         |
| 16                                                                                               | 57                               | 29                         | 53                                     | 72                               | 688                             | 313                                    | 1280                            | 2180                                 | 827                             | 47                               | 55                               | 46                         |
| 17                                                                                               | 56                               | 26                         | 98                                     | 68                               | 687                             | 312                                    | 1230                            | 1920                                 | 1200                            | 60                               | 56                               | 45                         |
| 18                                                                                               | 54                               | 28                         | 133                                    | 67                               | 684                             | 313                                    | 1180                            | 1800                                 | 1340                            | 42                               | 56                               | 45                         |
| 19                                                                                               | 49                               | 29                         | 202                                    | 67                               | 681                             | 310                                    | 832                             | 1720                                 | 964                             | 35                               | 53                               | 45                         |
| 20                                                                                               | 43                               | 28                         | 313                                    | 66                               | 624                             | 313                                    | 612                             | 1140                                 | 793                             | 35                               | 50                               | 46                         |
| 21<br>22<br>23<br>24<br>25                                                                       | 44<br>42<br>39<br>38<br>36       | 28<br>28<br>27<br>27<br>29 | 451<br>450<br>450<br>446<br>443        | 67<br>66<br>67<br>67             | 533<br>532<br>531<br>529<br>528 | 314<br>207<br>115<br>115<br>115        | 604<br>602<br>595<br>590<br>580 | 727<br>600<br>599<br>596<br>592      | 345<br>100<br>100<br>100<br>100 | 34<br>43<br>50<br>46<br>45       | 50<br>50<br>50<br>51<br>48       | 46<br>46<br>45<br>43       |
| 26<br>27<br>28<br>29<br>30<br>31                                                                 | 34<br>32<br>32<br>31<br>28<br>28 | 28<br>29<br>28<br>24<br>31 | 440<br>435<br>432<br>428<br>426<br>422 | 67<br>67<br>68<br>68<br>68<br>77 | 524<br>518<br>514<br>           | 118<br>117<br>117<br>118<br>118<br>118 | 470<br>367<br>367<br>366<br>363 | 271<br>70<br>130<br>73<br>461<br>696 | 103<br>209<br>288<br>288<br>287 | 45<br>45<br>46<br>46<br>46<br>46 | 48<br>47<br>47<br>47<br>47<br>47 | 41<br>49<br>44<br>44<br>43 |
| TOTAL                                                                                            | 1523                             | 861                        | 6211                                   | 7093                             | 16235                           | 7580                                   | 16166                           | 23440                                | 11882                           | 1443                             | 1481                             | 1364                       |
| MEAN                                                                                             | 49.1                             | 28.7                       | 200                                    | 229                              | 580                             | 245                                    | 539                             | 756                                  | 396                             | 46.5                             | 47.8                             | 45.5                       |
| MAX                                                                                              | 62                               | 35                         | 451                                    | 447                              | 700                             | 507                                    | 1280                            | 2260                                 | 1340                            | 106                              | 64                               | 49                         |
| MIN                                                                                              | 28                               | 24                         | 33                                     | 66                               | 278                             | 115                                    | 118                             | 70                                   | 41                              | 18                               | 15                               | 41                         |
| MEAN                                                                                             | 93.1                             | 77.7                       | 235                                    | 234                              | YEARS 1998                      | 505                                    | 561                             | 383                                  | 241                             | 57.2                             | 53.9                             | 73.6                       |
| MAX                                                                                              | 201                              | 121                        | 495                                    | 296                              | 580                             | 610                                    | 779                             | 756                                  | 399                             | 69.6                             | 61.9                             | 166                        |
| (WY)                                                                                             | 2001                             | 1999                       | 2000                                   | 2000                             | 2002                            | 1999                                   | 2000                            | 2002                                 | 2000                            | 2000                             | 2001                             | 2000                       |
| MIN                                                                                              | 39.0                             | 28.7                       | 64.0                                   | 177                              | 278                             | 245                                    | 211                             | 88.1                                 | 67.4                            | 45.5                             | 43.8                             | 40.2                       |
| (WY)                                                                                             | 2000                             | 2002                       | 1999                                   | 2001                             | 2001                            | 2002                                   | 1999                            | 2001                                 | 1999                            | 1999                             | 1999                             | 1999                       |

# 04235440 OWASCO OUTLET AT GENESEE STREET, AUBURN, NY--Continued

| SUMMARY STATISTICS                                                                                  | FOR 2001 CALENDAR YEAR                   | FOR 2002 WATER YEAR                     | WATER YEARS 1998 - 2002                             |
|-----------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DALLY MEAN                  | 73193<br>201<br>1930 Apr 10              | 95279<br>261<br>2260 May 15             | 240<br>322 2000<br>162 1999<br>2260 May 15 2002     |
| LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 24 Nov 29<br>27 Nov 1<br>450<br>72<br>34 | 15 Aug 9<br>27 Nov 1<br>620<br>70<br>32 | 11 Mar 31 1999<br>23 Mar 30 1999<br>599<br>82<br>39 |



2002 WATER YEAR DAILY MEAN DISCHARGE.

## 04235600 SENECA RIVER NEAR PORT BYRON, NY

LOCATION.--Lat 43°04'43", long 76°38'45", Cayuga County, Hydrologic Unit 04140201, on right bank , 50 ft upstream of Rt. 38 bridge, 3.0 mi north of Port Byron, and 10.1 mi upstream from Cross Lake.

DRAINAGE AREA.-- 2,815 mi<sup>2</sup>.

PERIOD OF RECORD. -- August 1996 to current year.

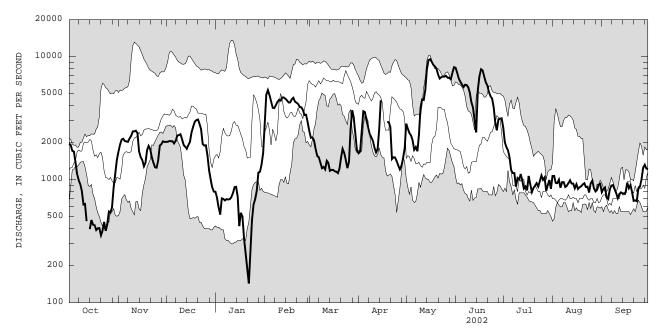
GAGE.--Acoustic velocity meter, water-stage recorder, and crest-stage gage. Elevation of gage is 375 ft above NGVD of 1929, from topographic map.

topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are fair. A large amount of natural storage and some artificial regulation is afforded by many large lakes and the Erie (Barge) Canal system in the river basin. Seneca River basin receives water from Erie (Barge) Canal through lock 32 near Pittsford. During part of the year, entire flow from 45.5 mi² of Mud Creek drainage area may be diverted from Chemung River basin into Keuka Lake in Oswego River basin. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

COOPERATION.--Records of gate openings, lockages, and elevations of water surface in Erie (Barge) Canal above and below Lock 24 & 25, furnished by New York State Thruway Authority, Office of Canals.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 13,600 ft³/s, Jan. 11, 1998; minimum daily discharge, 258 ft³/s, Jan. 22, 2002. Maximum and minimum instantaneous discharges not determined.


EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 8,710 ft³/s, May 16; minimum daily discharge, 258 ft³/s, Jan. 22. Maximum and minimum instantaneous discharges not determined.

|                                  |                                          | DISC                                 | HARGE, CUE                                | BIC FEET PA                                |                          | , WATER Y<br>LY MEAN V                       |                                      | ER 2001 T                                    | ) SEPTEMBE                           | ER 2002                                |                                        |                                     |
|----------------------------------|------------------------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------|--------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|
| DAY                              | OCT                                      | NOV                                  | DEC                                       | JAN                                        | FEB                      | MAR                                          | APR                                  | MAY                                          | JUN                                  | JUL                                    | AUG                                    | SEP                                 |
| 1                                | 1960                                     | 1690                                 | 2110                                      | 591                                        | 2930                     | 2440                                         | 1590                                 | 2920                                         | 7600                                 | 3040                                   | 731                                    | 650                                 |
| 2                                | 1910                                     | 1930                                 | 2040                                      | 523                                        | 5070                     | 2090                                         | 1600                                 | 2560                                         | 7070                                 | 2120                                   | 748                                    | 685                                 |
| 3                                | 1710                                     | 2120                                 | 2080                                      | 398                                        | 5470                     | 2130                                         | 2410                                 | 2410                                         | 6660                                 | 1920                                   | 792                                    | 619                                 |
| 4                                | 1690                                     | 2150                                 | 2020                                      | 498                                        | 4830                     | 1990                                         | 3690                                 | 2320                                         | e6200                                | 1860                                   | 772                                    | 581                                 |
| 5                                | 1390                                     | 2060                                 | 2010                                      | 660                                        | 4290                     | 1630                                         | 3640                                 | 2120                                         | 5830                                 | 1610                                   | 719                                    | 614                                 |
| 6                                | 1110                                     | 2040                                 | 2030                                      | 763                                        | 3790                     | 1440                                         | 3090                                 | 1640                                         | 5790                                 | 1060                                   | 726                                    | 679                                 |
| 7                                | 989                                      | 2030                                 | 2120                                      | 790                                        | 3840                     | 1420                                         | 2710                                 | 1770                                         | 6020                                 | 908                                    | 787                                    | 686                                 |
| 8                                | 916                                      | 2160                                 | 2400                                      | 701                                        | 4140                     | 1310                                         | 2360                                 | 1820                                         | 5970                                 | 962                                    | 776                                    | 682                                 |
| 9                                | 802                                      | 2270                                 | 2400                                      | 715                                        | 4350                     | 1230                                         | 2210                                 | 2460                                         | 5790                                 | 820                                    | 736                                    | 644                                 |
| 10                               | 627                                      | 2460                                 | 2400                                      | 738                                        | 4560                     | 1140                                         | 2020                                 | 4140                                         | 5210                                 | 836                                    | 717                                    | 575                                 |
| 11                               | 634                                      | 2470                                 | 2130                                      | 760                                        | 4490                     | 1310                                         | 1690                                 | 4750                                         | 4470                                 | 889                                    | 703                                    | 547                                 |
| 12                               | e600                                     | 2500                                 | 1830                                      | 869                                        | 4810                     | 1460                                         | 1440                                 | 4940                                         | 4020                                 | 882                                    | 696                                    | 617                                 |
| 13                               | e580                                     | 2390                                 | 1830                                      | 883                                        | 4740                     | 1410                                         | 1590                                 | 5620                                         | 3270                                 | 764                                    | 643                                    | 639                                 |
| 14                               | e560                                     | 1690                                 | 1820                                      | 873                                        | 4610                     | 1260                                         | 2860                                 | 7710                                         | 3210                                 | 713                                    | 605                                    | 551                                 |
| 15                               | 469                                      | 1530                                 | 1850                                      | 771                                        | 4450                     | 1310                                         | 5000                                 | 8680                                         | 5770                                 | 697                                    | 631                                    | 544                                 |
| 16                               | 429                                      | 1550                                 | 1990                                      | 613                                        | 4300                     | 1260                                         | 5850                                 | 8710                                         | 6870                                 | 723                                    | 667                                    | 670                                 |
| 17                               | 426                                      | 1350                                 | 2320                                      | 600                                        | 4320                     | 1310                                         | 5590                                 | 8410                                         | 7590                                 | 810                                    | 672                                    | 652                                 |
| 18                               | 389                                      | 1430                                 | 2710                                      | 552                                        | 4610                     | 1360                                         | 4520                                 | 8010                                         | 7390                                 | 664                                    | 666                                    | 678                                 |
| 19                               | 401                                      | 1720                                 | 2920                                      | 505                                        | 4680                     | 1300                                         | e3600                                | 7780                                         | 6710                                 | 687                                    | 694                                    | 595                                 |
| 20                               | 403                                      | 1890                                 | 3120                                      | 353                                        | 4350                     | 1380                                         | e2700                                | 7490                                         | 6030                                 | 756                                    | 754                                    | 568                                 |
| 21                               | 352                                      | 1720                                 | 3230                                      | 287                                        | 4290                     | 1470                                         | e1900                                | 6670                                         | 5750                                 | 699                                    | 758                                    | 602                                 |
| 22                               | 385                                      | 1460                                 | 2940                                      | 258                                        | 4230                     | 1680                                         | e1300                                | 6450                                         | 5150                                 | 606                                    | 664                                    | 569                                 |
| 23                               | 453                                      | 1360                                 | 2710                                      | 268                                        | 3980                     | 1510                                         | e1500                                | 6670                                         | 4950                                 | 768                                    | 737                                    | 579                                 |
| 24                               | 383                                      | 1290                                 | 2220                                      | 388                                        | 3920                     | 1360                                         | 1680                                 | 6590                                         | 4820                                 | 838                                    | 619                                    | 647                                 |
| 25                               | 435                                      | 1260                                 | 1940                                      | 414                                        | 3780                     | 1280                                         | 1580                                 | 6740                                         | 4040                                 | 821                                    | 717                                    | 711                                 |
| 26<br>27<br>28<br>29<br>30<br>31 | 550<br>539<br>599<br>863<br>1120<br>1440 | 1550<br>1910<br>1920<br>1980<br>1990 | 1940<br>1560<br>1130<br>933<br>743<br>633 | 430<br>733<br>1090<br>1100<br>1260<br>1560 | 3470<br>3550<br>3190<br> | 1390<br>2550<br>3750<br>3140<br>2230<br>1670 | 1380<br>1170<br>1220<br>1380<br>1650 | 6820<br>6700<br>6630<br>6550<br>7240<br>7760 | 3050<br>2870<br>3560<br>3660<br>3740 | 740<br>737<br>614<br>731<br>811<br>715 | 739<br>687<br>723<br>711<br>750<br>749 | 790<br>1230<br>1470<br>1270<br>1270 |
| TOTAL                            | 25114                                    | 55870                                | 64109                                     | 20944                                      | 119040                   | 52210                                        | 74920                                | 171080                                       | 159060                               | 30801                                  | 22089                                  | 21614                               |
| MEAN                             | 810                                      | 1862                                 | 2068                                      | 676                                        | 4251                     | 1684                                         | 2497                                 | 5519                                         | 5302                                 | 994                                    | 713                                    | 720                                 |
| MAX                              | 1960                                     | 2500                                 | 3230                                      | 1560                                       | 5470                     | 3750                                         | 5850                                 | 8710                                         | 7600                                 | 3040                                   | 792                                    | 1470                                |
| MIN                              | 352                                      | 1260                                 | 633                                       | 258                                        | 2930                     | 1140                                         | 1170                                 | 1640                                         | 2870                                 | 606                                    | 605                                    | 544                                 |
| STATIST                          | rics of                                  | MONTHLY N                            | MEAN DATA                                 | FOR WATER                                  | YEARS 199                | 97 - 2002                                    | , BY WATER                           | R YEAR (W                                    | Y)                                   |                                        |                                        |                                     |
| MEAN                             | 1601                                     | 3063                                 | 3650                                      | 3072                                       | 3955                     | 5304                                         | 4188                                 | 3433                                         | 2873                                 | 1308                                   | 932                                    | 820                                 |
| MAX                              | 3013                                     | 8247                                 | 8876                                      | 7671                                       | 7590                     | 8483                                         | 7416                                 | 6274                                         | 5302                                 | 2634                                   | 2181                                   | 1126                                |
| (WY)                             | 1997                                     | 1997                                 | 1997                                      | 1998                                       | 1998                     | 1998                                         | 2001                                 | 2000                                         | 2002                                 | 1998                                   | 2000                                   | 2000                                |
| MIN                              | 810                                      | 1287                                 | 1186                                      | 676                                        | 2134                     | 1684                                         | 2126                                 | 1234                                         | 998                                  | 786                                    | 602                                    | 611                                 |
| (WY)                             | 2002                                     | 2000                                 | 1999                                      | 2002                                       | 1997                     | 2002                                         | 1997                                 | 1999                                         | 1999                                 | 2001                                   | 2001                                   | 1998                                |

e Estimated

# 04235600 SENECA RIVER NEAR PORT BYRON, NY--Continued

| SUMMARY STATISTICS                                 | FOR 2001 CALEN | DAR YEAR         | FOR 2002 W     | ATER YEAR        | WATER YEAR    | s 1997 - 2002             |
|----------------------------------------------------|----------------|------------------|----------------|------------------|---------------|---------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN<br>HIGHEST ANNUAL MEAN | 813761<br>2229 |                  | 816851<br>2238 |                  | 2843<br>3873  | 1998                      |
| LOWEST ANNUAL MEAN<br>HIGHEST DAILY MEAN           | 9900           | Apr 11           | 8710           | May 16           | 1840<br>13600 | 1999<br>Jan 11 1998       |
| LOWEST DAILY MEAN<br>ANNUAL SEVEN-DAY MINIMUM      | 352<br>395     | Oct 21<br>Oct 18 | 258<br>343     | Jan 22<br>Jan 20 | 258<br>310    | Jan 22 2002<br>Jan 8 1999 |
| 10 PERCENT EXCEEDS                                 | 5340           | 001 18           | 5600           | Jan 20           | 6820          | Jan 6 1999                |
| 50 PERCENT EXCEEDS<br>90 PERCENT EXCEEDS           | 1440<br>560    |                  | 1550<br>593    |                  | 1830<br>650   |                           |



## 04237411 SENECA RIVER, MOUTH AT STATE DITCH, NEAR JORDAN, NY

LOCATION.--Lat 43°06'54", long 76°26'21", Onondaga County, Hydrologic Unit 04140201, on right bank 700 ft downstream from Bridge on Plainville Road, 1.2 mi north of Jack's Reef. DRAINAGE AREA.-- 3,093 mi².

PERIOD OF RECORD.--April 1996 to current year. GAGE.--Water-stage recorder. Elevation of gage is 380 ft above NGVD of 1929, from topographic map.

Canal system in the river basin. Seneca River basin receives water from Erie (Barge) Canal through Lock 32 near Pittsford.

During part of year, entire flow from 45.5 mi<sup>2</sup> of Mud Creek drainage area may be diverted from Chemung River basin into Keuka Lake in Oswego River basin.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height, 6.31 ft, Jan. 12, 1998; minimum gage height, 0.18 ft, Sept. 28, 2002. EXTREMES FOR CURRENT YEAR.--Maximum gage height, 4.56 ft, May 17; minimum gage height, 0.18 ft, Sept. 28.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV SEP OCT DEC FEB MAR APR MAY NUL JUL AUG JAN 1 1.16 1.33 1.44 0.90 1.52 1.14 1.18 1.42 4.03 1.62 1.45 1.22 2 1.43 1.39 1.42 0.99 1.94 1.19 1.29 1.49 3.98 1.23 1.43 1.37 1.47 1.39 1.47 3.69 4 1 46 1 26 1 36 1 45 2 44 1.26 1 38 0.89 3 46 1 24 1 22 1 23 5 1.39 1.17 1.33 1.49 2.24 1.15 1.36 1.13 3.27 1.23 1.22 1.32 0 92 1 20 1.14 1.29 1.34 1 94 1 21 1.19 3 08 1 25 1 26 1 38 6 0.81 1.18 3.02 1.23 1.23 1.67 1.12 1.15 1.12 1.29 1.40 1.11 8 1.08 1.11 1.30 1.12 0.82 1.11 1.11 2.99 1.02 1.26 9 1 04 1 19 1 42 1 04 1 60 0 99 1 08 1 16 2 96 1 30 1 29 1 13 0.99 10 1.10 1.36 1.46 1.73 1.25 1.14 1.60 2.84 1.43 1.29 1.04 11 1.14 1.46 1.35 1.00 1.93 1.35 1.24 1.94 2.50 1.27 1.29 1.15 1.03 1.04 1.45 1.22 2.02 2.11 1.23 12 1.42 1.17 2.05 1.16 1.31 13 1.00 1.37 1.19 1.11 2.12 1.26 1.18 2.48 1.72 1.15 1.32 1.31 2.08 1.69 14 0.98 1.18 1.21 1.15 1.16 1.48 3.40 1.29 1.33 1.37 15 1.01 0.92 1.33 1.22 2.01 1.15 1.71 4.16 2.57 1.40 1.34 1.44 1.20 0.97 1.14 1.42 1.14 1.94 2.24 4.43 3.32 1.35 1.35 1.45 16 1.00 1.20 1.53 1.04 1.91 1.24 2.42 4.54 3.82 1.18 1.36 1.25 1.24 1.64 1.27 2.26 18 1.01 0.92 1 87 4.49 4.05 1.13 1.38 1.13 19 1.05 0.89 2.00 4.35 3.95 1.25 1.36 1.05 20 1.09 1.49 1.50 0.80 1.95 1.20 1.28 4.19 3.65 1.32 1.36 1.03 21 1.13 1.32 1.40 0.89 1.89 1.29 0.87 3.93 3.36 1.30 1.34 1.17 1.28 1.29 22 1.22 1.11 0.97 1.84 0.88 3.63 3.06 1.42 1.36 1.30 1.08 1.22 1.13 1.19 2.73 2.50 1.50 1.53 23 1 29 1.01 1.23 1.71 1.07 3.48 1.37 1.42 1.37 1.56 24 1.32 1.03 0.98 3.45 1.40 1.43 25 0.96 1.23 1.30 1.08 1.40 1.31 1.46 3.43 2.21 1.40 1.41 1.28 26 1.23 1.17 1.33 1.14 1.45 0.96 1.29 3.47 1.75 1.26 1.39 0.92 27 1.12 1.27 1.00 1.45 1.19 3.43 1.32 1.20 0.30 28 1 02 1.41 1.07 1.05 1.19 1.73 1.12 3.36 1.42 1.59 1 26 1 36 0 41 1.37 0.97 1.22 1.53 1.30 3.32 1.42 29 1.03 1.36 0.91 30 1.27 1.38 0.94 1.12 1.35 3.45 1.66 1.28 31 1 46 0.92 1 44 0.98 3 81 1.52 1 31 1.17 MEAN 1.17 1.25 1.32 1.12 1.83 1.18 1.36 2.81 2.81 1.31 1.34

1 73

2 42

4 54

4 05

1.32

1 62

1 45

1 45

0.30

CAL YR 2001 MEAN 1.59 MAX 5.21 MIN 0.78 WTR YR 2002 MEAN 1.55 MAX 4.54

1 66

0.92

1 49

0.80

2.44

1 49

MAX

MIN

1.47

#### 04237500 SENECA RIVER AT BALDWINSVILLE, NY

LOCATION.--Lat 43°09'25", long 76°19'55", Onondaga County, Hydrologic Unit 04140201, on left bank 200 ft downstream from bridge on State Highways 31 and 48 in Baldwinsville, and 400 ft downstream from navigation dam at Lock 24 of New York State Erie (Barge) Canal.

DRAINAGE AREA. -- 3,138 mi<sup>2</sup>.

PERIOD OF RECORD. --November 1949 to current year in reports of Geological Survey. November 1898 to December 1908, prior to construction of Erie (Barge) Canal, not equivalent to later records at same site because of extensive development of Erie (Barge) Canal system. January 1909 to September 1925 (gage heights only) in reports of State Engineer and Surveyor.

REVISED RECORDS.--WDR NY-78-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 361.38 ft above NGVD of 1929 (362.60 ft Erie (Barge) Canal Datum). Prior to Dec. 31, 1908, nonrecording gage at same site at different datum. Auxiliary water-stage recorder 1,500 ft downstream from base gage at same datum.

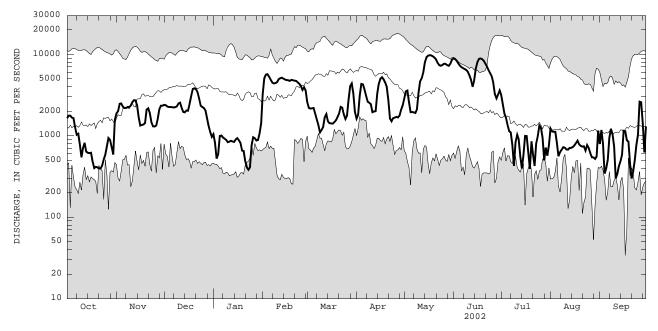
REMARKS.--No estimated daily discharges. Records good. Discharge from 1898 to 1908 determined on basis of head on dam, flow through 10 mills nearby, lockages at Oswego Canal lock, estimated leakage of dam, wheel gates, flumes, and penstocks; not adjusted for inflow from Lake Erie through Erie (Barge) Canal. Discharge, since November 1949, computed by using fall as determined by auxiliary water-stage recorder. Published discharge represents the total flow at Baldwinsville and includes flow in Erie (Barge) Canal. A large amount of natural storage and some artificial regulation is afforded by many large lakes and the Erie (Barge) Canal system in the river basin. Large diurnal fluctuations at low and medium flows caused by powerplants upstream from station. Seneca River basin receives water from Erie (Barge) Canal through Lock 32 near Pittsford. During part of year, entire flow from 45.5 mi<sup>2</sup> of Mud Creek drainage area may be diverted from Chemung River basin into Keuka Lake in Oswego River basin. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

astellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

COOPERATION.—Records of lockages at Lock 24 furnished by New York State Thruway Authority, Office of Canals.

EXTREMES FOR PERIOD OF RECORD.—Maximum daily discharge, 18,100 ft<sup>3</sup>/s, Apr. 27, 1993, maximum gage height, 9.63 ft, Apr. 26, 27, 1993; minimum daily discharge, 34 ft<sup>3</sup>/s, Sept. 17, 1985, result of extreme regulation. Maximum and minimum instantaneous discharge of determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


discharge not determined.

EXTREMES FOR CURRENT YEAR.—Maximum daily discharge, 9,800 ft<sup>3</sup>/s, May 17; maximum gage height, 5.09 ft, May 17; minimum daily discharge, 299 ft<sup>3</sup>/s, Sept. 21. Maximum and minimum instantaneous discharge not determined.

|                                    |                                         |                                      |                                             |                                          | DAIL                                | Y MEAN V                                     | ALUES                                 |                                              |                                      |                                         |                                         |                                     |
|------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------|----------------------------------------------|---------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------------|
| DAY                                | OCT                                     | NOV                                  | DEC                                         | JAN                                      | FEB                                 | MAR                                          | APR                                   | MAY                                          | JUN                                  | JUL                                     | AUG                                     | SEP                                 |
| 1                                  | 1650                                    | 1890                                 | 2400                                        | 1050                                     | 3230                                | 2590                                         | 1620                                  | 2880                                         | 8940                                 | 3160                                    | 1230                                    | 794                                 |
| 2                                  | 1770                                    | 2010                                 | 2380                                        | 821                                      | 5090                                | 2200                                         | 1810                                  | 3510                                         | 8770                                 | 2420                                    | 1130                                    | 1180                                |
| 3                                  | 1770                                    | 2480                                 | 2290                                        | 525                                      | 5650                                | 2160                                         | 3110                                  | 3600                                         | 8350                                 | 1870                                    | 1120                                    | 799                                 |
| 4                                  | 1670                                    | 2500                                 | 2260                                        | 598                                      | 5730                                | 2180                                         | 4350                                  | 2590                                         | 7740                                 | 1660                                    | 1120                                    | 344                                 |
| 5                                  | 1650                                    | 2290                                 | 2260                                        | 996                                      | 5330                                | 2200                                         | 4290                                  | 1950                                         | 7280                                 | 1350                                    | 815                                     | 399                                 |
| 6                                  | 1270                                    | 2200                                 | 2250                                        | 1010                                     | 4880                                | 1860                                         | 3720                                  | 1960                                         | 6970                                 | 1140                                    | 562                                     | 508                                 |
| 7                                  | 1030                                    | 2200                                 | 2230                                        | 953                                      | 4520                                | 1580                                         | 3100                                  | 1940                                         | 6790                                 | 1100                                    | 630                                     | 941                                 |
| 8                                  | 1060                                    | 2260                                 | 2250                                        | 924                                      | 4400                                | 1350                                         | 2630                                  | 1910                                         | 6620                                 | 773                                     | 676                                     | 1220                                |
| 9                                  | 780                                     | 2260                                 | 2300                                        | 894                                      | 4450                                | 1100                                         | 2550                                  | 2110                                         | 6440                                 | 427                                     | 726                                     | 1050                                |
| 10                                 | 544                                     | 2350                                 | 2500                                        | 836                                      | 4560                                | 1180                                         | 2450                                  | 3370                                         | 6130                                 | 841                                     | 715                                     | 741                                 |
| 11                                 | 710                                     | 2600                                 | 2560                                        | 847                                      | 4940                                | 1290                                         | 1950                                  | 4690                                         | 5530                                 | 1030                                    | 679                                     | 300                                 |
| 12                                 | 821                                     | 2740                                 | 2210                                        | 869                                      | 5100                                | 1700                                         | 1990                                  | 5110                                         | 4870                                 | 906                                     | 676                                     | 342                                 |
| 13                                 | 640                                     | 2720                                 | 1970                                        | 851                                      | 5190                                | 1850                                         | 2010                                  | 6050                                         | 4000                                 | 561                                     | 711                                     | 426                                 |
| 14                                 | 617                                     | 2370                                 | 1940                                        | 843                                      | 5050                                | 1510                                         | 3300                                  | 8070                                         | 4840                                 | 397                                     | 710                                     | 491                                 |
| 15                                 | 614                                     | 1690                                 | 2050                                        | 904                                      | 4920                                | 1430                                         | 4360                                  | 9270                                         | 6730                                 | 583                                     | 728                                     | 588                                 |
| 16                                 | 620                                     | 1340                                 | 2030                                        | 936                                      | 4840                                | 1420                                         | 5030                                  | 9690                                         | 8080                                 | 999                                     | 762                                     | 1150                                |
| 17                                 | 482                                     | 1360                                 | 2460                                        | 882                                      | 4820                                | 1410                                         | 5260                                  | 9800                                         | 8840                                 | 993                                     | 814                                     | 1140                                |
| 18                                 | 401                                     | 1380                                 | 3090                                        | 818                                      | 4730                                | 1470                                         | 4960                                  | 9730                                         | 8930                                 | 603                                     | 873                                     | 881                                 |
| 19                                 | 416                                     | 1440                                 | 3770                                        | 660                                      | 4870                                | 1550                                         | 4520                                  | 9490                                         | 8750                                 | 394                                     | 785                                     | 847                                 |
| 20                                 | 411                                     | 2100                                 | 3840                                        | 652                                      | 4820                                | 1700                                         | 3990                                  | 9150                                         | 8350                                 | 855                                     | 752                                     | 455                                 |
| 21                                 | 396                                     | 2180                                 | 3740                                        | 487                                      | 4760                                | 1870                                         | 2730                                  | 8680                                         | 7700                                 | 591                                     | 737                                     | 299                                 |
| 22                                 | 395                                     | 1900                                 | 3440                                        | 410                                      | 4730                                | 2270                                         | 1630                                  | 7840                                         | 7140                                 | 428                                     | 744                                     | 370                                 |
| 23                                 | 432                                     | 1470                                 | 2870                                        | 383                                      | 4540                                | 2220                                         | 1510                                  | 7380                                         | 6420                                 | 810                                     | 660                                     | 500                                 |
| 24                                 | 514                                     | 1310                                 | 2340                                        | 410                                      | 4360                                | 1830                                         | 1650                                  | 7270                                         | 5880                                 | 1000                                    | 771                                     | 765                                 |
| 25                                 | 588                                     | 1300                                 | 2260                                        | 755                                      | 4100                                | 1610                                         | 1670                                  | 7400                                         | 5380                                 | 1340                                    | 709                                     | 1030                                |
| 26<br>27<br>28<br>29<br>30<br>31   | 752<br>938<br>891<br>721<br>589<br>1580 | 1340<br>1640<br>2120<br>2340<br>2340 | 2200<br>2050<br>1640<br>1310<br>1110<br>972 | 961<br>934<br>878<br>890<br>1070<br>1420 | 3670<br>3950<br>3610<br>            | 1770<br>2810<br>4090<br>4400<br>3330<br>1960 | 1710<br>1680<br>1770<br>2090<br>2370  | 7680<br>7650<br>7400<br>7250<br>7700<br>8620 | 4500<br>3260<br>2880<br>3200<br>3610 | 1250<br>940<br>499<br>717<br>570<br>765 | 614<br>545<br>543<br>520<br>555<br>1160 | 2630<br>2590<br>1430<br>626<br>1310 |
| TOTAL                              | 26722                                   | 60120                                | 72972                                       | 25467                                    | 130840                              | 61890                                        | 85810                                 | 191740                                       | 192920                               | 30972                                   | 23772                                   | 26146                               |
| MEAN                               | 862                                     | 2004                                 | 2354                                        | 822                                      | 4673                                | 1996                                         | 2860                                  | 6185                                         | 6431                                 | 999                                     | 767                                     | 872                                 |
| MAX                                | 1770                                    | 2740                                 | 3840                                        | 1420                                     | 5730                                | 4400                                         | 5260                                  | 9800                                         | 8940                                 | 3160                                    | 1230                                    | 2630                                |
| MIN                                | 395                                     | 1300                                 | 972                                         | 383                                      | 3230                                | 1100                                         | 1510                                  | 1910                                         | 2880                                 | 394                                     | 520                                     | 299                                 |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 2146<br>11020<br>1978<br>572<br>1986    | 3321<br>9491<br>1978<br>675<br>1958  |                                             | 3857<br>8807<br>1978<br>805              | 3926<br>8313<br>1976<br>965<br>1980 | 5832<br>11650<br>1956<br>1606<br>1965        | 5947<br>15610<br>1993<br>1317<br>1981 | 4029<br>9778<br>1996<br>719<br>1995          | 2704<br>6456<br>1972<br>592<br>1995  | 1909<br>12100<br>1972<br>621<br>1985    | 1508<br>6214<br>1992<br>576<br>2001     | 1414<br>4760<br>1977<br>421<br>1995 |

# 04237500 SENECA RIVER AT BALDWINSVILLE, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALEN | IDAR YEAR | FOR 2002 WA | ATER YEAR | WATER YEAR | S 1950 - 2002 |
|--------------------------|----------------|-----------|-------------|-----------|------------|---------------|
| ANNUAL TOTAL             | 931930         |           | 929371      |           |            |               |
| ANNUAL MEAN              | 2553           |           | 2546        |           | 3404       |               |
| HIGHEST ANNUAL MEAN      |                |           |             |           | 5998       | 1978          |
| LOWEST ANNUAL MEAN       |                |           |             |           | 1357       | 1965          |
| HIGHEST DAILY MEAN       | 11200          | Apr 13    | 9800        | May 17    | 18100      | Apr 27 1993   |
| LOWEST DAILY MEAN        | 395            | Oct 22    | 299         | Sep 21    | 34         | Sep 17 1985   |
| ANNUAL SEVEN-DAY MINIMUM | 419            | Oct 17    | 419         | Oct 17    | 283        | Sep 23 1988   |
| 10 PERCENT EXCEEDS       | 6340           |           | 6250        |           | 7610       |               |
| 50 PERCENT EXCEEDS       | 1640           |           | 1770        |           | 2310       |               |
| 90 PERCENT EXCEEDS       | 616            |           | 567         |           | 829        |               |



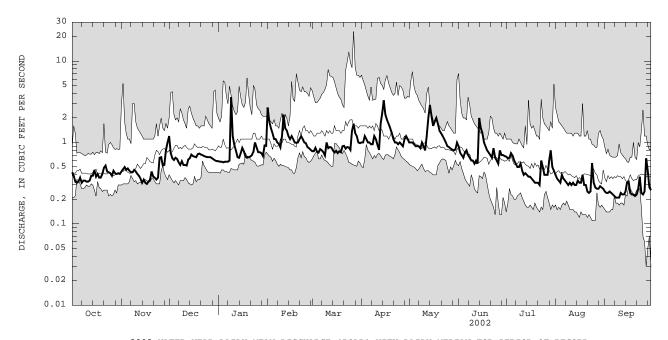
## 04237946 ONONDAGA CREEK TRIBUTARY NO. 6 BELOW MAIN MUDBOIL DEPRESSION AREA AT TULLY, NY

LOCATION.--Lat 42°51'18", long 76°08'24", Onondaga County, Hydrologic Unit 04140201, on right side of 9-in flume, 250 ft downstream from main depression area, about 2,100 ft east of Tully Farms Road, 1,500 ft south of Otisco Road, 400 ft upstream from mouth and 4.2 mi northwest of Tully.

below main mudboil depression area DRAINAGE AREA.--0.32 mi<sup>2</sup> (0.70 mi<sup>2</sup> diverted to Trib. No. 5 on June 12, 1992).

#### WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1991 to June 1999, October 1999 to current year.
REVISED RECORD.--WDR NY-93-3: 1992 (M).
GAGE.--Water stage recorder and flume. Elevation of gage is 560 ft above NGVD of 1929, from topographic map.


EXTREMES FOR CURRENT YEAR.—Maximum daily discharge, about 3.6 ft<sup>3</sup>/s, Jan. 9; minimum daily discharge, 0.21 ft<sup>3</sup>/s, Sept. 8, 9, 10. Maximum and minimum instantaneous discharges not determined.

|                                            | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                                              |                                              |                                              |                                              |                                              |                                              |                                                   |                                              |                                                    |                                              |                                              |
|--------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------|----------------------------------------------------|----------------------------------------------|----------------------------------------------|
| DAY                                        | OCT                                                                                              | NOV                                          | DEC                                          | JAN                                          | FEB                                          | MAR                                          | APR                                          | MAY                                               | JUN                                          | JUL                                                | AUG                                          | SEP                                          |
| 1<br>2<br>3<br>4<br>5                      | 0.43<br>0.39<br>0.33<br>0.32<br>0.33                                                             | 0.44<br>0.47<br>0.50<br>0.46<br>0.48         | 1.2<br>0.74<br>0.64<br>0.61<br>0.65          | 0.59<br>0.58<br>0.58<br>0.57<br>0.58         | 2.7<br>1.8<br>1.5<br>1.3                     | 0.78<br>0.78<br>0.86<br>0.77<br>0.75         | 1.0<br>1.0<br>1.2<br>1.1                     | e1.0<br>e1.0<br>e1.0<br>e0.95<br>e0.90            | e0.90<br>e0.75<br>e0.70<br>e0.65<br>e0.75    | 0.67<br>0.64<br>0.65<br>0.74<br>0.69               | e0.40<br>e0.36<br>e0.34<br>e0.32<br>e0.40    | 0.25<br>0.24<br>0.24<br>0.25<br>0.24         |
| 6<br>7<br>8<br>9<br>10                     | 0.37<br>0.32<br>0.34<br>0.34<br>0.33                                                             | 0.45<br>0.43<br>0.43<br>0.46<br>0.44         | 0.63<br>0.57<br>0.53<br>0.59<br>0.53         | 0.58<br>0.58<br>0.60<br>e3.6<br>e1.2         | 1.1<br>1.0<br>0.96<br>0.87<br>1.2            | 0.83<br>0.80<br>0.76<br>0.69<br>1.0          | 1.0<br>0.95<br>0.95<br>1.2<br>1.1            | e0.90<br>e0.90<br>e0.85<br>e1.0<br>e0.90          | e0.80<br>e0.70<br>e0.65<br>e0.60<br>e0.60    | e0.60<br>e0.55<br>e0.50<br>e0.50<br>e0.55          | e0.36<br>e0.34<br>e0.32<br>e0.30<br>e0.32    | 0.23<br>0.22<br>0.21<br>0.21<br>0.21         |
| 11<br>12<br>13<br>14<br>15                 | 0.33<br>0.34<br>0.39<br>0.39<br>0.46                                                             | 0.41<br>0.39<br>0.36<br>0.32<br>0.35         | 0.53<br>0.52<br>0.62<br>0.64<br>0.71         | 0.93<br>0.79<br>0.66<br>0.65<br>0.74         | 2.2<br>1.5<br>1.4<br>1.2                     | 0.85<br>0.88<br>0.87<br>0.80<br>0.75         | 0.93<br>0.81<br>1.7<br>2.3<br>3.3            | e0.80<br>e1.2<br>e2.0<br>e2.9<br>e2.1             | e0.55<br>e0.60<br>e0.55<br>e2.0<br>e1.5      | e0.45<br>e0.40<br>e0.42<br>e0.40<br>e0.38          | e0.30<br>e0.32<br>e0.30<br>e0.30<br>e0.34    | 0.24<br>0.23<br>0.23<br>0.25<br>0.32         |
| 16<br>17<br>18<br>19<br>20                 | 0.38<br>0.41<br>0.37<br>0.37<br>0.41                                                             | 0.32<br>0.31<br>0.33<br>0.35<br>0.44         | 0.68<br>0.67<br>0.66<br>0.72<br>0.73         | 0.86<br>0.78<br>0.67<br>0.65<br>0.66         | 1.2<br>1.1<br>1.0<br>0.99<br>1.0             | 0.79<br>0.74<br>0.78<br>0.76<br>0.90         | e2.2<br>e1.9<br>e1.7<br>e1.5<br>e1.3         | e1.6<br>e1.8<br>e2.0<br>e1.7<br>e1.4              | e1.3<br>e1.0<br>e0.90<br>e0.80<br>e0.75      | e0.38<br>e0.36<br>e0.34<br>e0.32<br>e0.32          | e0.32<br>e0.32<br>e0.40<br>e0.30<br>e0.30    | 0.33<br>0.24<br>0.23<br>0.23<br>0.22         |
| 21<br>22<br>23<br>24<br>25                 | 0.49<br>0.52<br>0.44<br>0.43<br>0.42                                                             | 0.38<br>0.37<br>0.35<br>0.37<br>0.65         | 0.71<br>0.70<br>0.68<br>0.67<br>0.66         | 0.67<br>0.70<br>0.77<br>1.0<br>0.87          | 1.1<br>1.2<br>1.1<br>1.0<br>0.98             | 0.91<br>0.84<br>0.88<br>0.87<br>0.81         | e1.1<br>e1.0<br>e1.0<br>e0.95<br>e1.0        | e1.3<br>e1.2<br>e1.1<br>e1.0<br>e0.90             | e0.70<br>e0.65<br>e0.85<br>e0.65<br>e0.60    | e0.32<br>e0.30<br>e0.60<br>e0.50<br>e0.40          | 0.25<br>0.24<br>0.25<br>0.56<br>0.32         | 0.23<br>0.27<br>0.38<br>0.24<br>0.23         |
| 26<br>27<br>28<br>29<br>30<br>31           | 0.39<br>0.45<br>0.42<br>0.41<br>0.42                                                             | 0.66<br>0.52<br>0.53<br>0.80<br>1.0          | 0.66<br>0.66<br>0.64<br>0.62<br>0.60<br>0.59 | 0.76<br>0.76<br>0.74<br>0.68<br>0.92<br>0.91 | 0.88<br>0.85<br>0.81<br>                     | 1.4<br>1.7<br>1.3<br>1.2<br>1.0<br>0.98      | e0.95<br>e0.90<br>e1.1<br>e1.2<br>e1.1       | e0.88<br>e0.84<br>e0.82<br>e0.80<br>e0.82<br>e1.0 | e0.55<br>e0.80<br>e0.70<br>0.70<br>0.68      | e0.40<br>e0.40<br>e0.60<br>e0.80<br>e0.50<br>e0.45 | 0.28<br>0.27<br>0.27<br>0.29<br>0.28<br>0.27 | 0.25<br>0.64<br>0.45<br>0.28<br>0.26         |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 12.15<br>0.39<br>0.52<br>0.32<br>1.22<br>1.41                                                    | 13.77<br>0.46<br>1.0<br>0.31<br>1.43<br>1.60 | 20.36<br>0.66<br>1.2<br>0.52<br>2.05<br>2.37 | 25.63<br>0.83<br>3.6<br>0.57<br>2.58<br>2.98 | 34.14<br>1.22<br>2.7<br>0.81<br>3.81<br>3.97 | 28.03<br>0.90<br>1.7<br>0.69<br>2.83<br>3.26 | 38.44<br>1.28<br>3.3<br>0.81<br>4.00<br>4.47 | 37.56<br>1.21<br>2.9<br>0.80<br>3.79<br>4.37      | 23.93<br>0.80<br>2.0<br>0.55<br>2.49<br>2.78 | 15.13<br>0.49<br>0.80<br>0.30<br>1.53<br>1.76      | 9.94<br>0.32<br>0.56<br>0.24<br>1.00         | 8.05<br>0.27<br>0.64<br>0.21<br>0.84<br>0.94 |
| STATIST                                    | TICS OF M                                                                                        | MONTHLY ME.                                  | AN DATA F                                    | OR WATER                                     | YEARS 1992                                   | 2 - 2002,                                    | BY WATER                                     | YEAR (WY                                          | )                                            |                                                    |                                              |                                              |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)         | 0.45<br>0.78<br>1993<br>0.29<br>1994                                                             | 0.70<br>1.24<br>1997<br>0.35<br>1999         | 0.96<br>1.90<br>1992<br>0.39<br>1999         | 1.27<br>2.82<br>1992<br>0.63<br>2001         | 1.32<br>3.05<br>1992<br>0.66<br>1995         | 1.93<br>5.20<br>1992<br>0.90<br>2002         | 1.79<br>4.49<br>1992<br>0.73<br>1999         | 1.12<br>2.56<br>1992<br>0.51<br>1999              | 0.78<br>1.76<br>1992<br>0.31<br>1999         | 0.60<br>1.47<br>1992<br>0.21<br>1999               | 0.48<br>1.32<br>1992<br>0.15<br>1999         | 0.40<br>0.77<br>1992<br>0.23<br>1999         |

e Estimated

04237946 ONONDAGA CREEK TRIBUTARY NO. 6 BELOW MAIN MUDBOIL DEPRESSION AREA AT TULLY, NY--Continued

| SUMMARY STATISTICS                                                                                                                                                                                                                | FOR 2001 CALENDAR YEAR                                                                     | FOR 2002 WATER YEAR                                                                     | WATER YEARS 1992 - 2002                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | 267.33<br>0.73<br>6.0 Mar 30<br>0.26 Aug 30<br>0.29 Aug 24<br>2.29<br>31.08<br>1.4<br>0.56 | 267.13<br>0.73<br>3.6 Jan 9<br>0.21 Sep 8<br>0.22 Sep 6<br>2.29<br>31.05<br>1.2<br>0.65 | 0.98<br>2.20 1992<br>0.57 1999<br>23 Mar 27 1992<br>0.03 Sep 27 1996<br>0.07 Sep 24 1996<br>3.07<br>41.67<br>1.8 |
| 90 PERCENT EXCEEDS                                                                                                                                                                                                                | 0.32                                                                                       | 0.30                                                                                    | 0.32                                                                                                             |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04237946 ONONDAGA CREEK TRIBUTARY NO. 6 BELOW MAIN MUDBOIL DEPRESSION AREA AT TULLY, NY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1991 to current year.

CHEMICAL DATA: Water years 1991 (c), 1992 to current year (b).

SEDIMENT DATA: Water years 1991 (c), 1992 to current year (e).

PERIOD OF DAILY RECORD.--

PERIOD OF DAILY RECORD.-
SUSPENDED-SEDIMENT CONCENTRATION: October 1991 to June 1999, October 1999 to current year.

SUSPENDED-SEDIMENT DISCHARGE: October 1991 to June 1999, October 1999 to current year.

REMARKS.--The non-daily water-quality records for this site were collected and reported in local standard time.

EXTREMES FOR PERIOD OF RECORD.-
SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean, 27,200 mg/L, Oct. 1, 1991; minimum daily mean, 22 mg/L, Aug.19, 1993.

SUSPENDED-SEDIMENT DISCHARGE: Maximum daily mean, 148 tons, Mar.11, 1992; minimum daily mean, 0.02 tons, on many days during August and Sentember 1993. August and September 1993. EXTREMES FOR CURRENT PERIOD. --

NOV 15...

FEB 15...

MAY

AUG 30...

16...

237

229

244

215

3.24

1.46

.82

4.41

1780

928

556

2820

9.6

6.1

5.1

9.5

SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean, 648 mg/L, Sept. 26; minimum daily mean, 102 mg/L, Apr. 15. SUSPENDED-SEDIMENT DISCHARGE: Maximum daily mean, 1.4 tons, Feb. 1, 3; minimum daily mean, 0.29 tons, Sept. 8.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|           |      |                                                                       |                                                | ~ -                                                                       |                                                 |                                                              |                                                 |                                                            |                                                         |                                                                 |                                                                |                                                         |                                                                              |
|-----------|------|-----------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|
| Date      | Time | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) |
| NOV<br>15 | 0745 | .36                                                                   | 7.6                                            | 69                                                                        | 7.4                                             | 6300                                                         | 9.0                                             | 700                                                        | 163                                                     | 69.9                                                            | 4.07                                                           | 1010                                                    | 194                                                                          |
| FEB 15    | 0745 | 1.1                                                                   | 13.9                                           | 102                                                                       | 7.5                                             | 3630                                                         | 1.7                                             | 470                                                        | 116                                                     | 43.2                                                            | 2.50                                                           | 506                                                     | 188                                                                          |
| MAY<br>16 | 0630 | 1.8                                                                   | 10.1                                           | 88                                                                        | 7.7                                             | 2350                                                         | 9.1                                             | 380                                                        | 102                                                     | 31.3                                                            | 2.07                                                           | 321                                                     | 200                                                                          |
| AUG<br>30 | 0700 | .29                                                                   | 7.6                                            | 81                                                                        | 7.6                                             | 9080                                                         | 14.2                                            | 880                                                        | 195                                                     | 95.9                                                            | 4.41                                                           | 1620                                                    | 176                                                                          |
|           | Date | BICA<br>BONA<br>WAT<br>DIS<br>FIE<br>MG/L<br>HCC<br>(004              | TER BROM IT DI LLD SOL AS (MC                  | S- DIS<br>VED SOL<br>G/L (MG<br>BR) AS                                    | E, DIS<br>- SOL<br>VED (MG<br>:/L AS<br>CL) SIO | SULE<br>VED DIS<br>S/L SOI<br>(MC<br>O2) AS S                | S- DEG<br>LVED DI<br>G/L SOI<br>SO4) (MG        | DUE  80 IRC  C. C. DI  S. C. SOI  VED (UC  K/L) AS         | ON, NES<br>IS- DI                                       | S- MEN<br>VED SUS<br>/L PEN<br>MN) (MG                          | NT, CHAF<br>S- SU                                              | IT,<br>ES-<br>RGE,<br>JS-<br>IDED<br>DAY)               |                                                                              |

243

128

356

3720

1930

5490

86.9 1310

<50

E10

13

66

69.0

61.4

40.5

116

345

473

127

321

.34

1.4

.62

.25

SEDIMENT, SUSPENDED CONCENTRATION (MG/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                  | •                                            | SEDIMENI,                            | SUSPENDED                                    | CONCENTRA                              |                                 | Y MEAN VA                                |                                                  | .10BER 200                                   | I IO SEPI                            | EMBER 200                              | 2                                            |                                      |
|----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------------|--------------------------------------|
| DAY                              | OCT                                          | NOV                                  | DEC                                          | JAN                                    | FEB                             | MAR                                      | APR                                              | MAY                                          | JUN                                  | JUL                                    | AUG                                          | SEP                                  |
| 1<br>2<br>3<br>4<br>5            | 365<br>373<br>367<br>373<br>369              | 366<br>365<br>360<br>372<br>374      | 312<br>430<br>462<br>478<br>466              | 568<br>574<br>570<br>580<br>579        | 186<br>276<br>337<br>368<br>398 | 461<br>456<br>432<br>456<br>461          | 326<br>331<br>289<br>313<br>315                  | 305<br>306<br>312<br>322<br>333              | 383<br>421<br>440<br>453<br>431      | 516<br>520<br>520<br>495<br>509        | 531<br>534<br>527<br>525<br>516              | 510<br>513<br>508<br>511<br>528      |
| 6<br>7<br>8<br>9<br>10           | 364<br>357<br>361<br>362<br>355              | 382<br>387<br>391<br>391<br>405      | 481<br>503<br>514<br>505<br>527              | 574<br>574<br>573<br>130<br>399        | 424<br>416<br>446<br>470<br>391 | 434<br>442<br>451<br>466<br>376          | 320<br>337<br>335<br>294<br>304                  | 334<br>335<br>344<br>317<br>338              | 422<br>452<br>469<br>482<br>489      | 537<br>552<br>566<br>567<br>551        | 520<br>513<br>519<br>515<br>509              | 525<br>524<br>516<br>525<br>529      |
| 11<br>12<br>13<br>14<br>15       | 353<br>350<br>350<br>350<br>338              | 409<br>413<br>430<br>427<br>436      | 528<br>534<br>510<br>506<br>493              | 468<br>513<br>551<br>560<br>526        | 222<br>315<br>349<br>384<br>391 | 416<br>407<br>408<br>425<br>433          | 336<br>361<br>216<br>161<br>102                  | 361<br>295<br>187<br>122<br>179              | 505<br>497<br>513<br>226<br>293      | 576<br>581<br>580<br>590<br>586        | 510<br>508<br>505<br>503<br>505              | 553<br>554<br>562<br>575<br>585      |
| 16<br>17<br>18<br>19<br>20       | 346<br>347<br>347<br>349<br>345              | 447<br>451<br>457<br>454<br>445      | 501<br>512<br>512<br>498<br>498              | 494<br>517<br>551<br>559<br>555        | 389<br>400<br>420<br>421<br>414 | 420<br>433<br>417<br>423<br>384          | 162<br>192<br>210<br>231<br>265                  | 227<br>211<br>188<br>226<br>259              | 334<br>400<br>427<br>457<br>474      | 576<br>583<br>582<br>585<br>578        | 498<br>500<br>489<br>497<br>496              | 588<br>574<br>579<br>597<br>600      |
| 21<br>22<br>23<br>24<br>25       | 337<br>334<br>346<br>349<br>353              | 461<br>474<br>472<br>478<br>427      | 511<br>516<br>525<br>527<br>533              | 551<br>543<br>515<br>445<br>487        | 410<br>382<br>405<br>410<br>414 | 380<br>394<br>383<br>383<br>392          | 299<br>303<br>311<br>320<br>299                  | 288<br>310<br>320<br>341<br>365              | 490<br>508<br>449<br>511<br>528      | 580<br>577<br>508<br>534<br>554        | 498<br>482<br>498<br>450<br>501              | 605<br>612<br>605<br>614<br>638      |
| 26<br>27<br>28<br>29<br>30<br>31 | 360<br>352<br>355<br>361<br>367<br>370       | 424<br>467<br>467<br>404<br>353      | 533<br>539<br>543<br>557<br>560<br>564       | 519<br>520<br>527<br>542<br>466<br>468 | 439<br>444<br>455<br>           | 274<br>231<br>286<br>312<br>334<br>341   | 320<br>331<br>287<br>280<br>307                  | 372<br>384<br>391<br>399<br>398<br>348       | 545<br>471<br>502<br>503<br>508      | 551<br>548<br>493<br>432<br>514<br>524 | 495<br>498<br>507<br>501<br>497<br>511       | 648<br>541<br>606<br>645<br>644      |
| MEAN<br>MAX<br>MIN               | 355<br>373<br>334                            | 420<br>478<br>353                    | 506<br>564<br>312                            | 516<br>580<br>130                      | 385<br>470<br>186               | 397<br>466<br>231                        | 282<br>361<br>102                                | 304<br>399<br>122                            | 453<br>545<br>226                    | 547<br>590<br>432                      | 505<br>534<br>450                            | 570<br>648<br>508                    |
|                                  | 5                                            | SEDIMENT :                           | DISCHARGE,                                   | SUSPENDED                              |                                 | AY), WATE<br>Y MEAN VA                   |                                                  | TOBER 200                                    | 1 TO SEPT                            | EMBER 200                              | 2                                            |                                      |
| DAY                              | OCT                                          | NOV                                  | DEC                                          | JAN                                    | FEB                             | MAR                                      | APR                                              | MAY                                          | JUN                                  | JUL                                    | AUG                                          | SEP                                  |
| 1<br>2<br>3<br>4<br>5            | 0.42<br>0.39<br>0.33<br>0.32<br>0.33         | 0.43<br>0.46<br>0.49<br>0.46<br>0.48 | 1.0<br>0.86<br>0.80<br>0.79<br>0.82          | 0.90<br>0.90<br>0.89<br>0.89           | 1.4<br>1.3<br>1.4<br>1.3        | 0.97<br>0.96<br>1.0<br>0.95<br>0.93      | 0.88<br>0.89<br>0.94<br>0.93<br>0.85             | 0.82<br>0.83<br>0.84<br>0.83<br>0.81         | 0.93<br>0.85<br>0.83<br>0.80<br>0.87 | 0.93<br>0.90<br>0.91<br>0.99<br>0.95   | 0.57<br>0.52<br>0.48<br>0.45<br>0.56         | 0.34<br>0.33<br>0.33<br>0.34<br>0.34 |
| 6<br>7<br>8<br>9<br>10           | 0.36<br>0.31<br>0.33<br>0.33                 | 0.46<br>0.45<br>0.45<br>0.49<br>0.48 | 0.82<br>0.77<br>0.74<br>0.80<br>0.75         | 0.90<br>0.90<br>0.93<br>1.3            | 1.3<br>1.1<br>1.2<br>1.1        | 0.97<br>0.95<br>0.93<br>0.87<br>1.0      | 0.86<br>0.86<br>0.86<br>0.95<br>0.90             | 0.81<br>0.81<br>0.80<br>0.86<br>0.82         | 0.91<br>0.85<br>0.82<br>0.78<br>0.79 | 0.87<br>0.82<br>0.76<br>0.77<br>0.82   | 0.51<br>0.47<br>0.45<br>0.42<br>0.44         | 0.33<br>0.31<br>0.29<br>0.30<br>0.30 |
| 11<br>12<br>13<br>14<br>15       | 0.31<br>0.32<br>0.37<br>0.37<br>0.42         | 0.45<br>0.43<br>0.42<br>0.37<br>0.41 | 0.76<br>0.75<br>0.85<br>0.87<br>0.95         | 1.2<br>1.1<br>0.98<br>0.98             | 1.3<br>1.3<br>1.3<br>1.2        | 0.95<br>0.97<br>0.96<br>0.92<br>0.88     | 0.84<br>0.79<br>0.99<br>1.0<br>0.91              | 0.78<br>0.96<br>1.0<br>0.96<br>1.0           | 0.75<br>0.81<br>0.76<br>1.2          | 0.70<br>0.63<br>0.66<br>0.64<br>0.60   | 0.41<br>0.44<br>0.41<br>0.41<br>0.46         | 0.36<br>0.34<br>0.35<br>0.39<br>0.51 |
| 16<br>17<br>18<br>19<br>20       | 0.35<br>0.38<br>0.35<br>0.35<br>0.38         | 0.39<br>0.38<br>0.41<br>0.43<br>0.53 | 0.92<br>0.93<br>0.91<br>0.97<br>0.98         | 1.1<br>1.1<br>1.0<br>0.98<br>0.99      | 1.3<br>1.2<br>1.1<br>1.1        | 0.90<br>0.87<br>0.88<br>0.87<br>0.93     | 0.96<br>0.98<br>0.96<br>0.94<br>0.93             | 0.98<br>1.0<br>1.0<br>1.0                    | 1.2<br>1.1<br>1.0<br>0.99<br>0.96    | 0.59<br>0.57<br>0.53<br>0.51<br>0.50   | 0.43<br>0.43<br>0.53<br>0.40<br>0.40         | 0.52<br>0.37<br>0.36<br>0.37<br>0.36 |
| 21<br>22<br>23<br>24<br>25       | 0.45<br>0.47<br>0.41<br>0.41                 | 0.47<br>0.47<br>0.45<br>0.48<br>0.75 | 0.98<br>0.98<br>0.96<br>0.95                 | 1.0<br>1.0<br>1.1<br>1.2               | 1.2<br>1.2<br>1.2<br>1.1        | 0.93<br>0.89<br>0.91<br>0.90<br>0.86     | 0.89<br>0.82<br>0.84<br>0.82<br>0.81             | 1.0<br>1.0<br>0.95<br>0.92<br>0.89           | 0.93<br>0.89<br>1.0<br>0.90<br>0.86  |                                        | 0.34<br>0.31<br>0.34<br>0.68<br>0.43         | 0.38<br>0.45<br>0.62<br>0.40<br>0.40 |
| 26<br>27<br>28<br>29<br>30<br>31 | 0.38<br>0.43<br>0.40<br>0.40<br>0.42<br>0.41 | 0.76<br>0.66<br>0.67<br>0.87<br>0.95 | 0.95<br>0.96<br>0.94<br>0.93<br>0.91<br>0.90 | 1.1<br>1.1<br>1.1<br>1.0<br>1.2        | 1.0<br>1.0<br>1.0<br>           | 1.0<br>1.1<br>1.0<br>1.0<br>0.90<br>0.90 | 0.81<br>0.82<br>0.80<br>0.85<br>0.91<br>0.83<br> | 0.88<br>0.87<br>0.87<br>0.86<br>0.88<br>0.94 | 0.81<br>1.0<br>0.95<br>0.95<br>0.93  | 0.60<br>0.59<br>0.80<br>0.93<br>0.69   | 0.37<br>0.36<br>0.37<br>0.39<br>0.38<br>0.37 | 0.44<br>0.93<br>0.74<br>0.49<br>0.45 |
| TOTAL<br>MEAN<br>MAX<br>MIN      | 11.62<br>0.37<br>0.47<br>0.31                | 15.40<br>0.51<br>0.95<br>0.37        | 27.45<br>0.89<br>1.0<br>0.74                 | 32.35<br>1.0<br>1.3<br>0.89            | 33.5<br>1.2<br>1.4<br>1.0       | 29.05<br>0.94<br>1.1<br>0.86             | 26.61<br>0.89<br>1.0<br>0.79                     | 27.95<br>0.90<br>1.0<br>0.78                 | 27.62                                |                                        | 13.53                                        | 12.44<br>0.41<br>0.93<br>0.29        |

04237946 ONONDAGA CREEK TRIBUTARY NO. 6 BELOW MAIN MUDBOIL DEPRESSION AREA AT TULLY, NY--Continued WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date      | Time         | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | SED.<br>SUSP.<br>SIEVE<br>DIAM.<br>% FINER<br>THAN<br>.062 MM<br>(70331) | SEDI-<br>MENT,<br>SUS-<br>PENDED<br>(MG/L)<br>(80154) |     |
|-----------|--------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|-----|
| DEC       |              |                                                                       |                                                                          |                                                       |     |
| 18        | 1700         | .70                                                                   | 96                                                                       | 335                                                   | .63 |
| JAN<br>11 | 1700         | 1.0                                                                   | 95                                                                       | 522                                                   | 1.4 |
| FEB       | 1620         | 1 0                                                                   | 0.0                                                                      | 200                                                   | 1 / |
| 02<br>15  | 1630<br>0745 | 1.8<br>1.1                                                            | 90<br>83                                                                 | 289<br>473                                            | 1.4 |
| MAR       | 0743         | 1.1                                                                   | 03                                                                       | 473                                                   | 1.1 |
| 02        | 1700         | .79                                                                   | 97                                                                       | 478                                                   | 1.0 |
| APR<br>28 | 1900         | 1.1                                                                   | 97                                                                       | 396                                                   | 1.2 |

## 04237962 ONONDAGA CREEK NEAR CARDIFF, SYRACUSE, NY

LOCATION.--Lat 42°54'00", long 76°10'10", Onondaga County, Hydrologic Unit 04140201, on left bank 10 ft upstream from bridge on State Highway 20, 0.7 mi west of Tully Farms road, and 4.2 mi upstream from Onondaga Reservoir.

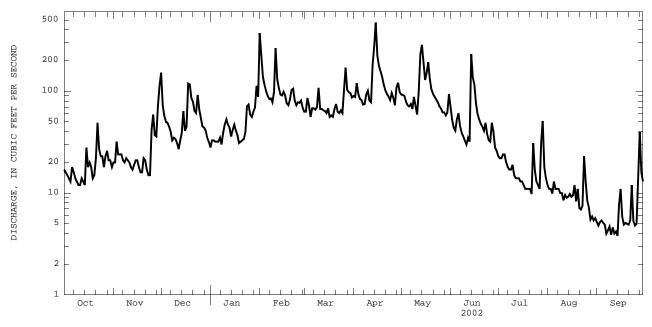
DRAINAGE AREA.--33.9 mi².

PERIOD OF RECORD.--October 2001 to September 2002.

GAGE.--Doppler velocity meter, water-stage recorder, and crest-stage gage. Elevation of gage is 500 ft above NGVD of 1929, from topographic map.

topographic map.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Telephone and satellite gage-height and precipitation telemeters at station.


EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 473 ft<sup>3</sup>/s, Apr. 15, 2002, maximum gage height, 4.66 ft, Apr. 15, 2002; minimum daily discharge, 3.8 ft<sup>3</sup>/s, Sept. 14, 2002. Maximum and minimum instantaneous discharge not determined.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 473 ft<sup>3</sup>/s, Apr. 15, maximum gage height, 4.66 ft, Apr. 15; minimum daily discharge, 3.8 ft<sup>3</sup>/s, Sept. 14. Maximum and minimum instantaneous discharge not determined.

|         |          | DISCHARG    | E, CUBIC | FEET PER   |           | WATER YE<br>MEAN VA | AR OCTOBER | 2001 TO  | SEPTEMBE | R 2002 |       |       |
|---------|----------|-------------|----------|------------|-----------|---------------------|------------|----------|----------|--------|-------|-------|
| DAY     | OCT      | NOV         | DEC      | JAN        | FEB       | MAR                 | APR        | MAY      | JUN      | JUL    | AUG   | SEP   |
| 1       | e17      | 20          | 152      | 28         | 373       | 63                  | 90         | 93       | 71       | 23     | 12    | 5.2   |
| 2       | e16      | 20          | 73       | 33         | 225       | 63                  | 88         | 92       | 53       | 22     | 11    | 4.8   |
| 3       | e15      | 32          | 57       | 33         | 139       | 86                  | 120        | 90       | 44       | 22     | 11    | 5.2   |
| 4       | e14      | 24          | 50       | 32         | 116       | 72                  | 94         | 79       | 41       | 24     | 9.9   | 5.4   |
| 5       | e13      | 24          | 49       | 32         | 100       | 56                  | 84         | 73       | 53       | 24     | 13    | 5.1   |
| 6       | e18      | 24          | 45       | 32         | 90        | 68                  | 82         | 71       | 61       | 20     | 11    | 4.9   |
| 7       | e16      | 21          | 40       | 35         | 84        | 68                  | 74         | 75       | 45       | 18     | 11    | 4.0   |
| 8       | e14      | 20          | 33       | 30         | 85        | 66                  | 75         | 67       | 39       | 17     | 11    | 4.3   |
| 9       | e13      | 22          | 35       | 39         | 78        | 70                  | 93         | 88       | 36       | 17     | 10    | 4.7   |
| 10      | e12      | 21          | 34       | 47         | 98        | 108                 | 101        | 72       | 33       | 19     | 10    | 3.9   |
| 11      | e12      | 20          | 31       | 53         | 266       | 67                  | 81         | 59       | 30       | 15     | 8.5   | 4.6   |
| 12      | 14       | 18          | 27       | 47         | 132       | 67                  | 78         | 99       | 35       | 14     | 9.6   | 4.0   |
| 13      | 13       | 17          | 33       | 44         | 108       | 65                  | 183        | 228      | 32       | 14     | 9.0   | 4.2   |
| 14      | 12       | 19          | 39       | 36         | 93        | 64                  | 280        | 285      | 231      | 14     | 9.2   | 3.8   |
| 15      | 28       | 21          | 64       | 42         | 91        | 61                  | 473        | 190      | 136      | 13     | 9.8   | 7.7   |
| 16      | 18       | 21          | 41       | 47         | 99        | 68                  | 223        | 129      | 116      | 13     | 9.2   | 11    |
| 17      | 20       | 18          | 45       | 41         | 91        | 56                  | 177        | 151      | 76       | 12     | 9.5   | 5.8   |
| 18      | 18       | 16          | 119      | 37         | 76        | 58                  | 156        | 193      | 60       | 11     | 12    | 4.9   |
| 19      | 14       | 16          | 117      | 31         | 73        | 56                  | 138        | 131      | 53       | 11     | 8.3   | 5.1   |
| 20      | 15       | 22          | 86       | 32         | 83        | 67                  | 116        | 104      | 48       | 11     | 11    | 5.0   |
| 21      | 22       | 21          | 79       | 33         | 103       | 75                  | 102        | 94       | 45       | 11     | 7.1   | 4.9   |
| 22      | 49       | 17          | 64       | 34         | 106       | 63                  | 94         | 88       | 41       | 9.8    | 6.9   | 5.4   |
| 23      | 27       | 15          | 61       | 40         | 81        | 61                  | 89         | 83       | 49       | 31     | 7.5   | 12    |
| 24      | 23       | 15          | 92       | 71         | 73        | 65                  | 82         | 78       | 38       | 17     | 23    | 5.3   |
| 25      | 23       | 42          | 66       | 74         | 78        | 61                  | 96         | 71       | 33       | 13     | 13    | 4.8   |
| 26      | 18       | 59          | 54       | 59         | 77        | 108                 | 86         | 68       | 32       | 12     | 8.4   | 5.0   |
| 27      | 23       | 37          | 45       | 56         | 81        | 170                 | 73         | 62       | 49       | 11     | 7.2   | 17    |
| 28      | 26       | 36          | 44       | 63         | 69        | 103                 | 109        | 62       | 40       | 32     | 5.5   | 40    |
| 29      | 21       | 71          | 41       | 69         |           | 98                  | 121        | 58       | 28       | 51     | 5.9   | 16    |
| 30      | 21<br>18 | 113         | 35<br>32 | 113        |           | 96                  | 98         | 62       | 26<br>   | 18     | 5.4   | 13    |
| 31      | 18       |             | 34       | 88         |           | 87                  |            | 94       |          | 14     | 5.7   |       |
| TOTAL   | 583      | 842         | 1783     | 1451       | 3168      | 2336                | 3756       | 3189     | 1674     | 553.8  | 301.6 | 227.0 |
| MEAN    | 18.8     | 28.1        | 57.5     | 46.8       | 113       | 75.4                | 125        | 103      | 55.8     | 17.9   | 9.73  | 7.57  |
| MAX     | 49       | 113         | 152      | 113        | 373       | 170                 | 473        | 285      | 231      | 51     | 23    | 40    |
| MIN     | 12       | 15          | 27       | 28         | 69        | 56                  | 73         | 58       | 26       | 9.8    | 5.4   | 3.8   |
| STATIST | CS OF MC | ONTHLY MEAN | DATA FO  | OR WATER Y | EARS 2002 | 2 - 2002,           | BY WATER Y | ZEAR (WY | )        |        |       |       |
| MEAN    | 18.8     | 28.1        | 57.5     | 46.8       | 113       | 75.4                | 125        | 103      | 55.8     | 17.9   | 9.73  | 7.57  |
| MAX     | 18.8     | 28.1        | 57.5     | 46.8       | 113       | 75.4                | 125        | 103      | 55.8     | 17.9   | 9.73  | 7.57  |
| (WY)    | 2002     | 2002        | 2002     | 2002       | 2002      | 2002                | 2002       | 2002     | 2002     | 2002   | 2002  | 2002  |
| MIN     | 18.8     | 28.1        | 57.5     | 46.8       | 113       | 75.4                | 125        | 103      | 55.8     | 17.9   | 9.73  | 7.57  |
| (WY)    | 2002     | 2002        | 2002     | 2002       | 2002      | 2002                | 2002       | 2002     | 2002     | 2002   | 2002  | 2002  |

# 04237962 ONONDAGA CREEK NEAR CARDIFF, SYRACUSE, NY--Continued

| SUMMARY STATISTICS       | FOR 2002 WATER YEAR |
|--------------------------|---------------------|
| ANNUAL TOTAL             | 19864.4             |
| ANNUAL MEAN              | 54.4                |
| HIGHEST DAILY MEAN       | 473 Apr 15          |
| LOWEST DAILY MEAN        | 3.8 Sep 14          |
| ANNUAL SEVEN-DAY MINIMUM | 4.2 Sep 8           |
| 10 PERCENT EXCEEDS       | 107                 |
| 50 PERCENT EXCEEDS       | 40                  |
| 90 PERCENT EXCEEDS       | 9.1                 |
|                          |                     |



2002 WATER YEAR DAILY MEAN DISCHARGE.

# 04239000 ONONDAGA CREEK AT DORWIN AVENUE, SYRACUSE, NY

207

LOCATION.--Lat 42°59'00", long 76°09'04", Onondaga County, Hydrologic Unit 04140201, on left bank 550 ft upstream from bridge on Dorwin Avenue, at Syracuse, and 4.0 mi downstream from Onondaga Reservoir.

DRAINAGE AREA.--88.5 mi².

PERIOD OF RECORD.--May 1951 to current year.

REVISED RECORDS.--WSP 2112: Drainage area.

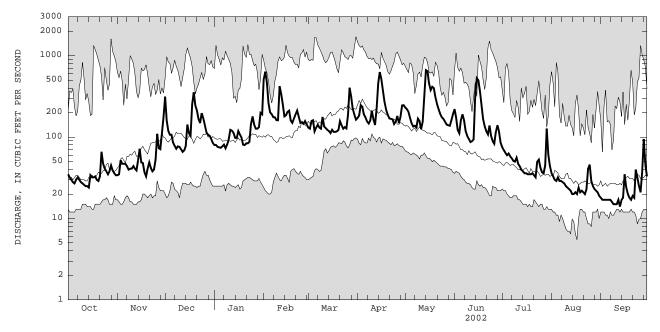
GAGE.--Water-stage recorder and concrete control. Datum of gage is 414.19 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. High flows regulated by Onondaga Reservoir.

Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

Telephone and Satellite gage-neight technicals at the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,260 ft<sup>3</sup>/s, July 3, 1974, gage height, 6.48 ft; minimum discharge not determined; minimum gage height, 1.15 ft, Sept. 16, 1959.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 776 ft<sup>3</sup>/s, Feb. 1, gage height, 3.86 ft; minimum discharge, 12 ft<sup>3</sup>/s, Sept. 13, gage height, 1.35 ft.

|                                    |                                     | DISCHA                             | RGE, CUBI                              | C FEET PI                              | ER SECOND,<br>DAIL                              | WATER YE<br>Y MEAN VA                           |                                   | R 2001 TO                                      | SEPTEMBE                            | R 2002                              |                                     |                                     |
|------------------------------------|-------------------------------------|------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------|------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| DAY                                | OCT                                 | NOV                                | DEC                                    | JAN                                    | FEB                                             | MAR                                             | APR                               | MAY                                            | JUN                                 | JUL                                 | AUG                                 | SEP                                 |
| 1                                  | 35                                  | 34                                 | 315                                    | e80                                    | 515                                             | 131                                             | 172                               | 232                                            | 221                                 | 75                                  | 36                                  | 18                                  |
| 2                                  | 32                                  | 35                                 | 159                                    | e80                                    | 639                                             | 127                                             | 184                               | 221                                            | 175                                 | 69                                  | 33                                  | 17                                  |
| 3                                  | 30                                  | 52                                 | 119                                    | 76                                     | 470                                             | 158                                             | 247                               | 205                                            | 123                                 | 64                                  | 30                                  | 17                                  |
| 4                                  | 28                                  | 47                                 | 107                                    | 75                                     | 263                                             | 161                                             | 237                               | 172                                            | 112                                 | 60                                  | 29                                  | 17                                  |
| 5                                  | 27                                  | 47                                 | 107                                    | 74                                     | 202                                             | 118                                             | 189                               | 148                                            | 162                                 | 63                                  | 32                                  | 17                                  |
| 6                                  | 30                                  | 47                                 | 86                                     | 77                                     | 191                                             | 131                                             | 175                               | 135                                            | 191                                 | 58                                  | 29                                  | 17                                  |
| 7                                  | 32                                  | 44                                 | 78                                     | 81                                     | 176                                             | 142                                             | 156                               | 138                                            | 160                                 | 55                                  | 29                                  | 17                                  |
| 8                                  | 30                                  | 40                                 | 72                                     | 73                                     | 175                                             | 131                                             | 147                               | 131                                            | 118                                 | 51                                  | 28                                  | 16                                  |
| 9                                  | 28                                  | 41                                 | 77                                     | 81                                     | 162                                             | 127                                             | 160                               | 169                                            | 103                                 | 50                                  | 27                                  | 15                                  |
| 10                                 | 27                                  | 41                                 | 76                                     | 94                                     | 161                                             | 177                                             | 211                               | 158                                            | 95                                  | 56                                  | 25                                  | 15                                  |
| 11                                 | 26                                  | 44                                 | 71                                     | 123                                    | 424                                             | 135                                             | 165                               | 126                                            | 87                                  | 47                                  | 24                                  | 15                                  |
| 12                                 | 25                                  | 41                                 | 66                                     | 120                                    | 339                                             | 129                                             | 141                               | 156                                            | 89                                  | 44                                  | 23                                  | 17                                  |
| 13                                 | 25                                  | 39                                 | 69                                     | 113                                    | 253                                             | 123                                             | 226                               | 356                                            | 94                                  | 40                                  | 22                                  | 14                                  |
| 14                                 | 24                                  | 52                                 | 78                                     | 98                                     | e180                                            | 119                                             | 463                               | 665                                            | 319                                 | 38                                  | 20                                  | 17                                  |
| 15                                 | 34                                  | 72                                 | 143                                    | 98                                     | 186                                             | 112                                             | 631                               | 644                                            | 530                                 | 36                                  | 20                                  | 18                                  |
| 16                                 | 32                                  | 49                                 | 112                                    | 119                                    | 205                                             | 123                                             | 515                               | 450                                            | 499                                 | 36                                  | 21                                  | 35                                  |
| 17                                 | 32                                  | 48                                 | 104                                    | 108                                    | 212                                             | 116                                             | 368                               | 378                                            | 363                                 | 35                                  | 20                                  | 24                                  |
| 18                                 | 33                                  | 37                                 | 253                                    | 99                                     | e160                                            | 116                                             | 268                               | 416                                            | 254                                 | 35                                  | 24                                  | 20                                  |
| 19                                 | 30                                  | 33                                 | 356                                    | 81                                     | e150                                            | 118                                             | 216                               | 400                                            | 166                                 | 35                                  | 21                                  | 18                                  |
| 20                                 | 29                                  | 41                                 | 243                                    | e80                                    | 169                                             | 123                                             | 188                               | 308                                            | 135                                 | 36                                  | 22                                  | 17                                  |
| 21                                 | 33                                  | 49                                 | 211                                    | 84                                     | 190                                             | 157                                             | 170                               | 254                                            | 118                                 | 34                                  | 21                                  | 19                                  |
| 22                                 | 66                                  | 42                                 | 168                                    | 84                                     | 212                                             | 140                                             | 168                               | 219                                            | 108                                 | 32                                  | 20                                  | 18                                  |
| 23                                 | 47                                  | 38                                 | 149                                    | 88                                     | 178                                             | 127                                             | 166                               | 192                                            | 139                                 | 50                                  | 23                                  | 40                                  |
| 24                                 | 41                                  | 40                                 | 197                                    | 146                                    | 150                                             | 133                                             | 145                               | 175                                            | 103                                 | 53                                  | 41                                  | 32                                  |
| 25                                 | 38                                  | 53                                 | 170                                    | 180                                    | 152                                             | 128                                             | 155                               | 168                                            | 89                                  | 42                                  | 46                                  | 25                                  |
| 26<br>27<br>28<br>29<br>30<br>31   | 35<br>38<br>45<br>39<br>36<br>34    | 110<br>73<br>71<br>116<br>176      | 138<br>114<br>107<br>104<br>e95<br>e85 | 143<br>127<br>127<br>133<br>199<br>191 | 146<br>158<br>143<br>                           | 188<br>405<br>313<br>223<br>189<br>164          | 182<br>149<br>178<br>245<br>247   | 155<br>143<br>140<br>138<br>161<br>192         | 83<br>116<br>140<br>116<br>85       | 37<br>36<br>45<br>128<br>61<br>44   | 29<br>25<br>23<br>22<br>21<br>19    | 21<br>37<br>95<br>46<br>33          |
| TOTAL                              | 1041                                | 1652                               | 4229                                   | 3332                                   | 6561                                            | 4784                                            | 6864                              | 7545                                           | 5093                                | 1545                                | 805                                 | 727                                 |
| MEAN                               | 33.6                                | 55.1                               | 136                                    | 107                                    | 234                                             | 154                                             | 229                               | 243                                            | 170                                 | 49.8                                | 26.0                                | 24.2                                |
| MAX                                | 66                                  | 176                                | 356                                    | 199                                    | 639                                             | 405                                             | 631                               | 665                                            | 530                                 | 128                                 | 46                                  | 95                                  |
| MIN                                | 24                                  | 33                                 | 66                                     | 73                                     | 143                                             | 112                                             | 141                               | 126                                            | 83                                  | 32                                  | 19                                  | 14                                  |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 62.3<br>328<br>1978<br>15.3<br>1965 | 103<br>312<br>1969<br>19.3<br>1965 | 139<br>365<br>1973<br>31.7<br>1961     | 137<br>355<br>1998<br>33.7<br>1961     | YEARS 195<br>169<br>390<br>1990<br>40.8<br>1963 | 1 - 2002,<br>260<br>535<br>1979<br>93.3<br>1983 | 266<br>758<br>1993<br>112<br>1981 | YEAR (WY<br>143<br>330<br>2000<br>58.1<br>1995 | 93.7<br>563<br>1972<br>28.1<br>1999 | 57.8<br>166<br>1992<br>19.5<br>1962 | 39.9<br>125<br>1992<br>10.7<br>1965 | 43.3<br>216<br>1975<br>13.2<br>1964 |

e Estimated

# 04239000 ONONDAGA CREEK AT DORWIN AVENUE, SYRACUSE, NY--Continued

| SUMMARY STATISTICS                                                                                                                                                                     | FOR 2001 CALENDAR YEAR                                           | FOR 2002 WATER YEAR                                                    | WATER YEARS 1951 - 2002                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 42399<br>116<br>939 Apr 9<br>15 Sep 20<br>17 Sep 16<br>244<br>67 | 44178<br>121<br>665 May 14<br>14 Sep 13<br>16 Sep 7<br>234<br>98<br>24 | 126<br>198 1978<br>58.8 1965<br>1710 Mar 31 1960<br>5.5 Aug 17 1965<br>7.4 Aug 11 1965<br>259<br>80<br>24 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

209

## 04240010 ONONDAGA CREEK AT SPENCER STREET, SYRACUSE, NY

LOCATION.--Lat 43°03'27", long 76°09'46", Onondaga County, Hydrologic Unit 04140201, on right bank 250 ft upstream from bridge on Spencer Street in Syracuse, 1,000 ft upstream from Erie (Barge) Canal terminal, and 1.0 mi upstream from mouth.

