
Update to the NDIIPP Architecture

Version 0.2 -- Draft for Outside Comment

Contents:

1. Introduction
2. Background
3. Core Characteristics
4. Terms
5. Naming of Layers
6. Key Updates to the NDIIPP Architecture
7. Architectural Diagram
8. Description of the Layers
9. Relationship Between Interfaces and Layers
10. Conclusion
Appendix A: Terms

1. Introduction

This document outlines the current state of thinking on the Technical Architecture
for the National Digital Information Infrastructure and Preservation Program
(NDIIPP), following a period of review from April to July 2003.

The document outlines the updates and improvements to the architecture
suggested by reviewers from various stakeholder communities and provides an
updated high-level diagram of the interrelation of functions within the system.

Though the document in general reflects a refinement of the original goals and
design, there is one especially noteworthy expansion of the goals. The meetings
made vividly clear the remarkable energy going into work on digital preservation
among a variety of institutions. As a result, the architecture has been
reconsidered to take into account the need for interfaces between institutions to
export and import not only digital objects but also whole collections and for
institutions to be able to perform different roles in the system at the same time.
(This change is noted in Section 6.1 below.)

We believe that this document will serve as the basis for conversations between
the Library and other preserving institutions as we move into the execution phase
of NDIIPP, and we do not doubt that there will be further articulation of
architecture as a result of real-world experience gained during these efforts.

2. Background

In April and early May 2003, the Library of Congress and Global Business
Network convened two meetings, one in Berkeley, Calif., and one in New York
City, to solicit detailed feedback on the architecture for the National Digital
Information Infrastructure and Preservation Program (NDIIPP). That meeting was
followed by a revised document, which was further critiqued by a smaller group
of practitioners on May 30 and again on July 28 and 29, in New York City. This
synthesizes the feedback from those three meetings on the original architecture
(hereinafter referred to as the 0.1 architecture) and served to produce this
updated version (0.2) to circulate for further comment.

In addition to updating the diagram itself, this document also attempts to update
the goals of the architectural work. While partnership with other institutions has
always been part of NDIIPP, the April meetings made two things clear: The
number of systems for digital preservation in existence and ready to test is
growing rapidly; and there is strong desire for federating preservation across
those systems or otherwise creating ways for those systems to interoperate.

Because of the variety of efforts on digital preservation, however, it is equally
clear that there will be no quick convergence of methods in the digital
preservation community. Every system is rightly designed to fulfill the goals of the
sponsoring institution, and as institutional goals differ, so do the systems. While
this does not damage the goal of digital preservation (in fact, it enhances it,
because heterogeneity guards against systemwide failure), it also means that the
trivial interoperability of “everyone uses the same tools and formats” and the
deeper interoperability of “everyone uses the same conceptual model” are both
unattainable, now and for the foreseeable future.

Because this sort of simple interoperability is outside our grasp, the NDIIPP
architecture must support institutions that are inclined to cooperate with one
another on issues of digital preservation, but who have differing technological
systems in place.

3. Core Characteristics

A key attribute of the NDIIPP architecture is that it provide a bridge between
disparate conceptual domains encapsulated by various existing and future
systems. To do this, we believe that it must have two characteristics:

First, it must describe the minimal set of functions required for digital
preservation in such a way that existing systems can be mapped onto the
architecture and vice-versa. A survey of the existing literature makes it
clear that, although there is a common subset of functions required for
preserving digital materials, the arrangement and even the names of those
functions differ from system to system. The architectural model of the
NDIIPP is not intended as a complete alternative version of existing

systems. Instead, it is a kind “minimum requirement” set, designed to
allow the Library to evaluate and compare real-world solutions.

Second, it must not overspecify. Any complete system for digital
preservation will have functions specific to the content or format of the
material it is preserving (e.g., scholarly journals, digital films), as well as
processes for supporting community-specific goals (e.g., evidentiary
provenance, scholarly annotation). A system that attempted to be a
superset of all such functions would be hopelessly bloated. A system that
adopted one complete specification to the exclusion of others would not
be sufficiently general to account for all the cases in which the Library has
an interest.

