

Fuel Effects on Ignition and Their Impact on Advanced Combustion Engines

Joshua Taylor • National Renewable Energy Laboratory
Hailin Li and W. Stuart Neill • National Research Council Canada

Overview

Objective

Develop a pathway to use easily measured ignition properties as metrics for characterizing fuels in advanced combustion engine research

- Correlate IQT™ measured parameters with engine data

In HCCI engines, ignition timing depends on the reaction rates throughout compression stroke

- Need to understand sensitivity to T, P, and [O₂]
- Need to rank fuels based on more than one set of conditions
- Need to understand how fuel composition (molecular species) affect ignition properties

Ignition Quality Tester (IQTTM)

- Constant volume spray combustion chamber
- Requires ~50 mL fuel
- Ignition delay can be measured over a range of conditions:
- $T \sim 300 580^{\circ}C$
- P $\sim 5 30 \text{ bar}$
- $[O_2]$: Up to 21% or beyond
- Can measure derived cetane number (DCN) at specified conditions

Experimental Data

- Some oxygenates have a lower activation energy than normal hydrocarbons
- Higher effective cetane number at reduced temperature
- Cold-start implications
- Impact on HCCI ignition

- Molecules with weakest
 C-H bonds have the lowest activation energy
- Tertiary < Secondary < Primary
- Adjacent to ether or carbonyl weaken C-H bonds

- Branching in hydrocarbons decreases activation energy
- Tertiary C-H bonds
- Aromatic compounds increase activation energy
- Resonance stabilization

- Biodiesel fuels have a higher activation energy for ignition
- Unsaturated bonds result in resonance-stabilized radicals

Analysis and Modeling

Fuel Sensitivity Parameters

- Developed set of 27 points
- $-T = 450, 500, 550 \, ^{\circ}C$
- -P = 10, 20, 30 bar
- $-[O_2] = 15, 18, 21\%$

- ▶ Fit empirical rate model
- To deconvolute [O₂] and T effects

Heptane: $E_a = 50.2 \text{ kJ/mol}, b = 0.74$

Integrated CFD Model of IQTTM

- Spray: simplified cone model
- Evaporation and mixing
- Detailed chemistry w/ CHEMKIN- three mechanisms tested
- Ignition delays are too fast!

Mixing Factor Calculations

- ▶ Assumes fuel "perfectly" mixes with fraction of air in IQT
- Ignores spray and mixing time
- Accounts for temperature drop due to evaporation
- Data shows how mixing increases with ignition delay
- Lower mixing factor as pressure increases for fixed delay

