
=

w

Data Systems Technology Laboratory Series DSTL-88-O01

L

m

m

r

u

Ada_ Projects at NASA

Runtime Environment

Issues and Recommendations

==r._

January 1988

L--

m

SPACE FLIGHT

m

N/ A
National Aeronautics and
Space Administration

Goddard Space Flight
Greenbelt, Maryland 20771

Center

m

J

i

I

il

I

II

i

m

:

I

I

mm

i -_;;-:; _;:!:;;_:_:- ::i_i;_..- i__ r
U

I

mm

ul -

m

2

m

w

_-__

!

w

FOREWORD

Ada ® Projects at NASA is a publication of the Data Systems Technology
Division of the Mission Operations and Data Systems Directorate, the National
Aeronautics and Space Administration, Goddard Space Flight Center (NASA/GSFC).

This document is a companion document to Ada ® Runtime Packages DSTL-88-002.

The principal authors of this document are

Daniel M. Roy

and
Randall W. Wilke

of

Century Computing, Incorporated
1100 West Street

Laurel, Maryland 20771
(301) 953-3333

Work was accomplished for

Data Systems Technology Division

under
contracts NAS 5-30017 and NAS 5-27772

Single copies of this document may be obtained by writing to

Ms. Dorothy Perkins
Code 522

NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

2

Ada is a registered trademark of the U.S. Government Ada Joint Program Office.

m

i

m_

i.

i

i

i

iD

i

i

m

m

m

i

CONTENTS

m

r
L _

=

z
w

m

_mmm__

w

i

SECTION 1

I.I

1.2

1.3

1.4

1.5

1.6

1.7

1.8

SECTION 2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.9.1

2.9.2

2.10

2.10.1

2.10.2

2.11

2.11.1

2.11.2

2.12

2.13

SECTION 3

3.1

3.2

3.2.1

3.2.2

3.3

3.4

3.5

3.5.1

3.5.2

INTRODUCTION

INTENDED AUDIENCE I-I

PURPOSE AND SCOPE OF THE REPORT i-I

EXECUTIVE SUMMARY i-2

BACKGROUND 1-5

METHODOLOGY 1-5

STRUCTURE OF THIS DOCUMENT 1-6

ACKNOWLEDGEMENT 1-6

LIST OF ACRONYMS 1-12

ADA DEVELOPMENT EFFORTS AT GSFC

GRO ATTITUDE DYNAMi_S SI_NJLATOR (CODE 550/520) . . 2-2

GOES-I ADA DYNAMICS SIMULATOR (CODE 550) 2-6

GOES-I TELEMETRY SIMULATOR (CODE 550) 2-6

FLIGHT DYNAMICS ANALYSIS SYSTEM (CODE 550) 2-7

NETWORK CONTROL-PROGRAM (CODE 520) 2-12

NOS EMULATOR (CODE 520) 2-17

REMOTE SCIENCE OPERATIONS CENTER (CODE 520) . . 2-18

ADA PACKAGES FOR COMPUTER ACCESS TO COORDINATE

REFERENCED DATA (CODE 520) 2-20

MULTI SATELLITE OPERATIONS CONTROL CENTER (CODE

510) 2-20

MSOCC Ada Pilot Project 2-21

MSOCC Ada Compilers Benchmark Suite 2-21

SIMULATION OPERATIONS CENTER PROJECTS (CODE 515) 2-24

Pretty Printer 2-24
NASCOM Deblocker 2-25

SPACECRAFT INTEGRATION TESTING (CODE 408) . . 2-27

PC AT Experiment 2-27

Spacecraft Embedded Flight Software 2-27
OTHER ACTIVITIES AT GSFC 2-29

FLEXIBLE ADA SIMULATION TOOL (FAST) 2-30

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH

CENTERS

AMES RESEARCH CENTER 3-1

CHARLES STARK DRAPER LABORATORY 3-2

Advanced Information Processing System 3-2

F8 Oblique Wing Program 3-4
FEDERAL AVIATION ADMINISTRATION NATIONAL AIRSPACE

SYSTEM 3-4

JET PROPULSION LABORATORY 3-5

JOHNSON SPACE CENTER 3-7

Ada Production Rule System 3-7

Ada Benchmarking Suite 3-8

Ada Runtime Environment Issues Page 2
22 February 1988

3.5.3
3.6
3.6.1
3.6.2
3.6.3

3.6.4
3.6.5
3.7
3.8
3.9
3.9.1
3.9.2
3. I0
3.10.1
3.10.2
3.11
3.12
3.13

DMSTest Bed 3-8
KENNEDYSPACECENTER............... 3-9

Clear Air Wind Sensing Doppler Radar 3-9
Space Station OperationsLanguage 3-10
Ada Evaluation Using A CDSRemoteInterface
Module 3-11
Ground Data ManagementSystem 3-12
User Interface Development Support System . . 3-12

LABORATORYFORATMOSPHERICANDSPACEPHYSICS 3-13
LANGLEYRESEARCHCENTER 3-15

LEWIS RESARCH CENTER _ _, . . t _ _ 3-17
Ada Control And Simulation Software 3-17

Space Station Power System Software 3-18

MARSHALL SPACE FLIGHT CENTER 3-19

Space Station OS Study 3-19

Down!ink Data High Speed Processing 3-20
NATIONAL SPACE TECHNOLOGY LABORATORY 3-21

SOFTWARE ENGINEERING INSTITUTE 3-22

UNIVERSITY OF HOUSTON AT CLEAR LAKE 3-22

m

m

g

m

g

I

l

B

U

U

U

SECTION 4 R_IME ISSUES ANDRECOMMEIq-DATioNs

4.1

4.2

4.2.1

4.2.1.1

4.2.1.2

4.2.1.3

4.2.1.4

4.2.1.5

4.2.1.6

4.2.2

4.2.2.1

4.2.2.2

4.2.2.3

4.2.2.4

4.2.3

4.2.3.1

4.2.3.2

4.2.3.3

4.2.3.4

4.2.3.5

4.2.3.6

4.2.3.7

DEFINITIONS 4-2

RUNTIME ISSUES 4-3

Storage Management 4-4

Garbage Collection: 4-5

UNCHECKED DEALLOCATION 4-6

Storage Reclamation For Terminated Tasks 4-8

Bit Manipulation _ 4-8

Bit Manipulations From Tasks 4-9
Constants Stored In ROM 4-10

Exception Management. 4-11

Constraint And Numeric Exceptions 4-11

Exceptions And Debugging 4-12

Asynchronous Task Interruption 4-12

A Note On Optimizatlon . . . _ 4-13

Processor Management 4-13

Tasking Behavior 4-13

Time Slicing 4-14
Static Task Priorities 4-14

Pragma PRIORITY 4-16

Synchronous And Asynchronous Task Scheduling . 4-16
CMU Rate Monotonic Scheduler 4-18

User Tailored RTE 4-19

4.2.3.8 A Note On APPL 4-19
4 2.3.9 Nonpreemptible Sections 4-19

4 2.3.10 Dynamic Time SIi6_ng 9 . , 4-20
42.4

42.4.1

42.4.2

42.4.3

42.4.4

4.2.4.5

Rendezvous Management 4-21

Avoiding The Rendezvous 4-24

Other Semantics 4-26

FIFO Service On Entry Queues 4-31

Undefined Choice Of Open Alternative 4-31

Priority Inversion 4-31

I

W

l

g

=

m

Ada Runtlme Environment Issues Page 3

22 February 1988

w

z

_ZZ.

w

.====

i

4.2.5

4.2.5.1

4.2.5.2

4.2.5.3

4.2.6

4.2.6.1

4.2.6.2

4.2.6.3

4.2.6.4

4.2.7

4.27.1

4.27.2

4.27.3

4.28

4.28.1

4.28.2

4.28.3

4.28.4

4.28.5

4.2.9

4.2.9.1

4.2.9.2

4.2.9.3

4.2.10

Task Activation 4-32

Control Over Task Activation 4-32

Activation Bottleneck 4-32

Pre-elaboration Of Program Units 4-32
Task Termination 4-34

Problems With Abort 4-34

Abortion Via Task Identifiers 4-34

An RTE Without Abort? 4-35

Termination Of Tasks In Library Units 4-35

Interrupt Management 4-35

Interrupt Latency 4-36

Fast Interrupt Pragmas 4-36

Controlling Interrupts 4-37

I/O Management 4-39

Put-get Problem 4-39
I/O From Tasks 4-40

Packet I/O For Objects Of Variable Format . . 4-40

I/O Of Mixed Type Objects 4-40
Direct I/O 4-41

Time Management 4-41
Timer Resolution 4-41

Clock Jitter 4-42

Special Delays 4-43
Others 4-44

4.2.10.1 Floating Point Representation 4-44

4.2.10.2 Fixed Point Types 4-44
4.2.10.3 Task Identifiers 4-45

4.2.10.4 Device Allocation 4-46

SECTION 5 MODIFICATIONS TO THE RM

SECTION 6

6.1

6.2

6.3

6.4

RECOMMENDED ADA PROJECTS

PROOF OF CONCEPT 6-1

PILOT PROJECTS 6-2

PRODUCTION SOFTUARE 6-3

CONCLUSION 6-4

APPENDIX A BIBLIOGRAPHY

!

APPENDIX B

B.I

B.2

B.2.1

B.2.2

B.2.3

B.2.4

B.2.5

B.2.6

PROCUREMENT ISSUES

COMPILER SELECTION B-I

RUNTIME FEATURES AND PROCUREMENT ISSUES B-2

Storage Management B-2

Exception Management B-2

Processor Management B-3

Rendezvous Management B-3

Task Activation B-3

Task Termination B-3

J

Ada Runtime Environment Issues Page 4

22 February 1988

B.2.7

B.2.8

B.2.9

B.2.10

Interrupt Management B-4

I/0 Management B-4

Time Management B-4
Others B-4

m

B

I

u

m

g

m i

m

U

g_

M

B

i

izz

L=:_: -

H

w

SECTION I

INTRODUCTION

I.I INTENDED AUDIENCE

This document is intended for use by Ada practitioners to discuss and

establish common short term requirements for Ada runtime environments.

The description of the Ada projects at NASA viii glve managers some

insight into the current state of Ada.

A good knowledge of Ada and practical experience with at least one
validated Ada compiler is assumed. However, such knowledge is not

required to understand the executive summary and the conclusion.

1.2 PURPOSE AND SCOPE OF THE REPORT

This document is written to foster the

gather common immediate requirements

(RTE).

sharing of experience and
for Ada runtime environments

It identifies the major current Ada runtime environment issues through

the analysis of some of the Ada efforts at NASA and other Research

Centers.

The RTE characteristics of major compilers are compared; workaround

and alternate runtime implementations are reviewed.

Modifications and extensions to the Ada Language Reference Manual (RM)

to address some of these runtime issues are proposed.

Three classes of projects focusing on the most critical runtime

features of Ada are recommended, including a range of immediately

feasible full scale Ada development projects.

Finally, a llst of Ada runtime features and

proposed for consideration by the vendors,

Government (including AJPO).

procurement issues is
contractors and the

This document is about issues; it does not dwell on Ada's numerous

strengths. Dozens of studies before this one have established the

-- =

J

U

INTRODUCTION

PURPOSE AND SCOPE OF THE REPORT
Page I-2

22 February 1988 W

fact that no language does better than Ada on the problems and runtime

issues raised [Rockwell-83] [IBM-85] [McDonnel-85] [Intermetrics-85]

[Boeing-87].