DRAINAGE AREA.--110 mi<sup>2</sup>.

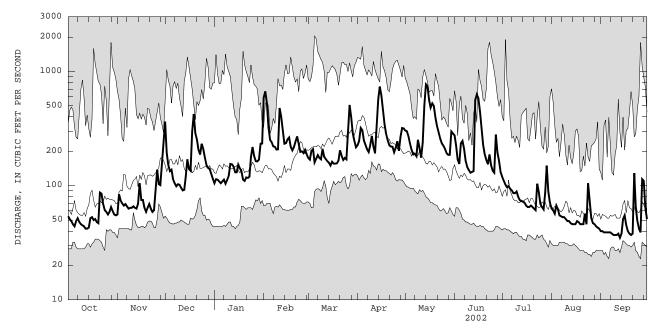
PERIOD OF RECORD. --Occasional discharge measurements, water years 1958-70. September 1970 to current year.

REVISED RECORDS.--WDR NY 1972: 1971(M). WDR NY 1975: 1972(M), 1974(M). WDR NY-81-3: Drainage area. WDR NY-89-3: 1971-72(M),
1974-80(M), 1982-84(M), 1986(M), 1988(M).

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 362.29 ft above NGVD of 1929.
REMARKS.--Records good except those for estimated daily discharges, which are fair. High flows regulated by Onondaga Reservoir.
Flow may be affected by backwater from Onondaga Lake at times when the lake elevation exceeds 365.00

ft. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 4,050 ft<sup>3</sup>/s, July 3, 1974, gage height, 8.73 ft, from rating curve extended above 1,600 ft<sup>3</sup>/s on basis of runoff comparisons with nearby stations; minimum, 20 ft<sup>3</sup>/s, Sept. 26, 1985, gage height, 2.16


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 1,580 ft<sup>3</sup>/s, June 27, gage height, 6.54 ft; minimum discharge, 33 ft<sup>3</sup>/s, Sept. 13, gage height, 2.36 ft.

|                                       |                                  | DISCHAR                         | GE, CUB                                 | IC FEET P                               | ER SECOND, N                             | WATER YE<br>MEAN VA                    |                                 | R 2001 TO                              | SEPTEMBE                        | R 2002                            |                                  |                              |
|---------------------------------------|----------------------------------|---------------------------------|-----------------------------------------|-----------------------------------------|------------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|---------------------------------|-----------------------------------|----------------------------------|------------------------------|
| DAY                                   | OCT                              | NOV                             | DEC                                     | JAN                                     | FEB                                      | MAR                                    | APR                             | MAY                                    | JUN                             | JUL                               | AUG                              | SEP                          |
| 1                                     | 54                               | 56                              | 364                                     | e105                                    | 593                                      | 175                                    | 226                             | 304                                    | 276                             | 119                               | 63                               | 40                           |
| 2                                     | 51                               | 84                              | 194                                     | 114                                     | 670                                      | 169                                    | 247                             | 300                                    | 225                             | 110                               | 61                               | 40                           |
| 3                                     | 49                               | 74                              | 151                                     | 113                                     | 530                                      | 202                                    | 320                             | 271                                    | 169                             | 102                               | 57                               | 39                           |
| 4                                     | 46                               | 70                              | 134                                     | 109                                     | 325                                      | 209                                    | 306                             | 233                                    | 155                             | 97                                | 67                               | 39                           |
| 5                                     | 44                               | 67                              | 138                                     | 105                                     | 252                                      | 160                                    | 248                             | 205                                    | 235                             | 99                                | 62                               | 39                           |
| 6                                     | 49                               | 69                              | 114                                     | 109                                     | 240                                      | 172                                    | 228                             | 188                                    | 247                             | 94                                | 55                               | 39                           |
| 7                                     | 52                               | 66                              | 105                                     | 113                                     | 221                                      | 185                                    | 208                             | 190                                    | 210                             | 91                                | 54                               | 39                           |
| 8                                     | 48                               | 63                              | 99                                      | 104                                     | 219                                      | 175                                    | 197                             | 181                                    | 164                             | 86                                | 53                               | 38                           |
| 9                                     | 46                               | 64                              | 103                                     | 112                                     | 207                                      | e170                                   | 227                             | 252                                    | 145                             | 86                                | 53                               | 37                           |
| 10                                    | 45                               | 64                              | 102                                     | 122                                     | 208                                      | e210                                   | 273                             | 214                                    | 137                             | 89                                | 51                               | 37                           |
| 11                                    | 44                               | 66                              | 96                                      | 155                                     | 479                                      | 179                                    | 219                             | 176                                    | 130                             | 80                                | 49                               | 37                           |
| 12                                    | 42                               | 64                              | 91                                      | 154                                     | 401                                      | 171                                    | 192                             | 238                                    | 132                             | 75                                | 49                               | 38                           |
| 13                                    | 42                               | 63                              | 92                                      | 147                                     | 311                                      | 164                                    | 312                             | 500                                    | 134                             | 73                                | 47                               | 35                           |
| 14                                    | 43                               | 70                              | 120                                     | 131                                     | 233                                      | 159                                    | 571                             | 770                                    | 563                             | 73                                | 46                               | 38                           |
| 15                                    | 52                               | 105                             | 170                                     | 131                                     | 236                                      | 150                                    | 738                             | 739                                    | 630                             | 71                                | 46                               | 51                           |
| 16                                    | 53                               | 75                              | 140                                     | 153                                     | 255                                      | 162                                    | 619                             | 561                                    | 582                             | 67                                | 46                               | 55                           |
| 17                                    | 50                               | 75                              | 135                                     | 142                                     | 264                                      | 156                                    | 457                             | 482                                    | 445                             | 65                                | 49                               | 45                           |
| 18                                    | 51                               | 64                              | 296                                     | 134                                     | 219                                      | 156                                    | 344                             | 525                                    | 327                             | 65                                | 48                               | 40                           |
| 19                                    | 48                               | 59                              | 423                                     | 113                                     | 204                                      | 157                                    | 282                             | 498                                    | 228                             | 67                                | 46                               | 38                           |
| 20                                    | 47                               | 64                              | 286                                     | e110                                    | 218                                      | 166                                    | 248                             | 395                                    | 188                             | 65                                | 46                               | 37                           |
| 21                                    | 87                               | 69                              | 252                                     | 118                                     | 244                                      | 204                                    | 225                             | 331                                    | 168                             | 63                                | 46                               | 38                           |
| 22                                    | 85                               | 63                              | 206                                     | 117                                     | 270                                      | 183                                    | 220                             | 293                                    | 154                             | 61                                | 57                               | 129                          |
| 23                                    | 69                               | 59                              | 187                                     | 120                                     | 232                                      | 168                                    | 219                             | 257                                    | 188                             | 104                               | 46                               | 65                           |
| 24                                    | 61                               | 61                              | 233                                     | 178                                     | 198                                      | 175                                    | 196                             | 234                                    | 150                             | 88                                | 105                              | 49                           |
| 25                                    | 59                               | 89                              | 209                                     | 218                                     | 200                                      | 170                                    | 215                             | 224                                    | 135                             | 69                                | 73                               | 42                           |
| 26<br>27<br>28<br>29<br>30<br>31      | 56<br>59<br>65<br>60<br>56<br>55 | 138<br>103<br>101<br>151<br>231 | 176<br>151<br>144<br>140<br>127<br>e115 | 181<br>164<br>163<br>169<br>233<br>234  | 193<br>206<br>189<br>                    | 309<br>509<br>397<br>291<br>247<br>217 | 245<br>202<br>267<br>319<br>317 | 210<br>193<br>186<br>186<br>298<br>286 | 130<br>281<br>195<br>165<br>131 | 65<br>62<br>87<br>150<br>89<br>71 | 52<br>47<br>46<br>44<br>43<br>42 | 39<br>114<br>110<br>64<br>51 |
| TOTAL                                 | 1668                             | 2447                            | 5293                                    | 4371                                    | 8017                                     | 6317                                   | 8887                            | 9920                                   | 7019                            | 2583                              | 1649                             | 1502                         |
| MEAN                                  | 53.8                             | 81.6                            | 171                                     | 141                                     | 286                                      | 204                                    | 296                             | 320                                    | 234                             | 83.3                              | 53.2                             | 50.1                         |
| MAX                                   | 87                               | 231                             | 423                                     | 234                                     | 670                                      | 509                                    | 738                             | 770                                    | 630                             | 150                               | 105                              | 129                          |
| MIN                                   | 42                               | 56                              | 91                                      | 104                                     | 189                                      | 150                                    | 192                             | 176                                    | 130                             | 61                                | 42                               | 35                           |
| STATIST<br>MEAN<br>MAX<br>(WY)<br>MIN | 107<br>424<br>1978<br>39.2       | 151<br>324<br>1978<br>48.9      | 194<br>452<br>1973<br>53.9              | FOR WATER<br>187<br>425<br>1998<br>73.6 | YEARS 1970<br>219<br>457<br>1976<br>70.4 | - 2002,<br>323<br>653<br>1979<br>123   | 353<br>935<br>1993<br>153       | YEAR (WY<br>205<br>390<br>2000<br>78.8 | 144<br>617<br>1972<br>49.3      | 99.7<br>237<br>1974<br>39.6       | 74.6<br>171<br>1992<br>30.4      | 83.6<br>275<br>1975<br>36.2  |
| (WY)                                  | 1984                             | 1999                            | 1999                                    | 1981                                    | 1980                                     | 1983                                   | 1995                            | 1995                                   | 1995                            | 1995                              | 1999                             | 1995                         |

e Estimated

## 04240010 ONONDAGA CREEK AT SPENCER STREET, SYRACUSE, NY--Continued

| SUMMARY STATISTICS                                                                                                                                                                     | FOR 2001 CALENDAR YE                                      | FOR 2002 WATER Y | EAR WATER YEARS 1970 - 2002 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------|-----------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 55385<br>152<br>1030 Apr<br>33 Aug<br>34 Aug<br>308<br>98 | 15 35 Sep        | 13 23 Sep 26 1985           |



## 04240100 HARBOR BROOK AT SYRACUSE, NY

LOCATION.--Lat 43°02'09", long 76°10'55", Onondaga County, Hydrologic Unit 04140201, on left bank 160 ft upstream from bridge on Holden Street at Syracuse, 220 ft downstream from gated outlet of Velasko Road Detention Basin, and 2.6 mi upstream from

DRAINAGE AREA. -- 10.0 mi<sup>2</sup>

DRAINAGE AREA.--10.0 mi<sup>2</sup>.

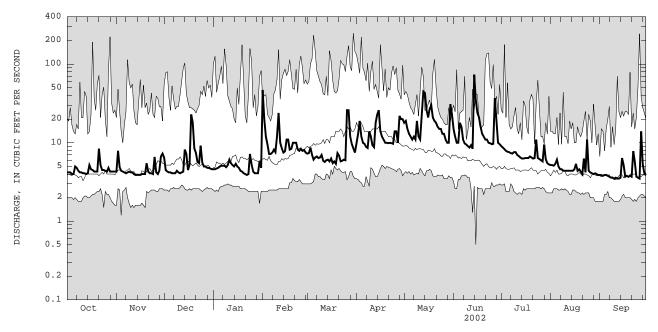
PERIOD OF RECORD.--June 1959 to current year.

REVISED RECORDS.--WSP 2112: Drainage area. WDR NY-82-3: 1981 (M), WDR-NY-88-3: 1986-87 (M).

GAGE.--Water-stage recorder. Datum of gage is 391.16 ft above NGVD of 1929. Prior to Sept. 30, 1978, at site 1,660 ft upstream and Oct. 1, 1978 to May 31, 1980, at site 1,800 ft upstream at datum 3.63 ft higher.

REMARKS.--Records fair. Flow includes some sewage and storm sewer inflow, some originating outside the basin. Flows can be regulated at detention basin by Onondaga County. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 726 ft<sup>3</sup>/s, July 3, 1974, gage height, 8.34 ft, datum then in use, from rating curve extended above 180 ft<sup>3</sup>/s on basis of slope-area measurements of peak flow; no flow for part of each day July 14, 16, 18, 1997, Aug. 20, 26, 1998, Sept. 11, 14, 1998, result of regulation for maintenance work in the channel.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 177 ft<sup>3</sup>/s, June 14, gage height, 3.36 ft; minimum discharge, 3.1 ft<sup>3</sup>/s, Aug. 22, gage height, 0.95 ft.

|                                    |                                      | DISCHAF                              | RGE, CUBIO                             | C FEET PER                             |                                      | WATER YE<br>Y MEAN VA                | AR OCTOBER<br>LUES                   | 2001 TO                              | SEPTEMBE                             | R 2002                                    |                                        |                                      |
|------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------|
| DAY                                | OCT                                  | NOV                                  | DEC                                    | JAN                                    | FEB                                  | MAR                                  | APR                                  | MAY                                  | JUN                                  | JUL                                       | AUG                                    | SEP                                  |
| 1<br>2<br>3<br>4<br>5              | e4.2<br>e4.2<br>e4.2<br>e4.0<br>e4.0 | e4.3<br>7.9<br>4.9<br>4.4<br>4.3     | 6.5<br>4.5<br>4.3<br>e4.2<br>e4.2      | 4.6<br>4.6<br>4.7<br>4.8<br>5.0        | 47<br>20<br>12<br>9.5<br>7.2         | 7.3<br>7.4<br>8.7<br>7.0<br>6.1      | 10<br>13<br>19<br>12<br>10           | 18<br>19<br>15<br>13<br>12           | 15<br>12<br>10<br>10<br>18           | 9.1<br>8.7<br>8.3<br>7.9<br>7.7           | 5.2<br>5.2<br>5.1<br>5.4<br>6.1        | 3.9<br>3.8<br>3.8<br>3.9             |
| 6<br>7<br>8<br>9<br>10             | e5.0<br>e4.8<br>e4.4<br>e4.2<br>e4.2 | 4.2<br>4.1<br>4.2<br>4.3<br>4.2      | 4.1<br>4.1<br>4.4<br>4.2               | 5.1<br>5.1<br>5.1<br>4.9<br>5.2        | 7.2<br>7.5<br>8.2<br>7.6             | 6.5<br>6.7<br>6.4<br>6.5<br>7.0      | 9.7<br>8.9<br>8.6<br>14<br>12        | 11<br>12<br>11<br>19<br>12           | 16<br>11<br>9.8<br>9.5<br>9.1        | 7.6<br>7.4<br>7.3<br>7.6<br>7.6           | e5.0<br>e4.6<br>e4.6<br>e4.4<br>e4.4   | 3.8<br>3.7<br>3.6<br>3.6<br>3.5      |
| 11<br>12<br>13<br>14<br>15         | e4.1<br>e4.1<br>e4.0<br>e4.1<br>e5.2 | 4.2<br>4.0<br>3.9<br>3.9<br>3.9      | 4.1<br>4.2<br>4.3<br>8.2<br>7.2        | 6.1<br>5.5<br>5.2<br>5.0<br>5.4        | 24<br>10<br>8.5<br>7.5<br>7.8        | 5.9<br>5.7<br>6.0<br>6.1<br>5.8      | 9.3<br>8.8<br>18<br>23<br>26         | 11<br>23<br>45<br>43<br>26           | 8.7<br>9.3<br>8.4<br>74<br>35        | 7.0<br>6.8<br>6.5<br>6.3                  | e4.4<br>e4.4<br>e4.4<br>e4.4<br>e4.4   | 3.6<br>3.5<br>3.5<br>3.6<br>6.4      |
| 16<br>17<br>18<br>19<br>20         | e4.6<br>e4.5<br>e4.3<br>e4.3<br>e4.3 | 3.9<br>4.0<br>4.0<br>4.0<br>5.5      | 4.5<br>5.3<br>23<br>18<br>8.4          | 5.0<br>4.8<br>4.4<br>4.3<br>4.1        | 11<br>11<br>8.2<br>8.4               | 6.3<br>5.5<br>5.8<br>5.4<br>7.4      | 14<br>12<br>11<br>10                 | 21<br>27<br>30<br>21<br>19           | 24<br>21<br>16<br>13<br>12           | 6.4<br>6.4<br>6.7<br>6.5                  | e4.6<br>e5.4<br>e4.4<br>e4.6<br>4.3    | 5.2<br>3.7<br>3.8<br>3.7<br>3.8      |
| 21<br>22<br>23<br>24<br>25         | e8.4<br>e5.2<br>e4.5<br>e4.5<br>e4.4 | 4.3<br>4.1<br>4.1<br>4.0<br>6.6      | 7.4<br>5.7<br>5.5<br>9.2<br>5.6        | 4.0<br>3.9<br>4.0<br>7.2<br>5.3        | 10<br>10<br>8.2<br>7.9<br>8.3        | 6.9<br>5.8<br>5.9<br>6.1<br>6.0      | 9.9<br>10<br>9.9<br>9.7<br>14        | 18<br>16<br>15<br>15<br>13           | 11<br>11<br>10<br>9.9<br>9.6         | 6.3<br>6.4<br>11<br>e6.4<br>e6.2          | 4.0<br>6.3<br>4.2<br>11<br>4.4         | 3.7<br>7.8<br>5.8<br>3.7<br>3.6      |
| 26<br>27<br>28<br>29<br>30<br>31   | e4.3<br>e4.3<br>e4.3<br>e4.3<br>e4.3 | 4.2<br>4.0<br>4.4<br>6.7<br>7.3      | 5.0<br>5.0<br>4.8<br>4.8<br>4.7<br>4.6 | 4.3<br>4.1<br>4.1<br>4.1<br>5.8<br>4.8 | 7.9<br>8.1<br>7.5<br>                | 26<br>26<br>12<br>9.7<br>8.5<br>7.5  | 14<br>10<br>22<br>20<br>20           | 13<br>11<br>10<br>10<br>31<br>23     | 9.7<br>37<br>18<br>10<br>9.6         | e6.0<br>e5.8<br>e9.5<br>6.2<br>5.5<br>5.3 | 4.2<br>4.1<br>4.0<br>4.1<br>4.0<br>3.9 | 3.5<br>14<br>5.3<br>4.1<br>3.9       |
| TOTAL<br>MEAN<br>MAX<br>MIN        | 140.0<br>4.52<br>8.4<br>4.0          | 137.8<br>4.59<br>7.9<br>3.9          | 194.1<br>6.26<br>23<br>4.1             | 150.5<br>4.85<br>7.2<br>3.9            | 312.5<br>11.2<br>47<br>7.2           | 249.9<br>8.06<br>26<br>5.4           | 398.8<br>13.3<br>26<br>8.6           | 583<br>18.8<br>45<br>10              | 477.6<br>15.9<br>74<br>8.4           | 219.1<br>7.07<br>11<br>5.3                | 149.5<br>4.82<br>11<br>3.9             | 133.7<br>4.46<br>14<br>3.5           |
| STATIS'                            | TICS OF M                            | ONTHLY MEA                           | AN DATA FO                             | OR WATER Y                             | EARS 195                             | 9 - 2002,                            | BY WATER                             | YEAR (WY                             | )                                    |                                           |                                        |                                      |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 5.60<br>21.7<br>1978<br>2.24<br>1967 | 6.58<br>21.6<br>1969<br>2.74<br>1967 | 8.06<br>26.0<br>1978<br>2.76<br>1962   | 8.61<br>27.9<br>1998<br>3.07<br>1961   | 10.6<br>33.5<br>1976<br>3.48<br>1963 | 16.9<br>39.6<br>1979<br>5.14<br>1983 | 17.5<br>59.4<br>1993<br>5.07<br>1967 | 9.95<br>22.6<br>1976<br>4.35<br>1995 | 7.37<br>32.2<br>1972<br>3.55<br>1995 | 5.87<br>13.5<br>1974<br>2.81<br>1965      | 4.72<br>11.4<br>1990<br>2.55<br>1965   | 4.99<br>20.7<br>1975<br>2.35<br>1959 |

e Estimated

## 04240100 HARBOR BROOK AT SYRACUSE, NY--Continued

| SUMMARY STATISTICS                        | FOR 2001 CALENDAR YEAR   | FOR 2002 WATER YEAR     | WATER YEARS 1959 - 2002             |
|-------------------------------------------|--------------------------|-------------------------|-------------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN               | 3248.6<br>8.90           | 3146.5<br>8.62          | 8.89                                |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN |                          |                         | 15.7 1976<br>4.53 1967              |
| HIGHEST DAILY MEAN<br>LOWEST DAILY MEAN   | 103 Apr 8<br>3.4 Aug 26  | 74 Jun 14<br>3.5 Sep 10 | 248 Mar 30 1960<br>0.51 Jun 15 1984 |
| ANNUAL SEVEN-DAY MINIMUM                  | 3.4 Aug 20<br>3.7 Aug 21 | 3.6 Sep 8               | 1.6 Nov 10 1988                     |
| 10 PERCENT EXCEEDS<br>50 PERCENT EXCEEDS  | 19<br>5.2                | 17<br>6.2               | 17<br>5.6                           |
| 90 PERCENT EXCEEDS                        | 3.9                      | 4.0                     | 3.2                                 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

## 04240105 HARBOR BROOK AT HIAWATHA BOULEVARD, SYRACUSE, NY

LOCATION.--Lat 43°03'22", long 76°11'07", Onondaga County, Hydrologic Unit 04140201, on left bank 250 ft downstream from culvert on Hiawatha Boulevard, in Syracuse, and 0.5 mi upstream from mouth.

DRAINAGE AREA.--12.1 mi<sup>2</sup>.

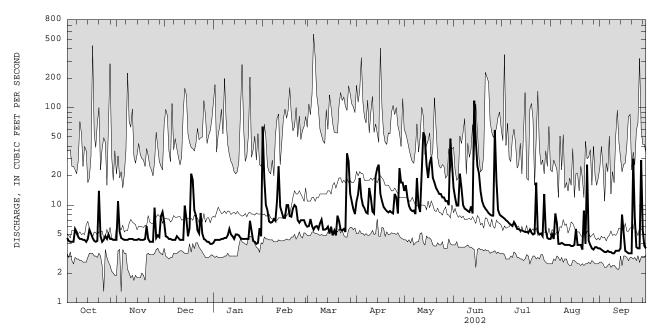
DRAINAGE AREA.--12.1 mi<sup>2</sup>.

PERIOD OF RECORD.--Occasional discharge measurements, water years 1958-70. October 1970 to current year.

REVISED RECORD.S.--WDR NY-76-1: 1971-75 (P). WDR NY-2001-3: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and concrete control. Datum of gage is 365.86 ft above NGVD of 1929.

REMARKS.--No estimated daily discharges. Records fair. Flow includes some sewage and storm sewer inflow, some originating outside the basin. Flow can be regulated at Velasko Road Detention Basin 2.1 mi upstream. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.


EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 824 ft<sup>3</sup>/s, July 3, 1974, gage height, 7.91 ft, from rating curve extended above 190 ft<sup>3</sup>/s on basis of step-backwater computations; maximum gage height, 8.15 ft, Sept. 26, 1975 (backwater from debris jam); no flow for part of each day Oct. 26, 27, 1987, result of regulation for maintenance work in the channel.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 413 ft<sup>3</sup>/s, June 27, gage height, 5.81 ft; minimum, 2.4 ft<sup>3</sup>/s, Sept. 6, gage height, 1.84 ft, minimum gage height 1.79 ft, Sept. 8, 9, 10, 11, 19, 20, 21, 22.

|                                    | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                                      |                                        |                                        |                                      |                                      |                                      |                                      |                                      |                                       |                                      |                                      |
|------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|
| DAY                                | OCT                                                                                              | NOV                                  | DEC                                    | JAN                                    | FEB                                  | MAR                                  | APR                                  | MAY                                  | JUN                                  | JUL                                   | AUG                                  | SEP                                  |
| 1<br>2<br>3<br>4<br>5              | 4.6<br>4.3<br>4.2<br>4.2                                                                         | 4.4<br>11<br>5.3<br>4.6<br>4.5       | 6.7<br>4.8<br>4.7<br>4.5<br>4.5        | 4.1<br>4.4<br>4.4<br>4.4               | 64<br>19<br>10<br>8.8<br>6.8         | 6.0<br>6.1<br>7.2<br>6.1<br>5.6      | 11<br>13<br>19<br>12<br>9.9          | 14<br>16<br>12<br>9.8<br>9.0         | 15<br>12<br>9.9<br>9.9<br>21         | 7.7<br>7.5<br>7.3<br>7.0<br>6.8       | 4.5<br>5.0<br>4.5<br>8.2<br>6.5      | 3.6<br>3.5<br>3.4<br>3.3             |
| 6<br>7<br>8<br>9<br>10             | 5.7<br>5.3<br>4.7<br>4.5<br>4.5                                                                  | 4.4<br>4.4<br>4.5<br>4.5             | 4.4<br>4.4<br>4.4<br>4.8<br>4.6        | 4.5<br>4.5<br>4.6<br>4.6<br>4.9        | 6.6<br>6.7<br>7.2<br>6.9             | 6.0<br>6.1<br>5.7<br>6.5<br>7.1      | 9.3<br>8.4<br>8.2<br>15              | 8.7<br>8.8<br>8.1<br>19<br>9.9       | 15<br>10<br>9.2<br>9.0<br>8.7        | 6.5<br>6.3<br>6.1<br>6.7<br>6.3       | 4.0<br>4.0<br>4.1<br>4.0<br>3.9      | 3.4<br>3.3<br>3.3<br>3.2<br>3.2      |
| 11<br>12<br>13<br>14<br>15         | 4.4<br>4.4<br>4.2<br>4.5<br>5.6                                                                  | 4.5<br>4.4<br>4.4<br>4.5             | 4.4<br>4.4<br>4.4<br>9.9<br>7.3        | 5.7<br>5.0<br>4.8<br>4.5<br>5.0        | 25<br>9.6<br>8.4<br>7.4<br>7.4       | 5.6<br>5.6<br>5.7<br>6.0<br>5.1      | 8.6<br>8.2<br>20<br>24<br>26         | 8.5<br>23<br>56<br>50<br>26          | 8.5<br>9.7<br>8.2<br>118<br>46       | 5.7<br>5.7<br>5.5<br>5.5<br>5.4       | 3.9<br>3.9<br>3.9<br>3.8<br>3.8      | 3.4<br>3.4<br>3.6<br>8.0             |
| 16<br>17<br>18<br>19<br>20         | 5.1<br>4.6<br>4.3<br>4.2<br>4.3                                                                  | 4.4<br>4.4<br>4.5<br>6.1             | 4.8<br>5.8<br>21<br>18<br>8.8          | 5.0<br>4.9<br>4.6<br>4.5<br>4.5        | 10<br>10<br>7.7<br>7.6<br>9.2        | 6.0<br>4.9<br>5.5<br>4.9<br>7.8      | 13<br>11<br>9.6<br>9.1<br>8.7        | 19<br>27<br>31<br>19<br>17           | 25<br>21<br>14<br>11<br>9.8          | 5.3<br>5.3<br>5.2<br>5.6<br>5.2       | 3.9<br>5.7<br>3.9<br>3.9             | 5.4<br>3.4<br>3.3<br>3.2<br>3.2      |
| 21<br>22<br>23<br>24<br>25         | 14<br>4.8<br>4.2<br>4.4<br>4.8                                                                   | 4.5<br>4.2<br>4.2<br>4.2<br>9.4      | 7.8<br>5.5<br>5.1<br>8.3<br>5.1        | 4.5<br>4.5<br>4.5<br>6.9<br>5.5        | 10<br>9.6<br>7.0<br>6.6<br>7.0       | 6.9<br>5.6<br>5.5<br>5.7<br>5.3      | 8.4<br>8.7<br>8.4<br>8.2             | 15<br>14<br>13<br>13                 | 9.2<br>8.8<br>8.3<br>8.0<br>7.8      | 5.0<br>5.1<br>17<br>5.3<br>5.0        | 3.5<br>8.8<br>4.0<br>26<br>4.3       | 3.2<br>30<br>7.5<br>3.7<br>3.6       |
| 26<br>27<br>28<br>29<br>30<br>31   | 4.5<br>5.0<br>4.5<br>4.5<br>4.4                                                                  | 4.6<br>4.9<br>4.7<br>7.7<br>8.5      | 4.5<br>4.4<br>4.2<br>4.2<br>4.0<br>4.0 | 4.3<br>4.2<br>4.0<br>4.1<br>5.8<br>4.8 | 7.0<br>7.0<br>6.3<br>                | 34<br>28<br>13<br>11<br>9.1<br>8.1   | 12<br>8.2<br>24<br>17<br>17          | 12<br>11<br>11<br>10<br>48<br>27     | 7.8<br>59<br>18<br>8.9<br>8.0        | 5.1<br>4.8<br>13<br>5.5<br>4.6<br>4.5 | 3.9<br>3.6<br>3.5<br>3.7<br>3.7      | 3.6<br>29<br>5.5<br>3.8<br>3.6       |
| TOTAL<br>MEAN<br>MAX<br>MIN        | 151.3<br>4.88<br>14<br>4.2                                                                       | 154.9<br>5.16<br>11<br>4.2           | 193.7<br>6.25<br>21<br>4.0             | 146.4<br>4.72<br>6.9<br>4.0            | 309.8<br>11.1<br>64<br>6.3           | 251.7<br>8.12<br>34<br>4.9           | 380.9<br>12.7<br>26<br>8.2           | 577.8<br>18.6<br>56<br>8.1           | 534.7<br>17.8<br>118<br>7.8          | 197.5<br>6.37<br>17<br>4.5            | 157.9<br>5.09<br>26<br>3.5           | 167.3<br>5.58<br>30<br>3.2           |
| STATIST                            | TICS OF M                                                                                        | ONTHLY ME                            | AN DATA I                              | FOR WATER                              | YEARS 197                            | 1 - 2002,                            | BY WATER                             | YEAR (WY                             | ()                                   |                                       |                                      |                                      |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY) | 8.16<br>34.0<br>1978<br>3.44<br>1998                                                             | 8.91<br>26.6<br>1978<br>3.68<br>1999 | 11.1<br>35.8<br>1978<br>3.54<br>1999   | 11.7<br>31.0<br>1973<br>4.43<br>1983   | 13.1<br>38.4<br>1976<br>4.99<br>1995 | 21.6<br>68.8<br>1979<br>6.04<br>1983 | 22.4<br>68.8<br>1993<br>6.09<br>1981 | 12.9<br>27.9<br>1976<br>4.80<br>1981 | 10.6<br>51.9<br>1972<br>3.79<br>1995 | 8.90<br>25.4<br>1974<br>3.44<br>1995  | 6.74<br>12.0<br>1972<br>3.08<br>1999 | 7.72<br>28.7<br>1975<br>3.70<br>1997 |

# 04240105 HARBOR BROOK AT HIAWATHA BOULEVARD, SYRACUSE, NY--Continued

| FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR                                     | WATER YEARS 1971 - 2002                                                                                |
|------------------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| 3631.8                 | 3223.9                                                  | 12.0                                                                                                   |
| 9.95                   | 0.03                                                    | 21.3 1973<br>5.54 1995                                                                                 |
| 119 Apr 8              | 118 Jun 14                                              | 567 Mar 5 1979                                                                                         |
|                        |                                                         | 1.3 Nov 4 1988<br>1.8 Nov 10 1988                                                                      |
| 2                      | -                                                       | 0.00 Oct 26 1987                                                                                       |
| 5.5                    | 5.6                                                     | 23<br>7.5<br>3.9                                                                                       |
| F                      | 3631.8<br>9.95<br>119 Apr 8<br>3.3 Aug 18<br>3.6 Aug 21 | 3631.8 3223.9 9.95 8.83  119 Apr 8 118 Jun 14 3.3 Aug 18 3.2 Sep 9 3.6 Aug 21 3.3 Sep 4  20 17 5.5 5.6 |



## 04240120 LEY CREEK AT PARK STREET, SYRACUSE, NY

LOCATION.--Lat 43°04'38", long 76°10'14", Onondaga County, Hydrologic Unit 04140201, on left bank 0.2 mi upstream from bridge on Park Street, and 0.4 mi upstream from mouth.

DRAINAGE AREA.--25.5 mi².

PERIOD OF RECORD.--Occasional discharge measurements water years 1959-72. December 1972 to current year.

REVISED RECORDS.--WDR NY 76-1: 1975 (M). WDR NY-2001-3: Drainage area.

GAGE.--Water-stage recorder, crest-stage gage, and, since July 9, 1984, steel "I" beam control. Datum of gage is 362.76 ft above NGVD of 1929. Prior to Oct. 1, 1978, at same site at datum 0.08 ft higher.

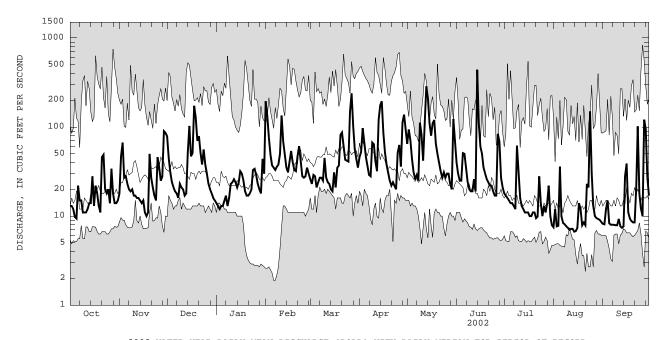
REMARKS.--Records good except those for estimated daily discharges, which are fair. Flow may be affected by backwater from Onondaga Lake at times when the lake elevation exceeds 364.0 ft. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,310 ft³/s, Sept. 26, 1975, gage height, 6.17 ft, datum then in use, from rating curve extended above 530 ft³/s; maximum gage height, 7.02 ft, Apr. 26, 1993 (backwater from Onondaga Lake); minimum discharge not determined; minimum gage height, 0.28 ft, Feb. 6-8, 1977.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft³/s and maximum (\*):

| Date              | Time                      | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date    | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|-------------------|---------------------------|-----------------------------------|---------------------|---------|------|-----------------------------------|---------------------|
| Mar. 26<br>May 13 | 2330<br>2000              | 457<br>510                        | 3.27<br>3.45        | Jun. 14 | 1600 | *809                              | *4.52               |
| -                 | rae, 6.4 ft. <sup>3</sup> | /s. Aug. 14. gad                  | ge height. 0.94 ft. |         |      |                                   |                     |

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002


Mini

|                                            | DAILY MEAN VALUES                          |                                         |                                           |                                         |                                           |                                           |                                           |                                           |                                           |                                            |                                             |                                             |
|--------------------------------------------|--------------------------------------------|-----------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|--------------------------------------------|---------------------------------------------|---------------------------------------------|
| DAY                                        | OCT                                        | NOV                                     | DEC                                       | JAN                                     | FEB                                       | MAR                                       | APR                                       | MAY                                       | JUN                                       | JUL                                        | AUG                                         | SEP                                         |
| 1<br>2<br>3<br>4<br>5                      | 13<br>13<br>12<br>9.8<br>9.4               | 18<br>47<br>67<br>27<br>28              | 79<br>45<br>31<br>24<br>21                | 14<br>13<br>12<br>13<br>13              | 195<br>134<br>76<br>49<br>37              | 26<br>23<br>29<br>28<br>21                | 46<br>53<br>97<br>65<br>46                | 65<br>94<br>71<br>44<br>31                | e40<br>e30<br>e25<br>e25<br>51            | 18<br>17<br>16<br>15<br>14                 | 7.5<br>12<br>7.7<br>7.8<br>36               | 8.2<br>8.1<br>12<br>15<br>8.3               |
| 6<br>7<br>8<br>9<br>10                     | 22<br>15<br>15<br>11<br>11                 | 23<br>20<br>19<br>20<br>17              | 19<br>18<br>16<br>23<br>21                | 15<br>17<br>13<br>16<br>23              | 35<br>33<br>36<br>38<br>50                | 24<br>27<br>27<br>25<br>45                | 37<br>29<br>28<br>67<br>64                | 26<br>29<br>25<br>112<br>82               | e50<br>35<br>24<br>20<br>19               | 14<br>13<br>12<br>62<br>29                 | 9.9<br>8.4<br>8.1<br>7.7<br>7.4             | 8.0<br>8.0<br>8.0<br>7.9                    |
| 11<br>12<br>13<br>14<br>15                 | 11<br>12<br>14<br>14<br>28                 | 17<br>16<br>16<br>15<br>14              | 20<br>17<br>18<br>51<br>103               | 24<br>26<br>24<br>21<br>24              | 135<br>69<br>50<br>35<br>31               | 27<br>24<br>23<br>20<br>19                | 41<br>32<br>121<br>176<br>195             | 42<br>110<br>287<br>e210<br>e110          | 19<br>26<br>19<br>440<br>e110             | 16<br>13<br>12<br>11                       | 7.0<br>7.2<br>7.2<br>6.7<br>6.8             | 9.3<br>7.7<br>7.4<br>7.7<br>28              |
| 16<br>17<br>18<br>19<br>20                 | 13<br>22<br>18<br>13<br>11                 | 15<br>11<br>10<br>11<br>50              | 47<br>51<br>173<br>127<br>70              | 32<br>30<br>25<br>19<br>17              | 41<br>54<br>40<br>33<br>32                | 31<br>21<br>35<br>37<br>82                | 86<br>52<br>38<br>31<br>25                | e80<br>e110<br>e120<br>e65<br>e50         | e60<br>e50<br>e35<br>e30<br>e26           | 11<br>10<br>10<br>11<br>11                 | 7.4<br>14<br>12<br>7.9<br>8.5               | 39<br>11<br>9.4<br>8.8<br>8.5               |
| 21<br>22<br>23<br>24<br>25                 | 46<br>49<br>20<br>18<br>20                 | 27<br>21<br>17<br>15<br>46              | 79<br>52<br>38<br>56<br>38                | 17<br>18<br>20<br>33<br>34              | 47<br>61<br>41<br>28<br>27                | 87<br>60<br>43<br>42<br>41                | 22<br>24<br>22<br>20<br>52                | e40<br>32<br>27<br>31<br>27               | e24<br>e22<br>22<br>19<br>17              | 9.5<br>9.9<br>28<br>14<br>10               | 7.9<br>23<br>21<br>150<br>31                | 8.5<br>21<br>102<br>18<br>12                |
| 26<br>27<br>28<br>29<br>30<br>31           | 14<br>34<br>18<br>14<br>14                 | 35<br>25<br>28<br>90<br>86              | 30<br>23<br>20<br>18<br>16<br>15          | 29<br>23<br>20<br>18<br>44<br>30        | 28<br>35<br>30<br>                        | 149<br>239<br>102<br>57<br>44<br>35       | 63<br>36<br>112<br>138<br>94              | e30<br>30<br>23<br>20<br>123<br>e70       | 17<br>84<br>68<br>27<br>21                | 13<br>11<br>14<br>22<br>10<br>7.9          | 13<br>10<br>9.5<br>9.3<br>9.1<br>8.6        | 10<br>121<br>94<br>27<br>17                 |
| TOTAL<br>MEAN<br>MAX<br>MIN<br>CFSM<br>IN. | 549.2<br>17.7<br>49<br>9.4<br>0.69<br>0.80 | 851<br>28.4<br>90<br>10<br>1.11<br>1.24 | 1359<br>43.8<br>173<br>15<br>1.72<br>1.98 | 677<br>21.8<br>44<br>12<br>0.86<br>0.99 | 1500<br>53.6<br>195<br>27<br>2.10<br>2.19 | 1493<br>48.2<br>239<br>19<br>1.89<br>2.18 | 1912<br>63.7<br>195<br>20<br>2.50<br>2.79 | 2216<br>71.5<br>287<br>20<br>2.80<br>3.23 | 1455<br>48.5<br>440<br>17<br>1.90<br>2.12 | 475.3<br>15.3<br>62<br>7.9<br>0.60<br>0.69 | 489.6<br>15.8<br>150<br>6.7<br>0.62<br>0.71 | 658.7<br>22.0<br>121<br>7.4<br>0.86<br>0.96 |
| STATIS'                                    | TICS OF M                                  | ONTHLY MEA                              | AN DATA FO                                | OR WATER                                | YEARS 1973                                | 3 - 2002,                                 | BY WATER                                  | YEAR (WY)                                 |                                           |                                            |                                             |                                             |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)         | 33.5<br>129<br>1978<br>7.01<br>1983        | 46.2<br>102<br>1978<br>17.3<br>1979     | 51.8<br>145<br>1978<br>18.5<br>1989       | 41.8<br>107<br>1998<br>11.0<br>1977     | 51.8<br>125<br>1976<br>16.1<br>1993       | 73.8<br>154<br>1978<br>25.0<br>1981       | 72.7<br>334<br>1993<br>22.5<br>1981       | 41.0<br>94.8<br>1996<br>12.7<br>1987      | 31.3<br>71.4<br>1973<br>11.8<br>1995      | 26.3<br>61.6<br>1992<br>10.6<br>1995       | 22.4<br>46.7<br>1976<br>8.22<br>1987        | 29.4<br>99.1<br>1975<br>9.07<br>1994        |

e Estimated

# 04240120 LEY CREEK AT PARK STREET, SYRACUSE, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1973 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 15239.6                | 13635.8             |                         |
| ANNUAL MEAN              | 41.8                   | 37.4                | 42.9                    |
| HIGHEST ANNUAL MEAN      |                        |                     | 69.8 1978               |
| LOWEST ANNUAL MEAN       |                        |                     | 24.8 1995               |
| HIGHEST DAILY MEAN       | 476 Mar 22             | 440 Jun 14          | 831 Sep 26 1975         |
| LOWEST DAILY MEAN        | 4.5 Aug 8              | 6.7 Aug 14          | 1.9 Feb 6 1977          |
| ANNUAL SEVEN-DAY MINIMUM | 4.7 Aug 2              | 7.1 Aug 10          | 2.3 Feb 2 1977          |
| ANNUAL RUNOFF (CFSM)     | 1.64                   | 1.47                | 1.68                    |
| ANNUAL RUNOFF (INCHES)   | 22.23                  | 19.89               | 22.86                   |
| 10 PERCENT EXCEEDS       | 99                     | 83                  | 92                      |
| 50 PERCENT EXCEEDS       | 22                     | 24                  | 24                      |
| 90 PERCENT EXCEEDS       | 7.8                    | 9.4                 | 9.9                     |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

217

#### 0424014980 SPAFFORD CREEK TRIBUTARY NEAR SAWMILL ROAD, NEAR SPAFFORD, NY

LOCATION.--Lat 42°49'35", long 76°13'56", Onondaga County, Hydrologic Unit 04140201, on right bank, 200 ft behind farmers house, 500 ft upstream from Spafford Creek, and approximately 0.4 mi south of Sawmill Road.

DRAINAGE AREA.--0.11 mi<sup>2</sup>.

## WATER-DISCHARGE RECORDS

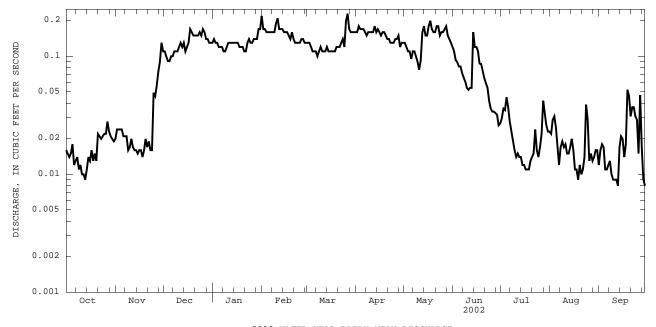
PERIOD OF RECORD. -- October 1997 to current year.

GAGE.--Water-stage recorder, V-notch sharp-crested compound weir, and crest-stage gage. Elevation of gage is 820 ft above NGVD of 1929, from topographic map

REMARKS.--No estimated daily discharges. Records fair. Telephone gage-height and precipitation telemeter at station. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 0.50 ft<sup>3</sup>/s, Jan. 12, 1998; minimum daily discharge, 0.005 ft<sup>3</sup>/s, Dec.

10, 11, 14, 15, 1998. Maximum and minimum instantaneous discharge not determined.


EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 0.23 ft<sup>3</sup>/s, Mar. 27; minimum daily discharge, 0.008 ft<sup>3</sup>/s, Sept. 13, 30. Maximum

and minimum instantaneous discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY SEP 0.020 0.027 0.023 0.012 0.016 0.13 0.22 0.13 0.16 0.13 0.12 1 0.11 2 0.015 0.11 0.14 0.13 0.16 0.13 0.11 0.030 0.016 0.024 0.17 0.022 3 0 014 0.024 0 099 0 13 0 17 0.13 0.18 0.12 0 093 0.036 0.029 0.018 0.091 0.015 0.089 0.035 0.031 0.024 0.13 0.16 0.12 0.17 0.11 0.017 5 0.018 0.024 0.091 0.12 0.11 0.17 0.11 0.082 0.045 0.011 0.16 0.025 6 0.012 0.021 0.10 0.16 0.11 0.17 0.095 0.082 0.037 0.018 0.011 0.12 0.013 0.021 0.10 0.12 0.16 0.11 0.16 0.11 0.072 0.028 0.012 0.012 8 0.014 0.021 0.11 0.11 0.16 0.10 0.15 0.11 0.066 0.023 0.017 0.013 0.011 0.016 0.061 0.019 0.11 0.11 0.16 0.11 0.16 0.10 0.019 0.010 10 0.012 0.017 0.11 0.12 0.19 0.12 0.16 0.090 0.054 0.016 0.017 0.009 11 0.010 0.020 0.12 0.13 0.21 0.11 0.16 0.077 0.052 0.014 0.018 0.009 12 13 0.11 0.16 0.010 0.017 0.13 0.13 0.17 0.092 0.054 0.015 0.015 0.009 0.009 0.016 0.12 0.13 0.17 0.16 0.054 0.014 0.015 0.008 14 0.011 0.016 0.13 0.13 0.17 0.12 0.16 0.18 0.16 0.014 0.017 0.017 15 0.014 0.015 0.11 0.13 0.16 0.11 0.17 0.15 0.12 0.012 0.020 0.021 0.013 16 0.016 0.12 0.13 0.16 0.11 0.16 0.15 0.12 0.012 0.016 0.020 17 0.016 0.016 0.13 0.13 0.12 0.16 0.11 0.15 0.16 0.18 0.11 0.011 0.011 0.014 0.011 18 0.086 0.015 0.016 0.11 0.16 0.011 0.009 20 0.013 0.020 0.15 0.12 0.16 0.12 0.15 0.16 0.075 0.013 0.012 0.046 21 0.022 0.14 0.12 0.16 0.065 0.014 0.031 0.017 0.15 0.11 0.14 0.010 0.019 0.15 0.15 0.11 0.12 0.14 0.18 0.059 0.011 22 0.021 0.13 0.015 0.037 23 0.020 0.13 0.024 0.037 24 0.021 0.016 0.13 0.14 0.13 0.15 0.042 0.016 0.039 0.031 25 0.022 0.049 0 15 0 13 0 13 0.12 0 13 0 16 0.036 0.014 0.029 0.029 26 0.022 0.046 0.17 0.13 0.14 0.20 0.14 0.16 0.034 0.017 0.013 0.015 0.057 0.074 0.14 0.23 0.17  $0.14 \\ 0.15$ 0.17 0.18  $0.034 \\ 0.033$ 27 0.028 0.16 0.14 0.022 0.015 0.047 28 0.023 0.14 0.13 0.042 0.013 0.017 0.009 29 0.021 0.090 0.14 0.14 0.16 0.12 0.15 0.032 0.033 0.014 ---30 0.020 0 13 0 13 0 17 0 16 0 13 0 14 0.026 0.026 0.016 0.008 0.019 0.023 0.016 4.001 TOTAL 0.503 0.892 4.01 4.43 4.00 4.60 2.162 0.669 0.604 4.384 0.547 0.016 0.030 0.13 0.16 0.13 0.14 0.072 0.022 0.018 0.020 MEAN 0.13 0.15 MAX 0.028 0.13 0.17 0.17 0.22 0.23 0.18 0.20 0.16 0.045 0.039 0.052 0.026 0.014 0.091 0.077 0.009 0.008 MIN 0.009 0.11 0.13 0.10 0.12 0.011 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 2002, BY WATER YEAR (WY) MEAN 0.013 0.020 0.058 0.094 0.12 0.14 0.14 0 094 0.052 0.035 0.018 0.020 MAY 0.015 0.030 0.13 0.18 0 16 0.16 0 15 0.15 0.12 0.066 0.022 0.030 2002 2002 1998 2000 2000 2000 2002 2001 2002 1999 (WY) 2002 1998 MIN 0.010 0.011 0.011 0.042 0.10 0.13 0.12 0.052 0.013 0.012 0.011 0.013 (WY) 1998 1999 1999 2001 2001 1998 1998 2001 1999 1999 1999 1998

# 0424014980 SPAFFORD CREEK TRIBUTARY NEAR SAWMILL ROAD, NEAR SPAFFORD, NY--Continued

| SUMMARY STATISTICS  | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1998 - 2002 |
|---------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL        | 22.710                 | 30.790              | 0.066                   |
| ANNUAL MEAN         | 0.062                  | 0.084               | 0.066                   |
| HIGHEST ANNUAL MEAN |                        |                     | 0.084 2002              |
| LOWEST ANNUAL MEAN  | 0.00 00                | 0.00 ** 07          | 0.047 1999              |
| HIGHEST DAILY MEAN  | 0.28 Mar 30            | 0.23 Mar 27         | 0.50 Jan 12 1998        |
| LOWEST DAILY MEAN   | 0.010 Jun 14           | 0.008 Sep 13        | 0.005 Dec 10 1998       |



2002 WATER YEAR DAILY MEAN DISCHARGE.

## 0424014980 SPAFFORD CREEK TRIBUTARY NEAR SAWMILL ROAD, NEAR SPAFFORD, NY--Continued

219

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1999 to current year.

PERIOD OF DAILY RECORD. -- OCCODER 1999 to current year.

WATER TEMPERATURES: October 1999 to current year.

INSTRUMENTATION. -- Water temperature recorder since October 1999.

EXTREMES FOR PERIOD OF RECORD. -
WATER TEMPERATURES: Maximum, 26.0°C, Aug. 12, 2002; minimum 1.0°C, Jan. 23, Feb. 2, 9, 18, 2000.

EXTREMES FOR CURRENT YEAR. -WATER TEMPERATURE: Maximum, 26.0°C, Aug. 12; minimum 3.5°C, Feb. 28.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DAY                              | MAX                                       | MIN                                    | MEAN                                 | MAX                                  | MIN                               | MEAN                                | MAX                                    | MIN                               | MEAN                               | MAX                                    | MIN                             | MEAN                                   |
|----------------------------------|-------------------------------------------|----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|-------------------------------------|----------------------------------------|-----------------------------------|------------------------------------|----------------------------------------|---------------------------------|----------------------------------------|
|                                  |                                           | OCTOBER                                |                                      | N                                    | OVEMBER                           |                                     | D                                      | ECEMBER                           |                                    |                                        | JANUARY                         |                                        |
| 1<br>2<br>3<br>4<br>5            | 15.0<br>17.0<br>17.0<br>17.0<br>17.0      | 9.0<br>11.0<br>12.5<br>13.5            | 11.5<br>13.0<br>14.5<br>15.0<br>15.0 | 12.5<br>14.5<br>12.5<br>12.5<br>10.0 | 8.0<br>10.0<br>10.0<br>9.5<br>7.5 | 10.0<br>12.0<br>11.5<br>10.5<br>8.5 | 10.5<br>10.5<br>10.0<br>10.5<br>11.0   | 10.0<br>9.0<br>8.5<br>8.5<br>10.0 | 10.5<br>10.0<br>9.5<br>9.5<br>10.5 | 6.0<br>6.5<br>6.5<br>6.5               | 4.5<br>5.5<br>5.0<br>5.5<br>5.5 | 5.0<br>5.5<br>6.0<br>6.0               |
| 6<br>7<br>8<br>9<br>10           | 14.5<br>11.0<br>10.5<br>10.5<br>13.5      | 10.5<br>8.5<br>7.5<br>6.5<br>8.5       | 13.0<br>9.5<br>8.5<br>8.5<br>11.0    | 10.0<br>10.0<br>10.5<br>9.5<br>10.0  | 7.0<br>7.0<br>6.0<br>6.5<br>6.5   | 8.0<br>8.5<br>8.0<br>7.5<br>8.0     | 10.5<br>9.5<br>8.5<br>8.0<br>9.0       | 9.0<br>8.5<br>6.5<br>6.5<br>5.5   | 10.5<br>9.0<br>7.5<br>7.5<br>7.0   | 6.0<br>6.0<br>6.0<br>6.5               | 5.5<br>4.5<br>4.5<br>4.5<br>6.0 | 6.0<br>5.0<br>5.0<br>5.5<br>6.0        |
| 11<br>12<br>13<br>14<br>15       | 17.5<br>16.0<br>19.0<br>17.5<br>15.0      | 10.5<br>12.5<br>13.5<br>13.5<br>10.5   | 13.5<br>14.0<br>16.0<br>15.5<br>13.0 | 8.5<br>7.5<br>9.5<br>9.5<br>12.5     | 6.0<br>5.0<br>5.0<br>7.0<br>9.0   | 7.0<br>6.0<br>7.0<br>8.0<br>10.5    | 9.5<br>8.5<br>9.5<br>9.0<br>8.5        | 6.0<br>5.5<br>7.0<br>8.5<br>6.0   | 7.0<br>6.5<br>8.5<br>9.0<br>7.0    | 6.0<br>7.0<br>5.5<br>6.0               | 5.5<br>5.0<br>4.5<br>5.0<br>5.0 | 6.0<br>6.0<br>5.5<br>5.0<br>5.5        |
| 16<br>17<br>18<br>19<br>20       | 14.5<br>11.0<br>11.5<br>11.5<br>14.0      | 8.5<br>7.5<br>7.0<br>6.5<br>9.5        | 11.0<br>9.0<br>8.5<br>9.0<br>11.0    | 12.0<br>9.0<br>10.5<br>11.5<br>9.5   | 7.5<br>5.5<br>6.0<br>8.0<br>6.5   | 10.5<br>7.0<br>8.0<br>9.5<br>7.5    | 8.0<br>8.0<br>8.0<br>8.5               | 6.5<br>6.0<br>7.0<br>7.0<br>6.5   | 7.0<br>6.5<br>7.5<br>7.5<br>7.5    | 6.0<br>5.5<br>5.0<br>5.0<br>6.0        | 4.5<br>4.0<br>4.0<br>4.0        | 5.0<br>5.0<br>5.0<br>4.5<br>5.0        |
| 21<br>22<br>23<br>24<br>25       | 14.0<br>13.5<br>13.0<br>14.0<br>13.5      | 8.5<br>10.5<br>10.0<br>13.0<br>11.0    | 11.0<br>12.0<br>11.5<br>13.5<br>13.0 | 8.5<br>9.0<br>8.5<br>10.0<br>11.5    | 6.5<br>6.0<br>6.0<br>6.5<br>9.5   | 7.0<br>7.0<br>7.0<br>8.0<br>10.5    | 7.0<br>8.5<br>7.0<br>7.5<br>7.5        | 6.0<br>6.5<br>5.5<br>6.5          | 6.5<br>7.0<br>6.5<br>7.0<br>7.0    | 5.0<br>6.5<br>6.0<br>6.0               | 4.0<br>4.5<br>4.5<br>5.0<br>4.5 | 4.5<br>5.5<br>5.0<br>5.5<br>5.5        |
| 26<br>27<br>28<br>29<br>30<br>31 | 11.0<br>9.0<br>9.5<br>10.5<br>11.0<br>8.5 | 8.5<br>8.0<br>7.0<br>6.0<br>7.0<br>6.5 | 9.5<br>8.5<br>8.5<br>9.0<br>7.0      | 10.0<br>10.0<br>10.0<br>10.0<br>11.5 | 9.5<br>9.0<br>9.5<br>9.5          | 10.0<br>9.5<br>10.0<br>9.5<br>10.5  | 7.0<br>7.0<br>7.0<br>7.0<br>6.5<br>7.0 | 6.0<br>5.5<br>6.0<br>5.0<br>5.0   | 6.5<br>6.0<br>6.0<br>5.5<br>5.5    | 6.5<br>7.0<br>7.0<br>6.5<br>6.0<br>5.5 | 4.5<br>5.0<br>5.5<br>5.5<br>5.5 | 5.5<br>5.5<br>6.0<br>6.0<br>5.5<br>5.0 |
| MONTH                            | 19.0                                      | 6.0                                    | 11.4                                 | 14.5                                 | 5.0                               | 8.8                                 | 11.0                                   | 5.0                               | 7.6                                | 7.0                                    | 4.0                             | 5.4                                    |

# 0424014980 SPAFFORD CREEK TRIBUTARY NEAR SAWMILL ROAD, NEAR SPAFFORD, NY--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                  |                                                                                                                                                                                                      | WAIER (DEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAY                                                                                                                                                               | MAX                                                                                                                                                          | MIN                                                                                                              | MEAN                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MIN                                                                                                                  | MEAN                                                                                                                                                                 | MAX                                                                                                                                                                                                                  | MIN                                                                                                                                        | MEAN                                                                                                                                                                 | XAM                                                                                                                                                                  | MIN                                                                                                                                                                                                                                        | MEAN                                                                                                                                                                         |
|                                                                                                                                                                   |                                                                                                                                                              | FEBRUARY                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MARCH                                                                                                                |                                                                                                                                                                      |                                                                                                                                                                                                                      | APRIL                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                      | MAY                                                                                                                                                                                                                                        |                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5                                                                                                                                             | 6.0<br>6.0<br>6.0<br>5.5                                                                                                                                     | 4.5<br>4.5<br>4.0<br>4.0                                                                                         | 5.5<br>5.0<br>5.0<br>5.0<br>4.5                                                                                                                                                                      | 6.0<br>6.5<br>7.0<br>5.5<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0<br>4.5<br>5.0<br>4.0<br>4.0                                                                                      | 5.0<br>5.5<br>6.0<br>5.0<br>5.0                                                                                                                                      | 7.0<br>7.0<br>7.0<br>7.0<br>7.0                                                                                                                                                                                      | 6.0<br>5.5<br>5.5<br>5.0<br>5.0                                                                                                            | 6.5<br>6.0<br>6.5<br>6.0                                                                                                                                             | 11.5<br>10.0<br>9.5<br>12.0<br>12.5                                                                                                                                  | 6.5<br>8.5<br>7.5<br>7.0<br>8.0                                                                                                                                                                                                            | 9.0<br>9.0<br>8.5<br>9.5<br>10.0                                                                                                                                             |
| 6<br>7<br>8<br>9<br>10                                                                                                                                            | 6.5<br>7.0<br>7.0<br>7.0<br>6.0                                                                                                                              |                                                                                                                  | 5.5<br>5.5<br>6.0<br>6.0<br>5.5                                                                                                                                                                      | 7.0<br>6.0<br>7.5<br>9.0<br>7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                      | 8.5<br>8.0<br>8.0<br>9.0<br>10.5                                                                                                                                                                                     |                                                                                                                                            | 6.5<br>6.0<br>6.5<br>8.0                                                                                                                                             | 12.5<br>12.5<br>12.5<br>11.5<br>13.5                                                                                                                                 | 9.0<br>10.0<br>9.5<br>10.0<br>9.0                                                                                                                                                                                                          | 10.5<br>11.0<br>11.0<br>10.5<br>11.0                                                                                                                                         |
| 11<br>12<br>13<br>14<br>15                                                                                                                                        | 6.0<br>5.5<br>5.0<br>5.5                                                                                                                                     | 4.0<br>4.0<br>4.0<br>4.0                                                                                         | 5.0<br>4.5<br>4.5<br>4.5<br>5.0                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                            | 8.0<br>8.5<br>9.0<br>9.5<br>10.0                                                                                                                                     |                                                                                                                                                                      | 8.5<br>9.0<br>9.5<br>9.0                                                                                                                                                                                                                   | 10.5<br>10.0<br>10.0<br>9.5<br>10.0                                                                                                                                          |
| 18<br>19                                                                                                                                                          | 6.0<br>6.5                                                                                                                                                   | 5.0<br>4.5<br>4.5<br>4.5<br>5.0                                                                                  | 5.5<br>5.0<br>5.0<br>5.0                                                                                                                                                                             | 7.0<br>7.5<br>5.5<br>7.0<br>6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5<br>5.0<br>4.5<br>5.0<br>5.0                                                                                      | 6.5<br>6.0<br>5.5<br>6.0<br>5.5                                                                                                                                      | 13.0<br>13.0<br>13.0<br>13.0<br>11.5                                                                                                                                                                                 | 9.0<br>9.5<br>9.5<br>10.0<br>9.0                                                                                                           | 10.5<br>11.0<br>11.0<br>11.0                                                                                                                                         | 10.5<br>10.5<br>10.0<br>10.5<br>10.0                                                                                                                                 | 9.0<br>9.5<br>9.0<br>8.5<br>8.0                                                                                                                                                                                                            | 10.0<br>10.0<br>9.5<br>9.5<br>9.0                                                                                                                                            |
| 23                                                                                                                                                                | 6.5<br>6.0<br>6.0<br>8.0<br>7.0                                                                                                                              | 5.5<br>5.0<br>4.0<br>3.5<br>4.5                                                                                  | 6.0<br>5.5<br>5.0<br>5.5<br>5.5                                                                                                                                                                      | 7.0<br>6.5<br>7.0<br>7.5<br>7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0<br>4.0<br>4.0<br>5.0<br>5.0                                                                                      | 5.5<br>5.0<br>5.5<br>6.0<br>6.0                                                                                                                                      | 10.5<br>9.0<br>11.0<br>12.0<br>9.5                                                                                                                                                                                   | 7.5<br>7.0<br>6.5<br>6.5<br>8.0                                                                                                            | 9.0<br>8.0<br>8.5<br>9.0<br>8.5                                                                                                                                      | 10.5<br>11.5<br>12.0<br>10.5<br>11.5                                                                                                                                 | 9.5                                                                                                                                                                                                                                        | 9.0<br>9.5<br>10.0<br>10.0                                                                                                                                                   |
| 26<br>27<br>28<br>29<br>30<br>31                                                                                                                                  | 8.0<br>7.0<br>6.5<br>                                                                                                                                        | 5.0<br>4.5<br>3.5<br>                                                                                            | 6.5<br>5.5<br>5.0<br>                                                                                                                                                                                | 5.5<br>5.5<br>8.0<br>8.0<br>9.5<br>9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.0<br>5.0<br>4.5<br>5.0<br>6.5<br>5.5                                                                               | 5.0<br>5.0<br>6.0<br>6.5<br>7.5<br>7.0                                                                                                                               | 10.0<br>11.0<br>10.5<br>9.5<br>9.0                                                                                                                                                                                   | 7.0<br>6.5<br>8.0<br>7.0<br>6.5                                                                                                            | 8.5<br>8.5<br>9.0<br>8.0<br>8.0                                                                                                                                      | 12.0<br>12.5<br>12.0<br>13.0<br>13.0                                                                                                                                 | 8.5<br>10.0<br>9.5<br>10.0<br>11.0<br>11.0                                                                                                                                                                                                 | 11.0<br>10.5<br>11.0<br>11.5<br>12.0<br>12.0                                                                                                                                 |
| MONTH                                                                                                                                                             | 8.0                                                                                                                                                          | 3.5                                                                                                              | 5.3                                                                                                                                                                                                  | 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.0                                                                                                                  | 5.9                                                                                                                                                                  | 13.0                                                                                                                                                                                                                 | 4.5                                                                                                                                        | 8.3                                                                                                                                                                  | 13.5                                                                                                                                                                 | 6.5                                                                                                                                                                                                                                        | 10.1                                                                                                                                                                         |
|                                                                                                                                                                   |                                                                                                                                                              |                                                                                                                  |                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                                                                      |                                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                      |                                                                                                                                                                                                                                            |                                                                                                                                                                              |
| DAV                                                                                                                                                               | млч                                                                                                                                                          | MTN                                                                                                              | MEAN                                                                                                                                                                                                 | млч                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MTN                                                                                                                  | MEAN                                                                                                                                                                 | MAY                                                                                                                                                                                                                  | MTN                                                                                                                                        | MEAN                                                                                                                                                                 | млч                                                                                                                                                                  | MTN                                                                                                                                                                                                                                        | MEAN                                                                                                                                                                         |
| DAY                                                                                                                                                               | MAX                                                                                                                                                          | MIN                                                                                                              | MEAN                                                                                                                                                                                                 | MAX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                      | MEAN                                                                                                                                                                 | MAX                                                                                                                                                                                                                  | MIN                                                                                                                                        | MEAN                                                                                                                                                                 | MAX                                                                                                                                                                  | MIN<br>SEPTEMBE                                                                                                                                                                                                                            | MEAN<br>R                                                                                                                                                                    |
| DAY  1 2 3 4 5                                                                                                                                                    | MAX<br>13.5<br>13.0<br>13.0<br>12.0<br>13.5                                                                                                                  | MIN<br>JUNE<br>11.0<br>11.0<br>10.0<br>10.0                                                                      | MEAN 12.0 12.0 11.5 11.0 12.5                                                                                                                                                                        | MAX<br>15.5<br>16.0<br>18.0<br>16.5<br>15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | JULY                                                                                                                 |                                                                                                                                                                      |                                                                                                                                                                                                                      | AUGUST                                                                                                                                     | MEAN  19.5 20.0 19.0 19.0 19.0                                                                                                                                       |                                                                                                                                                                      | MIN<br>SEPTEMBE<br>14.5<br>14.5<br>15.0<br>15.0<br>14.5                                                                                                                                                                                    |                                                                                                                                                                              |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9                                                                                                                         | 13.5<br>13.0<br>13.0<br>12.0<br>13.5<br>12.5<br>14.0<br>14.5<br>14.0                                                                                         | JUNE 11.0 11.0 10.0 10.0 12.0 11.5 11.0 11.5                                                                     | 12.0<br>12.0<br>11.5<br>11.0                                                                                                                                                                         | 15.5<br>16.0<br>18.0<br>16.5<br>15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JULY<br>14.0<br>14.5<br>15.0<br>15.0                                                                                 | 14.5<br>15.0<br>16.0<br>16.0                                                                                                                                         |                                                                                                                                                                                                                      | AUGUST<br>16.5<br>18.0<br>16.0<br>16.5<br>17.5                                                                                             |                                                                                                                                                                      |                                                                                                                                                                      | 14.5<br>14.5<br>15.0<br>15.0<br>14.5                                                                                                                                                                                                       | 16.0<br>16.0<br>17.0<br>16.5<br>16.5<br>16.5                                                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                                                                                                                   | 13.5<br>13.0<br>13.0<br>12.0<br>13.5<br>12.5<br>14.0<br>14.5<br>14.0<br>14.5                                                                                 | JUNE 11.0 11.0 10.0 10.0 12.0 11.5 11.5 12.5 12.0 12.5 13.0                                                      | 12.0<br>12.0<br>11.5<br>11.0<br>12.5<br>12.0<br>12.5<br>13.0<br>13.5<br>13.5                                                                                                                         | 15.5<br>16.0<br>18.0<br>16.5<br>15.5<br>16.0<br>17.0<br>17.5<br>16.0<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JULY  14.0 14.5 15.0 14.5 14.0 14.5 14.0 14.5 14.5 14.5 12.5                                                         | 14.5<br>15.0<br>16.0<br>15.0<br>15.0<br>15.5<br>16.0<br>15.5<br>16.0                                                                                                 | 23.5<br>23.0<br>22.5<br>22.5<br>21.5<br>21.5<br>21.5<br>22.0<br>23.0<br>24.5<br>25.5<br>26.0                                                                                                                         | AUGUST  16.5 18.0 16.0 16.5 17.5  15.5 14.0 13.5 13.5 15.0  16.0 16.5                                                                      | 19.5<br>20.0<br>19.0<br>19.0<br>19.0<br>17.0<br>17.0<br>17.0<br>18.0<br>19.0<br>20.0                                                                                 | 19.0<br>19.5<br>20.0<br>19.0<br>19.0<br>18.5<br>19.0<br>20.0<br>20.0                                                                                                 | SEPTEMBE  14.5 14.5 15.0 15.0 14.5 13.5 14.0 15.0 14.5 13.0                                                                                                                                                                                | 16.0<br>16.0<br>17.0<br>16.5<br>16.5<br>15.5<br>16.5<br>17.0<br>17.0<br>14.5                                                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14                                                                                           | 13.5<br>13.0<br>13.0<br>12.0<br>13.5<br>14.0<br>14.5<br>14.0<br>14.5                                                                                         | JUNE  11.0 11.0 10.0 10.0 12.0  11.5 11.5 12.5 12.0  12.5 13.0 13.0 13.0                                         | 12.0<br>12.0<br>11.5<br>11.0<br>12.5<br>12.5<br>13.0<br>13.5<br>13.5<br>13.5<br>13.5                                                                                                                 | 15.5<br>16.0<br>18.0<br>16.5<br>15.5<br>16.0<br>17.0<br>21.5<br>21.5<br>22.5<br>22.0<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JULY 14.0 14.5 15.0 14.5 14.0 14.5 14.0 14.5 11.0 11.0 12.5 11.0 12.5                                                | 14.5<br>15.0<br>16.0<br>16.0<br>15.0<br>15.5<br>16.0<br>15.5<br>16.0<br>15.5<br>16.0                                                                                 | 23.5<br>23.0<br>22.5<br>22.5<br>21.5<br>18.0<br>21.5<br>22.0<br>23.0<br>24.5<br>25.5<br>26.0<br>22.5<br>20.5                                                                                                         | AUGUST  16.5 18.0 16.0 16.5 17.5  15.5 14.0 13.5 15.0  16.0 16.5 18.0 17.5                                                                 | 19.5<br>20.0<br>19.0<br>19.0<br>17.0<br>17.0<br>17.0<br>18.0<br>19.0<br>20.0<br>20.0<br>20.0<br>19.5                                                                 | 19.0<br>19.5<br>20.0<br>19.0<br>19.0<br>18.0<br>18.5<br>19.0<br>20.0<br>20.0<br>217.5<br>17.5<br>19.5                                                                | SEPTEMBE  14.5 14.5 15.0 15.0 14.5 13.5 14.0 15.0 14.5 15.0 13.5 13.0 13.5 13.0 14.5                                                                                                                                                       | 16.0<br>16.0<br>17.0<br>16.5<br>16.5<br>16.5<br>17.0<br>17.0<br>16.0<br>14.5<br>15.5                                                                                         |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18                                                                   | 13.5<br>13.0<br>12.0<br>13.5<br>12.5<br>14.0<br>14.5<br>14.0<br>14.5<br>14.0<br>13.5<br>13.5<br>13.5<br>13.5<br>14.0                                         | JUNE  11.0 11.0 10.0 10.0 12.0  11.5 11.0 11.5 12.5 12.0  12.5 13.0 13.0 13.0 12.5 12.0                          | 12.0<br>12.0<br>11.5<br>11.0<br>12.5<br>12.0<br>12.5<br>13.0<br>13.5<br>13.5<br>13.5<br>13.5<br>13.5<br>13.0                                                                                         | 15.5<br>16.0<br>18.0<br>16.5<br>15.5<br>16.0<br>17.0<br>21.5<br>22.5<br>22.5<br>22.0<br>21.5<br>21.0<br>22.0<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JULY  14.0 14.5 15.0 14.5 14.0 14.5 14.5 14.5 14.5 12.5 11.0 11.0 12.5 14.5 14.5 14.5                                | 14.5<br>15.0<br>16.0<br>16.0<br>15.0<br>15.5<br>16.0<br>15.5<br>16.0<br>15.5<br>16.0<br>17.0<br>17.0                                                                 | 23.5<br>23.0<br>22.5<br>22.5<br>21.5<br>18.0<br>21.5<br>22.0<br>23.0<br>24.5<br>25.5<br>26.0<br>22.5<br>20.5<br>19.0                                                                                                 | AUGUST  16.5 18.0 16.0 16.5 17.5  15.5 14.0 13.5 15.0  16.0 17.5 18.0  17.0 16.5 17.0  17.0 16.5 16.0 15.0                                 | 19.5<br>20.0<br>19.0<br>19.0<br>17.0<br>17.0<br>17.0<br>18.0<br>19.0<br>20.0<br>20.0<br>19.5<br>19.0<br>17.5                                                         | 19.0<br>19.5<br>20.0<br>19.0<br>19.0<br>18.5<br>19.0<br>20.0<br>20.0<br>20.0<br>17.5<br>17.5<br>17.5<br>17.0<br>19.0<br>18.5<br>25.0<br>23.5                         | SEPTEMBE  14.5 14.5 15.0 15.0 14.5 13.5 14.0 15.0 14.5 15.0 14.5 17.0 13.5 13.0 14.5 17.0 15.5 14.5 14.0                                                                                                                                   | 16.0<br>16.0<br>17.0<br>16.5<br>16.5<br>15.5<br>16.0<br>17.0<br>17.0<br>14.5<br>15.5<br>16.0<br>17.0<br>18.0                                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24                               | 13.5<br>13.0<br>12.0<br>13.5<br>12.5<br>14.0<br>14.5<br>14.0<br>14.5<br>13.5<br>13.5<br>13.5<br>14.0<br>14.5<br>13.5<br>13.5<br>14.0<br>14.5                 | JUNE  11.0 11.0 11.0 10.0 12.0  11.5 11.0 11.5 12.5 12.0  12.5 13.0 13.0 13.0 12.5 12.0 13.0 13.0 14.5           | 12.0<br>12.0<br>11.5<br>11.0<br>12.5<br>12.0<br>12.5<br>13.0<br>13.0<br>13.5<br>13.5<br>13.5<br>13.5<br>13.0<br>13.0<br>14.0<br>14.0<br>14.0<br>15.0                                                 | 15.5<br>16.0<br>18.0<br>16.5<br>15.5<br>16.0<br>17.0<br>21.5<br>22.5<br>22.5<br>22.0<br>21.5<br>21.0<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | JULY  14.0 14.5 15.0 15.0 14.5 14.0 14.5 14.5 12.5 11.0 11.0 12.5 14.5 14.5 14.5 14.5 14.5 14.5 14.5 14              | 14.5<br>15.0<br>16.0<br>16.0<br>15.0<br>15.5<br>16.0<br>15.5<br>16.0<br>17.0<br>17.0<br>17.5<br>18.0<br>17.5<br>19.0<br>17.5                                         | 23.5<br>23.0<br>22.5<br>22.5<br>21.5<br>18.0<br>21.5<br>22.0<br>23.0<br>24.5<br>25.5<br>26.0<br>22.5<br>20.5<br>19.0<br>20.5<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20                                   | AUGUST  16.5 18.0 16.0 16.5 17.5  15.5 14.0 13.5 15.0  16.0 17.5 17.0  17.0 16.5 18.0 17.0 14.0 13.5 14.0                                  | 19.5<br>20.0<br>19.0<br>19.0<br>17.0<br>17.0<br>17.0<br>18.0<br>19.0<br>20.0<br>20.0<br>19.5<br>19.0<br>17.5<br>18.0<br>18.0<br>18.0<br>16.5                         | 19.0<br>19.5<br>20.0<br>19.0<br>19.0<br>18.5<br>19.0<br>20.0<br>20.0<br>21.5<br>17.5<br>17.5<br>17.5<br>17.0<br>19.0<br>21.0<br>23.5<br>24.5<br>21.0<br>22.5<br>19.5 | SEPTEMBE  14.5 14.5 15.0 15.0 14.5 13.5 14.0 15.0 14.5 15.0 13.5 13.0 14.5 17.0 15.5 14.5 14.0 16.5 15.0 13.5 12.0                                                                                                                         | 16.0<br>16.0<br>17.0<br>16.5<br>16.5<br>15.5<br>16.0<br>17.0<br>17.0<br>14.5<br>16.0<br>18.0<br>17.0<br>18.0<br>18.0<br>19.5                                                 |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>27<br>28<br>29<br>30 | 13.5<br>13.0<br>12.0<br>13.5<br>12.5<br>14.0<br>14.5<br>14.0<br>14.5<br>13.5<br>13.5<br>13.5<br>14.0<br>14.5<br>15.5<br>14.0<br>14.5<br>15.5<br>14.0<br>14.5 | JUNE  11.0 11.0 11.0 10.0 12.0  11.5 11.0 11.5 12.5 12.0  12.5 13.0 13.0 12.5 12.0 13.0 13.0 14.5 14.0 14.5 15.5 | 12.0<br>12.0<br>11.5<br>11.0<br>12.5<br>12.5<br>12.5<br>13.0<br>13.0<br>13.5<br>13.5<br>13.5<br>13.5<br>13.0<br>13.0<br>14.0<br>14.0<br>15.0<br>14.0<br>15.0<br>14.0<br>14.0<br>14.0<br>14.0<br>14.0 | 15.5<br>16.0<br>16.5<br>15.5<br>16.0<br>17.0<br>21.5<br>22.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.5<br>22.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0<br>21.0 | JULY  14.0 14.5 15.0 14.5 14.0 14.5 14.5 12.5  11.0 11.0 12.5 14.5 14.5 14.5 14.5 15.0 14.5 15.0 17.0 15.5 16.0 17.5 | 14.5<br>15.0<br>16.0<br>16.0<br>15.0<br>15.5<br>16.0<br>15.5<br>16.0<br>17.0<br>17.0<br>17.5<br>18.0<br>17.5<br>19.0<br>17.5<br>16.0<br>17.5<br>19.0<br>17.5<br>16.0 | 23.5<br>23.0<br>22.5<br>22.5<br>21.5<br>18.0<br>21.5<br>22.0<br>23.0<br>24.5<br>25.5<br>20.5<br>19.0<br>20.5<br>20.5<br>20.0<br>20.5<br>20.0<br>20.5<br>20.0<br>20.5<br>20.0<br>20.5<br>20.0<br>20.5<br>20.0<br>20.0 | AUGUST  16.5 18.0 16.0 16.5 17.5  15.5 14.0 13.5 15.0  16.9 17.5 17.0  17.0 16.5 18.0  14.0  13.5 15.0  14.5 14.5 14.5 14.5 14.5 14.5 14.5 | 19.5<br>20.0<br>19.0<br>19.0<br>17.0<br>17.0<br>17.0<br>20.0<br>20.0<br>20.0<br>19.5<br>19.0<br>17.5<br>18.0<br>18.0<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5<br>16.5 | 19.0<br>19.5<br>20.0<br>19.0<br>19.0<br>18.5<br>19.0<br>20.0<br>20.0<br>21.0<br>21.0<br>22.5<br>19.5<br>21.5<br>19.5<br>21.5<br>21.5<br>21.5<br>22.5<br>22.5<br>22.5 | SEPTEMBE  14.5 14.5 15.0 15.0 14.5 14.0 15.0 14.5 15.0 14.5 15.0 13.5 13.0 14.5 17.0 15.5 14.0 16.5 16.5 12.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 13.0 13.5 | 16.0<br>16.0<br>17.0<br>16.5<br>16.5<br>16.5<br>17.0<br>17.0<br>16.0<br>17.0<br>18.0<br>17.0<br>18.0<br>18.0<br>19.5<br>18.5<br>16.5<br>15.5<br>16.5<br>17.0<br>18.0<br>19.5 |

221

## 0424014980 SPAFFORD CREEK TRIBUTARY NEAR SAWMILL ROAD, NEAR SPAFFORD, NY--Continued

## QUANTITY OF PRECIPITATION

PERIOD OF RECORD.--February 1998 to current year.
PERIOD OF DAILY RECORD.--February 1998 to current year.
INSTRUMENTATION.--Tipping bucket rain gage since February 1998. Receiving funnel is heated to facilitate melting of snow. Tips of the rain gage bucket are recorded and accumulated at 15 minute intervals on an electronic data logger.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily precipitation, 3.31 inches, Sept. 24, 2001.