This document attempts to describe the common functions and relationships
necessary to describe the systems of preserving institutions that want to work
cooperatively. It can be thought of as a kind of contractual rider, setting out a
minimum understanding between two parties who are going to share the effort of
digital preservation.

4. Terms

There are a handful of terms used in this document that serve as technological
primitives on which higher-order definitions will be built. These terms are briefly
noted here and defined in some detail in Appendix A of this document.

Identifier – A label for an object within the system. It does not necessarily
specify a location of content within the system. An ISBN is a type of identifier.

Pointer – A reference to an identifier. A URL is a type of pointer.

Object – Anything stored in the system that has a pointer.

Unit – The smallest kind of object contained in the system. A unit is an object
that contains no other objects (analogous to a file in a file system).

Container – An object that contains other objects, whether units or other
containers or both (analogous to a folder in a file system).

5. Naming of Layers

We have renamed the layers in the 0.2 architecture. The 0.1 layers were called
Interface, Collection, Gateway and Repository. The Gateway functions of security
and metadata management have been redistributed throughout the system. As a
result, the Gateway is no longer required as a separate layer.

The other layers have been renamed, on the grounds that the use of descriptive
words (in archive, collection, repository, etc.) make conversation among
organizations more difficult because those words often have specific and
incompatible meanings for different organizations. To minimize this problem, the
layers described in this document are now called Upper, Middle and Lower.
Upper is the layer closest to the end user, however defined; Lower is closest to
the storage of the digital objects; and Middle is where most preservation services
exist.

6. Key Updates to the NDIIPP Architecture

We presented the 0.1 version of the architecture (outlined in Appendix 9 of the
report to Congress and available at www.digitalpreservation.gov) to
representatives from the technology, academic, archival and library communities.
The meetings produced a wealth of valuable critique and useful
recommendations. While much of the feedback was in the direction of identifying
practical experiments, a significant portion of the feedback resulted in updates to
the architectural model itself.

The most important of those updates are listed here:

1. The Possibility of Near-term Federation

The meetings made very clear the remarkable energy going into work on
digital preservation among a variety of institutions. Though working with
other organizations was always part of the NDIIPP mandate, these
meetings made it apparent that lightweight federation of existing efforts
would be a valuable area of near-term exploration.

As a result, the architecture has been reconsidered to take into account
the need for interfaces between institutions to export and import not only
digital objects but also whole collections and for institutions to be able to
perform different roles in the system at the same time, as in the case of
an organization that both holds a collection of its own (acting as at least a
Middle layer) and serves as a repository for other collections (acting as a
Lower layer for other institutions.)

2. Metadata Exists at the Lower (Repository) Layer

The 0.1 architecture imagined a relatively clean separation of data and
metadata (other than location) at the Repository layer (now renamed the
Lower layer) accomplished by a redirection function at the Gateway layer.

The two review meetings, and in particular the New York meeting, made
the unworkability of this notion clear. The consensus view was that at least
some metadata will be mingled with the objects, for two reasons: first,

http://www.digitalpreservation.gov/

several file formats contain internal specifications in their own headers
(e.g., JPEG), making inclusion of at least some metadata automatic.
Second, the strong opinion of reviewers was that storing only raw data
created unacceptable risk should the data become even briefly unmoored
from a preserving institution.

However, the alternate extreme – all data should be stored with all of its
metadata – is also unworkable, lest the works of Plato, for example, have
to travel with all written commentary since. We assume that every
preserving system will find its own methods of commingling data and
metadata, and that the principles for such commingling will be specific to
the institution, the preservation system, collection or collections and the
data to be preserved.

We thus make no requirements about the type, amount or method of
storing data and metadata together; we expect later work on standards
and practices to suggest that storing at least the technical metadata
required for interpretation or playback should be standard practice.

3. Metadata Evolves Over Time

We likewise assume that over the course of the life of an object, additional
metadata in the form of annotations and descriptions of administrative
actions will accrue in the Middle layer. And we assume that each
individual organization will have to make judgments about when to attach
this metadata to the object itself, when to make a new edition or other
copy of the object replete with new metadata and when the metadata itself
needs to be archived as a digital object (as with the contents of a card
catalog, for example.) We therefore specify in the system only that a
stored object will be accompanied by at least some metadata and that it is
unlikely that any object will ever be accompanied by all possible metadata.
We do not describe when or how additional metadata should be generated
or stored.