This study shows Ada at work, exposing the issues, proposing

solutions, and making recommendations for possible improvements.

Important notice

The issues raised in this document should not be

interpreted as "problems" with Ada nor used as excuses

to delay the introduction of the Ada technology where

it is so badly needed.

Runtime issues for C, FORTRAN, Pascal and other

"standard" languages (along with the various
proprietary operating systems they run under) would be

both more numerous and much more severe [Kamrad-87]
[Brosgol-87] [Barnes-87].

We hope that this document will contribute to the more widespread

of Ada in aerospace applications.

use

m

i

m

m

g

m

I

1.3 EXECUTIVE SUMMARY

The Ada technology has matured rather quickly in the last two years.

Over i00 compilers had been validated by August 1987, and this number

was expected to reach 150 by early 1988.

Ada is currently at work in over 30 projects in all major Space

Centers, totalling over 750,000 lines of code. A partial list of

these projects includes the following:

o At the Goddard Space Flight Center (GSFC) in Maryland, the

Gamma Ray Observatory (GRO) attitude dynamics simulator, a

I00,000 L0C "pilot" project, is nearing completion

[Godfrey-87]. The simulator models the interactions between

the satellite Attitude Control System (ACS) and its space
environment.

o Two follow-on systems, intended for operational use; GOES-I

attitude dynamics simulator, and GOES-I telemetry simulator,

are in their preliminary design phases. Their combined size

is expected to be over 130,000 LOC [Tasaki-87].

Also at GSFC, NASA's first operational application of Ada to

flight software is under way. The Explorer Platform ACS will

manage the satellite orientation in space. The 5,000 LOC

system will run on a 1750A microprocessor chip set

[Price-87].

i

u

W

M

m

m

u

I

INTRODUCTION

EXECUTIVE SUMMARY

Page I-3

22 February 1988

w

=

T=__

= =

o Ames Research Center in California is experimenting with Ada

for parallel architectures [Goforth-87].

The Charles Stark Draper Laboratory in Massachusetts is

applying its Advanced Information Processing System fault

tolerant distributed realtime Ada technology to the 30,000

LOC F-8 oblique wing flight software [CSDL-86].

The Jet Propulsion Laboratory in Pasadena has made available

to the aerospace community more than I00,000 LOC of reusable

components for mathematics and astrodynamics applications

[Klumpp-86]. Packages have been written to provide Ada

programmers with the functionality of HAL/S, the language

used for the Space Shuttle flight software.

The Johnson Space Center (JSC) and the University of Houston

at Clear Lake in Texas have been leading the Ada effort at

NASA for years. They are now supporting a large number of

projects for the Space Station Program [Humphrey-87].

At the Kennedy Space Center in Florida, Doppler radar

realtime data analysis software is being developed on a

Compaq 386 using an Alsys compiler.

The Solar Mesosphere Explorer is controlled from the

Laboratory for Atmospheric and Space Physics in Colorado by

60,000 LOC of Ada software [Jouchoux-87].

o The Lewis Research Center in Ohio has developed a testbed for

the power system of the Space Station in Ada.

o At the Marshall Space Flight Center in Alabama, a realtime

system is being developed in Ada to strip classified data

from three 192 kilobits per second telemetry streams for DoD

classified payloads.

o The National Space Technology Laboratory in Mississipi has

provided JSC and GSFC with an Ada Space Station payload

simulator that is currently used to study remote controlled

space science operations.

O Most of the above systems were started before the SSP Ada

mandate really took effect. As impressive as they are, they

pale by comparison with the recently awarded $141 million

Space Station Software Support Environment (SSE). In fact,

the above incomplete list is only a sign of the intensive Ada

activities that will occur in the Space Station era.

N

INTRODUCTION

EXECUTIVE SUMMARY

Page 1-4

22 February 1988

Experience so far has been largely positive but it must be understood

that even the best language cannot solve all software engineering

problems by itself _see foot note).

People solve problems.

Ada is and will be an excellent tool in the hands of competent and

educated software developers. It cannot and will not be a panacea

compensating for inadequate methods or training, but it will be most

beneficial if properly applied [Century-B4].

This document addresses some very technical issues about the quality

and efficiency of current Ada compilers. Users' needs stemming from

experience on active NASA projects are enumerated and the issues are

discussed. Recommendations are made for improvements via packages and

compiler features needed for aerospace applications.

The busy executive should read this section as well as section 6, to

obtain a quick understanding of where Ada is today, where it is going,

and what it means for NASA's projects. Some insight can be gained by

browsing through sections 2 and 3 where real Ada projects are
described with the unedited comments from practitioners. The first

page of each section contains important remarks that help put the

contents of this document into perspective.

In our conclusions (Section 6.4), we make the case for a more

aggressive and concerted effort to introduce and use Ada within all

Space Centers. rr

DoD is now aggressively mandating Ada. Airbus, Boeing and FAA notably

are actively involved with Ada. Of course, NASA will use Ada for the

Space Station (see background section below), and a growing number of

other software projects.

Clearly, for the aerospace executive, the question today is no longer

_When can Ada be used _" but rather, "Bow can we use it now _"° y

m

i

I

I

g

m

=

m

!

M

l

m
U

M

One often mentioned issue is the cost of Ada tasking. This cost

should be compared to the cost of equivalent, non Ada, alternatives.

Under VMS for instance, replacing tasks with VMS processes

communicating via OIOs to mailboxes (a common way of "doing tasking"

from FORTRAN or C) would turn out much less efficient than the Ada

equivalent solution, even in C. This was demonstrated at GSFC and at

Marshall (see Section 4.2.4).

g

U

J

u

L

W

=

r

[]

INTRODUCTION

BACKGROUND

Page 1-5

22 February 1988

1.4 BACKGROUND

In July of 1985, the level C Space Station Project Office at the

Johnson Space Center approved a configuration change board request to

adopt Ada as the primary language of choice for flight subsystem

application programs.

In March of 1986, the commitment of NASA's Space Station Program

Office to Ada was extended to all Space Station software. A stringent

waiver mechanism based on a close analysis of the cost/benefit across

the entire life cycle of the Space Station Program was then put into

effect.

At the Joint Conference on Ada Technology sponsored by the Goddard

Space Flight Center (GSFC) in March 1987, Dr. Dana Hall, manager of

the Space Station Program Office, Information Systems Management

Division, reaffirmed the commitment to Ada in no uncertain terms:

_The Space Station program has selected Ada for ALL software paid for

by Space Station funds. The 'all software' literally means all types:

application, operating system, user interface, data base management,

and any other. Needless to say, waivers to the Ada mandate will not

be readily granted or easy to obtain [Hall-87]. n

Since 1984, efforts have been under way at GSFC to assess the

applicability of the Ada technology to several directorates.

The GSFC approach consists of [Nelson-85]:

o Acquiring and comparing Ada Software Development Environments

o Establishing training programs and providing information

exchange within and outside of GSFC

o Selecting and monitoring meaningful Ada pilot projects

o Analyzing the results of the pilot projects and making

recommendations

1.5 METHODOLOGY

The following approach was followed to produce this document:

I. Contact Ada users at GSFC and other NASA Centers. Analyze

their projects and report on the kinds of runtime problems

currently confronting the practitioners.

, Contact other R&D Centers (private companies, Charles Stark

Draper Laboratory (CSDL), Software Engineering Institute

(SEI), etc.) to survey the state of the art in RunTime

Environments (RTEs).

INTRODUCTION
METHODOLOGY

Page 1-6
22 February 1988

3. Survey the literature for articles and books pertaining to
Ada RTEissues.

4. Contact Ada compiler vendors to get some insight into the RTE

problems facing the implementers.

5. Study the runtime user's guide (when available) for several

Ada compilers.

6. Contact the relevant ACM SIGAda groups such as the

Performance Issues Working Group (PIWG) and the Ada RunTime

Environment Working Group (ARTEWG).

7. Give this document as widespread a review as is practically

feasible.

m

I

I

U

l

I

1.6 STRUCTURE OF THIS DOCUMENT

This document is comprised of 6 sections and two appendices.

- Section 1 gives the project background and defines the

purpose and scope of the report. This section also

acknowledges the individuals who participated in this study.

- Section 2 is an analysis of Ada projects at GSFC.

- Section 3 is an analysis of Ada projects in other Space and
Research Centers.

- Section 4 enumerates the main Ada RTE issues and makes

recommendations to alleviate the problems.

- Section 5 proposes some extensions and modifications to the
Ada RM.

- Section 6 makes recommendations for further analysis9 tests

and projects.

- Appendix A is a bibliography of Ada runtime issues.

- Appendix B is a list of Ada runtime features to consider in

the procurement of Ada compilers.

8

w

B

I

n

m

l

g

1.7 ACKNOWLEDGEMENT

We gladly acknowledge the following individuals' contributions to

contents of this document:

the

i

m

m

I

m

r

F_

7

T i

=

W

w

INTRODUCTION

ACKNOWLEDGEMENT

Page 1-7

22 February 1988

o Dr. William Agresti (Computer Sciences Corporation, Silver

Spring)

o Ms. Linda Alger (Charles Stark Draper Laboratory, Inc.)

o Mr. James P. Alstad (Hughes Aircraft Company)

o Mr. David Auty (Softech Inc.)

o Dr. Sidney Bailin (Computer Technology Associates, Inc.)

o Mr. Curtiss Barett (NASA Headquarters)

o Pr. Edward Baker (Florida State University)

o Dr. Paul Baker (Computer Technology Associates, Inc.)

o Dr. J. G. P. Barnes (Alsys Inc.)

o Mr. Mitchell Bassman (Computer Sciences Corporation, Falls

Church)

o Ms. Mary Biddle (Magnavox Electronic Systems Company)

o Mr. Eric Booth (Computer Sciences Corporation, Silver Spring)

o Dr. Kenneth Bowles (Telesoft Inc.)

o Ms. Faye Brian (Lockheed Missiles & Space Company Inc.)

o Mr. Ronald Brender (Digital Equipment Corp.)

o Ms. Elisabeth Brinker (NASA Goddard Space Flight Center, Code

522.1)

o Dr. Benjamin Brosgol (Alsys Inc.)

o Mr. Robert Burkhardt (Laboratory for Atmospheric and Space

Physics, University of Colorado at Boulder)

o Mr. Brian Carlson (NASA Kennedy Space Center)

o Ms. Sijung Joan Chang (Computer Sciences Corporation, Silver

Spring)

o Dr. George W. Cherry (Thought**Tools Inc.)

o Mr. Joel Cohen (Computer Sciences Corporation, Silver Spring)

o Mr. Robert Conti (Digital Equipment Corp.)

o Mr. Robert Converse (Computer Sciences Corporation, Falls

Church)

INTRODUCTION

ACKNOWLEDGEMENT

Page 1-8

22 February 1988

o Dr. Robert Dewar (New York University, Courant Institute)

o Dr. Louis DiAcetis (Bronx Community College, NY)

o Ms. Audrey Dorofee (MITRE Corp.)

o Ms. Megan Dowd (Computer Sciences Corporation, Silver Spring)

o Mr. Lance Drane (Charles Stark Draper Laboratory, Inc.)

o Mr. Curtis Emerson (NASA Goddard Space Flight Center, Code

522.2)

o Dr. Edward Fallis (Alsys Inc.)

o Mr. Daniel Ferry (Computer Sciences Corporation, Silver

Spring)

o Mr. Antony Gargaro (Computer Sciences Corporation,

Moorestown)

o Mr. Dale Gaumer (Magnavox Electronic Systems Company)

o Ms. Susan E. Gibson (Concurrent Computer Corporation)

o Ms. Helen Gill (MITRE Corp.)

o Mr. Andrew Goforth (NASA Ames Research Center)

o Dr. John Goodenough (Software Engineering Institute)

o Mr. Steven Gorman (NASA Johnson Space Center)

o Mr. Kaveh Habibelahy (Computer Sciences Corporation,

Spring)

o Mr. Jerry Hengemilhe (Fairchild Space Company)

o Ms. Jan Heuser (NASA Kennedy Space Center)

o Ms. Wendy Holladay (NASA National Space

Laboratory)

o Mr. Albert Horn (Smith Advanced Techniques Inc.)

o Mr. Peter Hughes (NASA Goddard Space Flight

522.1)

o Mr. Terry Humphrey (NASA Johnson Space Center)

o Dr. Jean Ichbiah (Alsys Inc.)