EXTREMES FOR CURRENT YEAR.-- Maximum daily precipitation, 1.91 inches, June 14.

|                                  |                                      | PRECI                                | IPITATION,                           | TOTAL,                                       | INCHES, WA                           | ATER YEAR<br>Y SUM VAL                       |                                      | 2001 TO                                      | SEPTEMBER                            | 2002                                         |                                      |                                      |
|----------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|
| DAY                              | OCT                                  | NOV                                  | DEC                                  | JAN                                          | FEB                                  | MAR                                          | APR                                  | MAY                                          | JUN                                  | JUL                                          | AUG                                  | SEP                                  |
| 1<br>2<br>3<br>4<br>5            | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.34<br>0.00<br>0.05<br>0.08 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.35<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.25<br>0.00                 | 0.21<br>0.22<br>0.26<br>0.00<br>0.00 | 0.00<br>0.15<br>0.08<br>0.00<br>0.00         | 0.00<br>0.03<br>0.00<br>0.24<br>0.30 | 0.00<br>0.00<br>0.00<br>0.14<br>0.00         | 0.00<br>0.00<br>0.00<br>0.14<br>0.00 | 0.00<br>0.00<br>0.14<br>0.01<br>0.00 |
| 6<br>7<br>8<br>9<br>10           | 0.26<br>0.02<br>0.00<br>0.00<br>0.00 | 0.02<br>0.00<br>0.04<br>0.02<br>0.02 | 0.00<br>0.00<br>0.00<br>0.14<br>0.00 | 0.00<br>0.00<br>0.00<br>0.01<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.83 | 0.05<br>0.00<br>0.00<br>0.40<br>0.00         | 0.00<br>0.00<br>0.00<br>0.33<br>0.00 | 0.12<br>0.13<br>0.03<br>0.53<br>0.00         | 0.21<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.02<br>0.07         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
| 11<br>12<br>13<br>14<br>15       | 0.00<br>0.00<br>0.00<br>0.54<br>0.03 | 0.02<br>0.00<br>0.00<br>0.08<br>0.05 | 0.00<br>0.00<br>0.13<br>0.43<br>0.00 | 0.06<br>0.00<br>0.03<br>0.00<br>0.22         | 0.12<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>1.15<br>0.78<br>0.03 | 0.00<br>0.65<br>1.12<br>0.58<br>0.00         | 0.00<br>0.44<br>0.00<br>1.91<br>0.41 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.07<br>0.00<br>0.00<br>0.18<br>0.70 |
| 16<br>17<br>18<br>19<br>20       | 0.24<br>0.11<br>0.00<br>0.00<br>0.17 | 0.00<br>0.00<br>0.00<br>0.24<br>0.14 | 0.00<br>0.27<br>0.41<br>0.02<br>0.17 | 0.00<br>0.00<br>0.01<br>0.00<br>0.00         | 0.08<br>0.00<br>0.00<br>0.00<br>0.09 | 0.18<br>0.00<br>0.04<br>0.00<br>0.29         | 0.00<br>0.00<br>0.00<br>0.00<br>0.02 | 0.18<br>0.23<br>0.56<br>0.00<br>0.00         | 0.05<br>0.03<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>0.00<br>0.00         | 0.01<br>0.46<br>0.02<br>0.22<br>0.10 | 0.08<br>0.01<br>0.00<br>0.00<br>0.00 |
| 21<br>22<br>23<br>24<br>25       | 0.60<br>0.01<br>0.00<br>0.02<br>0.04 | 0.01<br>0.00<br>0.00<br>0.00<br>0.96 | 0.00<br>0.00<br>0.19<br>0.00<br>0.00 | 0.03<br>0.00<br>0.00<br>0.09<br>0.00         | 0.24<br>0.01<br>0.00<br>0.00<br>0.00 | 0.02<br>0.00<br>0.00<br>0.00<br>0.02         | 0.00<br>0.06<br>0.00<br>0.00<br>0.36 | 0.00<br>0.00<br>0.00<br>0.09<br>0.00         | 0.00<br>0.00<br>0.09<br>0.00<br>0.00 | 0.00<br>0.05<br>1.11<br>0.00<br>0.00         | 0.00<br>0.00<br>0.00<br>1.18<br>0.00 | 0.05<br>0.79<br>0.01<br>0.00<br>0.00 |
| 26<br>27<br>28<br>29<br>30<br>31 | 0.03<br>0.23<br>0.00<br>0.00<br>0.00 | 0.00<br>0.17<br>0.29<br>0.21<br>0.84 | 0.00<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>0.00<br>0.00<br>0.13<br>0.30<br>0.78 | 0.13<br>0.00<br>0.00<br>             | 0.81<br>0.00<br>0.00<br>0.00<br>0.03<br>0.01 | 0.00<br>0.00<br>0.69<br>0.00<br>0.28 | 0.00<br>0.00<br>0.00<br>0.09<br>0.05<br>0.32 | 0.34<br>0.10<br>0.07<br>0.00<br>0.00 | 0.00<br>0.01<br>1.25<br>0.00<br>0.03<br>0.00 | 0.01<br>0.00<br>0.00<br>0.00<br>0.00 | 0.00<br>1.53<br>0.01<br>0.00<br>0.00 |
| TOTAL<br>MAX                     | 2.30<br>0.60                         | 3.58<br>0.96                         | 1.77<br>0.43                         | 1.66<br>0.78                                 | 1.85<br>0.83                         | 2.10<br>0.81                                 | 4.39<br>1.15                         | 4.91<br>1.12                                 | 4.22<br>1.91                         | 2.68<br>1.25                                 | 2.14<br>1.18                         | 3.58<br>1.53                         |

#### 04240180 NINEMILE CREEK NEAR MARIETTA, NY

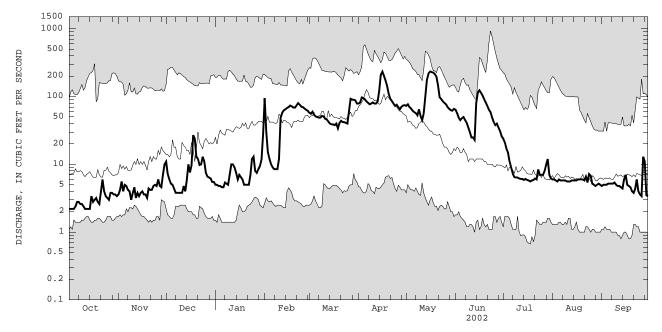
LOCATION.--Lat 42°55'15", long 76°19'47", Onondaga County, Hydrologic Unit 04140201, on right bank 25 ft upstream from bridge on Schuyler Road, 0.9 mi north of Marietta, and 1.8 mi downstream from Otisco Lake.

DRAINAGE AREA.--45.1 mi<sup>2</sup>.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1955, 1963. June 1964 to current year. REVISED RECORDS.--WDR NY 1971: 1966(M), 1968, 1969. WDR NY-82-3: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 748.25 ft above NGVD of 1929.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Flow regulated by Otisco Lake from which water is diverted by the Onondaga County Water Authority for water supply. Several measurements of water temperature were made during

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,030 ft<sup>3</sup>/s, June 23, 1972, gage height, 8.65 ft; minimum discharge, 0.58 ft<sup>3</sup>/s, July 16, 17, 18, 19, 20, 1999.


EXTREMES FOR CURRENT YEAR.--Maximum discharge, 249 ft<sup>3</sup>/s, Apr. 15, gage height, 4.40 ft; minimum discharge not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN MAY AUG e2.2 e3.6 e11 e5.0 e95 58 79 73 24 e6.0 e4.8 64 e2.2 e7.2 21 e4.2 e5.0 e30 56 57 e6.0 e5.0 3 e2.2 e5.6 e6.0 e4 8 e15 60 97 70 49 17 e5.8 e5.0 4 e2.2 e4.0 e5.2 e4.8 e12 54 95 67 45 15 e5.6 e5.0 48 11 e5.0 e5.0 e4.6 51 91 62 e6.0 e5.2 6 50 9.0 e2.8 e4.8 e4.6 e9.0 85 59 50 e5.8 e5.2 e4.4 e2.8 e4.2 e3.8 49 57 45 7.3 e5.2 e5.4 e8.5 81 e5.8 8 e2 6 e4 0 e3 8 e5 2 e8 5 49 77 53 41 6 5 e5 8 e5 2 79 e3.0 e2.6 e3.8 e5.0 e8.5 52 65 35 6.4 e5.8 e5.4 52 10 e7.0 12 51 82 30 e5.0 e5.6 11 e2.2 e4.6 e3.8 e10 49 79 45 25 6.2 e4.8 e5.6 e3.2 e3.8 12 e2.2 e4.8 e10 58 46 79 57 25 6.1 e5.6 e4.8 13 e2.2 e9.0 105 23 e4.0 63 43 85 6.1 e5.8 e4.6 14 e2.2 e3.4 e5.8 e7.5 65 40 123 80 5.9 e5.8 e4.4 e3.4 15 e3.8 e10 e6.0 68 39 209 220 115 6.1 e5.8 e6.0 16 e2.8 e4.0 e7.6 e7.0 70 39 234 235 124 5.9 e5.8 e7.0 e3.0 e3.2 e9.8 e27 e6.5 e6.0 74 72 202 172 230 227 5.8 17 e3.6 38 114 e6.0 e5.0 18 e3.6 40 104 e6.0 e4.8 19 e2.8 e3.2 e24 e5.0 69 34 142 215 92 5.8 e6.0 e4.6 e13 20 e2.6 e4.4 e5.0 69 41 109 197 82 5.9 e6.0 e4.0 21 74 73 e4.0 e4.2 e12 e5.0 44 92 146 e3.8 e6.0 e4.0 e4.2 e4.8 e9.8 e10 e5.0 e7.0 64 59 e6.6 e5.4 e4.4 e6.0 22 80 42 86 98 e6.0 23 42 79 92 76 e8.4 e12 73 e13 41 85 49 e3.2 25 e4.8 e11 e13 70 40 76 81 42 e7.0 e6.8 e3.6 26 e3.0 e6.0 e7.5 67 61 70 38 e7.0 e3.4 27 e3.8 e3.8 e4.8 e6.6 e7.5 64 93 65 70 40 e8.0 e5.0 e13 28 e4.6 e6.4 e8.5 90 71 35 62 66 e10 e4.8 e11 29 e3.6 e7.0 e6.2 e9.5 90 74 63 31 12 e5.0 3.5 75 e7 0 30 e3 6 e10 e5 5 e12 \_\_\_ 88 62 26 e5 2 3.4 e29 e5.0 31 e5.5 66 e6.2 e3.4 TOTAL. 92 8 135 2 257 3 239 9 1429 5 1647 3043 3249 1705 267 8 178 6 157 1 2.99 4.51 8.30 7.74 51.1 101 105 5.76 5.24 MEAN 53.1 56.8 8.64 95 MAX 6.0 10 2.7 29 93 234 235 124 24 7.2 13 MIN 2.2 3.0 3.8 4.6 8.5 34 65 45 23 5.6 4.8 3.4 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1964 - 2002, BY WATER YEAR (WY) MEAN 21.4 29.1 41.2 49.1 52.7 66.8 101 50.9 28.5 16.5 10.7 10.9 MAX 147 125 160 157 143 180 352 151 278 74.0 76.2 36.2 1978 1972 1978 2000 1997 1973 1990 1998 1993 1972 1992 1989 (WY) 1.52 2.47 2.90 2.75 3.10 5.23 5.80 3.24 1.45 1.65 1.28 1.16 MIN (WY) 1967 1967 1999 1981 1967 1965 1965 1965 1999 1981 1966 1966

e Estimated

## 04240180 NINEMILE CREEK NEAR MARIETTA, NY--Continued

| SUMMARY STATISTICS                                                   | FOR 2001 CALENDAR YEAR   | FOR 2002 WATER YEAR                  | WATER YEARS 1964 - 2002                                 |
|----------------------------------------------------------------------|--------------------------|--------------------------------------|---------------------------------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN                                          | 9092.9<br>24.9           | 12402.2<br>34.0                      | 39.8                                                    |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN                            | 222                      | 005 4 16                             | 76.3 1976<br>3.95 1965                                  |
| HIGHEST DAILY MEAN LOWEST DAILY MEAN                                 | 330 Apr 10<br>1.1 Sep 19 | 235 May 16<br>2.2 Oct 1<br>2.3 Oct 8 | 931 Jun 23 1972<br>0.67 Jul 18 1999<br>0.77 Jul 15 1999 |
| ANNUAL SEVEN-DAY MINIMUM<br>10 PERCENT EXCEEDS<br>50 PERCENT EXCEEDS | 1.2 Sep 14<br>109<br>5.5 | 2.3 OCL 8<br>83<br>8.0               | 106<br>15                                               |
| 90 PERCENT EXCEEDS                                                   | 2.1                      | 3.6                                  | 3.2                                                     |



(WY)

#### 04240300 NINEMILE CREEK AT LAKELAND, NY

LOCATION.--Lat 43°04'51", long 76°13'36", Onondaga County, Hydrologic Unit 04140201, on left bank 30 ft downstream from bridge on State Highway 48, 0.6 mi downstream from Geddes Brook, and 0.7 mi upstream from mouth.

DRAINAGE AREA.--115 mi².

DRAINAGE ARBA.--15 ml.

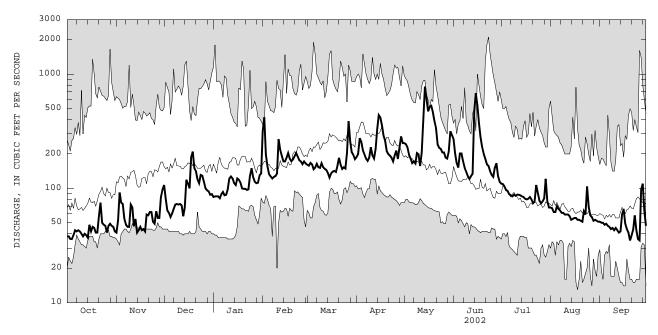
PERIOD OF RECORD.--Occasional measurements, water years 1959-70. November 1970 to September 1973, July 1975 to current year.

REVISED RECORDS.--WDR NY-83-3: 1972 (M), 1976 (M), 1979 (M), 1982 (M). WDR NY 1997: 1976, 1977, 1978, 1979, 1980, 1981.

GAGE.--Doppler velocity meter, water-stage recorder, and crest-stage gage. Datum of gage is 360.67 ft above NGVD of 1929.

REMARKS.--No estimated daily discharges. Records good. Flow regulated by Otisco Lake from which water is diverted by Onondaga County Water Authority for water supply. Flow affected by backwater from Onondaga Lake whenever lake level exceeds about 362 ft msl. High lake levels affected the entire 2002 water year. Estimated water-discharge data is based on records for Ninemile Creek at Camillus (04240200) (not published) and Onondaga Lake at Liverpool (04240495). Telephone and satellite gage-height telemeters at station. Several measurements of water temmerature were made during the year.

Creek at Camillus (04240200) (not published) and Onondaga Lake at Liverpool (04240495). Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.


EXTREMES FOR PERIOD OF RECORD.—Maximum daily discharge, 2,110 ft<sup>3</sup>/s, June 23, 1972; maximum gage height, 9.63 ft, Apr. 27, 1993, (backwater from Onondaga Lake); minimum daily discharge, about 13 ft<sup>3</sup>/s, Aug. 18, 1985. Maximum and minimum instantaneous discharges not determined.

EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 778 ft<sup>3</sup>/s, May 14; maximum gage height, 5.32 ft, May 14, (backwater from Onondaga Lake); minimum daily discharge, 35 ft<sup>3</sup>/s, Sept. 20, 26. Maximum and minimum instantaneous discharges not determined.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP ΩΩ TOTAL 44.0 75 57.4 98 778 MEAN 99.1 87.5 59.9 50.4 MAX STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1971 - 2002, BY WATER YEAR (WY) MEAN 84.9 88.8 MAX (WY) MTN 40.9 45.0 42.7 81.8 86.0 69.1 47.7 40.5 28.6 33.0

# 04240300 NINEMILE CREEK AT LAKELAND, NY--Continued

| SUMMARY STATISTICS                        | FOR 2001 CALEN | DAR YEAR | FOR 2002 WA  | TER YEAR | WATER YEARS | 1971 - 2002  |
|-------------------------------------------|----------------|----------|--------------|----------|-------------|--------------|
| ANNUAL TOTAL<br>ANNUAL MEAN               | 46504<br>127   |          | 48697<br>133 |          | 177         |              |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN | 127            |          | 100          |          | 310<br>91.2 | 1973<br>1995 |
| HIGHEST DAILY MEAN                        | 847            | Mar 22   | 778          | May 14   | 2110        | Jun 23 1972  |
| LOWEST DAILY MEAN                         | 31             | Sep 16   | 35           | Sep 20   | 13          | Aug 18 1985  |
| ANNUAL SEVEN-DAY MINIMUM                  | 32             | Sep 15   | 39           | Oct 1    | 16          | Sep 20 1985  |
| 10 PERCENT EXCEEDS                        | 335            |          | 229          |          | 359         |              |
| 50 PERCENT EXCEEDS                        | 78             |          | 107          |          | 128         |              |
| 90 PERCENT EXCEEDS                        | 38             |          | 44           |          | 50          |              |



## 04240495 ONONDAGA LAKE AT LIVERPOOL, NY

LOCATION.--Lat 43°06'01", long 76°12'34", Onondaga County, Hydrologic Unit 04140201, on north shore of Onondaga Lake at Onondaga Park Marina basin, 200 ft southwest of Onondaga Lake Parkway, and 1.9 mi upstream from outlet of lake.

DRAINAGE AREA.--285 mi².

PERIOD OF RECORD.--October 1970 to current year. Elevation records, at Barge Canal datum, since February 1927 collected by, and in files of, New York State Department of Transportation at Syracuse.

GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. To convert elevations to NAVD adjustment of 1929 cubtreat 0.50 ft.

GAGE. --Water-stage recorder. Datum of gage is National Geodetic vertical Datum of 1929. To convert elevations to NAVD adjustment of 1988, subtract 0.59 ft.

REMARKS.--Lake elevation regulated by operation of Erie (Barge) Canal. Area of water surface, 4.60 mi<sup>2</sup>. Telephone and satellite gage-height telemeters at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 369.78 ft, Apr. 26, 27, 1993; minimum elevation, 361.54 ft, Mar. 13, 1978.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 364.85 ft, May 16; minimum elevation, 362.68 ft, June 14.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY                              | OCT                                                      | NOV                                            | DEC                                                      | JAN                                                      | FEB                                            | MAR                                                      | APR                                            | MAY                                                      | JUN                                            | JUL                                                      | AUG                                                      | SEP                                            |
|----------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|
| 1<br>2<br>3<br>4<br>5            | 363.21<br>363.25<br>363.25<br>363.16<br>363.07           | 363.23<br>363.20<br>363.33<br>363.27           | 363.42<br>363.41<br>363.33<br>363.32<br>363.34           | 363.08<br>363.08<br>362.90<br>362.94<br>363.10           | 363.46<br>363.94<br>363.88<br>363.86<br>363.73 | 363.32<br>363.21<br>363.18<br>363.21<br>363.25           | 363.20<br>363.30<br>363.48<br>363.73<br>363.69 | 363.49<br>363.54<br>363.54<br>363.43<br>363.22           | 364.31<br>364.06<br>364.16<br>364.03<br>363.94 | 363.47<br>363.21<br>363.16<br>363.11<br>363.07           | 363.10<br>363.06<br>363.10<br>363.15<br>363.13           | 363.07<br>363.02<br>363.10<br>362.91<br>362.86 |
| 6<br>7<br>8<br>9<br>10           | 363.04<br>363.01<br>363.08<br>363.01<br>362.89           | 363.20<br>363.28<br>363.27                     | 363.35<br>363.34<br>363.35<br>363.36<br>363.34           | 363.06<br>363.04<br>363.01<br>363.01<br>362.97           | 363.69<br>363.60<br>363.58<br>363.59<br>363.58 | 363.20<br>363.05<br>363.12<br>363.03<br>363.10           | 363.56<br>363.48<br>363.32<br>363.42<br>363.43 | 363.21<br>363.19<br>363.13<br>363.17<br>363.41           | 364.00<br>363.91<br>363.73<br>363.61<br>363.50 | 363.07<br>363.04<br>363.01<br>363.00<br>363.09           | 363.00<br>363.02<br>363.04<br>363.06<br>363.03           | 362.88<br>362.95<br>363.09<br>363.02<br>363.06 |
| 11<br>12<br>13<br>14<br>15       | 362.92<br>363.05<br>363.01<br>362.98<br>363.02           | <br><br><br>363.18                             | 363.36<br>363.32<br>363.29<br>363.26<br>363.37           | 363.00<br>363.00<br>363.01<br>362.97<br>363.02           | 363.81<br>363.75<br>363.79<br>363.69<br>363.66 | 363.14<br>363.23<br>363.28<br>363.21<br>363.24           | 363.31<br>363.28<br>363.31<br>363.54<br>363.51 | 363.68<br>363.81<br>364.08<br>364.56<br>364.68           | 363.33<br>363.09<br>362.88<br>363.49<br>364.35 | 363.08<br>363.02<br>363.03<br>363.00<br>363.04           | 363.00<br>363.00<br>362.99<br>362.99<br>363.01           | 362.98<br>362.93<br>362.92<br>362.95<br>363.05 |
| 16<br>17<br>18<br>19<br>20       | 363.00<br>363.02<br>                                     | 363.13<br>363.10<br>363.11<br>363.13<br>363.17 | 363.30<br>363.36<br>363.54<br>363.61<br>363.57           | 363.04<br>362.99<br>362.97<br>362.91<br>362.98           | 363.68<br>363.70<br>363.65<br>363.64<br>363.64 | 363.25<br>363.21<br>363.24<br>363.23<br>363.30           | 363.64<br>363.56<br>363.50<br>363.54<br>363.34 | 364.79<br>364.78<br>364.76<br>364.64<br>364.38           | 364.46<br>364.46<br>364.20<br>364.07<br>364.16 | 363.15<br>363.12<br>363.07<br>363.03<br>363.09           | 362.98<br>363.02<br>363.08<br>363.05<br>363.03           | 363.12<br>363.08<br>363.05<br>363.07<br>363.03 |
| 21<br>22<br>23<br>24<br>25       | 363.23<br>363.14<br>363.11<br>363.17                     | 363.19<br>363.18<br>363.09<br>363.07<br>363.05 | 363.55<br>363.51<br>363.39<br>363.35<br>363.28           | 362.88<br>362.79<br>362.75<br>362.78<br>362.96           | 363.64<br>363.67<br>363.61<br>363.53<br>363.54 | 363.34<br>363.42<br>363.36<br>363.35<br>363.30           | 363.31<br>363.26<br>363.23<br>363.26<br>363.26 | 364.08<br>363.71<br>363.49<br>363.40<br>363.74           | 364.05<br>364.06<br>363.95<br>363.82<br>363.73 | 363.13<br>363.02<br>363.06<br>363.06<br>363.11           | 363.05<br>363.06<br>363.02<br>363.13<br>363.01           | 363.00<br>363.03<br>363.11<br>363.14<br>363.25 |
| 26<br>27<br>28<br>29<br>30<br>31 | 363.20<br>363.26<br>363.20<br>363.13<br>362.99<br>363.11 | 363.13<br>363.15<br>363.27<br>363.38<br>363.38 | 363.29<br>363.24<br>363.18<br>363.14<br>363.08<br>362.96 | 363.09<br>363.09<br>363.04<br>363.03<br>363.10<br>363.17 | 363.44<br>363.51<br>363.53<br>                 | 363.40<br>363.59<br>363.69<br>363.66<br>363.51<br>363.33 | 363.30<br>363.28<br>363.34<br>363.43<br>363.44 | 363.99<br>364.04<br>363.85<br>363.75<br>364.02<br>364.30 | 363.64<br>363.53<br>363.33<br>363.53<br>363.62 | 363.06<br>363.07<br>363.05<br>363.01<br>363.00<br>362.98 | 363.00<br>362.98<br>363.04<br>363.00<br>362.99<br>363.08 | 363.18<br>363.13<br>363.25<br>363.07<br>363.09 |
| MEAN<br>MAX<br>MIN               |                                                          |                                                | 363.34<br>363.61<br>362.96                               | 362.99<br>363.17<br>362.75                               | 363.66<br>363.94<br>363.44                     | 363.29<br>363.69<br>363.03                               | 363.41<br>363.73<br>363.20                     | 363.87<br>364.79<br>363.13                               | 363.83<br>364.46<br>362.88                     | 363.08<br>363.47<br>362.98                               | 363.04<br>363.15<br>362.98                               | 363.05<br>363.25<br>362.86                     |

Discharge (ft<sup>3</sup>/s)

\*1,950

Time

0430

Date

Apr. 15

Gage height

(ft)

\*7.90

#### STREAMS TRIBUTARY TO LAKE ONTARIO

## 04243500 ONEIDA CREEK AT ONEIDA, NY

LOCATION.--Lat 43°05'51", long 75°38'22", Oneida County, Hydrologic Unit 04140202, on right bank 70 ft upstream from bridge on Sconondoa Street at Oneida, and 500 ft downstream from Sconondoa Creek.

DRAINAGE AREA.--113 mi².

PERIOD OF RECORD.--October 1949 to current year.

REVISED RECORDS.--WSP 2112: Drainage area. WDR NY-78-1: 1951, 1956, 1958, 1961, 1963, 1964, 1972, 1976 (P). WDR NY-83-3: 1950 (M), 1977 (M), 1979 (M).

GAGE.--Water-stage recorder. Datum of gage is 409.33 ft above NGVD of 1929.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Occasional regulation by small mills upstream from station. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the year.

Time

0100

Date

Mar. 27

Discharge (ft<sup>3</sup>/s)

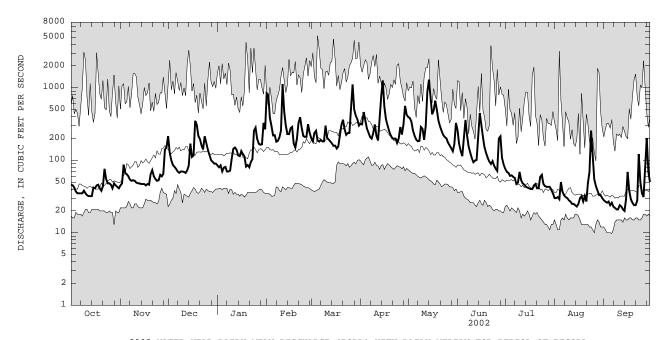
1,930

were made during the year.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 9,110 ft<sup>3</sup>/s, Oct. 9, 1976, gage height, 15.01 ft; minimum discharge, 9.5 ft<sup>3</sup>/s, Sept. 6, 7, 1999; minimum gage height, 1.30 ft, Aug. 3, 6, 1955, Aug. 17, 1964.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,900 ft<sup>3</sup>/s and maximum (\*):

Gage height


7.85

| riot. 27     | 010        | , 0                 | 1,550      |            | 7.05      |                       | 11p1. 13 | 0150       |           | 1,550  | ,    | . 50 |
|--------------|------------|---------------------|------------|------------|-----------|-----------------------|----------|------------|-----------|--------|------|------|
| Minimum disc | harge, 19  | ft <sup>3</sup> /s, | Sept. 9, 1 | .4, gage l | neight, 1 | .73 ft.               |          |            |           |        |      |      |
|              |            | DISCHA              | RGE, CUBIC | C FEET PE  |           | WATER YE<br>Y MEAN VA |          | ER 2001 TO | SEPTEMBE: | R 2002 |      |      |
| DAY          | OCT        | NOV                 | DEC        | JAN        | FEB       | MAR                   | APR      | MAY        | JUN       | JUL    | AUG  | SEP  |
| 1            | 46         | 45                  | 215        | e85        | 839       | 201                   | 319      | 395        | 259       | 76     | 30   | 28   |
| 2            | 45         | 48                  | 126        | e80        | 798       | 182                   | 313      | 383        | 168       | 69     | 30   | 27   |
| 3            | 42         | 87                  | 99         | 85         | 386       | 239                   | 462      | 341        | 134       | 67     | 31   | 26   |
| 4            | 37         | 67                  | 86         | e70        | 296       | 255                   | 356      | 255        | 114       | 61     | 29   | 27   |
| 5            | 35         | 64                  | 81         | 79         | e220      | 187                   | 274      | 217        | 205       | 62     | 50   | 24   |
| 6            | 35         | 60                  | 76         | 81         | 222       | 181                   | 241      | 193        | 359       | 59     | 37   | 26   |
| 7            | 35         | 54                  | 70         | e70        | e180      | 191                   | 209      | 183        | 219       | 57     | 33   | 23   |
| 8            | 35         | 52                  | 67         | e70        | e185      | 182                   | 199      | 185        | 153       | 47     | 31   | 22   |
| 9            | 38         | 53                  | 70         | e72        | 207       | 182                   | 238      | 287        | 126       | 49     | 30   | 21   |
| 10           | 35         | 52                  | 70         | 106        | 260       | 299                   | 311      | 272        | 107       | 69     | 28   | 21   |
| 11           | 33         | 49                  | 69         | 144        | 1120      | 203                   | 216      | 192        | 94        | 53     | 27   | 24   |
| 12           | 32         | 48                  | 67         | 150        | 468       | 193                   | 187      | 297        | 99        | 48     | 25   | 23   |
| 13           | 32         | 48                  | 73         | 140        | e300      | 182                   | 381      | 872        | 101       | 46     | 25   | 21   |
| 14           | 32         | 47                  | 85         | 117        | e230      | 171                   | 770      | 1290       | 205       | 43     | 24   | 20   |
| 15           | 42         | 47                  | 169        | 114        | 229       | 158                   | 1260     | 712        | 449       | 42     | 23   | 29   |
| 16           | 41         | 47                  | 111        | 134        | 277       | 159                   | 548      | 430        | 304       | 41     | 25   | 69   |
| 17           | 45         | 45                  | 116        | 122        | 289       | 145                   | 367      | 482        | 206       | 40     | 30   | 38   |
| 18           | 46         | 47                  | 350        | 113        | e170      | 155                   | 301      | 663        | 150       | 40     | 32   | 29   |
| 19           | 41         | 46                  | 309        | e82        | e150      | 220                   | 252      | 500        | 125       | 45     | 27   | 26   |
| 20           | 38         | 64                  | 217        | e86        | 198       | 311                   | 220      | 350        | 108       | 47     | 32   | 24   |
| 21           | 44         | 73                  | 195        | e80        | 329       | 362                   | 200      | 292        | 96        | 41     | 27   | 24   |
| 22           | 76         | 60                  | 160        | 95         | 393       | 267                   | 198      | 253        | 89        | 41     | 48   | 28   |
| 23           | 55         | 55                  | 141        | 104        | 278       | 224                   | 199      | 223        | 97        | 59     | 69   | 122  |
| 24           | 48         | 52                  | 214        | 256        | 216       | 237                   | 173      | 208        | 84        | 63     | 256  | 50   |
| 25           | 48         | 53                  | 173        | 283        | 210       | 238                   | 199      | 201        | 76        | 47     | 116  | 35   |
| 26           | 46         | 63                  | 139        | 197        | 210       | 523                   | 287      | 175        | 71        | 44     | 54   | 31   |
| 27           | 41         | 60                  | 118        | 169        | 315       | 1110                  | 226      | 160        | 200       | 43     | 44   | 81   |
| 28           | 48         | 65                  | e100       | 164        | 239       | 498                   | 311      | 147        | 214       | 43     | 38   | 203  |
| 29           | 45         | 140                 | e95        | 166        |           | 413                   | 562      | 133        | 107       | 43     | 33   | 69   |
| 30           | 43         | 152                 | e90        | 327        |           | 369                   | 422      | 168        | 87        | 39     | 33   | 50   |
| 31           | 41         |                     | e90        | 267        |           | 300                   |          | 327        |           | 35     | 30   |      |
| TOTAL        | 1300       | 1843                | 4041       | 4108       | 9214      | 8537                  | 10201    | 10786      | 4806      | 1559   | 1347 | 1241 |
| MEAN         | 41.9       | 61.4                | 130        | 133        | 329       | 275                   | 340      | 348        | 160       | 50.3   | 43.5 | 41.4 |
| MAX          | 76         | 152                 | 350        | 327        | 1120      | 1110                  | 1260     | 1290       | 449       | 76     | 256  | 203  |
| MIN          | 32         | 45                  | 67         | 70         | 150       | 145                   | 173      | 133        | 71        | 35     | 23   | 20   |
| CFSM         | 0.37       | 0.54                | 1.15       | 1.17       | 2.91      | 2.44                  | 3.01     | 3.08       | 1.42      | 0.45   | 0.38 | 0.37 |
| IN.          | 0.43       | 0.61                | 1.33       | 1.35       | 3.03      | 2.81                  | 3.36     | 3.55       | 1.58      | 0.51   | 0.44 | 0.41 |
| STATIST      | CICS OF MC | NTHLY ME            | AN DATA FO | OR WATER   | YEARS 195 | 0 - 2002,             | BY WATER | YEAR (WY)  |           |        |      |      |
| MEAN         | 85.4       | 147                 | 188        | 194        | 224       | 363                   | 345      | 171        | 105       | 65.6   | 51.8 | 60.7 |
| MAX          | 472        | 382                 | 481        | 452        | 589       | 781                   | 915      | 495        | 539       | 225    | 253  | 297  |
| (WY)         | 1978       | 1973                | 1974       | 1998       | 1976      | 1977                  | 1993     | 2000       | 1972      | 1951   | 1976 | 1977 |
| MIN          | 21.5       | 30.5                | 39.6       | 38.9       | 50.5      | 131                   | 109      | 61.0       | 28.4      | 23.2   | 14.8 | 18.0 |
| (WY)         | 1964       | 1965                | 1961       | 1981       | 1980      | 1981                  | 1981     | 1995       | 1999      | 1962   | 1999 | 1964 |
|              |            |                     |            |            |           |                       |          |            |           |        |      |      |

e Estimated

# 04243500 ONEIDA CREEK AT ONEIDA, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALENDAR YEAR | FOR 2002 WATER YEAR | WATER YEARS 1950 - 2002 |
|--------------------------|------------------------|---------------------|-------------------------|
| ANNUAL TOTAL             | 61570                  | 58983               |                         |
| ANNUAL MEAN              | 169                    | 162                 | 166                     |
| HIGHEST ANNUAL MEAN      |                        |                     | 284 1976                |
| LOWEST ANNUAL MEAN       |                        |                     | 89.7 1988               |
| HIGHEST DAILY MEAN       | 2790 Apr 9             | 1290 May 14         | 5210 Mar 5 1979         |
| LOWEST DAILY MEAN        | 25 Sep 17              | 20 Sep 14           | 9.8 Sep 6 1999          |
| ANNUAL SEVEN-DAY MINIMUM | 26 Sep 12              | 22 Sep 8            | 11 Sep 1 1999           |
| ANNUAL RUNOFF (CFSM)     | 1.49                   | 1.43                | 1.47                    |
| ANNUAL RUNOFF (INCHES)   | 20.27                  | 19.42               | 20.00                   |
| 10 PERCENT EXCEEDS       | 311                    | 328                 | 358                     |
| 50 PERCENT EXCEEDS       | 87                     | 99                  | 95                      |
| 90 PERCENT EXCEEDS       | 34                     | 31                  | 30                      |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04245236 MEADOW BROOK AT HURLBURT ROAD, SYRACUSE, NY

LOCATION.--Lat 43°02'30", long 76°06'02", Onondaga County, Hydrologic Unit 04140202, on right bank 170 ft downstream from culvert at intersection of Hurlburt Road and Meadowbrook Drive, and 2.3 mi upstream from mouth.

DRAINAGE AREA.--3.06 mi<sup>2</sup>.

PERIOD OF RECORD.--December 1970 to March 1973, April 1973 to September 1978 (annual maximum only), October 1978 to current vear.

CORRECTIONS.--The maximum discharge for the period of record is 418 ft<sup>3</sup>/s, July 3, 1974, gage height 6.51 ft; the previously

CORRECTIONS. --The maximum discharge for the period of record is 418 ft<sup>2</sup>/s, July 3, 19/4, gage height 6.51 ft; the previously published figure was not the maximum.

REVISED RECORDS. --WDR NY-75-1: 1974 (M). WDR NY-78-1: 1977 (M). WDR-NY-90-3: 1971-89 (P). WDR NY-2001-3: Drainage area.

GAGE. --Water-stage recorder, crest-stage gage, and artificial control. Datum of gage is 511.50 ft above NGVD of 1929.

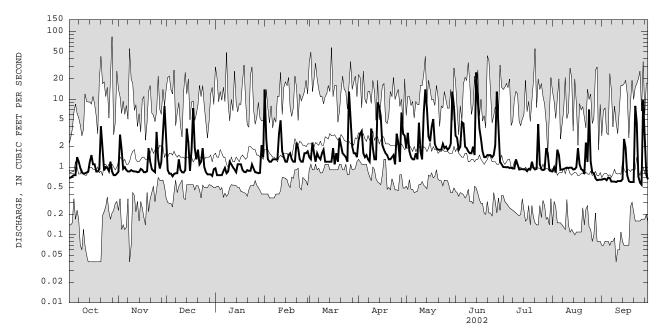
REMARKS. --Records fair. Flow includes storm sewer inflow, some originating outside the basin. Several measurements of water temperature were made during the year.

EXTREMES FOR PERIOD OF RECORD. --Maximum discharge, 418 ft<sup>3</sup>/s, July 3, 1974, gage height 6.51 ft, from rating curve extended above 62 ft<sup>3</sup>/s on basis of computation of peak flow through culvert at gage height 6.36 ft; minimum discharge, 0.02 ft<sup>3</sup>/s, Sept. 11, 1972, Aug. 24, 1990.

EXTREMES FOR CURRENT YEAR --Peak discharges greater than base discharge of 100 ft<sup>3</sup>/s and maximum (\*):

EXTREMES FOR CURRENT YEAR.—Peak discharges greater than base discharge of 100  $\mathrm{ft}^3/\mathrm{s}$  and maximum (\*):

| Date   | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) | Date     | Time | Discharge<br>(ft <sup>3</sup> /s) | Gage height<br>(ft) |
|--------|------|-----------------------------------|---------------------|----------|------|-----------------------------------|---------------------|
| May 30 | 0430 | 105<br>*184                       | 3.04                | Sept. 22 | 2045 | 126                               | 3.33                |


Minimum discharge, 0.40 ft<sup>3</sup>/s, Sept. 8, gage height, 1.10 ft.

| DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002<br>DAILY MEAN VALUES |                                      |                                      |                                              |                                      |                                      |                                      |                                      |                                       |                                      |                                            |                                      |                                          |
|--------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------------|--------------------------------------|------------------------------------------|
| DAY                                                                                              | OCT                                  | NOV                                  | DEC                                          | JAN                                  | FEB                                  | MAR                                  | APR                                  | MAY                                   | JUN                                  | JUL                                        | AUG                                  | SEP                                      |
| 1<br>2<br>3<br>4<br>5                                                                            | 0.69<br>0.70<br>0.73<br>0.76<br>0.76 | 0.85<br>3.0<br>1.8<br>0.94<br>1.00   | 2.7<br>0.90<br>0.80<br>0.80<br>0.73          | 0.96<br>0.76<br>0.76<br>0.76<br>0.76 | 14<br>2.6<br>1.3<br>1.2              | 1.4<br>1.3<br>2.3<br>1.6<br>1.2      | 2.5<br>3.1<br>3.4<br>1.6<br>1.4      | 1.9<br>3.2<br>1.7<br>1.4              | 2.9<br>2.7<br>1.8<br>2.0<br>4.6      | 1.0<br>1.0<br>0.99<br>1.00                 | 0.86<br>0.99<br>0.83<br>1.8<br>1.5   | 0.65<br>0.67<br>0.67<br>0.64<br>0.70     |
| 6<br>7<br>8<br>9<br>10                                                                           | 1.4<br>1.2<br>0.97<br>0.83<br>0.80   | 0.90<br>0.86<br>0.86<br>0.90<br>0.87 | 0.79<br>0.81<br>0.81<br>1.3<br>0.91          | 0.87<br>0.97<br>0.81<br>0.86<br>1.2  | 1.3<br>1.3<br>1.3<br>1.3             | 1.6<br>1.4<br>1.3<br>1.6<br>1.8      | 1.5<br>1.3<br>1.2<br>3.7<br>1.9      | 1.3<br>1.6<br>1.3<br>4.5              | 4.4<br>2.0<br>1.9<br>1.7             | 0.98<br>0.95<br>0.95<br>1.3<br>1.1         | 0.91<br>0.92<br>0.93<br>0.96<br>0.98 | 0.69<br>0.61<br>0.61<br>0.61<br>e0.60    |
| 11<br>12<br>13<br>14<br>15                                                                       | 0.81<br>0.83<br>0.85<br>1.2<br>1.5   | 0.86<br>0.86<br>0.84<br>0.85<br>0.94 | 0.84<br>0.83<br>0.90<br>3.7<br>2.3           | 1.1<br>0.99<br>0.92<br>0.84<br>1.1   | 4.9<br>1.7<br>1.4<br>1.2             | 1.2<br>1.2<br>1.2<br>1.2<br>1.2      | 1.3<br>1.3<br>9.0<br>7.8<br>5.6      | 1.3<br>6.2<br>14<br>7.4<br>2.8        | 1.6<br>2.0<br>1.5<br>25<br>9.4       | 0.92<br>0.93<br>0.93<br>0.93<br>0.92       | 0.97<br>0.98<br>0.98<br>0.92<br>0.93 | e0.62<br>e0.62<br>e0.62<br>e0.66<br>e2.6 |
| 16<br>17<br>18<br>19<br>20                                                                       | 1.1<br>1.1<br>0.86<br>0.86<br>0.93   | 0.91<br>0.84<br>0.84<br>0.87         | 0.88<br>1.8<br>7.4<br>1.9                    | 1.1<br>1.1<br>0.91<br>0.85<br>0.84   | 1.5<br>1.6<br>1.3<br>1.2             | 1.9<br>1.1<br>1.6<br>1.2<br>2.7      | 2.1<br>1.8<br>1.6<br>1.5             | 2.4<br>3.9<br>5.1<br>2.2<br>1.9       | 3.7<br>2.6<br>1.7<br>1.4             | 0.87<br>0.94<br>0.93<br>1.2<br>0.97        | 1.0<br>1.9<br>1.1<br>0.93<br>0.90    | e1.9<br>e0.75<br>e0.62<br>e0.60<br>e0.60 |
| 21<br>22<br>23<br>24<br>25                                                                       | 4.0<br>1.8<br>0.89<br>1.0<br>0.97    | 1.2<br>0.93<br>0.88<br>0.84<br>3.3   | 1.8<br>1.1<br>1.2<br>1.9                     | 0.90<br>0.88<br>0.88<br>1.1<br>0.95  | 2.3<br>1.9<br>1.3<br>1.2             | 2.1<br>1.6<br>1.5<br>1.4             | 1.3<br>1.4<br>1.5<br>1.1<br>3.1      | 1.8<br>1.8<br>1.8<br>2.2<br>1.9       | 1.5<br>1.5<br>1.5<br>1.4<br>1.5      | 0.92<br>0.94<br>4.3<br>1.1<br>0.92         | 0.80<br>2.3<br>1.2<br>7.1<br>1.2     | e0.60<br>e8.0<br>4.5<br>0.72<br>0.59     |
| 26<br>27<br>28<br>29<br>30<br>31                                                                 | 0.87<br>1.2<br>0.86<br>0.76<br>0.76  | 1.3<br>0.95<br>1.2<br>3.4<br>8.0     | 0.84<br>0.78<br>0.78<br>0.78<br>0.74<br>0.93 | 0.84<br>0.83<br>0.81<br>0.82<br>2.1  | 1.6<br>1.6<br>1.7<br>                | 13<br>5.2<br>2.0<br>1.6<br>1.6       | 2.3<br>1.2<br>6.4<br>3.1<br>2.9      | 2.0<br>1.8<br>1.9<br>2.2<br>13<br>7.7 | 2.1<br>13<br>3.2<br>1.2<br>1.1       | 0.90<br>0.92<br>1.9<br>1.6<br>0.92<br>0.87 | 0.83<br>0.81<br>0.68<br>0.64<br>0.65 | 0.55<br>9.7<br>2.6<br>0.76<br>0.66       |
| TOTAL<br>MEAN<br>MAX<br>MIN                                                                      | 32.79<br>1.06<br>4.0<br>0.69         | 43.69<br>1.46<br>8.0<br>0.84         | 44.25<br>1.43<br>7.4<br>0.73                 | 29.97<br>0.97<br>2.1<br>0.76         | 58.6<br>2.09<br>14<br>1.2            | 62.6<br>2.02<br>13<br>1.1            | 79.2<br>2.64<br>9.0<br>1.1           | 105.2<br>3.39<br>14<br>1.3            | 103.9<br>3.46<br>25<br>1.1           | 35.07<br>1.13<br>4.3<br>0.87               | 38.15<br>1.23<br>7.1<br>0.64         | 44.72<br>1.49<br>9.7<br>0.55             |
| STATIS                                                                                           | TICS OF M                            | ONTHLY ME                            | AN DATA F                                    | OR WATER                             | YEARS 1971                           | - 2002,                              | BY WATER                             | YEAR (WY                              | )                                    |                                            |                                      |                                          |
| MEAN<br>MAX<br>(WY)<br>MIN<br>(WY)                                                               | 1.60<br>4.73<br>1982<br>0.19<br>1972 | 2.02<br>4.46<br>1997<br>0.71<br>1979 | 2.09<br>4.66<br>1991<br>1.04<br>1971         | 2.11<br>5.56<br>1998<br>0.67<br>1981 | 2.45<br>4.38<br>1990<br>1.12<br>1993 | 3.64<br>6.93<br>1972<br>1.38<br>1981 | 3.14<br>7.51<br>1993<br>1.34<br>1981 | 2.60<br>5.56<br>2000<br>1.08<br>1971  | 2.30<br>6.12<br>1972<br>0.86<br>1981 | 1.77<br>5.04<br>1988<br>0.48<br>1980       | 1.41<br>5.16<br>1990<br>0.32<br>1971 | 1.64<br>3.03<br>1989<br>0.31<br>1971     |

e Estimated

# 04245236 MEADOW BROOK AT HURLBURT ROAD, SYRACUSE, NY--Continued

| SUMMARY STATISTICS                         | FOR 2001 CALENDAR YEAR   | FOR 2002 WATER YEAR       | WATER YEARS 1971 - 2002              |
|--------------------------------------------|--------------------------|---------------------------|--------------------------------------|
| ANNUAL TOTAL<br>ANNUAL MEAN                | 711.79<br>1.95           | 678.14<br>1.86            | 2.25                                 |
| HIGHEST ANNUAL MEAN<br>LOWEST ANNUAL MEAN  |                          |                           | 3.27 1990<br>1.27 1981               |
| HIGHEST DAILY MEAN                         | 26 Sep 25                | 25 Jun 14                 | 84 Oct 28 1981                       |
| LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM | 0.68 Sep 4<br>0.72 Sep 2 | 0.55 Sep 26<br>0.61 Sep 7 | 0.04 Oct 13 1971<br>0.04 Oct 13 1971 |
| 10 PERCENT EXCEEDS                         | 0.72 Sep 2<br>3.4        | 3.2                       | 4.0                                  |
| 50 PERCENT EXCEEDS<br>90 PERCENT EXCEEDS   | 1.2<br>0.84              | 1.2                       | 1.4                                  |



#### 04246000 ONEIDA LAKE AT BREWERTON, NY

LOCATION.--Lat 43°14'25", long 76°08'30", Onondaga County, Hydrologic Unit 04140202, at west end of Oneida Lake, 100 ft west of bridge on U.S. Highway 11, at Brewerton.
DRAINAGE AREA.--1,382 mi², at dam at Caughdenoy.

PERIOD OF RECORD. --November 1951 to current year. April 1904 to September 1925 in reports of State Engineer and Surveyor, published as "Oneida River at Brewerton."

REVISED RECORDS.--WSP 2112: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is NGVD of 1929 (1.01 ft Barge Canal datum). November 1951 to September 1975, at datum 360.99 ft higher.

REMARKS.--Lake elevation regulated by taintor-gate dam on Oneida River at Caughdenoy and gates on Oneida Canal and Erie (Barge)
Canal. Lake volume at elevation 369 ft NGVD of 1929, 1.135 million acre-ft. Area of water surface, 79.8 mi<sup>2</sup>; axes, 20.9 mi by
5.5 mi; shoreline length, 54.7 mi.

EXTREMES FOR PERIOD OF RECORD. --Maximum elevation, 373.14 ft, Apr. 24,1993; minimum daily, 366.12 ft, Feb. 11, 1984.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 29, 1936, reached a water surface elevation of 373.5 ft, from Corps of Engineers report "Flood Plain Information, Oneida Creek, New York." EXTREMES FOR CURRENT YEAR.--Maximum elevation, 370.87 ft, May 18; minimum elevation, 366.90 ft, Feb. 1.

ELEVATION (FEET NGVD), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

|      |        |        |        |        | DAII   | LY MEAN V | ALUES  |        |        |        |        |        |
|------|--------|--------|--------|--------|--------|-----------|--------|--------|--------|--------|--------|--------|
| DAY  | OCT    | NOV    | DEC    | JAN    | FEB    | MAR       | APR    | MAY    | JUN    | JUL    | AUG    | SEP    |
| 1    | 369.85 |        | 369.26 | 367.95 | 367.57 | 368.36    | 369.07 | 369.70 | 369.75 | 369.82 | 369.78 | 369.90 |
| 2    | 369.80 |        | 369.32 | 367.93 | 367.80 | 368.41    | 369.31 | 369.79 | 369.72 | 369.81 | 369.77 | 369.87 |
| 3    | 369.75 |        | 369.33 | 367.88 | 367.96 | 368.28    | 369.25 | 369.46 | 369.74 | 369.79 | 369.77 | 369.84 |
| 4    |        |        | 369.27 | 367.86 | 368.02 | 368.28    | 369.32 | 369.72 | 369.74 | 369.76 | 369.77 | 369.77 |
| 5    |        |        | 369.18 | 367.81 | 368.06 | 368.35    | 369.45 | 369.68 | 369.60 | 369.72 | 369.75 | 369.79 |
| 6    |        |        | 369.03 | 367.78 | 368.09 | 368.39    | 369.40 | 369.64 | 369.56 | 369.70 | 369.74 | 369.82 |
| 7    |        |        | 368.95 | 367.73 | 368.08 | 368.38    | 369.42 | 369.62 | 369.55 | 369.71 | 369.70 | 369.83 |
| 8    |        |        | 368.94 | 367.71 | 368.06 | 368.38    | 369.36 | 369.69 | 369.60 | 369.75 | 369.71 | 369.83 |
| 9    |        |        | 368.82 | 367.66 | 368.08 | 368.35    | 369.29 | 369.92 | 369.59 | 369.76 | 369.70 | 369.81 |
| 10   |        |        | 368.74 | 367.61 | 368.07 | 368.00    | 369.41 | 369.77 | 369.64 | 369.75 | 369.71 | 369.81 |
| 11   |        |        | 368.64 | 367.57 | 368.10 | 368.50    | 369.59 | 369.87 | 369.66 | 369.75 | 369.70 | 369.68 |
| 12   |        |        | 368.68 | 367.59 | 368.23 | 368.63    | 369.60 | 370.05 | 369.69 | 369.78 | 369.70 | 369.75 |
| 13   |        |        | 368.50 | 367.50 | 368.25 | 368.69    | 369.65 | 370.21 | 369.79 | 369.78 | 369.69 | 369.73 |
| 14   |        |        | 368.42 | 367.60 | 368.32 | 368.62    | 369.96 | 370.21 | 370.06 | 369.79 | 369.71 | 369.78 |
| 15   |        |        | 368.38 | 367.53 | 368.31 | 368.68    | 370.31 | 370.55 | 370.04 | 369.75 | 369.68 | 369.77 |
| 16   |        |        | 368.45 | 367.53 | 368.29 | 368.56    | 370.51 | 370.74 | 369.87 | 369.75 | 369.66 | 369.79 |
| 17   |        |        | 368.53 | 367.52 | 368.27 | 368.69    | 370.59 | 370.75 | 369.87 | 369.75 | 369.71 | 369.81 |
| 18   |        |        | 368.37 | 367.47 | 368.28 | 368.79    | 370.61 | 370.76 | 369.88 | 369.75 | 369.70 | 369.84 |
| 19   |        |        | 368.50 | 367.52 | 368.26 | 368.66    | 370.52 | 370.73 | 369.81 | 369.77 | 369.70 | 369.86 |
| 20   |        |        | 368.39 | 367.49 | 368.24 | 368.79    | 370.43 | 370.67 | 369.76 | 369.76 | 369.68 | 369.83 |
| 21   |        |        | 368.48 | 367.46 | 368.23 | 368.62    | 370.32 | 370.54 | 369.76 | 369.79 | 369.71 | 369.83 |
| 22   |        |        | 368.56 | 367.44 | 368.29 | 368.66    | 370.28 | 370.46 | 369.77 | 369.76 | 369.70 | 369.83 |
| 23   |        |        | 368.65 | 367.43 | 368.36 | 368.69    | 370.03 | 370.37 | 369.78 | 369.77 | 369.77 | 369.88 |
| 24   |        |        | 368.44 | 367.40 | 368.40 | 368.74    | 369.96 | 370.22 | 369.79 | 369.79 | 369.98 | 369.92 |
| 25   |        |        | 368.42 | 367.42 | 368.39 | 368.72    | 369.85 | 370.15 | 369.83 | 369.83 | 369.88 | 369.86 |
| 26   |        |        | 368.39 | 367.44 | 368.36 | 368.96    | 369.68 | 370.00 | 369.81 | 369.85 | 369.91 | 369.78 |
| 27   |        |        | 368.29 | 367.47 | 368.32 | 368.82    | 369.72 | 369.95 | 369.83 | 369.78 | 369.89 | 369.75 |
| 28   |        |        | 368.22 | 367.47 | 368.33 | 368.97    | 369.96 | 369.85 | 369.88 | 369.78 | 369.96 | 369.64 |
| 29   |        |        | 368.09 | 367.46 |        | 369.08    | 369.63 | 369.79 | 369.91 | 369.77 | 369.92 | 369.72 |
| 30   |        | 369.24 | 367.94 | 367.49 |        | 369.02    | 369.72 | 369.76 | 369.86 | 369.72 | 369.83 | 369.71 |
| 31   |        |        | 367.95 | 367.66 |        | 369.14    |        | 369.73 |        | 369.77 | 369.88 |        |
| MEAN |        |        | 368.62 | 367.59 | 368.18 | 368.62    | 369.81 | 370.08 | 369.77 | 369.77 | 369.77 | 369.80 |
| MAX  |        |        | 369.33 | 367.95 | 368.40 | 369.14    | 370.61 | 370.76 | 370.06 | 369.85 | 369.98 | 369.92 |
| MIN  |        |        | 367.94 | 367.40 | 367.57 | 368.00    | 369.07 | 369.46 | 369.55 | 369.70 | 369.66 | 369.64 |

#### 04247000 ONEIDA RIVER NEAR EUCLID, NY

LOCATION.--Lat 43°12'18", long 76°13'05", Oswego County, Hydrologic Unit 04140202, on right bank, 50 ft downstream of Morgan Road bridge, 9.2 mi downstream from Oneida Lake, 1.3 mi north of Euclid, and 7.7 mi upstream from mouth at Three Rivers. DRAINAGE AREA.-- 1,439 mi².

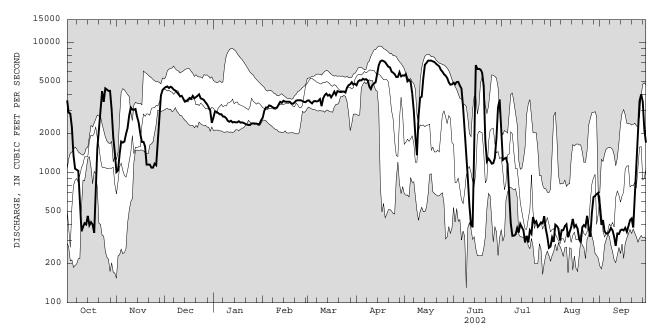
PERIOD OF RECORD.--November 1996 to current year. Records for September 1902 to December 1909, published as "Oneida River near Eucild", and January 1910 to December 1912 and October 1947 to September 1998, published as "Oneida River at Caughdenoy" (station 04246500) at site 7.6 mi upstream, are not equivalent because of regulation between sites.

GAGE.--Acoustic velocity meter, water-stage recorder, and crest-stage gage. Elevation of gage is 370 ft above NGVD of 1929, from topographic map.

REMARKS.--Records fair except those for estimated daily discharges, which are poor. Considerable seasonal regulation by operation of gates in Oneida and Erie (Barge) Canals with a large amount of natural storage in Oneida Lake. Water may be diverted into or received from Mohawk River basin through summit level of Erie (Barge) Canal between New London and Utica. Nearly all of flow from 14 mi<sup>2</sup> of Tioughnioga River basin may be diverted into De Ruyter Reservoir, in Oswego River basin. Telephone and satellite gage-height telemeters at station. Several measurements of water temperature were made during the

COOPERATION.--Records of gate openings, lockages, and elevations of water surface in Erie (Barge) Canal above and below Lock 23, furnished by New York State Thruway Authority, Office of Canals.

EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, 9,380 ft<sup>3</sup>/s, Apr. 15, 16, 2001; minimum daily discharge, 130 ft<sup>3</sup>/s,


June 9, 1999. Maximum and minimun instantaneous discharges not determined. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 7,280 ft<sup>3</sup>/s, Apr. 17; minimum daily discharge, about 264 ft<sup>3</sup>/s, July 31. Maximum and minimun instantaneous discharges not determined.

|                                  |                                              | DISCH                                | ARGE, CUB                                    | IC FEET P                                    |                          | , WATER YI<br>LY MEAN V                      |                                      | ER 2001 TO                                   | ) SEPTEMBE                           | ER 2002                                 |                                        |                                         |
|----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|
| DAY                              | OCT                                          | NOV                                  | DEC                                          | JAN                                          | FEB                      | MAR                                          | APR                                  | MAY                                          | JUN                                  | JUL                                     | AUG                                    | SEP                                     |
| 1                                | 3590                                         | 1010                                 | 4450                                         | 2650                                         | 2640                     | 3570                                         | 4690                                 | 5560                                         | 4910                                 | 2210                                    | e270                                   | 542                                     |
| 2                                | 2890                                         | 1040                                 | 4550                                         | 2960                                         | 2990                     | 3590                                         | 5020                                 | 5720                                         | 4770                                 | 1250                                    | 316                                    | 396                                     |
| 3                                | 2840                                         | 1390                                 | 4590                                         | 2930                                         | 3160                     | 3480                                         | 5130                                 | 5020                                         | 4970                                 | 1280                                    | 293                                    | 431                                     |
| 4                                | 2230                                         | 1730                                 | 4470                                         | 2870                                         | 3150                     | 3400                                         | 5110                                 | 5150                                         | e4980                                | 1300                                    | 397                                    | 352                                     |
| 5                                | 1360                                         | 1700                                 | 4570                                         | 2800                                         | 3280                     | 3530                                         | 5260                                 | 5000                                         | 4660                                 | 1160                                    | 387                                    | 339                                     |
| 6                                | 1070                                         | 1730                                 | 4500                                         | 2810                                         | 3260                     | 3550                                         | 5180                                 | 4070                                         | 4420                                 | 664                                     | 370                                    | 340                                     |
| 7                                | 1050                                         | 1980                                 | 4340                                         | 2700                                         | 3190                     | 3520                                         | 5230                                 | 2980                                         | 3190                                 | 408                                     | e300                                   | 352                                     |
| 8                                | 1030                                         | 2200                                 | 4280                                         | 2690                                         | 3130                     | 3560                                         | 5110                                 | 1890                                         | 1940                                 | 326                                     | e360                                   | 374                                     |
| 9                                | 647                                          | 2740                                 | 4140                                         | 2620                                         | 3140                     | 3670                                         | 4590                                 | 1360                                         | 1270                                 | 327                                     | e360                                   | 359                                     |
| 10                               | 353                                          | 3160                                 | 4020                                         | 2500                                         | 3160                     | 3240                                         | 4390                                 | 2700                                         | 913                                  | 334                                     | 387                                    | 320                                     |
| 11                               | 382                                          | 3040                                 | 3850                                         | 2460                                         | 3340                     | 3730                                         | 4720                                 | 3760                                         | 560                                  | 374                                     | e400                                   | 273                                     |
| 12                               | 408                                          | 3040                                 | 3890                                         | 2500                                         | 3500                     | 3940                                         | 4830                                 | 3830                                         | 399                                  | 345                                     | 318                                    | 340                                     |
| 13                               | 399                                          | 3080                                 | 3700                                         | 2430                                         | 3440                     | 4050                                         | 4950                                 | 5330                                         | 379                                  | 402                                     | e350                                   | 337                                     |
| 14                               | 464                                          | 2680                                 | 3510                                         | 2450                                         | 3570                     | 3900                                         | 5770                                 | 6760                                         | e2600                                | 379                                     | e380                                   | 360                                     |
| 15                               | 394                                          | 2420                                 | 3540                                         | 2430                                         | 3510                     | 3970                                         | e6700                                | 6960                                         | e6700                                | 358                                     | e440                                   | 365                                     |
| 16                               | 416                                          | 1990                                 | 3640                                         | 2430                                         | 3500                     | 3780                                         | 7170                                 | 7260                                         | 6250                                 | e290                                    | e380                                   | 359                                     |
| 17                               | 399                                          | 1720                                 | 3750                                         | 2480                                         | 3510                     | 3960                                         | 7280                                 | 7250                                         | 6270                                 | 326                                     | 395                                    | 376                                     |
| 18                               | 344                                          | 1720                                 | 3700                                         | 2420                                         | 3500                     | 4190                                         | 7200                                 | 7260                                         | 6190                                 | e290                                    | e370                                   | 350                                     |
| 19                               | 831                                          | 1580                                 | 3890                                         | 2430                                         | 3390                     | 3960                                         | 7050                                 | 7150                                         | 5870                                 | 358                                     | e310                                   | 390                                     |
| 20                               | 1530                                         | 1150                                 | 3730                                         | 2410                                         | 3380                     | 4230                                         | 6780                                 | 7080                                         | 4610                                 | 339                                     | e290                                   | 431                                     |
| 21                               | 2110                                         | 1150                                 | 3800                                         | 2370                                         | 3460                     | 4190                                         | 6510                                 | 6870                                         | 1760                                 | 455                                     | 382                                    | 444                                     |
| 22                               | e3000                                        | 1150                                 | 3890                                         | 2340                                         | 3580                     | 4160                                         | 6430                                 | 6700                                         | 1220                                 | 409                                     | 395                                    | 378                                     |
| 23                               | 4220                                         | 1090                                 | 4000                                         | 2320                                         | 3590                     | 4170                                         | 5980                                 | 6560                                         | 1280                                 | 422                                     | 383                                    | 619                                     |
| 24                               | e3500                                        | 1090                                 | 3720                                         | 2320                                         | 3600                     | 4200                                         | 5860                                 | 6160                                         | 1230                                 | 382                                     | 465                                    | 1260                                    |
| 25                               | 4440                                         | 1170                                 | 3680                                         | 2380                                         | 3590                     | 4130                                         | 5700                                 | 5980                                         | 1170                                 | 395                                     | 376                                    | 2240                                    |
| 26<br>27<br>28<br>29<br>30<br>31 | 4340<br>4250<br>4250<br>3050<br>1870<br>1420 | 1140<br>1780<br>2730<br>3920<br>4320 | 3620<br>3470<br>3350<br>3170<br>3000<br>2410 | 2390<br>2380<br>2380<br>2350<br>2370<br>2530 | 3550<br>3490<br>3480<br> | 4500<br>4700<br>4780<br>4950<br>4750<br>4810 | 5420<br>5440<br>5920<br>5490<br>5590 | 5700<br>5570<br>5340<br>4940<br>4740<br>4770 | 1180<br>1300<br>1840<br>3190<br>3650 | 414<br>406<br>462<br>371<br>321<br>e264 | 320<br>490<br>648<br>662<br>683<br>698 | 3570<br>e4000<br>e3500<br>2130<br>e1700 |
| TOTAL                            | 59077                                        | 60640                                | 119220                                       | 78100                                        | 94080                    | 124160                                       | 170500                               | 165420                                       | 93671                                | 17021                                   | 12575                                  | 27227                                   |
| MEAN                             | 1906                                         | 2021                                 | 3846                                         | 2519                                         | 3360                     | 4005                                         | 5683                                 | 5336                                         | 3122                                 | 549                                     | 406                                    | 908                                     |
| MAX                              | 4440                                         | 4320                                 | 4590                                         | 2960                                         | 3600                     | 4950                                         | 7280                                 | 7260                                         | 6700                                 | 2210                                    | 698                                    | 4000                                    |
| MIN                              | 344                                          | 1010                                 | 2410                                         | 2320                                         | 2640                     | 3240                                         | 4390                                 | 1360                                         | 379                                  | 264                                     | 270                                    | 273                                     |
| STATIS'                          | TICS OF M                                    | ONTHLY MI                            | EAN DATA                                     | FOR WATER                                    | YEARS 19                 | 97 - 2002                                    | , BY WATER                           | R YEAR (W                                    | Y)                                   |                                         |                                        |                                         |
| MEAN                             | 1306                                         | 2131                                 | 3935                                         | 3575                                         | 3287                     | 4356                                         | 5040                                 | 3048                                         | 1930                                 | 917                                     | 602                                    | 953                                     |
| MAX                              | 1906                                         | 2530                                 | 5835                                         | 6199                                         | 3934                     | 5562                                         | 7638                                 | 5336                                         | 3122                                 | 1194                                    | 1393                                   | 1413                                    |
| (WY)                             | 2002                                         | 1998                                 | 1997                                         | 1998                                         | 1998                     | 1998                                         | 2001                                 | 2002                                         | 2002                                 | 2000                                    | 2000                                   | 2001                                    |
| MIN                              | 688                                          | 1832                                 | 2578                                         | 2519                                         | 2443                     | 3524                                         | 3135                                 | 1146                                         | 469                                  | 549                                     | 261                                    | 516                                     |
| (WY)                             | 1999                                         | 1999                                 | 1999                                         | 2002                                         | 2000                     | 1999                                         | 1998                                 | 1999                                         | 1999                                 | 2002                                    | 1999                                   | 1998                                    |

e Estimated

## 04247000 ONEIDA RIVER NEAR EUCLID, NY

| SUMMARY STATISTICS                                                                                                                                                                     | FOR 2001 CALENDAR YEAR                                                         | FOR 2002 WATER YEAR                                                               | WATER YEARS 1997 - 2002                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 964996<br>2644<br>9380 Apr 15<br>252 Aug 8<br>293 Aug 8<br>5240<br>2600<br>389 | 1021691<br>2799<br>7280 Apr 17<br>264 Jul 31<br>319 Jul 29<br>5460<br>2870<br>360 | 2552<br>2872 2000<br>1839 1999<br>9380 Apr 15 2001<br>130 Jun 9 1999<br>187 Oct 26 1998<br>5280<br>2350<br>339 |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

#### 04249000 OSWEGO RIVER AT LOCK 7, OSWEGO, NY

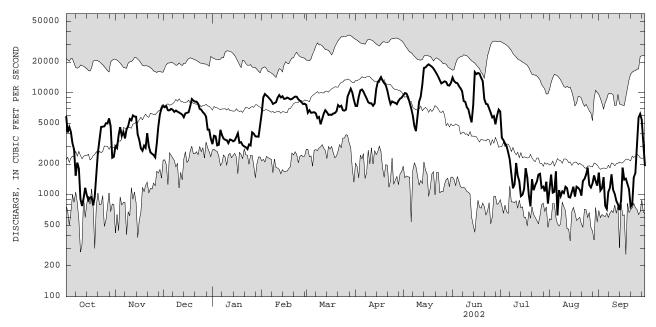
LOCATION.--Lat 43°27'06", long 76°30'20", Oswego County, Hydrologic Unit 04140203, on right bank at New York State Barge Canal (Oswego Canal) Lock 7 in Oswego, 0.8 mi upstream from mouth. DRAINAGE AREA.--5,100 mi².

PERIOD OF RECORD. --October 1900 to April 1906, October 1933 to current year. Monthly discharge only for some periods, published in WSP 1307. Prior to January 1904, published as "above Minetto" or "near Minetto. "January 1904 to April 1906, published as "at Battle Island." Records for April 1897 to September 1900, published in WSP 65 and for October 1927 to September 1928, published in WSP 644, have been found to be unreliable and should not be used. REVISED RECORDS.--WDR NY 78-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 245.12 ft above NGVD of 1929. Prior to 1933, nonrecording gage at site about 6 mi upstream at different datum.

REMARKS.--Records good except those for estimated daily discharges, which are fair. Prior to 1933 and subsequent to 1972, flow in Oswego (Barge) Canal not included. A large amount of natural storage and some artificial regulation is afforded by the and needium flow caused by powerplants upstream from station. Oswego River basin receives water from Erie (Barge) Canal systems in the river basin. Large diurnal fluctuations at low and medium flow caused by powerplants upstream from station. Oswego River basin receives water from Erie (Barge) Canal and medium flow caused by powerplants upstream from station. Oswego River basin receives water from Eric (Barge) Canal through Lock 32 near Pittsford. Water may be diverted into or received from Mohawk River basin through Eric (Barge) Canal between New London and Utica. During part of year, entire flow from 45.5 mi<sup>2</sup> of Mud Creek drainage area may be diverted from Chemung River basin into Keuka Lake in Oswego River basin. Nearly all of the flow from 14 mi<sup>2</sup> of the Tioughnioga River basin may be diverted into De Ruyter Reservoir, in Oswego River basin. Telephone gage-height telemeter at station.

COOPERATION.—Records of lockages at Lock 7 furnished by New York State Thruway Authority, record of elevations of Lake Ontario


by U.S. Army Corps of Engineers, daily discharge records for Oswego River High Dam upstream by Niagara Mohawk Power Corp. EXTREMES FOR PERIOD OF RECORD.—Maximum discharge, 37,500 ft<sup>3</sup>/s, Mar. 28, 1936, includes daily mean discharge of canals; maximum gage height, 13.46 ft, Apr. 10, 1940; minimum discharge (river only), 30 ft<sup>3</sup>/s, Nov. 6, 1944. EXTREMES FOR CURRENT YEAR.—Maximum discharge, 21,600 ft<sup>3</sup>/s, May 17, gage height, 9.75 ft; minimum discharge, 318 ft<sup>3</sup>/s, Sept.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES DAY SEP OCT NOV DEC JAN FEB APR MAY JUN JUL AUG e6550 e1140 e3630 e1580 e3440 e1050 e3200 e1070 e3000 e1700 7 e2600 2070 4380 e2210 e1630 e1110 e970 e1160 e1080 e7220 e1270 e1040 e6880 e2050 e5840 e1540 7870 e1160 e1360 e5140 e950 e970 e940 e1000 e1060 e1200 €1820 e960 e1200 e1480 e980 e1170 e770 e1120 e980 e1420 e7820 €1110 e7740 e1240 e7020 e1340 e6360 e1580 e5740 e1610 e5920 e1170 e4920 e1200 ---e5980 e1080 e6860 e1340 TOTAL MEAN MAX MTN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1934 - 2002, BY WATER YEAR (WY) MEAN MAX (WY) MTN (WY) 

e Estimated

## 04249000 OSWEGO RIVER AT LOCK 7, OSWEGO, NY--Continued

| SUMMARY STATISTICS       | FOR 2001 CALE | NDAR YEAR | FOR 2002 W | ATER YEAR | WATER YEAR | S 1934 - 2002 |
|--------------------------|---------------|-----------|------------|-----------|------------|---------------|
| ANNUAL TOTAL             | 2059631       |           | 2084750    |           |            |               |
| ANNUAL MEAN              | 5643          |           | 5712       |           | 6734       |               |
| HIGHEST ANNUAL MEAN      |               |           |            |           | 11030      | 1976          |
| LOWEST ANNUAL MEAN       |               |           |            |           | 3433       | 1965          |
| HIGHEST DAILY MEAN       | 22700         | Apr 13    | 19100      | May 17    | 37000      | Mar 28 1936   |
| LOWEST DAILY MEAN        | 720           | Jul 25    | 630        | Aug 6     | 261        | Sep 18 1985   |
| ANNUAL SEVEN-DAY MINIMUM | 940           | Oct 10    | 940        | Oct 10    | 697        | Sep 4 1995    |
| 10 PERCENT EXCEEDS       | 13600         |           | 11300      |           | 14300      |               |
| 50 PERCENT EXCEEDS       | 4410          |           | 5560       |           | 5130       |               |
| 90 PERCENT EXCEEDS       | 1100          |           | 1090       |           | 1590       |               |



2002 WATER YEAR DAILY MEAN DISCHARGE (BOLD) WITH DAILY MEDIAN FOR PERIOD OF RECORD. SHADED AREAS SHOW HIGHEST AND LOWEST DAILY MEAN FOR PERIOD OF RECORD THROUGH PREVIOUS WATER YEAR.

# STREAMS TRIBUTARY TO LAKE ONTARIO LAKES AND RESERVOIRS IN STREAMS TRIBUTARY TO LAKE ONTARIO

| 04224000 | MOUNT MORRIS LAKE NEAR MOUNT MORRIS, NY (see station for daily mean elevation, skeleton capacity table, monthly contents, and change in contents). |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 04227980 | CONESUS LAKE NEAR LAKEVILLE, NY (see station for daily mean elevation).                                                                            |
| 04232400 | SENECA LAKE AT WATKINS GLEN, NY (see station for daily mean elevation).                                                                            |
| 04233500 | CAYUGA INLET (CAYUGA LAKE) AT ITHACA, NY (see station for daily mean elevation).                                                                   |
| 04234500 | CANANDAIGUA LAKE AT CANANDAIGUA, NY (see station for daily mean elevation).                                                                        |
| 04235396 | OWASCO LAKE NEAR AUBURN, NY (see station for daily elevation).                                                                                     |
| 04240495 | ONONDAGA LAKE AT LIVERPOOL, NY (see station for daily mean elevation).                                                                             |
| 04246000 | ONEIDA LAKE AT BREWERTON, NY (see station for daily mean elevation).                                                                               |

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or floodflow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records collected at crest-stage partial-record stations are presented in the following table. Discharge measurements made at low-flow partial-record sites and at miscellaneous sites and for special studies are given in separate tables.

#### Crest-stage partial-record stations

The following table contains annual maximum discharges for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain, but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

|                                                      | Maximum discha                                                                                                                                                                                                                                                                                                                                    | .go ar erest stag   | •         |              | 2 maximum  | Perio              | od of reco     | ord maximum       |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|--------------|------------|--------------------|----------------|-------------------|
| Station name and                                     | Location and                                                                                                                                                                                                                                                                                                                                      | Period of           | Date      | Gag<br>heigl | e Dis-     | Date               | Gag<br>heig    | _                 |
| number                                               | drainage area                                                                                                                                                                                                                                                                                                                                     | record              |           | (ft)         | $(ft^3/s)$ |                    | (ft            | $(ft^3/s)$        |
|                                                      | SUSQ                                                                                                                                                                                                                                                                                                                                              | UEHANNA RIY         | VER BASIN |              |            |                    |                |                   |
| Little Elk Creek<br>near Westford, NY<br>(01497805)  | Lat 42°38'01", long 74°47'45",<br>Otsego County, Hydrologic Unit<br>02050101, at culvert on Green-<br>bush Road, 1.2 mi south of<br>Westford, and 2.2 mi upstream<br>from mouth. Elevation of gage is<br>1,520 feet above NGVD of 1929,<br>from topographic map. Drainage<br>area is 3.73 mi <sup>2</sup> .                                       | 1978-02             | 3-27-02   | 15.72        | 87         | 1-19-96            | 19.92          | 278               |
| Susquehanna River<br>at Unadilla, NY<br>(01500500)   | Lat 42°19'17", long 75°19'01", Otsego County, Hydrologic Unit 02050101, on right bank 25 ft downstream from bridge on Bridge Street at Unadilla, 1.0 mi upstream from Carrs Creek, and 1.6 mi downstream from Ouleout Creek. Datum of gage is 997.25 ft above NGVD of 1929 (Corps of Engineers benchmark). Drainage area is 982 mi <sup>2</sup> . | 1938-95‡<br>1996-02 | 3-27-02   | 9.56         | 10,700     | 3-18-36<br>3-14-77 | 16.6<br>14.64  | j31,300<br>23,500 |
| Susquehanna River<br>at Bainbridge, NY<br>(01502632) | Lat 42°17'29", long 75°28'36",<br>Chenango County, Hydrologic<br>Unit 02050101, on right bank at<br>the downstream side of bridge on<br>State Highway 206 over the<br>Susquehanna River, at Bainbridge.<br>Datum of gage is 956.55 ft above<br>NGVD of 1929. Drainage area is<br>1,610 mi <sup>2</sup> .                                          | 1988-02             | 3-27-02   | 13.42        | 18,700     | 3-31-93<br>1-20-96 | 20.17<br>21.04 | 36,600<br>a       |
| Susquehanna River<br>at Windsor, NY<br>(01502731)    | Lat 42°04'28", long 75°38'17",<br>Broome County, Hydrologic<br>Unit 02050101, on right bank at<br>downstream side of bridge on<br>County Highway 315 over the<br>Susquehanna River, at Windsor.<br>Datum of gage is 900.00 ft above<br>NGVD of 1929. Drainage area is<br>1,820 mi <sup>2</sup> .                                                  | 1988-02             | 3-27-02   | 13.48        | 20,100     | 1-20-96            | a21.22         | e40,000           |

- ‡ Operated as a continuous-record gaging station.
- a Ice jam.
- e Estimated.
- j From U. S. Army Corps of Engineers.

|                                                                   | Maximum discharge at cre                                                                                                                                                                                                                                                                                                          | <i>U</i> 1           |           |                | maximum        | Perio                         | od of reco              | ord maximum            |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------|----------------|----------------|-------------------------------|-------------------------|------------------------|
| Station name and                                                  | Location and                                                                                                                                                                                                                                                                                                                      | Period<br>of         | Date      | Gage<br>height | Dis-<br>charge | Date                          | Ga<br>hei               | _                      |
| number                                                            | drainage area                                                                                                                                                                                                                                                                                                                     | record               |           | (ft)           | $(ft^3/s)$     |                               | (f                      | t) $(ft^3/s)$          |
|                                                                   | SUSQUEHAN                                                                                                                                                                                                                                                                                                                         | NA RIVER E           | BASINCont | inued          |                |                               |                         |                        |
| Chenango River at<br>Eaton, NY<br>(01503980)                      | Lat 42°51'02", long 75°36'21", Madison County, Hydrologic Unit 02050102, at bridge on Landon Road at Eaton, 0.1 mi upstream from Eaton Brook, and 0.1 mi downstream from State Highway 26. Elevation of gage is 1,180 ft above mean NGVD of 1929, from topographic map. Drainage area is 24.3 mi <sup>2</sup> .                   | 1964-65,<br>1967-01  | 5-14-02   | 6.47           | 382            | 3- 6-64<br>1-19-96            | 8.12<br>8.51            | 2,350<br>a             |
| Chenango River at<br>Sherburne, NY<br>(01505000)                  | Lat 42°40'43", long 75°30'39",<br>Chenango County, Hydrologic<br>Unit 02050102, on right bank<br>20 ft downstream from bridge<br>on State Highway 80, 0.5 mi<br>west of Sherburne, and 0.5 mi<br>downstream from Handsome<br>Brook. Datum of gage is<br>1,037.16 ft above NGVD of 1929.<br>Drainage area is 263 mi <sup>2</sup> . | 1938-95‡,<br>1996-02 | 5-14-02   | 7.13           | 2,350          | 3-18-36<br>3- 6-79<br>1-19-96 | k10.60<br>9.94<br>10.47 | e12,500<br>10,400<br>a |
| Chenango River<br>at Greene, NY<br>(01507000)                     | Lat 42°19'28", long 75°46'18",<br>Chenango County, Hydrologic<br>Unit 02050102, on left bank<br>0.3 mi downstream from bridge<br>on State Highway 206 at Greene,<br>and 0.6 mi downstream from<br>Birdsall Brook. Datum of gage is<br>892.58 ft above NGVD of 1929.<br>Drainage area is 593 mi <sup>2</sup> .                     | 1937-70‡,<br>1971-02 | 6- 6-02   | 10.81          | 6,580          | 12-31-42                      | 18.33                   | 18,900                 |
| Tioughnioga River<br>at Lisle, NY<br>(01509520)                   | Lat 42°20'58", long 75°59'58",<br>Broome County, Hydrologic<br>Unit 02050102, on left bank<br>50 ft downstream from bridge<br>on State Highway 79, at Lisle,<br>and 2.3 mi upstream from<br>Otselic River. Datum of gage is<br>956.52 ft above NGVD of 1929.<br>Drainage area is 453 mi <sup>2</sup> .                            | 1988-02              | 2- 1-02   | 5.51           | 5,860          | 1-19-96<br>1-20-96            | 10.50                   | a<br>e12,900           |
| Merrill Creek<br>tributary near<br>Texas Valley, NY<br>(01510610) | Lat 42°28'03", long 75°59'19",<br>Cortland County, Hydrologic Unit<br>02050102, at bridge on town<br>road, 0.3 mi upstream from mouth,<br>and 1.4 mi southwest of Texas Valley.<br>Elevation of gage is 1,150 ft above<br>NGVD of 1929, from topographic map<br>Drainage area is 5.32 mi <sup>2</sup> .                           | 1976-81,<br>1983-02  | 4-15-02   | 1.33           | 310            | 1-19-96                       | a6.64                   | e1,150                 |
| Tioughnioga River<br>at Itaska, NY<br>(01511500)                  | Lat 42°17'53", long 75°54'33",<br>Broome County, Hydrologic<br>Unit 02050102, on right bank<br>at Itaska, 3.8 mi downstream<br>from Otselic River and village<br>of Whitney Point, and 6.0 mi up-<br>stream from mouth. Datum of gage<br>is 917.97 ft above NGVD of 1929.<br>Drainage area is 730 mi <sup>2</sup> .               | 1930-67‡,<br>1968-02 | 6-16-02   | 6.75           | 7,500          | 7- 8-35<br>2-26-61            | i16.61<br>11.15         | m61,100<br>22,600      |

<sup>‡</sup> Operated as a continuous-record gaging station. a Ice jam.

e Estimated.

i From floodmark.

k From National Weather Service.

m Prior to current degree of regulation.

|                                                  |                                                                                                                                                                                                                                                                                                                                         |                                           | Water                                                                       | year 200                         | 2 maximur                                                         |                                |                            | rd maximum                   |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------|--------------------------------|----------------------------|------------------------------|
| Station name                                     | Location                                                                                                                                                                                                                                                                                                                                | Period                                    |                                                                             | Gag                              |                                                                   |                                | Gag                        | -                            |
| and                                              | and                                                                                                                                                                                                                                                                                                                                     | of                                        | Date                                                                        | heig                             |                                                                   |                                |                            |                              |
| number                                           | drainage area                                                                                                                                                                                                                                                                                                                           | record                                    |                                                                             | (ft)                             | $(ft^3/s)$                                                        | )                              | (ft                        | $) \qquad (ft^3/s)$          |
|                                                  | SUSQUEHA                                                                                                                                                                                                                                                                                                                                | NNA RIVER                                 | BASINCont                                                                   | inued                            |                                                                   |                                |                            |                              |
| Susquehanna River<br>at Vestal, NY<br>(01513500) | Lat 42°05'27", long 76°03'23", Broome County, Hydrologic Unit 02050103, on left bank 400 ft downstream from highway bridge, at Vestal, and 800 ft upstream from Choconut Creek. Datum of gage is 799.19 ft above NGVD of 1929 (levels of U. S. Army Corps of Engineers). Drainage area is 3,941 mi <sup>2</sup> .                       | 1936,<br>1937-67‡,<br>1968-72,<br>1974-02 | 3-27-02                                                                     | 17.09                            | 35,800                                                            | e3-18-36                       | e30.50                     | 107,000                      |
| Susquehanna River<br>at Owego, NY<br>(01513831)  | Lat 42°05'50", long 76°16'06", Tioga County, Hydrologic Unit 02050103, on right bank in pumphouse for village sewage treatment plant, 0.4 mi downstream from bridge on State Highway 96, at Owego. Datum of gage is 776.64 ft above NGVD of 1929. Drainage area is 4,216 mi <sup>2</sup> .                                              | 1988-96,<br>1999-02                       | 3-27-02                                                                     | 23.49                            | 34,100                                                            | 3-18-36<br>1-20-96             | 32.97                      | 107,000<br>81,400            |
| Owego Creek near<br>Owego, NY<br>(01514000)      | Lat 42°07'45", long 76°16'15",<br>Tioga County, Hydrologic Unit<br>02050103, on right bank of<br>right channel 300 ft upstream<br>from bridge on State Highway<br>96, 0.5 mi upstream from<br>Catatonk Creek, and 1.5 mi<br>north of Owego. Datum of gage<br>is 819.82 ft above NGVD of 1929.<br>Drainage area is 185 mi <sup>2</sup> . | 1930-78‡,<br>1979-02                      | 6-16-02                                                                     | 5.79                             | 3,830                                                             | 7- 8-35<br>1-19-96             | i11.50<br>11.66            | 23,500<br>a                  |
| Catatonk Creek<br>near Owego, NY<br>(01514801)   | Lat 42°08'18", long 76°17'23", Tioga County, Hydrologic Unit 02050103, on right bank 0.4 mi downstream from bridge on County Highway 23, 1.4 mi north of Owego, and 1.2 mi upstream from mouth. Elevation of gage is 810 ft above NGVD of 1929, from topographic map. Drainage area is 151 mi <sup>2</sup> .                            | 1988-02                                   | 3-26-02<br>11- 2-94<br>12- 2-96<br>1- 8-98<br>1-24-99<br>2-28-00<br>6-23-01 | 10.89<br>10.33<br>11.61<br>10.00 | 2,700<br>R2,150<br>R4,890<br>R4,360<br>R5,620<br>R4,060<br>R3,650 | 1-20-96                        | 14.83                      | 9,740                        |
| Fioga River<br>near Lindley, NY<br>(01520500)    | Lat 42°01'43", long 77°07'57",<br>Steuben County, Hydrologic<br>Unit 02050104, on left bank just<br>downstream from bridge on<br>County Highway 120 at Lindley,<br>and 6 mi upstream from Canisteo<br>River. Datum of gage is 964.50 ft<br>above NGVD of 1929. Drainage<br>area is 771 mi <sup>2</sup> .                                | 1930-95‡<br>1996-02                       | 6- 8-02                                                                     | 12.60                            | 11,500                                                            | 6-23-72<br>10-23-90<br>8-18-94 | i26.27 r<br>13.37<br>13.38 | n128,000<br>13,900<br>13,900 |

<sup>†</sup> Operated as a continuous-record gaging station.
a Ice jam.
e Estimated.
g None available.
i From floodmark.
m Prior to current degree of regulation.