4. A Container Is Also an Object

Digital objects are often internally complex – word processing documents
and Web pages can contain internal graphics, but these graphics are
embedded in different ways and may be directly addressable on their own.
There can be an unlimited number of such containers – a Web site is a
collection of complex files, the results of a Web crawl may be several Web
sites, and so on.

The only lower limit to the granularity of objects is the end of containment.
An object in the system that contains no other objects is called a unit. All
higher-order objects (objects that contain at least one other object) are

containers, and, like units, containers have unique identifiers within the
system.

5. The Diffusion of the Gateway Layer Functions

The 0.1 architecture included a Gateway layer, whose role was to
separate data and metadata and to provide access control to storage. The
functions of the Gateway layer have been redistributed, for two reasons.
First, as discussed above, data and metadata cannot not be completely
decoupled. Second, the weaker the security of a system, the greater the
risk of outside interference; but the stronger the security, the greater the
cost.

It became clear from feedback on the 0.1 architecture that any particular
specification of security practices would be too weak for some users but
too expensive for others. Given that there is no need for a Gateway layer
for metadata management, the 0.2 architecture assumes that security will
be suffused throughout the system, whether as encrypted files, on-the-
wire encryption, access control or other methods, singly or in combination,
on a case-by-case basis.

6. Functions at the Middle (formerly Collection) Layer

The Collection layer in the 0.1 architecture contained too many functions
in an opaque container to serve as a useful abstraction. This version of
the architecture, 0.2, breaks the Collection layer, now renamed the Middle
layer, into five critical categories of functions: Ingest, Pointer Management,
Metadata Management, Lifecycle Management and Views. These
functions are defined below, in the section on the new architectural
diagram.

7. “Local” vs. Public Access at the Upper (formerly Interface) Layer

The 0.1 architecture treated access as a binary condition – public access
or dark archive -- with the notion that some public access might be limited
by terms and conditions set by collecting agencies. Feedback from
respondents suggested that, in addition to addressing questions of public
access, every set of digital objects needs to provide local access to the
management responsible for the preservation of those objects. The Upper
Layer now reflects both kinds of access.

7. Architectural Diagram, Version 0.2

Included below is the updated diagram of the NDIIPP architecture.

At the left, digital material passes into a preserving institution, whether the
material was donated by a person or institution or automatically accessed as with
a Web crawl.

In the center are the functions of the preserving institution or institutions. On the
right is the export of material from the preserving institution outward. Note that
this export can be in frequent small batches or in periodic snapshot exports of an
entire collection. Note also that the architecture assumes that data is exported in
a format that packages the object with some additional metadata.

Down the center of the diagram are the functions of a preserving institution.

8. Descriptions of Layers

1. Lower

At the Lower layer are the services required for storage, verification and retrieval
of digital objects, as defined above, whether for containers or units. A unit is
assumed to be a digital object accompanied by at least some of its metadata. It is
also assumed that the “halo” of metadata around an object will grow over time
(indicated by the dotted-line container) as additional interpretive or provenance
data is registered.

The Lower layer is a group of functions, but is not necessarily an integral piece of
technology. The object access interface presents a coherent view of the stored
objects, but beneath that interface data can be stored in a number of distributed
or virtualized ways. A database, for example, may well be able to present a
combined view of data and metadata, but it may store the various elements in
separate tables on separate disks. Likewise, the de-referencing of pointers to IDs
that specify physical location of digital material may go through several layers of
redirection if the files are stored in multiple copies or chunks on decentralized
and geographically dispersed systems (e.g., LOCKSS or OceanStore).

2. Middle

The Middle layer contains five functional categories:

1. Ingest – the functions required for the transfer of responsibility for the
preservation of digital data to a particular organization, including both the
acceptance of digital materials and the creation of any contractual or
administrative agreements.

2. Pointer Management – the creation or registration of pointers for the
digital objects being preserved. Pointers point to digital objects stored in
the Lower layer.

3. Metadata Management – the creation and management of metadata for
the digital objects being preserved. (Note that at least some metadata will
be stored with the object itself). At a minimum, this metadata will include
or point to as much detail as possible on making the object available for
interpretive use – file format, conditions of creation, playback software,
etc. Note that the metadata can be stored by other institutions, including
third-party service providers, as well as by the hosting institution.