Silver

Technology

Center, Code

I

u

g

r I

I

U

I

U

m

I

J

m

w

m

g

g

g

= :=

m

N

g

INTRODUCTION

ACKNOWLEDGEMENT

Page 1-9

22 February 1988

w

L_

w_

-- z---

o Dr. Alan Jaworski (Ford Aerospace)

o Mr. Richard Kaiser (Century Computing, Inc.)

o Mr. Michael Kamrad (Honeywell Systems Research Center)

o Mr. Allan R. Klumpp (Jet Propulsion Laboratory)

o Dr. John Knight (University of Virginia)

o Dr. Jaynarayan H. Lala (Charles Stark Draper Laboratory,

Inc.)

o Ms. Suzan Legrand (Softech Inc., Houston, Texas)

o Mr. Maurice Liaw (University of Houston at Clear Lake, Texas)

o Mr. David Littmann (RMS Inc., Lanham, Md.)

o Dr. Charles McKay (University of Houston at Clear Lake,

Texas)

o Mr. Paul Maresca (Adasoft)

o Mr. John Maurer (MITRE Corp.)

o Mr. Vincent Megna (Charles Stark Draper Laboratory, Inc.)

o Mr. Philip Miller (Century Computing, Inc.)

o Mr. Robert Murphy (NASA Goddard Space Flight Center, Code

522.1)

o Mr. Henry Murray (NASA Goddard Space Flight Center, Code

511.2)

o Mr. Robert W. Nelson (NASA Headquarters, Code SSI)

o Mr. John Ong (NASA Goddard Space Plight Center, Code 700)

o Mr. Murt Page (OAO Inc.)

o Ms. Dorothy C. Perkins (NASA Goddard Space Flight Center,

Code 522)

o Mr. William Price (Fairchild Space Company)

o Mr. Kelvin Ouimby (Computer Sciences Corporation, Silver

Spring)

o Dr. Roger Racine (Charles stark Draper Laboratory, Inc.)

INTRODUCTION
ACKNOWLEDGEMENT

Page i-I0
22 February 1988

o Mr. Ralph Riordan (NASAGoddard Space Flight Center, Code
515)

o Mr. Michael Rissman (Software Engineering Institute)

o Mr. Patrick Rogers (University of Houston at Clear Lake,
Texas)

o Mr. Oron Schmitt (NASAJohnson Space Center)

o Ms. Catherine Schubert (NASALewis Research Center)

o Ms. Barbara Scott (NASAGoddard Space Flight Center, Code
408)

o Mr. Edwin Seidewitz (NASAGoddard Space Flight Center, Code
554)

o Mr. Dwight Shank (Computer Sciences Corporation, Silver
Spring)

o Mr. SeetharamaShastry (Concurrent ComputerCorporation)

o Mr Allyn Shell (Computer Sciences Corporation, Beltsville)

o Mr Robert Shuler (NASAJohnson Space Center)

o Mr William Sloan (NASAKennedySpace Center)

o Ms Marlyse Smith (Alsys Inc.)

o Dr ThomasSmith (MITRECorp.)

o Mr David Solomon (Computer Sciences Corporation, Silver
Spring)

o Mr. Jim Spiegel (Ford Aerospace)

o Mr. Jon S. Squire (Westinghouse Electric Corp.)

o Mr. Michael Stark (NASA Goddard Space Flight Center, Code
552)

o Ms. Jody Steinbacher (Jet Propulsion Laboratory)

o Ms. Peggy Stephens (Digital Equipment Corporation)

o Mr. Robert Stevens (NASA Marshall Space Flight Center)

o Mr. Larry Taormina (NASA Marshall Space Flight Center)

o Mr. Keiji Tasaki (NASA Goddard Space Flight Center, Code 552)

I

i

I

r_

U

I

l

m

m

m

m

m

=_

m

m

l

m

w

w

=

W

r

w

W

W

L _

L _

W

u

z

INTRODUCTION

ACKNOWLEDGEMENT

Page i-ii

22 February 1988

o Mr. Avram Tetewsky (Charles Stark Draper Laboratory, Inc.)

o Mr. Mike Thomas (NASA Johnson Space Center)

o Ms. Mary Ann Tompkins (Lockheed Missiles & Space Company,

Inc.)

o Ms. Susan Voigt (Langley Research Center)

o Mr. Nelson Weiderman (Software Engineering Institute)

o Mr. Richard Wesenberg (NASA Kennedy Space Center)

o Ms. Mary Whalen (Charles Stark Draper Laboratory, Inc.)

o Mr. James Withrow (NASA Lewis Research Center)

o Mr. Stanley Woolley (Lockheed Engineering Management Services

Corp.)

INTRODUCTION ,w
LIST OFACRONYMS

1.8 LIST OFACRONYMS

Page 1-12

22 February 1988

m

m- ACEC: Ada Compiler Evaluation Capability

- ACM: Association for Computing Machinery

- ACS: Ada Compilation System

- ACVC: Ada Compiler Validation Capability

- ADE: Ada Development Environment

- AI: Artificial Intelligence

- AJPO: Ada Joint Program Office

- AP: Application Processor

- APPL: Ada Program Partitioning Language

- ARC: Ames Research Center

- ARTEWG: Ada RunTime Environment Working Group

- AST: Asynchronous System Trap

- AVO: Ada Validation Office

- BPS: Bits per second

- BSC: Binary Synchronous Control

- C3: Concurrent Computers Corporation

- C3Ada: Concurrent Computers Corporation Ada compilation

system

- CAUWG: Commercial Ada Users Working Group

- CCSDS: Consultative Committee on Space Data Systems

- CMU: Carnegie-Mellon University

- COSMIC: Computer Software Management and Information Center

- CPU: Central Processing Unit

- CSC: Computer Sciences Corporation

- CSTOL: Colorado Standard Test and Operations Language

I

U

m

m

R

m

Z

m

I

m

I

N

m

m

m

===_=.

g

I

r_

z £

w

w

w

== =

m

W

INTRODUCTION

LIST OF ACRONYMS

Page 1-13

22 February 1988

- DDC: Dansk Datamatik Center

- DEC: Digital Equipment Corporation

- DG: Data General Corporation

- DMA: Direct Memory Access

- DMS: Data Management System

- DSTL: Data Systems Technology Laboratory

- FAA: Federal Aviation Administration

- FDAS: Flight Dynamics Analysis System

- FIFO: First In First Out

- FTS: Flight Telerobotic Servicer

- GC: Garbage Collection

- GKS: Graphical Kernel System

- GOAda: GOES-I Ada Dynamic Simulator

- GRO: Gamma Ray Observatory

- GRODY: Gamma Ray Observatory attitude Dynamics Simulator

- GSFC: Goddard Space Flight Center

- GTS: GOES-I Telemetry Simulator

- HRSO: High Resolution Solar Observatory

- IBM: International Business Machines

- ICE: In-Circuit Emulator

- IPL: Interrupt Priority Level

- ISR: Interrupt Service Routine

- JPL: Jet Propulsion Laboratory

- JSC: Johnson Space Center

- KLOC: Thousand of Lines Of Code

- KSC: Kennedy Space Center

H

INTRODUCTION
LIST OFACRONYMS

Page 1-14
22 February 1988

- LaRC: Langley Research Center

- LASP: Laboratory for Atmospheric and Space Physics

- LeRC: Lewis Research Center

- LMC: (Ada) LanguageMaintenance Committee

- LMP: (Ada) LanguageMaintenance Panel

- LOC: Lines Of Code

- LSE: LanguageSensitive Editor

- MIPS: Million of Instructions Per Second

- MIT: Massachusetts Institute of Technology

- MOS: Mission Operations System

- MSFC: Marshall Space Flight Center

- MSOCC:Multi-Satellite Operations Control Center

- MVS: Multiple Virtual Storage

- NA: Not Available

- NAS: National Airspace System

- NASA: National Aeronautics and Space Administration

- NASCOM:NASACommunications (system or standard)

- NCP: Network Control Program

- NFS: Network File System

- NOS: Network Operating System

- NSSC: NASAStandard Spacecraft Computer

- NSTL: National SpaceTechnology Laboratory

- NYU: NewYork University

- OASIS: Operations And Science Instrument System

- OCC: Operations Control Center

- OMS: On-board ManagementSystem

i

u

I

i

m

D

g

I

I

mm

m

M

i

m

m

i

I

w

2

= =

L

r_

w

i :

t_J

H
_mm==l

INTRODUCTION

LIST OF ACRONYMS

- OS: Operating System

- PAMELA: Process Abstraction Methodology for

Applications

- PCA: Performance Coverage Analyser

- PC/AT: Personal Computer Advanced Technology

- PCEE: Portable Common Execution Environment

- PIWG: Performance Issues Working Group

- 0A: Quality Assurance

- 0IO: Queued Input Output

- RM: Ada language Reference Manual

- RPC: Remote Procedure Call

- RRM: Runtime Reference Manual

- RSOC: Remote Science Operations Center

- RTE: RunTime Environment

- RTS: RunTime System

- RTL: RunTime Library

- RV: Rendezvous

- SEI: Software Engineering Institute

- SEL: Software Engineering Laboratory

- SERC: Software Engineering Research Center

- SIG: Special Interest Group

- SIGAda: Special Interest Group on Ada

SIS:

SME:

SPC:

SQL:

SSE:

System Interface Set

Solar Mesosphere Explorer

Software Productivity Consortium

Standard Query Language

Software Support Environment

Page 1-15

22 February 1988

Embedded Large

w

r

INTRODUCTION

LIST OF ACRONYMS

Page 1-16

22 February 1988

- SSIS: Space Station Information System

- SSP: Space Station Program

- STOL: Standard Test and Operations Language

- STS: Space Transportation System (space shuttle)

- TCB: Task Control Block

- TCP/IP: Transport Control Protocol / Internet Protocol

- TLM: Telemetry

- TMIS: Technical and Management Information System

- UARS: Upper Atmospheric Research Satellite

- UHCL: University of Houston at Clear Lake

- VADS: Verdix Ada Development System

- VM: Virtual Machine

- Wadas: Washington Ada Symposium

- XDR: External Data Representation

M

J

l

= _

I

g

D

m

u

m
m

I

m

m

mm

o Ada is a registered trademark of the U.S. Government (AJPO).

o VAX, VMS, VAXELN, DECNET are registered trademarks of Digital

Equipment Corporation.

o MPS, 0S-32 are registered trademarks of Concurrent Computers

Corporation.

o AOS/VS, ADE are registered trademarks of Data General Inc.

o PC/AT is a registered trademark of IBM Corp.

o SUN is a registered trademark of Sun Microsystems.

o UNIX is a registered trademark of Bell Laboratories.

o MDS, iRMX, iAPX, ISIS are registered trademarks of the INTEL

corporation.

o PAMELA is a registered trademark of George W. Cherry.

l

m

u

m

m

m

i

I

n

m

a

l

r

w

|, J

SECTION 2

ADA DEVELOPMENT EFFORTS AT GSFC

This section presents some of the Ada projects that were active at the

NASA goddard Space Flight Center in the summer of 1987.