R Revised.

|                                                     |                                                                                                                                                                                                                                                                                                                                                                             |                                               | -                                                                                                                                                                                                                                                                                               | •                                         | maximum                                                                                                                          | Perio              |                | rd maximum |
|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|------------|
| Station name and                                    | Location and                                                                                                                                                                                                                                                                                                                                                                | Period<br>of                                  | Date                                                                                                                                                                                                                                                                                            | Gage<br>heigh                             |                                                                                                                                  | Date               | Gag<br>heig    | •          |
| number                                              | drainage area                                                                                                                                                                                                                                                                                                                                                               | record                                        |                                                                                                                                                                                                                                                                                                 | (ft)                                      | $(ft^3/s)$                                                                                                                       |                    | (ft)           | $(ft^3/s)$ |
|                                                     | SUSQUEHAN                                                                                                                                                                                                                                                                                                                                                                   | NNA RIVER                                     | BASINCor                                                                                                                                                                                                                                                                                        | ntinued                                   |                                                                                                                                  |                    |                |            |
| Big Creek<br>near Howard, NY<br>(01521596)          | Lat 42°22'01", long 77°34'33", Steuben County, Hydrologic Unit 02050104, at culvert on town road, 0.1 mi south of State Highway 70, 1.3 mi north of Butcher Corner, 3.4 mi west of Howard, and 6.2 miupstream from mouth. Elevation of gage is 810 ft above NGVD of 1929, from topographic map. Drainage area is 151 mi <sup>2</sup> .                                      | 1977-02                                       | 6-27-02<br>9-25-77<br>1-26-78<br>3- 5-79<br>11-26-79<br>6-30-81<br>10-28-81<br>12-25-82<br>5-13-84<br>2-23-85<br>1-20-86<br>9-13-87<br>7-21-88<br>6-21-89<br>2-16-90<br>10-13-90<br>9-22-92<br>4-17-93<br>6-14-94<br>1-20-95<br>1-19-96<br>11- 8-96<br>1- 8-98<br>1-24-99<br>8- 1-00<br>4- 8-01 | 14.15<br>14.17<br>13.55<br>14.36<br>14.04 | 1,100 R392 R407 R117 R103 R228 R247 c R143 c R143 c R133 R490 R177 te1,000 Re120 Re380 542 347 612 497 e1,600 416 408 e200 379 c | 1-19-96            | 16.23          | Re1,600    |
| Canacadea Creek at<br>Alfred, NY<br>(01522075)      | Lat 42°15'13", long 77°47'24",<br>Steuben County, Hydrologic<br>Unit 02050104, at culvert off<br>Saxon Road, on Alfred<br>University campus, at<br>Alfred. Elevation of gage is<br>1720 ft above NGVD of 1929,<br>from topographic map. Drainage<br>area is 1.28 mi <sup>2</sup> .                                                                                          | 1999-02                                       | 5-13-02                                                                                                                                                                                                                                                                                         | 2.41                                      | 123                                                                                                                              | 6-14-00            | 2.58           | 160        |
| Canisteo River at<br>West Cameron, NY<br>(01525500) | Lat 42°13'20", long 77°25'05",<br>Steuben County, Hydrologic<br>Unit 02050104, on right bank<br>250 ft downstream from bridge<br>on County Highway 119, 0.3 mi<br>southeast of West Cameron, and<br>1.7 mi north of Cameron.<br>Datum of gage is 1,037 ft above<br>NGVD of 1929, (levels from Corps<br>of Engineers, datum 1912). Drainage<br>area is 340 mi <sup>2</sup> . | 1930-31‡,<br>1937-70‡,<br>1971-72,<br>1974-02 | 4-15-02                                                                                                                                                                                                                                                                                         | 10.00                                     | 4,690                                                                                                                            | 6-23-72            | 23.48          | 43,000     |
| Cohocton River at<br>Bath, NY<br>(01528320)         | Lat 42°20'36", long 77°20'39",<br>Steuben County, Hydrologic Unit<br>02050104, on left bank 150 ft<br>upstream from bridge on Veterans<br>Avenue at Bath, and 0.6 mi down-<br>stream from Harrisburg Hollow<br>Creek. Datum of gage is 1,100.00 ft<br>above NGVD of 1929. Drainage<br>area is 316 mi <sup>2</sup> .                                                         | 1988-96,<br>1999-02                           | 6-27-02                                                                                                                                                                                                                                                                                         | 7.73                                      | 3,940                                                                                                                            | 4- 1-93<br>1-23-99 | 10.18<br>10.70 | 7,000<br>a |

<sup>‡</sup> Operated as a continuous-record gaging station.

a Ice jam.
c Discharge not determined.
e Estimated.
f Backwater.

R Revised.

 $<sup>&</sup>lt; \ Less \ than.$ 

|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | Water               |                 | 2 maximum  | Perio              |             | ord maximur     |
|------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------|-----------------|------------|--------------------|-------------|-----------------|
| Station name and                                           | Location and                                                                                                                                                                                                                                                                                                                                                                                        | Period<br>of                                          | Date                | Gag<br>heigl    |            | Date               | Gaş<br>heig | _               |
| number                                                     | drainage area                                                                                                                                                                                                                                                                                                                                                                                       | record                                                |                     | (ft)            | $(ft^3/s)$ |                    | (ft         | $(ft^3/s)$      |
|                                                            | SUSQUEHA                                                                                                                                                                                                                                                                                                                                                                                            | NNA RIVER I                                           | BASINCon            | tinued          |            |                    |             |                 |
| Cuthrie Run near<br>Big Flats, NY<br>(01530301)            | Lat 42°10'43", long 75°55'32",<br>Chemung County, Hydrologic<br>Unit 02050105, at culvert on<br>Breed Hollow Road, 0.9 mi<br>north of intersection of Eacher<br>Hollow Road and Breed Hollow<br>Road, 2.3 mi north of State<br>Highway 17, and 3.0 mi north<br>of Big Flats. Elevation of gage<br>is 925 ft above NGVD of 1929,<br>from topographic map. Drainage<br>area is 5.39 mi <sup>2</sup> . | 1976,<br>1979-81,<br>1983-02                          | 6-16-02             | 15.90           | 441        | 6-19-76            | 18.52       | 800             |
| Chemung River at<br>Elmira, NY<br>(01530332)               | Lat 42°05'11", long 76°48'05",<br>Chemung County, Hydrologic<br>Unit 02050105, on right bank<br>350 ft upstream from bridge<br>on Pennsylvania Avenue at the<br>north end of George Place,<br>1.0 mi downstream from<br>Hoffman Brook, at Elmira.<br>Datum of gage is 833.65 ft<br>above NGVD of 1929.<br>Drainage area is 2,162 mi <sup>2</sup> .                                                  | 1988-02                                               | 5-14-02             | 8.16            | 18,300     | 1-20-96            | i18.51      | e71,000         |
|                                                            | ALL                                                                                                                                                                                                                                                                                                                                                                                                 | EGHENY RIV                                            | ER BASIN            |                 |            |                    |             |                 |
| schua Creek<br>tributary near<br>Machias, NY<br>(03010734) | Lat 42°24'28", long 78°31'33",<br>Cattaraugus County, Hydrologic<br>Unit 05010001, at culvert on<br>Very Road, 0.2 mi upstream from<br>mouth, 0.7 mi north of State<br>Highway 242, and 1.5 mi west of<br>Machias. Elevation of gage is<br>1,680 ft above NGVD of 1929,<br>from topographic map.<br>Drainage area is 5.12 mi <sup>2</sup> .                                                         | 1978-81,<br>1983-02                                   | 2- 1-02             | 9.14            | 147        | 9-14-79            | 10.59       | 570             |
| Ball Creek at<br>Stow, NY<br>(03013800)                    | Lat 42°09'13", long 79°24'27",<br>Chautauqua County, Hydrologic<br>Unit 05010002, on left bank 75<br>ft upstream from bridge on State<br>Highway 394 at Stow, and 0.4 mi<br>upstream from mouth. Elevation<br>of gage is 1,330 ft above NGVD<br>of 1929, from topographic map.<br>Drainage area is 9.58 mi <sup>2</sup> .                                                                           | 1955-64\$,<br>1965,<br>1967-68b,<br>1974‡,<br>1975-02 | 2- 1-02<br>5- 15-02 | 14.98<br>f15.22 | e665<br>c  | 9-14-79            | 21.88       | 2,000           |
|                                                            | STREAMS                                                                                                                                                                                                                                                                                                                                                                                             | TRIBUTARY                                             | TO LAKE E           | ERIE            |            |                    |             |                 |
| Canadaway Creek at<br>Fredonia, NY<br>(04213376)           | Lat 42°27'02", long 79°21'03", Chautauqua County, Hydrologic Unit 04120101, at bridge on Van Buren Road (Matteson Street), 0.8 mi northwest of Fredonia corporate boundary, and 1.2 mi upstream from Beaver Creek. Elevation of gage is 650 ft above NGVD of 1929, from topographic map. Drainage area is 32.9 mi².                                                                                 | 1962-63b,<br>1987-02                                  | 2- 1-02             | 5.64            | 2,790      | 5-19-97<br>8- 7-79 | 9.50        | 6,690<br>12,000 |

- † Operated as a continuous-record gaging station.
   § Operated as a low-flow partial-record station.
   b Miscellaneous measurements made.

- c Discharge not determined.
- e Estimated.
- f Backwater.
- i From floodmark.

|                                                                                 |                                                                                                                                                                                                                                                                                                                                                                  |                                                |       | Water y | ear 2002 r     | naximum        | Perio              | d of record    | maximum        |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|---------|----------------|----------------|--------------------|----------------|----------------|
| Station name and                                                                | Location and                                                                                                                                                                                                                                                                                                                                                     | Period<br>of                                   |       | Date    | Gage<br>height | Dis-<br>charge | Date               | Gage<br>height | Dis-<br>charge |
| number                                                                          | drainage area                                                                                                                                                                                                                                                                                                                                                    | record                                         |       |         | (ft)           | $(ft^3/s)$     |                    | (ft)           | $(ft^3/s)$     |
|                                                                                 | STREAMS TRI                                                                                                                                                                                                                                                                                                                                                      | BUTARY TO                                      | ) NIA | GARA 1  | RIVER          |                |                    |                |                |
| Delaware Park Lake<br>at Buffalo, NY<br>(04216212)                              | Lat 42°56'03", long 78°52'28",<br>Erie County, Hydrologic Unit<br>04120104, on north shore of<br>Delaware Park Lake at down-<br>stream side of bridge on<br>Scajaquada Expressway (SH 198),<br>and 1.7 mi upstream from mouth of<br>Scajaquada Creek. Datum of gage is<br>570.00 ft IGLD (levels by Corp of<br>Engineers). Drainage area is 1.14 mi <sup>2</sup> | 1985-02                                        | 2- 1  | -02     | 7.44           | d              | 6-22-87            | 12.48          | d              |
| Scajaquada Creek<br>below Delaware<br>Park Lake at<br>Buffalo, NY<br>(04216214) | Lat 42°56'15", long 78°53'07",<br>Erie County, Hydrologic Unit<br>04120104, on left bank, 400 ft<br>east of Grant Street (North) exit<br>from Scajaquada Expressway<br>(SH 198), at Buffalo. Datum of<br>of gage is 570.00 ft IGLD<br>(levels by Corps of Engineers).<br>Drainage area is 25.7 mi <sup>2</sup> .                                                 | 1985-02                                        | 2- 1  | -02     | f6.76          | d              | 6-22-87            | 11.20          | d              |
| Little Tonawanda Creat Linden, NY<br>(04216500)                                 | ek Lat 42°52'37", long 78°09'48", Genesee County, Hydrologic Unit 04120104, on right bank at upstream side of bridge on, County Highway 13A (Depot Road) in Linden and 9.3 mi upstream from mouth. Datum of gage is 1,081.62 ft above NGVD of 1929. Drainage area is 22.1 mi <sup>2</sup> .                                                                      | 1913-68‡,<br>1970-72‡,<br>1977-92‡,<br>1993-02 | 2- 1  | -02     | 8.88           | 1,240          | 6-23-89            | i16.99         | 2,900          |
|                                                                                 | STREAMS TRI                                                                                                                                                                                                                                                                                                                                                      | BUTARY TO                                      | ) LAF | KE ONT  | ARIO           |                |                    |                |                |
| Johnson Creek near<br>Lyndonville, NY<br>(04219900)                             | Lat 43°20'21", long 78°20'55",<br>Orleans County, Hydrologic Unit<br>04130001, at bridge on<br>Woodworth Road, 3.3 mi down-<br>stream from dam at Lyndonville,<br>and 4.4 mi upstream from mouth.<br>Elevation of gage is 260 ft above<br>NGVD of 1929, from topographic<br>map. Drainage area is 95.1 mi <sup>2</sup> .                                         | 1962-70,<br>1972-73,<br>1976-02                | 5-14  | 1-02    | 5.90           | 1,360          | 2-17-54<br>3-12-62 | 10.29          | 5,430<br>3,540 |
| West Creek near<br>Hilton, NY<br>(04220250)                                     | Lat 43°18'10", long 77°48'50",<br>Monroe County, Hydrologic Unit<br>04130001, on right bank just<br>downstream from bridge on Collamer<br>Road, 0.5 mi north of Collamer, and<br>1.5 mi northwest of Hilton. Datum<br>of gage is 261.53 ft above NGVD<br>of 1929. Drainage area is 31.0 mi <sup>2</sup> .                                                        | 1958-64‡,<br>1971-72,<br>1986-02               | 4-13  | 3-02    | 4.81           | 186            | 3-30-60            | 10.67          | 1,480          |
| Stony Brook<br>tributary at South<br>Dansville, NY<br>(04224807)                | Lat 42°28'16", long 77°40'21" Steuben County, Hydrologic Unit 04130002, at culvert on Willey Road, 0.6 mi upstream from mouth, and 0.9 mi west of South Dansville. Elevation of gage is 1,400 ft above NGVD of 1929, from topographic map Drainage area is 3.15 mi <sup>2</sup> .                                                                                | 1977-82,<br>1984-91,<br>1996-02                | 5-13  | 3-02    | 8.42           | 27             | 8- 3-81            | 15.89          | 790            |

Operated as a continuous-record gaging station.
 No stage-discharge relationship defined at this site.
 Backwater.

g None available.
i From floodmark.

|                                                       |                                                                                                                                                                                                                                                                                                                                                                          |                                                             | Water    | year 2002              | maximum | Perio                         | d of record           | d maximum          |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------|------------------------|---------|-------------------------------|-----------------------|--------------------|--|--|--|
| Station name<br>and<br>number                         | Location<br>and<br>drainage area                                                                                                                                                                                                                                                                                                                                         | Period<br>of<br>record                                      | Date     | Gage<br>height<br>(ft) |         |                               | Gage<br>heigh<br>(ft) |                    |  |  |  |
|                                                       | dramage area                                                                                                                                                                                                                                                                                                                                                             | (4)                                                         |          |                        |         |                               |                       |                    |  |  |  |
|                                                       | STREAMS TRIBUTA                                                                                                                                                                                                                                                                                                                                                          | ARY TO LAK                                                  | E ONTARI | OContinu               | ed      |                               |                       |                    |  |  |  |
| Bear Creek at<br>Ontario, NY<br>(042320578)           | Lat 43°13'30", long 77°17'00",<br>Wayne County, Hydrologic Unit<br>04140101, at culvert on New<br>Street in Ontario, 100 ft west<br>of Furnaceville Road, and 4.0 mi<br>upstream from mouth. Elevation of<br>gage is 420 ft above NGVD of 1929,<br>from topographic map. Drainage area<br>is 6.74 mi <sup>2</sup> .                                                      | 1971-73,<br>1975-02                                         | 2- 1-02  | 11.84                  | 83      | 1- 8-98                       | 13.38                 | 238                |  |  |  |
| Catharine Creek at<br>Montour Falls, NY<br>(04232200) | Lat 42°19'42", long 76°50'39",<br>Schuyler County, Hydrologic Unit<br>04140201, on left bank 12 ft<br>downstream from bridge on<br>Town Road, 0.4 mi south of<br>village line of Montour Falls,<br>and 0.6 mi upstream from<br>diversion channel. Elevation of<br>gage is 490 ft above NGVD of 1929,<br>from topographic map. Drainage area<br>is 41.1 mi <sup>2</sup> . | 1957-62\$,<br>1964-66\$,<br>1970\$,<br>1976-77‡,<br>1987-02 | 6-27-02  | 5.64                   | 865     | 11- 8-96                      | 8.48                  | e4,700             |  |  |  |
| Kendig Creek near<br>MacDougall, NY<br>(04232630)     | Lat 42°50'57", long 76°53'33",<br>Seneca County, Hydrologic Unit<br>04140201, at downstream side<br>of bridge on County Highway 120,<br>3.0 mi north of MacDougall, 3.5<br>mi southwest of Waterloo, and<br>4.6 mi upstream from mouth.<br>Elevation of gage is 530 ft above<br>NGVD of 1929, from topographic<br>map. Drainage area is 13.8 mi <sup>2</sup> .           | 1966-02                                                     | 4-15-02  | 13.93                  | 351     | 7-31-92<br>3-15-78            | n6.32<br>n6.72        | 1,000<br>c         |  |  |  |
| Cayuga Inlet at<br>Ithaca, NY<br>(04233255)           | Lat 42°25'38", long 76°31'19", Tompkins County, Hydrologic Unit 04140201, on upstream abutment face of flood-control weir, at east end of Burtt Place, south of Ithaca city line, 0.3 mi east of State Highway 13a, 0.9 mi downstream from Buttermilk Creek, and 2.4 mi upstream from mouth. Datum of gage is 379.97 ft above NGVD of 1929. Drainage area is 86.7 mi².   | 1971-72,<br>1975-02                                         | 5-14-02  | 8.74                   | 2,680   | 1-19-96                       | 14.67                 | 12,500             |  |  |  |
| Coy Glen Creek at<br>Ithaca, NY<br>(04233258)         | Lat 42°25'45", long 76°31'18",<br>Tompkins County, Hydrologic<br>Unit 04140201, on right bank<br>at double drop structure 200 ft<br>upstream from mouth at Ithaca.<br>Datum of gage is 380.00 ft above<br>NGVD of 1929. Drainage area is 3.56                                                                                                                            | 1983-02<br>mi <sup>2</sup> .                                | 5-14-02  | 19.33                  | 241     | 1-19-96                       | 22.23                 | 820                |  |  |  |
| Schaeffer Creek near<br>Canandaigua, NY<br>(04234138) | Lat 42°54'25", long 77°22'14",<br>Ontario County, Hydrologic<br>Unit 04140201, at culvert on<br>McCann Road, 0.8 mi upstream<br>from Mud Creek, 1.7 mi north<br>of U.S. Highway 20, and 3.2 mi<br>west of Canandaigua. Elevation<br>of gage is 860 ft above NGVD of<br>1929, from topographic map.<br>Drainage area is 7.84 mi <sup>2</sup> .                            | 1980-02                                                     | 2- 1-02  | <10.81                 | С       | 3- 5-79<br>4-11-90<br>1- 8-98 | g<br>12.88<br>12.88   | e520<br>336<br>336 |  |  |  |

 <sup>†</sup> Operated as a continuous-record gaging station.
 § Operated as a low-flow partial-record station.
 e Estimated.
 c Discharge not determined.
 g None available.
 n Datum prior to Oct. 1991.
 < Less than</li>

<sup>&</sup>lt; Less than.

|                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |                                   | Water    | year 2002 m    | aximum         | Perio              | d of record    | maximum         |
|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------|----------------|----------------|--------------------|----------------|-----------------|
| Station name<br>and                                               | Location<br>and                                                                                                                                                                                                                                                                                                                                                                                | Period<br>of                      | Date     | Gage<br>height | Dis-<br>charge |                    | Gage<br>height | Dis-<br>charge  |
| number                                                            | drainage area                                                                                                                                                                                                                                                                                                                                                                                  | record                            |          | (ft)           | $(ft^3/s)$     |                    | (ft)           | $(ft^3/s)$      |
|                                                                   | STREAMS TRIBUT                                                                                                                                                                                                                                                                                                                                                                                 | ARY TO LAK                        | E ONTARI | IOContinue     | d              |                    |                |                 |
| Mud Creek at<br>East Victor, NY<br>(04234200)                     | Lat 42°58'28", long 77°22'58",<br>Ontario County, Hydrologic Unit<br>04140201, on left bank, 25 ft down-<br>stream from bridge on State<br>Highway 96 at East Victor, 0.3 mi<br>upstream from Fish Creek, and 0.5<br>mi upstream from mouth. Elevation<br>of gage is 580 ft above NGVD of<br>1929, from topographic map.<br>Drainage area is 64.2 mi <sup>2</sup> .                            | 1958-68‡,<br>1972,<br>1976-02     | 2- 1-02  | 5.33           | 944            | 6-22-72<br>4-21-91 | 7.85<br>7.22   | 1,800<br>1,880  |
| Canandaigua Outlet<br>tributary near<br>Alloway, NY<br>(04235255) | Lat 43°00'21", long 77°00'54",<br>Ontario County, Hydrologic Unit<br>04140201, at bridge on Pre-<br>Emption Road, 0.5 mi south of<br>Wayne-Ontario County line,<br>1.8 mi southwest of Alloway,<br>and 2.9 mi upstream from mouth.<br>Elevation of gage is 490 ft above<br>NGVD of 1929, from topographic<br>map. Drainage area is 2.94 mi <sup>2</sup> .                                      | 1978-02                           | 5-30-02  | 8.39           | 155            | 5-30-02            | 8.39           | 155             |
| Butternut Creek near<br>Jamesville, NY<br>(04245200)              | Lat 42°56'02", long 76°03'44",<br>Onondaga County, Hydrologic Unit<br>04140202, on left bank, 15 ft down-<br>stream from bridge on Walberger<br>Road, 125 ft downstream from<br>tributary from Stebbins Gulf,<br>2.2 mi upstream from Jamesville<br>Reservoir, and 4.0 mi south of<br>Jamesville. Datum of gage is<br>717.93 ft above NGVD of 1929.<br>Drainage area is 32.2 mi <sup>2</sup> . | 1955-58b,<br>1958-99‡,<br>2000-02 | 5-28-02  | 8.53           | 709            | 7- 3-74<br>1-19-96 | 7.84<br>a9.20  | 2,820<br>e1,850 |
| Scriba Creek near<br>Constantia, NY<br>(04245840)                 | Lat 43°15'35" long 76°00'11", Oswego County, Hydrologic Unit 04140202, on right bank, 8 ft upstream from bridge on Cemetery Road, and about 0.8 mi north of village of Constantia. Elevation of gage is 410 ft above NGVD of 1929, from topographic map. Drainage area is 38.4 mi <sup>2</sup> .                                                                                               | 1966-68‡,<br>1969,<br>1971-02     | 5-14-02  | 5.16           | 673            | 9-26-75<br>6-22-72 | 7.33<br>7.42   | 1,310<br>1,200  |
| Catfish Creek at<br>New Haven, NY<br>(04249050)                   | Lat 43°29'00", long 76°19'34",<br>Oswego County, Hydrologic Unit<br>04140102, at bridge on State<br>Highway 104B, at New Haven,<br>and 1.4 mi upstream from mouth.<br>Elevation of gage is 350 ft above<br>NGVD of 1929, from topographic<br>map. Drainage area is 31.7 mi <sup>2</sup> .                                                                                                      | 1962-66,<br>1968-02               | 5-14-02  | 4.72           | 329            | 3-18-73            | 7.85           | 1,350           |

Operated as a continuous-record gaging station.
 Ice jam.
 Miscellaneous measurements made.

e Estimated.

Discharge measurements made at miscellaneous sites during water year 2002

|                                                                |              |                                                                                                                                                                                                                                                            | ъ.                                     | Measured                       | Mea     | surements                      |
|----------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|---------|--------------------------------|
| Stream                                                         | Tributary to | Location                                                                                                                                                                                                                                                   | Drainage<br>area<br>(mi <sup>2</sup> ) | previously<br>(water<br>years) | Date    | Discharge (ft <sup>3</sup> /s) |
|                                                                |              | STREAMS TRIBUTARY TO LA                                                                                                                                                                                                                                    | AKE ONTARIO                            |                                |         |                                |
| 0423201765<br>Irondequoit Cr<br>at Cheese Fact<br>near Mendon, | tory Rd.     | Lat 42°58'32", long 77°31'47",<br>Cayuga County, Hydrologic<br>Unit 04140201, about 2,100 ft<br>upstream of the bridge on<br>State Highway 90 in Genoa<br>and 2.4 miles above the<br>confluence with Salmon Creek<br>and Little Salmon Creek.              |                                        |                                | 7-25-02 | 0.30                           |
| 0423201787<br>Irondequoit Ci<br>at Cheese Fact<br>near Mendon, | tory Rd.     | Lat 42°58'32", long 77°31'43",<br>Onondaga County, Hydrologic<br>Unit 04140201, about 450 ft<br>upstream of the main mudboil<br>Depression area, 1,325 ft east<br>of Tully Farms road, 2,000<br>ft south of Otisco road, and<br>4.2 mi northwest of Tully. |                                        |                                | 7-25-02 | 0.88                           |
| 04232025<br>Irondequoit Cinear Mendon,                         |              | Lat 42°59′52", long 77°30′14",<br>Onondaga County, Hydrologic<br>Unit 04140201, about 450 ft<br>upstream of the main mudboil<br>Depression area, 1,325 ft east<br>of Tully Farms road, 2,000<br>ft south of Otisco road, and<br>4.2 mi northwest of Tully. |                                        |                                | 7-25-02 | 2.70                           |
| 04232030<br>Irondequoit Ca<br>at Fishers, NY                   |              | Lat 43°00'34", long 77°28'14",<br>Onondaga County, Hydrologic<br>Unit 04140201, about 450 ft<br>upstream of the main mudboil<br>Depression area, 1,325 ft east<br>of Tully Farms road, 2,000<br>ft south of Otisco road, and<br>4.2 mi northwest of Tully. | 34.1                                   |                                | 7-25-02 | 10.2                           |

## ALLEGHENY RIVER BASIN

# Little Valley Creek Seepage Investigation

A series of discharge measurements were made during the 2002 water year along Little Valley Creek and its tributaries, Dublin Creek and Whig Street Creek in the towns of Little Valley and Salamanca, Cattaraugus County, N.Y. Measurements were made during periods of baseflow to determine (1) the groundwater contribution to the stream and how it changes over the length of the valley and (2) whether losing-stream conditions are present in the Little Valley study area.

Little Valley Creek September 25, 2002

| Distance<br>Upstream<br>from Mouth | Stream                                                              | Location                                                                                                                                                                                                 | Drainage<br>Area<br>(mi <sup>2</sup> ) | Discharge (ft <sup>3</sup> /s) | Gain<br>or<br>Loss |
|------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------|--------------------|
| 7.7                                | 03011027<br>Little Valley<br>Creek near Little<br>Valley, NY        | Lat 42°14'35", long 78°47'03",<br>Cattaraugus County, Hydrologic<br>Unit 05010001, 100 ft upstream<br>from bridge on State Highway 353.                                                                  | 18.4                                   | 0.61                           |                    |
| 5.9                                | 03011028<br>Little Valley<br>Creek at Baker Rd.<br>near Elkdale, NY | Lat 42°13'39", long 78°45'48",<br>Cattaraugus County, Hydrologic<br>Unit 05010001, at bridge on State<br>Highway 353 at Baker Rd., and 0.1<br>mi. upstream from confluence with<br>Dublin Creek.         | 20.9                                   | 0.0                            | -0.61              |
| 5.8                                | 03011029<br>Dublin Creek<br>near Elkdale, NY                        | Lat 42°13'43", long 78°45'41",<br>Cattaraugus County, Hydrologic<br>Unit 05010001, 30 ft upstream from<br>confluence with Little Valley Creek.                                                           | 10.5                                   | 1.25                           | +1.25              |
| 5.1                                | 03011030<br>Little Valley<br>Creek at<br>Elkdale, NY                | Lat 42°13'13", long 78°45'25",<br>Cattaraugus County, Hydrologic<br>Unit 05010001, 70 ft upstream from<br>bridge on State Highway 353, and<br>0.4 mi upstream from confluence<br>with Whig Street Creek. | 32.0                                   | 0.46                           | -0.79              |
| 4.7                                | 03011031<br>Whig Street<br>Creek at<br>Elkdale, NY                  | Lat 42°12'56", long 78°45'15",<br>Cattaraugus County, Hydrologic<br>Unit 05010001, at bridge on State<br>Highway 353, and 0.2 mi upstream<br>from confluence with Little Valley<br>Creek.                | 6.04                                   | 0.62                           | +0.62              |
| 3.7                                | 03011033<br>Little Valley<br>Creek near<br>Elkdale, NY              | Lat 42°12'15", long 78°45'44",<br>Cattaraugus County, Hydrologic<br>Unit 05010001, at bridge on<br>Hollow Rd.                                                                                            | 39.4                                   | 0.0                            | -1.08              |
| 1.0                                | 03011035<br>Little Valley<br>Creek at<br>Salamanca, NY              | Lat 42°10'34", long 78°44'55",<br>Cattaraugus County, Hydrologic<br>Unit 05010001, 80 ft upstream<br>from bridge on State Highway 353.                                                                   | 44.6                                   | 1.83                           | +1.83              |

## 0423795620 ONONDAGA CREEK TRIBUTARY NO. 9 AT TULLY, NY

LOCATION.--Lat 42°52'29", long 76°09'04", Onondaga County, Hydrologic Unit 04140201, 35 ft west (upstream) of two, 2-ft culverts under Tully Farms Road, 10 ft east (downstream) of water intake for adjacent homes, and 1.1 mi southwest of the village of Cardiff.

CARDITI.

DRAINAGE AREA.-- 0.56 mi<sup>2</sup>.

PERIOD OF RECORD.--Water years 1999 to current year.

CHEMICAL DATA: Water years 1999 to current year (b).

SEDIMENT DATA: Water years 1999 to current year (b).

REMARKS.--Water-quality records for this site were collected, and reported in local standard time.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date             | Time             | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | WATER WHOLE FIELD (STAND-           | COI<br>- DUO<br>ANO<br>) (US                | FIC<br>N- T<br>CT-<br>CE<br>/CM) (                   | EMPER-<br>ATURE<br>WATER<br>DEG C)<br>00010) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3 |                                              | UM S<br>D<br>ED SO<br>L (M<br>A) AS                            | GNE-<br>SIUM,<br>DIS-<br>DLVED<br>G/L<br>MG) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) |
|------------------|------------------|-----------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------|---------------------------------------------|------------------------------------------------------|----------------------------------------------|------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|
| NOV<br>15<br>FEB | 0930             | .35                                                                   | 9.0                                            | 86                                                                        | 7.8                                 | 19:                                         | 900                                                  | 9.7                                          | 1500                                           | 400                                          | 14                                                             | :0                                           | 13.3                                                           | 4000                                                    | 138                                                                          |
| 15               | 0930             | 1.6                                                                   | 13.5                                           | 105                                                                       | 7.5                                 | 10                                          | 000                                                  | 3.9                                          | 800                                            | 208                                          | 6                                                              | 7.0                                          | 6.28                                                           | 1780                                                    | 138                                                                          |
| MAY<br>16        | 0815             | 1.8                                                                   | 10.3                                           | 95                                                                        | 7.5                                 | 6                                           | 530                                                  | 10.3                                         | 590                                            | 159                                          | 4                                                              | 6.7                                          | 4.47                                                           | 1130                                                    | 136                                                                          |
| AUG<br>30        | 0815             | .53                                                                   | 9.7                                            | 97                                                                        | 7.7                                 | 14                                          | 500                                                  | 13.5                                         | 1200                                           | 308                                          | 10                                                             | 0                                            | 10.4                                                           | 2810                                                    | 138                                                                          |
|                  | Date             | BICA<br>BONA<br>WAT<br>DIS<br>FIE<br>MG/L<br>HCO                      | ATE TER BROM IT DI ELD SOI AS (MG              | MIDE RI<br>S- DI<br>LVED SC<br>S/L (M<br>BR) AS                           | DE, DI<br>S- SC<br>LVED (N<br>G/L A | LICA,<br>IS-<br>DLVED<br>MG/L<br>AS<br>IO2) | SULFAT<br>DIS-<br>SOLVE<br>(MG/L<br>AS SO4<br>(00945 | DEG D DI SOL ) (MG                           | DUE<br>80 IF<br>. C I<br>S- SO<br>VED (U/L) AS | RON, I<br>DIS-<br>DLVED :<br>JG/L<br>S FE) : | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>01056) | SED:<br>MEN'<br>SUS-<br>PENI<br>(MG,         | r, char<br>- su<br>ded pen<br>/L) (T/L                         | IT,<br>IS-<br>RGE,<br>IS-<br>IDED<br>DAY)               |                                                                              |
|                  | NOV<br>15<br>FEB | 16                                                                    | 58 6.6                                         | 60                                                                        | 00                                  |                                             | 800                                                  | 120                                          | 0 <1                                           | L50 :                                        | 140                                                            | 106                                          | 0 1.                                                           | 0                                                       |                                                                              |
|                  | 15<br>MAY        | 16                                                                    | 58 2.8                                         | 33 29                                                                     | 60                                  | 7.2                                         | 386                                                  | 576                                          | 0                                              | 20                                           | 52.0                                                           | 44                                           | 4 1.                                                           | 9                                                       |                                                                              |
|                  | 16               | 16                                                                    | 56 1.7                                         | 75 18                                                                     | 80 6                                | 5.4                                         | 260                                                  | 372                                          | 0 I                                            | E29                                          | 47.0                                                           | 22                                           | 3 1.                                                           | 1                                                       |                                                                              |
|                  | 30               | 16                                                                    | 58 4.3                                         | 32 47                                                                     | 60 8                                | 3.0                                         | 545                                                  | 896                                          | 0 <1                                           | L00                                          | 92.0                                                           | 75                                           | 7 1.                                                           | 1                                                       |                                                                              |

E estimated.

## 430449077294201 CARTERSVILLE WASTE CHANNEL AT PITTSFORD, NY

LOCATION.--Lat 43°04'49", long 77°29'42", Hydrologic Unit 04140101, at Marsh Road, 0.1 mi south of New York State Highway 31 and 0.25 mi north of Erie Canal.

PERIOD OF RECORD.--Water years 1989 to current year.

CHEMICAL DATA: Water years 1989-91 (d), 1992 (c) 1993 (b), 1994 (d), 1995 (b), 1996-97 (a), 1998 (b), and 1999 to current year(d).

NUTRIENT DATA: Water years 1989-91 (d), 1992 (c) 1993 (b), 1994 (d), 1995 (b), 1996-97 (a), 1998 (b), land 1999 to current year(d).

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester. N Y Rochester, N.Y.

REMARKS.--Records for October 1988 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 1989-93 with Emphasis on Water Quality in the Irondequoit Creek Basin", U.S. Geological Survey Open-File Report 97-587. Water-quality records for this site were collected and reported in local standard time.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date | Time | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|------|------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 03   | 0820 | 4.2                                                                   | 7.7                                     | 9.0                                            | 47                                                             | 76                                                       | 7                                                                            | 1                                                                | .05                                                                      | <.10                                                                          | 1.3                                                             | .033                                                                     | .050                                                  |
| 17   | 0735 | 3.6                                                                   | 3.2                                     | 8.9                                            | 57                                                             | 93                                                       | 3                                                                            | <1                                                               | .02                                                                      | .39                                                                           | .96                                                             | .017                                                                     | .030                                                  |
| 31   | 0900 | 4.0                                                                   | 2.8                                     | 10.6                                           | 48                                                             | 118                                                      | 1                                                                            | <1                                                               | .02                                                                      | N.00                                                                          | .41                                                             | .013                                                                     | .025                                                  |
| MAY  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 01   | 1025 | 1.8                                                                   | 7.7                                     | 10.4                                           | 46                                                             | 58                                                       | 8                                                                            | 1                                                                | .02                                                                      | .28                                                                           | .93                                                             | .013                                                                     | .038                                                  |
| 29   | 0840 | 2.4                                                                   | 15                                      | 8.3                                            | 40                                                             | 45                                                       | 16                                                                           | <5                                                               | .03                                                                      | .47                                                                           | .72                                                             |                                                                          | .041                                                  |
| JUN  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 12   | 0905 | E2.5                                                                  | 33                                      | 6.8                                            | 37                                                             | 41                                                       | 42                                                                           | 8                                                                | .11                                                                      | .94                                                                           | 1.0                                                             | .058                                                                     | .150                                                  |
| 26   | 0840 | 2.3                                                                   | 17                                      | 7.9                                            | 36                                                             | 57                                                       | 20                                                                           | 4                                                                | .02                                                                      | .39                                                                           | .96                                                             | .026                                                                     | .066                                                  |
| JUL  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 10   | 1110 | E2.5                                                                  | 14                                      |                                                | 41                                                             | 81                                                       | 17                                                                           | 2                                                                | .02                                                                      | .42                                                                           | .83                                                             | .029                                                                     | .057                                                  |
| AUG  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 07   | 0925 | 2.5                                                                   | 8.4                                     | 7.7                                            | 43                                                             | 84                                                       | 9                                                                            | <2                                                               | .02                                                                      | .34                                                                           | .62                                                             | .024                                                                     | .050                                                  |
| 21   | 0920 | 3.0                                                                   | 9.1                                     | 7.9                                            | 54                                                             | 109                                                      | 107                                                                          | 36                                                               | <.02                                                                     | .35                                                                           | .59                                                             | .029                                                                     | .074                                                  |
| SEP  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 04   | 0905 | E3.0                                                                  | 8.9                                     | 8.0                                            | 49                                                             | 105                                                      | 9                                                                            | <2                                                               | .02                                                                      | .30                                                                           | .67                                                             | .026                                                                     | .063                                                  |
| 18   | 0850 | E3.0                                                                  | 10                                      | 9.1                                            | 45                                                             | 91                                                       | 13                                                                           | 2                                                                | <.01                                                                     | .35                                                                           | .58                                                             | .028                                                                     | .071                                                  |

E estimated.

N presumptive evidence of presence of material.

## 430526077315202 EAST BRANCH ALLEN CREEK BELOW ERIE CANAL SIPHON NEAR PITTSFORD, NY

LOCATION.--Lat 43°05'26", long 77°31'52", Hydrologic Unit 04140101, at north bank of Erie Canal, 0.5 mi west of State Highway

31.

PERIOD OF RECORD. --Water years 1985, 1987-96, 1998 to current year.

CHEMICAL DATA: Water years 1985 (b), 1987 (a), 1988 (d), 1989 (c), 1990 (d), 1991-92 (c), 1993 (a), 1994-95 (c), 1996 (a), 1998 (b), 1999 (c), 2000 to current year (b).

NUTRIENT DATA: Water years 1985 (b), 1987 (a), 1988 (d), 1989 (c), 1990 (d), 1991-92 (c), 1993 (a), 1994-95 (c), 1996 (a), 1998 (b), 1999 (c), 2000 to current year (b).

REMARKS.--Records for October 1988 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 1989-93 with Emphasis on Water Quality in the Irondequoit Creek Basin", U.S. Geological Survey Open-File Report 97-587. Prior to October 1988, unpublished records are available in the files of the U.S. Geological Survey. Water-quality records for this site were collected and reported in local standard time.

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date Time                                           | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|-----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| JUL 10 1139 AUG 07 1000 21 1020 SEP 04 0933 18 0940 | 3.0<br>E3.0                                                           | 37<br>12<br>16<br>19<br>8.1             | 7.1<br>6.5<br>7.3                              | 54<br>43<br>48<br>45<br>47                                     | 71<br>82<br>76<br>78<br>72                               | 43<br>15<br>97<br>7<br>12                                                    | 5 <2 8 <4 <2                                                     | .06<br>.07<br>.05                                                        | .66<br>.45<br>.41<br>.39                                                      | .68<br>.57<br>.59<br>.64                                        | .023<br>.019<br>.029<br>.023<br>.023                                     | .113<br>.064<br>.073<br>.051                          |

E estimated.

## 430526077315203 EAST BRANCH ALLEN CREEK ERIE CANAL SIPHON NEAR PITTSFORD, NY

LOCATION.--Lat 43°05'26", long 77°31'52", Hydrologic Unit 04140101, at north bank of Erie Canal, 0.5 mi west of State Highway

31.
PERIOD OF RECORD.--Water years 1988-95, 1998 to current year.
CHEMICAL DATA: Water years 1988 (d), 1989 (c), 1990 (d), 1991-92 (c), 1993 (a), 1994 (c), 1995 (b), 1998 (b), 1999 (c), 2000 to current year (a).
NUTRIENT DATA: Water years 1988 (d), 1989 (c), 1990 (d), 1991-92 (c), 1993 (a), 1994 (c), 1995 (b), 1998 (b), 1999 (c), 2000

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester,

N.Y.
REMARKS.--Records for October 1988 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 198993 with Emphasis on Water Quality in the Irondequoit Creek Basin", U.S. Geological Survey Open-File Report 97-587. Prior to
October 1988, unpublished records are available in the files of the U.S. Geological Survey. Water-quality records for this site were collected and reported in local standard time.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                       | Time                                 | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|----------------------------|--------------------------------------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| JUL 10 AUG 07 21 SEP 04 18 | 1140<br>1000<br>1015<br>0945<br>0945 | E2.5<br>E2.5<br>E2.5<br>E2.5                                          | 31<br>9.7<br>14<br>6.1<br>7.3           | 7.9<br>7.6<br>7.2<br>8.9                       | 42<br>42<br>47<br>57<br>46                                     | 80<br>83<br>77<br>75<br>71                               | 39<br>14<br>58<br>7<br>9                                                     | <4 <2 7 <2 <2 <2                                                 | .04<br>.06<br>.05<br>.04                                                 | .53<br>.58<br>.41<br>.37                                                      | .78<br>.56<br>.59<br>.65                                        | .022<br>.017<br>.027<br>.022<br>.023                                     | .098<br>.057<br>.069<br>.049                          |

E estimated.

## 430557077344401 ALLEN CREEK ABOVE ERIE CANAL SIPHON NEAR ROCHESTER, NY

LOCATION.--Lat 43°05'57", long 77°34'44", Hydrologic Unit 04140101, at north bank of Erie Canal, 0.01 mi east of Winton Road.

PERIOD OF RECORD. --Water years 1985 to current year.

CHEMICAL DATA: Water years 1985 (a), 1986 (b), 1987 (a), 1988 (d), 1989 (c), 1990 (d), 1991-92 (c), 1993 (b), 1994 (d), 1995 (c), 1996-97 (a), 1998 (b), 1999 (c), 2000 to current year (d).

NUTRIENT DATA: Water years 1985 (a), 1986 (b), 1987 (a), 1988 (d), 1989 (c), 1990 (d), 1991-92 (c), 1993 (b), 1994 (d), 1995 (c), 1996-97 (a), 1998 (b), 1999 (c), 2000 to current year (d).

COORDINATION. Mater years 1985 (a) 2000 to current year (d).

COOPERATION. --Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at

Rochester, N.Y.

REMARKS.--Records for October 1988 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 198993 with Emphasis on Water Quality in the Irondequoit Creek Basin", U.S. Geological Survey Open-File Report 97-587. Prior to
October 1988, unpublished records are available in the files of the U.S. Geological Survey. Water-quality records for this site
were collected and reported in local standard time.

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date      | Time  | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|-----------|-------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT       |       |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 03        | 0940  | .50                                                                   | 7.2                                     | 7.20                                           | 290                                                            | 54                                                       | 5                                                                            | 3                                                                | .03                                                                      | .66                                                                           | .17                                                             | <.003                                                                    | .045                                                  |
| 17        | 0955  | 2.4                                                                   | 24                                      |                                                | 140                                                            | 32                                                       | 20                                                                           | <5                                                               | .03                                                                      | .43                                                                           | .34                                                             | .004                                                                     | .070                                                  |
| 31        | 1005  | 4.0                                                                   | 6.9                                     | 9.10                                           | 112                                                            | 56                                                       | 4                                                                            | 3                                                                | .15                                                                      | N.00                                                                          | .19                                                             | .003                                                                     | .045                                                  |
| MAY       |       |                                                                       |                                         |                                                |                                                                |                                                          | _                                                                            |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 01        | 1140  |                                                                       | 6.3                                     |                                                | 339                                                            | 52                                                       | 6<br>5                                                                       | .99                                                              | .02                                                                      | .66                                                                           | .26                                                             | .005                                                                     | .035                                                  |
| 29        | 1010  | 2.7                                                                   | 5.2                                     | 8.4                                            | 164                                                            | 50                                                       | 5                                                                            | <2                                                               | .03                                                                      | .52                                                                           | .50                                                             |                                                                          | .030                                                  |
| JUN<br>12 | 1140  |                                                                       | 43                                      | 6.3                                            | 211                                                            | 39                                                       | 51                                                                           | 9                                                                | .39                                                                      | 2.1                                                                           | .98                                                             | .071                                                                     | .186                                                  |
| 26        | 0955  | E.50                                                                  | 5.8                                     | 6.5                                            | 264                                                            | 46                                                       | 4                                                                            | <2                                                               | .04                                                                      | .66                                                                           | .30                                                             | .026                                                                     | .061                                                  |
| JUL       | 0,555 | E.50                                                                  | 5.0                                     | 0.5                                            | 204                                                            | 10                                                       | -                                                                            | ~2                                                               | .04                                                                      | .00                                                                           | .50                                                             | .020                                                                     | .001                                                  |
| 10        | 1210  | E.50                                                                  | 4.9                                     |                                                | 195                                                            | 42                                                       | 3                                                                            | <2                                                               | .09                                                                      | .89                                                                           | .58                                                             | .026                                                                     | .062                                                  |
| AUG       |       |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 07        | 1035  | E.50                                                                  | 2.4                                     | 8.3                                            | 264                                                            | 52                                                       | 2                                                                            | <2                                                               | .04                                                                      | .56                                                                           | .21                                                             | .024                                                                     | .054                                                  |
| 21        | 1100  | E.50                                                                  | 2.1                                     | 8.3                                            | 183                                                            | 56                                                       | 3                                                                            | <2                                                               | .04                                                                      | .55                                                                           | .21                                                             | .026                                                                     | .058                                                  |
| SEP       |       |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 18        | 1050  | .50                                                                   | 8.8                                     | 9.4                                            | 259                                                            | 48                                                       | 7                                                                            | 6                                                                | .01                                                                      | 1.1                                                                           | .12                                                             | .005                                                                     | .077                                                  |

E estimated.

N presumptuve evidence of presence of material.

## 430557077344402 ALLEN CREEK BELOW ERIE CANAL SIPHON NEAR ROCHESTER, NY

LOCATION.--Lat 43°05'57", long 77°34'44", Hydrologic Unit 04140101, at north bank of Erie Canal, 0.01 mi east of Winton Road.

PERIOD OF RECORD. --Water years 1985 to current year.

CHEMICAL DATA: Water years 1985 (a), 1986 (b), 1987 (a), 1988 (d), 1989 (c), 1990 (d), 1991-93 (c), 1994 (d), 1995 (c), 199697 (a), 1998 (b), 1999 (c), 2000 to current year (d).

NUTRIENT DATA: Water years 1985 (a), 1986 (b), 1987 (a), 1988 (d), 1989 (c), 1990 (d), 1991-93 (c), 1994 (d), 1995 (c), 199697 (a), 1998 (b), 1999 (c), 2000 to current year (d).

OODERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Records for October 1988 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 1989-93 with Emphasis on Water Quality in the Irondequoit Creek Basin", U.S. Geological Survey Open-File Report 97-587. Prior to October 1988, unpublished records are available in the files of the U.S. Geological Survey. Water-quality records for this site were collected and reported in local standard time.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date | Time | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|------|------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 03   | 0930 | 4.0                                                                   | 10                                      | 7.20                                           | 90                                                             | 69                                                       | 14                                                                           | <2                                                               | .04                                                                      | .44                                                                           | .60                                                             | .025                                                                     | .055                                                  |
| 17   | 0945 | 6.4                                                                   | 3.2                                     |                                                | 104                                                            | 81                                                       | 16                                                                           | 3                                                                | .05                                                                      | .47                                                                           | .65                                                             | .012                                                                     | .055                                                  |
| 31   | 0950 | 5.0                                                                   | 4.7                                     |                                                | 74                                                             | 86                                                       | 3                                                                            | <2                                                               | .04                                                                      | N.00                                                                          | .41                                                             | .013                                                                     | .030                                                  |
| MAY  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 01   | 1125 |                                                                       | 5.5                                     |                                                | 263                                                            | 49                                                       | 5                                                                            | 2                                                                | .01                                                                      | .60                                                                           | .34                                                             | .005                                                                     | .031                                                  |
| 29   | 1015 | E1.5                                                                  | 10                                      | 7.7                                            | 43                                                             | 43                                                       | 10                                                                           | <2                                                               | .02                                                                      | .34                                                                           | .93                                                             |                                                                          | .030                                                  |
| JUN  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 12   | 1135 |                                                                       | 39                                      | 5.8                                            | 196                                                            | 36                                                       | 51                                                                           | 10                                                               | .33                                                                      | 2.0                                                                           | .80                                                             | .054                                                                     | .184                                                  |
| 26   | 0950 | 1.6                                                                   | 9.1                                     | 7.3                                            | 151                                                            | 62                                                       | 10                                                                           | <2                                                               | .04                                                                      | .53                                                                           | .74                                                             | .018                                                                     | .054                                                  |
| JUL  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 10   | 1205 | E1.5                                                                  | 12                                      |                                                | 107                                                            | 60                                                       | 13                                                                           | <2                                                               | .07                                                                      | .64                                                                           | .63                                                             | .023                                                                     | .063                                                  |
| AUG  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 07   | 1025 | E1.5                                                                  | 8.7                                     | 7.4                                            | 85                                                             | 74                                                       | 11                                                                           | <2                                                               | .05                                                                      | .43                                                                           | .47                                                             | .019                                                                     | .052                                                  |
| 21   | 1050 | E1.5                                                                  | 5.6                                     | 7.9                                            | 58                                                             | 53                                                       | 8                                                                            | <2                                                               | .05                                                                      | .41                                                                           | .39                                                             | .021                                                                     | .053                                                  |
| SEP  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 04   | 1010 | E1.5                                                                  | 7.9                                     | 7.3                                            | 57                                                             | 74                                                       | 9                                                                            | <2                                                               | .05                                                                      | .37                                                                           | .51                                                             | .020                                                                     | .049                                                  |
| 18   | 1045 | E1.5                                                                  | 11                                      | 8.6                                            | 171                                                            | 75                                                       | 12                                                                           | <4                                                               | .02                                                                      | .73                                                                           | .26                                                             | <.003                                                                    | .070                                                  |

E estimated.

N presumptive evidence of presence of material.

## 430557077344403 ALLEN CREEK AT ERIE CANAL SIPHON NEAR ROCHESTER, NY

LOCATION.--Lat 43°05'57", long 77°34'44", Hydrologic Unit 04140101, at north bank of Erie Canal, 0.01 mi east of Winton Road.

DCATION.--Lat 43'05'5'", long //34'44", Hydrologic Unit 04140101, at north bank of Erie Canal, 0.01 ml east of Winton Road. PERIOD OF RECORD.--Water years 1986 to current year.

CHEMICAL DATA: Water years 1986-1987 (a), 1988 (d), 1989 (c), 1990 (d), 1991-93 (c), 1994 (d), 1995 (c), 1996 (b), 1997 (a), 1998 (b), 1999 (c), 2000 to current year (d).

NUTRIENT DATA: Water years 1986-1987 (a), 1988 (d), 1989 (c), 1990 (d), 1991-93 (c), 1994 (d), 1995 (c), 1996 (b), 1997 (a), 1998 (b), 1999 (c), 2000 to current year (d).

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Prochester N V

Rochester, N.Y.

REMARKS.--Records for October 1988 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 198993 with Emphasis on Water Quality in the Irondequoit Creek Basin", U.S. Geological Survey Open-File Report 97-587. Prior to
October 1988, unpublished records are available in the files of the U.S. Geological Survey. Water-quality records for this site
were collected and reported in local standard time.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date | Time | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|------|------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 03   | 0945 | 3.5                                                                   | 18                                      | 7.8                                            | 70                                                             | 72                                                       | 27                                                                           | 2                                                                | .04                                                                      | .35                                                                           | .68                                                             | .031                                                                     | .070                                                  |
| 17   | 1000 | 4.0                                                                   | 6.3                                     | 5.8                                            | 77                                                             | 156                                                      | 1                                                                            | <1                                                               | .06                                                                      | .50                                                                           | .89                                                             | .021                                                                     | .050                                                  |
| 31   | 1010 | 1.0                                                                   | 4.9                                     | 8.8                                            | 54                                                             | 90                                                       | 4                                                                            | <2                                                               | .03                                                                      | N.00                                                                          | . 45                                                            | .016                                                                     | .035                                                  |
| MAY  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 01   | 1135 |                                                                       | 22                                      |                                                | 110                                                            | 70                                                       | 18                                                                           | 3                                                                | .03                                                                      | .67                                                                           | .63                                                             | .017                                                                     | .076                                                  |
| 29   | 1020 | 1.2                                                                   | 3.5                                     | 7.1                                            | 259                                                            | 51                                                       | 3                                                                            | <2                                                               | .07                                                                      | .73                                                                           | . 29                                                            |                                                                          | .026                                                  |
| JUN  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 12   | 1145 |                                                                       | 45                                      | 6.5                                            | 34                                                             | 33                                                       | 27                                                                           | <2                                                               | .06                                                                      | .54                                                                           | .70                                                             | .023                                                                     | .119                                                  |
| 26   | 1005 | E1.0                                                                  | 11                                      | 7.9                                            | 47                                                             | 74                                                       | 10                                                                           | <5                                                               | .04                                                                      | .42                                                                           | 1.2                                                             | .014                                                                     | .052                                                  |
| JUL  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 10   | 1215 | 1.0                                                                   | 18                                      |                                                | 46                                                             | 78                                                       | 19                                                                           | 2                                                                | .03                                                                      | .44                                                                           | .72                                                             | .020                                                                     | .071                                                  |
| AUG  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 07   | 1040 | E1.0                                                                  | 13                                      | 7.9                                            | 44                                                             | 83                                                       | 8                                                                            |                                                                  | .06                                                                      | .41                                                                           | .56                                                             | .018                                                                     | .065                                                  |
| 21   | 1125 | E1.0                                                                  | 9.2                                     | 7.6                                            | 53                                                             | 74                                                       | 43                                                                           | 11                                                               | .05                                                                      | .37                                                                           | .60                                                             | .027                                                                     | .069                                                  |
| SEP  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 04   | 1025 | E1.0                                                                  | 14                                      | 7.2                                            | 47                                                             | 77                                                       | 16                                                                           | <2                                                               | .03                                                                      | .40                                                                           | .57                                                             | .014                                                                     | .062                                                  |
| 18   | 1055 | E1.0                                                                  | 11                                      | 8.9                                            | 61                                                             | 109                                                      | 13                                                                           | <2                                                               | .03                                                                      | .41                                                                           | .52                                                             | .005                                                                     | .055                                                  |

E estimated.

N presumptive evidence of presence of material.

#### 430605077262201 FAIRPORT WASTE CHANNEL AT FAIRPORT, NY

LOCATION.--Lat 43°06'05", long 77°26'22", Hydrologic Unit 04140101, at State Street, 0.15 mi east of New York State Highway 250,

and 0.05 mi north of Erie canal.

PERIOD OF RECORD.--Water years 1989 to current year.

CHEMICAL DATA: Water years 1989 (d), 1990 (c), 1991 (a), 1992-94 (c), 1995 (b), 1996-98 (a), 1999-2000 (c), 2001 to current year(d).
NUTRIENT DATA: Water years 1989 (d), 1990 (c), 1991 (a), 1992-94 (c), 1995 (b), 1996-98 (a), 1999-2000 (c), 2001 to current

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Records for October 1988 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 1989-93 with Emphasis on Water Quality in the Irondequoit Creek Basin", U. S. Geological Survey Open-File Report 97-587. Water-quality records for this site were collected and reported in local standard time.

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date | Time | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|------|------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 03   | 0715 | 3.3                                                                   | 49                                      | 8.4                                            | 50                                                             | 81                                                       | 52                                                                           | <5                                                               | .09                                                                      | .34                                                                           | 1.3                                                             | .030                                                                     | .100                                                  |
| 17   | 0715 | 3.0                                                                   | 5.5                                     | 8.5                                            | 42                                                             | 66                                                       | 5                                                                            | <2                                                               | .02                                                                      | .30                                                                           | .68                                                             | .019                                                                     | .040                                                  |
| 31   | 0830 | 2.0                                                                   | 6.3                                     | 10.7                                           | 78                                                             | 90                                                       | 5                                                                            | <4                                                               | .05                                                                      | N.00                                                                          | .49                                                             | .014                                                                     | .035                                                  |
| MAY  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 01   | 0915 | 1.4                                                                   | 6.9                                     | 10.1                                           | 53                                                             | 45                                                       | 5<br>8                                                                       | 2<br><2                                                          | .04                                                                      | .31                                                                           | .93                                                             | .013                                                                     | .030                                                  |
| 29   | 0820 | 1.0                                                                   | 9.7                                     | 7.3                                            | 44                                                             | 44                                                       | 8                                                                            | <2                                                               | .02                                                                      | .44                                                                           | .66                                                             |                                                                          | .039                                                  |
| JUN  |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 12   | 0825 | E1.0                                                                  | 95                                      | 6.9                                            | 28                                                             | 35                                                       | 94                                                                           | 24                                                               | .37                                                                      | 1.9                                                                           | .76                                                             | .100                                                                     | .333                                                  |
| 26   | 0815 | E1.0                                                                  | 13                                      | 5.6                                            | 48                                                             | 50                                                       | 15                                                                           | <2                                                               | .08                                                                      | .57                                                                           | .68                                                             | .024                                                                     | .078                                                  |
| AUG  |      |                                                                       |                                         |                                                |                                                                |                                                          | _                                                                            | _                                                                |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 07   | 0905 | E1.0                                                                  | 5.1                                     | 5.6                                            | 58                                                             | 126                                                      | 5                                                                            | <2                                                               | .07                                                                      | .34                                                                           | . 43                                                            | .020                                                                     | .049                                                  |
| 21   | 0845 | E1.0                                                                  | 240                                     | 7.9                                            | 102                                                            | 318                                                      | 238                                                                          | 19                                                               | .05                                                                      | .79                                                                           | .55                                                             | .015                                                                     | .448                                                  |
| SEP  | 0045 | -1 0                                                                  | - 0                                     | 4.6                                            | 105                                                            | 41.5                                                     | _                                                                            |                                                                  | 0.4                                                                      | 0.0                                                                           |                                                                 | 014                                                                      | 0.41                                                  |
| 04   | 0845 | E1.0                                                                  | 6.0                                     | 4.6                                            | 125                                                            | 417                                                      | 5                                                                            | <2                                                               | .04                                                                      | .28                                                                           | .58                                                             | .014                                                                     | .041                                                  |
| 18   | 0825 | E1.0                                                                  | 3.7                                     | 5.1                                            | 122                                                            | 399                                                      | 4                                                                            | <2                                                               | .03                                                                      | .29                                                                           | .60                                                             | .012                                                                     | .032                                                  |

E estimated.

N presumptive evidence of presence of material.

## 431132077475301 NORTHRUP CREEK ABOVE SPENCERPORT WASTE CHANNEL AT SPENCERPORT, NY

LOCATION.--Lat 43°11'32", long 77°47'53", Monroe County, Hydrologic Unit 04140101, 300 ft north of Erie (Barge) at Canal Street and LOCATION.--Lat 43°11'32", long 77°47'53", Monroe County, Hydrologic Unit 04140101, 300 ft north of Erie (Barge) at Canal St 800 ft east of State Highway 259.

PERIOD OF RECORD.--Water years 2001 to current year.

CHEMICAL DATA: Water years 2001 (c), current year (d).

NUTRIENT DATA: Water years 2001 (c), current year (d).

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Water-quality records for this site were collected and reported in local standard time.

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

| Date                         | Time                 | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|------------------------------|----------------------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| MAY<br>24<br>JUN             | 0910                 | 1.7                                                                   | 3.4                                     | 9.0                                            | 183                                                            | 60                                                       | 6                                                                            | 2                                                                | .06                                                                      | .66                                                                           | .72                                                             | .045                                                                     | .085                                                  |
| 20                           | 0940                 | .50                                                                   | 11                                      | 8.0                                            | 163                                                            | 62                                                       | 12                                                                           | 3                                                                | .11                                                                      | .65                                                                           | .80                                                             | .065                                                                     | .130                                                  |
| JUL<br>03<br>18<br>31<br>AUG | 0745<br>0905<br>1005 | 1.0<br>.70<br>1.0                                                     | 3.8<br>6.5<br>5.1                       | 8.1<br>8.6<br>10.0                             | 179<br>194<br>233                                              | 52<br>46<br>44                                           | 3<br>4<br>3                                                                  | <2<br><2<br><2                                                   | .12<br>.10<br>.07                                                        | .54<br>.36<br>.66                                                             | .98<br>1.1<br>1.2                                               | .043<br>.040<br>.048                                                     | .090<br>.095<br>.100                                  |
| 17<br>29                     | 0845<br>0910         | .60<br>.50                                                            | 3.7<br>4.7                              |                                                | 171<br>190                                                     | 46<br>43                                                 | 4<br><2                                                                      | <2<br><2                                                         | .12                                                                      | .54<br>.40                                                                    | 1.1<br>1.1                                                      | .052<br>.043                                                             | .110<br>.090                                          |
| SEP<br>11                    | 1035                 | .70                                                                   |                                         | 10.2                                           | 237                                                            | 41                                                       | 3                                                                            | <3                                                               | .06                                                                      | .52                                                                           | 1.3                                                             | .043                                                                     | .100                                                  |
|                              |                      |                                                                       | WATER-                                  | QUALITY D                                      | ATA, WATE                                                      | R YEAR OC                                                | TOBER 200                                                                    | )1 TO SEPT                                                       | EMBER 200                                                                | 2                                                                             |                                                                 |                                                                          |                                                       |
| Date                         | Time                 | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
| OCT<br>02<br>16<br>23        | 0930<br>0905<br>1015 | .50<br>.70<br>.70                                                     | 4.6<br>4.2<br>2.3                       | 8.7<br>8.9<br>9.1                              | 220<br>110<br>102                                              | 63<br>60<br>76                                           | <2<br><3<br><2                                                               | <2<br><3<br><2                                                   | .14<br>.10<br>.06                                                        | .52<br>.52<br>.59                                                             | 1.1<br>.88<br>.54                                               | .042<br>.034<br>.036                                                     | .085<br>.080<br>.065                                  |
| MAY<br>08<br>22<br>JUN       | 1050<br>1040         | 3.3<br>3.2                                                            | 2.8<br>3.5                              | 11.2<br>11.0                                   | 148<br>105                                                     | 52<br>44                                                 | 3<br>5                                                                       | <2<br><2                                                         | .02                                                                      | .85<br>.76                                                                    | 1.3<br>1.5                                                      | .008                                                                     | .039                                                  |
| 05<br>19<br>JUL              | 1025<br>1025         | 5.5<br>2.5                                                            | 22<br>7.8                               | 8.3<br>9.5                                     | 82<br>118                                                      | 35<br>40                                                 | 22<br>8                                                                      | 4<br><2                                                          | .08                                                                      | .96<br>.82                                                                    | 1.3<br>1.8                                                      | .033                                                                     | .123<br>.090                                          |
| 03<br>17<br>31               | 1020<br>1005<br>1035 | 1.1<br>E1.3<br>E.70                                                   | 4.1<br>2.6<br>2.3                       | 5.8<br>8.3<br>8.1                              | 137<br>139<br>141                                              | 46<br>51<br>54                                           | 4<br>2<br>2                                                                  | <4<br><2<br><2                                                   | .04<br>.05<br>.04                                                        | .60<br>.55<br>.60                                                             | 1.1<br>.83<br>.64                                               | .053<br>.043<br>.047                                                     | .084<br>.062<br>.048                                  |
| 14<br>28<br>SEP              | 1020<br>1035         | E.40<br>E.90                                                          | 3.0<br>3.8                              | 7.8<br>7.8                                     | 244<br>252                                                     | 42<br>42                                                 | <2<br><2                                                                     | <2<br><2                                                         | .04                                                                      | .40                                                                           | 1.2<br>1.5                                                      | .033                                                                     | .066<br>.075                                          |
| 11<br>25                     | 1055<br>1035         | E.70<br>E.90                                                          | 4.6<br>3.2                              | 8.5<br>8.2                                     | 166<br>240                                                     | 38<br>41                                                 | 3<br><2                                                                      | <2<br><2                                                         | .08                                                                      | .89<br>.37                                                                    | 1.3<br>1.6                                                      | .037                                                                     | .102<br>.069                                          |

E estimated.

## 431133077474901 SPENCERPORT WASTE CHANNEL AT SPENCERPORT, NY

LOCATION.--Lat 43°11'33", long 77°47'49", Monroe County, Hydrologic Unit 04140101, 600 ft north of Erie (Barge) and 0.25 mi east

LOCATION.--Lat 43'11'33", long 7/'47'49", Monroe County, Hydrologic Unit 04140101, 600 It north of Erie (Barge) and 0.25 of State Highway 259.

PERIOD OF RECORD.--Water years 2001 to current year.

CHEMICAL DATA: Water years 2001 (c), current year (d).

NUTRIENT DATA: Water years 2001 (c), current year (d).

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Water-quality records for this site were collected and reported in local standard time.

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

|                        |                      |                                                                       | *************************************** | ZOILLII D                                      | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                              |                                                          | JIODDIC DOC                                                                  | 00 10 0211                                                       | DI IDDIC DO                                                              | -                                                                             |                                                                 |                                                                          |                                                       |
|------------------------|----------------------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| Date                   | Time                 | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
| MAY<br>24<br>JUN       | 0850                 | 5.5                                                                   | 6.3                                     | 8.4                                            | 66                                                             | 84                                                       | 12                                                                           | <2                                                               | .06                                                                      | .43                                                                           | .84                                                             | .023                                                                     | .050                                                  |
| 06<br>20<br>JUL        | 0905<br>0920         | 4.7<br>4.0                                                            | 11<br>14                                | 6.0<br>7.5                                     | 39<br>44                                                       | 58<br>72                                                 | 16<br>17                                                                     | 2<br>2                                                           | .06<br>.05                                                               | .77<br>.44                                                                    | .90<br>.67                                                      | .050<br>.040                                                             | .110<br>.070                                          |
| 03<br>18<br>31         | 0730<br>0840<br>0950 | 5.0<br>4.0<br>5.0                                                     | 13<br>17<br>9.7                         | 7.7<br>7.1<br>7.1                              | 46<br>41<br>29                                                 | 82<br>53<br>54                                           | 18<br>20<br>11                                                               | <4<br>2<br><2                                                    | .04<br>.05<br>.05                                                        | .35<br>.27<br>.33                                                             | .61<br>.79<br>.61                                               | .029<br>.047<br>.060                                                     | .065<br>.085<br>.080                                  |
| AUG<br>17<br>29<br>SEP | 0833<br>0855         | 5.0<br>5.0                                                            | 3.6<br>7.0                              |                                                | 24<br>38                                                       | 42<br>64                                                 | 9<br>8                                                                       | <3<br><2                                                         | .05                                                                      | .25                                                                           | .63<br>.67                                                      | .061<br>.004                                                             | .080                                                  |
| 11                     | 1020                 | 5.0                                                                   |                                         | 8.3                                            | 27                                                             | 44                                                       | 7                                                                            | <3                                                               | .02                                                                      | .31                                                                           | .60                                                             | .036                                                                     | .050                                                  |
|                        |                      |                                                                       | WATER-                                  | QUALITY D                                      | ATA, WATE                                                      | ER YEAR OC                                               | TOBER 200                                                                    | 01 TO SEPT                                                       | EMBER 200                                                                | 12                                                                            |                                                                 |                                                                          |                                                       |
| Date                   | Time                 | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)            | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
| OCT                    | 0010                 | 4 7                                                                   | 6.0                                     | 0.6                                            | 20                                                             | F0                                                       | 0                                                                            | 1                                                                | 0.0                                                                      | 20                                                                            | 0.0                                                             | 050                                                                      | 065                                                   |

| Date | Time | INST. CUBIC FEET PER SECOND (00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | MONIA + ORGANIC TOTAL (MG/L AS N) (00625) | GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|------|------|-------------------------------------|-----------------------------------------|------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|-------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| OCT  |      |                                     |                                         |                                                |                                                       |                                                          |                                                          |                                                       |                                                        |                                           |                                                       |                                                       |                                                       |
| 02   | 0910 | 4.7                                 | 6.2                                     | 8.6                                            | 28                                                    | 50                                                       | 8                                                        | 1                                                     | .08                                                    | .32                                       | .88                                                   | .050                                                  | .065                                                  |
| 16   | 0845 | 4.7                                 | 12                                      | 9.1                                            | 44                                                    | 68                                                       | 8                                                        | <5                                                    | .03                                                    | .38                                       | .79                                                   | .031                                                  | .050                                                  |
| 23   | 0955 | 3.0                                 | 2.9                                     | 9.7                                            | 36                                                    | 66                                                       | 4                                                        | <1                                                    | <.01                                                   | .22                                       | .96                                                   | .030                                                  | .045                                                  |
| MAY  |      |                                     |                                         |                                                |                                                       |                                                          |                                                          |                                                       |                                                        |                                           |                                                       |                                                       |                                                       |
| 08   | 1020 | E4.0                                | 11                                      | 10.0                                           | 76                                                    | 88                                                       | 28                                                       | <5                                                    | .11                                                    | .90                                       | .67                                                   | .012                                                  | .088                                                  |
| 22   | 1020 | E4.0                                | 28                                      | 8.9                                            | 27                                                    | 28                                                       | 18                                                       | <5                                                    | .08                                                    | .77                                       | .56                                                   | .032                                                  | .100                                                  |
| JUN  |      |                                     |                                         |                                                |                                                       |                                                          |                                                          |                                                       |                                                        |                                           |                                                       |                                                       |                                                       |
| 05   | 1010 | E4.7                                | 20                                      | 7.2                                            | 54                                                    | 97                                                       | 23                                                       | 3                                                     | .04                                                    | .49                                       | 1.1                                                   | .028                                                  | .085                                                  |
| 19   | 1015 | E4.8                                | 13                                      | 7.9                                            | 45                                                    | 80                                                       | 14                                                       | <2                                                    | .06                                                    | .64                                       | 1.2                                                   | .044                                                  | .086                                                  |
| JUL  |      |                                     |                                         |                                                |                                                       |                                                          |                                                          |                                                       |                                                        |                                           |                                                       |                                                       |                                                       |
| 03   | 0950 | 4.2                                 | 10                                      | 5.2                                            | 34                                                    | 60                                                       | 13                                                       | <2                                                    | .03                                                    | .36                                       | .96                                                   | .042                                                  | .076                                                  |
| 17   | 0950 | E4.0                                | 5.8                                     | 6.9                                            | 31                                                    | 59                                                       | 11                                                       | <4                                                    | .03                                                    | .39                                       | .87                                                   | .042                                                  | .064                                                  |
| 31   | 1020 | E4.2                                | 5.6                                     | 7.8                                            | 44                                                    | 126                                                      | 7                                                        | <2                                                    | .04                                                    | .36                                       | .57                                                   | .027                                                  | .025                                                  |
| AUG  |      |                                     |                                         |                                                |                                                       |                                                          |                                                          |                                                       |                                                        |                                           |                                                       |                                                       |                                                       |
| 14   | 1010 | E4.2                                | 6.8                                     | 7.3                                            | 27                                                    | 45                                                       | 16                                                       | <4                                                    | .04                                                    | .39                                       | .59                                                   | .039                                                  | .070                                                  |
| 28   | 1025 | E4.2                                | 6.3                                     | 7.8                                            | 29                                                    | 64                                                       | 8                                                        | <2                                                    | .03                                                    | .35                                       | .68                                                   | .039                                                  | .064                                                  |
| SEP  |      |                                     |                                         |                                                |                                                       |                                                          |                                                          |                                                       |                                                        |                                           |                                                       |                                                       |                                                       |
| 11   | 1045 | E4.2                                | 7.3                                     | 8.2                                            | 24                                                    | 42                                                       | 9                                                        | <2                                                    | .03                                                    | .32                                       | .66                                                   | .034                                                  | .066                                                  |
| 25   | 1025 | E4.2                                | 7.2                                     | 7.1                                            | 25                                                    | 50                                                       | 10                                                       | <4                                                    | .02                                                    | .31                                       | .62                                                   | .030                                                  | .056                                                  |

E estimated.

## 431142077473401 NORTHRUP CREEK BELOW WASTE CHANNEL AT BIG RIDGE ROAD NEAR SPENCERPORT, NY

LOCATION.--Lat 43°12'16", long 77°47'09", Hydrologic Unit 04140101, 50ft south of bridge on Big Ridge Road, 0.35mi east of State

Highway 259.

PERIOD OF RECORD.—-Water years 2001 to current year.

CHEMICAL DATA: Water years 2001 to current year (d).

NUTRIENT DATA: Water years 2001 to current year (d).

COOPERATION.—Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.—Water-quality records for this site for water year 2002 were collected and reported in local standard time.

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

|           |              |                                                                       | MAIDIC                                  | QUALITI D                                      | AIA, WAIL                                                      | IC IDAIC OC                                              | TODER 200                                                                    | O IO DEFI                                                        | EPIDER 200                                                               | -                                                                             |                                                                 |                                                                          |                                                       |
|-----------|--------------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| Date      | Time         | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
| MAY       |              |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 09        | 0900         | 7.80                                                                  | 6.2                                     | 8.6                                            | 63                                                             | 44                                                       | 12                                                                           | <3                                                               | .07                                                                      | .33                                                                           | .76                                                             | .020                                                                     | .055                                                  |
| 24        | 0810         | 7.20                                                                  | 5.7                                     | 8.0                                            | 93                                                             | 78                                                       | 14                                                                           | 2                                                                | .05                                                                      | .52                                                                           | .81                                                             | .029                                                                     | .065                                                  |
| JUN       | 0000         | 6 40                                                                  | 0 0                                     |                                                | 70                                                             | 61                                                       | 1.4                                                                          | 0                                                                | 0.0                                                                      | 6.4                                                                           | 0.4                                                             | 0.45                                                                     | 0.05                                                  |
| 06<br>20  | 0800<br>0825 | 6.40<br>4.50                                                          | 9.2<br>13                               | 7.6<br>6.9                                     | 70<br>56                                                       | 61<br>72                                                 | 14<br>15                                                                     | 2 2                                                              | .09<br>.11                                                               | .64<br>.53                                                                    | .84<br>.69                                                      | .047                                                                     | .095<br>.085                                          |
| JUL       | 0625         | 4.50                                                                  | 13                                      | 0.9                                            | 50                                                             | 12                                                       | 13                                                                           | 2                                                                | .11                                                                      | .53                                                                           | .09                                                             | .050                                                                     | .005                                                  |
| 03        | 0715         | 6.00                                                                  | 14                                      | 7.3                                            | 53                                                             | 81                                                       | 19                                                                           | <4                                                               | .06                                                                      | .40                                                                           | .67                                                             | .035                                                                     | .070                                                  |
| 18        | 0750         | 4.00                                                                  | 11                                      | 7.1                                            | 37                                                             | 54                                                       | 11                                                                           | <2                                                               | .07                                                                      | .21                                                                           | .80                                                             | .052                                                                     | .075                                                  |
| 31        | 0935         | 6.00                                                                  | 6.9                                     | 6.6                                            | 30                                                             | 51                                                       | 10                                                                           | <2                                                               | .04                                                                      | .33                                                                           | .57                                                             | .056                                                                     | .080                                                  |
| AUG       |              |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 17        | 0755         | 5.56                                                                  | 4.2                                     |                                                | 27                                                             | 43                                                       | 11                                                                           | 2                                                                | .03                                                                      | .23                                                                           | .68                                                             | .063                                                                     | .080                                                  |
| 29<br>SEP | 0800         | 5.50                                                                  | 7.0                                     |                                                | 35                                                             | 62                                                       | 11                                                                           | <2                                                               | .02                                                                      | .20                                                                           | .67                                                             | .046                                                                     | .065                                                  |
| 11        | 0925         | 5.70                                                                  |                                         | 8.2                                            | 31                                                             | 45                                                       | 9                                                                            | 1                                                                | .02                                                                      | .28                                                                           | .67                                                             | .038                                                                     | .060                                                  |
|           |              |                                                                       | WATER-                                  | -QUALITY D                                     | ATA, WATE                                                      | R YEAR OC                                                | TOBER 200                                                                    | )1 TO SEPT                                                       | EMBER 200                                                                | 2                                                                             |                                                                 |                                                                          |                                                       |
|           |              | DIS-                                                                  |                                         |                                                |                                                                |                                                          | RESIDUE                                                                      |                                                                  | NITRO-                                                                   | NITRO-                                                                        |                                                                 | ORTHO-                                                                   |                                                       |
|           |              | CHARGE,                                                               |                                         |                                                | CHLO-                                                          |                                                          | TOTAL                                                                        | RESIDUE                                                          | GEN,                                                                     | GEN, AM-                                                                      | NITRO-                                                          | PHOS-                                                                    |                                                       |
|           |              | INST.                                                                 |                                         |                                                | RIDE,                                                          | SULFATE                                                  | AT 105                                                                       | VOLA-                                                            | AMMONIA                                                                  | MONIA +                                                                       | GEN,                                                            | PHATE,                                                                   | PHOS-                                                 |
|           |              | CUBIC                                                                 | TUR-                                    | OXYGEN,                                        | DIS-                                                           | DIS-                                                     | DEG. C,                                                                      | TILE,                                                            | DIS-                                                                     | ORGANIC                                                                       | NO2+NO3                                                         | DIS-                                                                     | PHORUS                                                |
|           |              | FEET                                                                  | BID-                                    | DIS-                                           | SOLVED                                                         | SOLVED                                                   | SUS-                                                                         | SUS-                                                             | SOLVED                                                                   | TOTAL                                                                         | TOTAL                                                           | SOLVED                                                                   | TOTAL                                                 |
| Date      | Time         | PER                                                                   | ITY                                     | SOLVED                                         | (MG/L                                                          | (MG/L                                                    | PENDED                                                                       | PENDED                                                           | (MG/L                                                                    | (MG/L                                                                         | (MG/L                                                           | (MG/L                                                                    | (MG/L                                                 |

| Date      | Time | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|-----------|------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| OCT       |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 02        | 0810 | 5.2                                                                   | 5.8                                     | 8.5                                            | 35                                                             | 55                                                       | 7                                                                            | <2                                                               | .14                                                                      | .29                                                                           | .94                                                             | .052                                                                     | .070                                                  |
| 16        | 0835 | 5.3                                                                   | 6.1                                     | 8.4                                            | 54                                                             | 70                                                       | 4                                                                            | <2                                                               | .13                                                                      | .30                                                                           | .81                                                             | .038                                                                     | .050                                                  |
| 23        | 0900 | 3.7                                                                   | 2.8                                     | 9.2                                            | 49                                                             | 63                                                       | <2                                                                           | <2                                                               | .01                                                                      | .05                                                                           | .82                                                             | .029                                                                     | .040                                                  |
| MAY       |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 08        | 0945 | 7.3                                                                   | 4.6                                     | 10.5                                           | 92                                                             | 75                                                       | 6                                                                            | <2                                                               | .02                                                                      | 1.1                                                                           | .84                                                             | .007                                                                     | .060                                                  |
| 22        | 0925 | 7.2                                                                   | 15                                      | 10.0                                           | 68                                                             | 36                                                       | 11                                                                           | <2                                                               | .18                                                                      | .76                                                                           | 1.0                                                             | .025                                                                     | .064                                                  |
| JUN       |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              | _                                                                |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 05        | 0925 | 10                                                                    | 23                                      | 7.6                                            | 72                                                             | 53                                                       | 28                                                                           | 5<br>2                                                           | .14                                                                      | .85                                                                           | 1.2                                                             | .034                                                                     | .107                                                  |
| 19        | 0935 | 7.3                                                                   | 10                                      | 8.9                                            | 76                                                             | 61                                                       | 14                                                                           | 2                                                                | .09                                                                      | .65                                                                           | 1.4                                                             | .044                                                                     | .070                                                  |
| JUL<br>03 | 0920 | 5.8                                                                   | 7.5                                     | 5.2                                            | 55                                                             | 57                                                       | 10                                                                           | <2                                                               | .03                                                                      | .44                                                                           | .98                                                             | .046                                                                     | .070                                                  |
| 17        | 0920 | 5.3                                                                   | 4.4                                     | 7.5                                            | 42                                                             | 58                                                       | 9                                                                            | <2                                                               | .03                                                                      | .39                                                                           | .90                                                             | .044                                                                     | .068                                                  |
| 31        | 0940 | 4.9                                                                   | 3.0                                     | 7.2                                            | 57                                                             | 112                                                      | 5                                                                            | <2                                                               | .26                                                                      | .41                                                                           | .63                                                             | .052                                                                     | .022                                                  |
| AUG       | 0240 | 4.0                                                                   | 3.0                                     | 7.2                                            | 37                                                             | 112                                                      | 3                                                                            | ~2                                                               | .20                                                                      | . 41                                                                          | .03                                                             | .032                                                                     | .022                                                  |
| 14        | 0920 | 4.6                                                                   | 4.9                                     | 7.6                                            | 31                                                             | 44                                                       | 7                                                                            | <2                                                               | .03                                                                      | .34                                                                           | .64                                                             | .043                                                                     | .069                                                  |
| 28        | 0925 | 5.1                                                                   | 6.0                                     | 7.3                                            | 33                                                             | 65                                                       | 9                                                                            | <5                                                               | .02                                                                      | .32                                                                           | .73                                                             | .041                                                                     | .067                                                  |
| SEP       |      |                                                                       |                                         |                                                |                                                                |                                                          | -                                                                            | _                                                                |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 11        | 0955 | 4.9                                                                   | 7.1                                     | 8.3                                            | 27                                                             | 40                                                       | 9                                                                            | <2                                                               | .03                                                                      | .32                                                                           | .74                                                             | .038                                                                     | .109                                                  |
| 25        | 0950 | 5.1                                                                   | 4.5                                     | 7.6                                            | 27                                                             | 47                                                       | 6                                                                            | <2                                                               | .03                                                                      | .41                                                                           | .67                                                             | .034                                                                     | .060                                                  |
|           |      |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |

## 431216077470901 NORTHRUP CREEK AT OGDEN PARMA TOWNLINE ROAD NEAR SPENCERPORT, NY

LOCATION.--Lat 43°12'16", long 77°47'09", Monroe County, Hydrologic Unit 04140101, 60 ft north of bridge on Odgen Parma Townline Road and 0.55 mi east of State Highway 259.