Note also that additional metadata will be developed over time, in forms
ranging from additional management or scholarly annotation to
administrative notes related to the management of the object.

4. Life-cycle Management – the set of operations required to make digital
data fit for use over the passage of time, including the transfer of copies of
the original objects in bit-identical format onto new storage media; the
migration of objects to new formats; the documentation of emulation
strategies for playing back older data on newer software; and the export of
objects, which entails the possible transfer of metadata and of
preservation responsibility, if it is contractually agreed upon, to other
preserving institutions.

5. Views – The Views function essentially plays a gatekeeper role for the

provision of access to the objects, filtered through whatever policies or
restrictions are placed on their use (available internally only or available to
other institutions), any particular file transformations that are allowed or
disallowed, etc.

This is not to say that functions in the Upper or Lower layers cannot also be
coupled with these functions in a single organization or even on a single
machine, nor is it to say that additional functions cannot be deemed essential by
individual organizations. These functions are grouped together because they are
essential and relatively difficult to decouple – ingest requires both pointer and
metadata management; meta-data must be associated with objects identified by
pointers; life-cycle management operates on objects identified by pointers and
generates new metadata; and so on.

The five categories in the Middle layer encapsulate a wide range of functions –
any working system will have to break out those functions in more detail.
However, a survey of the literature suggests that the next level of detail is where
existing systems begin to diverge.

In the realm of metadata management, for example, the OAIS reference model
refers to Preservation Description Information, comprising Provenance,
Reference, Fixity and Context Information. METS, by contrast, categorizes
metadata into three categories, descriptive, administrative and structural, with
administrative metadata further subdivided into source, technical, intellectual
property and provenance metadata. Thus, the five functions listed here are an
attempt to outline minimal required functions while providing a description
sufficiently general to apply across a range of practical implementations.

3. Upper

The Upper layer comprises access by any person or institution to data or
metadata through the Views function of the Middle layer. There are two broad
categories in the Upper layer – internal access and external access. Internal
access describes any human views of the system required for management of
the material, from creation of descriptive metadata to spot checks for validity or
interpretability of the content.

As in the 0.1 architecture, the Upper layer is minimally and mostly negatively
defined. Because the Middle layer is where the hard work of maintaining enough
metadata to allow the object to be reconstituted lies, the principal requirement of
the Upper layer, whether through internal or external access, is to provide some
form of trustworthy mediation for potentially untrustworthy users, in the case of
sensitive or restricted materials and, in any case, not to violate any legal or
administrative controls set upon the data.

9. Relationship Between Interfaces and Layers

As with any system designed around nodes and connections, the 0.2 architecture
can also be viewed in an interface-oriented fashion. The drawing below presents
the system as a set of four interfaces arranged around the Middle layer – Import,
Storage, Access and Export – representing the possible interfaces a preserving
institution might have with the outside world.

These four interfaces all have related functions within the Middle layer:
Import/Ingest, Storage/Pointers, Access/Views and Export/Life cycle. These
interfaces are labeled from the point of view of the center institution, but the
functions are arranged in parallel: one institution’s Export function connects to

another’s Import, and one institution’s Access function connects to another’s
Storage.

This view, while related to the function-centric view above, highlights systemic
aspects of NDIIPP.

• Interface definitions between institutions are a critical feature of a working
system.

• The functions taken on by preserving institutions are complex but largely
opaque. The complexity of managing a digital collection internally is (or
should be) hidden from the outside world.

• Any institution can perform multiple functions within the system. In a
scenario whereby institution A accesses content held by institution B, B is
a de facto Lower layer for A, even if B also offers direct access to the
same material. There is no theoretical upper limit to this sort of redirection,
though practicality suggests that most transactions will involve three or
fewer institutions.

• Likewise, an institution can import content from other institutions and
export it to other institutions.

• Vertical interfaces – access and storage –work relatively well in current
systems and have analogs in everything from networked file systems to
the Web and Web Services architectures.