The same format is used for each project and shows the compiler(s),

host computer and OS used, the size of the team and the order of

magnitude of the effort:

"LOC completed" refers to the number of Ada source lines of

code expressed in total lines of text (LOT) which includes

blank lines, comments, etc., or semicolons (";"), the Ada

statement terminator

o "LOC projected" refers to the expected size of the software

at delivery

The ratio LOT / "'" is an indication of the amount of
9

documentation but is very dependent on coding style [GSFC-I].

embedded

Ada training, prototyping, scaffolding and other support software are

not included in the above figures.

The short description for each project is followed by barely edited

comments from the managers and programmers involved.

Please note

Because of the nature of the approach followed, the

issues raised in Sections 2 and 3 (Ada development

projects) faithfully reproduce the statements made by

practitioners. No judgement is made about the

adequacy or relevancy of the issues raised. However,
our own "NOTES" have been added where appropriate.

ge hope that these honest "snapshots" will provide software

professionals with a feel for the real and perceived problems they may

expect when, they too, start using Ada.

ADADEVELOPMENTEFFORTSATGSFC
GROATTITUDEDYNAMICSSIMULATOR(CODE550/520)

Page 2-2
22 February 1988

2.1 GROATTITUDEDYNAMICSSIMULATOR(CODE550/520)
U

o Project name: GRO Attitude Dynamics Simulator (GRODY)

o Compiler(s) used: DEC ACS VI.I to 1.3

o Host computer and OS: VAX 11-780, 785 and 8600 under VMS.

o LOC completed: 135,000 lines of text (LOT), over 45,000
semicolons (";")

o LOC projected: I00,000 LOT

o Team: 4 to 7 full time.

Project description: The Gamma Ray Observatory Attitude
Dynamics Simulator project (GRODY) is a typical ground

software application which models the interactions between

the satellite attitude control systems and its space

environment.

In August 87, the system was being integrated;

completion date was December 87.

the target

A document describing the "lessons learned" on the GRODY

design has been completed and published [Godfrey-87]. A
similar document on the code and test phases of the GRODY

project will be available from the Software Engineering

Laboratory (SEL) in December 1987.

The GRODY project has already made very valuable contributions to the

introduction and use of Ada at GSFC [Nelson-86].

Several runtime issues were raised by the engineers who developed the

software:

lo Problems when calling FORTRAN math functions from Ada units:

When high accuracy is needed (> 9 digits), which is common

for flight dynamics applications, this precision requirement

should also be made explicit to the FORTRAN compiler

(/G FLOAT with DEC). Otherwise, an internal representation

mismatch exists which can produce unexpected results that

only careful testing can reveal. This is a generic class of

problems with all imported code and should be taken into
consideration no matter what the imported code language is.

A conversion package using record representation clauses has

been developed by the GRODY team to convert numeric data
files to G FLOAT format.

I

m

i

m

I

I

m
I

I

m

i

I

I

R

i

m

n

m

w

ADA DEVELOPMENT EFFORTS AT GSFC

GRO ATTITUDE DYNAMICS SIMULATOR (CODE 550/520)

Page 2-3

22 February 1988

NOTE

DEC Ada Programmers Runtime Reference Manual

(RRM) documents representation differences

between the F, D, G and H formats which map

to Ada 6, 9, 15 and 33 digits respectively

(RRM Section 3.1.3).

m

E

i

E 2

.

.

Inconsistent behavior of exceptions across implementations

[Brinker-85]: Different validated compilers may raise either

NUMERIC ERROR or CONSTRAINT ERROR exceptions under the same
test conditions. These _ifferent runtime behaviors can be

traced to different interpretations of the RM.

Tasking is inefficient: Rendezvous (RV) overhead on DEC's

Ada Compilation System (ACS) was measured to reach 50 to I00

times that of the procedure call. The GRODY team avoided the

problem by using tasking very sparingly: only 6 tasks were

used, 5 of them for the user interface.

NOTE

in August 87, ACM benchmarks found this ratio
to be about 30 for DEC ACS. See Section

4.2.4 of this document.

The classic "alternative solution" of using

0IOs to mailboxes between separate VMS

processes was benchmarked to be less

efficient than even the first implementation

of the rendezvous [Brinker-86].

m

Other issues were also raised by the GRODY team:

Compiler runtime bugs seem to be more frequent with Ada than
with other, more established languages. This is not only

because Ada compilers are big and that the technology is

still maturing, but is probably also due to the fact that Ada

provides facilities that were absent in previous languages,

such as tasking and dynamic memory allocation. For instance,

access types may generate CONSTRAINT ERROR with the version

1.2 of DEC ACS. The problem goes away when the code is

recompiled with no optimization (version I.i did not have

this bug).

NOTE

Ada compilers are huge, averaging 400,000
lines of Ada code. But there is no

indication in the literature or otherwise

that they fail more often than C or FORTRAN

compilers that have had decades to mature.

=

ADA DEVELOPMENT EFFORTS AT GSFC

GRO ATTITUDE DYNAMICS SIMULATOR (CODE 550/520)

Page 2-4

22 February 1988

Code quality for most Ada compilers is

amazing considering their size. This is

probably due to the re-use of the same

compiler front-end by several vendors, the

use of formal methods, and the self

compilation method (Ada compilers compiling

themselves). However, optimizer bugs can be

expected.

m

m

r -

m

i

o Ada math packages should be standardized.

NOTE

There are Several efforts in this direction

[Fisher-84] [Kok-84] [Squire-B7] but progress
has been slow. Consensus is hard to reach.

o Interface to host operating system services is required and

should be provided via well documented packages.

NOTE

DEC and Concurrent Computer Corporation

(Concurrent) are compliant here.

o A clearly annotated RM, describing the implementer's

interpretation and decisions, as well as a detailed runtime

user's guide, are invaluable documents.

NOTE

DEC ACS documentation is a model in that

respect.

I

m

m
I

m

m

m

M

m

o There are great variations in quality across implementations:

Even validated compilers can differ greatly in the efficiency

of the generated code.

NOTE

Progress has been spectacular. For instance,
Telesoft's second generation products are I0

times faster in compile and runtime speed

than the previous versions. When Boeing

compared Ada compilers for the 7J7 aircraft,

some vendors boasted a 20 fold performance

improvement between November 86 and May 87

[Pflug-87].

m

[]

U

m

m

D

m

ADADEVELOPMENTEFFORTSAT GSFC
GROATTITUDEDYNAMICSSIMULATOR(CODE550/520)

Page 2-5
22 February 1988

Z

t,i

L

f_

--===_

o A working symbolic debugger was found to significantly

increase productivity during the post design phases.

o The GRODY team also had problems with the unnecessary

recompilations that sometimes result from the blind

enforcement of Ada dependency rules by the vendor.

Incremental compilation environments such as the Rational

system have an edge on the competition here. For extremely

large systems such as the SSE and other Space Station

software, the impact of excessive recompilation cannot be

over-estimated.

NOTE

This is not a runtime issue but it is an

important one when selecting a compiler.

Good design and coding practices reduce

compilation unit dependencies. The use of
sub-libraries and formal source code

management tools such as DEC's Code

Management System (CMS) or UNIX Source Code

Control System (SCCS) can also somewhat

alleviate this problem.

o CRODY unit and integration testing is taking longer than

anticipated. This is a surprising observation that warrants

further investigation.

NOTE

Our preliminary analysis suggests that the

problems are due to some misuse of nesting

and generic instantiation as well as to the
release 1.2 of DEC ACS:

- DEC modified several predeflned units

which made all previously developed units

obsolete. All Ada code in all libraries

and sublibraries had to be recompiled.

- The DEC debugger for VI.2 was not fully

debugged yet.

- Version 1.2 of the ACS seems to be marred

with new annoying bugs.

m

FJ

The lessons learned on GRODY are now being applied to a similar,

full-production project, described next.

w

ADA DEVELOPMENT EFFORTS AT GSFC

GOES-I ADA DYNAMICS SIMULATOR (CODE 550)

Page 2-6

22 February 1988

2.2 GOES-I ADA DYNAMICS SIMULATOR (CODE 550)
I

o Project name: GOES-I Ada Dynamics Simulator (GOAda)

o Compiler(s) used: DEC ACS Vl.4

o Host computer and OS: VAX 11-780 under VMS.

o LOC completed: None

o LOC pro'ected:j I00,000 LOT, 30,000 ";"

o Team: 5 to 7 full time for 18 months

O Project description: This recently started project features
a lunctionality quite similar to GRODY. However, the two

simulators differ significantly by their attitude and sensors

subsystems. The team expects to re-use about 30% of GRODY's
code.

=

Like GRODY, two parallel efforts are taking place; one in

FORTRAN, the other in Ada.

Unlike GRODY however, GOAda is a full simulator intended for

operational use. GRODY Ada was a prototype and research

project whereas the FORTRAN version was a production effort.

With GOAda, the FORTRAN team will only produce 2 major

subsystems which will be integrated into a larger system on a

MicroVAX II. This time, unlike GRODY, normal launch schedule

pressure will be applied on the Ada team as well. Decision

to proceed with Ada was made in November 1987 on the basis of

schedule and cost [Tasaki-87].

The Ada design team (in fact an entire section at GSFC) has

undergone significant advanced Ada training using GRODY for

code reading and maintenance exercises.

This unique experiment exemplifies the pragmatic approach used by the

engineers of the SEL to introduce new software technologies at

Goddard.

2.3 GOES-I TELEMETRY SIMULATOR (CODE 550)

o Project name: GOES-I Telemetry Simulator (GTS)

o Compiler(s) used: DEC ACS VI.4

o Host computer and OS: VAX 11-780 under VMS.

m
I

I

I

I

I

I

I

I

i
I

I

m

m

I

M

I

m

I

i

i

i

i

m

@

ADA DEVELOPMENT EFFORTS AT GSFC

GOES-I TELEMETRY SIMULATOR (CODE 550)

Page 2-7

22 February 1988

o LOC completed: None

o LOC pro_ected: 30,000 LOT, about I0,000 ";"

o Team: 3 full time for 15 months

Project description: Prior to the launch of a spacecraft, a

telemetry simulator is needed to generate telemetry data for

testing the main attitude ground support system.