PERIOD OF RECORD.—Water years 2001 to current year.

CHEMICAL DATA: Water years 2001, current year (d).

NUTRIENT DATA: Water years 2001, current year (d).

COOPERATION.—Water quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y.

REMARKS.--Water-quality records for this site were collected and reported in local standard time.

#### WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

| Date     | Time         | DIS-<br>CHARGE,<br>INST.<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00061) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|----------|--------------|-----------------------------------------------------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| MAY      |              |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 09       | 0805         | 8.8                                                                   | 5.2                                     | 6.8                                            | 79                                                             | 44                                                       | 11                                                                           | <2                                                               | 1.8                                                                      | 2.0                                                                           | 1.2                                                             | .115                                                                     | .190                                                  |
| 24       | 0720         | 7.9                                                                   | 5.6                                     | 6.9                                            | 104                                                            | 76                                                       | 14                                                                           | 2                                                                | 1.0                                                                      | 1.8                                                                           | 1.3                                                             | .078                                                                     | .140                                                  |
| JUN      |              |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 06       | 0710         | 7.2                                                                   | 6.0                                     | 6.3                                            | 79                                                             | 58                                                       | 12                                                                           | 2                                                                | 1.5                                                                      | 2.5                                                                           | 1.2                                                             | .112                                                                     | .193                                                  |
| 20       | 0710         | 6.4                                                                   | 4.8                                     | 4.2                                            | 73                                                             | 69                                                       | 8                                                                            | 2                                                                | 1.8                                                                      | 2.6                                                                           | 1.4                                                             | .190                                                                     | .260                                                  |
| JUL      | 0700         | 7.0                                                                   | F 0                                     |                                                | F.0                                                            | 0.0                                                      | 0                                                                            | .0                                                               | 5.0                                                                      | 0.0                                                                           |                                                                 | 100                                                                      | 150                                                   |
| 03       | 0700<br>0650 | 7.0<br>5.6                                                            | 5.0<br>8.2                              | 5.5<br>5.7                                     | 58<br>45                                                       | 80<br>56                                                 | 9<br>10                                                                      | <2<br><3                                                         | .56<br>N.80                                                              | .99<br>.99                                                                    | 1.1                                                             | .100                                                                     | .150                                                  |
| 18<br>31 | 0905         | 7.0                                                                   | 8.2<br>22                               | 6.9                                            | 45                                                             | 50                                                       | 36                                                                           | < 3<br>6                                                         | .40                                                                      | 1.1                                                                           | 1.3                                                             | .150<br>.350                                                             | .200<br>.360                                          |
| AUG      | 0905         | 7.0                                                                   | 22                                      | 0.9                                            | 40                                                             | 50                                                       | 30                                                                           | b                                                                | .40                                                                      | 1.1                                                                           | 2.2                                                             | .350                                                                     | .300                                                  |
| 17       | 0705         | 6.2                                                                   | 7.5                                     |                                                | 34                                                             | 43                                                       | 16                                                                           | 3                                                                | .07                                                                      | .48                                                                           | 1.6                                                             | .146                                                                     | .200                                                  |
| 29       | 0710         | 5.9                                                                   | 6.7                                     |                                                | 40                                                             | 57                                                       | 13                                                                           | <2                                                               | .06                                                                      | .55                                                                           | 1.3                                                             | .110                                                                     | .150                                                  |
| SEP      |              |                                                                       |                                         |                                                |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| 11       | 0840         | 6.1                                                                   |                                         |                                                | 46                                                             | 46                                                       | 19                                                                           | 3                                                                | .17                                                                      | .98                                                                           | 2.4                                                             | .157                                                                     | .225                                                  |
|          |              |                                                                       | WATER-                                  | -QUALITY D                                     | ATA, WATE                                                      | R YEAR OC                                                | TOBER 200                                                                    | )1 TO SEPT                                                       | EMBER 200                                                                | 12                                                                            |                                                                 |                                                                          |                                                       |
|          |              | DIS-<br>CHARGE,<br>INST.                                              |                                         | OMIGEN                                         | CHLO-<br>RIDE,                                                 | SULFATE                                                  | RESIDUE<br>TOTAL<br>AT 105                                                   | RESIDUE<br>VOLA-                                                 | NITRO-<br>GEN,<br>AMMONIA                                                | NITRO-<br>GEN,AM-<br>MONIA +                                                  | NITRO-<br>GEN,                                                  | ORTHO-<br>PHOS-<br>PHATE,                                                | PHOS-                                                 |

|      |      | DIS-    |         |         |         |         | RESIDUE |         | NITRO-  | NITRO-   |         | ORTHO-  |         |
|------|------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|
|      |      | CHARGE, |         |         | CHLO-   |         | TOTAL   | RESIDUE | GEN,    | GEN, AM- | NITRO-  | PHOS-   |         |
|      |      | INST.   |         |         | RIDE,   | SULFATE | AT 105  | VOLA-   | AMMONIA | MONIA +  | GEN,    | PHATE,  | PHOS-   |
|      |      | CUBIC   | TUR-    | OXYGEN, | DIS-    | DIS-    | DEG. C, | TILE,   | DIS-    | ORGANIC  | NO2+NO3 | DIS-    | PHORUS  |
|      |      | FEET    | BID-    | DIS-    | SOLVED  | SOLVED  | SUS-    | SUS-    | SOLVED  | TOTAL    | TOTAL   | SOLVED  | TOTAL   |
| Date | Time | PER     | ITY     | SOLVED  | (MG/L   | (MG/L   | PENDED  | PENDED  | (MG/L   | (MG/L    | (MG/L   | (MG/L   | (MG/L   |
|      |      | SECOND  | (NTU)   | (MG/L)  | AS CL)  | AS SO4) | (MG/L)  | (MG/L)  | AS N)   | AS N)    | AS N)   | AS P)   | AS P)   |
|      |      | (00061) | (00076) | (00300) | (00940) | (00945) | (00530) | (00535) | (00608) | (00625)  | (00630) | (00671) | (00665) |
| OCT  |      |         |         |         |         |         |         |         |         |          |         |         |         |
| 02   | 0710 | 5.9     | 10      | 6.6     | 46      | 56      | 16      | 4       | 1.7     | 2.4      | 1.3     | .134    | .200    |
| 16   | 0810 | 6.0     | 7.4     | 6.8     | 72      | 66      | 10      | <2      | 2.9     | 3.4      | 1.2     | .233    | .320    |
| 23   | 0830 | 4.1     | 3.8     | 7.2     | 66      | 55      | 5       | <2      | 3.0     | 3.9      | 1.2     | .298    | .370    |
| MAY  |      |         |         |         |         |         |         |         |         |          |         |         |         |
| 08   | 0835 | 9.1     | 3.4     | 9.9     | 116     | 72      | 5       | <2      | 1.5     | 2.6      | 1.2     | .129    | .181    |
| 22   | 0815 | 8.3     | 12      | 8.6     | 91      | 38      | 10      | 2       | 1.5     | 2.4      | 1.2     | .094    | .173    |
| JUN  |      |         |         |         |         |         |         |         |         |          |         |         |         |
| 05   | 0830 | 13      | 27      | 6.5     | 83      | 51      | 42      | 7       | 1.1     | 2.2      | 1.3     | .098    | .208    |
| 19   | 0825 | 7.8     | 8.6     | 7.8     | 98      | 59      | 12      | <2      | 1.1     | 2.0      | 1.6     | .138    | .192    |
| JUL  |      |         |         |         |         |         |         |         |         |          |         |         |         |
| 03   | 0840 | 6.2     | 4.5     | 5.8     | 76      | 58      | 7       | <2      | .17     | .73      | 1.8     | .125    | .154    |

91

69

40

46

<2

<2

<2

<2

<2

<2

1.4

.05

.25

.28

2.1

.54

.83

.77

6

10

8

6

1.8

1.7

2.3

1.8

.91

.116

.168

.114

.113

.125

.133

.162

.193

.160

.148

.171

.166

 ${\tt N}$  presumptive evidence of presence of material

5.4

6.1

6.4

5.9

4.0

3.9

6.9

6.0

4.6

5.5

7.9

60

52

52

47

0825

0845

0835

0825

0840

0855

17...

31...

28...

25...

AUG 14...

SEP 11...

#### 431510077363501 GENESEE RIVER AT CHARLOTTE PUMP STATION, NEAR ROCHESTER, NY

LOCATION.--Lat 43°15'10", long 77°36'35", Monroe County, Hydrologic Unit 04130003, at Charlotte, in Rochester, on west bank of the Genesee River, 1300 ft downstream of Stutson Street Bridge, 0.5 mi upstream of mouth, and 5.0 mi downstream from gaging station (04232000) at Rochester.

DRAINAGE AREA.--2,467 mi² at station 04232000.

PERIOD OF RECORD.--Water years 1990 to current year.

CHEMICAL DATA: 1990 to current year (e).

NUTRIENT DATA: 1990 to current year (e).

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.

REMARKS.--Prior to 1994 water year, data published in "Water Resources of Monroe County New York, Water Years 1989-93", U.S.
Geological Survey Open-File Report 97-587. Water-quality records for this site were collected and reported in local standard time.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                                                                                                       | Time                                                                                                         | Ending<br>time                                                                                                               | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)                                                  | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                                                      | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940)                                | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                                                | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608)                       | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625)                    | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)                         | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)                                     | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| OCT 01-03 03-05 05-07 07-09 09-11 11-13 13-15 15-16 16-17 18-20 20-22 22-24 24-25 25-29 29-30                                                              | 0945<br>0945<br>1050<br>1050<br>0950<br>0920<br>0520<br>0940<br>1540<br>1040<br>0910<br>0110<br>0930<br>1040 | 0845<br>0045<br>0950<br>0850<br>0850<br>0420<br>0020<br>1440<br>1840<br>0940<br>0010<br>0910<br>0930<br>2140                 | 507<br>391<br>394<br>463<br>414<br>385<br>387<br>464<br>556<br>924<br>1010<br>929<br>870<br>1100<br>1090            | 2.9<br>1.8<br>12<br>6.5<br>4.6<br>3.1<br>7.0<br>8.2<br>4.5<br>5.6<br>4.6<br>5.5<br>7.8       | 90<br>72<br>80<br>80<br>70<br>58<br>62<br>60<br>61<br>67<br>68<br>50<br>43<br>53              | 149<br>126<br>114<br>98<br>123<br>95<br>132<br>98<br>93<br>125<br>122<br>76<br>72<br>83<br>105          | <br><br><br><br><br><br><br><br><br>                                         |                                                                  | .14<br>.28<br>.27<br>.12<br>.13<br>.14<br>.15<br>.09<br>.06<br>.15<br>.12<br>.06<br>.15        | .50<br>.68<br><.10<br><.10<br>.47<br>.50<br>.49<br>.43<br>.45<br><.10<br>.51<br>.38<br>.46       | .71<br>.93<br>1.0<br>.89<br>.90<br>.78<br>.96<br>.82<br>.76<br>.63<br>.61<br>.75<br>.73 | .020<br>.026<br>.025<br>.022<br>.025<br>.018<br>.020<br>.018<br>.022<br>.017<br>.021<br>.020<br>.021         | .040<br>.045<br>.060<br>.050<br>.045<br>.030<br>.055<br>.040<br>.055<br>.040<br>.035<br>.040 |
| OCT 30-<br>NOV 01<br>01-03<br>03-05<br>05-06<br>06-08<br>09-11<br>11-13<br>13-15<br>15-17<br>19-21<br>21-23<br>23-24<br>26-27<br>27-29<br>NOV 29-          | 2240<br>1030<br>1030<br>1020<br>1820<br>1005<br>1010<br>1000<br>1120<br>1020<br>0220<br>1020<br>2220         | 0940<br>0930<br>0930<br>1720<br>0220<br>0905<br>0905<br>0910<br>0100<br>1020<br>0120<br>1420<br>2120<br>0920                 | 924<br>966<br>830<br>506<br>386<br>295<br>303<br>276<br>274<br>268<br>277<br>279<br>487<br>914                      | 3.6<br>5.2<br>5.2<br>4.6<br>4.0<br>5.4<br>3.8<br>3.7<br>4.7<br>6.2<br>3.0<br>3.1<br>5.0      | 46<br>49<br>46<br>49<br>48<br>56<br>52<br>61<br>65<br>72<br>72<br>90<br>63<br>79              | 102<br>100<br>94<br>90<br>88<br>105<br>105<br>122<br>136<br>158<br>156<br>164<br>120<br>173             | <br><br><br><br><br><br><br><br><br>                                         |                                                                  | .12<br>.20<br>.12<br>.07<br>.01<br>.10<br>.76<br>.53<br>.25<br>.74<br>.49<br>.28<br>.18        | .47<br>.54<br>N.00<br>.37<br>.30<br>.68<br>.99<br>.97<br>.56<br>1.4<br>.87<br>.64<br>.26         | .57<br>.53<br>.59<br>.62<br>.59<br>.77<br>.67<br>.63<br>.58<br>.69<br>.73<br>.81        | .020<br>.018<br>.020<br>.030<br>.025<br>.022<br>.016<br>.021<br>.014<br>.015<br>.013                         | .040<br>.040<br>.045<br>.030<br>.030<br>.040<br>.030<br>.055<br>.045<br>.040<br>.030<br>.030 |
| NOV 29-<br>DEC 01<br>01-03<br>03-04<br>04-06<br>06-08<br>08-10<br>10-11<br>11-13<br>13-15<br>15-17<br>17-18<br>24-25<br>25-27<br>27-29<br>29-31<br>DEC 31- | 1005<br>1005<br>1015<br>2215<br>1050<br>1050<br>1055<br>2225<br>1105<br>110                                  | 0905<br>0905<br>2115<br>0915<br>0950<br>1050<br>2155<br>0955<br>1005<br>0605<br>0940<br>1530<br>0910<br>0910                 | 1020<br>1660<br>1200<br>835<br>678<br>575<br>553<br>472<br>565<br>2090<br>2580<br>2420<br>1460<br>968               | 3.0<br>5.2<br><br>1.2<br>7.8<br>8.7<br>5.7<br>4.9<br>16<br>4.2<br>14<br>13<br>17<br>23<br>12 | 69<br>55<br>56<br>49<br>51<br>53<br>98<br>74<br>60<br>60<br>40<br>32<br>40<br>39              | 156<br>116<br>112<br>105<br>102<br>94<br>108<br>108<br>114<br>119<br>94<br>68<br>56<br>65<br>66         | <br><br><br><br><br><br><br>                                                 | <br><br><br><br><br><br><br><br>                                 | .13<br>.12<br>.05<br>.07<br>.12<br>.20<br>.12<br>.17<br>.14<br>.21<br>.09<br>.09<br>.14        | .28<br>.35<br>.31<br>.40<br>.37<br>.57<br>.39<br>.48<br>.87<br>.53<br>.57<br><.10<br>N.92<br>.52 | .77<br>.64<br>.64<br>.66<br>.74<br>.72<br>.73<br>.87<br>.80<br>.84<br>1.1<br>1.0<br>1.2 | .016<br>.016<br>.017<br>.016<br>.014<br>.015<br>.015<br>.015<br>.015<br>.015<br>.015<br>.015                 | .035<br>.035<br>.040<br>.040<br>.035<br>.035<br>.035<br>.050<br>.055<br>.055                 |
| JAN 01<br>01-03<br>03-05<br>05-07<br>09-10<br>10-12<br>12-14<br>14-16<br>16-18<br>18-20<br>20-22<br>22-24<br>24-26<br>26-28<br>28-29<br>29-31              | 1010<br>2210<br>1020<br>1020<br>0835<br>1015<br>1000<br>1000<br>1005<br>1025<br>1025<br>1025<br>1010<br>2210 | 2110<br>0910<br>0920<br>0920<br>0935<br>0915<br>0915<br>0900<br>0900<br>0905<br>0905<br>0920<br>0925<br>0925<br>2110<br>0910 | 920<br>780<br>721<br>825<br>749<br>977<br>1430<br>1130<br>1040<br>758<br>759<br>911<br>1710<br>3030<br>2690<br>2820 | 5.4<br>5.4<br>4.3<br>6.9<br>3.5<br>2.4<br>3.7<br>5.2<br>3.6<br>3.1<br>4.5<br>29<br>50<br>31  | 44<br>44<br>48<br>84<br>101<br>79<br>86<br>83<br>72<br>93<br>79<br>78<br>72<br>62<br>63<br>53 | 96<br>91<br>108<br>105<br>110<br>120<br>131<br>122<br>105<br>119<br>117<br>122<br>113<br>89<br>58<br>58 | <br><br><br><br><br><br><br>28<br>24                                         |                                                                  | .08<br>.10<br>.16<br>.14<br>.29<br>.29<br>.14<br>.06<br>.12<br>.15<br>.10<br>.06<br>.20<br>.05 | .30<br>.25<br>.39<br>.40<br>.88<br>.67<br>.49<br>.34<br>.43<br>.42<br>.38<br>.68<br>.99          | 1.2<br>1.2<br>1.3<br>1.4<br>1.4<br>1.5<br>1.7<br>1.6<br>1.4<br>1.5<br>1.4<br>1.5        | .016<br>.017<br>.025<br>.017<br>.018<br>.018<br>.016<br>.023<br>.015<br>.012<br>.013<br>.013<br>.012<br>.011 | .030<br>.030<br>.040<br>.040<br>.035<br>.030<br>.030<br>.030<br>.030<br>.030<br>.030<br>.03  |

N presumptive evidence of presence of material

# 431510077363501 GENESEE RIVER AT CHARLOTTE PUMP STATION, NEAR ROCHESTER, NY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                                                                                                                 | Time                                                                                                                 | Ending<br>time                                                                                               | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060)                                                   | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                                                       | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940)                         | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945)                               | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608)                | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625)                  | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)                                | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)                     | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                                        |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| JAN 31-<br>FEB 01<br>04-05<br>07-09<br>09-10<br>11-13<br>13-15<br>15-17<br>19-21<br>21-23<br>23-25<br>25-26<br>26-28 | 1100<br>1045<br>1030<br>0230<br>1105<br>1105<br>1040<br>1020<br>0955<br>0955<br>1015<br>2215                         | 1700<br>2245<br>0130<br>1529<br>1005<br>1540<br>0920<br>0855<br>0855<br>2215<br>0915                         | 4570<br>5600<br>6760<br>6440<br>7130<br>5990<br>5130<br>2750<br>3040<br>3410<br>2740<br>2310                         | 35<br>85<br>200<br>250<br>110<br>54<br>43<br>26<br>12<br>23<br>18                             | 89<br>67<br>36<br>36<br>44<br>44<br>51<br>58<br>51<br>47<br>43<br>46                   | 56<br>62<br>46<br>47<br>43<br>48<br>55<br>75<br>75<br>70<br>64                         | 166<br>122<br>114<br>43<br>                                                  | <br>11<br>8<br>8<br>8<br><5<br><br>                              | .07<br>.08<br>.07<br>.05<br>.04<br>.04<br>.04<br><.01<br>.11<br>.05<br>.03              | .49<br>.64<br>.83<br>.63<br>.65<br>.48<br>.44<br>.49<br>.43<br>.38                             | 1.4<br>2.8<br>1.5<br>1.6<br>2.0<br>2.1<br>1.8<br>2.1<br>1.9<br>1.9                             | .011<br>.026<br>.010<br>.010<br>.013<br>.013<br>.011<br>.012<br>.012<br>.011<br>.009         | .060<br>.206<br>.500<br>.369<br>.264<br>.124<br>.108<br>.079<br>.051<br>.069                                 |
| FEB 28- MAR 02 02-04 04-07 07-08 08-10 11-12 12-14 14-16 16-18 18-19 20-21 21-23 23-25 25-26 26-28 28-30             | 1040<br>1040<br>1010<br>1010<br>1810<br>1030<br>2230<br>1020<br>1020<br>1005<br>2205<br>1000<br>1010<br>2210<br>1015 | 0940<br>0940<br>0909<br>1709<br>0109<br>2130<br>0920<br>0920<br>2105<br>0905<br>0900<br>0900<br>2110<br>0910 | 2300<br>1980<br>2510<br>2620<br>2930<br>3590<br>3410<br>2700<br>2610<br>2460<br>3490<br>3330<br>3020<br>5500<br>5920 | 11<br>12<br>15<br>17<br>18<br>24<br>34<br>17<br>12<br>15<br>12<br>8.0<br>18<br>16<br>20<br>87 | 59<br>52<br>54<br>55<br>62<br>69<br>53<br>48<br>52<br>53<br>61<br>58<br>77<br>86<br>62 | 80<br>75<br>68<br>67<br>68<br>67<br>61<br>60<br>64<br>65<br>74<br>62<br>63<br>61<br>59 | <br><br><br>23<br><br><br><br><br>68                                         | <br><br><br><br><10<br><br><br><br><br><10                       | .08<br>.06<br>.07<br>.11<br>.08<br>.04<br>.08<br>.06<br>.05<br>.09<br>.07<br>.05<br>.56 | .41<br>.36<br>.42<br>.38<br>.39<br>.41<br>.51<br>.50<br>.46<br>.43<br>.49<br>.50<br>.41<br>.45 | 1.8<br>1.6<br>1.6<br>1.0<br>1.3<br>1.6<br>1.3<br>1.4<br>1.4<br>1.3<br>1.4<br>1.3<br>1.3<br>1.3 | .010<br>.010<br>.009<br>.005<br>.007<br>.009<br>.008<br>.008<br>.007<br>.007<br>.007<br>.008 | .049<br>.045<br>.044<br>.032<br>.075<br>.059<br>.080<br>.053<br>.040<br>.049<br>.053<br>.035<br>.047<br>.052 |
| MAR 30- APR 01 01-02 02-03 11-13 15-15 18-20 20-21 22-23 23-25 25-27 27-29 29-30 APR 30-                             | 1015<br>1020<br>0720<br>0935<br>0915<br>0910<br>0110<br>0920<br>2120<br>0915<br>0915                                 | 0915<br>0620<br>0320<br>0734<br>1515<br>0010<br>1910<br>2020<br>0820<br>0815<br>0815                         | 5090<br>4940<br>5480<br>6430<br>9090<br>6830<br>5240<br>1770<br>4150<br>4740<br>2320<br>3100                         | 58<br>51<br>58<br>87<br>120<br>130<br>42<br>48<br>30<br>32<br>24<br>34                        | 55<br>48<br>46<br>37<br>44<br>32<br>34<br>45<br>48<br>29<br>34<br>48                   | 51<br>50<br>43<br>40<br>112<br>40<br>48<br>67<br>72<br>40<br>51                        | 48<br>46<br>55<br>87<br>398<br>119<br>15<br>60<br>30<br>38<br>               | <5<br><5<br>6<br>7<br>29<br>9<br><5<br>5<br><5<br><5<br><5       | .03<br>.04<br>.06<br>.06<br>.08<br>.09<br>.09<br>.11<br>.13<br>.09                      | .53<br>.52<br>.59<br>.60<br>1.3<br>.86<br>.59<br>.71<br>.60<br>.50<br>.48                      | 1.4<br>1.4<br>1.1<br>1.2<br>1.2<br>.94<br>.99<br>1.1<br>1.2<br>1.0<br>1.1                      | .008<br>.009<br>.011<br>.013<br>.020<br>.021<br>.027<br>.021<br>.019<br>.018                 | .155<br>.114<br>.141<br>.100<br>.550<br>.296<br>.121<br>.108<br>.078<br>.070                                 |
| MAY 02<br>02-04<br>04-06<br>06-07<br>07-09<br>09-11<br>11-13<br>13-13<br>16-17<br>20-21<br>24-26<br>28-29<br>MAY 31- | 2140<br>0925<br>0925<br>0905<br>2105<br>0900<br>0930<br>1005<br>0940<br>0935<br>0905                                 | 0840<br>0825<br>0825<br>2005<br>0805<br>0800<br>0800<br>1929<br>1005<br>0839<br>0734<br>1104                 | 2780<br>2660<br>4600<br>4700<br>5020<br>5320<br>5090<br>6790<br>7090<br>8070<br>7270<br>4880                         | 47<br>20<br>16<br>37<br>39<br>29<br>20<br>96<br>80<br>98<br>54                                | 67<br>50<br>51<br>38<br>38<br>36<br>41<br>35<br>50<br>35<br>30<br>26                   | 68<br>70<br>73<br>50<br>48<br>44<br>45<br>42<br>56<br>39<br>36<br>39                   | 37<br><br>36<br>42<br><br><br>91<br>66<br>61                                 | <5<br><br><5<br><12<br><br><br><br><5<br><10                     | .13<br>.14<br>.10<br>.07<br>.10<br>.09<br>.14<br>.11<br>.10<br>.07<br>.08               | .79<br>.67<br>.51<br>.51<br>.54<br>.53<br>.59<br>.85<br>1.1<br>.71<br>.63                      | 1.5<br>1.4<br>1.4<br>.90<br>.85<br>.76<br>.79<br>.69<br>1.6<br>.94                             | .026<br>.018<br>.017<br>.015<br>.017<br>.019<br>.032<br>.028<br>.033<br>.021<br>.020         | .159<br>.079<br>.069<br>.095<br>.100<br>.084<br>.096<br>.257<br>.227<br>.221<br>.103                         |
| JUN 01<br>01-03<br>03-04<br>04-06<br>06-08<br>10-10<br>13-14<br>17-18<br>20-22<br>22-23<br>24-25<br>25-27<br>27-29   | 1050<br>2250<br>0920<br>2120<br>0950<br>0935<br>0935<br>1010<br>0900<br>0100<br>0950<br>1850<br>0925                 | 2150<br>0849<br>2020<br>0820<br>0449<br>1934<br>0335<br>0909<br>0000<br>1600<br>1750<br>0250<br>0825         | 7190<br>6010<br>4540<br>4830<br>6340<br>5470<br>5330<br>4970<br>4560<br>2920<br>1630<br>1560<br>3880                 | 72<br>58<br>50<br>38<br>52<br>130<br>90<br>74<br>51<br>39<br>32<br>24                         | 41<br>35<br>30<br>35<br>39<br>26<br>27<br>44<br>29<br>39<br>37<br>43<br>88             | 44<br>44<br>44<br>52<br>52<br>52<br>42<br>36<br>57<br>46<br>39<br>62<br>72<br>53       | 98<br>75<br>50<br>38<br>57<br>118<br><br>-56<br>39<br>42<br><br>67           | 8<br>7<br><6<br><6<br><2<br>12<br><br>7<br><5<br><5<br><7        | .10<br>.13<br>.12<br>.14<br>.13<br>.07<br>.13<br>.15<br>.14<br>.17<br>.14               | .88<br>.88<br>.80<br>.72<br>.84<br>.94<br>.82<br>1.0<br>.65<br>.65<br>.64<br>.73               | 1.2<br>1.1<br>.93<br>.97<br>1.4<br>.79<br>.94<br>1.6<br>1.0<br>1.0<br>1.1                      | .029<br>.040<br>.033<br>.032<br>.037<br>.027<br>.030<br>.051<br>.031<br>.030<br>.026         | .237<br>.200<br>.147<br>.122<br>.153<br>.350<br>.213<br>.237<br>.127<br>.112<br>.108<br>.087<br>.864         |

# 431510077363501 GENESEE RIVER AT CHARLOTTE PUMP STATION, NEAR ROCHESTER, NY--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

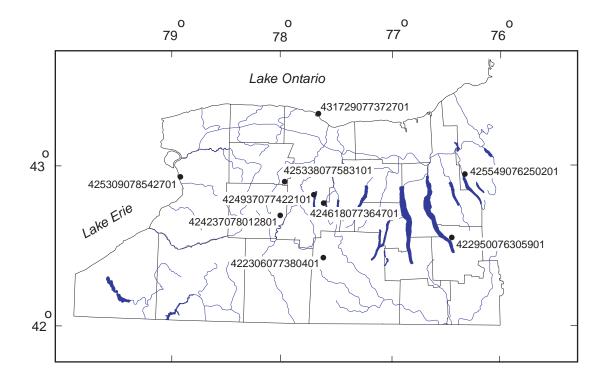
| Date              | Time         | Ending<br>time | DIS-<br>CHARGE,<br>IN<br>CUBIC<br>FEET<br>PER<br>SECOND<br>(00060) | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | RESIDUE<br>TOTAL<br>AT 105<br>DEG. C,<br>SUS-<br>PENDED<br>(MG/L)<br>(00530) | RESIDUE<br>VOLA-<br>TILE,<br>SUS-<br>PENDED<br>(MG/L)<br>(00535) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) |
|-------------------|--------------|----------------|--------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|
| JUN 29-<br>JUL 01 | 0925         | 0825           | 5740                                                               | 180                                     | 49                                                             | 75                                                       | 144                                                                          | <12                                                              | .12                                                                      | .91                                                                           | .98                                                             | .033                                                                     | .554                                                  |
| 01-02             | 0940         | 2040           | 3230                                                               | 100                                     | 26                                                             | 37                                                       |                                                                              |                                                                  | .08                                                                      | .69                                                                           | .67                                                             | .026                                                                     | .252                                                  |
| 03-05             | 0940         | 0840           | 1460                                                               | 40                                      | 34                                                             | 56                                                       |                                                                              |                                                                  | .16                                                                      | .69                                                                           | .84                                                             | .030                                                                     | .085                                                  |
| 05-06<br>06-08    | 0855<br>2055 | 1955<br>0755   | 1240<br>1040                                                       | 24<br>16                                | 43<br>39                                                       | 67<br>69                                                 |                                                                              |                                                                  | .20<br>.17                                                               | .64<br>.56                                                                    | 1.0<br>.97                                                      | .029<br>.026                                                             | .092<br>.071                                          |
| 08-09             | 0950         | 1750           | 995                                                                | 19                                      | 43                                                             | 72                                                       |                                                                              |                                                                  | .12                                                                      | .63                                                                           | .97                                                             | .022                                                                     | .077                                                  |
| 10-11             | 1250         | 0850           | 820                                                                | 13                                      | 44                                                             | 78                                                       |                                                                              |                                                                  | .17                                                                      | .65                                                                           | .93                                                             | .023                                                                     | .051                                                  |
| 11-13<br>13-15    | 0905<br>0905 | 0805<br>0805   | 793<br>693                                                         | 20<br>15                                | 46<br>46                                                       | 92<br>87                                                 |                                                                              |                                                                  | .26<br>.21                                                               | .78<br>.64                                                                    | .88<br>.82                                                      | .024<br>.015                                                             | .094                                                  |
| 15-16             | 1005         | 2105           | 636                                                                | 10                                      | 50                                                             | 88                                                       |                                                                              |                                                                  | .12                                                                      | .41                                                                           | .76                                                             | .013                                                                     | .033                                                  |
| 16-18             | 2205         | 0905           | 703                                                                | 11                                      | 50                                                             | 97                                                       |                                                                              |                                                                  | .12                                                                      | .44                                                                           | .78                                                             | .005                                                                     | .035                                                  |
| 18-20             | 0920         | 0820           | 603                                                                | 22                                      | 67                                                             | 112                                                      |                                                                              |                                                                  | .15                                                                      | .63                                                                           | .75                                                             | .131                                                                     | .065                                                  |
| 20-22<br>22-25    | 0920<br>0925 | 0820<br>0824   | 564<br>759                                                         | 14<br>9.5                               | 53<br>56                                                       | 123<br>100                                               |                                                                              |                                                                  | .17<br>.13                                                               | .57<br>.55                                                                    | .74<br>.76                                                      | .015<br>.029                                                             | .059<br>.047                                          |
| 25-27             | 0940         | 0840           | 685                                                                | 7.8                                     | 49                                                             | 86                                                       |                                                                              |                                                                  | .14                                                                      | .58                                                                           | .75                                                             | .024                                                                     | .049                                                  |
| 27-29             | 0940         | 0840           | 751                                                                | 9.7                                     | 48                                                             | 88                                                       |                                                                              |                                                                  | .10                                                                      | .53                                                                           | .83                                                             | .029                                                                     | .063                                                  |
| 29-30<br>JUL 30-  | 0925         | 2025           | 869                                                                | 31                                      | 50                                                             | 90                                                       | 42                                                                           | <5                                                               | .17                                                                      | .73                                                                           | .68                                                             | .033                                                                     | .107                                                  |
| AUG 01            | 2125         | 0825           | 897                                                                | 12                                      | 66                                                             | 101                                                      |                                                                              |                                                                  | .19                                                                      | .64                                                                           | .76                                                             | .029                                                                     | .064                                                  |
| 01-03             | 0920         | 0020           | 811                                                                | 8.8                                     | 56                                                             | 107                                                      |                                                                              |                                                                  | .23                                                                      | .76                                                                           | .78                                                             | .027                                                                     | .047                                                  |
| 03-04             | 0120         | 1419           | 561                                                                | 3.4                                     | 55                                                             | 108                                                      |                                                                              |                                                                  | .20                                                                      | .70                                                                           | .82                                                             | .026                                                                     | .045                                                  |
| 05-06<br>06-08    | 0910<br>2110 | 2010<br>0810   | 419<br>396                                                         | 16<br>7.6                               | 70<br>58                                                       | 104<br>89                                                |                                                                              |                                                                  | .13<br>.24                                                               | .59<br>1.0                                                                    | .61<br>.65                                                      | .026<br>.032                                                             | .086<br>.070                                          |
| 08-10             | 0900         | 0800           | 416                                                                | 3.0                                     | 51                                                             | 84                                                       |                                                                              |                                                                  | .34                                                                      | .87                                                                           | .71                                                             | .040                                                                     | .068                                                  |
| 10-12             | 0900         | 0800           | 418                                                                | 3.2                                     | 53                                                             | 103                                                      |                                                                              |                                                                  | . 29                                                                     | .86                                                                           | . 65                                                            | .034                                                                     | .059                                                  |
| 12-13<br>13-15    | 0900<br>2100 | 2000<br>0800   | 394<br>372                                                         | 4.2<br>4.5                              | 57<br>57                                                       | 117<br>103                                               |                                                                              |                                                                  | .16<br>.27                                                               | .61<br>.70                                                                    | .58<br>.62                                                      | .047<br>.045                                                             | .064<br>.068                                          |
| 15-17             | 0930         | 0830           | 452                                                                | 8.1                                     | 52                                                             | 110                                                      |                                                                              |                                                                  | .35                                                                      | .84                                                                           | .68                                                             | .043                                                                     | .072                                                  |
| 17-19             | 0930         | 0830           | 457                                                                | 5.5                                     | 53                                                             | 89                                                       |                                                                              |                                                                  | .34                                                                      | .80                                                                           | .62                                                             | .060                                                                     | .082                                                  |
| 19-21             | 0930         | 1029           | 429                                                                | 6.6                                     | 48                                                             | 77                                                       |                                                                              |                                                                  | . 25                                                                     | .67                                                                           | .62                                                             | .056                                                                     | .076                                                  |
| 22-24<br>24-26    | 0840<br>0840 | 0740<br>0740   | 495<br>514                                                         | 16<br>7.4                               | 64<br>58                                                       | 93<br>117                                                |                                                                              |                                                                  | .45                                                                      | 1.0<br>.86                                                                    | .83<br>.95                                                      | .065<br>.074                                                             | .128<br>.108                                          |
| 26-27             | 1010         | 0909           | 527                                                                | 7.6                                     | 55                                                             | 100                                                      |                                                                              |                                                                  | .18                                                                      | .62                                                                           | .80                                                             | .065                                                                     | .083                                                  |
| AUG 30-           |              |                |                                                                    |                                         |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| SEP 01<br>03-05   | 0915<br>0955 | 0815<br>0855   | 325<br>521                                                         | 18<br>13                                | 58<br>50                                                       | 107<br>83                                                |                                                                              |                                                                  | .39<br>.39                                                               | .92<br>.97                                                                    | .74<br>.73                                                      | .030<br>.059                                                             | .086<br>.123                                          |
| 05-07             | 0915         | 0815           | 398                                                                | 4.7                                     | 61                                                             | 106                                                      |                                                                              |                                                                  | .80                                                                      | 1.3                                                                           | 1.1                                                             | .063                                                                     | .114                                                  |
| 07-09             | 0915         | 0815           | 346                                                                | 4.2                                     | 62                                                             | 95                                                       |                                                                              |                                                                  | .88                                                                      | 1.4                                                                           | 1.1                                                             | .083                                                                     | .127                                                  |
| 09-11             | 0835         | 0735           | 491                                                                | 7.8                                     | 61                                                             | 123                                                      |                                                                              |                                                                  | .51                                                                      | 1.3                                                                           | .88                                                             | .054                                                                     | .103                                                  |
| 12-14<br>14-16    | 0855<br>0855 | 0755<br>0755   | 359<br>394                                                         | 9.9<br>8.9                              | 50<br>52                                                       | 95<br>92                                                 |                                                                              |                                                                  | .37<br>.41                                                               | .99<br>.98                                                                    | .90<br>.73                                                      | .030<br>.029                                                             | .068<br>.078                                          |
| 16-17             | 0935         | 2035           | 916                                                                | 5.3                                     | 56                                                             | 106                                                      |                                                                              |                                                                  | .22                                                                      | .69                                                                           | .63                                                             | .029                                                                     | .061                                                  |
| 17-19             | 2135         | 0835           | 938                                                                | 5.9                                     | 67                                                             | 109                                                      |                                                                              |                                                                  | .22                                                                      | .61                                                                           | .72                                                             | .022                                                                     | .053                                                  |
| 19-21             | 1000         | 0100           | 544                                                                | 5.9                                     | 76<br>70                                                       | 126                                                      |                                                                              |                                                                  | . 25                                                                     | .67                                                                           | .71                                                             | .014                                                                     | .034                                                  |
| 21-22<br>23-24    | 0200<br>0950 | 2059<br>1750   | 500<br>420                                                         | 4.3<br>12                               | 70<br>69                                                       | 91<br>85                                                 |                                                                              |                                                                  | .30<br>.36                                                               | .74<br>.80                                                                    | .80<br>.89                                                      | .023                                                                     | .049<br>.065                                          |
| 26-27             | 0950         | 2050           | 590                                                                | 23                                      | 45                                                             | 70                                                       |                                                                              |                                                                  | .33                                                                      | .83                                                                           | .97                                                             | .023                                                                     | .062                                                  |
| SEP 30-           |              |                |                                                                    |                                         |                                                                |                                                          |                                                                              |                                                                  |                                                                          |                                                                               |                                                                 |                                                                          |                                                       |
| OCT 01            | 0945         | 1444           | 838                                                                | 11                                      | 46                                                             | 109                                                      |                                                                              |                                                                  | .10                                                                      | .50                                                                           | .69                                                             | .019                                                                     | .073                                                  |

#### Statewide Pesticide Monitoring Project

In June, 1997, the New York State Department of Environmental Conservation and the U.S. Geological Survey (USGS) began a cooperative effort to monitor pesticides in order to assess the presence and distribution of pesticides and their residues in the waters of the State. The initial monitoring effort included a statewide survey of pesticide concentrations in surface water, particularly in areas where pesticides are used and areas where surface water provides water supply. In the 2002 water year, water samples were collected from 9 public-water-supply intake sites and 3 community-water-system well sites in western New York State and analyzed for as many as 180 pesticides or pesticide degradates. Samples were analyzed for pesticide compounds using the USGS National Water Quality Laboratory (NWQL) SH2001/2010 method (Zaugg and others, 1995), NWQL SH2060 method (Furlong and others, 2001), and the Kansas District Organic Geochemistry Laboratory LCAA method (Lee and others, 2001). The pesticide schedules include selected pesticides and metabolites that are efficiently partitioned from a water sample by solid-phase extraction and are sufficiently volatile and thermally stable for analysis by gas and liquid chromatography. Results are also reported for the determination of caffeine, although not a pesticide, as part of the SH2060 analyses. Samples were filtered through a glass-fiber membrane filter with openings that are 0.7 microns in size to remove sediment and microorganisms. Therefore, all results are for compounds dissolved in water.

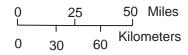
The sites shown in figures 9-10 were sampled as part of the state-wide monitoring project for pesticides. The sampling network included sites in eastern New York excluding Long Island (vol. 1) and Long Island (vol. 2), as well as those reported herein for western New York (vol. 3). Pesticide data from other sites located in eastern New York and Long Island are published in their respective volumes.

## Laboratory Reporting Levels


The data tables list the pesticides analyzed for, the unit of measure (micrograms per liter, ug/L), the USGS National Water Information System parameter code, and the reported values for concentration or Laboratory Reporting Levels (LRL). The LRL may vary for particular pesticide compounds; it provides a quantitative index that indicates uncertainty in the measurement of low concentrations. When an analyte is detected and all criteria for a positive result are met, the concentration is reported. If the concentration is quantified but is less than the LRL, an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the NWQL will identify the result with an 'E' code even though the measured value is greater than the LRL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the LRL preceded by a less-than sign (<).

#### References Cited

- Furlong, E.T., Anderson, B.D., Werner, S.L., Soliven, P.P., Coffey, L.J., and Burkhardt, M.R., 2001, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory-Determination of pesticides in water by graphitized carbon-based solid-phase extraction and high-performance liquid chromatography/mass spectrometry: U.S. Geological Survey Water-Resources Investigations Report 01-4134, 73 p.
- Lee, E.A., Kish, J.L., Zimmerman, L.R., and Thurman, E.M., 2001, Methods of Analysis by the U.S Geological Survey Organic Geochemistry Research Group- Update and Additions to the Determination of Chloroacetanilide Herbicide Degradation Compounds in Water Using High-Performance Liquid Chromatography/Mass Spectrometry: U.S. Geological Survey Open File Report 01-10, 17 p.
- Zaugg, S.D., Sandstrom, M.W., Smith, S.G., and Fehlberg, K.M., 1995, Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory - Determination of pesticides in water by C-18 solid-phase extraction and capillary-column gas chromatography with selective-ion monitoring: U.S. Geological Survey Open-File Report 95-181, 49 p.


Statewide Pesticide Monitoring Project
Monitoring at Water-Supply Intake Sites at Lakes and Reservoirs in Western New York

Raw, untreated water from 9 surface-water intake sites (fig. 9) was sampled as part of the Statewide Pesticide Monitoring Project in cooperation with New York State Department of Environmental Conservation. All samples were analyzed by the USGS for the SH2001/2010 and LCAA pesticide schedules and selected samples were also analyzed for the SH2060 schedule. Additional samples of raw water and finished water at the Leroy Reservoir intake were sampled as part of the USGS National Water Quality Assessment Program; results for the finished-water samples are not included herein. Concentrations in all samples did not exceed Federal or State maximum contaminant levels (MCLs) for drinking water for any compound.



## **EXPLANATION**

Sampling site and station number
 424237078012801



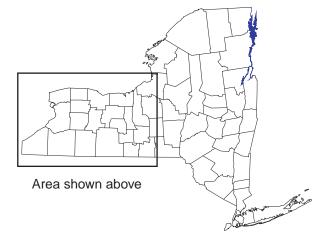



Figure 9. -- Location of public-water-supply intake sites that were sampled in western New York for pesticide analysis in water year 2001.

# ANALYSES OF SAMPLES AT WATER-QUALITY PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

# PESTICIDE ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Date                   | Time         | TER-<br>BUTHYL-<br>AZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04022) | PROPA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04024) | BUTYL-<br>ATE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04028) | SI-<br>MAZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04035) | PRO-<br>METON,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04037) | DEETHYL<br>ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | CYANA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04041) | FONOFOS<br>WATER<br>DISS<br>REC<br>(UG/L)<br>(04095) | ALPHA<br>BHC<br>DIS-<br>SOLVED<br>(UG/L)<br>(34253) | P,P' DDE DISSOLV (UG/L) (34653) | CHLOR-<br>PYRIFOS<br>DIS-<br>SOLVED<br>(UG/L)<br>(38933) | LINDANE<br>DIS-<br>SOLVED<br>(UG/L)<br>(39341) |
|------------------------|--------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|---------------------------------|----------------------------------------------------------|------------------------------------------------|
|                        | 422          | 306077380                                                                | 401 HORI                                                        | NELL RESE                                                     | RVOIR 1 WA                                                    | ATER-SUPP                                                     | LY INTAKE                                                                | , NY (LA                                                       | т 42 23 0                                            | 6N LONG (                                           | )77 38 04W                      | 1)                                                       |                                                |
| OCT<br>30<br>JAN<br>29 | 1300<br>1300 | U<br>U                                                                   | <.010<br><.010                                                  | <.002<br><.002                                                | <.011<br><.005                                                | <.01<br><.01                                                  | E.017                                                                    | <.018                                                          | <.003<br><.003                                       | <.005                                               | <.003<br><.003                  | <.005<br><.005                                           | <.004                                          |
| MAY<br>07              | 1100         |                                                                          | <.010                                                           | <.002                                                         | <.005                                                         | <.01                                                          | E.008                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
|                        | 42295        | 007630590                                                                | 1 CAYUG                                                         | A LAKE, BO                                                    | OLTON PT.                                                     | , WATER-S                                                     | UPPLY INT                                                                | AKE, NY                                                        | (LAT 42 2                                            | 9 50N LON                                           | IG 076 30                       | 59W)                                                     |                                                |
| OCT                    |              |                                                                          |                                                                 |                                                               |                                                               |                                                               |                                                                          |                                                                |                                                      |                                                     |                                 |                                                          |                                                |
| 29<br>JAN              | 1130         | Ū                                                                        | <.010                                                           | <.002                                                         | E.010                                                         | <.01                                                          | E.141                                                                    | E.013                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| 28<br>MAY              | 1130         | Ū                                                                        | <.010                                                           | <.002                                                         | .011                                                          | <.01                                                          | E.092                                                                    | E.013                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| 07<br>JUL              | 1300         |                                                                          | <.010                                                           | <.002                                                         | .010                                                          | М                                                             | E.100                                                                    | E.008                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| 23                     | 0900         |                                                                          | <.010                                                           | <.002                                                         | .015                                                          | M                                                             | E.122                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| o.com                  | 424          | 1237078012                                                               | 801 SIL                                                         | /ER LAKE V                                                    | WATER-SUP                                                     | PLY INTAK                                                     | E AT PERR                                                                | Y, NY (L                                                       | AT 42 42                                             | 37N LONG                                            | 078 01 28                       | 3W )                                                     |                                                |
| OCT<br>30              | 1030         | U                                                                        | <.010                                                           | <.002                                                         | E.006                                                         | E.01                                                          | E.061                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| JAN<br>29              | 1030         | U                                                                        | <.010                                                           | <.002                                                         | .006                                                          | E.01                                                          | E.045                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| MAY<br>07              | 0800         |                                                                          | <.010                                                           | <.002                                                         | .010                                                          | E.01                                                          | E.034                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| JUL<br>22              | 1030         |                                                                          | <.010                                                           | <.002                                                         | .013                                                          | E.01                                                          | E.064                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
|                        |              | 42461807                                                                 | 7364701                                                         | HEMLOCK I                                                     | LAKE WATER                                                    | R-SUPPLY                                                      | INTAKE, N                                                                | Y (LAT 4                                                       | 2 46 18N                                             | LONG 077                                            | 36 47W)                         |                                                          |                                                |
| JAN<br>28              | 0900         | U                                                                        | <.010                                                           | <.002                                                         | <.005                                                         | <.01                                                          | E.007                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| JUL<br>22              | 1200         |                                                                          | <.010                                                           | <.002                                                         | <.005                                                         | <.01                                                          | E.013                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| 22                     |              | 077422101                                                                |                                                                 |                                                               | OWN OF AVO                                                    |                                                               |                                                                          |                                                                |                                                      |                                                     | ONG 077 42                      |                                                          |                                                |
| OCT                    | 121337       | 077122203                                                                | 00112501                                                        | , 11111, 11                                                   | J. 01 11V                                                     | JI. 102210                                                    | 501121 1                                                                 |                                                                | (2212 12                                             | 27 3711 20                                          | 210 077 12                      | 21117                                                    |                                                |
| 30<br>JAN              | 0930         | U                                                                        | <.010                                                           | <.002                                                         | .036                                                          | <.01                                                          | E.036                                                                    | E.005                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| 29                     | 0930         | U                                                                        | <.010                                                           | <.002                                                         | .035                                                          | E.01                                                          | E.029                                                                    | E.006                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
|                        |              | 425309078                                                                | 3542701                                                         | CITY OF BU                                                    | JFFALO, LA                                                    | AKE ERIE                                                      | INTAKE, N                                                                | Y (LAT 4                                                       | 2 53 09N                                             | LONG 078                                            | 54 27W)                         |                                                          |                                                |
| OCT<br>29              | 1230         | U                                                                        | <.010                                                           | <.002                                                         | E.009                                                         | <.01                                                          | E.049                                                                    | E.011                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| JAN<br>28              | 1200         | U                                                                        | <.010                                                           | <.002                                                         | .010                                                          | <.01                                                          | E.038                                                                    | E.011                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| MAY<br>07              | 1000         |                                                                          | <.010                                                           | <.002                                                         | .014                                                          | <.01                                                          | E.036                                                                    | E.009                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
| JUL<br>22              | 1200         |                                                                          | <.010                                                           | <.002                                                         | .013                                                          | <.01                                                          | E.050                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |
|                        | 42           | 2554907625                                                               | 0201 SK                                                         | ANEATELES                                                     | LAKE WATE                                                     | ER-SUPPLY                                                     | INTAKE 1                                                                 | , NY (LA                                                       | т 42 55 4                                            | 9N LONG (                                           | )76 25 02V                      | 1)                                                       |                                                |
| JAN<br>28              | 1000         | U                                                                        | <.010                                                           | <.002                                                         | <.005                                                         | <.01                                                          | E.047                                                                    | <.018                                                          | <.003                                                | <.005                                               | <.003                           | <.005                                                    | <.004                                          |

E Estimated. M presence of material verified but not quantified. U Material specifically analyzed for but not detected.

PESTICIDE ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued

| Date             | DI-<br>ELDRIN<br>DIS-<br>SOLVED<br>(UG/L)<br>(39381) | METO-<br>LACHLOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(39415) | MALA-<br>THION,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39532) | PARA-<br>THION,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39542) | DI-<br>AZINON,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39572) | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(39632) | ALA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(46342) | ACETO-<br>CHLOR,<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(49260) | METRI-<br>BUZIN<br>SENCOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(82630) | 2,6-DI-<br>ETHYL<br>ANILINE<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82660) | TRI-<br>FLUR-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82661) | ETHAL-<br>FLUR-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82663) | PHORATE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82664) |
|------------------|------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|
|                  | 422                                                  | 3060773804                                                | 401 HORN                                               | ELL RESER                                              | VOIR 1 WA                                             | TER-SUPPL                                                     | Y INTAKE,                                                      | NY (LAT                                                        | 42 23 06                                                           | N LONG 07                                                                       | 7 38 04W)                                                                 |                                                                             |                                                                    |
| OCT<br>30<br>JAN | <.005                                                | .024                                                      | <.027                                                  | <.007                                                  | <.005                                                 | .027                                                          | <.002                                                          | <.004                                                          | <.006                                                              | <.002                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 29<br>MAY        | <.005                                                | .015                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .015                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 07               | <.005                                                | E.007                                                     | <.027                                                  | <.010                                                  | <.005                                                 | .009                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
|                  | 42295                                                | 0076305903                                                | l CAYUGA                                               | LAKE, BO                                               | LTON PT.,                                             | WATER-SU                                                      | PPLY INTA                                                      | KE, NY (                                                       | LAT 42 29                                                          | 50N LONG                                                                        | 076 30 5                                                                  | 9W)                                                                         |                                                                    |
| OCT<br>29<br>JAN | <.005                                                | .046                                                      | <.027                                                  | <.007                                                  | <.005                                                 | .130                                                          | <.002                                                          | <.004                                                          | <.006                                                              | <.002                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 28<br>MAY        | <.005                                                | .050                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .116                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 07<br>JUL        | <.005                                                | .047                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .152                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 23               | <.005                                                | .074                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .183                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
|                  | 424                                                  | 2370780128                                                | 301 SILV                                               | ER LAKE W                                              | ATER-SUPP                                             | LY INTAKE                                                     | AT PERRY                                                       | , NY (LA                                                       | т 42 42 3                                                          | 7n Long 0                                                                       | 78 01 28W                                                                 | )                                                                           |                                                                    |
| OCT<br>30<br>JAN | <.005                                                | .018                                                      | <.027                                                  | <.007                                                  | <.005                                                 | .094                                                          | <.002                                                          | <.004                                                          | <.006                                                              | <.002                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 29               | <.005                                                | .016                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .086                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| MAY<br>07        | <.005                                                | .016                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .080                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| JUL<br>22        | <.005                                                | .073                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .267                                                          | .017                                                           | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
|                  |                                                      | 42461807                                                  | 7364701                                                | HEMLOCK L                                              | AKE WATER                                             | -SUPPLY I                                                     | NTAKE, NY                                                      | (LAT 42                                                        | 46 18N L                                                           | ONG 077 3                                                                       | 6 47W)                                                                    |                                                                             |                                                                    |
| JAN<br>28<br>JUL | <.005                                                | E.010                                                     | <.027                                                  | <.010                                                  | <.005                                                 | .016                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 22               | <.005                                                | .013                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .022                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
|                  | 424937                                               | 077422101                                                 | CONESUS                                                | LAKE, TO                                               | WN OF AVO                                             | N PUBLIC-                                                     | SUPPLY IN                                                      | TAKE NY                                                        | (LAT 42 4                                                          | 9 37N LON                                                                       | G 077 42                                                                  | 21W)                                                                        |                                                                    |
| OCT<br>30<br>JAN | <.005                                                | E.012                                                     | <.027                                                  | <.007                                                  | <.005                                                 | .069                                                          | <.002                                                          | <.004                                                          | <.006                                                              | <.002                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 29               | <.005                                                | E.011                                                     | <.027                                                  | <.010                                                  | <.005                                                 | .063                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
|                  |                                                      | 425309078                                                 | 542701 C                                               | ITY OF BU                                              | FFALO, LA                                             | KE ERIE I                                                     | NTAKE, NY                                                      | (LAT 42                                                        | 53 09N L                                                           | ONG 078 5                                                                       | 4 27W)                                                                    |                                                                             |                                                                    |
| OCT<br>29        | <.005                                                | .017                                                      | <.027                                                  | <.007                                                  | <.005                                                 | .083                                                          | <.002                                                          | <.004                                                          | <.006                                                              | <.002                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| JAN<br>28        | <.005                                                | .017                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .077                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| MAY<br>07        | <.005                                                | .016                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .093                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| JUL<br>22        | <.005                                                | .018                                                      | <.027                                                  | <.010                                                  | <.005                                                 | .084                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
|                  | 42                                                   | 5549076250                                                | 0201 SKA                                               | NEATELES                                               | LAKE WATE                                             | R-SUPPLY                                                      | INTAKE 1,                                                      | NY (LAT                                                        | 42 55 49                                                           | N LONG 07                                                                       | 6 25 02W)                                                                 |                                                                             |                                                                    |
| JAN<br>28        | <.005                                                | E.009                                                     | <.027                                                  | <.010                                                  | <.005                                                 | .029                                                          | <.004                                                          | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
|                  |                                                      |                                                           |                                                        |                                                        |                                                       |                                                               |                                                                |                                                                |                                                                    |                                                                                 |                                                                           |                                                                             |                                                                    |

E Estimated.

# 266 ANALYSES OF SAMPLES AT WATER-QUALITY PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

PESTICIDE ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued

| Date                                                                                             | TER-<br>BACIL<br>WATER<br>FLITRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82665) | LIN-<br>URON<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82666) | METHYL<br>PARA-<br>THION<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82667) | EPTC<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82668) | PEB-<br>ULATE<br>WATER<br>FILTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82669) | TEBU-<br>THIURON<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82670) | MOL-<br>INATE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82671) | ETHO-<br>PROP<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82672) | BEN-<br>FLUR-<br>ALIN<br>WAT FLD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82673) | CARBO-<br>FURAN<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82674) | TER-<br>BUFOS<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82675) | PRON-<br>AMIDE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82676) | DISUL-<br>FOTON<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82677) |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                  | 422                                                                       | 230607738                                                               | 0401 HORI                                                                    | NELL RESE                                                       | RVOIR 1 W                                                                 | ATER-SUPP                                                                   | LY INTAKE                                                                | , NY (LA                                                                 | T 42 23 0                                                                 | 6N LONG C                                                                  | 077 38 041                                                               | M)                                                                        |                                                                            |
| OCT<br>30<br>JAN                                                                                 | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.002                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 29<br>MAY                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 07                                                                                               | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 422950076305901 CAYUGA LAKE, BOLTON PT., WATER-SUPPLY INTAKE, NY (LAT 42 29 50N LONG 076 30 59W) |                                                                           |                                                                         |                                                                              |                                                                 |                                                                           |                                                                             |                                                                          |                                                                          |                                                                           |                                                                            |                                                                          |                                                                           |                                                                            |
| OCT<br>29<br>JAN                                                                                 | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.002                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 28<br>MAY                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 07<br>JUL                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 23                                                                                               | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 424237078012801 SILVER LAKE WATER-SUPPLY INTAKE AT PERRY, NY (LAT 42 42 37N LONG 078 01 28W)     |                                                                           |                                                                         |                                                                              |                                                                 |                                                                           |                                                                             |                                                                          |                                                                          |                                                                           |                                                                            |                                                                          |                                                                           |                                                                            |
| OCT<br>30                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.002                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| JAN<br>29                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| MAY<br>07                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| JUL<br>22                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | .010                                                            | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 424618077364701 HEMLOCK LAKE WATER-SUPPLY INTAKE, NY (LAT 42 46 18N LONG 077 36 47W)             |                                                                           |                                                                         |                                                                              |                                                                 |                                                                           |                                                                             |                                                                          |                                                                          |                                                                           |                                                                            |                                                                          |                                                                           |                                                                            |
| JAN<br>28                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| JUL<br>22                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | .004                                                            | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
|                                                                                                  |                                                                           | 707742210                                                               |                                                                              |                                                                 | OWN OF AV                                                                 |                                                                             |                                                                          |                                                                          |                                                                           |                                                                            | ONG 077 4:                                                               | 2 21W)                                                                    |                                                                            |
| OCT                                                                                              |                                                                           |                                                                         |                                                                              |                                                                 |                                                                           |                                                                             |                                                                          |                                                                          |                                                                           |                                                                            |                                                                          |                                                                           |                                                                            |
| 30<br>JAN                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.002                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 29                                                                                               | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
|                                                                                                  |                                                                           | 42530907                                                                | 8542701                                                                      | CITY OF B                                                       | UFFALO, L                                                                 | AKE ERIE                                                                    | INTAKE, N                                                                | Y (LAT 4                                                                 | 2 53 09N                                                                  | LONG 078                                                                   | 54 27W)                                                                  |                                                                           |                                                                            |
| OCT<br>29                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.002                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| JAN<br>28                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| MAY<br>07                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| JUL<br>22                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
|                                                                                                  | 42                                                                        | 255490762                                                               | 50201 SK                                                                     | ANEATELES                                                       | LAKE WAT                                                                  | ER-SUPPLY                                                                   | INTAKE 1                                                                 | , NY (LA                                                                 | T 42 55 4                                                                 | 9N LONG (                                                                  | 76 25 021                                                                | W)                                                                        |                                                                            |
| JAN<br>28                                                                                        | <.034                                                                     | <.035                                                                   | <.006                                                                        | <.002                                                           | <.004                                                                     | <.02                                                                        | <.002                                                                    | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |

| Date             | TRIAL-<br>LATE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82678) | PRO-<br>PANIL<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82679) | CAR-<br>BARYL<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82680) | THIO-<br>BENCARB<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82681) | DCPA<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82682) | PENDI-<br>METH-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82683) | NAPROP-<br>AMIDE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82684) | PRO-<br>PARGITE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82685) | METHYL<br>AZIN-<br>PHOS<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82686) | PER-<br>METHRIN<br>CIS<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82687) | ACETO-<br>CHLOR<br>ESA<br>FLTRD<br>0.7 UM<br>GF REC<br>(UG/L)<br>(61029) | ACETO-<br>CHLOR<br>OA<br>FLTRD<br>0.7 UM<br>GF REC<br>(UG/L)<br>(61030) | ALA-<br>CHLOR<br>ESA<br>WAT FLT<br>GF 0.7U<br>REC<br>(UG/L)<br>(50009) |
|------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------|
|                  | 422                                                                       | 2306077380                                                               | 401 HORN                                                                 | ELL RESER                                                                   | VOIR 1 WA                                                       | TER-SUPPL                                                                   | Y INTAKE,                                                                   | NY (LAT                                                                    | 42 23 06                                                                    | N LONG 07                                                                  | 77 38 04W)                                                               |                                                                         |                                                                        |
| OCT<br>30<br>JAN | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.010                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
| 29<br>MAY        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       |                                                                            | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
| 07               | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | .14                                                                    |
|                  | 42295                                                                     | 007630590                                                                | 1 CAYUGA                                                                 | LAKE, BO                                                                    | LTON PT.,                                                       | WATER-SU                                                                    | PPLY INTA                                                                   | KE, NY (                                                                   | LAT 42 29                                                                   | 50N LONG                                                                   | 076 30 5                                                                 | 9W)                                                                     |                                                                        |
| OCT<br>29<br>JAN | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.010                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
| 28<br>MAY        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       |                                                                            | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
| 07               | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
| JUL<br>23        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
|                  | 424                                                                       | 1237078012                                                               | 801 SILV                                                                 | ER LAKE W                                                                   | ATER-SUPP                                                       | LY INTAKE                                                                   | AT PERRY                                                                    | , NY (LA                                                                   | T 42 42 3                                                                   | 7N LONG 0                                                                  | 78 01 28W                                                                | 1)                                                                      |                                                                        |
| OCT<br>30        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.010                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | .20                                                                    |
| JAN<br>29        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       |                                                                            | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | .19                                                                    |
| MAY<br>07        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | .16                                                                    |
| JUL<br>22        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | .15                                                                    |
|                  |                                                                           | 42461807                                                                 | 7364701                                                                  | HEMLOCK L                                                                   | AKE WATER                                                       | -SUPPLY I                                                                   | NTAKE, NY                                                                   | (LAT 42                                                                    | 46 18N L                                                                    | ONG 077 3                                                                  | 36 47W)                                                                  |                                                                         |                                                                        |
| JAN              |                                                                           |                                                                          |                                                                          |                                                                             |                                                                 |                                                                             |                                                                             |                                                                            |                                                                             |                                                                            |                                                                          |                                                                         |                                                                        |
| 28<br>JUL        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       |                                                                            | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
| 22               | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
|                  | 424937                                                                    | 7077422101                                                               | CONESUS                                                                  | LAKE, TO                                                                    | WN OF AVO                                                       | N PUBLIC-                                                                   | SUPPLY IN                                                                   | TAKE NY                                                                    | (LAT 42 4                                                                   | 9 37N LON                                                                  | IG 077 42                                                                | 21W)                                                                    |                                                                        |
| OCT<br>30<br>JAN | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.010                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | .11                                                                    |
| 29               | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       |                                                                            | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | .09                                                                    |
|                  |                                                                           | 425309078                                                                | 542701 C                                                                 | TITY OF BU                                                                  | FFALO, LA                                                       | KE ERIE I                                                                   | NTAKE, NY                                                                   | (LAT 42                                                                    | : 53 09N L                                                                  | ONG 078 5                                                                  | 64 27W)                                                                  |                                                                         |                                                                        |
| OCT<br>29<br>JAN | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.010                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
| 28               | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       |                                                                            | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
| MAY<br>07        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | .05                                                                    |
| JUL<br>22        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       | <.02                                                                       | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |
|                  | 42                                                                        | 2554907625                                                               | 0201 SKA                                                                 | NEATELES                                                                    | LAKE WATE                                                       | R-SUPPLY                                                                    | INTAKE 1,                                                                   | NY (LAT                                                                    | 42 55 49                                                                    | N LONG 07                                                                  | '6 25 02W)                                                               |                                                                         |                                                                        |
| JAN<br>28        | <.002                                                                     | <.011                                                                    | <.041                                                                    | <.005                                                                       | <.003                                                           | <.022                                                                       | <.007                                                                       |                                                                            | <.050                                                                       | <.006                                                                      | <.05                                                                     | <.05                                                                    | <.05                                                                   |

| Date              | ALA-<br>CHLOR<br>OA<br>FLTRD<br>0.7 UM<br>GF REC<br>(UG/L)<br>(61031) | DIMETH-<br>ENAMID,<br>ESA,<br>WAT FLT<br>(UG/L) | DIMETH-<br>ENAMID<br>OA,<br>WATER<br>FLT,<br>REC<br>(UG/L)<br>(62482) | FLUFEN-<br>ACET,<br>ESA,<br>WAT FLT<br>(UG/L)<br>(61952) | FLUFE-<br>NACET<br>OA,<br>WATER<br>FLT,<br>REC<br>(UG/L)<br>(62483) | METOLA-<br>CHLOR<br>ESA<br>FLIRD<br>0.7 UM<br>GF REC<br>(UG/L)<br>(61043) | METOLA- CHLOR OA FLTRD 0.7 UM GF REC (UG/L) (61044) |     |
|-------------------|-----------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------|-----|
| 4223060773        | 380401 но                                                             | RNELL RESE                                      | RVOIR 1                                                               | WATER-SUP                                                | PLY INTA                                                            | KE, NY (L                                                                 | AT 42 23 06N LONG 077 38 04W)                       |     |
| OCT<br>30<br>JAN  | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .27                                                                       | .05                                                 |     |
| 29<br>MAY         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .39                                                                       | .14                                                 |     |
| 07                | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .67                                                                       | .18                                                 | ,   |
| 4229500763<br>OCT | 305901 CA                                                             | AYUGA LAKE,                                     | BOLTON                                                                | PT., WATE                                                | R-SUPPLY                                                            | INTAKE, N                                                                 | Y (LAT 42 29 50N LONG 076 30 59W                    | )   |
| 29<br>JAN         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .42                                                                       | .19                                                 |     |
| 28<br>MAY         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .50                                                                       | .20                                                 |     |
| 07<br>JUL         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .49                                                                       | .21                                                 |     |
| 23                | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .46                                                                       | .20                                                 |     |
| 4242370780        | )12801 SI                                                             | LVER LAKE                                       | WATER-SU                                                              | PPLY INTA                                                | KE AT PEI                                                           | RRY, NY (                                                                 | LAT 42 42 37N LONG 078 01 28W)                      |     |
| OCT<br>30<br>JAN  | .05                                                                   | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .92                                                                       | .34                                                 |     |
| 29<br>MAY         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .90                                                                       | .37                                                 |     |
| 07<br>JUL         | .05                                                                   | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | 1.07                                                                      | .41                                                 |     |
| 22                | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | 1.07                                                                      | . 44                                                |     |
| 4246180773        | 364701 HE                                                             | MLOCK LAKE                                      | WATER-S                                                               | UPPLY INT                                                | AKE, NY                                                             | (LAT 42 4                                                                 | 5 18N LONG 077 36 47W)                              |     |
| JAN<br>28         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .11                                                                       | <.05                                                |     |
| JUL<br>22         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .10                                                                       | <.05                                                |     |
| 4249370774        | 122101 CC                                                             | NESUS LAKE                                      | , TOWN O                                                              | F AVON PU                                                | BLIC-SUPI                                                           | PLY INTAKE                                                                | NY (LAT 42 49 37N LONG 077 42 2                     | 1W) |
| OCT               | . 05                                                                  | . 05                                            | . 05                                                                  | . 05                                                     | . 05                                                                | 1.0                                                                       | .09                                                 |     |
| 30<br>JAN         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .19                                                                       |                                                     |     |
| 29                | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .19                                                                       | .06                                                 |     |
|                   | 542701 C1                                                             | .IY OF BUFF                                     | ALO, LAK                                                              | E EKIE IN.                                               | IAKE, NY                                                            | (LAI 42                                                                   | 53 09N LONG 078 54 27W)                             |     |
| OCT<br>29<br>JAN  | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .08                                                                       | <.05                                                |     |
| 28                | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .10                                                                       | .05                                                 |     |
| MAY<br>07<br>JUL  | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .11                                                                       | .07                                                 |     |
| 22                | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .11                                                                       | .10                                                 |     |
| 4255490762        | 250201 SK                                                             | CANEATELES                                      | LAKE WAT                                                              | ER-SUPPLY                                                | INTAKE 1                                                            | L, NY (LA                                                                 | Г 42 55 49N LONG 076 25 02W)                        |     |
| JAN<br>28         | <.05                                                                  | <.05                                            | <.05                                                                  | <.05                                                     | <.05                                                                | .05                                                                       | <.05                                                |     |

| Date                   | Time                                                 | TER-<br>BUTHYL-<br>AZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04022) | PROPA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04024) | BUTYL-<br>ATE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04028) | SI-<br>MAZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04035) | PRO-<br>METON,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04037) | DEETHYL<br>ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | CYANA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04041) | FONOFOS<br>WATER<br>DISS<br>REC<br>(UG/L)<br>(04095)               | ALPHA<br>BHC<br>DIS-<br>SOLVED<br>(UG/L)<br>(34253)                             | P,P'<br>DDE<br>DISSOLV<br>(UG/L)<br>(34653)                               | CHLOR-<br>PYRIFOS<br>DIS-<br>SOLVED<br>(UG/L)<br>(38933)                    | LINDANE<br>DIS-<br>SOLVED<br>(UG/L)<br>(39341)                     |
|------------------------|------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|
|                        | 431729                                               | 077372701                                                                | MONROE                                                          | COUNTY WA                                                     | TER AUTH.                                                     | LAKE ONT                                                      | ARIO INTA                                                                | KE, NY (                                                       | LAT 43 17                                                          | 29N LONG                                                                        | 077 37 2                                                                  | 7W)                                                                         |                                                                    |
| OCT<br>29<br>JAN       | 1400                                                 | U                                                                        | <.010                                                           | <.002                                                         | E.007                                                         | <.01                                                          | E.055                                                                    | .018                                                           | <.003                                                              | <.005                                                                           | <.003                                                                     | <.005                                                                       | <.004                                                              |
| 28                     | 1400                                                 | U                                                                        | <.010                                                           | <.002                                                         | .009                                                          | <.01                                                          | E.041                                                                    | E.014                                                          | <.003                                                              | <.005                                                                           | <.003                                                                     | <.005                                                                       | <.004                                                              |
| MAY<br>07<br>JUL       | 1200                                                 |                                                                          | <.010                                                           | <.002                                                         | .011                                                          | <.01                                                          | E.038                                                                    | <.018                                                          | <.003                                                              | <.005                                                                           | <.003                                                                     | <.005                                                                       | <.004                                                              |
| 22                     | 1300                                                 |                                                                          | <.010                                                           | <.002                                                         | .011                                                          | M                                                             | E.052                                                                    | .019                                                           | <.003                                                              | <.005                                                                           | <.003                                                                     | <.005                                                                       | <.004                                                              |
|                        | 425                                                  | 3380775831                                                               | .01 LERO                                                        | Y RESERVO                                                     | OIR, RAW W                                                    | ATER SUPP                                                     | LY, LEROY                                                                | , NY (LA                                                       | AT 42 53 3                                                         | 8N LONG 0                                                                       | 77 58 31W                                                                 | 1)                                                                          |                                                                    |
| OCT<br>29<br>29        | 1020<br>1025                                         | U                                                                        | <.010<br><.010                                                  | <.002<br><.002                                                | <.011<br><.011                                                | <.01<br><.01                                                  | E.047<br>E.045                                                           | <.018<br><.018                                                 | <.003<br><.003                                                     | <.005<br><.005                                                                  | <.003<br><.003                                                            | <.005<br><.005                                                              | <.004<br><.004                                                     |
| JAN<br>28              | 1000                                                 | U                                                                        | <.010                                                           | <.002                                                         | <.005                                                         | <.01                                                          | E.029                                                                    | <.018                                                          | <.003                                                              | <.005                                                                           | <.003                                                                     | <.005                                                                       | <.004                                                              |
| MAY<br>07              | 0600                                                 |                                                                          | <.010                                                           | <.002                                                         | <.005                                                         | <.01                                                          | E.033                                                                    | <.018                                                          | <.003                                                              | <.005                                                                           | <.003                                                                     | <.005                                                                       | <.004                                                              |
| JUN<br>11              | 0810                                                 |                                                                          | <.010                                                           | <.002                                                         | <.005                                                         | <.01                                                          | .040                                                                     | <.018                                                          | <.003                                                              | <.005                                                                           | <.003                                                                     | <.005                                                                       | <.004                                                              |
| JUL<br>22              | 1000                                                 |                                                                          | <.010                                                           | <.002                                                         | <.005                                                         | <.01                                                          | E.081                                                                    | <.018                                                          | <.003                                                              | <.005                                                                           | <.003                                                                     | <.005                                                                       | <.004                                                              |
| Date                   | DI-<br>ELDRIN<br>DIS-<br>SOLVED<br>(UG/L)<br>(39381) | METO-<br>LACHLOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(39415)                | MALA-<br>THION,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39532)          | PARA-<br>THION,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39542)        | DI-<br>AZINON,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39572)         | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(39632) | ALA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(46342)           | ACETO-<br>CHLOR,<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(49260) | METRI-<br>BUZIN<br>SENCOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(82630) | 2,6-DI-<br>ETHYL<br>ANILINE<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82660) | TRI-<br>FLUR-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82661) | ETHAL-<br>FLUR-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82663) | PHORATE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82664) |
|                        | 431729                                               | 077372701                                                                | MONROE                                                          | COUNTY WA                                                     | TER AUTH.                                                     | LAKE ONT                                                      | ARIO INTA                                                                | KE, NY (                                                       | LAT 43 17                                                          | 29N LONG                                                                        | 077 37 2                                                                  | 7W)                                                                         |                                                                    |
| OCT<br>29<br>JAN       | <.005                                                | .015                                                                     | <.027                                                           | <.007                                                         | <.005                                                         | .079                                                          | <.002                                                                    | <.004                                                          | <.006                                                              | <.002                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 28                     | <.005                                                | .017                                                                     | <.027                                                           | <.010                                                         | <.005                                                         | .076                                                          | <.004                                                                    | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| MAY<br>07<br>JUL       | <.005                                                | .014                                                                     | <.027                                                           | <.010                                                         | <.005                                                         | .092                                                          | <.004                                                                    | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 22                     | <.005                                                | .017                                                                     | <.027                                                           | <.010                                                         | <.005                                                         | .083                                                          | <.004                                                                    | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
|                        | 425                                                  | 3380775831                                                               | .01 LERO                                                        | Y RESERVO                                                     | IR, RAW W                                                     | ATER SUPP                                                     | LY, LEROY                                                                | , NY (LA                                                       | AT 42 53 3                                                         | 8N LONG 0                                                                       | 77 58 31W                                                                 | 1)                                                                          |                                                                    |
| OCT<br>29<br>29<br>JAN | <.005<br><.005                                       | E.008<br>E.008                                                           | <.027<br><.027                                                  | <.007<br><.007                                                | <.005<br><.005                                                | .086                                                          | <.002<br><.002                                                           | <.004<br><.004                                                 | <.006<br><.006                                                     | <.002<br><.002                                                                  | <.009<br><.009                                                            | <.009<br><.009                                                              | <.011<br><.011                                                     |
| 28<br>MAY              | <.005                                                | E.008                                                                    | <.027                                                           | <.010                                                         | <.005                                                         | .061                                                          | <.004                                                                    | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 07<br>JUN              | <.005                                                | .026                                                                     | <.027                                                           | <.010                                                         | <.005                                                         | .043                                                          | <.004                                                                    | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 11<br>JUL              | <.005                                                | .070                                                                     | <.027                                                           | <.010                                                         | <.005                                                         | .077                                                          | .011                                                                     | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |
| 22                     | <.005                                                | .140                                                                     | <.027                                                           | <.010                                                         | <.005                                                         | .234                                                          | .013                                                                     | <.006                                                          | <.006                                                              | <.006                                                                           | <.009                                                                     | <.009                                                                       | <.011                                                              |

E Estimated. M presence of material verified but not quantified. U Material specifically analyzed for but not detected.

| Date             | TER-BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)                        | LIN-<br>URON<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82666)   | METHYL<br>PARA-<br>THION<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82667) | EPTC<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82668)             | PEB-<br>ULATE<br>WATER<br>FILTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82669) | TEBU-<br>THIURON<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82670) | MOL-<br>INATE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82671)    | ETHO-<br>PROP<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82672) | BEN-<br>FLUR-<br>ALIN<br>WAT FLD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82673) | CARBO-<br>FURAN<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82674) | TER-<br>BUFOS<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82675) | PRON-<br>AMIDE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82676) | DISUL-<br>FOTON<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82677) |
|------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                  | 431729                                                                    | 9077372701                                                                | MONROE                                                                       | COUNTY WA                                                                   | ATER AUTH                                                                 | . LAKE ON                                                                   | TARIO INT                                                                   | AKE, NY                                                                  | (LAT 43 1                                                                 | 7 29N LON                                                                  | IG 077 37                                                                | 27W)                                                                      |                                                                            |
| OCT<br>29<br>JAN | <.034                                                                     | <.035                                                                     | <.006                                                                        | <.002                                                                       | <.002                                                                     | <.02                                                                        | <.002                                                                       | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 28<br>MAY        | <.034                                                                     | <.035                                                                     | <.006                                                                        | <.002                                                                       | <.004                                                                     | <.02                                                                        | <.002                                                                       | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 07<br>JUL        | <.034                                                                     | <.035                                                                     | <.006                                                                        | <.002                                                                       | <.004                                                                     | <.02                                                                        | <.002                                                                       | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 22               | <.034                                                                     | <.035                                                                     | <.006                                                                        | <.002                                                                       | <.004                                                                     | <.02                                                                        | <.002                                                                       | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
|                  | 425                                                                       | 338077583                                                                 | 3101 LERG                                                                    | Y RESERVO                                                                   | DIR, RAW W                                                                | NATER SUPI                                                                  | PLY, LERO                                                                   | Y, NY (L                                                                 | AT 42 53                                                                  | 38N LONG                                                                   | 077 58 31                                                                | LW)                                                                       |                                                                            |
| OCT              |                                                                           |                                                                           |                                                                              |                                                                             |                                                                           |                                                                             |                                                                             |                                                                          |                                                                           |                                                                            |                                                                          |                                                                           |                                                                            |
| 29<br>29         | <.034<br><.034                                                            | <.035<br><.035                                                            | <.006<br><.006                                                               | <.002<br><.002                                                              | <.002<br><.002                                                            | <.02<br><.02                                                                | <.002<br><.002                                                              | <.005<br><.005                                                           | <.010<br><.010                                                            | <.020<br><.020                                                             | <.02<br><.02                                                             | <.004<br><.004                                                            | <.02<br><.02                                                               |
| JAN<br>28<br>MAY | <.034                                                                     | <.035                                                                     | <.006                                                                        | <.002                                                                       | <.004                                                                     | <.02                                                                        | <.002                                                                       | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| 07               | <.034                                                                     | <.035                                                                     | <.006                                                                        | <.002                                                                       | <.004                                                                     | <.02                                                                        | <.002                                                                       | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| JUN<br>11        | <.034                                                                     | <.035                                                                     | <.006                                                                        | <.002                                                                       | <.004                                                                     | <.02                                                                        | <.002                                                                       | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| JUL<br>22        | <.034                                                                     | <.035                                                                     | <.006                                                                        | .014                                                                        | <.004                                                                     | <.02                                                                        | <.002                                                                       | <.005                                                                    | <.010                                                                     | <.020                                                                      | <.02                                                                     | <.004                                                                     | <.02                                                                       |
| Date             | TRIAL-<br>LATE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82678) | PRO-<br>PANIL<br>WATER<br>FLITRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82679) | CAR-<br>BARYL<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82680)     | THIO-<br>BENCARB<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82681) | DCPA<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82682)           | PENDI-<br>METH-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82683) | NAPROP-<br>AMIDE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82684) | (UG/L)<br>(82685)                                                        | (UG/L)<br>(82686)                                                         | (UG/L)<br>(82687)                                                          | (UG/L)<br>(61029)                                                        | ACETO-<br>CHLOR<br>OA<br>FLTRD<br>0.7 UM<br>GF REC<br>(UG/L)<br>(61030)   | ALA-<br>CHLOR<br>ESA<br>WAT FLT<br>GF 0.7U<br>REC<br>(UG/L)<br>(50009)     |
|                  | 431729                                                                    | 9077372701                                                                | MONROE                                                                       | COUNTY WA                                                                   | ATER AUTH                                                                 | . LAKE ON                                                                   | TARIO INT                                                                   | AKE, NY                                                                  | (LAT 43 1                                                                 | 7 29N LON                                                                  | IG 077 37                                                                | 27W)                                                                      |                                                                            |
| OCT<br>29        | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.010                                                                       | <.007                                                                       | <.02                                                                     | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | <.05                                                                       |
| JAN<br>28<br>MAY | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.022                                                                       | <.007                                                                       |                                                                          | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | <.05                                                                       |
| 07<br>JUL        | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.022                                                                       | <.007                                                                       | <.02                                                                     | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | <.05                                                                       |
| 22               | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.022                                                                       | <.007                                                                       | <.02                                                                     | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | .05                                                                        |
|                  | 425                                                                       | 5338077583                                                                | 3101 LERG                                                                    | OY RESERVO                                                                  | DIR, RAW W                                                                | NATER SUPI                                                                  | PLY, LERO                                                                   | Y, NY (L                                                                 | AT 42 53                                                                  | 38N LONG                                                                   | 077 58 31                                                                | LW)                                                                       |                                                                            |
| OCT<br>29        | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.010                                                                       | <.007                                                                       | <.02                                                                     | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | .35                                                                        |
| 29<br>29<br>JAN  | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.010                                                                       | <.007                                                                       | <.02                                                                     | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | .34                                                                        |
| 28<br>MAY        | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.022                                                                       | <.007                                                                       |                                                                          | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | .55                                                                        |
| 07<br>JUN        | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.022                                                                       | <.007                                                                       | <.02                                                                     | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | 2.14                                                                       |
| 11<br>JUL        | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.022                                                                       | <.007                                                                       | <.02                                                                     | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | 2.02                                                                       |
| 22               | <.002                                                                     | <.011                                                                     | <.041                                                                        | <.005                                                                       | <.003                                                                     | <.022                                                                       | <.007                                                                       | <.02                                                                     | <.050                                                                     | <.006                                                                      | <.05                                                                     | <.05                                                                      | 1.49                                                                       |

|            | ALA-     |            | DIMETH-   |                   | FLUFE-    | METOLA- |            |          |                |      |
|------------|----------|------------|-----------|-------------------|-----------|---------|------------|----------|----------------|------|
|            | CHLOR    | DIMENT     | ENAMID    |                   | NACET     | CHLOR   | CHLOR      |          |                |      |
|            | OA       |            |           |                   | OA,       |         | OA         |          |                |      |
|            | FLTRD    |            |           | ACET,             |           |         | FLTRD      |          |                |      |
| D. L.      | 0.7 UM   |            |           | ESA,              |           | 0.7 UM  | 0.7 UM     |          |                |      |
| Date       | GF REC   | WAT FLT    |           | WAT FLT           |           | GF REC  | GF REC     |          |                |      |
|            |          |            |           | (UG/L)<br>(61952) |           |         | (UG/L)     |          |                |      |
|            | (01031)  | (01931)    | (02402)   | (01952)           | (02403)   | (01043) | (61044)    |          |                |      |
| 4317290773 | 72701 MO | NROE COUN  | TY WATER  | AUTH. LAKE        | ONTARIO   | INTAKE, | NY (LAT    | 43 17 29 | N LONG 077 37  | 27W) |
| OCT        |          |            |           |                   |           |         |            |          |                |      |
| 29         | <.05     | <.05       | <.05      | <.05              | <.05      | .09     | .06        |          |                |      |
| JAN        |          |            |           |                   |           |         |            |          |                |      |
| 28         | <.05     | <.05       | <.05      | <.05              | <.05      | .12     | .06        |          |                |      |
| MAY        |          |            |           |                   |           |         |            |          |                |      |
| 07         | <.05     | <.05       | <.05      | <.05              | <.05      | .14     | .09        |          |                |      |
| JUL        |          |            |           |                   |           |         |            |          |                |      |
| 22         | <.05     | <.05       | <.05      | <.05              | <.05      | .11     | .08        |          |                |      |
| 4253380775 | 83101 LE | ROY RESERV | VOIR, RAW | WATER SUE         | PPLY, LER | OY, NY  | (LAT 42 53 | 38N LON  | IG 077 58 31W) |      |
| OCT        |          |            |           |                   |           |         |            |          |                |      |
| 29         | .09      | <.05       | <.05      | <.05              | <.05      | 2.11    | .92        |          |                |      |
| 29         | .08      | <.05       | <.05      | <.05              | <.05      | 1.78    | .83        |          |                |      |
| JAN        |          |            |           |                   |           |         |            |          |                |      |
| 28         | .21      | <.05       | <.05      | <.05              | <.05      | 1.82    | .81        |          |                |      |
| MAY        |          |            |           |                   |           |         |            |          |                |      |
| 07         | . 48     | <.05       | <.05      | <.05              | <.05      | 4.48    | 1.32       |          |                |      |
| JUN        |          |            |           |                   |           |         |            |          |                |      |
| 11         | .58      | <.05       | <.05      | <.05              | <.05      | 2.83    | 1.07       |          |                |      |
| JUL        | . 29     | . 05       | <.05      | <.05              | - 05      | 0.01    | 1 02       |          |                |      |
| 22         | . 29     | <.05       | <.05      | <.05              | <.05      | 2.91    | 1.03       |          |                |      |

23.04

23.85

22.34

23.10

23.52

22.41

MEAN

MAX MIN

24.24

24.39

23.91

24.19

24.34

24.02

#### BROOME COUNTY

 $420657075583501. \ Local number, \ Bm \ 121. \\ LOCATION.--Lat \ 42^{\circ}06'57", \ long \ 75^{\circ}58'35", \ Hydrologic Unit \ 02050103, \ at \ Camden \ and \ Main \ Streets, \ Johnson \ City. \ Owner: \ U.S.$ Geological Survey

AOUIFER. -- Unconfined aguifer in sand of Pleistocene age.