• Horizontal interfaces currently work less well. Ingest in current systems
tends to be human-intensive and therefore expensive for bulk
accessioning of data. Likewise, the ability to export a complex collection of
digital objects in an archival format is limited, and an important area of
future work.

The most important design principle of the interface view of the system is that,
although the functions are divided into three layers, the system as a whole is an
N-layer system, because it is impossible to specify in advance how participating
institutions will stand in relation to one another over time.

10. Conclusion

Though the proposed 0.2 version of the NDIIPP architecture preserves the basic
design principles from the work on 0.1, especially the goal of a modular and
protocol-connected architecture, the 0.2 version is simultaneously simpler and
more detailed: simpler because the decision not to overspecify metadata
management and the subsequent removal of the Gateway layer make the
conceptual units of the system easier to understand and to map to existing
efforts; more detailed in that the functions within the layers, and especially the
Middle layer, are better specified.

The acid test, of course, is whether some version of this document will be useful
in brokering conversations between the Library of Congress and other institutions

engaged in preservation activities, as well as among those institutions
themselves. To that end, we are actively seeking feedback on whether this
document captures the minimal set of functions required for preservation activity.
In particular, we are looking for feedback on missing but required functions,
included but nonessential functions and places where the level of detail can be
made more specific without entailing the loss of generality required to describe
the intersection of most or all existing preservation systems.

Appendix A: Terms

There are a few terms used in this document that serve as technological
primitives, on which higher-order definitions will be built.

Identifier – A globally unique and persistent label for an object within the system.
It does not necessarily specify a location of content within the system. An ISBN is
a type of identifier.

Pointer – A reference to an identifier. A URL is a type of pointer. Note that
sometimes Identifiers and Pointers can be identical, as when a URI that is also a
URL, while in other cases they can be separate; isbn.nu uses ISBNs in its URLs,
but an ISBN is different from an isbn.nu URL. The critical point is that a digital
object must not just be labeled; there must be some way to refer to that object
remotely, through one or more pointers.

Every functional system must provide a method of de-referencing pointers to the
identifiers (and thus to the objects) it is responsible for preserving, even if that
de-referencing goes through layers of redirection.

Version control can be, but is not required to be, part of the identifier/pointer
system. An identifier or a pointer can include explicit methods of version control
by providing operations such as incrementing or decrementing counters or
alternating MIME types to access other versions of the "same" object, or the
pointers to earlier versions can be stored elsewhere in the metadata of the object
referenced by the pointer.

The current architecture is mute on this question not because it is unimportant,
but because we do not believe that there is general agreement on the versioning
issue among extant systems. Part of the next phase of NDIIPP work will be to
experiment with strategies for version control.

Object – An entity in the system with a pointer. The two types of objects are units
and containers. These are roughly analogous to files and directories, with the key
difference being that there is no required “root” object.

Unit – The smallest object contained in the system. A unit is an object that
contains no other objects, though it may contain pointers to other objects, e.g., a
Web page that has pointers to images.

Container – An object that contains other objects, whether units or other
containers or both. A container can be as tightly coordinated as a file that
includes embedded images and as large as a container-of-containers that
encompasses the entire holdings of an institution. There is no mandated “root”
container and no upper limit to the number of layers of containment possible.

The goal is to know, in principle, what is contained in a container. When
containers are imported or exported, they may travel with their contained
contents (including, of course, other containers) or they may simply be passed as
metadata (and updated pointers, if needed), with the bulk of the contained
objects being left in place.

Note that managing Web pages is particularly problematic, as Web pages embed
other first-order objects with URLs (as with images or the content of frames),
rather than direct inclusion, as with a PDF. Web pages are therefore unbounded
as objects, even in principle, as they can always point to new resources for
inclusion. Further work is needed to know whether to treat Web pages as units,
containers or as a special third category.

	Update to the NDIIPP Architecture
	Version 0.2 -- Draft for Outside Comment
	1. Introduction

	4. Terms
	Container – An object that contains other object
	5. Naming of Layers

	6. Key Updates to the NDIIPP Architecture
	7. Architectural Diagram, Version 0.2
	Down the center of the diagram are the functions of a preserving institution.
	1. Lower
	2. Middle
	3. Upper
	9. Relationship Between Interfaces and Layers
	10. Conclusion
	Container – An object that contains other object