The telemetry data contains attitude sensor data, actuator

data, science data and other information from the spacecraft.

The data is grouped into several hundred bytes called minor

frames, and tens of minor frames are grouped into major
frames. Information is different from minor frame to minor

frame. The primary objective of a telemetry simulator is to

model attitude sensors, encode sensor data into a bit stream

and construct minor and major frames.

The team expects to reuse some of the GRODY code on this

project. As usual, metrics data will be collected on the

NASA GSFC SEL standard forms and will be analyzed and

published after completion of the project.

Although the development machine for GTS is the DEC VAX, the

eventual target machine is the IBM 4341 under MVS, and

perhaps NAS 8060 under VM. An IBM Ada compiler has been

ordered some time ago, but had not yet been delivered to the
Division.

This project is another example of the full-productlon application of

Ada at the Goddard Space Flight Center.

2.4 FLIGHT DYNAMICS ANALYSIS SYSTEM (CODE 550)

o Pro_ect name: Flight Dynamics Analysis System (FDAS)

o Compiler(s) used: DEC ACS VI.I to 1.3.

o Host computer and 0S: DEC VAX 11-780 under VMS.

o LOC completed: About 25,000 LOT, 5,000 ";"

o LOC projected: About I0,000 ";"

o Team: 4 persons full time.

o Project description: FDAS is a software tool for use in

flight dynamics research. Its basic purpose is to assist

programmers and analysts in building, testing and evaluating

ADA DEVELOPMENT EFFORTS AT GSFC

FLIGHT DYNAMICS ANALYSIS SYSTEM (CODE 550)

Page 2-8

22 February 1988
U

flight dynamics software by providing an integrated support

system for software modification and reconfiguration. This

support system includes the following:

- A common library of reusable flight dynamics software

components and utility functions.

- Standardized data and software interfaces.

- A window driven interface for selecting software

components and configuring these components into an

executable program. (In practice, these components

consist of code from object libraries for flight dynamics

analysis applications).

The following problems were discussed with the development team:

NOTE

Even though the FDAS project does not use Ada tasks,

the development team had significant previous

experience with tasking.

i. Tasking behavior seems difficult to predict and hard to

reproduce.

NOTE

The RM does not impose any particular

scheduling algorithm on the implementer.

Tasking introduces a new design dimension

that requires extensive training, and special

tools to aid testing.

2. Rendezvous overhead is too high and should not be much

greater than that of a procedure call.

NOTE

One implementation (Rational) already comes

very close, but there is a lot to consider

[Burns-85]. See issue 7 for the NCP project
and section 4.2.4 of this document for more

on this subject.

3. Tasks that perform I/O may block the entire

defeating task parallelism.

process,

W

m

i

g

m

U

I

n

i

I

U

nm

n

m

i

i

ADADEVELOPMENTEFFORTSAT GSFC
FLIGHTDYNAMICSANALYSISSYSTEM(CODE550)

Page 2-9
22 February 1988

w

z

NOTE

This is true of most implementations. On the

ACS, it is fortunately not the case. Only

I/O to process permanent files (SYS$INPUT,

SYS$OUTPUT, SYS$COMMAND) will block the

entire VMS process under which all Ada tasks

run, but even that can easily be defeated;

see the VAX Ada Programmer Runtime Reference
Manual Section 2.7. Also note however, that

assignment to ADA$OUTPUT can result in delays

in screen updating.

. Automatic garbage collection is needed. The RM should

require that space be reclaimed as soon as the object is

inaccessible. Also, pragmas to turn off automatic garbage

collection should be provided.

NOTE

Automatic garbage collection is not suitable

for all applications. Pragma CONTROLLED

defers garbage collection until scope exit.
See Section 4.2.1 of this document for a

discussion of this subject.

.

o

A runtime traceback that also handles exception, detailing

what exception was raised, where and why, is required.

Pragma INTERFACE should be supported by all implementations.

NOTE

Support of this important pragma, required by
the RM, is not currently checked by the ACVC.

. Operations on objects of numeric fixed types are not

reliable. Nor is fixed IO.

NOTE

Manipulation of numeric objects of a fixed

point type is rather tricky. Ada style

guides recommend against using fixed point.

See Section 4.2.10 of this document for more

on this subject.

Other issues were also raised by the FDAS team:

ADADEVELOPMENTEFFORTSAT GSFC
FLIGHTDYNAMICSANALYSISSYSTEM(CODE550)

Page 2-10

22 February 1988

When version 1.2 of DEC ACS was received, the entire Ada

software had to be recompiled because DEC had modified the

specs of some of the predefined packages, to add

functionality.

MIT's X-_indow system should be adopted as a standard and Ada

binding should be made available on all implementations.

NOTE

The Ada standardization effort is definitely

going in that direction. Already Ada

bindings for GKS (2-D graphics), SOL

(Relational DBMS) and TCP/IP (Networking)

have appeared on the market. However, it is

good practice to wait for a new system to

become stable before committing to it.

o There is an immediate and crucial need for

such as variable strings, queues and

analysis, parsing, etc.

common

stacks,

NOTE

Already EVB Software Engineering is offering

a broad range of such fully portable software

components, but we are still far from a real

software components industry.

packages
lexical

The integration between DEC's Language Sensitive Editor

(LSE), the compiler and the debugger was very helpful during

code and unit test. Some kind of test coverage tool (showing

the parts of the code that have been exercised at least once)

would improve the quality of the delivered code.

NOTE

On VAX VMS, DEC's Performance Coverage

Analyser (PCA) seems a good candidate to fill
that need.

m

g

W

g

L

J

J

M

R

I

I

It would be very convenient to reenter the debugger after an

application Crash and find the cursor right at the crash

position in the source code.

NOTE

ghen a crash can be expected, the program

should be run with debugger. For cases where

real-time conditions are important, see the
DCL "SET PROCESS DUMP" command that allows

U

B
I

I

ADA DEVELOPMENT EFFORTS AT GSFC

FLIGHT DYNAMICS ANALYSIS SYSTEM (CODE 550)

Page 2-11

22 February 1988

examining a postmortem dump file.

__IIIZIZI_

z

-2_ i

0

o

Some implementations do not provide automatic recompilations

in the order required by the RM. The equivalent of the ACS

RECOMPILE command that does this should be required for all

implementations.

A tool to automatically generate

specifications would speed up testing.

body stubs from

NOTE

The Softech ALS had such a tool. However,

most text editors would help generate the

stub in no time (cut and paste or include

predefined templates).

A tool to automatically generate call trees would help

testing and automate documentation.

In the same vein, a cross reference tool that would show what

entities are referenced by local units as well as where local

units and objects are used would be useful.

NOTE

The ACS LINK/MAP/CROSS cross reference option

is insufficient in that regard. The full map

also displays internal unit names that are
not documented.

Whatever the methodology used, a tool that would generate

code from diagrams and vice versa would speed up debugging
and documentation.

Ada packages supporting high resolution color graphics and

non-keyboard interfaces (touch screen, mouse) should be more

readily available.

NOTE

Indeed, touch screen devices seem to be

popular with astronauts and are currently

used on most prototypes of robotics user

interfaces for the Space Station.

Ada development requires a more potent environment than what

has been customary so far. Individual 4 MIPS workstations

clustered or networked to a mainframe appear like a more

logical architecture than a centralized CPU system.

T

ADA DEVELOPMENT EFFORTS AT GSFC

FLIGHT DYNAMICS ANALYSIS SYSTEM (CODE 550)

Page 2-12

22 February 1988

NOTE

Since an Ada compilation system features much

more than a compiler, it needs more resources

than a FORTRAN or C translator. This is not

the most serious problem in these times of

decreasing hardware costs and sky-rocketing

software life cycle costs. Distributivity of

the library however, is a difficult issue

because of the compilation dependency rules.

W

m

O A pretty-printer would make

programmers to concentrate

design and correctness.

QA happy while allowing the

on the more important issues of

The August 1987 version of the FDAS software was submitted to COSMIC

for general distribution. Updates and enhancements are planned for
December 1987 and December 1988.

I

g

m

2.5 NETWORK CONTROL PROGRAM (CODE 520)

o Project name: Network Control Program (NCP)

o Compiler(s) used: DEC ACS VI.O to 1.2

o Host computer and 0S: VAX 11-780, 785 and 8600 under VMS

o LOC completed: 26,200 LOT, 7,500 ";"

o LOC projected: About I0,000 ";"

Team: 2 persons full time, 1 half time.

Project description: The Mission Operations and Data Systems
Directorate Network (MNET) was developed by GSFC as a local

area network using HYPERchannel hardware. Network Control

Programs (NCPs) were being developed to use Ada (DEC ACS in

particular) to implement the MNET protocol on various nodes.

Build 1 of the NCP successfully transmitted 4096-byte blocks

at approximately 300 Kbps (bits per second) using a modified

X25 protocol, even though several RVs were used per block and

interprocess communication was achieved via OIOs to a

mailbox.

This effort was terminated when the off-the-shelf replacement system

NETEX was purchased. Insofar as runtime issues are concerned, NCP

probably was one of the most interesting and significant Ada efforts
at GSFC because this project tackled a broad range of difficult and

z

T

M

m

M

N

U

l

ADA DEVELOPMENT EFFORTS AT GSFC

NETgORK CONTROL PROGRAM (CODE 520)

Page 2-13
22 February 1988

L J

-- =

= :

E: £

= .

::

Y.=:,X 2

crucial real-time problems:

i. Converting some of the networking software to Ada was a

chore. The problem stemmed from the fact that the packet

structure included components whose structure varied at

runtime. The NCP team had to deal with 8 different types of

records. The record type could only be determined at run

time by looking at specific bits within the incoming packet.

That made the strongly typed Ada variant record extremely

difficult to use, at best. After experimenting with a

solution involving FORTRAN, the NCP team ended up using the

ACS specific "Assign to address" function. Incidentally,

other implementations such as Alsys also feature this
function.

NOTE

This is a serious problem that will plague

many NASA telemetry systems such as those

processing sub-commutated fields in minor

frames. A more portable, but efficient,

solution must be found. A range of possible
solutions is discussed in Section 4.2.8.3 of

this document.

. A related issue deals with the pragma SUPPRESS. When Ada

strong typing gets in the way, a more refined way to suppress

checks such as for a particular object, should be provided.

NOTE

DEC ACS is at fault here. The RM defines

pragma SUPPRESS for individual objects as
well as types and units (RM B-14). DEC has

chosen to replace SUPPRESS by a simpler

implementation-specific pragma "SUPPRESS ALL"

that extends to the entire compilation unit.

As a general rule, having to suppress checks

is a suspect procedure. The use of subtypes,

instead of types, should be considered (See

GSFC Ada programming guidelines).

w

rmjiii
w

W

. Pragma SUPPRESS would not work on DEC ACS.
use SUPPRESS ALL.

NOTE

The team

DEC currently ignores pragma SUPPRESS.

Furthermore, the DEC Runtime Reference Manual

(RRM) describes the conditions under which

exceptions may be raised in spite of pragma

had tO

ADA DEVELOPMENT EFFORTS AT GSFC

NETWORK CONTROL PROGRAM (CODE 520)

Page 2-14

22 February 1988

.