AQUITER. --Onconfined adulter in said of Freistocene age.

WELL CHARACTERISTICS. --Drilled observation well, diameter 6 inch, depth 53 ft, cased to 53 ft, open end.

INSTRUMENTATION. --Electronic data recorder--hourly; monthly measurements by USGS personnel.

DATUM. --Elevation of land-surface datum is 833.62 ft above NGVD of 1929. Measuring point: Top of shelter base, 3.42 ft above land-surface datum.

REMARKS.--Well cleaned from 46 ft to original depth on Oct. 19, 1970. Water level affected by floods of Susquehanna River and by pumping from municipal well field 1,100 ft south.

PERIOD OF RECORD.--March 1947 to August 1995, December 1996 to July 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD. --Maximum water-level depth below land surface, 33.47 ft below land-surface datum, Sept. 23, 1965; minimum water-level depth below land surface, 9.69 ft below land-surface datum, Apr. 12, 1993. EXTREMES FOR CURRENT PERIOD.--October 2001 to July 2002: Maximum water-level depth below land surface, 24.40 ft, Oct. 16; minimum water-level depth below land surface, 17.86 ft, May 20.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV DEC JAN FEB MAY JUN AUG SEP 23.93 24.28 23.85 22.63 22.08 21.67 18.35 19.87 20.72 20.16 ---21.75 21.70 2 23.91 24.25 22.69 21.49 18.50 20.05 19.96 20.87 23.69 \_\_\_ \_\_\_ 3 23 95 24.22 23 64 22 78 20.92 18 65 20.00 20 06 21 05 24.04 24.17 23.67 22.86 20.66 21.25 4 21.64 18.86 20.04 20.19 ---5 20.10 24.12 22.89 20.65 21.57 19.04 21.43 6 24.19 24.15 23.60 22.93 20.74 21.52 19.22 20.19 20.11 21.53 ------24.25 24.13 23.55 23.00 20.83 21.53 19.41 20.26 19.02 21.56 21.56 8 24.22 24.11 23.50 23.06 20.96 19.58 20.36 18.36 21.66 24.10 23.46 23.10 21.10 21.63 19.74 21.78 24.16 20.40 18.47 10 24.22 24.09 23.43 23.15 21.22 21.70 19.90 20.41 18.75 21.92 11 24.31 24.12 23.41 23.17 20.96 21.69 20.01 20.46 19.05 22.03 24.33 24.34 24.17 24.19 23.18 23.16 20.24 21.62 21.57 20.12 20.45 19.32 19.52 22.08 22.14 12 23.41 \_\_\_ \_\_\_ ------13 23.39 14 24.36 24.19 23.42 23.16 19.89 21.57 20.34 19.63 19.66 22.26 15 24.38 24.19 23.42 23.21 19.99 21.59 20.28 18.85 19.55 22 40 \_\_\_ \_\_\_ 16 24.39 24.19 23.34 23.31 20.09 21.63 20.02 18.41 19.02 17 24.38 24.34 24.22 24.26 23.24 23.03 23.35 23.40 20.19 21.74 21.81 19.96 20.13 18.53 18.47 18.56 22.67 22.80 \_\_\_ \_\_\_ 18 18.49 \_\_\_ 23.40 18.70 24.28 24.26 21.83 20.33 18.01 20 24.25 24.23 22.49 23.43 20.53 21.81 20.45 17.87 19.00 23.07 \_\_\_ \_\_\_ 21 24.25 24.19 22.42 20.70 21.72 20.50 18.02 19.28 24.19 24.22 22.37 22.34 23.52 23.50 20.89 21.63 21.56 20.52 20.59 18.25 18.44 19.54 19.77 23.24 23.30 22 24.28 \_\_\_ \_\_\_ 23 24.28 24 24.25 24.25 22.39 23.45 21.07 21.54 20.71 19.92 23.38 25 24 28 24 31 22.38 23.35 21.21 21.61 20 81 18.98 20 05 23 46 ---\_\_\_ 26 24.33 24.34 22.35 23.14 21.33 21.60 20.87 19.17 20.21 24.35 24.33 24.30 24.22 22.34 22.38 23.00 22.93 21.46 21.56 20.89 19.34 19.49 27 20 52 20.38 \_\_\_ \_\_\_ \_\_\_ 28 19.06 20.42 20.51 29 24.28 24.13 22.44 22.85 18.38 19.53 20.50 ---\_\_\_ \_\_\_ 30 24 29 24 02 22 49 22 72 18 28 20 27 19 67 20 60 \_\_\_ \_\_\_ 18.29

21.20

21.83

18.28

19.99

20.89

18.35

20.80

22.08

19.89

19.43 20.46

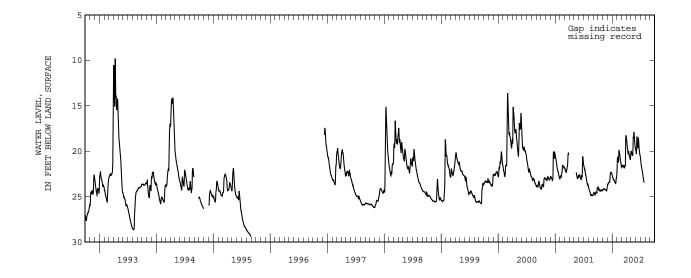
17.87

19.55

20.60

18.36

---


\_\_\_

---

---

---

---



#### 273 GROUND-WATER LEVELS

#### BROOME COUNTY--Continued

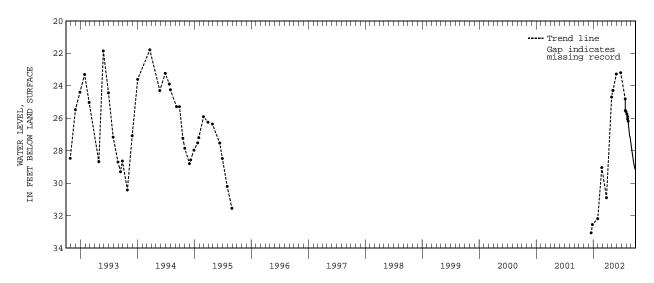
421138075511301. Local number, Bm 128.
LOCATION.--Lat 42°11'38", long 75°51'13", Hydrologic Unit 02050102, at end of Jeffery Drive, on Chenango Forks School District property at Kattelville. Owner: U.S. Geological Survey.

AQUIFER.--Unconfined aquifer in sand and gravel of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 inch, depth 53 ft, cased to 48.5 ft, screened 48.5 ft to 53 ft.
INSTRUMENTATION.--Electronic data recorder--hourly; monthly measurements by USGS personnel.

DATUM. --Elevation of land-surface datum is 908.58 ft above NGVD of 1929. Measuring point: Double file mark on top of coupling, 3.20 ft above land-surface datum.

REMARKS.--Water level may be affected by pumping in nearby village and school wells.

PERIOD OF RECORD.--September 1980 to August 1995 and December 2001 to September 2002. Records for September 1980 to February 1982 are unpublished and available in file of the Geological Survey.


EXTREMES FOR PERIOD OF RECORD.—Maximum measured water-level depth below land surface, 33.05, Dec. 19, 2001; minimum measured water-level depth below land surface, 19.17 ft, Apr. 16, 1984.

EXTREMES FOR CURRENT PERIOD.—December 2001 to September 2002: Maximum measured water-level depth below land surface, 33.05 ft,

Dec. 19; minimum measured water-level depth below land surface, 23.19 ft, June 27.

|      | DEPTH | BELOW I | LAND SURFACE | (WATER |        | (FEET), WA |        | OCTOBER 2 | 2001 TO SI | EPTEMBER 2 | 2002   |       |
|------|-------|---------|--------------|--------|--------|------------|--------|-----------|------------|------------|--------|-------|
| DAY  | OCT   | NOV     | DEC          | JAN    | FEB    | MAR        | APR    | MAY       | JUN        | JUL        | AUG    | SEP   |
| 1    |       |         |              |        |        |            |        |           |            |            |        | 27.65 |
| 2    |       |         |              |        |        |            |        |           |            |            |        | 27.70 |
| 3    |       |         |              |        |        |            |        |           |            |            |        | 27.77 |
| 4    |       |         |              |        |        |            |        |           |            |            |        | 27.83 |
| 5    |       |         |              |        |        |            |        |           |            |            | z25.73 | 27.90 |
| 6    |       |         |              |        |        |            |        |           |            |            |        | 27.97 |
| 7    |       |         |              |        |        |            |        | z24.28    |            |            |        | 28.04 |
| 8    |       |         |              |        |        |            |        | z24.28    |            |            |        | 28.11 |
| 9    |       |         |              |        |        |            |        |           |            |            | z26.03 | 28.18 |
| 10   |       |         |              |        |        |            |        |           |            |            | z25.89 | 28.24 |
| 11   |       |         |              |        |        |            |        |           |            |            |        | 28.30 |
| 12   |       |         |              |        |        |            |        |           |            |            |        | 28.39 |
| 13   |       |         |              |        |        |            |        |           |            |            | 26.17  | 28.45 |
| 14   |       |         |              |        |        |            |        |           |            |            | 26.28  | 28.52 |
| 15   |       |         |              |        |        |            |        |           |            |            | 26.38  | 28.58 |
| 16   |       |         |              |        |        |            |        |           |            |            | 26.48  | 28.64 |
| 17   |       |         |              |        |        |            |        |           |            |            | 26.58  | 28.70 |
| 18   |       |         |              |        |        |            |        |           |            |            | 26.65  | 28.76 |
| 19   |       |         | z33.05       |        |        |            |        |           |            |            | 26.74  | 28.82 |
| 20   |       |         |              |        |        |            |        |           |            |            | 26.86  | 28.88 |
| 21   |       |         |              |        |        |            |        |           |            |            | 26.97  | 28.95 |
| 22   |       |         |              |        |        |            |        |           |            |            | 27.08  | 29.01 |
| 23   |       |         |              |        |        |            |        |           |            |            | 27.11  | 28.98 |
| 24   |       |         |              |        |        |            |        |           |            |            | 27.12  | 29.02 |
| 25   |       |         |              |        | z29.03 |            |        |           |            | z24.80     | 27.14  | 29.08 |
| 26   |       |         |              |        |        |            |        |           |            | z25.52     | 27.22  | 29.12 |
| 27   |       |         | z32.54       |        |        | z30.89     |        |           | z23.19     |            | 27.30  | 29.12 |
| 28   |       |         |              |        |        |            |        |           |            |            | 27.37  | 29.09 |
| 29   |       |         |              |        |        |            | z24.69 | z23.27    |            |            | 27.44  | 29.13 |
| 30   |       |         | z            | 32.18  |        |            |        |           |            | z25.58     | 27.50  | 29.17 |
| 31   |       |         |              |        |        |            |        |           |            |            | 27.58  |       |
| MEAN |       |         |              |        |        |            |        |           |            |            |        | 28.54 |
| MAX  |       |         |              |        |        |            |        |           |            |            |        | 29.17 |
| MIN  |       |         |              |        |        |            |        |           |            |            |        | 27.65 |

z Measured by USGS personnel.

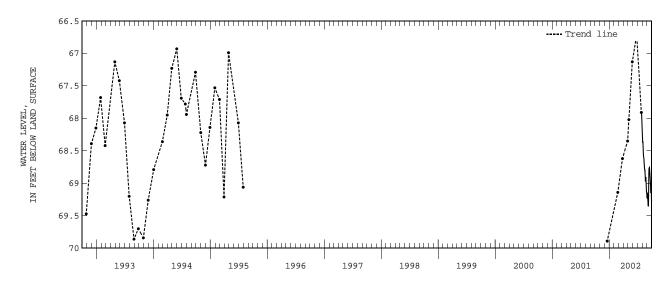


#### BROOME COUNTY--Continued

Transportation.

Transportation.
AQUIFER.--Shales of Middle to Upper Devonian age.
WELL CHARACTERISTICS.--Drilled water-supply well, diameter 6 inch, depth approximately 252 ft.
INSTRUMENTATION.--Electronic data recorder--hourly; monthly measurements by USGS personnel.
DATUM.--Elevation of land-surface datum is 1105.75 ft above NGVD of 1929. Measuring point: Top of coupling, 2.00 ft above land-surface datum.

REMARKS.--Well drilled by New York State Department of Transportation, originally intended as water-supply well for proposed rest area on Interstate Highway I-81.
PERIOD OF RECORD.--November 1985 to August 1995 and December 2001 to September 2002.


EXTREMES FOR PERIOD OF RECORD. --Maximum measured water-level depth below land surface, 75.83 ft, Nov. 1, 1985; minimum measured water-level depth below land surface, 66.71 ft, June 26, 2002.

EXTREMES FOR CURRENT PERIOD. --December 2001 to September 2002: Maximum measured water-level depth below land surface, 69.89 ft,

Dec. 19; minimum measured water-level depth below land surface, 66.71 ft, June 26. DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB APR MAY JUN AUG SEP 68.21 69.21 1 ------------2 ---69.15 68.26 \_\_\_ ---\_\_\_ ---\_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ 3 68.34 69.16 68.37 4 ------------------69.18 5 69.23 6 68.43 69.27 -----------------------------------z68.02 68.48 69.30 8 ---68.56 69.34 68.59 69.36 10 69.29 68.60 11 68.62 69.06 12 13 ---68.65 68.70 \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ 68.86 ------\_\_\_ ------------------68.78 68.77 14 68.72 15 \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ 68.75 68.76 16 68.78 68.76 17 \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ 68.80 68.80 68.81 68.86 18 -----------------z69.89 19 68.85 20 \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ 68.89 68.93 21 68.97 68.97 68.95 68.97 69.00 69.04 22 \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ 23 ---\_\_\_ \_\_\_ ---24 25 \_\_\_ \_\_\_ \_\_\_ \_\_\_ 269 14 \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ 68.95 69.15 z66.71 z67.91 26 69.02 69.14 \_\_\_ 67.92 67.94 69.09 69.14 69.04 69.17 27 \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ z68.62 \_\_\_ 28 29 --------z68.35 67.13 68.00 69.13 69.26 68 07 69.16 30 \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ \_\_\_ 69 27 31 68.15 69.23 69.07 MEAN ------------------------------68.75 ------\_\_\_ ---69.23 69.36 MAX MIN ---------68.21 68.76

 ${\tt z}$  Measured by USGS personnel.



# CATTARAUGUS COUNTY

 $420530078445201. \ Local number, \ Ct \ 121. \\ LOCATION.--Lat \ 42^{\circ}05'30", \ long \ 78^{\circ}44'52", \ Hydrologic \ Unit \ 05010001, \ near \ Red \ House. \ Owner: \ New \ York \ State \ Department \ of \ New \ New$ Environmental Conservation.

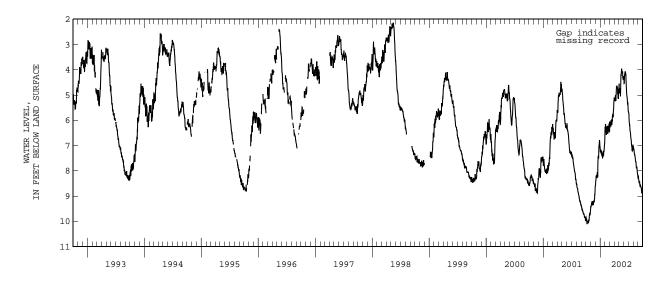
ENVIRONMENTAL CONSERVATION.
AQUIFER. --Confined aquifer in sand and gravel of Pleistocene age.

WELL CHARACTERISTICS. --Drilled unused well, diameter 6 inch, depth 53 ft, cased to 53 ft, open end.

INSTRUMENTATION. --Electronic data recorder --30 minute; monthly measurements by USGS personnel.

DATUM. --Elevation of land-surface datum is 1,467.08 ft above NGVD of 1929. Measuring point: Top of casing, 0.28 ft above land-surface datum, reset to 2.29 ft above land-surface datum, Apr. 3, 1997.

REMARKS. --Well is in a New York State owned and operated campground area. Extreme low water levels occurred from 1969 to 1979 to the effect of pumping at the campground area. A central water system for the campground utilizing a well about 1.5


REMARKS.--Well is in a New York State owned and operated campground area. Extreme low water levels occurred from 1969 to 1979 due to the effect of pumping at the campground area. A central water system for the campground, utilizing a well about 1.5 mi from the observation well was put in operation in 1980.

PERIOD OF RECORD.--September 1950 to current year. Prior to Mar. 5, 1990, weekly float tape readings by observer.

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 34.87 ft, Nov. 21, 1972; minimum measured water-level depth below land surface, 0.97 ft, June 26, 1989.

EXTREMES FOR CURRENT YEAR.--Maximum water-level depth below land surface, 10.13 ft, Oct. 8, 15, 16; minimum water-level depth below land surface, 3.93 ft, May 18.

|                                  | DEPTI                                        | H BELOW L                            | AND SURFACE                                  | (WATER                                       |                          | FEET), WAT<br>MEAN VAI               |                                      | OCTOBER 20                                   | 001 TO SEI                           | PTEMBER 20                                   | 002                                          |                                      |
|----------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|
| DAY                              | OCT                                          | NOV                                  | DEC                                          | JAN                                          | FEB                      | MAR                                  | APR                                  | MAY                                          | JUN                                  | JUL                                          | AUG                                          | SEP                                  |
| 1                                | 9.85                                         | 9.43                                 | 8.58                                         | 7.17                                         | 6.28                     | 6.47                                 | 5.10                                 | 4.75                                         | 4.29                                 | 5.67                                         | 7.03                                         | 8.26                                 |
| 2                                | 9.84                                         | 9.41                                 | 8.58                                         | 7.27                                         | 6.48                     | 6.42                                 | 5.13                                 | 4.55                                         | 4.34                                 | 5.69                                         | 7.05                                         | 8.22                                 |
| 3                                | 9.88                                         | 9.44                                 | 8.43                                         | 7.18                                         | 6.25                     | 6.05                                 | 5.11                                 | 4.81                                         | 4.54                                 | 5.72                                         | 7.15                                         | 8.22                                 |
| 4                                | 9.89                                         | 9.38                                 | 8.38                                         | 7.19                                         | 6.15                     | 6.22                                 | 5.24                                 | 4.93                                         | 4.53                                 | 5.78                                         | 7.17                                         | 8.29                                 |
| 5                                | 9.90                                         | 9.35                                 | 8.33                                         | 7.21                                         | 6.38                     | 6.28                                 | 5.14                                 | 4.88                                         | 4.41                                 | 5.93                                         | 7.13                                         | 8.36                                 |
| 6                                | 9.90                                         | 9.35                                 | 8.22                                         | 7.16                                         | 6.34                     | 6.19                                 | 5.11                                 | 4.82                                         | 4.23                                 | 6.03                                         | 7.20                                         | 8.40                                 |
| 7                                | 10.02                                        | 9.31                                 | 8.20                                         | 7.18                                         | 6.25                     | 6.20                                 | 5.12                                 | 4.74                                         | 4.18                                 | 6.12                                         | 7.27                                         | 8.44                                 |
| 8                                | 10.11                                        | 9.26                                 | 8.21                                         | 7.32                                         | 6.36                     | 6.23                                 | 5.06                                 | 4.87                                         | 4.14                                 | 6.17                                         | 7.32                                         | 8.47                                 |
| 9                                | 10.09                                        | 9.34                                 | 8.22                                         | 7.22                                         | 6.58                     | 6.09                                 | 5.01                                 | 4.73                                         | 4.10                                 | 6.15                                         | 7.36                                         | 8.47                                 |
| 10                               | 10.04                                        | 9.20                                 | 8.27                                         | 7.33                                         | 6.46                     | 6.10                                 | 5.24                                 | 4.91                                         | 4.11                                 | 6.29                                         | 7.36                                         | 8.42                                 |
| 11                               | 10.02                                        | 9.31                                 | 8.27                                         | 7.38                                         | 6.41                     | 6.25                                 | 5.17                                 | 5.05                                         | 4.09                                 | 6.40                                         | 7.39                                         | 8.43                                 |
| 12                               | 10.02                                        | 9.36                                 | 8.27                                         | 7.37                                         | 6.26                     | 6.11                                 | 5.05                                 | 4.78                                         | 4.09                                 | 6.43                                         | 7.44                                         | 8.58                                 |
| 13                               | 10.03                                        | 9.33                                 | 8.07                                         | 7.28                                         | 6.44                     | 5.99                                 | 4.97                                 | 4.40                                         | 4.20                                 | 6.45                                         | 7.49                                         | 8.60                                 |
| 14                               | 9.98                                         | 9.24                                 | 8.05                                         | 7.43                                         | 6.49                     | 6.03                                 | 4.82                                 | 4.17                                         | 4.20                                 | 6.52                                         | 7.50                                         | 8.61                                 |
| 15                               | 10.08                                        | 9.22                                 | 8.25                                         | 7.36                                         | 6.30                     | 5.97                                 | 4.65                                 | 4.24                                         | 4.26                                 | 6.58                                         | 7.58                                         | 8.60                                 |
| 16                               | 10.02                                        | 9.24                                 | 8.19                                         | 7.51                                         | 6.22                     | 6.10                                 | 4.70                                 | 4.13                                         | 4.39                                 | 6.68                                         | 7.63                                         | 8.59                                 |
| 17                               | 9.98                                         | 9.35                                 | 7.78                                         | 7.34                                         | 6.31                     | 6.17                                 | 4.67                                 | 4.03                                         | 4.55                                 | 6.74                                         | 7.64                                         | 8.61                                 |
| 18                               | 10.05                                        | 9.32                                 | 7.58                                         | 7.39                                         | 6.53                     | 5.97                                 | 4.68                                 | 3.96                                         | 4.73                                 | 6.75                                         | 7.64                                         | 8.63                                 |
| 19                               | 9.94                                         | 9.19                                 | 7.51                                         | 7.35                                         | 6.45                     | 6.05                                 | 4.63                                 | 4.03                                         | 4.88                                 | 6.80                                         | 7.71                                         | 8.63                                 |
| 20                               | 9.95                                         | 9.22                                 | 7.40                                         | 7.31                                         | 6.25                     | 5.84                                 | 4.69                                 | 4.05                                         | 4.98                                 | 6.92                                         | 7.80                                         | 8.65                                 |
| 21                               | 10.0                                         | 9.23                                 | 7.50                                         | 7.22                                         | 6.22                     | 5.82                                 | 4.77                                 | 4.09                                         | 5.04                                 | 7.00                                         | 7.90                                         | 8.69                                 |
| 22                               | 9.96                                         | 9.22                                 | 7.50                                         | 7.43                                         | 6.35                     | 5.83                                 | 4.69                                 | 4.13                                         | 5.07                                 | 7.02                                         | 7.86                                         | 8.74                                 |
| 23                               | 9.80                                         | 9.23                                 | 7.18                                         | 7.32                                         | 6.43                     | 5.74                                 | 4.93                                 | 4.07                                         | 5.12                                 | 7.07                                         | 7.87                                         | 8.81                                 |
| 24                               | 9.77                                         | 9.21                                 | 7.03                                         | 7.20                                         | 6.43                     | 5.79                                 | 4.98                                 | 4.06                                         | 5.21                                 | 7.19                                         | 7.84                                         | 8.85                                 |
| 25                               | 9.70                                         | 9.10                                 | 7.04                                         | 7.25                                         | 6.31                     | 5.87                                 | 4.88                                 | 4.24                                         | 5.31                                 | 7.21                                         | 7.93                                         | 8.89                                 |
| 26<br>27<br>28<br>29<br>30<br>31 | 9.71<br>9.73<br>9.76<br>9.67<br>9.63<br>9.52 | 9.09<br>8.93<br>8.96<br>8.82<br>8.62 | 6.93<br>6.80<br>6.80<br>6.91<br>7.03<br>7.07 | 7.20<br>7.12<br>7.03<br>6.93<br>6.89<br>6.69 | 6.14<br>6.15<br>6.34<br> | 5.69<br>5.62<br>5.57<br>5.35<br>5.23 | 5.06<br>5.15<br>4.78<br>4.81<br>4.77 | 4.29<br>4.35<br>4.38<br>4.37<br>4.35<br>4.25 | 5.35<br>5.33<br>5.43<br>5.60<br>5.66 | 7.19<br>7.22<br>7.17<br>7.01<br>6.97<br>7.02 | 8.00<br>8.08<br>8.13<br>8.13<br>8.19<br>8.27 | 8.85<br>8.71<br>8.82<br>8.87<br>8.86 |
| MEAN                             | 9.90                                         | 9.22                                 | 7.76                                         | 7.23                                         | 6.34                     | 5.95                                 | 4.94                                 | 4.43                                         | 4.68                                 | 6.58                                         | 7.61                                         | 8.59                                 |
| MAX                              | 10.11                                        | 9.44                                 | 8.58                                         | 7.51                                         | 6.58                     | 6.47                                 | 5.24                                 | 5.05                                         | 5.66                                 | 7.22                                         | 8.27                                         | 8.89                                 |
| MIN                              | 9.52                                         | 8.62                                 | 6.80                                         | 6.69                                         | 6.14                     | 5.23                                 | 4.63                                 | 3.96                                         | 4.09                                 | 5.67                                         | 7.03                                         | 8.22                                 |



#### CHAUTAUOUA COUNTY

420815079121401. Local number, Cu 10.

LOCATION.--Lat 42°08'15", long 79°12'14", Hydrologic Unit 05010002, at Falconer. Owner: City of Jamestown.

AQUIFER.--Confined aquifer in sand and gravel of Pleistocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 12 inch to 10 inch, depth 232 ft, filled in from original depth of 240 ft, diameter 12 inch from 0 ft to 130 ft, diameter 10 inch from 130 ft to 240 ft, slotted 130 ft to 144 ft, open end.

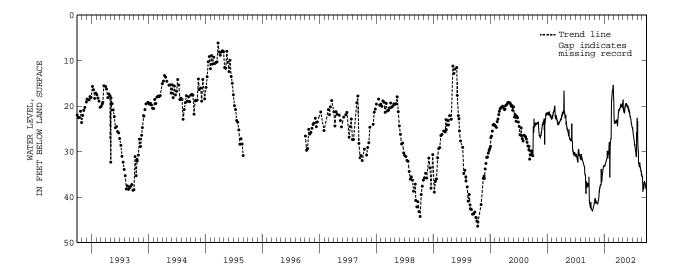
INSTRUMENTATION.--Electronic data recorder--hourly; monthly measurements by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,252.52 ft above NGVD of 1929. Measuring point: Top of well casing, 5.46 ft above land-surface datum.

land-surface datum.

REMARKS.--Water level affected by pumping from municipal well field.

PERIOD OF RECORD.--November 1939 to September 1943, August 1946 to August 1995, October 1996 to current. Records for November 1939 to September 1943, August 1946 to September 1976 are unpublished and available in files of the Geological Survey. Weekly measurements by City of Jamestown personnel until Oct. 13, 1999. Prior to Dec. 14, 1978, Type F graphic recorder at same site and datum. Dec. 14, 1978 to Sept. 16, 1982, digital recorder every fifth day high water-level published. Sept. 1987, twice-daily readings by City of Jamestown personnel, every fifth day high water-level published.


REVISED RECORD.--WDR NY-87-3: 1983-86. WDR NY-91-3: 1988-90.

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 66.6 ft, Nov. 3, 1971; minimum measured water-level depth, 5.2 ft, above land surface, Mar. 14, 1942.

EXTREMES FOR CURRENT YEAR.--Maximum water-level depth below land surface, 44.53 ft, Oct. 9; minimum water-level depth below land surface, 9.76 ft, May 2.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY                              | OCT                                                | NOV                                       | DEC                                                | JAN                                                | FEB                         | MAR                                                | APR                                       | MAY                                                | JUN                                       | JUL                                                | AUG                                                | SEP                                       |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-----------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1                                | 41.54                                              | 40.58                                     | 38.95                                              | 33.03                                              | 28.71                       | 16.97                                              | 22.10                                     | 20.07                                              | 20.17                                     | 24.94                                              | 26.59                                              | 35.50                                     |
| 2                                | 41.73                                              | 40.49                                     | 38.02                                              | 33.10                                              | 28.21                       | 18.38                                              | 21.32                                     | 18.55                                              | 20.44                                     | 24.87                                              | 27.10                                              | 35.31                                     |
| 3                                | 42.01                                              | 40.47                                     | 38.29                                              | 33.19                                              | 27.90                       | 18.47                                              | 21.53                                     | 20.50                                              | 19.86                                     | 25.12                                              | 23.26                                              | 35.58                                     |
| 4                                | 42.19                                              | 40.32                                     | 37.87                                              | 33.24                                              | 28.21                       | 20.80                                              | 20.82                                     | 20.83                                              | 20.33                                     | 25.63                                              | 27.88                                              | 36.06                                     |
| 5                                | 42.35                                              | 40.33                                     | 37.71                                              | 33.20                                              | 31.66                       | 22.40                                              | 21.16                                     | 20.36                                              | 20.92                                     | 25.52                                              | 28.32                                              | 37.37                                     |
| 6                                | 42.45                                              | 41.38                                     | 37.74                                              | 33.08                                              | 35.68                       | 23.24                                              | 20.95                                     | 21.15                                              | 21.00                                     | 26.10                                              | 29.37                                              | 38.81                                     |
| 7                                | 41.14                                              | 40.64                                     | 37.35                                              | 32.96                                              | 33.59                       | 23.27                                              | 20.62                                     | 20.78                                              | 20.41                                     | 26.27                                              | 29.46                                              | 38.33                                     |
| 8                                | 41.71                                              | 41.28                                     | 37.24                                              | 32.82                                              | 29.15                       | 23.86                                              | 20.90                                     | 21.42                                              | 21.07                                     | 26.54                                              | 29.98                                              | 37.11                                     |
| 9                                | 42.19                                              | 41.25                                     | 37.49                                              | 32.67                                              | 28.39                       | 23.60                                              | 20.46                                     | 21.28                                              | 20.92                                     | 26.82                                              | 32.56                                              | 38.35                                     |
| 10                               | 42.55                                              | 41.15                                     | 37.27                                              | 32.58                                              | 27.92                       | 23.22                                              | 20.74                                     | 21.26                                              | 20.96                                     | 26.91                                              | 32.48                                              | 37.68                                     |
| 11                               | 42.62                                              | 41.01                                     | 37.24                                              | 32.46                                              | 27.65                       | 23.46                                              | 20.64                                     | 21.59                                              | 21.33                                     | 27.46                                              | 32.61                                              | 37.84                                     |
| 12                               | 42.69                                              | 41.13                                     | 37.34                                              | 32.31                                              | 27.39                       | 23.70                                              | 20.36                                     | 21.18                                              | 21.25                                     | 27.56                                              | 32.87                                              | 38.08                                     |
| 13                               | 42.76                                              | 41.15                                     | 33.82                                              | 32.14                                              | 27.08                       | 23.62                                              | 20.33                                     | 20.88                                              | 21.43                                     | 27.66                                              | 33.23                                              | 36.68                                     |
| 14                               | 42.80                                              | 41.17                                     | 35.77                                              | 32.04                                              | 27.24                       | 23.42                                              | 20.30                                     | 20.03                                              | 22.09                                     | 28.20                                              | 33.28                                              | 36.86                                     |
| 15                               | 42.91                                              | 41.22                                     | 36.64                                              | 31.91                                              | 24.60                       | 23.43                                              | 19.96                                     | 20.11                                              | 22.14                                     | 28.41                                              | 33.17                                              | 37.16                                     |
| 16                               | 42.96                                              | 41.30                                     | 36.61                                              | 31.80                                              | 20.85                       | 23.80                                              | 19.64                                     | 20.25                                              | 22.04                                     | 28.34                                              | 33.09                                              | 36.47                                     |
| 17                               | 43.03                                              | 41.39                                     | 36.46                                              | 31.66                                              | 18.92                       | 23.14                                              | 19.79                                     | 19.54                                              | 22.44                                     | 28.95                                              | 32.37                                              | 37.02                                     |
| 18                               | 42.99                                              | 41.45                                     | 36.12                                              | 31.55                                              | 18.49                       | 23.76                                              | 20.14                                     | 19.65                                              | 22.29                                     | 29.14                                              | 32.75                                              | 36.87                                     |
| 19                               | 42.85                                              | 41.52                                     | 35.12                                              | 31.41                                              | 17.82                       | 23.52                                              | 19.70                                     | 19.46                                              | 22.64                                     | 29.37                                              | 33.15                                              | 36.91                                     |
| 20                               | 42.77                                              | 41.54                                     | 35.11                                              | 31.29                                              | 17.74                       | 23.36                                              | 19.77                                     | 19.77                                              | 22.78                                     | 29.61                                              | 33.28                                              | 36.95                                     |
| 21                               | 42.70                                              | 41.35                                     | 34.91                                              | 29.83                                              | 17.20                       | 22.99                                              | 19.85                                     | 19.31                                              | 22.85                                     | 29.83                                              | 33.77                                              | 37.42                                     |
| 22                               | 42.60                                              | 41.13                                     | 34.69                                              | 31.20                                              | 16.71                       | 23.62                                              | 19.62                                     | 19.87                                              | 23.18                                     | 30.09                                              | 33.49                                              | 37.46                                     |
| 23                               | 42.39                                              | 40.93                                     | 34.36                                              | 31.13                                              | 16.62                       | 22.95                                              | 20.01                                     | 19.31                                              | 23.56                                     | 30.58                                              | 34.16                                              | 37.60                                     |
| 24                               | 42.19                                              | 40.78                                     | 33.95                                              | 31.48                                              | 16.36                       | 23.38                                              | 19.67                                     | 19.92                                              | 23.85                                     | 30.86                                              | 34.17                                              | 37.82                                     |
| 25                               | 42.04                                              | 40.62                                     | 33.68                                              | 30.94                                              | 16.26                       | 23.44                                              | 20.26                                     | 19.62                                              | 23.84                                     | 31.08                                              | 34.41                                              | 37.97                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 41.92<br>41.86<br>41.67<br>41.35<br>41.11<br>41.31 | 40.42<br>40.11<br>39.89<br>39.61<br>38.72 | 33.49<br>33.34<br>33.22<br>33.14<br>33.10<br>33.08 | 30.70<br>30.35<br>30.37<br>30.63<br>29.89<br>30.02 | 15.95<br>15.44<br>15.43<br> | 23.36<br>24.39<br>24.11<br>23.26<br>23.02<br>22.59 | 19.73<br>20.36<br>19.18<br>19.78<br>19.92 | 19.93<br>19.54<br>20.15<br>20.14<br>19.89<br>20.07 | 24.05<br>24.32<br>24.54<br>24.63<br>24.67 | 31.08<br>30.30<br>25.67<br>25.91<br>27.40<br>22.58 | 34.20<br>34.96<br>34.91<br>35.17<br>35.03<br>35.60 | 38.03<br>38.19<br>38.31<br>38.13<br>38.32 |
| MEAN                             | 42.24                                              | 40.81                                     | 35.78                                              | 31.77                                              | 23.47                       | 22.79                                              | 20.32                                     | 20.21                                              | 22.20                                     | 27.70                                              | 32.15                                              | 37.34                                     |
| MAX                              | 43.03                                              | 41.54                                     | 38.95                                              | 33.24                                              | 35.68                       | 24.39                                              | 22.10                                     | 21.59                                              | 24.67                                     | 31.08                                              | 35.60                                              | 38.81                                     |
| MIN                              | 41.11                                              | 38.72                                     | 33.08                                              | 29.83                                              | 15.43                       | 16.97                                              | 19.18                                     | 18.55                                              | 19.86                                     | 22.58                                              | 23.26                                              | 35.31                                     |



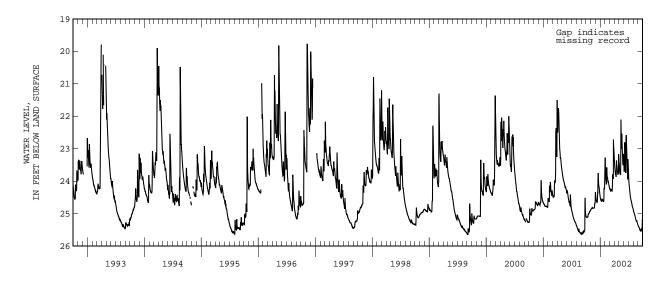
## CHEMUNG COUNTY

420829076484801. Local number, Cm 46. LOCATION.--Lat 42°08'29", long 76°48'48", Hydrologic Unit 02050105, near Horseheads. Owner: Unknown. AQUIFER.--Unconfined aquifer in sand and gravel of Pleistocene age.

WELL CHARACTERISTICS. --Drilled unused well, diameter 6 inch, depth 34 ft, cased to 34 ft, open end. INSTRUMENTATION. --Electronic data recorder -- 30 minute; monthly measurements by USGS personnel.

DATUM.--Elevation of land-surface datum is 885.69 ft above NGVD of 1929. Measuring point: Top of pipe flange, 3.44 ft above land-surface datum.
REMARKS.--Water level affected by stage of Newtown Creek.

PERIOD OF RECORD. --October 1955 to October 2002(discontinued). Records for October 1955 to September 1976 are unpublished and available in files of the Geological Survey. Prior to Feb. 25, 1988, monthly measurements with chalked tape by USGS personnel.


EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 26.30 ft, July 18, 1980; minimum measured water-level depth below land surface, 18.93 ft, April 25, 1961.

EXTREMES FOR CURRENT YEAR.--Maximum water-level depth below land surface, 25.53 ft, Sept. 20, 21, 22; minimum water-level depth

below land surface, 21.97 ft, May 14.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

| DAY                              | OCT                                                | NOV                                       | DEC                                                | JAN                                                | FEB                                       | MAR                                                | APR                                       | MAY                                                | JUN                                       | JUL                                                | AUG                                                | SEP                                       |
|----------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|
| 1                                | 25.06                                              | 24.88                                     | 24.34                                              | 24.49                                              | 23.39                                     | 24.21                                              | 23.26                                     | 23.38                                              | 23.41                                     | 23.80                                              | 24.87                                              | 25.36                                     |
| 2                                | 25.08                                              | 24.87                                     | 24.35                                              | 24.53                                              | 23.27                                     | 24.22                                              | 23.35                                     | 23.43                                              | 23.51                                     | 23.89                                              | 24.90                                              | 25.37                                     |
| 3                                | 25.10                                              | 24.86                                     | 24.43                                              | 24.54                                              | 23.54                                     | 24.22                                              | 23.44                                     | 23.45                                              | 23.62                                     | 23.97                                              | 24.92                                              | 25.38                                     |
| 4                                | 25.10                                              | 24.86                                     | 24.48                                              | 24.56                                              | 23.69                                     | 24.20                                              | 23.53                                     | 23.55                                              | 23.70                                     | 24.02                                              | 24.94                                              | 25.39                                     |
| 5                                | 25.11                                              | 24.85                                     | 24.52                                              | 24.58                                              | 23.86                                     | 24.25                                              | 23.60                                     | 23.63                                              | 23.64                                     | 24.07                                              | 24.95                                              | 25.40                                     |
| 6<br>7<br>8<br>9                 | 25.10<br>25.10<br>25.10<br>25.11<br>25.11          | 24.85<br>24.84<br>24.84<br>24.84<br>24.82 | 24.56<br>24.59<br>24.63<br>24.62<br>24.63          | 24.59<br>24.59<br>24.61<br>24.62<br>24.61          | 23.93<br>23.98<br>24.03<br>24.08<br>24.10 | 24.26<br>24.28<br>24.30<br>24.32<br>24.27          | 23.66<br>23.71<br>23.75<br>23.78<br>23.78 | 23.71<br>23.74<br>23.77<br>23.78<br>23.74          | 23.08<br>22.80<br>23.08<br>23.28<br>23.44 | 24.12<br>24.17<br>24.22<br>24.28<br>24.32          | 24.96<br>24.98<br>25.00<br>25.01<br>25.03          | 25.41<br>25.41<br>25.42<br>25.43<br>25.46 |
| 11                               | 25.10                                              | 24.81                                     | 24.64                                              | 24.59                                              | 23.61                                     | 24.24                                              | 23.80                                     | 23.80                                              | 23.55                                     | 24.37                                              | 25.06                                              | 25.48                                     |
| 12                               | 25.09                                              | 24.82                                     | 24.65                                              | 24.58                                              | 23.57                                     | 24.26                                              | 23.84                                     | 23.81                                              | 23.65                                     | 24.41                                              | 25.07                                              | 25.48                                     |
| 13                               | 25.09                                              | 24.83                                     | 24.64                                              | 24.55                                              | 23.69                                     | 24.26                                              | 23.86                                     | 23.34                                              | 23.74                                     | 24.45                                              | 25.09                                              | 25.50                                     |
| 14                               | 25.09                                              | 24.83                                     | 24.56                                              | 24.55                                              | 23.84                                     | 24.27                                              | 23.64                                     | 22.11                                              | 23.73                                     | 24.49                                              | 25.11                                              | 25.51                                     |
| 15                               | 25.04                                              | 24.83                                     | 24.39                                              | 24.56                                              | 23.87                                     | 24.28                                              | 23.36                                     | 22.42                                              | 23.39                                     | 24.52                                              | 25.13                                              | 25.52                                     |
| 16                               | 25.03                                              | 24.82                                     | 24.34                                              | 24.57                                              | 23.88                                     | 24.29                                              | 23.38                                     | 22.77                                              | 22.75                                     | 24.54                                              | 25.14                                              | 25.49                                     |
| 17                               | 25.01                                              | 24.83                                     | 24.34                                              | 24.57                                              | 23.87                                     | 24.29                                              | 23.50                                     | 23.00                                              | 22.58                                     | 24.57                                              | 25.17                                              | 25.49                                     |
| 18                               | 25.01                                              | 24.82                                     | 23.87                                              | 24.58                                              | 23.93                                     | 24.30                                              | 23.51                                     | 22.73                                              | 22.95                                     | 24.60                                              | 25.19                                              | 25.51                                     |
| 19                               | 25.00                                              | 24.82                                     | 23.75                                              | 24.61                                              | 23.99                                     | 24.24                                              | 23.53                                     | 22.54                                              | 23.21                                     | 24.61                                              | 25.20                                              | 25.52                                     |
| 20                               | 25.00                                              | 24.82                                     | 23.89                                              | 24.62                                              | 24.02                                     | 24.17                                              | 23.62                                     | 22.82                                              | 23.39                                     | 24.62                                              | 25.21                                              | 25.53                                     |
| 21                               | 25.00                                              | 24.82                                     | 24.00                                              | 24.61                                              | 24.01                                     | 23.91                                              | 23.68                                     | 22.98                                              | 23.53                                     | 24.65                                              | 25.23                                              | 25.53                                     |
| 22                               | 24.99                                              | 24.82                                     | 24.08                                              | 24.62                                              | 24.00                                     | 23.79                                              | 23.72                                     | 23.11                                              | 23.64                                     | 24.68                                              | 25.25                                              | 25.53                                     |
| 23                               | 24.98                                              | 24.82                                     | 24.14                                              | 24.62                                              | 24.03                                     | 23.85                                              | 23.74                                     | 23.21                                              | 23.72                                     | 24.70                                              | 25.21                                              | 25.46                                     |
| 24                               | 24.95                                              | 24.82                                     | 24.16                                              | 24.58                                              | 24.07                                     | 23.89                                              | 23.79                                     | 23.30                                              | 23.79                                     | 24.72                                              | 25.23                                              | 25.46                                     |
| 25                               | 24.93                                              | 24.82                                     | 24.18                                              | 24.29                                              | 24.10                                     | 23.92                                              | 23.80                                     | 23.40                                              | 23.87                                     | 24.75                                              | 25.25                                              | 25.48                                     |
| 26<br>27<br>28<br>29<br>30<br>31 | 24.93<br>24.92<br>24.92<br>24.91<br>24.91<br>24.90 | 24.73<br>24.69<br>24.69<br>24.68<br>24.63 | 24.23<br>24.28<br>24.33<br>24.38<br>24.42<br>24.45 | 24.23<br>24.24<br>24.22<br>24.19<br>24.04<br>23.83 | 24.12<br>24.14<br>24.16<br>               | 23.83<br>22.72<br>22.89<br>22.97<br>23.05<br>23.17 | 23.70<br>23.76<br>23.68<br>23.17<br>23.27 | 23.46<br>23.50<br>23.49<br>23.16<br>23.28<br>23.38 | 23.94<br>23.74<br>23.31<br>23.51<br>23.68 | 24.77<br>24.79<br>24.80<br>24.81<br>24.82<br>24.85 | 25.27<br>25.29<br>25.30<br>25.32<br>25.33<br>25.35 | 25.48<br>25.41<br>25.18<br>25.22<br>25.25 |
| MEAN                             | 25.02                                              | 24.81                                     | 24.35                                              | 24.48                                              | 23.88                                     | 23.97                                              | 23.61                                     | 23.28                                              | 23.44                                     | 24.46                                              | 25.13                                              | 25.44                                     |
| MAX                              | 25.11                                              | 24.88                                     | 24.65                                              | 24.62                                              | 24.16                                     | 24.32                                              | 23.86                                     | 23.81                                              | 23.94                                     | 24.85                                              | 25.35                                              | 25.53                                     |
| MIN                              | 24.90                                              | 24.63                                     | 23.75                                              | 23.83                                              | 23.27                                     | 22.72                                              | 23.17                                     | 22.11                                              | 22.58                                     | 23.80                                              | 24.87                                              | 25.18                                     |



#### CHENANGO COUNTY

27

28

29

30

31

MEAN

MAX

MIN

9.98

10.00

10 03

10.07

10.12

10.09

10.89

9.26

10.36

9.94

9 65

9.51

10.43

10.83

9.51

8.79

8.85

8 91

8.98

9.04

9.02

9.42

8.54

8.93

8.84

8.78 8.71

8.53

9.23

9.43

8.53

8.90

8.95

---

7.92

8.95

6.80

0.5 mi east of Susquehanna River, and 2.0 mi south of Bainbridge. Owner: Private.

AQUIFER.--Unconfined aquifer in gravel of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 6 inch, depth 13 ft, cased to 13 ft, open end.

INSTRUMENTATION. -- Electronic data recorder -- hourly; monthly measurements by USGS personnel.

DATUM. -- Elevation of land-surface datum is 979.28 ft above NGVD of 1929. Measuring point: File mark at top of shelter base, 1.37 ft

above land-surface datum.

ABOVE Third Suffice Gatching and April 1974 as a replacement for 421556075281601 (local number Cn 11), located 90 ft north, which has a period of record from October 1965 to September 1972 (unpublished).

PERIOD OF RECORD.--April 1975 to current year. Records for April 1975 to September 1976 are unpublished and available in files

of the Geological Survey

of the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.—Maximum water-level depth below land surface, 12.22 ft, Sept. 13, 14, 15, 16, 1999; minimum water-level depth below land surface, 2.45 ft, Apr. 3-4, 1993.

EXTREMES FOR CURRENT YEAR.—Maximum water-level depth below land surface, 11.66 ft, Sept. 22; minimum water-level depth below land surface, 5.04 ft, Mar. 30.

> DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 9.42 9.09 8.25 7.77 8.47 8.50 8.47 10.24 11.18 10.17 8.99 5.75 2 9.27 10.24 9 33 9.15 9 02 6.25 8.28 8 51 8.59 10.39 11.18 3 9.32 9.24 9.19 9.05 6.72 8.55 8.71 7.30 8.16 10.31 10.55 11.20 9.41 10.38 9.20 9.21 7.09 9.07 7.14 8.10 8.61 11.21 10.67 5 9 56 10 44 9.18 9 23 7 15 9 08 7 48 8.09 8.68 8.91 10 75 11 24 7.76 8.53 6 9 75 10.45 9.16 9.25 7.36 9.09 8.14 8.99 10.78 11.27 7 9.97 10.41 9.18 9.29 7.62 9.11 8.01 8.21 7.85 9.07 10.80 11.23 7.26 8 10.19 10.36 9.20 9.33 7.89 9.13 8.21 8.30 9.17 10.79 11.07 10.36 10.34 9.21 9.36 8.14 9.15 8.36 8.37 7.03 9 29 10.76 10.94 10 10.48 10.34 9.24 9.38 8.34 9.16 8.48 8.42 7.10 9.45 10.80 10.91 11 10 58 10.36 9 25 9 38 8.12 9 17 8 55 8 45 7.33 9 58 10 87 10.96 12 10.66 10.40 9.26 9.38 7.43 9.18 8.59 8.47 7.61 9.64 10.93 11.05 9.27 9.39 7.81 9.74 13 10.72 10.44 6.94 9.18 8.63 8.45 11.01 11.15 8.20 7.73 14 10 78 10.50 9 26 9.39 6.80 9 19 8 68 7 92 a 8a 11.07 11.25 15 10.83 9.24 9.39 9.19 7.88 11.13 11.34 10.57 6.92 8.69 10.05 16 10 88 10 63 9 17 9 39 7 16 9 20 8 63 7.30 7.12 6.95 10 20 11 19 11 41 7.47 17 9.10 9.39 9.21 10.33 11.24 10.89 10.69 8.54 5.84 11.49 9.00 9.39 7.78 9.20 8.47 5.42 18 10.80 10.73 6.97 10.44 11.29 11.54 19 10.46 10.75 8 80 9 40 8 05 9 20 8 46 6.47 5 47 10 50 11.34 11 59 9.19 20 9.94 10.78 9.42 11.39 11.62 8.63 8.27 8.49 6.14 5.82 10.42 21 9 69 10 82 8 55 9 43 8 44 9 16 8 54 6 06 6 32 9 99 11.43 11 64 22 9.64 8.54 9.41 9.12 8.61 6.22 9.52 11.47 11.64 10.83 8.58 6.88 23 9.67 10.78 8.58 9.39 8.66 9.07 8.67 6.52 7.36 9.34 11.51 11.53 24 9 76 10.68 8 63 9 36 8.73 8.79 9 02 8.73 6.90 7.29 7 63 9 41 11 52 11 30 8.79 7.78 25 9.86 8.69 9.22 9.59 11.54 10.58 8.99 10.32 7.62 7.91 7 94 26 8 74 8 85 8 86 9 83 9 75 9 96 10 52 9 05 8 83 11 56

7.28

5.89

5 20

5.09

5.34

8.57

9.21

5.09

8.86

8.87

8 82

8.65

8.24

8.87

5.75

8.14

8 30

8.41

8.48

7.73

8.48

6.06

10.06

10.25

10 31

10.22

10.17

9.64

10.50

8.47

11.58

11.57

11.45

11.29

11.20

11.10

11.58

10.24

9.56

9.52

9 39

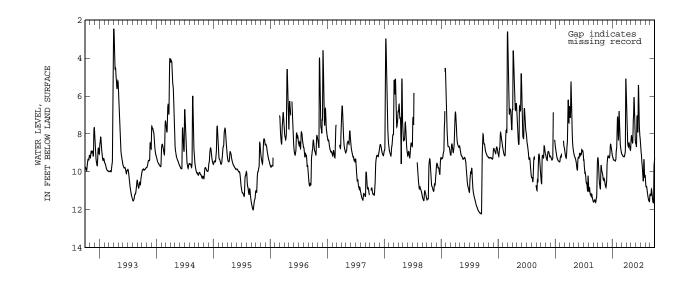
10.96

11.64

9.27

8.09

8.17


8 24

8.34

7.51

8.68

5.42



# CORTLAND COUNTY

423541076114701. Local number, C 102. LOCATION.--Lat 42°35'41", long 76°11'47", Hydrologic Unit 02050102, at Municipal Water Works, Cortland. Owner: City of Cortland. AQUIFER.--Unconfined aquifer in gravel of Pleistocene age.

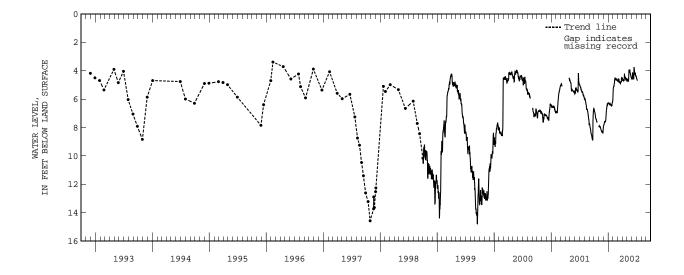
MELL CHARACTERISTICS.—Priven observation well, diameter 1.25 inch, depth 45 ft, 1.25 inch well point.

INSTRUMENTATION.—Electronic data recorder—hourly; monthly measurements by USGS personnel.

DATUM.—Elevation of land-surface datum is 1136.59 ft above NGVD of 1929. Measuring point: Top of coupling, 1.99 ft above

land-surface datum.

REMARKS.--Water level is affected by pumping from nearby municipal supply wells. This well is a replacement for 423539076114801 (local number C 19), located 80 ft southwest, which had a period of record from February 1947 to May 1976.


PERIOD OF RECORD.--October 1975 to July 2002 (discontinued). Records for October 1975 to September 1977 are unpublished and available in files of the Geological Survey.

EXTREMES FOR PERIOD OF RECORD.—Maximum measured water-level depth below land surface, 15.40 ft, Sept. 15, 1999; minimum measured water-level depth below land surface, 3.07 ft below land-surface datum, Sept. 25, 1977.

EXTREMES FOR CURRENT PERIOD.—October 2001 to July 2002: Maximum water-level depth below land surface, 8.98 ft, Nov. 28; minimum water-level depth below land surface, 3.68 ft, June 16.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES

|          |              |              |              |              | DAID.        | r nmen Aen   | 10110        |              |              |      |     |     |
|----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|------|-----|-----|
| DAY      | OCT          | NOV          | DEC          | JAN          | FEB          | MAR          | APR          | MAY          | JUN          | JUL  | AUG | SEP |
| 1        | 6.66         | 7.91         | 7.99         | 6.27         | 5.71         | 4.70         | 4.54         | 4.58         | 4.52         | 4.47 |     |     |
| 2        | 6.68         | 7.93         | 7.89         | 6.26         | 5.32         | 4.74         | 4.57         | 4.60         | 4.57         | 4.55 |     |     |
| 3        | 6.71         | 7.93         | 7.84         | 6.26         | 5.23         | 4.67         | 4.59         | 4.66         | 4.60         | 4.57 |     |     |
| 4        | 6.77         | 7.92         | 7.81         | 6.28         | 5.15         | 4.64         | 4.71         | 4.64         | 4.59         | 4.59 |     |     |
| 5        | 6.83         | 7.90         | 7.79         | 6.29         | 5.10         | 4.68         | 4.68         | 4.65         | 4.50         | 4.62 |     |     |
|          |              |              |              |              |              |              |              |              |              |      |     |     |
| 6        | 6.87         | 7.89         | 7.76         | 6.29         | 5.14         | 4.69         | 4.67         | 4.70         | 4.12         | 4.65 |     |     |
| 7<br>8   | 6.91<br>6.97 | 7.98         | 7.68         | 6.31         | 5.01         | 4.80         | 4.67         | 4.68         | 4.15<br>4.24 | 4.67 |     |     |
| 9        | 7.04         | 7.93<br>7.92 | 7.61<br>7.59 | 6.35<br>6.38 | 4.98         | 4.75<br>4.67 | 4.65<br>4.71 | 4.73<br>4.70 | 4.24         | 4.70 |     |     |
| 10       | 7.04         | 7.92         | 7.59         | 6.38         | 4.91<br>4.83 | 4.67         | 4.71         | 4.70         | 4.37         |      |     |     |
| 10       | 7.12         | 7.92         | 7.57         | 6.39         | 4.83         | 4.59         | 4.69         | 4./3         | 4.40         |      |     |     |
| 11       | 7.18         | 7.94         | 7.58         | 6.39         | 4.63         | 4.60         | 4.66         | 4.74         | 4.52         |      |     |     |
| 12       | 7.31         | 7.98         | 7.61         | 6.35         | 4.59         | 4.72         | 4.69         | 4.63         | 4.54         |      |     |     |
| 13       | 7.35         | 8.02         | 7.61         | 6.32         | 4.56         | 4.77         | 4.67         | 4.33         | 4.60         |      |     |     |
| 14       | 7.39         | 8.06         | 7.58         | 6.35         | 4.59         | 4.81         | 4.47         | 3.94         | 4.33         |      |     |     |
| 15       | 7.40         | 8.10         | 7.53         | 6.38         | 4.56         | 4.81         | 4.21         | 4.03         | 3.97         |      |     |     |
|          |              |              |              |              |              |              |              |              |              |      |     |     |
| 16       | 7.43         | 8.15         | 7.50         | 6.37         | 4.59         | 4.79         | 4.43         | 4.11         | 3.74         |      |     |     |
| 17       | 7.44         | 8.19         | 7.43         | 6.45         | 4.54         | 4.80         | 4.43         | 4.08         | 3.86         |      |     |     |
| 18<br>19 | 7.49<br>7.54 | 8.21<br>8.25 | 7.26<br>7.05 | 6.42<br>6.41 | 4.56<br>4.57 | 4.83<br>4.91 | 4.46<br>4.51 | 3.94<br>3.91 | 3.99<br>4.08 |      |     |     |
| 20       | 7.54         | 8.25         | 6.88         | 6.39         | 4.57         | 4.91         | 4.51         | 4.08         | 4.08         |      |     |     |
| 20       | 7.57         | 8.29         | 0.88         | 6.39         | 4.60         | 4.92         | 4.45         | 4.08         | 4.16         |      |     |     |
| 21       | 7.61         | 8.32         | 6.78         | 6.40         | 4.59         | 4.85         | 4.48         | 4.13         | 4.22         |      |     |     |
| 22       | 7.60         | 8.32         | 6.69         | 6.45         | 4.58         | 4.83         | 4.45         | 4.18         | 4.30         |      |     |     |
| 23       | 7.60         | 8.32         | 6.57         | 6.48         | 4.61         | 4.80         | 4.53         | 4.20         | 4.17         |      |     |     |
| 24       |              | 8.32         | 6.49         | 6.47         | 4.64         | 4.74         | 4.67         | 4.26         | 4.18         |      |     |     |
| 25       |              | 8.32         | 6.43         | 6.39         | 4.64         | 4.79         | 4.59         | 4.32         | 4.29         |      |     |     |
| 0.5      |              | 0.05         | 6 25         |              | 4 53         | 4 50         | 4 60         | 4 25         | 4 20         |      |     |     |
| 26       |              | 8.27         | 6.35         | 6.32         | 4.71         | 4.78         | 4.62         | 4.35         | 4.39         |      |     |     |
| 27<br>28 |              | 8.29<br>8.42 | 6.36<br>6.39 | 6.25<br>6.21 | 4.64<br>4.67 | 4.52         | 4.65         | 4.38         | 4.34         |      |     |     |
| 28<br>29 |              | 8.42         | 6.39         | 6.21         | 4.67         | 4.52<br>4.53 | 4.58<br>4.53 | 4.45<br>4.47 | 4.36         |      |     |     |
| 29<br>30 |              | 8.27         | 6.28         | 6.17         |              | 4.53         | 4.53         | 4.47         | 4.39         |      |     |     |
| 31       | 7.91         | 8.15         | 6.28         | 6.02         |              | 4.48         | 4.61         | 4.51         | 4.44         |      |     |     |
| 31       | 1.21         |              | 0.20         | 0.02         |              | 7.70         |              | 7.72         |              |      |     |     |
| MEAN     |              | 8.11         | 7.18         | 6.33         | 4.79         | 4.72         | 4.57         | 4.39         | 4.30         |      |     |     |
| MAX      |              | 8.42         | 7.99         | 6.48         | 5.71         | 4.92         | 4.71         | 4.74         | 4.60         |      |     |     |
| MIN      |              | 7.89         | 6.28         | 6.02         | 4.54         | 4.48         | 4.21         | 3.91         | 3.74         |      |     |     |
|          |              |              |              |              |              |              |              |              |              |      |     |     |



#### MADISON COUNTY

430056075354102. Local number, M 178. LOCATION.--Lat 43°00'56", long 75°35'41", Hydrologic Unit 04140202, at Valley Mills. Owner: Private. AQUIFER.--Unconfined aquifer in gravel of Pleistocene age.

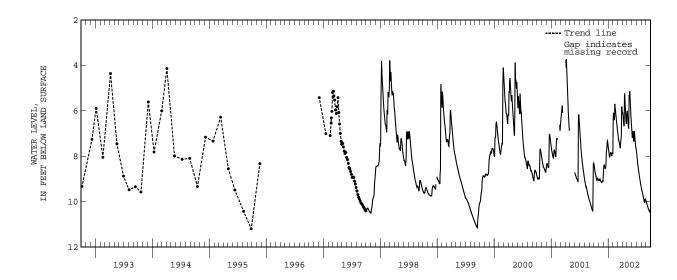
Agorean. --oncomment addite: In graver of Freetocene age. WeLL CHARACTERISTICS. --Drilled observation well, diameter 6 inch, depth 15.3 ft, cased to 16 ft, open end. INSTRUMENTATION. --Electronic data recorder--hourly; monthly measurements by USGS personnel.

DATUM. -- Elevation of land-surface datum is 573.76 ft above NGVD of 1929. Measuring point: Top of flange, 3.07 ft above land-surface datum.

REMARKS.--Well drilled April 1974 as a replacement for 430056075354101 (local number M 177), located 10 ft west, which has a

PERIOD OF RECORD.—-April 1974 as a replacement for 430050/5354101 (local number M 1/7), located 10 ft West, Which has a period of record from October 1965 to September 1973 (unpublished).

PERIOD OF RECORD.—-April 1975 to August 1995, December 1996 to current year. Records for April 1975 to September 1976 are unpublished and available in files of the Geological Survey. April 1975 to May 1986, digital recorder at same site and datum. Weekly observer readings May 1986 to Dec. 1988. Electronic data recorder at same site and datum Dec. 1988 to Feb. 1991. Periodic measurements with chalked tape Feb. 1991 to Aug. 1995 and Oct. 1996 to Feb. 1997.


REVISED RECORDS.—-WDR NY-91-3: 1990 water level; WDR NY-99-3: 1995 water level.

EXTREMES FOR PERIOD OF RECORD.--Maximum water-level depth below land surface, 11.19 ft, Sept. 27, 1995; minimum water-level depth below land surface, 2.60 ft below land-surface datum, Mar. 5, 1979.

EXTREMES FOR CURRENT YEAR.--Maximum water-level depth below land surface, 10.47 ft, Sept. 27; minimum water-level depth below

land surface, 5.11 ft, May 19.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV DEC JAN FEB APR MAY JUN AUG SEP 9.05 6.08 7.78 9.37 9.98 8.78 7.60 7.41 6.86 6.04 6.86 8.31 2 8.36 9.07 8.62 7.66 7.71 6.36 6.92 6.12 6.02 6.95 7.84 7.90 9.41 10.00 3 8 40 9 07 8 50 6 11 6.93 6 09 6 02 9.44 10 03 7.76 9.05 8.44 7.01 6.07 6.10 7.97 8.45 6.09 7.15 9.48 10.05 5 8.50 9.03 8.41 7.81 7.07 7.19 10.08 6.15 6.13 6.19 8.05 9.51 6 7 9.02 8.39 7.86 6.21 7.13 6.22 6.29 7.07 9.54 10.10 8.55 8.11 7.91 7.96 7.20 7.25 8.61 9.01 8.40 6.25 6.32 6.40 6.93 8.18 9.57 10.12 9.00 10.14 8 8.66 8.42 6.32 6.40 6.53 6.93 8.24 9.60 7.99 8.70 9.02 8.45 6.38 7.28 6.49 6.55 7.00 8.30 9.63 10.16 6.37 10 8.73 9.01 8.47 8.02 7.31 6.55 6.63 7.09 8.36 9.66 10.18 11 8.77 9.04 8.50 8.01 5.94 7.35 6.60 6.74 7.16 8.42 9.69 10.20 12 13 9.07 8.52 8.51 7.98 7.92 5.69 7.37 6.66 6.78 6.59 7.24 9.72 10.23 10.25 8.81 8.47 8.85 8.53 7.43 7.35 14 8.88 9.09 5.84 6.16 5.62 10.28 15 8.92 9.09 8.53 7.86 5.90 7.46 5.33 5.32 7.16 8.63 9.82 10.30 16 9.11 7.87 5.92 7.52 5.23 5.32 6.94 8.68 10.32 8.96 9.00 9.13 9.14 8.40 8.32 7.84 7.84 7.58 7.61 5.31 5.44 5.37 5.26 6.89 6.93 8.74 8.78 9.88 9.91 10.34 10.36 17 5.96 6.08 18 7.00 9.02 7.64 5.14 20 9.04 9.16 7.87 7.86 6.23 7.60 5.74 5.26 7.07 8.89 9.98 10.39 21 9.06 9.15 7.47 5.91 5.41 10.40 7.71 7.65 7.23 7.31 22 9.03 8.99 9.13 9.12 7.95 7.97 6.38 7.35 7.28 6.05 5.56 8.97 9.03 10.03 10.05  $10.42 \\ 10.42$ 23 6.45 6.21 5.69 9.07 24 8.96 9.11 7.56 7.96 7.24 6.35 5.84 7.40 10.43 7 49 25 8.95 9.10 7 42 7 96 6.58 7 19 6.46 6.00 9.11 9.88 10 45 6.15 26 8.96 9.11 7.34 7.91 6.63 7.06 6.51 7.58 9.15 9.87 10.46 8.99 9.02 9.09 9.10 7.32 7.35 7.88 7.86 6.69 6.78 6.57 6.55 7.63 7.62 10.46 10.34 27 6 24 6.29 9.18 9 87 28 5.88 6.43 9.22 9.88 9.26 29 9.03 9.05 7.41 7.86 5.82 6.32 6.55 7.67 9.90 10.29 ---30 9.04 8.93 7.47 7.87 5.88 6.18 6.67 7.72 9.30 9.92 10.24 9.08 6.05 MEAN 8.82 8.10 7.87 6.27 7.07 6.14 7.20 8.64 9.77 10.26 MAX 9.06 9.16 8.78 8.02 7.41 7.64 6.68 6.78 7.72 9.34 10.05 10.46 MTN 8.31 8.93 7.32 7.60 5.69 5.82 5.23 5.14 6.86 7.78 9.37 9.98



## MONROE COUNTY

430855077304202. Local number Mo 2
LOCATION.--Lat 43°08'55", long 77°30'42", Hydrologic Unit 04140101, near east valley wall, north of Blossom Road, in Ellison Park. Owner: U.S. Geological Survey.

AQUIFER. --Unconfined aquifer in coarse sand and gravel of Pleistocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 2 inch, depth 45 ft, cased to 41 ft, screened 41 to 45 ft.
INSTRUMENTATION.--Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel.

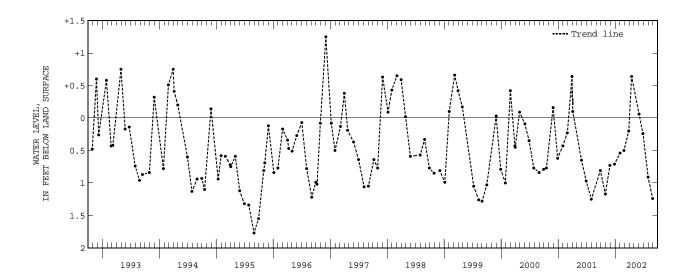
DATUM.--Elevation of land-surface datum is 252.60 ft above NGVD of 1929. Measuring point: arrow at top of casing, 4.08 ft above land-surface datum.

REMARKS.--Well also sampled for water quality.

COOPERATION. -- Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.

ROCHESTEY, NY.

PERIOD OF RECORD.--September 1984 to August 2002 (discontinued).


EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 1.77 ft, Aug. 31, 1995; minimum measured water-level depth, 1.25 ft above land surface, Dec. 3, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum leadured water-level depth below land surface, 1.24 ft, Aug. 29; minimum measured

water-level depth, 0.64 ft above land surface, Apr. 16.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 (READINGS ABOVE LAND SURFACE INDICATED BY "+")

| DATE             | WATER<br>LEVEL | DATE   | WATER<br>LEVEL |
|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------|
| OCT 30<br>NOV 28 | 1.17<br>.73    | DEC 28<br>FEB 01 | .71<br>.54     | FEB 26<br>MAR 29 | .50<br>.20     | APR 16<br>JUN 03 | +.64           | JUN 28<br>JUL 31 | .24<br>.91     | AUG 29 | 1.24           |



430854077304601. Local number Mo 3
LOCATION.--Lat 43°08'54", long 77°30'46", Hydrologic Unit 04140101, on right bank of Irondequoit Creek, north of Blossom Road, in Ellison Park. Owner: U.S. Geological Survey.

AQUIFER.--Unconfined aquifer in alluvium of Holocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 inch, depth 16 ft, cased to 13.5 ft, screened 13.5 ft to 16 ft.

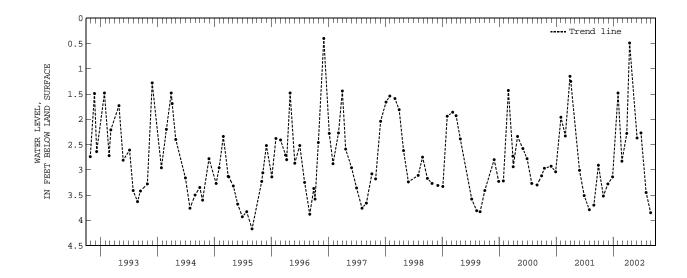
INSTRUMENTATION.--Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel.

DATUM.--Elevation of land-surface datum is 253.2 ft above NGVD of 1929. Measuring point: arrow at top of casing, 3.74 ft above

land-surface datum.
REMARKS.--Well also sampled for water quality.

REMARKS.--Well also sampled for water quality.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.


PERIOD OF RECORD.--September 1984 to August 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 4.17 ft, Aug. 31, 1995; minimum measured, water-level depth, 2.03 ft, above land surface, Feb. 27, 1985.

EXTREMES FOR CURRENT YEAR.--Maximum measured water-level depth below land surface, 3.85 ft, Aug. 29; minimum measured water-level depth below land surface, 0.49 ft, Apr. 16.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DATE             | WATER<br>LEVEL | DATE             | WATER<br>LEVEL | DATE             | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL |
|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------|--------|----------------|--------|----------------|
| OCT 30<br>NOV 28 | 3.52<br>3.28   | DEC 28<br>FEB 01 | 3.14           | FEB 26<br>MAR 29 | 2.83           | APR 16 | .49            | JUN 28 | 2.27           | AUG 29 | 3.85           |



#### 283 GROUND-WATER LEVELS

#### MONROE COUNTY--Continued

430932077311501. Local number Mo 659
LOCATION.--Lat 43°09'32", long 77°31'15", Hydrologic Unit 04140101, at top of right bank about 400 ft north east of bridge over Irondequoit Creek overflow channel at Old Browncroft Boulevard. Owner: U.S. Geological Survey.

AQUIFER.—Confined aquifer in sand and gravel of Pleistocene age.
WELL CHARACTERISTICS.—Drilled observation well, diameter 6 inch, depth 215 ft, cased to 215 ft, perforated 80 to 90 ft and 160 to 170 ft, open-ended at 215 ft.

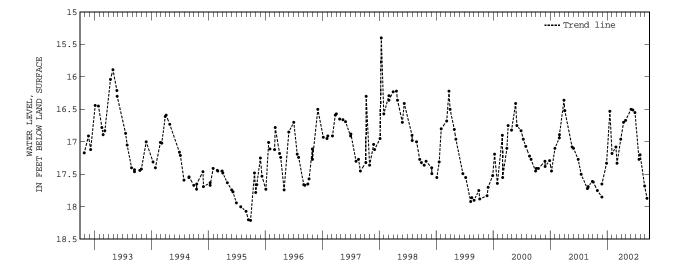
INSTRUMENTATION. --Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel; periodic measurement by USGS personnel.

DATUM. -- Elevation of land-surface datum is 266.58 ft above NGVD of 1929. Measuring point: arrow at top of casing, 1.80 ft above land-surface datum.

REMARKS.--Well also sampled for water quality.

COOPERATION. -- Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.
PERIOD OF RECORD.--December 1986 to September 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD. --Maximum measured water-level depth below land surface, 18.21 ft, Sept. 29, 1995; minimum measured water-level depth below land surface, 15.40 ft, Jan. 14, 1998.


EXTREMES FOR CURRENT YEAR. --Maximum measured water-level depth below land surface, 17.87 ft, Sept. 13; minimum measured

water-level depth below land surface, 16.50 ft, June 3.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DATE             | WATER<br>LEVEL  | DATE             | WATER<br>LEVEL  | DATE             | WATER<br>LEVEL  | DATE   | WATER<br>LEVEL  | DATE         | WATER<br>LEVEL | DATE             | WATER<br>LEVEL |
|------------------|-----------------|------------------|-----------------|------------------|-----------------|--------|-----------------|--------------|----------------|------------------|----------------|
| 30               | z17.62<br>17.75 | DEC 28<br>JAN 18 | 17.33<br>z16.53 | FEB 26<br>MAR 05 | 17.08<br>z17.33 | APR 16 | 16.70<br>z16.67 | JUN 14<br>28 | 16.55          | JUL 31<br>AUG 29 | 17.20<br>17.68 |
| NOV 28<br>NOV 28 | 17.85<br>z17.65 | FEB 01           | 17.18           | 29               | 16.96           | JUN 03 | 16.50           | JUL 24       | z17.27         | SEP 13           | z17.87         |

z Measured by USGS personnel.



430912077313301. Local number Mo 663
LOCATION.--Lat 43°09'12", long 77°31'33", Hydrologic Unit 04140101, on east bank of Irondequoit Creek about 1200 ft south of Browncroft Boulevard. Owner: U.S. Geological Survey.

AQUIFER.—Unconfined aquifer in alluvium of Holocene age.

WELL CHARACTERISTICS.—Drilled observation well, diameter 2 inch, depth 10 ft, cased to 7.5 ft, screened 7.5 ft to 10 ft.

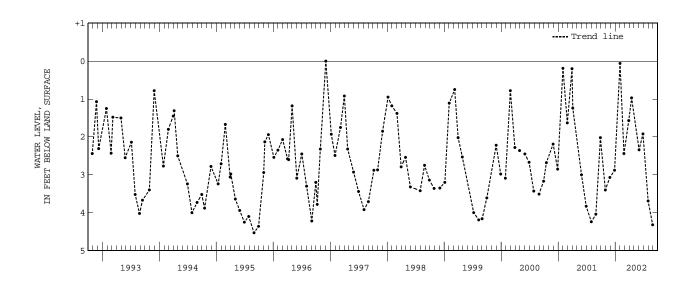
INSTRUMENTATION.—Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel.

DATUM.—Elevation of land—surface datum is 251.16 ft above NGVD of 1929. Measuring point: arrow at top of casing, 3.60 ft above

land-surface datum.
REMARKS.--Well also sampled for water quality.

REMARKS.--Well also sampled for water quality.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.


PERIOD OF RECORD.--September 1988 to August 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 4.53 ft, Aug. 31, 1995; minimum measured water-level depth below land surface, 0.00 ft, Dec. 3, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum measured water-level depth below land surface, 4.32 ft, Aug. 29; minimum measured water-level depth below land surface, 0.06 ft, Feb. 1.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DATE   | WATER<br>LEVEL | DATE             | WATER<br>LEVEL | DATE             | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL |
|--------|----------------|------------------|----------------|------------------|----------------|--------|----------------|--------|----------------|--------|----------------|
| OCT 30 | 3.40<br>3.07   | DEC 28<br>FEB 01 | 2.88           | FEB 26<br>MAR 29 | 2.44           | APR 16 | .97            | JUN 28 | 1.92           | AUG 29 | 4.32           |

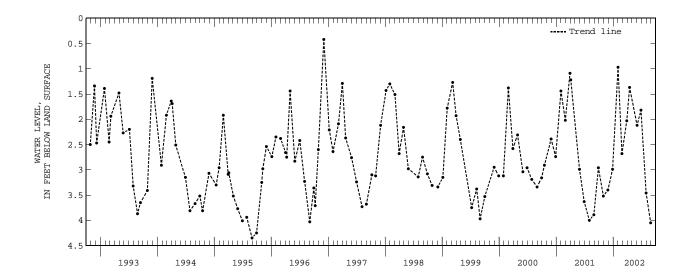


430912077313302. Local number Mo 664
LOCATION.--Lat 43°09'12", long 77°31'33", Hydrologic Unit 04140101, on east bank of Irondequoit Creek about 1200 ft south of Browncroft Boulevard. Owner: U.S. Geological Survey.

AQUIFER. --Unconfined aquifer in alluvium of Holocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 2 inch, depth 27 ft, cased to 22 ft, screened 22 ft to 27 ft.
INSTRUMENTATION.--Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel.

DATUM.--Elevation of land-surface datum is 251.18 ft above NGVD of 1929. Measuring point: arrow at top of casing, 3.20 ft above land-surface datum.
REMARKS.--Well also sampled for water quality.

COOPERATION. -- Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at


COOPERATION. --Water-quality samples were collected and analyzed by the Montoe code, invisional and the Montoe Code, invisional analyzed by the Montoe Code, invisional analyzed by the Montoe Code, invisional analyzed Rochester, NY.

PERIOD OF RECORD. --September 1988 to August 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD. --Maximum measured water-level depth below land surface, 4.35 ft, Aug. 31, 1995; minimum measured water-level depth below land surface, 4.05 ft, Aug. 29; minimum measured water-level depth below land surface, 0.97 ft, Feb. 1.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DATE             | WATER<br>LEVEL | DATE   | WATER<br>LEVEL |
|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|------------------|----------------|--------|----------------|
| OCT 30<br>NOV 28 | 3.52<br>3.40   | DEC 28<br>FEB 01 | 2.99           | FEB 26<br>MAR 29 | 2.68           | APR 16<br>JUN 03 | 1.37<br>2.12   | JUN 28<br>JUL 31 | 1.82           | AUG 29 | 4.05           |



430928077313802. Local number Mo 665 LOCATION.--Lat 43°09'28", long 77°31'38", Hydrologic Unit 04140101, on east bank of Irondequoit Creek about 100 ft north of Browncroft Boulevard. Owner: U.S. Geological Survey.

AQUIFER.—Unconfined aquifer in alluvium of Holocene age.

WELL CHARACTERISTICS.—Drilled observation well, diameter 2 inch, depth 17 ft, cased to 12 ft, screened 12 ft to 17 ft.

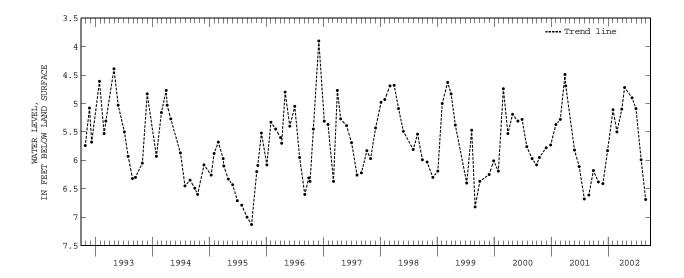
INSTRUMENTATION.—Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel.

DATUM.—Elevation of land—surface datum is 254.14 ft above NGVD of 1929. Measuring point: arrow at top of casing, 2.45 ft above

land-surface datum.
REMARKS.--Well also sampled for water quality.

COOPERATION. --Well also samples for water quality.

COOPERATION. --Well also samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.


ROCHESTEY, NY.
PERIOD OF RECORD.--September 1988 to August 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 7.48 ft, Oct. 31, 1989; lowest measured water-level depth below land surface, 3.90 ft below land-surface datum, Dec. 3, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum measured water-level depth below land surface, 6.69 ft, Aug. 29; minimum measured water-level depth below land surface, 4.72 ft, Apr. 16.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DATE   | WATER<br>LEVEL | DATE             | WATER<br>LEVEL | DATE             | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL |
|--------|----------------|------------------|----------------|------------------|----------------|--------|----------------|--------|----------------|--------|----------------|
| OCT 30 | 6.38<br>6.41   | DEC 28<br>FEB 01 | 5.83<br>5.11   | FEB 26<br>MAR 29 | 5.50<br>5.10   | APR 16 | 4.72           | JUN 28 | 5.09           | AUG 29 | 6.69           |



430928077313803. Local number Mo 666
LOCATION.--Lat 43°09'28", long 77°31'38", Hydrologic Unit 04140101, on east bank of Irondequoit Creek about 100 ft north of Browncroft Boulevard. Owner: U.S. Geological Survey.

AQUIFER. --Unconfined aquifer in alluvium of Holocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 2 inch, depth 27 ft, cased to 22 ft, screened 22 ft to 27 ft.
INSTRUMENTATION.--Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel; periodic measurement by USGS personnel.

DATUM.--Elevation of land-surface datum is 254.14 ft above NGVD of 1929. Measuring point: arrow at top of casing, 3.65 ft above

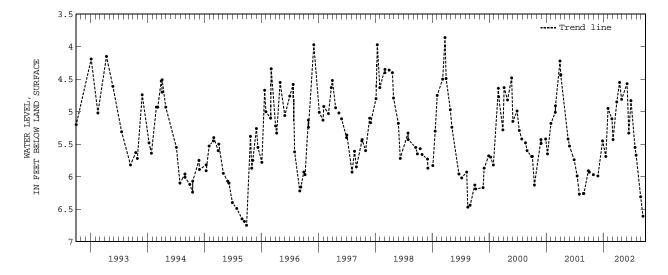
land-surface datum.

land-surface datum.

REMARKS.--Well also sampled for water quality.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.

PERIOD OF RECORD.--September 1988 to September 2002 (discontinued).


EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 6.75 ft, Sept. 29, 1995; minimum measured 3.66 ft below land-surface datum, May 6, 1992.

EXTREMES FOR CURRENT YEAR.--Maximum measured water-level depth below land surface, 6.61 ft, Sept. 13; minimum measured water-level depth below land surface, 4.55 ft, Apr. 16.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DATE   | WATER<br>LEVEL |
|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|--------|----------------|
| OCT 04 | z5.93          | DEC 28 | 5.45           | FEB 26 | 5.11           | APR 16 | 4.55           | JUN 14 | z5.33          | JUL 31 | 5.67           |
| 30     | 5.97           | JAN 18 | z5.69          | MAR 05 | z5.43          | 29     | z4.81          | 28     | 4.83           | AUG 29 | 6.31           |
| NOV 28 | z5.99          | FEB 01 | 4.95           | 29     | 4.85           | JUN 03 | 4.57           | JUL 24 | z5.55          | SEP 13 | z6.61          |

z Measured by USGS personnel.



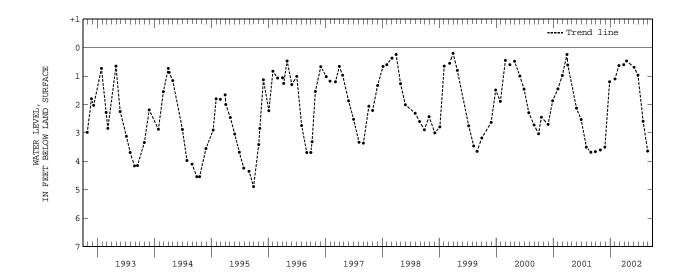
430928077314001. Local number Mo 667
LOCATION.--Lat 43°09'28", long 77°31'40", Hydrologic Unit 04140101, on west bank of Irondequoit Creek about 300 ft north of Browncroft Boulevard and 100 ft west of Irondequoit Creek. Owner: U.S. Geological Survey.
AQUIFER.--Unconfined aquifer in alluvium of Holocene age.
WELL CHARACTERISTICS.--Drilled observation well, diameter 2 inch, depth 15 ft, cased to 10 ft, screened 10 ft to 15 ft.
INSTRUMENTATION.--Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel.
DATUM.--Elevation of land-surface datum is 255.38 ft above NGVD of 1929. Measuring point: arrow at top of casing, 2.05 ft above

land-surface datum.
REMARKS.--Well also sampled for water quality.

COOPERATION. --Well also samples for water quality.

COOPERATION. --Well also samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.

Rochester, NY.


PERIOD OF RECORD.--September 1988 to August 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 6.06 ft, Oct. 29, 1991; minimum measured water-level depth below land surface, 0.20 ft, Mar. 31, 1999.

EXTREMES FOR CURRENT YEAR.--Maximum measured water-level depth below land surface, 3.64 ft, Aug. 29; minimum measured water-level depth below land surface, 0.47 ft, Apr. 16.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DATE   | WATER<br>LEVEL |                  |      | DATE             | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL |
|--------|----------------|------------------|------|------------------|----------------|--------|----------------|--------|----------------|--------|----------------|
| OCT 30 | 3.60<br>3.50   | DEC 28<br>FEB 01 | 1.20 | FEB 26<br>MAR 29 | .63            | APR 16 | .47            | JUN 28 | .97<br>2.59    | AUG 29 | 3.64           |



430928077314002. Local number Mo 668
LOCATION.--Lat 43°09'28", long 77°31'40", Hydrologic Unit 04140101, on west bank of Irondequoit Creek about 300 ft north of Browncroft Boulevard and 100 ft west of Irondequoit Creek. Owner: U.S. Geological Survey.

AQUIFER.--Unconfined aquifer in alluvium of Holocene age.

WELL CHARACTERISTICS.--Drilled observation well, diameter 2 inch, depth 36 ft, cased to 31 ft, screened 31 ft to 36 ft.

INSTRUMENTATION.--Monthly measurement with chalked tape by Monroe County Environmental Health Laboratory personnel.

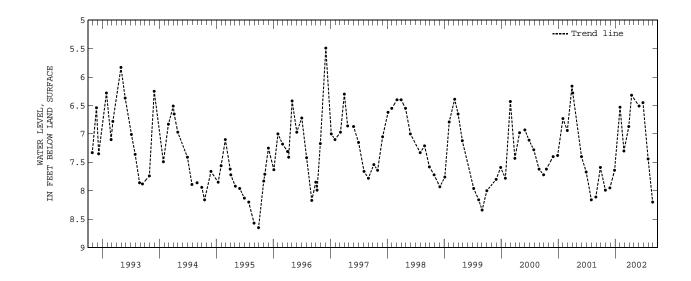
DATUM.--Elevation of land-surface datum is 255.32 ft above NGVD of 1929. Measuring point: arrow at top of casing, 1.40 ft above

land-surface datum.

REMARKS.--Well also sampled for water quality.

COOPERATION.--Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.

ROCHESTEY, NY.


PERIOD OF RECORD.--September 1988 to August 2002 (discontinued).

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 8.65 ft, Sept. 29, 1995; minimum measured 5.49 ft below land-surface datum, Dec. 3, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum measured water-level depth below land surface, 8.20 ft, Aug. 29; minimum measured water-level depth below land surface, 6.32 ft, Apr. 16.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| DATE   | WATER<br>LEVEL | DATE             | WATER<br>LEVEL | DATE             | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL | DATE   | WATER<br>LEVEL |
|--------|----------------|------------------|----------------|------------------|----------------|--------|----------------|--------|----------------|--------|----------------|
| OCT 30 | 7.99<br>7.95   | DEC 28<br>FEB 01 | 7.64<br>6.53   | FEB 26<br>MAR 29 | 7.30<br>6.87   | APR 16 | 6.32<br>6.51   | JUN 28 | 6.45<br>7.44   | AUG 29 | 8.20           |



#### OTSEGO COUNTY

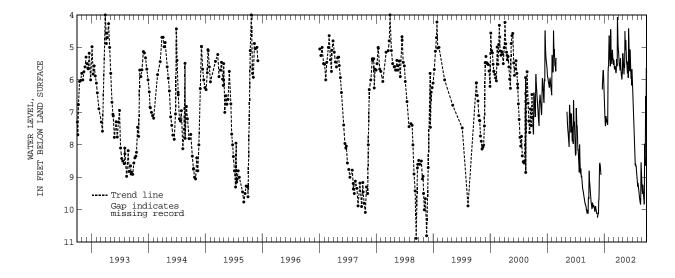
424136075025101. Local number, Og 23.
LOCATION.--Lat 42°41'36", long 75°02'51", Hydrologic Unit 02050101, at "Wild Creek Farm", 0.6 mi northeast of intersection of State Highway 205 and Kallan Road, 2.2 mi north of Hartwick, and 3.2 mi southeast of Oaksville. Owner: Private. AQUIFER. -- Till of Pleistocene age.

WELL CHARACTERISTICS.--Dug unused well, diameter 36 inch, depth 15 ft, stone-lined.

INSTRUMENTATION. --Electronic data recorder--hourly; monthly measurement by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,432.44 ft above NGVD of 1929. Measuring point: Top edge of hole drilled through

concrete well cover, at land-surface datum.


PERIOD OF RECORD.--May 1953 to August 1995, December 1996 to current year. Records for May 1953 to September 1976 are unpublished and available in files of the Geological Survey. Weekly measurement with chalked tape by observer Oct. 1976 to

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 12.66 ft, Nov. 14, 1964; minimum measured water-level depth below land surface, 2.98 ft, Apr. 2, 1960, Sep. 19, 1977.

EXTREMES FOR CURRENT YEAR.--Maximum water-level depth below land surface, 10.23 ft, Nov. 19, 20; minimum water-level depth below

land surface, 3.78 ft, Mar. 26.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY DEC FEB MAY JUN AUG SEP 9.13 9.22 10.02 8.83 4.69 5.48 5.02 5.18 6.30 9.40 1 6.45 5.44 2 9.29 10.06 4.64 5.54 5.29 5.55 9.18 9.46 8.64 6.62 5.09 6.52 3 9 37 10.00 8 58 6.76 4 95 5.45 5.16 5.36 6.71 9 24 9.51 8.57 9.45 9.93 6.91 5.39 5.22 5.46 5.94 6.89 9.29 9.31 4 5.13 5 9.52 9.91 7.05 5.28 5.49 5.32 5.55 7.07 9.22 9.23 8.59 5.87 6 9.89 8.62 5.57 9.18 9.29 9.58 7.17 5.37 5.40 5.65 4.42 7.23 7.24 7.36 9.64 9.90 8.66 5.42 5.63 5.48 5.73 4.75 9.22 9.37 9.45 8 9.71 9.93 8.73 5.49 5.66 5.54 5.83 5.10 9.28 8.79 9.77 9.96 7.41 5.68 5.59 5.69 5.29 7.60 9.34 9.52 5.58 10 9.80 10.0 8.86 7.42 5.52 5.59 5.57 5.52 5.43 7.71 9.39 9.58 11 9.84 10.03 8.92 7.26 4.44 5.58 5.63 5.63 5.52 7.80 9.43 9.64 12 13 7.15 7.11 5.68 5.71 5.60 4.91 5.62 5.71 9.70 9.76 9.88 10.06 ---4.76 5.60 7.90 9.47 9.92 10.09 4.99 5.61 8.00 9.53 5.73 14 9.96 10.11 7.20 5.16 5.65 5.51 4.50 8.12 9.81 15 9.96 10.13 \_\_\_ 7.23 5.28 5.69 5.34 4.81 5.49 8.24 9.61 9.80 5.74 16 9.93 7.25 5.34 5.43 5.06 5.06 8.36 9.65 8.26 17 9.85 9.79 10.18 \_\_\_ 7.24 7.27 5.36 5.45 5.78 5.79 5.56 5.66 5.06 4.77 5.21 5.41 8.47 8.56 9.69 9.72 7.97 8.13 ---18 10.22 5.71 19 9.80 7.30 5.58 20 9.82 10.21 6.30 7.31 5.51 5.53 5.79 5.05 5.73 8.59 9.79 8.50 21 9.87 6.10 5.35 5.45 5.86 9.82 10.14 7.32 5.86 8.64 9.90 9.91 10.10 6.01 5.92 7.37 7.38 5.36 5.41 5.88 5.91 5.29 5.37 5.97 5.87 9.84 9.70 8.33 6.54 22 5.08 8.63 23 5.11 8.67 24 9.91 5.76 7.10 5.51 5.99 5.44 5.83 6.50 25 9 87 10.12 5 70 6.20 5.33 5.58 5.96 5.49 5.98 8.68 8.54 6.61 26 9.87 9.80 5.71 5.78 5.38 5.08 5.77 5.50 6.17 8.74 8.68 6.74 9.90 9.91 9.70 9.69 5.76 5.87 5.65 5.59 5.72 5.67 27 5.34 4 07 5.80 5.54 8 80 8.86 6.54 28 5.38 4.41 5.66 5.63 8.87 9.01 5.65 29 9.93 9.58 6.00 5.55 4.59 5.20 5.72 5.83 8.94 9.13 5.70 \_\_\_ 30 9 95 9.34 6 14 5 18 4 76 5 25 5 80 6 05 9 00 9 23 5 78 6.30 MEAN 9.78 5.22 8.37 ------6.80 5.40 5.56 5.36 5.58 8.07 9.36 9.99 \_\_\_ \_\_\_ 7.42 5.58 5.79 5.99 5.83 6.17 9.07 9.84 9.81 MAX MIN 9.22 ---5.00 4.44 4.07 5.02 4.50 4.42 6.30 8.54 5.65



## STEUBEN COUNTY

422445077203301. Local number, Sb 472.

LOCATION.--Lat 42°24'45", long 77°20'33", Hydrologic Unit 02050105, near Kanona. Owner: Private.

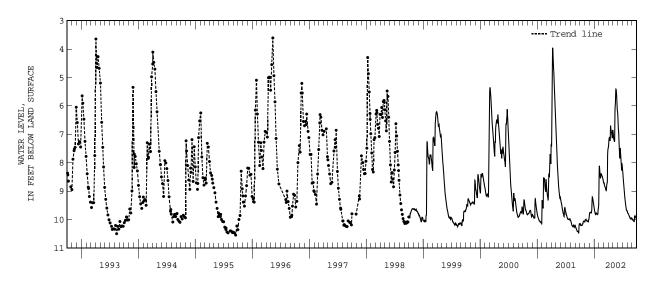
AQUIFER.--Unconfined aquifer in gravel of Pleistocene age.

WELL CHARACTERISTICS.--Driven observation well, diameter 2.5 inch, depth 17 ft, filled in from original depth of 18 ft, cased to 16 ft, 1.25 inch well point (60-gauze screen 16 ft to 18 ft, damaged during well installation).

INSTRUMENTATION.--Electronic data recorder--hourly; monthly measurement with chalked tape by USGS personnel.

DATUM.--Elevation of land-surface datum is 1,209.78 ft above NGVD of 1929. Measuring point: Top of casing, 2.99 ft above land-surface datum.

land-surface datum.


land-surface datum.

PERIOD OF RECORD.--November 1965 to current year. Records for November 1965 to September 1976 are unpublished and available in files of the Geological Survey. Weekly measurement with chalked tape by observer Nov. 1965 to Dec. 1997.

EXTREMES FOR PERIOD OF RECORD.--Maximum measured water-level depth below land surface, 10.84 ft, Sep. 22, 1966; minimum measured water-level depth below land surface, 3.61 ft, May 12, 1996.

EXTREMES FOR CURRENT YEAR.--Maximum water-level depth below land surface, 10.22 ft, Oct. 6, 7; minimum water-level depth below land surface, 5.40 ft, May 20, 21.

|                                  | DEPT                                      | H BELOW                                   | LAND SURFACE                                 | (WATER                                       |                                      | (FEET), I                                    |                              | OCTOBER                                      | 2001 TO SE                           | PTEMBER                                      | 2002                                         |                                           |
|----------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|------------------------------|----------------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|-------------------------------------------|
| DAY                              | OCT                                       | NOV                                       | DEC                                          | JAN                                          | FEB                                  | MAR                                          | APR                          | MAY                                          | JUN                                  | JUL                                          | AUG                                          | SEP                                       |
| 1<br>2<br>3<br>4<br>5            | 10.16<br>10.15<br>10.14<br>10.16<br>10.18 | 10.09<br>10.08<br>10.05<br>10.02<br>10.01 | 9.85<br>9.81<br>9.78<br>9.76<br>9.76         | 9.62<br>9.66<br>9.69<br>9.71<br>9.73         | 8.79<br>8.25<br>8.11<br>8.15<br>8.25 | 8.68<br>8.71<br>8.71<br>8.70<br>8.71         | 7.45<br>7.40<br>7.31         | 6.90<br>6.91<br>6.98<br>7.05<br>7.10         | 6.29<br>6.41<br>6.58<br>6.74<br>6.84 | 8.21<br>8.27<br>8.34<br>8.40<br>8.47         | 9.71<br>9.74<br>9.76<br>9.77<br>9.78         | 9.98<br>9.99<br>9.99<br>10.00<br>10.01    |
| 6<br>7<br>8<br>9<br>10           | 10.21<br>10.21<br>10.21<br>10.20<br>10.20 | 10.00<br>10.00<br>10.00<br>10.01<br>10.00 | 9.74<br>9.75<br>9.76<br>9.76<br>9.76         | 9.75<br>9.77<br>9.80<br>9.81<br>9.82         | 8.33<br>8.40<br>8.47<br>8.53<br>8.55 | 8.74<br>8.77<br>8.80<br>8.81<br>8.83         | 7.14<br>7.11<br>7.11         | 7.14<br>7.18<br>7.22<br>7.21<br>7.22         | 6.85<br>6.96<br>7.11<br>7.26<br>7.42 | 8.54<br>8.61<br>8.68<br>8.75<br>8.82         | 9.79<br>9.79<br>9.80<br>9.82<br>9.83         | 10.01<br>10.02<br>10.03<br>10.05<br>10.05 |
| 11<br>12<br>13<br>14<br>15       | 10.20<br>10.19<br>10.20<br>10.21<br>10.21 | 10.02<br>10.03<br>10.03<br>10.04<br>10.04 | 9.77<br>9.77<br>9.76<br>9.76<br>9.71         | 9.81<br>9.79<br>9.77<br>9.78<br>9.77         | 8.50<br>8.42<br>8.42<br>8.40<br>8.39 | 8.84<br>8.86<br>8.88<br>8.90<br>8.92         | 7.21<br>7.23<br>7.11         | 7.27<br>7.25<br>6.87<br>6.25<br>6.05         | 7.56<br>7.69<br>7.82<br>7.85<br>7.73 | 8.89<br>8.96<br>9.03<br>9.09<br>9.15         | 9.84<br>9.85<br>9.87<br>9.88<br>9.89         | 10.05<br>10.06<br>10.06<br>10.07<br>10.04 |
| 16<br>17<br>18<br>19<br>20       | 10.19<br>10.18<br>10.16<br>10.15<br>10.15 | 10.04<br>10.06<br>10.07<br>10.07<br>10.06 | 9.66<br>9.61<br>9.48<br>9.27<br>9.21         | 9.78<br>9.79<br>9.80<br>9.82<br>9.82         | 8.40<br>8.41<br>8.44<br>8.46<br>8.47 | 8.95<br>8.97<br>8.98<br>8.98<br>8.95         | 6.76<br>6.82<br>6.86         | 5.98<br>5.88<br>5.64<br>5.46<br>5.41         | 7.50<br>7.48<br>7.59<br>7.72<br>7.83 | 9.22<br>9.27<br>9.32<br>9.37<br>9.42         | 9.90<br>9.92<br>9.93<br>9.95<br>9.96         | 9.90<br>9.87<br>9.87<br>9.88<br>9.89      |
| 21<br>22<br>23<br>24<br>25       | 10.15<br>10.10<br>10.07<br>10.07<br>10.06 | 10.06<br>10.07<br>10.08<br>10.08<br>10.06 | 9.22<br>9.25<br>9.27<br>9.31<br>9.35         | 9.82<br>9.83<br>9.83<br>9.81<br>9.74         | 8.48<br>8.48<br>8.50<br>8.53<br>8.56 | 8.86<br>8.79<br>8.75<br>8.73<br>8.71         | 6.93<br>6.98<br>7.01         | 5.42<br>5.46<br>5.52<br>5.59<br>5.69         | 7.93<br>8.01<br>8.09<br>8.16<br>8.22 | 9.47<br>9.52<br>9.55<br>9.59<br>9.62         | 9.97<br>9.98<br>9.95<br>9.95<br>9.95         | 9.90<br>9.91<br>9.92<br>9.93<br>9.94      |
| 26<br>27<br>28<br>29<br>30<br>31 | 10.06<br>10.06<br>10.06<br>10.06<br>10.07 | 10.02<br>10.00<br>9.99<br>9.95<br>9.91    | 9.39<br>9.42<br>9.46<br>9.51<br>9.55<br>9.59 | 9.68<br>9.64<br>9.60<br>9.55<br>9.48<br>9.28 | 8.58<br>8.60<br>8.64<br>             | 8.66<br>8.16<br>7.76<br>7.61<br>7.54<br>7.51 | 7.14<br>7.08<br>6.88<br>6.85 | 5.78<br>5.89<br>6.02<br>6.15<br>6.18<br>6.24 | 8.28<br>8.07<br>8.02<br>8.09<br>8.15 | 9.65<br>9.67<br>9.68<br>9.68<br>9.68<br>9.70 | 9.94<br>9.95<br>9.97<br>9.96<br>9.95<br>9.97 | 9.95<br>9.92<br>9.84<br>9.82<br>9.81      |
| MEAN<br>MAX<br>MIN               | 10.15<br>10.21<br>10.06                   | 10.03<br>10.09<br>9.91                    | 9.58<br>9.85<br>9.21                         | 9.73<br>9.83<br>9.28                         | 8.45<br>8.79<br>8.11                 | 8.64<br>8.98<br>7.51                         | 7.48                         | 6.35<br>7.27<br>5.41                         | 7.54<br>8.28<br>6.29                 | 9.12<br>9.70<br>8.21                         | 9.88<br>9.98<br>9.71                         | 9.96<br>10.07<br>9.81                     |



#### WYOMING COUNTY

423743078070802. Local number, Wo 4. LOCATION.--Lat 42°37'43", long 78°07'08", Hydrologic Unit 04130002, near Gainesville. Owner: Letchworth Central School. AQUIFER.--Unconfined aquifer in sand of Pleistocene age.

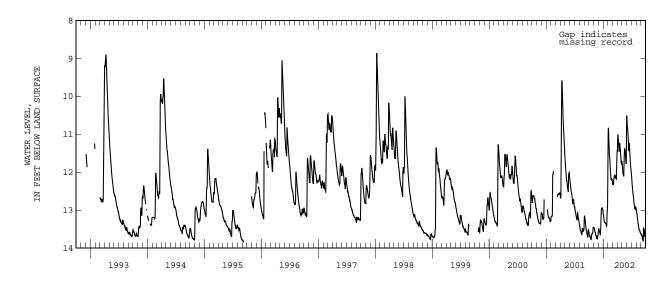
WELL CHARACTERISTICS.—Prilled observation well, diameter 6 inch, depth 20 ft, cased to 20 ft, open end.
INSTRUMENTATION.—Electronic data recorder—hourly; monthly measurement with chalked tape by USGS personnel.
DATUM.—Elevation of land-surface datum is 1,606.76 ft above NGVD of 1929. Measuring point: Top of casing, 2.64 ft above

land-surface datum.

REMARKS.--Well drilled May 1974 as a replacement for 423743078070801 (local number Wo 2), located 25 ft southeast, which has a period of record from November 1965 to May 1974 (unpublished). Water level may be affected by periodic water-quality sampling

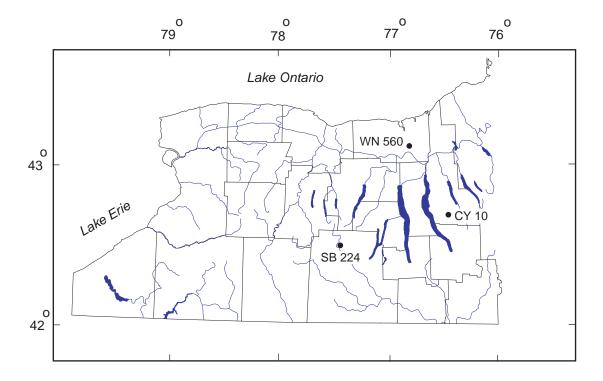
by county health department.

PERIOD OF RECORD.--May 1974 to current year. Records for May 1974 to September 1976 are unpublished and available in files of


the Geological Survey.

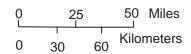
REVISED RECORDS.--WDR NY-91-3: 1990.

EXTREMES FOR PERIOD OF RECORD.--Maximum water-level depth below land surface, 14.00 ft, Nov. 3, 1974; minimum water-level depth below land surface, 7.89 ft, Mar. 5, 1976.


EXTREMES FOR CURRENT YEAR.--Maximum water-level depth below land surface, 13.84 ft, Sept. 14, 15; minimum water-level depth below land surface, 10.50 ft, June 1.

|                                  | DEPT                                      | H BELOW                                   | LAND SURFAC                                        | E (WATER                                           |                                           | FEET), WA<br>LY MEAN VA                            |                                           | OCTOBER :                                 | 2001 TO SE                                | PTEMBER 2                                 | 002                                                |                                           |
|----------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|----------------------------------------------------|-------------------------------------------|
| DAY                              | OCT                                       | NOV                                       | DEC                                                | JAN                                                | FEB                                       | MAR                                                | APR                                       | MAY                                       | JUN                                       | JUL                                       | AUG                                                | SEP                                       |
| 1<br>2<br>3<br>4<br>5            | 13.59<br>13.61<br>13.63<br>13.67<br>13.68 | 13.46<br>13.46<br>13.46<br>13.47<br>13.49 | 13.56<br>13.52<br>13.51<br>13.50<br>13.51          | 13.12<br>13.12<br>13.16<br>13.20<br>13.21          | 11.75<br>10.92<br>10.83<br>10.86<br>10.97 | 12.24<br>12.32<br>12.32<br>12.31<br>12.32          | 11.44<br>11.44<br>11.28<br>11.08          | 11.74<br>11.76<br>11.81<br>11.85<br>11.90 | 10.51<br>10.54<br>10.67<br>10.76<br>10.81 | 12.06<br>12.12<br>12.20<br>12.24<br>12.30 | 12.98<br>13.02<br>13.03<br>13.08<br>13.11          | 13.65<br>13.66<br>13.66<br>13.64<br>13.66 |
| 6<br>7<br>8<br>9<br>10           | 13.68<br>13.68<br>13.68<br>13.71<br>13.74 | 13.52<br>13.53<br>13.55<br>13.58<br>13.58 | 13.53<br>13.53<br>13.56<br>13.59<br>13.59          | 13.21<br>13.28<br>13.30<br>13.31<br>13.33          | 11.10<br>11.22<br>11.36<br>11.49<br>11.58 | 12.33<br>12.33<br>12.32<br>12.28<br>12.19          | 11.02<br>11.07<br>11.15<br>11.21<br>11.29 | 11.94<br>11.99<br>12.05<br>12.06<br>12.06 | 10.82<br>10.87<br>10.96<br>11.04<br>11.14 | 12.35<br>12.38<br>12.45<br>12.48<br>12.54 | 13.12<br>13.19<br>13.21<br>13.24<br>13.27          | 13.67<br>13.67<br>13.69<br>13.74<br>13.75 |
| 11<br>12<br>13<br>14<br>15       | 13.74<br>13.74<br>13.76<br>13.78<br>13.78 | 13.59<br>13.61<br>13.64<br>13.65<br>13.66 | 13.60<br>13.63<br>13.65<br>13.64<br>13.52          | 13.33<br>13.33<br>13.33<br>13.33<br>13.34          | 11.59<br>11.63<br>11.72<br>11.80<br>11.86 | 12.16<br>12.12<br>12.12<br>12.12<br>12.12          | 11.35<br>11.41<br>11.46<br>11.43<br>11.30 | 12.06<br>12.11<br>12.06<br>11.88<br>11.66 | 11.22<br>11.30<br>11.38<br>11.45<br>11.35 | 12.56<br>12.60<br>12.63<br>12.67<br>12.71 | 13.30<br>13.35<br>13.36<br>13.39<br>13.43          | 13.77<br>13.78<br>13.80<br>13.83<br>13.79 |
| 16<br>17<br>18<br>19<br>20       | 13.78<br>13.71<br>13.66<br>13.66          | 13.68<br>13.68<br>13.68<br>13.73<br>13.75 | 13.45<br>13.41<br>13.27<br>13.10<br>13.01          | 13.35<br>13.35<br>13.35<br>13.36<br>13.38          | 11.92<br>12.00<br>12.07<br>12.10<br>12.19 | 12.08<br>12.09<br>12.11<br>12.15<br>12.17          | 11.26<br>11.25<br>11.28<br>11.33<br>11.37 | 11.53<br>11.45<br>11.42<br>11.39<br>11.40 | 11.24<br>11.25<br>11.30<br>11.39<br>11.46 | 12.75<br>12.81<br>12.83<br>12.87<br>12.90 | 13.43<br>13.46<br>13.50<br>13.52<br>13.52          | 13.52<br>13.48<br>13.49<br>13.53<br>13.57 |
| 21<br>22<br>23<br>24<br>25       | 13.66<br>13.62<br>13.61<br>13.61<br>13.61 | 13.75<br>13.75<br>13.75<br>13.76<br>13.75 | 12.96<br>12.96<br>12.96<br>12.95<br>12.94          | 13.41<br>13.43<br>13.42<br>13.36<br>13.23          | 12.20<br>12.17<br>12.15<br>12.18<br>12.20 | 12.12<br>12.11<br>12.11<br>12.13<br>12.17          | 11.42<br>11.46<br>11.54<br>11.59<br>11.65 | 11.43<br>11.50<br>11.56<br>11.59<br>11.67 | 11.53<br>11.62<br>11.69<br>11.76<br>11.82 | 12.93<br>12.97<br>12.93<br>12.92<br>12.95 | 13.52<br>13.52<br>13.54<br>13.57<br>13.57          | 13.60<br>13.61<br>13.64<br>13.69<br>13.70 |
| 26<br>27<br>28<br>29<br>30<br>31 | 13.60<br>13.55<br>13.47<br>13.46<br>13.46 | 13.69<br>13.69<br>13.69<br>13.66<br>13.61 | 12.94<br>12.95<br>12.98<br>13.00<br>13.01<br>13.08 | 13.10<br>13.04<br>12.97<br>12.88<br>12.63<br>12.34 | 12.20<br>12.20<br>12.23<br>               | 12.18<br>12.03<br>11.90<br>11.79<br>11.63<br>11.49 | 11.73<br>11.78<br>11.79<br>11.71<br>11.71 | 11.68<br>11.76<br>11.79<br>11.76<br>11.10 | 11.88<br>11.90<br>11.93<br>11.97<br>12.02 | 12.98<br>13.00<br>12.97<br>12.93<br>12.93 | 13.58<br>13.60<br>13.61<br>13.61<br>13.62<br>13.62 | 13.70<br>13.66<br>13.50<br>13.49<br>13.49 |
| MEAN<br>MAX<br>MIN               | 13.65<br>13.78<br>13.46                   | 13.63<br>13.76<br>13.46                   | 13.30<br>13.65<br>12.94                            | 13.21<br>13.43<br>12.34                            | 11.73<br>12.23<br>10.83                   | 12.12<br>12.33<br>11.49                            | 11.39<br>11.79<br>11.00                   | 11.70<br>12.11<br>10.66                   | 11.32<br>12.02<br>10.51                   | 12.67<br>13.00<br>12.06                   | 13.38<br>13.62<br>12.98                            | 13.65<br>13.83<br>13.48                   |




Statewide Pesticide Monitoring Project Monitoring at Community-Water-System Wells in Western New York

In 1999, the U.S. Geological Survey, in cooperation with the New York State Department of Environmental Conservation, began a monitoring program to determine the occurrence and trends of pesticide residues in selected community water-supply wells in western New York (fig. 10). Samples of raw, untreated water from these wells were analyzed for the pesticide compounds using the USGS SH2001/2010 and LCAA methods. Concentrations did not exceed Federal or State maximum contaminant levels (MCLs) for drinking water for any compound. Additional data on pesticide residues in selected water-supply wells are published for eastern New York excluding Long Island (vol 1.) and for Long Island (vol. 2)



# **EXPLANATION**

Sampling site and station name
 SB 224



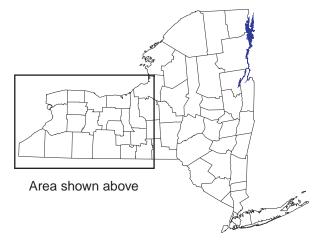



Figure 10.-- Location of community water-supply wells in western New York that were sampled in water year 2002 for pesticide analysis.

## ANALYSES OF SAMPLES AT WATER-QUALITY PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

PESTICIDE ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

| Local<br>ident-<br>i-<br>fier | Date                                                     | B<br>1<br>e Time 1                                                                                            | AZINE, CHI                                | LOR, ATE TER, WAS ES, DIS C REC (L) (UG/                                  | TER, WA'<br>S, DIS<br>! REC<br>L) (UG/                                      | TNE, METO<br>TER, WAT<br>SS, DIS<br>C REC<br>(L) (UG/              | O- AT. ON, ZIN TER, WA' S, DIS REC L) (UG/                               | IE, ZIN TER, WA SS, DIS C REC (L) (UG/                                  | TER, WA<br>SS, DIS<br>C RE<br>'L) (UG/                                       | TER BHC S DIS- C SOLVED L) (UG/L)                               |
|-------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                               |                                                          |                                                                                                               | CAY                                       | UGA COUNT                                                                 | Y                                                                           |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| CY 10                         | 10-31-<br>01-28-<br>05-08-<br>09-04-                     | -02 1030<br>-02 0700                                                                                          | U <.(<br>U <.(<br><.(                     | 010 <.0<br>010 <.0                                                        | 02 .0<br>02 E.0                                                             | 005 E.0                                                            | 1 E.C<br>3 E.C                                                           | )55 <.0<br>)42 <.0                                                      | )18 <.0<br>)18 <.0                                                           | 03 <.005<br>03 <.005                                            |
|                               |                                                          |                                                                                                               | STE                                       | UBEN COUN                                                                 | ΓY                                                                          |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| SB 224                        | 10-30-<br>01-29-<br>01-29-<br>05-07-<br>09-04-           | -02 1120<br>-02 1125<br>-02 0900                                                                              | U <.(<br>U <.(<br>U <.(<br><.(            | 010 <.0<br>010 <.0<br>010 <.0                                             | 02 <.0<br>02 E.0<br>02 <.0                                                  | 005 .0<br>004 .0<br>005 .0                                         | 6 E.C<br>6 E.C<br>7 E.C                                                  | )15 <.0<br>)16 <.0<br>)14 <.0                                           | )18 <.0<br>)18 <.0<br>)18 <.0                                                | 03 <.005<br>03 <.005<br>03 <.005                                |
|                               |                                                          |                                                                                                               |                                           |                                                                           |                                                                             |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| WN 560                        | 10-30-<br>01-29-                                         |                                                                                                               | U <.(                                     |                                                                           |                                                                             |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| Local<br>ident-<br>i-<br>fier |                                                          | CHLOR P,P' PYRIFO DDE DIS- DISSOLV SOLVE (UG/L) (UG/L) (34653) (38933                                         | S LINDANE DIS- D SOLVED ) (UG/L)          | DI-<br>ELDRIN<br>DIS-<br>SOLVED<br>(UG/L)<br>(39381)                      | METO-<br>LACHLOR<br>WATER<br>DISSOLV<br>(UG/L)<br>(39415)                   | MALA-<br>THION,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39532)             | PARA-<br>THION,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39542)                   | DI-<br>AZINON,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39572)                   | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(39632)                | ALA-<br>CHLOR,<br>WATER,<br>DISS,<br>REC,<br>(UG/L)<br>(46342)  |
|                               |                                                          |                                                                                                               |                                           | CAYUGA CO                                                                 | DUNTY                                                                       |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| CY 10                         | 10-31-01<br>01-28-02<br>05-08-02<br>09-04-02             | <.003 <.005 <.003 <.005 <.003 <.005 <.003 <.005                                                               | <.004<br><.004<br><.004<br><.004          | <.005<br><.005<br><.005<br><.005                                          | E.013<br>E.007<br>E.004<br>E.011                                            | <.027<br><.027<br><.027<br><.027                                   | <.007<br><.010<br><.010<br><.010                                         | <.005<br><.005<br><.005<br><.005                                        | .064<br>.060<br>.042<br>.086                                                 | <.002<br><.004<br><.004<br><.004                                |
|                               |                                                          |                                                                                                               |                                           | STEUBEN (                                                                 | COUNTY                                                                      |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| SB 224                        | 10-30-01<br>01-29-02<br>01-29-02<br>05-07-02<br>09-04-02 | <.003 <.005 <.003 <.005 <.003 <.005 <.003 <.005 <.003 <.005 <.003 <.005                                       | <.004<br><.004<br><.004<br><.004<br><.004 | <.005<br><.005<br><.005<br><.005<br><.005                                 | E.008<br>E.008<br>E.007<br>E.007<br>E.009                                   | <.027<br><.027<br><.027<br><.027<br><.027                          | <.007<br><.010<br><.010<br><.010<br><.010                                | <.005<br><.005<br><.005<br><.005<br><.005                               | .032<br>.032<br>.033<br>.041<br>.038                                         | <.002<br><.004<br><.004<br><.004<br><.004                       |
|                               |                                                          |                                                                                                               |                                           | WAYNE CO                                                                  | OUNTY                                                                       |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| WN 560                        | 10-30-01<br>01-29-02                                     | <.003 <.005<br><.003 <.005                                                                                    | <.004<br><.004                            | <.005<br><.005                                                            | .404                                                                        | <.027<br><.027                                                     | <.007<br><.010                                                           | <.005<br><.005                                                          | .008<br>E.005                                                                | <.002<br><.004                                                  |
| Local<br>ident-<br>i-<br>fier | Date                                                     | ACETO- METRI<br>CHLOR, BUZIN<br>WATER SENCOR<br>FILTRD WATER<br>REC DISSOL<br>(UG/L) (UG/L)<br>(49260) (82630 | ANILINE WAT FLT 0.7 U V GF, REC (UG/L)    | TRI-<br>FLUR-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82661) | ETHAL-<br>FLUR-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82663) | PHORATE<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82664) | TER-<br>BACIL<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82665) | LIN-<br>URON<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82666) | METHYL<br>PARA-<br>THION<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82667) | EPTC<br>WATER<br>FLIRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82668) |
|                               |                                                          |                                                                                                               |                                           | CAYUGA CO                                                                 | DUNTY                                                                       |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| CY 10                         | 10-31-01<br>01-28-02<br>05-08-02<br>09-04-02             | <.004 <.006<br><.006 <.006<br><.006 <.006<br><.006 <.006                                                      | <.002<br><.006<br><.006<br><.006          | <.009<br><.009<br><.009<br><.009                                          | <.009<br><.009<br><.009<br><.009                                            | <.011<br><.011<br><.011<br><.011                                   | <.034<br><.034<br><.034<br><.034                                         | <.035<br><.035<br><.035<br><.035                                        | <.006<br><.006<br><.006<br><.006                                             | <.002<br><.002<br><.002<br><.002                                |
| STEUBEN COUNTY                |                                                          |                                                                                                               |                                           |                                                                           |                                                                             |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| SB 224                        | 10-30-01<br>01-29-02<br>01-29-02<br>05-07-02<br>09-04-02 | <.004 .090<br><.006 .083<br><.006 .082<br><.006 .130<br><.006 .096                                            | <.002<br><.006<br><.006<br><.006<br><.006 | <.009<br><.009<br><.009<br><.009<br><.009                                 | <.009<br><.009<br><.009<br><.009<br><.009                                   | <.011<br><.011<br><.011<br><.011<br><.011                          | <.034<br><.034<br><.034<br><.034<br><.034                                | <.035 <.035 <.035 <.035 <.035 <.035                                     | <.006<br><.006<br><.006<br><.006<br><.006                                    | <.002<br><.002<br><.002<br><.002<br><.002                       |
|                               |                                                          |                                                                                                               |                                           | WAYNE CO                                                                  | OUNTY                                                                       |                                                                    |                                                                          |                                                                         |                                                                              |                                                                 |
| WN 560                        | 10-30-01<br>01-29-02                                     | <.004 <.006<br><.006 <.006                                                                                    | <.002<br><.006                            | <.009<br><.009                                                            | <.009<br><.009                                                              | <.011<br><.011                                                     | <.034<br><.034                                                           | <.035<br><.035                                                          | <.006<br><.006                                                               | <.002<br><.002                                                  |

 $<sup>{\</sup>tt E}$  Estimated. U Material specifically analyzed for but not detected.

# ANALYSES OF SAMPLES AT WATER-QUALITY PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES PESTICIDE ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002--Continued

|        | Local<br>ident-<br>i-<br>fier | Date                                                     | (UG/L)                               | (UG/L)                                                                   | FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)                      | PROP<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L) | BEN-<br>FLUR-<br>ALIN<br>WAT FLD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82673)   | WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)         | (UG/L)                                             | FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)                | (UG/L)                               | FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)        |
|--------|-------------------------------|----------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|--------------------------------------|--------------------------------------------|
|        |                               |                                                          |                                      |                                                                          |                                                          | CAYUGA C                                             | COUNTY                                                                      |                                                      |                                                    |                                                    |                                      |                                            |
| CY 10  |                               | 10-31-01<br>01-28-02<br>05-08-02<br>09-04-02             | <.002<br><.004<br><.004<br><.004     | <.02<br><.02<br><.02<br><.02                                             | <.002<br><.002<br><.002<br><.002                         | <.005<br><.005<br><.005<br><.005                     | <.010<br><.010<br><.010<br><.010                                            | <.020<br><.020<br><.020<br><.020                     | <.02<br><.02<br><.02<br><.02                       | <.004<br><.004<br><.004<br><.004                   | <.02<br><.02<br><.02<br><.02         | <.002<br><.002<br><.002<br><.002           |
|        |                               |                                                          |                                      |                                                                          |                                                          | STEUBEN                                              | COUNTY                                                                      |                                                      |                                                    |                                                    |                                      |                                            |
| SB 224 |                               | 10-30-01<br>01-29-02<br>01-29-02<br>05-07-02<br>09-04-02 | <.004<br><.004                       | <.02<br><.02<br><.02<br><.02<br><.02                                     | <.002<br><.002<br><.002<br><.002<br><.002                | <.005<br><.005<br><.005<br><.005<br><.005            | <.010<br><.010<br><.010<br><.010<br><.010                                   | <.020<br>E.002<br>E.002<br><.020<br><.020            | <.02<br><.02<br><.02<br><.02<br><.02               | <.004<br><.004<br><.004<br><.004<br><.004          | <.02<br><.02<br><.02<br><.02<br><.02 | <.002<br><.002<br><.002<br><.002<br><.002  |
|        |                               |                                                          |                                      |                                                                          |                                                          | WAYNE C                                              | COUNTY                                                                      |                                                      |                                                    |                                                    |                                      |                                            |
| WN 560 |                               | 10-30-01<br>01-29-02                                     | <.002<br><.004                       | <.02<br><.02                                                             | <.002<br><.002                                           | <.005<br><.005                                       | <.010<br><.010                                                              | <.020<br><.020                                       | <.02<br><.02                                       | <.004<br><.004                                     | <.02<br><.02                         | <.002<br><.002                             |
|        | Local<br>ident-<br>i-<br>fier |                                                          | (UG/L)                               | CAR-<br>BARYL<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82680) | (UG/L)                                                   | (UG/L)                                               | PENDI-<br>METH-<br>ALIN<br>WAT FLT<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82683) | 0.7 U<br>GF, REC<br>(UG/L)                           | (UG/L)                                             | 0.7 U<br>GF, REC<br>(UG/L)                         | 0.7 U<br>GF, REC<br>(UG/L)           | ESA<br>FLTRD<br>0.7 UM<br>GF REC<br>(UG/L) |
|        |                               |                                                          |                                      |                                                                          |                                                          | CAYUGA C                                             |                                                                             |                                                      |                                                    |                                                    |                                      |                                            |
| CY 10  |                               | 10-31-01<br>01-28-02<br>05-08-02<br>09-04-02             | <.011<br><.011<br><.011<br><.011     | <.041<br><.041<br><.041<br><.041                                         | <.005<br><.005<br><.005<br><.005                         |                                                      |                                                                             | <.007<br><.007<br><.007<br><.007                     | <.02<br><br><.02<br><.02                           | <.050<br><.050<br><.050<br><.050                   | <.006<br><.006<br><.006<br><.006     | <.05<br><.05<br><.05<br><.05               |
|        |                               |                                                          |                                      |                                                                          |                                                          | STEUBEN                                              |                                                                             |                                                      |                                                    |                                                    |                                      |                                            |
| SB 224 |                               | 10-30-01<br>01-29-02<br>01-29-02<br>05-07-02<br>09-04-02 | < n11                                | - 041                                                                    | <.005<br><.005<br><.005<br><.005<br><.005                | <.003<br><.003<br><.003<br><.003<br><.003            | <.010<br><.022<br><.022<br><.022<br><.022                                   | <.007<br><.007<br><.007<br><.007<br><.007            | <.02<br><br><br><.02<br><.02                       | <.050<br><.050<br><.050<br><.050<br><.050          | <.006<br><.006<br><.006<br><.006     | <.05<br><.05<br><.05<br><.05<br><.05       |
|        |                               |                                                          |                                      |                                                                          |                                                          | WAYNE C                                              |                                                                             |                                                      |                                                    |                                                    |                                      |                                            |
| WN 560 |                               | 10-30-01<br>01-29-02                                     | <.011<br><.011                       | <.041<br><.041                                                           | <.005<br><.005                                           | <.003<br><.003                                       | <.010<br><.022                                                              | <.007<br><.007                                       | <.02                                               | <.050<br><.050                                     | <.006<br><.006                       | <.05<br><.05                               |
|        | io                            | Local<br>dent-<br>i-<br>fier Da                          | CH<br>C<br>FI<br>0.7<br>te GF<br>(UG | LOR CH A E TRD WAT UM GF REC R F/L) (UG                                  | LOR CH<br>SA O<br>FLT FL<br>0.7U 0.7<br>EC GF<br>/L) (UG | A DIM TRD ENA UM E REC WAT                           | SA, F                                                                       | DA, FLU<br>ATER AC<br>PLT, ES<br>REC WAT<br>S/L) (UG | JFEN- C<br>CET, WA<br>SA, F<br>C FLT R<br>G/L) (UG | DA, E<br>ATER FI<br>FLT, 0.7<br>REC GF<br>G/L) (UG | SA O<br>TRD FL<br>UM 0.7<br>REC GF   | A<br>TRD<br>UM<br>REC<br>:/L)              |
|        |                               |                                                          |                                      |                                                                          |                                                          | CAYUGA                                               | COUNTY                                                                      |                                                      |                                                    |                                                    |                                      |                                            |
| CY 1   | .0                            | 01-2<br>05-0                                             | 8-02 <.<br>8-02 <.                   | 05 <.<br>05 <.<br>05 <.<br>05 <.                                         | 05 <.<br>06 <.                                           | 05 <.<br>05 <.                                       | 05 <.                                                                       | 05 < 06 <                                            | <.05 <.                                            | 05 .                                               | 69 <.<br>24 <.                       | 30<br>05<br>05<br>23                       |
|        |                               |                                                          |                                      |                                                                          |                                                          | STEUBEN                                              |                                                                             |                                                      |                                                    |                                                    |                                      |                                            |
| SB 22  | 4                             | 01-2<br>01-2<br>05-0                                     | 9-02 <.<br>9-02 <.<br>7-02 <.        | 05 .<br>05 .<br>05 .                                                     | 10 .<br>10 .<br>13 .                                     | 23 <.<br>24 <.<br>38 <.<br>14 <.                     | 05 <.<br>05 <.<br>05 <.                                                     | 05 < 05 < 05 <                                       | <.05 <.<br><.05 <.<br><.05 <.                      | 05 .<br>05 .                                       | 79 2.                                | 66<br>65<br>63                             |
|        |                               |                                                          |                                      |                                                                          |                                                          | WAYNE C                                              | COUNTY                                                                      |                                                      |                                                    |                                                    |                                      |                                            |
| WN 56  | 0                             |                                                          |                                      |                                                                          |                                                          |                                                      |                                                                             |                                                      |                                                    |                                                    |                                      | 02<br>96                                   |

## PESTICIDE ANALYSES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

|             | Local<br>ident-<br>i-<br>fier | Da                   | ite                                                                        | M.<br>W.<br>D.<br>Time R.<br>(U                                  | ACIL, CI<br>ATER, W<br>ISS, I<br>EC F<br>G/L) (U<br>4029) (C                | DISS,<br>REC<br>JG/L) (<br>D4031) (                             | TER-<br>BACIL,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04032) | DIPH<br>AMI<br>WAT<br>DIS<br>REC<br>(UG/   | EN- PD, ATER, WS, DR. R. R. L.) (U                                           | ROPYL DERAZIN PRAZIN PR | EETHYL<br>EISO-<br>ROPYL<br>TRAZIN<br>DISS,<br>REC<br>JG/L) | DEETHYL<br>ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(04040) | DIC<br>WA'<br>FL'<br>GF<br>RI<br>(U                       | TRD, F<br>0.7U GF<br>EC<br>G/L) (                                         | ENURON<br>JATER,<br>LITRD,<br>0.7U<br>REC<br>UG/L) |
|-------------|-------------------------------|----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------|
| CD 004      |                               | 05.0                 | 7.00                                                                       | 0010                                                             |                                                                             | TEUBEN CO                                                       |                                                               | . 0                                        | 2                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             | T 01                                                                     |                                                           | 0.1                                                                       | . 01                                               |
| SB 224      |                               |                      |                                                                            |                                                                  |                                                                             | <.01<br><.01                                                    | <.010<br><.010                                                | <.0<br><.0                                 |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4<br><.01                                                   | E.01<br>E.01                                                             | <.                                                        |                                                                           | .01<br>.01                                         |
|             | Local<br>ident-<br>i-<br>fier | Date                 | MCPA,<br>WATER,<br>FLITRD,<br>GF 0.7U<br>REC<br>(UG/L)<br>(38482)          | MCPB,<br>WATER,<br>FLTRD,<br>GF 0.7U<br>REC<br>(UG/L)<br>(38487) | METHIO-<br>CARB,<br>WATER,<br>FLTRD,<br>GF 0.70<br>REC<br>(UG/L)<br>(38501) | POXUF<br>WATEF<br>FLTRI<br>J GF 0.7<br>REC<br>(UG/I<br>) (38538 | R,<br>R, SIDU<br>D, WAT<br>TU FLT<br>RE<br>L) (UG/<br>B) (385 | CER<br>CRD<br>CC<br>(L)<br>548)            | BENTA-<br>ZON,<br>WATER,<br>FLTRD,<br>GF 0.7U<br>REC<br>(UG/L)<br>(38711)    | 2,4-D<br>WATER<br>FLTRD<br>GF 0.7<br>REC<br>(UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , FLTI<br>J GF 0<br>RE(<br>) (UG,                           | RON OXA ER, WA RD, FL .7U GF C R /L) (U                                  | MYL,<br>TER,<br>TRD,<br>0.7U<br>EC<br>G/L)<br>866)        | ATRA-<br>ZINE,<br>WATER,<br>DISS,<br>REC<br>(UG/L)<br>(39632)             |                                                    |
|             |                               |                      |                                                                            |                                                                  |                                                                             |                                                                 | EN COUNT                                                      |                                            |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                          |                                                           |                                                                           |                                                    |
| SB 224      |                               | 05-07-02<br>09-04-02 | <.02<br><.02                                                               | <.01<br><.01                                                     | <.008<br><.008                                                              | <.008<br><.008                                                  |                                                               |                                            | E.01<br><.01                                                                 | <.02<br><.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <.01                                                        |                                                                          | 01<br>01                                                  | .034                                                                      |                                                    |
|             | Local<br>ident-<br>i-<br>fier | Date                 | 2,4-D,<br>DIS-<br>SOLVED<br>(UG/L)<br>(39732)                              | (UG/L)                                                           | PRO-<br>PHAM,<br>WATER,<br>FLTRD,<br>GF 0.7U<br>REC<br>(UG/L)<br>(49236)    | FLTRI<br>J GF 0.7<br>REC<br>) (UG/I                             | M, ZAI R, WAT D, FLT TU GF ( RE                               | LIN,<br>TER,<br>TRD,<br>O.7U<br>EC<br>E/L) | NORFLUR<br>AZON,<br>WATER,<br>FLTRD,<br>GF 0.7U<br>REC<br>(UG/L)<br>(49293)  | URON,<br>WATER<br>FLTRD<br>GF 0.7<br>REC<br>(UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , FLTI<br>J GF 0<br>RE(<br>) (UG,                           | L, UR ER, WA RD, FL .7U GF C R /L) (U                                    | EN-<br>ON,<br>TER,<br>TRD,<br>0.7U<br>EC<br>G/L)<br>297)  | DIURON,<br>WATER,<br>FLTRD,<br>GF 0.7U<br>REC<br>(UG/L)<br>(49300)        | ı                                                  |
|             |                               |                      |                                                                            |                                                                  |                                                                             | STEUBE                                                          | EN COUNT                                                      | Ϋ́                                         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                          |                                                           |                                                                           |                                                    |
| SB 224      |                               | 05-07-02<br>09-04-02 | <.02<br><.02                                                               | <.02<br><.02                                                     | <.010<br><.010                                                              | <.02<br><.02                                                    | <.(<br><.(                                                    |                                            | <.02<br><.02                                                                 | <.01<br><.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <.00<br><.00                                                |                                                                          | 03<br>03                                                  | <.01<br><.01                                                              |                                                    |
|             | Local<br>ident-<br>i-<br>fier | Date                 | DINOSEE<br>WATER,<br>FLTRD,<br>GF 0.7U<br>REC<br>(UG/L)<br>(49301)         | WATER,<br>FLTRD,<br>GF 0.7U<br>REC<br>(UG/L)                     | MONO-<br>ACID,<br>WAT,FLT                                                   | ALID,<br>WATEF<br>FLTRI<br>J GF 0.7<br>REC<br>) (UG/I           | THA<br>R, NI<br>D, WAT,<br>TU GF (<br>RE                      | ALO-<br>L,<br>FLT<br>).7U<br>EC<br>E/L)    | 3HYDRXY<br>CARBO-<br>FURAN<br>WAT,FLT<br>GF 0.7U<br>REC<br>(UG/L)<br>(49308) | FURAN<br>WATER<br>FLTRD<br>GF 0.7<br>REC<br>(UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | , BARY<br>, WATI<br>, FLTI<br>J GF 0<br>REC<br>) (UG,       | YL, MOX<br>ER, WA<br>RD, FI<br>.7U GF<br>C R<br>/L) (U                   | RO-<br>YNIL<br>TER,<br>TRD,<br>0.7U<br>EC<br>G/L)<br>311) | ALDI-<br>CARB,<br>WATER,<br>FLTRD,<br>GF 0.7U<br>REC<br>(UG/L)<br>(49312) | J                                                  |
|             |                               |                      |                                                                            |                                                                  |                                                                             | STEUBE                                                          | EN COUNT                                                      | Ϋ́                                         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                          |                                                           |                                                                           |                                                    |
| SB 224      |                               | 05-07-02<br>09-04-02 | <.01<br><.01                                                               | <.01<br><.01                                                     | <.01<br><.01                                                                | <.01<br><.01                                                    | <.(<br><.(                                                    |                                            | <.006<br><.006                                                               | <.006<br><.006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <.00                                                        |                                                                          | 02<br>02                                                  | <.04<br><.04                                                              |                                                    |
|             | Local<br>ident-<br>i-<br>fier | Date                 | ALDI-<br>CARB<br>SULFONE<br>WAT,FLT<br>GF 0.7U<br>REC<br>(UG/L)<br>(49313) | GF 0.7U<br>REC<br>(UG/L)                                         | WATER,                                                                      | CARBO FURAN WATER FLTRI REC (UG/I                               | O- BENI N CAF R WAT O FLT RE                                  | RB,<br>TER<br>TRD<br>EC<br>E/L)            | BENOMYL<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(50300)                        | WATER<br>FLTRD<br>REC<br>(UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WATI<br>FLTI<br>RE(<br>) (UG,                               | RI- M<br>ON, RU<br>ER ME<br>RD WTR<br>C R<br>/L) (U                      | LFO-<br>ET-<br>RON<br>THYL<br>FLT<br>EC<br>G/L)<br>337)   | HYDROXY<br>ATRA-<br>ZINE<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(50355)    |                                                    |
|             |                               |                      |                                                                            |                                                                  |                                                                             | STEUBE                                                          | EN COUNT                                                      | Ϋ́                                         |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                             |                                                                          |                                                           |                                                                           |                                                    |
| SB 224      |                               | 05-07-02<br>09-04-02 | <.02<br><.02                                                               | <.008<br><.008                                                   | <.007<br><.007                                                              | <2<br><2                                                        | <.(<br><.(                                                    |                                            | <.004<br><.004                                                               | <.010<br>E.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <.01<br><.01                                                |                                                                          | 009<br>009                                                | <.008<br><.008                                                            |                                                    |
|             | Local<br>ident-<br>i-<br>fier | Date                 | IMAZ-<br>AQUIN<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(50356)               | METAL-<br>AXYL<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(50359)     | NICOSUI<br>FURON<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(50364)              | THAPY WATEF FLTRI REC (UG/I ) (50407                            | R EST R WAT D FLT RE                                          | YYL<br>YER,<br>YER<br>YC<br>YL)<br>170)    | PROP-<br>ICONA-<br>ZOLE ,<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(50471)      | METHY<br>ESTER<br>WATER<br>FLTRD<br>(UG/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , 4-CHI L OPHEI METH WAT I REG                              | LOR S NYL FU YL MET FLT WAT C R L) (UG                                   | EN-<br>UL-<br>RON<br>HYL<br>FLT<br>EC<br>/L)<br>693)      | FLUMET-<br>SULAM<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(61694)            |                                                    |
| SB 224      |                               | 05-07-02             | <.02                                                                       | М                                                                | <.01                                                                        | <.02                                                            | <.0                                                           |                                            | <.02                                                                         | <.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <.02                                                        |                                                                          | 02                                                        | <.01                                                                      |                                                    |
| B Batimat 3 |                               | 09-04-02             | <.02                                                                       | М                                                                | <.01                                                                        | М                                                               | <.0                                                           |                                            | <.02                                                                         | <.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <.02                                                        |                                                                          | 02                                                        | <.01                                                                      |                                                    |

 $<sup>{\</sup>tt E}$  Estimated. M presence of material verified but not quantified.

SB 224

| Local<br>ident-<br>i-<br>fier | Date                 | IMID-<br>ACLOP-<br>RID<br>WATER<br>FLTRD<br>REC<br>(UG/L)<br>(61695) | MET-<br>SUL-<br>FURON<br>METHYL<br>WAT FLT<br>REC<br>(UG/L)<br>(61697) | TEBU-<br>THIURON<br>WATER<br>FLTRD<br>0.7 U<br>GF, REC<br>(UG/L)<br>(82670) |
|-------------------------------|----------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                               | STEU                 | BEN COUNT                                                            | .Y                                                                     |                                                                             |
|                               | 05-07-02<br>09-04-02 | <.007<br><.007                                                       | <.03<br><.03                                                           | <.006<br><.006                                                              |

## QUALITY OF GROUND WATER

# WATER-QUALITY DATA, WATER YEAR, OCTOBER 2001 TO SEPTEMBER 2002

## MONROE COUNTY

Water quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, N.Y. Water-quality records for theses sites were collected and reported in local standard time.

|    |     | i                    | Local<br>dent-<br>i-<br>fier  |                               | Station                                                                                                                                                              | number                                                                                                                                             | Date                                                                                               | TUR-<br>BID-<br>ITY<br>(NTU)<br>(00076)                                                                                                                          | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095)                 | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300)                                                                                                        | PH WATER WHOLE LAB (STAND- ARD UNITS) (00403)                                                                                                 | CARBON<br>DIOXIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS CO2)<br>(00405)                                                                                                           |                                                                                                                    | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608)                                                        | NITRO-<br>GEN, AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) |
|----|-----|----------------------|-------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| MO | 2   |                      |                               |                               | 430855077                                                                                                                                                            | 304202                                                                                                                                             | 10-30-01<br>04-15-02                                                                               | 4.5<br>1.6                                                                                                                                                       | 946<br>919                                                                   | .2                                                                                                                                                    | 7.5<br>7.5                                                                                                                                    | 1.0                                                                                                                                                                          | <br>262                                                                                                            | <.01                                                                                                                            | .12<br>1.2                                                                     |
| MO | 3   |                      |                               |                               | 430854077                                                                                                                                                            | 304601                                                                                                                                             | 10-30-01<br>04-15-02                                                                               | .50<br>1.5                                                                                                                                                       | 1350<br>1340                                                                 | .4                                                                                                                                                    | 7.4<br>7.4                                                                                                                                    | 18<br>50                                                                                                                                                                     | 233                                                                                                                | <.01<br><.01                                                                                                                    | .39<br>1.6                                                                     |
| MO | 659 |                      |                               |                               | 430932077                                                                                                                                                            | 311501                                                                                                                                             | 10-30-01                                                                                           | 82                                                                                                                                                               | 757                                                                          | .5                                                                                                                                                    | 7.5                                                                                                                                           | 10                                                                                                                                                                           | 233                                                                                                                | <.01                                                                                                                            | <.10                                                                           |
| МО | 663 |                      |                               |                               | 430912077                                                                                                                                                            | 313301                                                                                                                                             | 10-30-01<br>04-15-02<br>04-15-02<br>10-30-01<br>04-15-02                                           | 29<br>63<br>29<br>8.9<br>5.0                                                                                                                                     | 723<br>763<br>694<br>1370<br>1030                                            | <.1<br>.4<br><.1<br>1.7<br>2.1                                                                                                                        | 7.9<br>6.8<br>7.0<br>7.2<br>6.7                                                                                                               | 4.0<br>30<br>19<br>67<br>85                                                                                                                                                  | 167<br>149<br><br>399                                                                                              | <.01<br><.01<br><.01<br>.08<br>.35                                                                                              | .17<br>.26<br>.35<br>2.1<br>2.2                                                |
| MO | 664 |                      |                               |                               | 430912077                                                                                                                                                            | 313302                                                                                                                                             | 10-30-01<br>04-15-02                                                                               | 11<br>55                                                                                                                                                         | 31000<br>23100                                                               | <.1<br><.1                                                                                                                                            | 7.0<br>6.8                                                                                                                                    | 81<br>114                                                                                                                                                                    | <br>182                                                                                                            | 1.8                                                                                                                             | .35<br>2.3                                                                     |
| MO | 665 |                      |                               |                               | 430928077                                                                                                                                                            | 313802                                                                                                                                             |                                                                                                    | 82                                                                                                                                                               | 2100<br>2110                                                                 | .2                                                                                                                                                    | 7.0<br>6.1                                                                                                                                    | 210<br>343                                                                                                                                                                   | 843                                                                                                                | 1.4                                                                                                                             | 3.1<br>3.6                                                                     |
| MO | 666 |                      |                               |                               | 430928077                                                                                                                                                            | 313803                                                                                                                                             | 10-30-01                                                                                           |                                                                                                                                                                  | 1320                                                                         | <.1                                                                                                                                                   | 7.0                                                                                                                                           | 206                                                                                                                                                                          |                                                                                                                    | 7.4                                                                                                                             | 10                                                                             |
| МО | 667 |                      |                               |                               | 430928077                                                                                                                                                            | 314001                                                                                                                                             | 04-15-02<br>10-30-01<br>04-15-02                                                                   | 285                                                                                                                                                              | 1500<br>2690<br>2300                                                         | <.1<br>.6<br>.2                                                                                                                                       | 7.0<br>7.1<br>6.3                                                                                                                             | 199<br>143<br>286                                                                                                                                                            | 523<br><br>776                                                                                                     | 4.2<br>8.7<br>7.9                                                                                                               | 8.6<br>13<br>8.6                                                               |
| MO | 668 |                      |                               |                               | 430928077                                                                                                                                                            | 314002                                                                                                                                             | 10-30-01<br>04-15-02                                                                               | 30                                                                                                                                                               | 2490<br>2520                                                                 | <.1<br><.1                                                                                                                                            | 6.9<br>6.4                                                                                                                                    | 171<br>286                                                                                                                                                                   | 663                                                                                                                | 5.5<br>5.5                                                                                                                      | 7.9<br>6.2                                                                     |
|    |     |                      |                               |                               |                                                                                                                                                                      |                                                                                                                                                    |                                                                                                    | ORTHO-                                                                                                                                                           |                                                                              |                                                                                                                                                       |                                                                                                                                               |                                                                                                                                                                              |                                                                                                                    |                                                                                                                                 |                                                                                |
|    |     |                      |                               | Local<br>ident-<br>i-<br>fier | Date                                                                                                                                                                 | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)                                                                                    | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                              | PHOS-<br>PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)                                                                                                   | CARBON,<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680)                     | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)                                                                                            | CALCIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916)                                                                            | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)                                                                                                              | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930)                                                            | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)                                                                  |                                                                                |
|    |     | MO                   | 2                             | ident-<br>i-                  | 10-30-01                                                                                                                                                             | GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)                                                                                              | PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                                       | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)                                                                                                            | ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680)                                | NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)                                                                                                     | TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916)                                                                                       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)                                                                                                                        | DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930)                                                                       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)                                                                            |                                                                                |
|    |     | MO<br>MO             | 2 3                           | ident-<br>i-                  | 10-30-01<br>04-15-02<br>10-30-01                                                                                                                                     | GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)<br><.02<br>.04<br>.85                                                                        | PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                                       | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)<br><.003<br>.006<br>M                                                                                      | ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680)<br><1.0<br><1.0<br><1.0        | NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)                                                                                                     | TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916)                                                                                       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)<br>24.0<br>20.5<br>30.0                                                                                                | DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930)<br>70.0<br>67.8<br>170                                                | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)                                                                            |                                                                                |
|    |     |                      |                               | ident-<br>i-                  | 10-30-01<br>04-15-02                                                                                                                                                 | GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)                                                                                              | PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)                                                       | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)                                                                                                            | ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680)                                | NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)                                                                                                     | TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916)                                                                                       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)                                                                                                                        | DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930)                                                                       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)                                                                            |                                                                                |
|    |     | МО                   | 3                             | ident-<br>i-                  | 10-30-01<br>04-15-02<br>10-30-01<br>04-15-02                                                                                                                         | GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630)<br><.02<br>.04<br>.85<br>.63                                                                 | PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665)<br>.01<br>1.8<br>.01<br>.02                           | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)<br><.003<br>.006<br>M                                                                                      | ORGANIC<br>TOTAL<br>(MG/L<br>AS C)<br>(00680)<br><1.0<br>1.0<br><1.0<br><1.0 | NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)<br>311<br>300<br>380<br>370                                                                         | TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916)                                                                                       | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)<br>24.0<br>20.5<br>30.0<br>26.5                                                                                        | DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930)<br>70.0<br>67.8<br>170<br>128                                         | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)                                                                            |                                                                                |
|    |     | MO<br>MO             | 3<br>659                      | ident-<br>i-                  | 10-30-01<br>04-15-02<br>10-30-01<br>04-15-02<br>10-30-01<br>10-30-01<br>04-15-02<br>10-30-01<br>04-15-02                                                             | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)  <.02 .04 .85 .63 <.02 .03 <.02 .02 .02 .04 .05 .05 .05 .06 .07 .08 .09 .09 .09 .09 .00 .00 .00 .00 .00 .00 | PHORUS TOTAL (MG/L AS P) (00665)  .01 1.8 .01 .02 <.01 <.01 <.01 <.01 4.01 555 .33                 | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)<br><.003<br>.006<br>M<br>.008<br><.003<br><.003<br><.003<br><.003<br>.040<br>.489                          | ORGANIC TOTAL (MG/L AS C) (00680)  <1.0                                      | NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)<br>311<br>300<br>380<br>370<br>280<br>264<br>460<br>240<br>720<br>530                               | TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916)<br>86<br>84<br>100<br>108<br>33<br>27<br>37<br>46<br>230<br>74                        | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)<br>24.0<br>20.5<br>30.0<br>26.5<br>49.0<br>45.0<br>45.0<br>45.0<br>46.2<br>26.0<br>18.8                                | DIS-<br>SOLVED (MG/L<br>AS NA) (00930)  70.0 67.8 170 128 40.0  41 43.2 41.5 42.0 20.3                             | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)<br>1.4<br>1.4<br>2.5<br>2.4<br>2.2<br>2.1<br>2.1<br>2.1<br>2.6             |                                                                                |
|    |     | MO<br>MO             | 3<br>659<br>663               | ident-<br>i-                  | 10-30-01<br>04-15-02<br>10-30-01<br>04-15-02<br>10-30-01<br>10-30-01<br>104-15-02<br>10-30-01<br>04-15-02<br>10-30-01<br>104-15-02                                   | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)  <.02 .04 .85 .63 <.02 .03 <.02 .02 .2.7 2.6 <.0202020202020202                                             | PHORUS TOTAL (MG/L AS P) (00665)  .01 1.8 .01 .02 .01 .01 .01 .01 .01 .03 .01 .03 .01 .03 .03      | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)<br><.003<br>.006<br>M<br>.008<br><.003<br><.003<br><.003<br>.040<br>.489<br>.200<br>.041                   | ORGANIC TOTAL (MG/L AS C) (00680)  <1.0                                      | NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)<br>311<br>300<br>380<br>370<br>280<br>264<br>460<br>240<br>720<br>530<br>450<br>4400<br>700         | TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916)<br>86<br>84<br>100<br>108<br>33<br>27<br>37<br>46<br>230<br>74<br>1200<br>1410<br>210 | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)<br>24.0<br>20.5<br>30.0<br>26.5<br>49.0<br>49.0<br>45.0<br>46.2<br>26.0<br>18.8<br>42.0<br>351<br>42.0                 | DIS-<br>SOLVED (MG/L<br>AS NA) (00930)<br>70.0<br>67.8<br>170<br>128<br>40.0<br>41<br>43.2<br>41.5<br>42.0<br>20.3 | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)<br>1.4<br>1.4<br>2.5<br>2.4<br>2.2<br>2.1<br>2.1<br>2.1<br>2.6<br>24<br>18 |                                                                                |
|    |     | MO<br>MO<br>MO       | 3<br>659<br>663<br>664        | ident-<br>i-                  | 10-30-01<br>04-15-02<br>10-30-01<br>04-15-02<br>10-30-01<br>10-30-01<br>04-15-02<br>04-15-02<br>10-30-01<br>04-15-02                                                 | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)  <.02 .04 .85 .63 <.02 .03 <.02 .02 .02 .04 .02 .00 .00 .00 .00 .00 .00 .00 .00 .00                         | PHORUS TOTAL (MG/L AS P) (00665)  .01 1.8 .01 .02 <.01 <.01 <.01 <.01 .14 .55                      | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)<br><.003<br>.006<br>M<br>.008<br><.003<br><.003<br><.003<br><.003<br><.003<br>004<br>489                   | ORGANIC TOTAL (MG/L AS C) (00680)  <1.0                                      | NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)<br>311<br>300<br>380<br>370<br>280<br>264<br>460<br>240<br>720<br>530<br>4550<br>4400               | TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916)<br>86<br>84<br>100<br>108<br>33<br>27<br>37<br>46<br>230<br>74                        | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)<br>24.0<br>20.5<br>30.0<br>26.5<br>49.0<br>45.0<br>46.2<br>26.0<br>18.8<br>42.0<br>351                                 | DIS-<br>SOLVED (MG/L AS NA) (00930)<br>70.0 67.8 170 128 40.0<br>41 43.2 41.5 42.0 20.3                            | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)<br>1.4<br>1.4<br>2.5<br>2.4<br>2.2<br>2.1<br>2.1<br>2.1<br>2.6             |                                                                                |
|    |     | MO<br>MO<br>MO<br>MO | 3<br>659<br>663<br>664<br>665 | ident-<br>i-                  | 10-30-01<br>04-15-02<br>10-30-01<br>04-15-02<br>10-30-01<br>10-30-01<br>10-30-01<br>04-15-02<br>10-30-01<br>04-15-02<br>10-30-01<br>04-15-02<br>10-30-01<br>04-15-02 | GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)  <.02 .04 .85 .63 <.02 .03 <.02 .02 .02 .02 .02 .00 .03                                                     | PHORUS TOTAL (MG/L AS P) (00665)  .01 1.8 .01 .02 <.01 <.01 <.01 <.01 <.01 .14 .55 .33 .30 .35 .50 | PHATE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS P)<br>(00671)<br><.003<br>.006<br>M<br>.008<br><.003<br><.003<br><.003<br><.003<br><.004<br>.489<br>.200<br>.041<br>.010 | ORGANIC TOTAL (MG/L AS C) (00680)  <1.0                                      | NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900)<br>311<br>300<br>380<br>370<br>280<br>264<br>460<br>240<br>720<br>530<br>4550<br>4400<br>700<br>250 | TOTAL RECOV-ERABLE (MG/L AS CA) (00916)  86 84 100 108 33 27 37 46 230 74 1200 1410 210 130                                                   | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925)<br>24.0<br>20.5<br>30.0<br>26.5<br>49.0<br>45.0<br>45.0<br>45.0<br>46.2<br>26.0<br>18.8<br>42.0<br>351<br>42.0<br>20.1 | DIS-<br>SOLVED (MG/L<br>AS NA) (00930)  70.0 67.8 170 128 40.0  41 43.2 41.5 42.0 20.3  2200 2250 220 210          | SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935)<br>1.4<br>1.4<br>2.5<br>2.4<br>2.2<br>2.1<br>2.1<br>2.1<br>2.6<br>24<br>18 |                                                                                |

M presence of material verified but not quantified.