SUPPRESS ALL (RRM 6.1.4).

Problems were found when using unsigned numeric types.

CONSTRAINT ERROR would be raised when reading a file of bytes

in spite of a type declaration for unsigned quantities, and

the use of pragma PACK.

NOTE

This is an enduring bug in the ACS. i

g

m

m

m

I

.

,

Heterogeneous networking also involves the translation of

binary data. For instance, between DEC and IBM computers,

byte ordering is different. Representation clauses (that

control the internal representation of objects and therefore

make such translation easy in Ada) should be enforced.

NOTE

Conversion of the various floating point

formats between the two systems would pose

still worse a problem. This is an issue for

networking and distributed applications

already addressed by vendors (Sun's NFS/XDR,

'C' network-to-host byte order conversion

functions). Such applications will be common

in the Space Station era.

Incidentally, practically none of the RM

representation clauses (Chapter 13) are

currently tested by the ACVC.

DEC ACS task control blocks would not go away even after task

termination. This results in page faulting and inefficient

memory usage.

NOTE

Note that this storage is reclaimed when the

master terminates, or when the block is

exited. Such idiosyncrasies must be clearly

documented (DEC ACS is compliant here). See
Section 4.2.1.3 of this document.

m
mmmmmv

J

m

INto

U

I

7. Rendezvous overhead was measured by the NCP team to reach

50 ms in the context of their application.

n

W

I

m

ADA DEVELOPMENT EFFORTS AT GSFC

NETWORK CONTROL PROGRAM (CODE 520)

Page 2-15

22 February 1988

- f

e

_ e

i

_'2-..............

NOTE

This number is two orders of magnitude above

what has been reported in the literature

[Wilke-86], [Burger-87], [Chen-87],

[PIWG-87].

The numbers published by SIGAda's Performance

Issues Working Group (PIWG) are given in
section 4.2.4.

Also note that for the task idioms used in

practice [Cherry-84J, the multi-RV overhead

can be reduced by optimizat_ons [Chen-87].

On a multi-user, virtual OS such as VMS, page

faulting and resource contention can make

such measurements extremely tricky.

Most importantly, the NCP team was not

"benchmarking" the RV. Time s-_cing was ON,
because of network interface hardware

problems, and other users were on the system.

. The rendezvous semantics were found insufficient. Other

semantics such as remote procedure call and the send-receive

semantics should be made available as well.

NOTE

"If the runtlme semantics are defined

precisely, the language will be criticized as

preempting user or implementation choices.

If there is flexibility granted to the

implementation, then it will be attacked for

a lack of portability. Thus, some criticism

is inherent to any decision." [Brosgol-87]

.

i0.

A mechanism to share memory between Ada programs was also

mentioned as necessary. This is usually done by calls to

operating system dependent routines. Pragma INTERFACE

and / or system specific packages are required to this end.

Task abort produced all sorts of strange effects on ACS. The

runtime system would produce "invalid semaphore" messages on
the 8th or 9th trial. It turned out to be difficult to

obtain support from DEC about this bug.

NOTE

Very close support from the vendor on such

problems is absolutely vital for the Space

ADADEVELOPMENTEFFORTSAT GSFC
NETWORKCONTROLPROGRAM(CODE520)

Page 2-16
22 February 1988

Station project.

11. There was also a general feeling that inefficiencies could
result from the strict requirements of the language. If
entire blocks of data have to be copied in a rendezvous
block, or because UNCHECKED CONVERSION had to be used to

satisfy the strong typing or other rules, the cost at runtime

could be prohibitive.

NOTE

Purists insist that any use of

unchecked conversion is suspect and style

books advTse against using it. However, this

language feature, defined in the RM, must be

efficiently implemented. Good design and

coding style should limit type conversions,

explicit or unchecked. Furthermore, some

compilers such as Tartan Lab's already

implement UNCHECKEDCONVERSION with no

overhead for data t_yp_9_ of identical size-?.
Compiler t--_hno-i-_y ana h--ardware adva--n--_s
will continue to reduce the runtime cost of

strong typing.

W

I

l

m

U

m

m

I

The NCP team also had the following problems with the language or its

implementation:

o The DEC compiler complains when spec and body differ even

when there is no semantic difference. For instance, the

reserved word "IN" is not required in the declaration of

parameters of mode IN. But if "IN" is explicitly indicated

in the subroutine body and not in the spec, an error is

generated.

NOTE

DEC ACS is correct. The two forms "differ in

their sequence of lexical elements" (RM

6.3.1-8).

o Some problems were encountered when declaring units in

generic packages. A body would be required whereas none was
intended.

NOTE

"The syntax of a generic body is identical to

that of a nongeneric body." (RM 12.2-1) That

problem looks like an ACS bug.

I

J

E
I

m

J

I

ADA DEVELOPMENT EFFORTS AT GSFC

NETWORK CONTROL PROGRAM (CODE 520)

Page 2-17

22 February 1988

=

=

L _

E-_:11i:5:1:!

12 g

After its termination, the NCP project was replaced with an even more

ambitious Ada project, the "Modularized Gateway" that will allow NASA

computers to communicate using any of the following protocols:

- DECNET

- TCP/IP

- X.25

- NETEX

- NASCOM

Some of the inter-protocol connections were already operational before

the release of this report.

2.6 NOS EMULATOR (CODE 520)

o Project name: Network Operating System Emulator (NOS
Emulator)

o Compiler(s) used: DEC ACS VI.3

o Host computer and OS: VAX 8600 under VMS V4.5

o LOC completed: 640 ";"

o L0C projected: About 800 ";"

o Team: 1 person half time

O Project description: The NOS emulator package presents to a
client program a standard interface to the Space Station Data

Management System (DMS) testbed Network Operating System

(NOS).

The NOS protocol is in fact replaced by a TCP/IP connection

and the CCSDS packets are transferred using sockets. This

package is meant to be used by the NSTL payload simulator,
also written in Ada.

The system communicates with a Sun 3/160 workstation under

UNIX in support of the High Resolution Solar Observatory

(HRSO) telescience demonstration, which is written in C.

The package interfaces to the Excelan EXOS 204 intelligent

ethernet controller running EXOS 8043-02 TCP/IP network

software in communicating to the Sun over ethernet.

This project makes use of representation clauses,

ADADEVELOPMENTEFFORTSAT GSFC
NOSEMULATOR(CODE520)

Page 2-18
22 February 1988

g

UNCHECKED CONVERSION, and VAX/VMS system services (OlOs and

ASTs). O_e task was used to manage the NOS/socket interface.

The runtime issues raised overlap those of the RSOC project examined

next.
m

W

u

2.7 REMOTE SCIENCE OPERATIONS CENTER (CODE 520)

o Project name:

(RSOC)

Remote Science Operations Center project

o Compiler(s) used: DEC ACS Vl.2

o Host computer and OS: VAX 11-785 and 8600 under VMS V4.3

o LOC completed: About 1,000 ";"

o LOC projected: About 3,000 ";"

o Team': 2 to 3 part time spending about 4 hours a week each on

t-_ project.

o Project description: The Remote Science Operations Center

project (RSOC) involves VAX computers in the Data Systems

Technologies Laboratory at GSFC linked via land and satellite

channels to a VAX 11/750 at Stanford University. The idea is

to simulate remote operation of scientific experiments in

orbit. This capability is a main requirement of the Space

Station data management system [McKay-85]. The
telecommunication and simulation software is written in C.

The project's team looked at an Ada alternative and uncovered the

following:

, VAX/VMS system services can be used extensively. That

requires not only that the vendor supplies the needed

packages ("STARLET" for DEC) but also that the documentation

includes clearly explained examples; DEC's is good, but more

examples would be welcome. Incidentally, a member of the

team was sent to a DEC tutorial about using system services
from Ada and found it worthwhile.

. A "pure tasking" solution to a message buffering problem was

found to be more efficient than the equivalent solution using

C and mailboxes. See Section 4.2.4 of this document.

. The team had various idiosyncratic problems mostly related to

tasking. Task priorities were not found effective, time

slicing did not always behave as expected, delays showed

surprising jitter and memory allocation in tasks was a

constant mystery.

m

I

R

I

t

W

u

z

w

D

m

ADADEVELOPMENTEFFORTSAT GSFC
REMOTESCIENCEOPERATIONSCENTER(CODE520)

Page 2-19
22 February 1988

=

NOTE

"In VAX Ada, a task is executed either until

it becomes suspended or until a task of

higher priority becomes e-i-_gi_le for

execution" (DEC RM 9.8a).

DEC ACS offers preemptive scheduling but

supports FIFO scheduling (tasks run until

suspended) for tasks of the same priority to

reduce context switch [Conti-87]. Pragma

TIME SLICE (round-robin) which limits the
contTnuous execution time of tasks is used

when fairness is the main requirement. See
Sections 4.2.3.1..4 of this document.

: =

i¸ T

i¸ _

4. Memory allocation for tasks is fixed and occurs at task
elaboration time.

NOTE

On DEC ACS, a fixed amount of storage for

stack space is a_located at task activation

time [Conti-87]. Static allocation schemes

for single tasks (RM 9.1-2) would reduce
elaboration time.

The RM allows dynamically expanded stack
space, and ACS dynamically expands the main

program space (DEC RRM 7.2.2). This solution

is well suited to real-time applications that

could not tolerate dynamic allocation of task

space.

The RSOC team also encountered the following problems, ACS bugs or

design deficiencies:

I. System services do not always return the correct status code

when the debugger is used.

2. Screen management routines and tasks interfere and do not

work very efficiently together. Concurrent terminal I/O and

processing was found difficult to achieve.

NOTE

Package TASKING SERVICES and the use of

pragma AST ENTRY were later used. These are

possible bu_ non-portable solutions to VAX

VMS specific problems.

ADADEVELOPMENTEFFORTSAT GSFC
REMOTESCIENCEOPERATIONSCENTER(CODE520)

Page 2-20
22 February 1988

At the time of this writing, the RSOCproject was into its second
phase and its PAMELA(TM) design was continuing using the Adagraph
(TM) tool and code generator.

m

w

m

2.8 ADA PACKAGES FOR COMPUTER ACCESS TO COORDINATE REFERENCED DATA

(CODE 520)

o

0

0

0

o

0

0

Project name:
Referenced Data (Code 520)

Compiler(s) used: VADS 5.1

Host computer and OS: Sun 2/120 under Sun Rel. 2

LOC completed: 18,400 ";"

LOC projected: 20,000 ";"

Team: 1 full time, I half time

Project description: The main goals of this project were
design and implement a set of packages that would:

- Capture the differences and the relationships

various spatial coordinate systems

- Implement an efficient index method for

coordinates

- Provide an Ada interface to a relational data base

- Generate screen menus control structure from

specification

The full completion of this project was hampered by

with the compilation system.

Ada Packages for Computer Access to Coordinate

to

between

spatial

Ada

problems

I

m

J

W

F

I

I

U

W

2.9 MULTI SATELLITE OPERATIONS CONTROL CENTER (CODE 510)

The Multi Satellite Operations Control Center (MSOCC) has been

sponsoring Ada activities since 1984. From the start, the studies and

projects have been centered on the specific requirements of typical

0CCs:

I. A pilot project simulating most of the functionality of an

OCC

w

I

m

g

L

ADA DEVELOPMENT EFFORTS AT GSFC

MULTI SATELLITE OPERATIONS CONTROL CENTER (CODE 510)

2. An Ada Compilers Benchmark Suite

Page 2-21

22 February 1988

i!!!!i!!!!!

-" i%

.i, ,+,

=

_J+ ++++++m+

L _

2.9.1 MSOCC Ada Pilot Project

o Project name: MSOCC Ada Pilot Project

o Compiler(s) used: DEC ACS Vl.0

o Host computer and OS: VAX 11-780, 785 and 8600 under VMS.

o LOC completed: 4,500 LOT, 1,200 ";"

o L0C projected: 4,500 LOT, 1,200 ";"

o Team: 2 persons, 1 full time (wrote 95% of code)

o Pro_ect description: MSOCC's Ada pilot project is an Ada
implementation of the Application Processor (AP) benchmark

that was written to compare hardware architectures for OCC

applications.

The program simulates the following subset of AP functions:

I. Inputs a telemetry data stream from tape at a selected

rate.

2. Decommutates the TLM data.

3. Performs some limit checking on the data.

4. Displays some of the TLM data on the CRT screens.

5. Simulates the history and attitude data recording

process.

6. Simulates strip chart recorders and associated functions.

7. Gathers statistics on the above process and generates

reports.

2.9.2 MSOCC Ada Compilers Benchmark Suite

o Pro_ect name: MSOCC Ada Compilers Benchmark Suite

ADADEVELOPMENTEFFORTSAT GSFC Page 2-22
MULTISATELLITEOPERATIONSCONTROLCENTER(CODE510) 22 February 1988

o

O

Compiler(s) used: DEC ACS, DG ADE, PC/AT, Concurrent 3200
MPS, 3260, 3280.

Host computer and OS: MicroVax II, VAX 11-750, 780, 785,
8250, 8600 under VMS; DG MV-4000 under AOS/VS; PC/AT under

MS-DOS 3.2; Concurrent under 0S/32.

o LOC completed: 7,000 LOT, About 2,000 "'",

o L0C projected: 7,000 LOT, About 2,000 ";"

o Team: 2 half time.

o Project description: The suite consists of support
and about I00 test programs that help assess:

I.

packages

The clarity and relevancy of the most common error

messages.

2. The compile speed for the main Ada constructs.

3. The quality of the generated code, by inspection.

4. The efficiency of the runtlme system for the Ada

constructs important for MSOCC class of applications such

as tasking, dynamic memory allocation, I/O.

5. The size of the executable modules.

r_

W

I

M

I

U

I

I

The suite has since been ported to several machines and is currently

being used to evaluate a beta test version of an Ada compiler for the

branch's primary computers: Concurrent's 3200 MPS under 0S-32.

The following runtime problems have been studied:

. Tasking overhead: It seems that two classes of interprocess
communications must be considered. The "heavy" kind involves

distinct programs running on the same or different CPUs. The

"light" kind involves usual Ada tasking. Since "heavy"

tasking will remain the realm of the OS specific functions

for a while, "pure" Ada tasking has been applied by using a

combination of proven techniques and innovative methodology

(PAMELA). It seems that the current rendezvous overhead can

be managed with careful design for telemetry rates up to 16

kbps on an 11/785. Above that, more potent hardware and

buffering of multiple blocks would be necessary to avoid loss

of data.

. Performance predictions require a good knowledge of the

individual cost of the main Ada constructs. The benchmarking

suite built produced useful results and allowed comparison of

several implementations such as DG ADE, DEC ACS and Alsys

PC/AT, and languages such as FORTRAN and C. DEC and Alsys

I

u

m

I

I

g

m

I

I

I

ADADEVELOPMENTEFFORTSAT GSFC Page 2-23
MULTISATELLITEOPERATIONSCONTROLCENTER(CODE510) 22 February 1988

i

!!!!!i!!i

.

Ada were found to deliver production quality code that could

be incorporated in current OCCs.

System services to handle the functions that are

underspecified, or not specified, in the RM were identified:

- Page locking, specifically for virtual OS like VMS or

AOS/VS, is required.

Control over or intimate knowledge of the task scheduling

mechanism is required. Dynamic priorities would be nice;

it should be possible to turn time slicing off.

Control over the I/O system is required. Direct I/0 such

as DMA must be possible. Control over the host file and

record management system is a must. It must be possible

to handle the I/O of objects of mixed types (package).

I/0 to mass transfer devices such as NASCOM-A channels,

disks, tapes, etc., performed from tasks, should not

block other tasks in the system. Distributed and fault

tolerant systems will impose still further requirements

on the flushing of buffers to disk for instance.

NOTE

Low level I0 and the other predefined I/0

packages -address some of these requirements.

With DEC ACS, packages STARLET and

TASKING SERVICES provide related capabilities.

- Control over and intimate knowledge of the garbage

collection mechanism is required.

- Control over the "heavy" interprocess communication, via

shared memory for instance, is very important.

.

.

.

For truly embedded applications including Ada device drivers,

interrupt latency must be small (typical order of magnitude:

20 Bs on an 8 Mhz 80286). This requires that the

compiler generates very little code when an address

representation clause is used for an entry in a device driver
task.

Clock resolution must be clearly specified and remain in

acceptable limits (typical order of magnitude: 0.I ms).

Support for extensive traceback, particularly in case of

exception, must be provided by the runtime system. For truly

embedded applications, it must also be possible to control

the inclusion of such runtime code to limit memory usage.

i!!i!!!!!i!i.

=z:::=

ADA DEVELOPMENT EFFORTS AT GSFC Page 2-24

MULTI SATELLITE OPERATIONS CONTROL CENTER (CODE 510) 22 February 1988

,

.

Support for precise runtime performance measurement would be

very welcome. For truly embedded applications, a hardware

solution is preferable and should be part of the requirement

for the development system, including hardware and software

tools to analyze results, i.e. INTEL's and other's
In-Circuit Emulators.

Of particular concern because of the complexity of Ada is the

impact of some "small" code or data structure changes on the

performance of the whole system. For instance, could a minor

modification of a private type result in an order of

magnitude increase in CPU time?

NOTE

This is conceivable; early PL/I compilers had

problems like this. So far, however, nothing

of the kind has been reported to us or in the

literature. Nevertheless, efficiency issues

deserve a larger place in Ada books.

m

l

m

g

2.10 SIMULATION OPERATIONS CENTER PROJECTS (CODE 515)

The applications developed at SOC deal with simulation on a Data

General MV-4000 mini-computer using the Data General Ada Development

Environment (ADE) developed by Rolm.

So far, the poor runtime performance of the ADE has hindered efforts

to produce code that could be used today for SOC's time critical

applications.

Recently however, a software tool that helps enforce the GSFC Ada

programming guidelines and standards has been produced and

distributed; the tool features excellent runtime performance.

u

=

m

i

_iiZl

m

2.10.1 Pretty Printer

o Project name: Pretty printer

o Compiler(s) used: DG (Rolm) 2.3, DEC ACS 1.3,
1.0.

Host computer and OS: DG MV-4000 under AOS/VS,
under VMS 4.5, PC AT under MS-DOS 3.2.

Alsys PC AT

VAX 8600

z
I

z

l

U

ADA DEVELOPMENT EFFORTS AT GSFC

SIMULATION OPERATIONS CENTER PROJECTS (CODE 515)

Page 2-25

22 February 1988

o LOC completed: 2,500 ";" (5,000 more were written to

produced the parse tables)

o LOC projected: 3,500 ";"

o Team: I full time

o Pro__ject description: The GSFC pretty printer is an APSE tool
for reformatting Ada source code in accordance with the GSFC

Ada style guide.

More ambitious is the on-going NASCOM deblocker project.

2.10.2 NASCOM Deblocker

.=i:iiiiii:£

= =

o Project name: NASCOM Deblocker

o Compiler(s) used: DG (Rolm) 2.3

o Host computer and OS: DG MV-4000 under AOS/VS

o LOC completed: 2,000 ";"

o LOC projected: 2,000 ";"

o Team: 1 full time

O Project description: The NASCOM deblocker is a real-time

project for high speed communications. The Ada program will

include special device drivers for NASCOM receivers and

transmitters. At the highest data rate, the receiver will

generate 1,000 interrupts per second.

The main runtime issues raised so far are:

o The implementation must feature an efficient mechanism to

handle interrupts.

Package MACHINE CODE should offer the full instruction set.

It should also be possible to use Ada variables in the

instruction aggregate:

INSTRUCTION'(LDA, I, Ada variable name)).

System calls should be made available along with the system

parameters and their type definition. Type ADDRESS should be

used wherever the system calls reference addresses (currently

a type conversion may be required).

ADADEVELOPMENTEFFORTSAT GSFC
SIMULATIONOPERATIONSCENTERPROJECTS(CODE515)

Page 2-26
22 February 1988

O

O

A CURRENT EXCEPTION NAME function returning a STRING should

be made standard. -

GET and PUT should accept some control characters such as

BACKSPACE and BELL.

NOTE

"The effect of input or output of control
characters other than horizontal tabulation

is not defined by the language" (RM 14.3-7).

However, DEC ACS for instance, allows the use
of Put and Get with control characters.

Enumeration values of type character are also

handled correctly by DEC ACS:

ENUM I0 OF CHAR.put (ASCII.NUL); -- prints 'NUL'.

The developer also expressed the need for tools with an emphasis on

the debugger:

. A more flexible implementation of the dependency rules is

called for to avoid unnecessary recompilations. At the very

least, automatic recompilation in the correct order should be

provided.

. The compiler should produce an assembly language file. This

was the most important feature of the ADE for the development

of the NASCOM deblocker project.

NOTE

Manual editing of the assembler file to

insert privileged instructions was used as a
work around since the entire instruction set

was not available from package MACHINE CODE.

Such a procedure would be Inappropriate-in a

full production environment.

i

R

U

i

m

J

i

I

i

3. The debugger should also allow Work at the

After all, Ada allows assembly language insertion.

4. Individual control of tasks should be possible from

debugger.

5. Control on the execution of delay statements

provided.

6. It should be possible to designate which select

is to be be taken.

assembly level;

the

should be

alternative

i

i

i

i

l

W

I

ADADEVELOPMENTEFFORTSAT GSFC
SIMULATIONOPERATIONSCENTERPROJECTS(CODE515)

Page 2-27
22 February 1988

7. It should be possible to silence or dynamically
exceptions after they have been raised.

control

=

_T

i i

!!!!!!!!zZ!

=: : =

2.11 SPACECRAFT INTEGRATION TESTING (CODE 408)

2.11.1 PC AT Experiment

Experience with the Alsys Ada compiler has been mixed. Of particular

concern for real-time applications are the size of the generated code

and its runtime performance, which were found to be more than twice as

slow as C on a typical STOL application.

NOTE

The performance o£ such a system is dependent on the

variable length string package used. It would be

interesting to try EVB's reusable components on this

application. Alsys' Ada compiler has been benchmarked

against several compilers for other languages

(including Borland's turbo Pascal) and often ended up

on top. Furthermore, Alsys' PC compiler was recently

upgraded to include a "lattice algebra" high level

optimizer that significantly improves runtime

performance.