# WATER-QUALITY DATA, WATER YEAR, OCTOBER 2001 TO SEPTEMBER 2002

# MONROE COUNTY--Continued

|    |     | Local<br>ident-<br>i-<br>fier | Date                                                     | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | IRON,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS FE)<br>(01045) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | SOLIDS,<br>SUM OF<br>CONSTI-<br>TUENTS,<br>DIS-<br>SOLVED<br>(MG/L)<br>(70301) |
|----|-----|-------------------------------|----------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| MO | 2   |                               | 10-30-01                                                 | 139                                                            | 98                                                       | 210                                                              | 536                                                                           |                                                                                |
| MO | 3   |                               | 04-15-02<br>10-30-01                                     | 143<br>238                                                     | 99<br>101                                                | 40<br><50                                                        | 525<br>768                                                                    | 57 <b>4</b><br>                                                                |
|    |     |                               | 04-15-02                                                 | 241                                                            | 104                                                      | 20                                                               | 770                                                                           | 750                                                                            |
| MO | 659 |                               | 10-30-01                                                 | 142                                                            | 19                                                       | 8600                                                             | 374                                                                           |                                                                                |
| МО | 663 |                               | 10-30-01<br>04-15-02<br>04-15-02<br>10-30-01<br>04-15-02 | 148<br>141<br>139<br>98<br>27                                  | 16<br>20<br>2<br>167<br>23                               | 4600<br>6590<br>5390<br>730<br>560                               | 361<br>363<br>311<br>890<br>630                                               | <br>389<br>368<br><br>408                                                      |
| MO | 664 |                               | 10-30-01                                                 | 6870                                                           | 502                                                      | 23000                                                            | 10100                                                                         |                                                                                |
| MO | 665 |                               | 04-15-02<br>10-30-01                                     | 5910<br>247                                                    | 459<br>1.5                                               | 16800<br>13000                                                   | 12200<br>1290                                                                 | 10500                                                                          |
| MO | 666 |                               | 04-15-02<br>10-30-01                                     | 243<br>252                                                     | <.5<br>16                                                | 13400<br>28000                                                   | 1250<br>747                                                                   |                                                                                |
|    |     |                               | 04-15-02                                                 | 86                                                             | <.5                                                      | 29000                                                            | 870                                                                           |                                                                                |
| MO | 667 |                               | 10-30-01                                                 | 540                                                            | <.5                                                      | 40000                                                            | 1480                                                                          |                                                                                |
|    |     |                               | 04-15-02                                                 | 147                                                            | <.5                                                      | 31200                                                            | 1290                                                                          |                                                                                |
| MO | 668 |                               | 10-30-01                                                 | 499                                                            | <.5                                                      | 27000                                                            | 1370                                                                          |                                                                                |
|    |     |                               | 04-15-02                                                 | 495                                                            | <.5                                                      | 20400                                                            | 1370                                                                          |                                                                                |

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

## ONONDAGA COUNTY

Since 1997, water-quality data collected from depressurizing wells near the Tully Valley mudboils have been used to document the long-term quality of the water being discharged from these wells, and the impact of this water on the quality of Onondaga Creek. Water-quality records for these sites were collected and reported in local standard time.

| Local<br>ident-<br>i-<br>fier | Station number                                        | Date                                                     | Time                                 | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | PH<br>WATER<br>WHOLE<br>FIELD<br>(STAND-<br>ARD<br>UNITS)<br>(00400) | TEMPER-<br>ATURE<br>WATER<br>(DEG C)<br>(00010) | OXYGEN,<br>DIS-<br>SOLVED<br>(MG/L)<br>(00300) | OXYGEN,<br>DIS-<br>SOLVED<br>(PER-<br>CENT<br>SATUR-<br>ATION)<br>(00301) | HARD-<br>NESS<br>TOTAL<br>(MG/L<br>AS<br>CACO3)<br>(00900) | CALCIUM<br>DIS-<br>SOLVED<br>(MG/L<br>AS CA)<br>(00915) |
|-------------------------------|-------------------------------------------------------|----------------------------------------------------------|--------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------|
| OD1819                        | 430332076094901                                       | 11-15-01<br>02-07-02<br>05-16-02<br>08-30-02             | 1315<br>1100<br>1230<br>1130         | 142000<br>148000<br>142000<br>146000                         | 6.8<br>6.9<br>7.0                                                    | 12.3<br>9.0<br>14.4<br>15.8                     | 3.2<br><br>1.7<br>1.9                          | 54<br><br>35<br>36                                                        | 5800<br>5700<br>5500<br>5800                               | 1880<br>1810<br>1760<br>1860                            |
| OD1812                        | 430458076110901                                       | 11-15-01                                                 | 1245                                 | 21700                                                        | 7.1                                                                  | 12.5                                            | 6.4                                            | 57                                                                        | 2300                                                       | 791                                                     |
| OD1818                        | 430213076111201                                       | 02-15-02<br>05-16-02<br>08-30-02<br>11-15-01<br>02-15-02 | 1245<br>1130<br>1230<br>1200<br>1145 | 22400<br>20700<br>21400<br>2580<br>2510                      | 7.0<br>7.2<br>7.2<br>7.5<br>7.3                                      | 11.6<br>12.3<br>12.4<br>11.3<br>10.3            | 4.8<br>3.6<br>3.1<br>9.6<br>11.7               | 42<br>37<br>31<br>90<br>102                                               | 2200<br>2200<br>2400<br>1100<br>1000                       | 754<br>724<br>816<br>326<br>309                         |
| OD1817                        | 430040076093901                                       | 05-16-02<br>08-30-02<br>11-15-01<br>02-15-02<br>05-16-02 | 1045<br>1100<br>1125<br>1115<br>1015 | 2550<br>2560<br>1240<br>1100<br>988                          | 7.3<br>7.4<br>8.1<br>8.0<br>8.0                                      | 11.4<br>12.0<br>12.6<br>7.8<br>11.8             | 11.4<br>10.8<br>9.2<br>15.2<br>11.1            | 101<br>102<br>90<br>118<br>102                                            | 1000<br>1000<br>380<br>320<br>320                          | 308<br>323<br>106<br>90.6<br>90.0                       |
| OD1816                        | 430020076081701                                       | 08-30-02<br>11-15-01<br>02-15-02<br>05-16-02<br>08-30-02 | 1030<br>1105<br>1045<br>0930<br>0945 | 1120<br>2860<br>2850<br>2710<br>2500                         | 8.1<br>7.8<br>7.6<br>7.6<br>7.8                                      | 14.3<br>11.9<br>10.1<br>11.6<br>13.0            | 10.1<br>12.6<br>12.2<br>10.6<br>10.2           | 93<br>100<br>106<br>98<br>96                                              | 360<br>1400<br>1200<br>1200<br>1400                        | 103<br>487<br>426<br>395<br>464                         |
| OD1815                        | 425903076093101                                       | 11-15-01<br>02-15-02<br>05-16-02<br>08-30-02             | 1015<br>1000<br>0845<br>0900         | 1370<br>1140<br>1050<br>1150                                 | 7.6<br>7.4<br>7.5<br>7.6                                             | 9.3<br>8.3<br>9.3<br>9.7                        | 11.5<br>12.3<br>11.3<br>10.6                   | 102<br>106<br>99<br>95                                                    | 530<br>400<br>380<br>450                                   | 169<br>125<br>117<br>144                                |
| OD1813                        | 425120076082201                                       | 11-15-01                                                 | 0845                                 | 14400                                                        | 7.3                                                                  | 10.0                                            | 8.0                                            | 77                                                                        | 1700                                                       | 355                                                     |
| OD 462                        | 425111076083801                                       | 02-15-02<br>05-16-02<br>08-30-02<br>11-15-01<br>05-16-02 | 0830<br>0715<br>0645<br>0730<br>0615 | 16200<br>15700<br>15800<br>8200<br>8200                      | 7.4<br>7.5<br>7.5<br>7.7<br>7.6                                      | 2.2<br>11.3<br>13.8<br>11.5<br>11.3             | 13.7<br>9.2<br>7.4<br>4.5<br>5.0               | 106<br>89<br>75<br>41<br>47                                               | 1700<br>1800<br>1800<br>820<br>820                         | 356<br>343<br>378<br>161<br>160                         |
| OD 469<br>OD 471<br>OD 451    | 425115076081801<br>425121076082501<br>425131076081803 | 08-30-02<br>02-15-02<br>02-15-02<br>08-30-02             | 0620<br>0730<br>0850<br>0730         | 612<br>16800<br>1210<br>1240                                 | 8.1<br>7.5<br>7.8<br>7.8                                             | 11.7<br>11.0<br>10.2<br>11.3                    | 5.0<br>3.6<br>4.6<br>3.4                       | 46<br>10<br>43<br>31                                                      | 130<br>1300<br>260<br>280                                  | 26.8<br>279<br>53.5<br>59.0                             |
| OD 450                        | 425131076081901                                       | 11-15-01                                                 | 0805                                 | 1950                                                         | 7.6                                                                  | 10.9                                            | 4.2                                            | 38                                                                        | 360                                                        | 72.8                                                    |
|                               |                                                       | 05-16-02                                                 | 0800                                 | 2030                                                         | 7.8                                                                  | 11.1                                            | 3.0                                            | 35                                                                        | 360                                                        | 71.9                                                    |

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

## ONONDAGA COUNTY--Continued

|                                      | Local<br>ident-<br>i-<br>fier | Date                                                     | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | ALKA-<br>LINITY<br>WAT DIS<br>TOT IT<br>FIELD<br>MG/L AS<br>CACO3<br>(39086) | BICAR-<br>BONATE<br>WATER<br>DIS IT<br>FIELD<br>MG/L AS<br>HCO3<br>(00453) | SILICA,<br>DIS-<br>SOLVED<br>(MG/L<br>AS<br>SIO2)<br>(00955) | SOLIDS,<br>RESIDUE<br>AT 180<br>DEG. C<br>DIS-<br>SOLVED<br>(MG/L)<br>(70300) | IRON,<br>DIS-<br>SOLVED<br>(UG/L<br>AS FE)<br>(01046) |
|--------------------------------------|-------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------|
| OD1819                               |                               | 11-15-01<br>02-07-02<br>05-16-02<br>08-30-02             | 270<br>276<br>265<br>274                                        | 41700<br>43300<br>41400<br>40700                        | 73.6<br>94.4<br>108<br>91.0                                    | 66300<br>66200<br>65600<br>68000                               | 4460<br>4540<br>4350<br>4400                             | 126<br>118<br>106<br>118                                                     | 154<br>144<br>129<br>144                                                   | 7.1<br>7.5<br>6.7<br>7.0                                     | 116000<br>118000<br>110000<br>93                                              | 8150<br>6370<br>9750<br>11300                         |
| OD1812                               |                               | 11-15-01                                                 | 90.8                                                            | 4460                                                    | 29.1                                                           | 6930                                                           | 2160                                                     | 196                                                                          | 239                                                                        | 7.2                                                          | 15000                                                                         | 2440                                                  |
| OD1818                               |                               | 02-15-02<br>05-16-02<br>08-30-02<br>11-15-01<br>02-15-02 | 87.8<br>83.8<br>93.1<br>62.0<br>57.9                            | 4260<br>4010<br>4460<br>162<br>158                      | 29.4<br>28.8<br>29.5<br>2.81<br>2.55                           | 6840<br>6090<br>6630<br>354<br>325                             | 2130<br>1970<br>2070<br>619<br>589                       | 200<br>192<br>212<br>252<br>256                                              | 244<br>234<br>259<br>308<br>312                                            | 7.3<br>7.2<br>7.5<br>6.2<br>5.7                              | 15000<br>13700<br>14900<br>1700<br>1740                                       | 2360<br>2010<br>2500<br><10<br><10                    |
| OD1817                               |                               | 05-16-02<br>08-30-02<br>11-15-01<br>02-15-02<br>05-16-02 | 60.7<br>58.6<br>28.1<br>23.8<br>22.7                            | 169<br>171<br>91.9<br>81.4<br>73.8                      | 2.63<br>2.97<br>2.38<br>1.66<br>1.77                           | 372<br>367<br>227<br>188<br>153                                | 524<br>578<br>33.6<br>32.2<br>30.2                       | 232<br>276<br>178<br>172<br>186                                              | 283<br>337<br>217<br>210<br>227                                            | 6.0<br>6.2<br>7.4<br>5.9<br>6.1                              | 1700<br>1790<br>648<br>580<br>537                                             | <30<br><10<br><10<br><10<br><10                       |
| OD1816                               |                               | 08-30-02<br>11-15-01<br>02-15-02<br>05-16-02<br>08-30-02 | 26.0<br>49.6<br>43.5<br>41.9<br>47.4                            | 85.5<br>146<br>183<br>182<br>142                        | 1.99<br>3.88<br>3.50<br>3.18<br>4.00                           | 203<br>264<br>320<br>305<br>238                                | 30.7<br>1090<br>939<br>823<br>1020                       | 196<br>214<br>216<br>222<br>262                                              | 239<br>261<br>264<br>271<br>320                                            | 7.3<br>6.0<br>5.5<br>5.5<br>6.3                              | 633<br>2340<br>2180<br>2050<br>2230                                           | <10<br><30<br>E6<br><30<br><30                        |
| OD1815                               |                               | 11-15-01<br>02-15-02<br>05-16-02<br>08-30-02             | 25.7<br>21.2<br>20.4<br>22.5                                    | 73.2<br>70.6<br>68.9<br>66.6                            | 2.36<br>2.06<br>2.04<br>2.41                                   | 150<br>150<br>133<br>116                                       | 234<br>111<br>91.1<br>172                                | 236<br>214<br>202<br>228                                                     | 288<br>261<br>246<br>278                                                   | 5.1<br>4.9<br>4.8<br>5.1                                     | 880<br>668<br>590<br>737                                                      | <10<br><10<br><10<br><10                              |
| OD1813                               |                               | 11-15-01                                                 | 203                                                             | 2380                                                    | 6.75                                                           | 4510                                                           | 551                                                      | 100                                                                          | 122                                                                        | 10.9                                                         | 9000                                                                          | 159                                                   |
| OD 462                               |                               | 02-15-02<br>05-16-02<br>08-30-02<br>11-15-01<br>05-16-02 | 208<br>224<br>215<br>103<br>102                                 | 2710<br>2770<br>2870<br>1320<br>1390                    | 6.30<br>6.90<br>8.40<br>4.47<br>4.07                           | 5110<br>5140<br>5330<br>2550<br>2560                           | 646<br>652<br>663<br>241<br>241                          | 108<br>102<br>110<br>104<br>96                                               | 132<br>124<br>134<br>127<br>117                                            | 11.2<br>9.8<br>11.3<br>9.9<br>9.5                            | 9760<br>10200<br>9950<br>5040<br>5080                                         | 478<br>E196<br>318<br>1360<br>1010                    |
| OD 469<br>OD 471<br>OD 451<br>OD 450 |                               | 08-30-02<br>02-15-02<br>02-15-02<br>08-30-02<br>11-15-01 | 14.9<br>150<br>30.2<br>32.0<br>42.0                             | 103<br>3250<br>99.2<br>106<br>213                       | 1.82<br>7.46<br>1.38<br>2.05<br>2.19                           | 131<br>5280<br>313<br>341<br>543                               | 15.3<br>883<br>10.0<br>8.3<br>35.1                       | 104<br>154<br>78<br>84<br>86                                                 | 127<br>188<br>95<br>103<br>105                                             | 10.4<br>13.0<br>10.4<br>10.5                                 | 433<br>10300<br>644<br>731<br>1080                                            | 122<br>2430<br>147<br>156<br>258                      |
|                                      |                               | 05-16-02                                                 | 43.3                                                            | 220                                                     | 1.65                                                           | 569                                                            | 39.5                                                     | 74                                                                           | 90                                                                         | 10.0                                                         | 1240                                                                          | 257                                                   |

302 QUALITY OF GROUND WATER

## WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

## ONONDAGA COUNTY--Continued

|                                      | Local<br>ident-<br>i-<br>fier | Date                                                     | MANGA-<br>NESE,<br>DIS-<br>SOLVED<br>(UG/L<br>AS MN)<br>(01056) | BROMIDE<br>DIS-<br>SOLVED<br>(MG/L<br>AS BR)<br>(71870) |
|--------------------------------------|-------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------|
| OD1819                               |                               | 11-15-01<br>02-07-02<br>05-16-02<br>08-30-02<br>11-15-01 | 869<br>829<br>720<br>716<br>294                                 | 37.6<br>41.1<br>41.0<br>39.2<br>8.14                    |
| OD1818                               |                               | 02-15-02<br>05-16-02<br>08-30-02<br>11-15-01<br>02-15-02 | 293<br>259<br>310<br><2.0<br>E1.0                               | 10.0<br>7.88<br>8.25<br>.12<br>.14                      |
| OD1817                               |                               | 05-16-02<br>08-30-02<br>11-15-01<br>02-15-02<br>05-16-02 | <5.0<br><2.0<br>9.9<br>7.8<br>10.6                              | .11<br>.12<br>.09<br>.09                                |
| OD1816                               |                               | 08-30-02<br>11-15-01<br>02-15-02<br>05-16-02<br>08-30-02 | 9.4<br><5.0<br>E1.9<br><5.0<br><5.0                             | .07<br>.16<br>.13<br>.14                                |
| OD1815                               |                               | 11-15-01<br>02-15-02<br>05-16-02<br>08-30-02<br>11-15-01 | <2.0<br><2.0<br><2.0<br><2.0<br>398                             | .10<br>.06<br>.07<br>.06<br>7.61                        |
| OD 462                               |                               | 02-15-02<br>05-16-02<br>08-30-02<br>11-15-01<br>05-16-02 | 224<br>212<br>124<br>38.6<br>35.1                               | 7.74<br>7.51<br>7.59<br>5.06<br>4.54                    |
| OD 469<br>OD 471<br>OD 451<br>OD 450 |                               | 08-30-02<br>02-15-02<br>02-15-02<br>08-30-02<br>11-15-01 | 7.9<br>81.4<br>26.3<br>28.0<br>30.2                             | .73<br>10.8<br>.53<br>.57                               |
|                                      |                               | 05-16-02                                                 | 31.2                                                            | .92                                                     |

 ${\tt E}$  estimated.

#### 425129076082701 AT OTISCO ROAD NEAR TULLY, NY

LOCATION.--Lat 42°51'29", long 76°08'27", Onondaga County, Hydrologic unit 04140201, in backyard of residence on Otisco Road.

PERIOD OF RECORD. -- October 1991 to June 1999, October 1999 to current year.

INSTRUMENTATION. --Tipping bucket raingage with 8.214 inch diameter receiving funnel, mounted on a pedestal in the backyard of residence. Funnel is heated to melt snow. Each tip of the raingage bucket is equivalent to .01 inch of precipitation. Tips of the raingage bucket are recorded and accumulated at hourly intervals on an electronic data logger.

REMARKS.--Rain gage is operated in conjunction with streamflow station 04237946 Onondaga Creek Tributary No. 6, below Main Mudboil Depression Area at Tully, for the Tully mudboil project.

PERIOD OF RECORD MAXIMUM.--Maximum recorded daily precipitation, 3.92 inches on November 8, 1996.

MAXIMUM FOR CURRENT PERIOD. -- Maximum recorded daily precipitation, 1.51 inches on Sept. 27.

PRECIPITATION, TOTAL, INCHES, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY SUM VALUES

#### NOV FEB MAY NUL DAY OCT DEC JAN MAR APR JUL AUG SEP 1 0.00 0.00 0.00 0.01 0.32 0.00 0.17 0.00 0.02 0.00 0.00 2 0.00 0.24 0.00 0.00 0.00 0.00 0.19 0.27 0.16 0.05 ---0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.00 0.00 4 0 00 0.07 0.01 0 00 0.02 0.01 0 00 0.00 0 25 \_\_\_ 0 21 0.01 5 0.00 0.08 0.00 0.03 0.00 0.00 0.03 0.00 0.27 ---0.00 0.00 0.01 0.00 0 00 0.11 0.08 0 00 0 00 6 0 22 0 18 0.04 0.18 \_\_\_ 0.07 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 ---0.00 0.06 8 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.09 0.00 ---0.00 0.00 9 0 00 0 04 0 20 0 00 0 00 0 42 0.52 0 29 0 00 0 00 0 00 0.01 0.00 10 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.03 0.00 11 0.00 0.00 0.07 0.06 0.00 0.00 0.00 0.00 0.03 0.01 0.01 0.00 0.00 0.08 0.00 0.00 0.00 0.00 12 0.52 ---------13 0.00 0.01 0.08 0.04 0.01 0.00 0.86 0.96 0.00 0.00 14 0.38 0.08 0.50 0.00 0.00 0.00 0.88 0.52 0.03 0.18 15 0.03 0.05 0.00 0.25 0.00 0.00 0.04 0.00 0.00 0.58 0.00 0.00 0.04 0.16 0.01 0.17 0.02 0.00 0.14 0.05 16 ---0.09 0.00 0.24 0.01 0.03 0.00 0.00 0.14 0.37 0.00 18 0.00 0.00 0.77 0.05 0.00 0.04 0.00 0.50 \_\_\_ \_\_\_ 0.01 0.00 ------19 0.00 0.18 0.00 0.01 0.01 0.04 0.00 0.20 0.00 0.00 0.22 20 0.13 0.15 0.36 0.00 0.07 0.02 0.00 0.01 0.00 21 0.34 0.02 0.09 0.06 0.19 0.11 0.00 0.00 0.00 0.03 0.00 0.01 22 0.01 0.00 0.00 0.02 0.06 0.00 0.01 0.66 0.00 23 0.00 0.00 0.13 0.00 0.08 0.01 0.00 \_\_\_ \_\_\_ 0.00 0.00 0.00 0.01 24 0.02 0.00 0.00 0.00 0.09 1.07 0.00 25 0.00 0.01 0.01 0.00 0.04 0.30 0.01 0.26 0.01 0.01 26 0.02 0.00 0.00 0.00 0.12 0.62 0.01 0.00 0.00 0.00 27 0.21 0.09 0.00 0.00 0.04 0.01 0.00 0.00 ------0.00 1.51 28 0.01 0.20 0.01 0.00 0.01 0 00 0.62 0.00 \_\_\_ \_\_\_ 0.00 0.01 29 0.17 0.00 0.13 0.00 0.03 0.13 ---0.00 0.00 0.00 30 0.00 0.47 0.00 0.02 0.14 0.02 ---0.00 0 00 31 0.01 0.00 0.75 ---0.02 0.50 \_\_\_ 0.00 TOTAL 1.76 2.26 2.39 2.08 1.78 2.06 4.19 4.18 1.93 3.14

0.62

0.88

0 96

\_\_\_

\_\_\_

1 07

1 51

CAL YR 2001 TOTAL 30.11 MAX 3.56

0 47

0 77

0.75

0.76

0.38

MAX

#### GENESEE RIVER BASIN

#### 430117077350101 AT MENDON PONDS, ROCHESTER, NY

LOCATION.--Lat 43°01'17", long 77°35'01", Monroe County, Hydrologic Unit 04130003, in Mendon Ponds County Park, 200 ft east of rangers' quarters, 300 ft east of State Highway 65, and 1.7 mi south of Interstate Highway 90.

PERIOD OF RECORD.--Water years 1980 to current year.

Dustfall data: Water years 1980 to current year, monthly. Wetfall data: Water years 1980 to current year, monthly. Bulk data: Water years 1980 to current year, monthly.

INSTRUMENTATION.—The composite sample collector is a straight-sided polyethlyene funnel approximately 6.5 inch in diameter that drains into a Teflon receiving bottle. A looped plastic tubing connects the funnel with the receiving bottle to retard evaporation. The polyethlyene funnel is heated during the cold-weather season to aid in complete collection of snow. The receiving bottle is enclosed in an insulated box. The opening for the collector is approximately 5 ft above ground level. Wet/dry precipitation collector used for wetfall and dustfall samples. An automatic sensor detects precipitation and activates a motor that removes the cover from the wetfall-collection vessel and covers the dustfall-collection vessel. When precipitation ceases, the cycle is reversed. The sampling vessels are polyethlyene and have a collection diameter of 11.26 inch and a capacity of about 3.4 gallons. The openings of the collectors are approximately 8 ft above ground level.

COOPERATION.—Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester, NY.

REMARKS.--Records for October 1983 to September 1993 are published in "Water Resources of Monroe County New York, Water Years 1984-88", U.S. Geological Survey Open-File Report 93-370 and in "Water Resources of Monroe County New York, Water Years 1989-93", U.S. Geological Survey Open-File Report 97-587. Prior to October 1983, unpublished records are available in the files of the Monroe County Environmental Health Laboratory. Records of monthly precipitation totals are collected by the National Oceanic and Atmospheric Administration at the Rochester Monroe County airport. Water-quality records for this site for water year 2002 were collected and reported in local standard time.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

#### MONTHLY DUSTFALL

|              |         | PH<br>WATER<br>WHOLE | SPE-<br>CIFIC | CALCIUM<br>TOTAL | MAGNE-<br>SIUM, | POTAS-<br>SIUM, | SODIUM, |         | CHLO-<br>RIDE, | SULFATE | NITRO-<br>GEN,<br>AMMONIA | NITRO-<br>GEN,AM-<br>MONIA + | NITRO-<br>GEN, |
|--------------|---------|----------------------|---------------|------------------|-----------------|-----------------|---------|---------|----------------|---------|---------------------------|------------------------------|----------------|
|              | PRECIP- | LAB                  | CON-          | RECOV-           | DIS-            | DIS-            | DIS-    | ACIDITY | DIS-           | DIS-    | DIS-                      | ORGANIC                      | NO2+NO3        |
|              | ITATION | (STAND-              | DUCT-         | ERABLE           | SOLVED          | SOLVED          | SOLVED  | (MG/L   | SOLVED         | SOLVED  | SOLVED                    | TOTAL                        | TOTAL          |
| Date         | TOTAL   | ARD                  | ANCE          | (MG/L            | (MG/L           | (MG/L           | (MG/L   | AS      | (MG/L          | (MG/L   | (MG/L                     | (MG/L                        | (MG/L          |
| Dacc         | INCHES  | UNITS)               | (US/CM)       | AS CA)           | AS MG)          | AS K)           | AS NA)  | CACO3)  | AS CL)         | AS SO4) | AS N)                     | AS N)                        | AS N)          |
|              | (00045) | (00403)              | (00095)       | (00916)          | (00925)         | (00935)         | (00930) | (00435) | (00940)        | (00945) | (00608)                   | (00625)                      | (00630)        |
|              | (00043) | (00403)              | (00093)       | (00910)          | (00923)         | (00933)         | (00930) | (00433) | (00940)        | (00943) | (00000)                   | (00023)                      | (00030)        |
| SEP 28-OCT 3 | 1 2.28  | 6.6                  | 51            | 2.2              | .91             | 4.66            | .31     | 4.4     | 2              | 9       | 1.1                       | 3.1                          | .92            |
| OCT 31-NOV 3 | 0 1.90  | 4.1                  | 55            | 2.5              | .42             | .16             | .21     | 3.6     | .6             | 10      | 1.6                       | 2.1                          | 2.1            |
| NOV 30-DEC 2 | 8 1.72  | 4.3                  | 33            | .6               | .15             | .04             | .50     | 6.1     | .8             | 3       | . 47                      | .47                          | .85            |
| DEC 28-FEB 0 | 1 2.97  | 4.9                  | 68            | 2.1              | .06             | .03             | 5.54    | 3.7     | 7              | 6       | .13                       | 1.5                          | 2.2            |
| FEB 01-27    | 1.61    | 4.4                  | 74            | 1.9              | .39             | .13             | 6.67    | 6.9     | 7              | 6       | 1.4                       | 1.9                          | 2.7            |
| FEB 27-MAR 2 | 9 2.09  | 4.1                  | 60            | 2.5              | .58             | .13             | 2.19    | 5.5     | 3              | 6       | .98                       | 1.3                          | 2.3            |
| MAR 29-APR 3 | 0 3.44  | 5.6                  | 43            | 3.1              | .63             | .47             | .92     | 4.3     | .3             | 8       | .93                       | 2.9                          | 1.6            |
| APR 30-MAY 2 | 9 5.87  | 5.0                  | 51            | 2.8              | .64             | .65             | .20     | 5.9     | <.5            | 12      | 2.5                       | 7.3                          | 2.0            |
| MAY 29-JUN 2 | 8 4.29  | 5.3                  | 66            | 2.3              | .83             | 2.93            | .80     | 8.4     | 1              | 14      | 1.7                       | 9.9                          | 1.2            |
| JUN 28-JUL 3 | 1.59    | 6.1                  | 30            | 1.7              | .80             | 1.85            | .11     | 3.5     | . 4            | 5       | .39                       | 2.2                          | 1.1            |
| JUL 31-AUG 2 | .84     | 3.9                  | 29            | 2.2              | .49             | .79             | .11     | 2.6     | . 4            | 6       | .43                       | 1.7                          | .93            |
| AUG 29-0CT 0 | 1 2.61  | 6.1                  | 34            | . 7              | .84             | 7.32            | . 06    | 7.7     | . 9            | < . 5   | . 03                      | . 40                         | . 23           |

|           |      | ORTHO- |         |         |         |
|-----------|------|--------|---------|---------|---------|
|           |      | PHOS-  |         | LEAD,   | ZINC,   |
|           |      | PHATE, | PHOS-   | TOTAL   | TOTAL   |
|           |      |        |         | RECOV-  |         |
|           |      |        | TOTAL   |         |         |
| Date      |      |        |         | (UG/L   |         |
|           |      | AS P)  | AS P)   | AS PB)  | AS ZN)  |
|           | (    | 00671) | (00665) | (01051) | (01092) |
|           |      |        |         | _       |         |
| SEP 28-00 |      |        |         |         | 15      |
| OCT 31-NC |      |        |         |         | 20      |
| NOV 30-DE |      |        |         |         |         |
| DEC 28-FE |      |        |         |         |         |
| FEB 01-27 |      |        |         | 19      |         |
|           |      |        |         | 14      |         |
|           |      |        |         | 14      |         |
| APR 30-MA |      |        |         |         |         |
| MAY 29-JU |      |        |         | 15      |         |
| JUN 28-JU |      |        |         |         |         |
| JUL 31-AU |      |        |         |         | 15      |
| AUG 29-00 | T 01 | .624   | .783    | 4       | 9       |

Note; Monthly dustfall samples are dissolved in one liter of deionized water for analysis and concentrations are reported on a per liter basis. Thus, a reported calcium concentration of  $1.0~\mathrm{mg/L}$  would mean that  $1.0~\mathrm{mg}$  of calcium accumulated in the sampler.

#### CHEMICAL QUALITY OF PRECIPITATION

# GENESEE RIVER BASIN

# 430117077350101 AT MENDON PONDS, ROCHESTER, NY--Continued

# WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

#### MONTHLY WETFALL

| Date         | PRECIP-<br>ITATION<br>TOTAL<br>INCHES<br>(00045) | PH<br>WATER<br>WHOLE<br>LAB<br>(STAND-<br>ARD<br>UNITS)<br>(00403) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | CALCIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | ACIDITY<br>(MG/L<br>AS<br>CACO3)<br>(00435) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) |
|--------------|--------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| SEP 28-OCT 3 | 31 2.28                                          | 6.4                                                                | 29                                                | 1.2                                                                | .66                                                             | 3.52                                                           | .14                                                     | 4.6                                         | .1                                                             | 9                                                        | .22                                                                      | 1.4                                                                           | .43                                                             |
| OCT 31-NOV 3 | 1.90                                             | 4.5                                                                | 16                                                | .6                                                                 | .10                                                             | .06                                                            | .02                                                     | 3.6                                         | . 4                                                            | 3                                                        | .31                                                                      | .34                                                                           | .47                                                             |
| NOV 30-DEC 2 | 28 1.72                                          | 4.3                                                                | 36                                                | .1                                                                 | .16                                                             | .05                                                            | .32                                                     | 8.5                                         | .8                                                             | 3                                                        | .42                                                                      | .46                                                                           | 1.2                                                             |
| DEC 28-FEB 0 | 1 2.97                                           | 4.3                                                                | 27                                                | . 4                                                                | .04                                                             | .14                                                            | .80                                                     | 5.1                                         | 1                                                              | 2                                                        | .03                                                                      | .35                                                                           | .56                                                             |
| FEB 01-27    | 1.61                                             | 5.6                                                                | 22                                                | .6                                                                 | .06                                                             | .04                                                            | 2.38                                                    | 2.5                                         | 2                                                              | 2                                                        | .17                                                                      | .32                                                                           | .73                                                             |
| FEB 27-MAR 2 | 2.09                                             | 6.0                                                                | 29                                                | 1.6                                                                | .37                                                             | .13                                                            | 2.11                                                    | 2.4                                         | 3                                                              | 3                                                        | .22                                                                      | .45                                                                           | .89                                                             |
| MAR 29-APR 3 | 3.44                                             | 4.3                                                                | 34                                                | .8                                                                 | .14                                                             | .09                                                            | .20                                                     | 5.7                                         | . 4                                                            | 5                                                        | .76                                                                      | 1.2                                                                           | .74                                                             |
| APR 30-MAY 2 | 9 5.87                                           | 4.2                                                                | 31                                                | .7                                                                 | .16                                                             | .14                                                            | .06                                                     | 5.4                                         | <.5                                                            | 6                                                        | .87                                                                      | 1.6                                                                           | .90                                                             |
| MAY 29-JUN 2 | 8 4.29                                           | 3.9                                                                | 49                                                | .8                                                                 | .27                                                             | .42                                                            | .08                                                     | 9.8                                         | .8                                                             | 9                                                        | 1.5                                                                      | 2.8                                                                           | 1.2                                                             |
| JUN 28-JUL 3 | 1.59                                             | 4.6                                                                | 15                                                | .6                                                                 | .11                                                             | .12                                                            | .03                                                     | 4.5                                         | <.2                                                            | 3                                                        | . 29                                                                     | .66                                                                           | 1.1                                                             |

|        |                                                                                       | ORTHO-                                                                                                        |                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |
|--------|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                       | PHOS-                                                                                                         |                                                                                                                                                                 | LEAD,                                                                                                                                                                                                                                                               | ZINC,                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                       | PHATE,                                                                                                        | PHOS-                                                                                                                                                           | TOTAL                                                                                                                                                                                                                                                               | TOTAL                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                       | DIS-                                                                                                          | PHORUS                                                                                                                                                          | RECOV-                                                                                                                                                                                                                                                              | RECOV-                                                                                                                                                                                                                                                                                                                                  |
| Date   |                                                                                       | SOLVED                                                                                                        | TOTAL                                                                                                                                                           | ERABLE                                                                                                                                                                                                                                                              | ERABLE                                                                                                                                                                                                                                                                                                                                  |
|        |                                                                                       | (MG/L                                                                                                         | (MG/L                                                                                                                                                           | (UG/L                                                                                                                                                                                                                                                               | (UG/L                                                                                                                                                                                                                                                                                                                                   |
|        |                                                                                       |                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |
|        | (                                                                                     | (00671)                                                                                                       | (00665)                                                                                                                                                         | (01051)                                                                                                                                                                                                                                                             | (01092)                                                                                                                                                                                                                                                                                                                                 |
|        |                                                                                       |                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |
| 28-OCT | 31                                                                                    |                                                                                                               |                                                                                                                                                                 |                                                                                                                                                                                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                      |
| 31-NOV | 30                                                                                    | .008                                                                                                          | .015                                                                                                                                                            | 6                                                                                                                                                                                                                                                                   | 15                                                                                                                                                                                                                                                                                                                                      |
| 30-DEC | 28                                                                                    | .003                                                                                                          | .010                                                                                                                                                            | 21                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                      |
| 28-FEB | 01                                                                                    | .003                                                                                                          | .010                                                                                                                                                            | 2                                                                                                                                                                                                                                                                   | <5                                                                                                                                                                                                                                                                                                                                      |
| 01-27  |                                                                                       | <.003                                                                                                         | .008                                                                                                                                                            | 11                                                                                                                                                                                                                                                                  | 15                                                                                                                                                                                                                                                                                                                                      |
| 27-MAR | 29                                                                                    | .008                                                                                                          | .031                                                                                                                                                            | 12                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                      |
| 29-APR | 30                                                                                    | .005                                                                                                          | .051                                                                                                                                                            | 4                                                                                                                                                                                                                                                                   | 17                                                                                                                                                                                                                                                                                                                                      |
| 30-MAY | 29                                                                                    | .008                                                                                                          | .059                                                                                                                                                            | 9                                                                                                                                                                                                                                                                   | 13                                                                                                                                                                                                                                                                                                                                      |
| 29-JUN | 28                                                                                    | .056                                                                                                          | .151                                                                                                                                                            | 9                                                                                                                                                                                                                                                                   | 14                                                                                                                                                                                                                                                                                                                                      |
| 28-JUL | 31                                                                                    | <.003                                                                                                         | .031                                                                                                                                                            | 5                                                                                                                                                                                                                                                                   | 11                                                                                                                                                                                                                                                                                                                                      |
|        | 28-OCT<br>31-NOV<br>30-DEC<br>28-FEB<br>01-27<br>27-MAR<br>29-APR<br>30-MAY<br>29-JUN | 28-OCT 31<br>31-NOV 30<br>30-DEC 28<br>28-FEB 01<br>01-27<br>27-MAR 29<br>29-APR 30<br>30-MAY 29<br>29-JUN 28 | PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671)  28-OCT 31 .793 31-NOV 30 .008 30-DEC 28 .003 28-FEB 01 .003 01-27 .003 27-MAR 29 .008 29-APR 30 .005 30-MAY 29 .008 | PHOS-PHATE, PHOS-PHATE, DIS-PHORUS SOLVED TOTAL (MG/L (MG/L AS P) (00671) (00665)  28-OCT 31 .793 1.05 31-NOV 30 .008 .015 30-DEC 28 .003 .010 28-FEB 01 .003 .010 10-27 <.003 .008 27-MAR 29 .008 .031 29-APR 30 .005 .051 30-MAY 29 .008 .059 29-JUN 28 .056 .151 | PHOS-PHATE, PHOS-TOTAL DIS-PHORUS RECOV-SOLVED TOTAL ERABLE  (MG/L (MG/L (UG/L (UG/L AS P) AS P) AS P) (00671) (00665) (01051)  28-OCT 31 .793 1.05 7 31-NOV 30 .008 .015 6 30-DEC 28 .003 .010 21 28-FEB 01 .003 .010 21 28-FEB 01 .003 .010 2 28-FEB 01 .003 .010 2 29-APR 30 .005 .051 4 30-MAY 29 .008 .059 9 29-JUN 28 .056 .151 9 |

#### CHEMICAL QUALITY OF PRECIPITATION

# GENESEE RIVER BASIN

# 430117077350101 AT MENDON PONDS, ROCHESTER, NY--Continued

# WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

#### MONTHLY BULK

| Date         | PRECIP-<br>ITATION<br>TOTAL<br>INCHES<br>(00045) | PH<br>WATER<br>WHOLE<br>LAB<br>(STAND-<br>ARD<br>UNITS)<br>(00403) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM)<br>(00095) | CALCIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | ACIDITY<br>(MG/L<br>AS<br>CACO3)<br>(00435) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) |
|--------------|--------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| SEP 28-OCT 3 | 1 2.28                                           | 6.1                                                                | 3                                                            | <.2                                                                | <.01                                                            | .02                                                            | <.01                                                    | 2.3                                         | <.2                                                            | .6                                                       | .10                                                                      | .15                                                                           | .09                                                             |
| OCT 31-NOV 3 | 0 1.90                                           | 5.0                                                                | 12                                                           | .6                                                                 | .11                                                             | .06                                                            | .03                                                     | 5.8                                         | <.2                                                            | 2                                                        | . 43                                                                     | .52                                                                           | .54                                                             |
| NOV 30-DEC 2 | 8 1.72                                           | 4.8                                                                | 13                                                           | . 2                                                                | .09                                                             | .04                                                            | .19                                                     | 2.2                                         | . 4                                                            | 1                                                        | . 27                                                                     | .50                                                                           | .32                                                             |
| DEC 28-FEB 0 | 1 2.97                                           | 4.4                                                                | 29                                                           | .5                                                                 | .04                                                             | .01                                                            | .99                                                     | 2.8                                         | 1                                                              | 2                                                        | .32                                                                      | .38                                                                           | .68                                                             |
| FEB 01-27    | 1.61                                             | 5.1                                                                | 14                                                           | . 4                                                                | .06                                                             | <.01                                                           | .77                                                     | 2.4                                         | 1                                                              | 1                                                        | . 27                                                                     | .38                                                                           | .43                                                             |
| FEB 27-MAR 2 | 9 2.09                                           | 4.7                                                                | 21                                                           | 1.0                                                                | .18                                                             | .03                                                            | .79                                                     | 3.2                                         | 1                                                              | 2                                                        | .31                                                                      | .43                                                                           | .79                                                             |
| MAR 29-APR 3 | 0 3.44                                           | 4.6                                                                | 15                                                           | .5                                                                 | .06                                                             | .04                                                            | .20                                                     | 2.8                                         | . 4                                                            | 2                                                        | .35                                                                      | .38                                                                           | .39                                                             |
| APR 30-MAY 2 | 9 5.87                                           | 4.5                                                                | 17                                                           | .3                                                                 | .11                                                             | .05                                                            | .03                                                     | 5.0                                         | <.5                                                            | 3                                                        | . 45                                                                     | .58                                                                           | .54                                                             |
| MAY 29-JUN 2 | 8 4.29                                           | 4.4                                                                | 49                                                           | <.2                                                                | .10                                                             | .09                                                            | .02                                                     | 4.7                                         | .2                                                             | 2                                                        | .39                                                                      | .88                                                                           | .43                                                             |
| JUN 28-JUL 3 | 1 1.59                                           | 6.8                                                                | 23                                                           | .8                                                                 | .16                                                             | .49                                                            | .08                                                     | 4.5                                         | . 4                                                            | 2                                                        | 1.6                                                                      | 2.5                                                                           | .45                                                             |
| JUL 31-AUG 2 | 9 .84                                            | 6.2                                                                | 19                                                           | 1.3                                                                | .35                                                             | .18                                                            | .06                                                     | 3.0                                         | . 4                                                            | 3                                                        | .67                                                                      | 1.1                                                                           | .65                                                             |
| AUG 29-OCT 0 | 1 2.61                                           | 5.9                                                                | 13                                                           | .6                                                                 | .24                                                             | 1.26                                                           | .02                                                     | 4.5                                         | <.5                                                            | 1                                                        | .14                                                                      | .48                                                                           | .43                                                             |

| Date                                                                            | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671)                                                            | TOTAL<br>(MG/L<br>AS P) | ERABLE<br>(UG/L<br>AS PB)   | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)                   |
|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------|-----------------------------|----------------------------------------------------------------|
| DEC 28-FEB<br>FEB 01-27<br>FEB 27-MAR<br>MAR 29-APR<br>APR 30-MAY<br>MAY 29-JUN | 30 .003<br>28 .026<br>01 .026<br><.003<br>29 <.003<br>30 .003<br>29 <.003<br>29 <.003<br>21 .009<br>31 .170 | .005                    | 3 4 3 5 3 5 <2 5 <2 3 3 3 3 | <5<br>10<br><5<br>5<br>5<br>5<br><5<br>10<br>4<br>5<br>10<br>9 |

#### IRONDEQUOIT CREEK BASIN

#### 430836077314101 AT INDIAN LANDING SCHOOL, ROCHESTER, NY

LOCATION.--Lat 43°08'36", long 77°31'41", Monroe County, Hydrologic Unit 04140101, at Indian Landing School, about 200 ft east of North Landing Road.

PERIOD OF RECORD. --Water years 1998 to current year.

Dustfall data: Water years 1998 to current year, monthly.

Wetfall data: Water years 1998 to current year, monthly.

INSTRUMENTATION. --Wet/dry precipitation collector used for wetfall and dustfall samples. An automatic sensor

detects precipitation and activates a motor that removes the cover from the wetfall-collection vessel and covers the dustfall-collection vessel. When precipitation ceases, the cycle is reversed. The sampling vessels are polyethlyene and have a collection diameter of 11.26 inches and a capacity of about 3.4 gallons. The openings of the collectors are approximately 8 ft above ground level.

COOPERATION. -- Water-quality samples were collected and analyzed by the Monroe County Environmental Health Laboratory at Rochester,

REMARKS.--Prior to the 1998 water year, data collected at a site (431021077315902) in the Irondequoit Wetlands 1,350 ft south of New York State Highway 404. Water-quality records for this site were collected and reported in local standard time.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

#### MONTHLY DUSTFALL

|            |         | PH      |         |         |         |         |         |         |         |         | NITRO-  | NITRO-  |         |
|------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
|            |         | WATER   | SPE-    | CALCIUM | MAGNE-  | POTAS-  |         |         | CHLO-   |         | GEN,    | GEN,AM- | NITRO-  |
|            |         | WHOLE   | CIFIC   | TOTAL   | SIUM,   | SIUM,   | SODIUM, |         | RIDE,   | SULFATE | AMMONIA | MONIA + | GEN,    |
|            | PRECIP- | LAB     | CON-    | RECOV-  | DIS-    | DIS-    | DIS-    | ACIDITY | DIS-    | DIS-    | DIS-    | ORGANIC | NO2+NO3 |
|            | ITATION | (STAND- | DUCT-   | ERABLE  | SOLVED  | SOLVED  | SOLVED  | (MG/L   | SOLVED  | SOLVED  | SOLVED  | TOTAL   | TOTAL   |
| Date       | TOTAL   | ARD     | ANCE    | (MG/L   | (MG/L   | (MG/L   | (MG/L   | AS      | (MG/L   | (MG/L   | (MG/L   | (MG/L   | (MG/L   |
|            | INCHES  | UNITS)  | (US/CM) | AS CA)  | AS MG)  | AS K)   | AS NA)  | CACO3)  | AS CL)  | AS SO4) | AS N)   | AS N)   | AS N)   |
|            | (00045) | (00403) | (00095) | (00916) | (00925) | (00935) | (00930) | (00435) | (00940) | (00945) | (00608) | (00625) | (00630) |
| SEP 28-OCT | 31      | 6.2     | 18      | 1.4     | .35     | .54     | 1.0     | 2.3     | .37     | 2       | .25     | .84     | EO      |
|            |         |         |         |         |         |         | .12     |         |         | 3       |         |         | .52     |
| OCT 31-NOV | 30      | 5.7     | 11      | 1.0     | .17     | .06     | .08     | 1.8     | <.20    | 2       | .09     | <.10    | . 39    |
| NOV 30-DEC | 28      | 4.5     | 25      | . 6     | .28     | .03     | . 29    | 4.5     | .60     | 3       | .53     | .80     | .67     |
| DEC 28-FEB | 01      | 4.3     | 43      | 1.1     | .35     | .03     | 1.69    | 4.8     | 3       | 4       | .66     | .80     | .99     |
| FEB 01-27  |         | 5.4     | 39      | 1.2     | .67     | .06     | 3.16    | 2.5     | 5       | 3       | .83     | 1.2     | 1.1     |
| FEB 27-APR | 01      | 5.9     | 82      | 4.4     | 1.61    | .46     | 3.62    | 4.2     | 6       | 12      | 1.4     | 2.9     | 2.8     |
| APR 01-30  |         | 6.2     | 84      | 1.4     | .36     | .12     | .41     | 5.2     | 2       | 16      | 3.0     | 5.2     | 2.4     |

| Date     | S     | ORTHO-<br>PHOS-<br>PHATE,<br>DIS-<br>OLVED<br>(MG/L<br>AS P)<br>00671) | PHOS-<br>PHORUS<br>TOTAL<br>(MG/L<br>AS P)<br>(00665) | LEAD,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS PB)<br>(01051) | ZINC,<br>TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN)<br>(01092) |
|----------|-------|------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|
| SEP 28-0 |       | .099                                                                   | .210                                                  | 12                                                               | 20                                                               |
| OCT 31-N |       | .006                                                                   | .030                                                  | 12                                                               | 25                                                               |
| NOV 30-D |       | .006                                                                   | .015                                                  | 16                                                               | 15                                                               |
| DEC 28-F | EB 01 | .006                                                                   | .015                                                  | 8                                                                | 15                                                               |
| FEB 01-2 | 7     | .007                                                                   | .021                                                  | 16                                                               | 20                                                               |
| FEB 27-A | PR 01 | .132                                                                   | .210                                                  | 19                                                               | 48                                                               |
| APR 01-3 | 0     | .227                                                                   | .446                                                  | 16                                                               | 39                                                               |

Note: Monthly dustfall samples are dissolved in one liter of deionized water for analysis and concentrations are reported on a per liter basis. Thus, a reported calcium concentration of 1.0~mg/L would mean that 1.0~mg of calcium accumulated in the sampler.

#### CHEMICAL QUALITY OF PRECIPITATION

# IRONDEQUOIT CREEK BASIN

# 430836077314101 AT INDIAN LANDING SCHOOL, ROCHESTER, NY--Continued

# WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002

#### MONTHLY WETFALL

| Date         | PRECIP-<br>ITATION<br>TOTAL<br>INCHES<br>(00045) | PH<br>WATER<br>WHOLE<br>LAB<br>(STAND-<br>ARD<br>UNITS)<br>(00403) | SPE-<br>CIFIC<br>CON-<br>DUCT-<br>ANCE<br>(US/CM) | CALCIUM<br>TOTAL<br>RECOV-<br>ERABLE<br>(MG/L<br>AS CA)<br>(00916) | MAGNE-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS MG)<br>(00925) | POTAS-<br>SIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS K)<br>(00935) | SODIUM,<br>DIS-<br>SOLVED<br>(MG/L<br>AS NA)<br>(00930) | ACIDITY<br>(MG/L<br>AS<br>CACO3)<br>(00435) | CHLO-<br>RIDE,<br>DIS-<br>SOLVED<br>(MG/L<br>AS CL)<br>(00940) | SULFATE<br>DIS-<br>SOLVED<br>(MG/L<br>AS SO4)<br>(00945) | NITRO-<br>GEN,<br>AMMONIA<br>DIS-<br>SOLVED<br>(MG/L<br>AS N)<br>(00608) | NITRO-<br>GEN,AM-<br>MONIA +<br>ORGANIC<br>TOTAL<br>(MG/L<br>AS N)<br>(00625) | NITRO-<br>GEN,<br>NO2+NO3<br>TOTAL<br>(MG/L<br>AS N)<br>(00630) |
|--------------|--------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|
| SEP 28-OCT 3 | 31                                               | 4.5                                                                | 32                                                | 1.0                                                                | .28                                                             | .21                                                            | .09                                                     | 4.8                                         | .40                                                            | 5                                                        | .72                                                                      | .90                                                                           | .77                                                             |
| OCT 31-NOV 3 | 30                                               | 4.2                                                                | 31                                                | .6                                                                 | .17                                                             | .04                                                            | .06                                                     | 5.2                                         | .40                                                            | 4                                                        | .76                                                                      | .69                                                                           | .89                                                             |
| NOV 30-DEC 2 | 28                                               | 4.2                                                                | 25                                                | .3                                                                 | .17                                                             | .03                                                            | .20                                                     | 4.5                                         | .40                                                            | 2                                                        | .46                                                                      | .42                                                                           | .62                                                             |
| DEC 28-FEB ( | 01                                               | 4.4                                                                | 28                                                | .6                                                                 | .15                                                             | .03                                                            | .99                                                     | 3.4                                         | 1                                                              | 2                                                        | .48                                                                      | .62                                                                           | .69                                                             |
| FEB 01-27    |                                                  | 5.5                                                                | 78                                                | 2.8                                                                | .73                                                             | .15                                                            | 8.97                                                    | 2.5                                         | 11                                                             | 7                                                        | 1.3                                                                      | 3.0                                                                           | 1.9                                                             |
| FEB 27-APR ( | 01                                               | 4.3                                                                | 57                                                | 2.6                                                                | .87                                                             | .13                                                            | 2.21                                                    | 5.3                                         | 3                                                              | 7                                                        | .97                                                                      | 1.6                                                                           | 1.8                                                             |
| APR 01-30    |                                                  | 4.0                                                                | 50                                                | 1.4                                                                | .37                                                             | .12                                                            | .41                                                     | 7.1                                         | .7                                                             | 8                                                        | 1.2                                                                      | 1.9                                                                           | 1.1                                                             |
| APR 30-MAY 2 | 29                                               | 5.3                                                                | 50                                                | 2.3                                                                | .81                                                             | .57                                                            | .10                                                     | 5.9                                         | <.5                                                            | 11                                                       | 2.1                                                                      | 4.1                                                                           | 1.6                                                             |
| MAY 29-JUN 2 | 28                                               | 3.9                                                                | 71                                                | 1.5                                                                | .40                                                             | .17                                                            | .12                                                     | 10                                          | . 4                                                            | 10                                                       | 1.0                                                                      | 2.7                                                                           | 1.4                                                             |
| JUN 28-JUL 3 | 31                                               | 6.3                                                                | 53                                                | 4.6                                                                | 1.47                                                            | .29                                                            | .11                                                     | 3.5                                         | .5                                                             | 13                                                       | .82                                                                      | 1.7                                                                           | 1.7                                                             |
| JUL 31-AUG 2 | 29                                               | 6.2                                                                | 55                                                | 4.9                                                                | 1.60                                                            | .18                                                            | .15                                                     | 3.0                                         | .5                                                             | 14                                                       | .17                                                                      | 1.2                                                                           | 1.6                                                             |
| AUG 29-OCT ( | 01                                               | 6.2                                                                | 17                                                | 1.3                                                                | .48                                                             | .08                                                            | .01                                                     | 2.7                                         | <.5                                                            | 3                                                        | .08                                                                      | .29                                                                           | .39                                                             |

| Date                                                                                                       | ORTHO-PHOS-PHATE, DIS-SOLVED (MG/L AS P) (00671)            | (MG/L<br>AS P) | (UG/L<br>AS PB)                           | TOTAL<br>RECOV-<br>ERABLE<br>(UG/L<br>AS ZN) |
|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------|-------------------------------------------|----------------------------------------------|
| SEP 28-OCT<br>OCT 31-NOV<br>NOV 30-DEC<br>DEC 28-FEB<br>FEB 01-27<br>FEB 27-APR<br>APR 01-30<br>APR 30-MAY | 30 <.003<br>28 <.003<br>01 <.003<br>.099<br>01 .018<br>.010 | .010<br>.010   | 13<br>4<br>16<br>6<br>24<br>18<br>12<br>8 | 10<br>10<br>10<br>10<br>40<br>24<br>46<br>42 |
| MAY 29-JUN                                                                                                 | 28 <.003                                                    | .076           | 6                                         | 16                                           |
| JUN 28-JUL                                                                                                 | 31 .022                                                     | .133           | 22                                        | 39                                           |
| JUL 31-AUG                                                                                                 |                                                             | .139           | 16                                        | 26                                           |
| AUG 29-OCT                                                                                                 |                                                             | .044           | 5                                         | 12                                           |

|                                                              | Page             |                                                         | Page           |
|--------------------------------------------------------------|------------------|---------------------------------------------------------|----------------|
|                                                              |                  |                                                         |                |
| A                                                            |                  |                                                         |                |
| Access to USGS water data                                    | 18               | Buffalo Creek at Gardenville                            | 86-87          |
| Accuracy of the records, stage and water discharge           | 13               | Bulk electrical conductivity, definition of             | 20             |
| Acid neutralizing capacity, definition of                    | 19               | Butternut Creek near Jamesville                         | 242            |
| Acre-foot, definition of                                     | 19               | C                                                       |                |
| Adenosine triphosphate, definition of                        | 19               |                                                         | inside of      |
| Alfred, Canacadea Creek at                                   | 240<br>19        | Calendar, current water year                            |                |
| Alkalinity, definition of                                    | 19               | Campbell, Cohocton River near                           |                |
| Allegheny River at Salamanca                                 | 78-79            | Canacadea Creek at Alfred                               |                |
| Allegheny River basin, crest-stage partial-record            |                  | near Hornell                                            |                |
| stations in                                                  | 241              | Canadaway Creek at Fredonia                             |                |
| lakes in                                                     | 83               | Canandaigua, Canandaigua Lake at                        |                |
| seepage investigation in                                     | 246              | Schaeffer Creek near<br>Canandaigua Lake at Canandaigua |                |
| surface-water station records in                             | 78-82<br>155-159 | Canandaigua Outlet, at Chapin                           |                |
| Alloway, Canandaigua Outlet tributary near                   | 244              | tributary near Alloway                                  |                |
| Almond Lake near Almond                                      | 77               | Canaseraga Creek, above Dansville                       | 117-118        |
| Annual runoff, definition of                                 | 19               | at Shakers Crossing                                     | 119-120        |
| Annual 7-day minimum, definition of                          | 19               | Canisteo River, at Arkport                              | 54-55          |
| Arkport, Canisteo River at                                   | 54-55            | at West Cameron                                         |                |
| Aroclor, definition of                                       | 19               | below Canacadea Creek, at Hornell                       |                |
| Arrangement of records, surface-water quality                | 13<br>19         | Cardiff, Onondaga Creek near                            |                |
| Ash mass, definition of                                      | 19               | Categories of water-quality data                        |                |
| Aspect, definition of                                        | 19               | Catfish Creek at New Haven                              |                |
| Attica, Tonawanda Creek at                                   | 98-99            | Catharine Creek at Montour Falls                        |                |
| Auburn, Owasco Lake near                                     | 192              | Cattaraugus County, ground-water levels                 |                |
| Owasco Outlet at Genesee St                                  | 193-194          | Cattaraugus Creek at Gowanda                            |                |
| Avoca, Cohocton River at                                     | 64-66            | Cayuga Creek near Lancaster                             |                |
| Avon, Genesee River at                                       | 126-127          | Cayuga Inlet, at Ithacanear Ithaca                      |                |
| В                                                            |                  | (Cayuga Lake) at Ithaca                                 |                |
| Bacteria, definition of                                      | 19               | Cazenovia Creek at Ebenezer                             |                |
| Bainbridge, Susquehanna River at                             | 237              | Cells/volume, definition of                             | 20             |
| Baldwinsville, Seneca River at                               | 198-199          | Cells volume, definition of                             |                |
| Ball Creek at Stow                                           | 241              | Cfs-day, definition of                                  |                |
| Bankfull stage, definition of                                | 19               | Change in National Trans de Natural Brass de pres       |                |
| Base discharge (for peak discharge), definition of           | 19               | Change in National Trends Network Procedures            |                |
| Base flow, definition of                                     | 19<br>100-101    | Chapin, Canandaigua Outlet at                           |                |
| Batavia, Tonawanda Creek at                                  | 240              | Chautauqua Lake at Bemus Point                          |                |
| Bear Creek at Ontario                                        | 243              | Chautauqua County, ground-water levels                  |                |
| Bed load, definition of                                      | 19               | Chemical oxygen demand, definition of                   |                |
| Bed-load discharge, definition of                            | 19               | Chemung, Chemung River at                               |                |
| Bed material, definition of                                  | 19               | Chemung County, ground-water levels in                  |                |
| Bemus Point, Chautauqua Lake at                              | 80               | Chemung River, at Chemung                               | 73-74<br>69-70 |
| Benthic organisms, definition of                             | 19               | at Corningat Elmira                                     |                |
| Bethel Grove, Sixmile Creek at                               | 180-183<br>241   | Chenango County, ground-water levels in                 |                |
| Biochemical oxygen demand, definition of                     | 20               | Chenango Forks, Chenango River near                     |                |
| Biomass, definition of                                       | 20               | Chenango River, at Eaton                                |                |
| Biomass pigment ratio, definition of                         | 20               | at Greene                                               |                |
| Black Creek at Churchville                                   | 139-142          | at Sherburne                                            |                |
| Black Rock Canal at Black Rock Lock, Buffalo                 | 96               | near Chenango Forks                                     |                |
| Blank samples                                                | 15               | Clostridium perfringens, definition of                  |                |
| Bottom material, definition of                               | 20<br>20         | Cincinnatus, Otselic River at                           |                |
| Brewerton, Oneida Lake at                                    | 231              | Classification of records, surface-water quality        |                |
| Broome County, ground-water levels                           | 272-274          | Cohocton River at Avoca                                 |                |
| Buffalo, Black Rock Canal at Black Rock Lock                 | 96               | at Bath                                                 |                |
| Delaware Park Lake at                                        | 242              | near Campbell                                           |                |
| Lake Erie at                                                 | 92               | Colonwit definition of                                  |                |
| Niagara River at Anderson Park                               | 95               | Color unit, definition of  Conesus Creek near Lakeville |                |
| Niagara River at Black Rock Lock                             | 97<br>93-94      | Conesus Lake near Lakeville                             |                |
| Niagara River atScajaquada Creek below Delaware Park Lake at | 242              | Confined aquifer, definition of                         |                |

|                                                            | Page         |                                                                         | Page        |
|------------------------------------------------------------|--------------|-------------------------------------------------------------------------|-------------|
|                                                            |              | Е                                                                       |             |
| Conklin, Susquehanna River at                              | 44-45        | L                                                                       |             |
| Constantia, Scriba Creek near                              | 244          | East Branch Allen Creek at Pittsford                                    | 150-154     |
| Contents, definition of                                    | 20           | East Sidney, East Sidney Lake at                                        | 75          |
| Continuous-record station, definition of                   | 20           | Ouleout Creek at                                                        | 40-41       |
| Control, definition of                                     | 20           | East Sidney Lake at East Sidney                                         | 75          |
| Control structure, definition of                           | 20           | East Victor, Mud Creek at                                               | 244         |
| Cooperation                                                | 1            | Eaton, Chenango River at                                                | 238         |
| Corning, Chemung River at                                  | 69-70        | Ebenezer, Cazenovia Creek at                                            | 90-91       |
| Cortland County, ground-water levels                       | 279<br>46-47 | Ellicott Creek below Williamsville                                      | 104-105     |
| Cortland, Tioughnioga River at                             | 40-47<br>77  |                                                                         |             |
| Coy Glen Creek at Ithaca                                   | 243          | Elmira, Chemung River at                                                | 241         |
| Crest-stage partial-record stations,                       | 243          | Newtown Creek at                                                        | 71-72       |
| Annual maximum discharge at                                | 237-244      | Embeddedness, definition of                                             | 21          |
| List of, in downstream order                               | x-xi         | Enterococcus bacteria, definition of                                    | 21          |
| List of discontinued, in downstream order                  | xix-xxi      | EPT Index, definition of                                                | 21          |
| Cubic foot per second, definition of                       | 20           | Erie (Barge) Canal at Lock 30, Macedon                                  | 106         |
| Cubic foot per second-day, definition of                   | 20           | Erie, Lake (see Lake Erie)                                              | 62-63       |
| Cubic foot per second per square mile,                     |              | Erwins, Tioga River near                                                | 02-03       |
| definition of                                              | 20           | Escherichia coliform, definition of  Estimated (E) value, definition of | 22          |
| Cuthrie Run near Big Flats                                 | 241          | Euclid, Oneida River near                                               | 232-233     |
|                                                            |              | Euglenoids, definition of                                               | 22          |
| D                                                          |              | Explanation of the records                                              | 8-18        |
| Daily mean suspended-sediment concentration, definition    | of 20        | Extractable organic halides, definition of                              | 22          |
| Daily record station, definition of                        | 21           |                                                                         |             |
| Dansville, Canaseraga Creek above                          | 117-118      | F                                                                       |             |
| Data collection and computation, records of ground-        |              | Falconer, Chadakoin River at                                            | 81-82       |
| water levels                                               | 15-16        | Fall Creek near Ithaca                                                  | 185-186     |
| records of ground-water quality                            | 17-18        | Fecal coliform bacteria, definition of                                  | 22          |
| records of stage and water discharge                       | 9-10         | Fecal streptococcal bacteria, definition of                             | 22          |
| records of surface-water quality                           | 13           | Fire algae, definition of                                               | 22          |
| Data Collection Platform (DCP), definition of              | 21           | Fishers, Irondequoit Creek near                                         | 145-149     |
| Data logger, definition of                                 | 21           | Flow-duration percentiles, definition of                                | 22          |
| Data presentation, records of ground-water levels          | 17           | Fredonia, Canadaway Creek at                                            | 241         |
| records of ground water quality                            | 18           | Frequency-of-sampling notation                                          | 16          |
| records of stage and water discharge                       | 10-12        | G                                                                       |             |
| records of surface-water quality                           | 14-16<br>21  | Gage datum, definition of                                               | 22          |
| Definition of terms                                        | 19-29        | Gage height, definition of                                              | 22          |
| Delaware Park Lake at Buffalo                              | 242          | Gage values, definition of                                              | 22          |
| Diatoms, definition of                                     | 21           | Gaging station, definition of                                           | 22          |
| Diel, definition of                                        | 21           | Garbutt, Oatka Creek at                                                 | 134-137     |
| Discharge at partial-record stations and                   |              | Gardenville, Buffalo Creek at                                           | 86-87       |
| miscellaneous sites                                        | 237-246      | Gas chromatography/flame ionization detector, definition                | 22          |
| Discharge, definition of                                   | 21           | Genesee River, at Avon                                                  | 126-127     |
| Discontinued crest-stage partial record stations, List of, |              | at Ballantyne Bridge near Mortimer                                      | 138         |
| in downstream order                                        | xix-xxi      | at Portageville                                                         | 114-115     |
| Discontinued surface-water stations, List of,              |              | at Rochester                                                            | 143-144     |
| in downstream order                                        | xiii-xvi     | at Wellsville                                                           | 112-113     |
| Discontinued surface-water-quality stations, List of,      |              | near Mount Morris                                                       | 121-122     |
| in downstream order                                        |              | Geomorphic channel units, definition of                                 | 22<br>84-85 |
| Dissolved, definition of                                   | 21           | Gowanda, Cattaraugus Creek at                                           | 187-188     |
| Dissolved oxygen, definition of                            | 21<br>21     | Green algae, definition of                                              | 22          |
| Dissolved-solids concentration, definition of              | 16           | Greene, Chenango River at                                               | 238         |
| Dissolved trace-element concentrations                     | 21           | Ground-water levels, Explanation of records                             | 16-17       |
| Downstream order system, station identification            | 21           | water level records, by counties:                                       | 10 17       |
| numbers                                                    | 9            | Broome                                                                  | 272-274     |
| Drainage area, definition of                               | 21           | Cattaraugus                                                             | 275         |
| Drainage basin, definition of                              | 21           | Chautauqua                                                              | 276         |
| Dresden, Keuka Lake Outlet at                              | 176-177      | Chemung                                                                 | 277         |
| Dry mass, definition of                                    | 21           | Chenango                                                                | 278         |
| Dry weight, definition of                                  | 21           | Cortland                                                                | 279         |
|                                                            |              | Madison                                                                 | 280         |

Page

|                                                       |            | L                                                            |           |
|-------------------------------------------------------|------------|--------------------------------------------------------------|-----------|
| 04                                                    | 200        | Laboratory measurements, records of surface-                 |           |
| Otsego<br>Steuben                                     | 290<br>291 | water quality                                                | 14        |
| Wyoming                                               | 291        | Laboratory Reporting Level (LRL), definition of              | 23        |
| Ground-water quality, Explanation of                  | 17         | Lake Erie at Buffalo                                         | 92        |
| water quality records, by counties:                   | 17         | Lake Erie, Streams tributary to, crest-stage                 |           |
| Cayuga                                                | 294-295    | partial-record stations for                                  | 241       |
| Monroe                                                | 298-299    | surface-water station records for                            | 84-91     |
| Onondaga                                              | 300-302    | Lake Ontario, Streams tributary to, analysis of samples      |           |
| Steuben                                               | 294-295    | collected at partial-record stations and miscellaneous       |           |
| Wayne                                                 | 294-295    | sites                                                        | 247-261   |
| Ground-water wells, List of, by county or independent |            | crest-stage partial-record stations for                      | 242-244   |
| city                                                  | xii        | surface-water station records for                            | 107-235   |
| ·                                                     |            | lakes and reservoirs in                                      | 236       |
| Н                                                     |            | Lakeland, Ninemile Creek at                                  | 224-225   |
| Habitat, definition of                                | 22         | Lakes and reservoirs:                                        |           |
| Habitat quality index, definition of                  | 22         | Allegheny River basin, lakes in                              | 83        |
| Hammond Lake, PA                                      |            | Almond Lake near Almond                                      | 77        |
| Harbor Brook, at Hiawatha Boulevard, Syracuse         | 213-214    | Canandaigua Lake at Canandaigua                              | 189       |
| at Syracuse                                           | 211-212    | Cayuga Inlet (Cayuga Lake) at Ithaca                         | 184       |
| Hardness, definition of                               | 22         | Chautauqua Lake at Bemus Point                               | 80        |
| High tide, definition of                              | 22         | Conesus Lake near Lakeville                                  | 123       |
| Hilsenhoff's Biotic Index (HBI), definition of        |            | Cowanesque Lake, Pa                                          | 77        |
| Hilton, West Creek near                               | 242        | East Sidney Lake at East Sidney                              | 75        |
| Honeoye Creek at Honeoye Falls                        | 128-131    | Erie, Lake, at Buffalo<br>Hammond Lake. Pa.                  | 92        |
| Hornell, Canacadea Creek near                         | 56-57      | · · · · · · · · · · · · · · · · · · ·                        | 76<br>116 |
| Canisteo River below Canacadea Creek at               | 58-59      | Mount Morris Lake near Mount Morris Oneida Lake at Brewerton | 231       |
| Horizontal datum, definition of                       |            |                                                              | 226       |
| Hydrographic comparisons                              |            | Onondaga Lake at Liverpool                                   | 192       |
| Hydrologic benchmark network                          |            | Seneca Lake at Watkins Glen                                  | 175       |
| Hydrologic index stations, definition of              |            | Susquehanna River basin,                                     | 175       |
| Hydrologic unit, definition of                        | 23         | lakes and reservoirs in                                      | 75-77     |
| I                                                     |            | Tioga Lake, PA                                               | 75-77     |
|                                                       |            | Whitney Point Lake at Whitney Point                          | 75        |
| Identifying estimated daily discharge, records of     |            | Lakeville, Conesus Creek near                                | 124-125   |
| stage and water discharge                             | 13         | Conesus Lake near                                            | 123       |
| Inch, definition of                                   | 23         | Lancaster, Cayuga Creek near                                 | 88-89     |
| Inch-pound units to                                   | :: 1       | Land-surface datum, definition of                            | 23        |
| International System units (SI),                      | inside of  | Latent heat flux, definition of                              | 23        |
| Factors for converting                                |            | Latitude-longitude system, station identification            |           |
| Instantaneous discharge, definition of                | 23<br>1    | numbers                                                      | 9         |
| Irondequoit Creek,                                    | 1          | Ley Creek at Park Street, Syracuse                           | 215-216   |
| above Blossom Road, Rochester                         | 160-166    | Light-attenuation coefficient, definition of                 | 23        |
| at Empire Boulevard, Rochester                        |            | Linden, Little Tonawanda Creek at                            | 242       |
| near Fishers                                          |            | Lindley, Tioga River at                                      | 239       |
| Ischua Creek tributary near Machias                   |            | Lipid, definition of                                         | 23        |
| Island, definition of                                 | 23         | Lisle, Tioughnioga River at                                  | 238       |
| Itaska, Tioughnioga River at                          | 238        | Little Elk Creek near Westford                               | 237       |
| Ithaca, Cayuga Inlet at                               |            | Little Tonawanda Creekat Linden                              | 242       |
| Cayuga Inlet (Cayuga Lake) at                         | 184        | Little Valley Creek seepage investigation                    | 246       |
| Cayuga Inlet near                                     | 178-179    | Liverpool, Onondaga Lake at                                  | 226       |
| Coy Glen Creek at                                     | 243        | Location of gaging stations and observation wells (maps)     |           |
| Fall Creek near                                       | 185-186    | Location of miscellaneous water quality sites                | 263, 293  |
|                                                       |            | Long-Term Method Detection Level (LT-MDL), defintion         |           |
| J                                                     |            | Low tide, definition of                                      | 23        |
| Jamesville, Butternut Creek near                      | 242        | Lyndonville, Johnson Creek near                              | 242       |
| Johnson Creek near Lyndonville                        |            | M                                                            |           |
| Jordan, Seneca River, mouth of State Ditch near       |            |                                                              |           |
|                                                       |            | MacDougall, Kendig Creek near                                | 243       |
| K                                                     |            | Macedon, Erie (Barge) Canal at Lock 30                       | 106       |
| Kendig Creek near MacDougall                          | 243        | Machias, Ischua Creek tributary near                         | 241       |
| Keuka Lake Outlet at Dresden                          | 176-177    | Macrophytes, definition of                                   | 23        |
|                                                       |            | Madison County, ground-water levels                          | 280       |
|                                                       |            | Marietta, Ninemile Creek near                                | 222-223   |
|                                                       |            | Meadow Brook at Hurlburt Road, Syracuse                      | 229-230   |

Page

Oneida Lake at Brewerton ..... 

Page Page

| Mean concentration (sediment), definition of            | 23      | Onondaga Creek, near Cardiff                             | 20    |
|---------------------------------------------------------|---------|----------------------------------------------------------|-------|
| Mean discharge, definition of                           | 23      | at Dorwin Avenue, Syracuse                               | 20    |
| Mean high or low tide, definition of                    | 23      | at Spencer Street, Syracuse                              | 20    |
| Mean sea level, definition of                           | 23      | Onondaga Creek Tributary #6                              |       |
| Measuring point, definition of                          | 23      | below main mudboil depression area, Tully                | 20    |
| Membrane filter, definition of                          | 23      | Onondaga Lake at Liverpool                               |       |
| Merrill Creek tributary near Texas Valley               | 238     | On-site measurements and sample collection,              |       |
| Metamorphic stage, definition of                        | 23      | records of surface-water quality                         |       |
| Method Detection Limit (MDL), definition of             | 23      | Ontario, Bear Creek at                                   |       |
| Methylene blue active substance, definition of          | 23      | Open or screened interval, definition of                 |       |
| Micrograms per gram, definition of                      | 23      | Organic carbon (OC), definition of                       |       |
| Micrograms per kilogram, definition of                  | 24      | Organic mass, definition of                              |       |
| Micrograms per liter, definition of                     | 24      | Organism count/area, definition of                       |       |
| Microsiemens per centimeter, definition of              | 24      | Organism count/volume, definition of                     |       |
| Milligrams per liter, definition of                     | 24      | Organochlorine compounds, definition of                  |       |
| Minimum Reporting Level (MDL), definition of            | 24      | Oswego River at Lock 7, Oswego                           | 23    |
| Miscellaneous site, definition of                       | 24      | Other records available, stage and water discharge       |       |
| Miscellaneous sites,                                    |         | Otsego County, ground-water levels                       |       |
| Analyses of samples collected at                        | 247-261 | Otselic River at Cincinnatus                             |       |
| Monroe County, ground-water levels                      | 281-289 | Ouleout Creek at East Sidney                             |       |
| quality of ground water                                 | 298-299 | Owasco Lake near Auburn                                  |       |
| Montour Falls, Catharine Creek at                       | 243     | Owasco Outlet at Genesee St., Auburn                     | 19    |
| Mortimer, Genesee River                                 |         | Owego, Catatonk Creek at                                 |       |
| at Ballantyne Bridge near                               | 138     | Owego Creek near                                         |       |
| Most probable number, definition of                     | 24      | Susquehanna River at                                     |       |
| Mount Morris, Genesee River near                        | 121-122 | P                                                        |       |
| Mount Morris Lake near Mount Morris                     | 116     |                                                          |       |
| Mud Creek, at East Victor                               | 244     | Parameter code, definition of                            |       |
| Multiple-plate samplers, definition of                  | 24      | Partial-record station, definition of                    |       |
| N                                                       |         | Partial-record stations and miscellaneous sites,         |       |
|                                                         |         | Analyses of samples collected at                         | 24    |
| Nanograms per liter, definition of                      | 24      | Discharge at                                             | 2     |
| National Geodetic Vertical Datum of 1929                |         | Particle-size, definition of                             |       |
| (NGVD), definition of                                   | 24      | Particle-size classification, definition of              |       |
| National Stream-qualityAccounting Network               | 8       | Peak flow (peak stage), definition of                    |       |
| National Atmospheric Deposition Program/National Trends |         | Percent composition, definition of                       |       |
| Network                                                 | 8       | Percent shading, definition of                           |       |
| National Water-quality Assessment (NAWQA)               | 8       | Periodic-record station, definition of                   |       |
| Natural substrate, definition of                        | 24      | Periphyton, definition of                                |       |
| Nekton, definition of                                   | 24      | Pesticides, definition of                                |       |
| Nephelometric turbidity unit, definition of             | 24      | Pesticide analyses, community water-supply wells         | 29    |
| New Haven, Catfish Creek at                             | 244     | Pesticide analyses, public water-supply intake sites     | 20    |
| Newtown Creek at Elmira                                 | 71-72   | Pesticide analyses, Statewide monitoring project. 262-27 | 1, 29 |
| Niagara River, at Buffalo                               | 93-94   | pH, definition of                                        |       |
| at Anderson Park, Buffalo                               | 95      | Phytoplankton, definition of                             |       |
| at Black Rock Lock, Buffalo                             | 97      | Picocurie, definition of                                 |       |
| Niagara River, Streams tributary to,                    |         | Pittsford, East Branch Allen Creek at                    | 15    |
| crest-stage partial-record stations for                 | 242     | Plankton, definition of                                  |       |
| surface-water station records for                       | 98-106  | Polychlorinated biphenyls (PCBs),                        |       |
| Ninemile Creek, at Lakeland                             | 224-225 | definition of                                            |       |
| near Marietta                                           | 222-223 | Polychlorinated napthalenes (PCNs),                      |       |
| North American Vertical Datum of 1988 (NAVDof 1988),    |         | definition of                                            |       |
| definition of                                           | 24      | Portageville, Genesee River at                           | 1     |
| North Atlantic slope basins, surface-water              |         | Port Byron, Seneca River near                            | 19    |
| station records in                                      | 40-77   | Precipitation quantity records                           | 22    |
| Northrup Creek at North Greece                          | 107-111 | chemical quality records                                 | 34    |
| 0                                                       |         | Primary productivity, definition of                      |       |
| U                                                       |         | Primary productivity (carbon method), definition of      |       |
| Oatka Creek, at Garbutt                                 | 134-137 | Primary productivity (oxygen method), definition of      |       |
| at Warsaw                                               | 132-133 | Publications on Techniques of Water-Resources            |       |
| Ohio River basin (see Allegheny River basin)            |         | Investigations                                           |       |
| Oneida Creek at Oneida                                  | 227-228 |                                                          |       |
| Oneida Lake at Brewerton                                | 231     |                                                          |       |
|                                                         |         |                                                          |       |

| Page | Pag | Э |
|------|-----|---|
|      |     |   |

| Radioisotopes, definition of                          | 26       | Stage and water-discharge records,                      |           |
|-------------------------------------------------------|----------|---------------------------------------------------------|-----------|
| Rapids, Tonawanda Creek at                            | 102-103  | Explanation of                                          | 8-13      |
| Reach, definition of                                  | 26       | Stage-discharge relation, definition of                 | 27        |
| Records, explanation of                               | 8-18     | Station identification numbers                          | 8         |
| Ground-water level                                    | 16-17    | Steuben County, ground-water levels                     | 291       |
| Ground-water quality                                  | 17-18    | Stony Brook trib at South Dansville                     | 242       |
| Stage and water discharge                             | 9-13     | Stow, Ball Creek at                                     | 241       |
| Surface-water quality                                 | 13-16    | Streamflow, definition of                               | 27        |
| Recoverable from bottom material,                     | 13-10    | Substrate, definition of                                | 27        |
| ,                                                     | 26       | Substrate Embeddedness Class, definition of             | 27        |
| definition of                                         | 26       |                                                         | 2-7       |
| Recurrence interval, definition of                    | 26       | Summary of hydrologic conditions                        |           |
| Reference samples                                     | 15       | Surface area of a lake, definition of                   | 273-152   |
| Remark codes, surface-water quality                   | 15       | 16                                                      |           |
| Replicate samples                                     | 15       | Surface-water station records                           | 40-236    |
| Replicate samples, definition of                      | 26       | Surface-water stations, List of, in downstream order    | viii-y    |
| Reservoirs (see Lakes and reservoirs)                 |          | Surface-water stations, List of discontinued,           |           |
| Return period, definition of                          | 26       | in downstream order                                     | xiii-xv   |
| Riffle, definition of                                 | 26       | Surface-water-quality stations, List of discontinued,   |           |
| River mileage, definition of                          | 26       | in downstream order                                     | xvii-xvii |
| Rochester, Allen Creek near                           | 155-159  | Surficial bed material, definition of                   | 27        |
|                                                       |          | Suspended, definition of                                | 27        |
| Genesee River at                                      | 143-144  | Suspended, recoverable, definition                      | 27        |
| Irondequoit Creek above Blossom Road                  | 160-166  | Suspended sediment, definition of                       | 27        |
| Irondequoit Creek at Empire Boulevard                 | 167-174  | Suspended-sediment concentration, definition of         | 27        |
| Rockdale, Unadilla River at                           | 42-43    | Suspended-sediment discharge, definition of             | 27        |
| Run, definition of                                    | 26       |                                                         | 27        |
| Runoff, definition of                                 | 26       | Suspended-sediment load, definition of                  |           |
| ç                                                     |          | Suspended, total, definition of                         | 27        |
| S                                                     |          | Suspended solids, total residue at 105°C concentration, |           |
| St. Lawrence River basin, surface-water station       |          | definition of                                           | 27        |
| records in                                            | 93-236   | Susquehanna River, at Bainbridge                        | 237       |
| St. Lawrence River main stem,                         | , c 200  | at Conklin                                              | 44-45     |
| surface-water station records in                      | 90-94    | at Owego                                                | 239       |
| Salamanca, Allegheny River at                         | 78-79    | at Unadilla                                             | 237       |
|                                                       |          | at Vestal                                               | 239       |
| Scajaquada Creek, below Delaware Park Lake at Buffalo |          | at Windsor                                              | 237       |
| Schaeffer Creek near Canandaigua                      | 243      | near Waverly                                            | 52-53     |
| Scriba Creek near Constantia                          | 244      | crest-stage partial-record stations in                  | 231-234   |
| Sea level, definition of                              | 26       |                                                         |           |
| Sediment, records of surface-water quality            | 14       | surface-water stations records in                       | 40-74     |
| Sediment, definition of                               | 26       | lakes and reservoirs in                                 | 75-77     |
| Seepage investigation, Little Valley Creek            | 246      | Synoptic studies, definition of                         | 27        |
| Selected Recent Water-Related USGS Reports            | 30       | Syracuse, Harbor Brook at                               | 211-212   |
| Seneca Lake at Watkins Glen                           | 175      | Harbor Brook at Hiawatha Boulevard                      | 213-214   |
| Seneca River at Baldwinsville                         | 198-199  | Ley Creek at Park Street                                | 215-216   |
| mouth of State Ditch near Jordan                      | 197      | Meadow Brook at Hurlburt Road                           | 229-230   |
| near Port Byron                                       | 195-196  | Onondaga Creek at Dorwin Avenue                         | 207-208   |
| Sensible heat flux, definition of                     | 26       | Onondaga Creek at Spencer Street                        | 209-210   |
| Seven-day 10-year low flow, definition of             | 26       |                                                         |           |
| Shakers Crossing, Canaseraga Creek at                 | 119-120  | T                                                       |           |
| Shelves, definition of                                | 26       |                                                         |           |
|                                                       |          | Taxa richness, definition of                            | 27        |
| Sherburne, Chenango River at                          | 238      | Taxonomy, definition of                                 | 28        |
| Sixmile Creek at Bethel Grove                         | 180-183  | Techniques of Water Resources Investigations            | 31-33     |
| Sodium adsorption rate, definition of                 | 26       | Texas Valley, Merrill Creek tributary near              | 238       |
| Soil heat flux, definition of                         | 26       | Thermograph, definition of                              | 28        |
| Soil-water content, definition of                     | 27       | Time-weighted average, definition of                    | 28        |
| South Addison, Tuscarora Creek above                  | 60-61    | Tioga Lake, PA                                          | 76        |
| South Dansville, Stony Brook trib                     | 242      | Tioga River, at Lindley                                 | 239       |
| Spafford Cr trib. nr Sawmill Rd, nr Spafford          | 217-221  | near Erwins                                             | 62-63     |
| Special networks and programs                         | 8        | Tioughnioga River, at Cortland                          | 46-4      |
| Specific electrical conductance (conductivity),       | -        |                                                         | 238       |
| definition of                                         | 27       | at Itaska                                               |           |
| Spike samples                                         | 16       | at Lisle                                                | 238       |
|                                                       |          |                                                         |           |
|                                                       |          |                                                         |           |
| Stable isotope ratio, definition of                   | 27<br>27 |                                                         |           |

|                                                         | Page    |                                                             | Page    |
|---------------------------------------------------------|---------|-------------------------------------------------------------|---------|
|                                                         |         | W                                                           |         |
| Tonawanda Creek, at Attica                              | 98-99   | Warsaw, Oatka Creek at                                      | 132-133 |
| at Batavia                                              | 100-101 | Water-discharge records, Explanation of,                    |         |
| at Rapids                                               | 102-103 | (see Stage and water-discharge records,                     |         |
| Tons per acre-foot, definition of                       | 28      | Explanation of)                                             |         |
| Tons per day, definition of                             | 28      | Water quality records at partial-record stations and miscel | laneous |
| Total (as used in tables of chemical analyses),         | 20      | sites:                                                      |         |
| definition of                                           | 28      | Streams Tributary to Lake Ontario                           | 247-261 |
| Total coliform bacteria, definition of                  | 28      | Water-quality records, Explanation of                       | 13-15   |
| Total discharge, definition of                          | 28      | Water table, definition of                                  | 29      |
| Total in bottom material, definition of                 | 28      | Water-table aquifer, definition of                          | 29      |
| Total length, definition of                             | 28      | Water temperatures, records of surface-water quality        | 14      |
| Total load, definition of                               | 28      | Water year, definition of                                   | 29      |
| Total organism count, definition of                     | 28      | Watkins Glen, Seneca Lake at                                | 175     |
| Total, recoverable, definition of                       | 28      | Waverly, Susquehanna River near                             | 52-53   |
| Total sediment discharge, definition of                 | 28      | WDR, definition of                                          | 29      |
| Total sediment load, definition of                      | 28      | Weighted average, definition of                             | 29      |
| Transect, definition of                                 | 28      | Wells, system for numbering                                 | 9       |
| Trophic group, definition of                            | 28      | Wellsville, Genesee River at                                | 112-113 |
| Tully, Onondaga Creek Tributary #6 below main           |         | West Creek near Hilton                                      | 242     |
| mudboil area depression near                            | 200-204 | West Cameron, Canisteo River at                             | 240     |
| Turbidity, definition of                                | 29      | Westford, Little Elk Creek near                             | 237     |
| Tuscarora Creek above South Addison                     | 60-61   | Wet mass, definition of                                     | 29      |
|                                                         |         | Wet weight, definition of                                   | 29      |
| ***                                                     |         | Whitney Point Lake at Whitney Point                         | 75      |
| U                                                       |         | Williamsville, Ellicott Creek below                         | 104-105 |
| Ultraviolet (UV) absorbance (absorption), definition of | 29      | Windsor, Susquehanna River at                               | 237     |
| Unadilla, Susquehanna River at                          | 237     | WSP, definition of                                          | 29      |
| Unadilla River at Rockdale                              | 42-43   | Wyoming County, ground-water levels                         | 292     |
| Unconfined aquifer, definition of                       | 29      | <b>Z</b>                                                    |         |
| V                                                       |         | _                                                           | •       |
| ·                                                       |         | Zooplankton, definition of                                  | 29      |
| Vertical datum, definition of                           | 29      |                                                             |         |
| Vestal, Susquehanna River at                            | 239     |                                                             |         |
| Victor, Great Brook below                               | 187-188 |                                                             |         |
| Volatile organic compounds, definition of               | 29      |                                                             |         |