Further experiments will include the ingest of telemetry blocks using

Alsys Ada on a PC/AT and a specially developed interface card.

Performance goals are to reach telemetry speeds of up to 64 kbps

(UARS). Unfortunately, this project does not seem to have received a

high priority so far.

2.11.2 Spacecraft Embedded Flight Software

o Project name: Explorer Platform Flight Software

o Compiler(s) used: DEC ACS 1.4; ACT 1750A 2.1

o Host computer and OS: MicroVax II under MicroVMS

o Target Computer and OS: MDC 281 1750A Chip set

o LOC completed: 1,413 ";"

o LOC projected: 2,500 ";"

= =

ADA DEVELOPMENT EFFORTS AT GSFC

SPACECRAFT INTEGRATION TESTING (CODE 408)

Page 2-28

22 February 1988

U

o Team: 1 full time, 1 half time

Project description: This exciting embedded application for

the Explorer Platform free-flyer spacecraft involves two

processors: an NSSC-I and a 1750A sharing a memory block.

The 1750A will be used as a co-processor of the NSSC-I to

increase the throughput of the attitude control system.

Algorithms from the Landsat NSSC-I RATFOR "update filter

application processor" will be re-coded and tested in Ada,

then compiled into 1750A machine assembly language.

An "application processor" is a task that runs under the

control of the on-board computer executive. The "update

filter" is part of the satellite Attitude Control System and

is used to process incoming star data. The satellite

attitude is controlled by reaction wheels. Gyroscopes

measure the acceleration in three axes and permit short term

accurate determination of the satellite movement and

therefore of its attitude. After a while, however gyros data

need absolute recalibration to compensate for drift. The

satellite's star trackers information is compared to the

on-board star catalog data using Kalman filtering to

recalibrate attitude data.

This is the first operational flight application of Ada within NASA

and the first embedded application of Ada at the Goddard Space Flight

Center. The software will fly on the "explorer platform" scheduled
for launch in 1991.

Ada was selected over Assembler, Jovial and FORTRAN because of lower

risk and lower cost [Hengemihle-87].

The 1750A Ada compiler has already been selected. All compilers

available were compared by sending the vendors an Ada re-design of

Landsat NSSC-I Update Filter Application Processor. Vendors were

asked to compile the Ada code and return a compilation listing and a

link map [Hengemihle-87].

Programming activities are to start in the summer of 87.

Even though it is too early to have runtime issues raised for this

project, the study has already produced interesting results:

i. Generated code is fairly compact. Memory utilization of 2 to

4 times that of assembler (for same functionality) was

observed.

NOTE

On large projects, this ratio is fortunately

smaller since not many assembler programmers

can consistently outperform an automatic

translator. Furthermore, some compilers'

U

J

W

i,

u

_,.om

I

D

I

g

m

J

I

g

u

u

ADA DEVELOPMENT EFFORTS AT GSFC

SPACECRAFT INTEGRATION TESTING (CODE 408)

Page 2-29

22 February 1988

L

ff

generated code (DDC, Tartan Lab) already
rival hand coded assembler.

2. Runtime system memory utilization is surprisingly moderate,

varying from 8 kbytes to 28 kbytes.

NOTE

This is truly remarkable and gives the

critics something to think about. Some

experts expected that any Ada RTE would take

a significant portion of the address space of

a 1750A [Beser-85]. Tartan Laboratories now

claims a base runtime space of only 1 kbyte

when tasking is not used.

3. Total memory usage for the Landsat Update Filter Processor

and the Ada runtime system ranges from 34 kbytes to 64

kbytes, well within limits of the 1750A address range (128

kbytes for code and 128 kbytes for data).

4. Rendezvous overhead ranges from I00 Us to 2 ms.

NOTE

It would be interesting to compare the
runtime routines involved in the extreme

cases since a ratio of 20 indicates very

different techniques. Incidentally, the I00

Bs number (and others even better) gives
the critics some more to think about. In

July 87, some experts still believed that the

simplest RV would always require hundreds or
even thousands of instructions.

2.12 OTHER ACTIVITIES AT GSFC

There are also several activities at GSFC that in spite of their

importance and merit, cannot be classified yet as full-fledged Ada

projects:

I. Code 522 AI activities: The Communications Link Expert

System Assistance Resource (CLEAR) is a fault-isolation

expert system to be implemented in the COBE POCC. This

prototype system will demonstrate the capabilities of an

expert system acting as an advisor, by operating in the

real-time environment of a POCC. Although the expert system

is written in CLIPS (an expert system shell developed by

L_J

ADADEVELOPMENTEFFORTSAT GSFC
OTHERACTIVITIESAT GSFC

Page 2-30
22 February 1988

2,

NASA/JSC) and 'C', it is relevant here because of the

expected impact of AI requirements on Ada runtime systems in

the Space Station era.

Efficiency and portability are key requirements in this kind

of application (real-time AI) since pattern matching is a CPU

intensive activity on standard hardware.

Since it must be possible to easily interface the AI system

with the rest of the software, developing expert systems in

Ada will probably quickly require that the shell itself be
written in Ada.

This means that the runtime requirements of efficient and

controlled garbage collection, tasking, and I/O will have to

be clearly met by the vendor.

Finally, as previously indicated (4.2), it might be necessary

to integrate non-AI Ada and non-Ada AI software on the same
machine.

Code 700 (Engineering Directorate): There is no active Ada

project yet, but the applicability of Ada to robotics is of

particular interest to the directorate in the FTS era.

l

U

m
w

2.13 FLEXIBLE ADA SIMULATION TOOL (FAST)

Though this project was not funded by GSFC (it was paid for by Ford

Aerospace and Communications Corporation IR&D), the development team

has been very supportive of several Ada activities within the Center
and has contributed to the advancement of Ada at Goddard.

Project name: Flexible Ada Simulation Tool (FAST)

Compiler(s) used: Telesoft, DEC ACS VI.2

Host computer and OS: Intellimac 7000, VAX 11-780 and
Vaxstation II GPX un_-_ VMS V4.3

LOC completed: 50,000 LOT, 20,000 ";"

LOC projected: 50,000 LOT, 20,000 ";"

Team: 3 to 6 persons part time, 3 full time equivalent.

Project description: FAST is a discrete event simulation
language and tool that has rapidly evolved into a complete
simulation environment.

The Ada tool features:

Wlm

U

W

l

J

m

ADA DEVELOPMENT EFFORTS AT GSFC

FLEXIBLE ADA SIMULATION TOOL (FAST)

Page 2-31

22 February 1988

L =

= =

w,,

_ 2

Provision for interactive maintenance

input data base

Provision for interactive maintenance of

output data base

Interactive monitoring and control of the

progress

of a simulation

a simulation

simulation in

The following issues were raised by the development team:

I. Exceptions in tasks: Debugging can be difficult when

unhandled exceptions result in (silent) task termination. A

traceback is necessary.

, Control over context switch: A finer level of control over

when control is switched from one task to another task of the

same priority is needed.

1 Entry priorities: Although one can fake entry priority by

using guards, there may be a significant penalty on the RV

overhead. A more expressive and potentially more efficient

solution must be found.

o Order of task activation: The RM does not specify any

particular order for task activation. Inefficiencies result

when one has to force a particular order with "start-up"

entries.

5. Ada terminal I/O: Ada I/O mechanisms are inadequate for

common terminal operations. For instance:

Character echo cannot be controlled through normal

TEXT IO operations

- Processing of variable length strings input from the

keyboard is difficult

It is difficult to code Ada routines that

respond to keyboard input without

non-portable constructs such as DECrs ASTs.

asynchronously

busy wait or

. Dynamic strings: The lack of a predefined variable string

type is bothersome. In particular, it is not possible to

perform slice operations on user-defined dynamic strings.

iiii:iil]iii

w

u

Qi

gue

U

SECTION 3

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS

The analysis of Ada runtime issues continues with a look at NASA and

other major aerospace projects outside GSFC.

Comments are less numerous here than in the previous section for two

reasons:

I, Discussions were carried out by phone, telemail and letters,

less direct forms of contact than the personal one possible
at GSFC.

2. Most issues and comments raised by practitioners overlapped
those raised at Goddard.

i?iiiiiiiii

w

3.1 AMES RESEARCH CENTER

o Pro_ect name: Parallel Ada Research Project

o Compiler(s) used: VADS with parallel RTE.

o Host computer and OS: Sequent 4 processor under DYNIX

o LOC completed: 1,000 LOT

o LOC pro_ected: 5,000 to I0,000 LOT

o Team: i full time, I part time

o Project description: This research project _Tas started in

January 1987, and its implications for the Space Station

Project could be significant.

The research project is composed of two parts:

I. Basic fact finding such as:

_i¸_iii

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-2

AMES RESEARCH CENTER 22 February 1988

=

- Performance measurement of parallel and sequential

Ada

- Tradeoff between RTE and hardware configurations

- Comparative study of various synchronization
mechanisms

- Evaluation of multi-processor data communication

performance

- Comparative study of Ada, C and system level

primitives to synchronize processes and processors

, Pilot projects for meaningful applications such as:

The modeling of distributed system for the Space

Station Program

Small Expert System demonstration projects

Performance model of GSFC's Flight Telerobotic

Servicer layered architecture

Since no Ada benchmarks have ever been published for parallel

architectures, Arc engineers are currently developing their

own.

Findings will be published by October 1987 [Goforth-87].

W

E -

J

w

=

u

I

i

w

H

U

D

3.2 CHARLES STARK DRAPER LABORATORY

3.2.1 Advanced Information Processing System

o Project name: Advanced Information Processing System (AIPS)

o Compiler(s) used: Telesoft, Verdix.

o Host computer and OS: VAX 8650 under VMS

o LOC completed: NA

o LOC projected: NA

o Team: NA

l

W

I

I

J

D

m

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERS Page 3-3
CHARLESSTARKDRAPERLABORATORY 22 February 1988

= :

L

L

w

w

O Pro_ect description: The Advanced Information Processing
System is a novel, distributed, fault-tolerant, system

architecture for life-critical digital flight control

systems.

AIPS is an on-going proof of concept prototype project.

Hardware and executive software design and implementation are

progressing in parallel [CSDL-86].

"After a detailed evaluation of six candidate languages, Ada

was chosen as the language most suitable for implementing the

AIPS software because of its provisions for:

- Real-time programming

- Error detection, handling, and containment

- Modularity and separate compilation

- Standardization and portability" [DeWolf-84].

The AIPS architecture consists in a network of fault tolerant

multi-processors (FTMP) [Alger-86], one or more redundant I/O

networks, a mass memory, and system software to manage all

resources [DeWolf-84].

The system software provides services beyond those inherent

in the Ada language definition [DeWolf-84]:

- System services such as time and file

function migration and communication, etc.
management,

- I/0 network services

- Intercomputer network services [Nagle-86]

- Local computer services (extended local RTE)

One of the early results of this

cyclic scheduler described in

document [Whitredge-87].

research effort is the

section 4.2.3.5 of this

The AIPS prototype has progressed to the point where it can
be used operationally. Its first application is described
next.

W

L

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-4

CHARLES STARK DRAPER LABORATORY 22 February 1988

3.2.2 F8 Oblique Wing Program

o Project name: F8 Oblique Wing Program

o Compiler(s) used: VADS 5.1

o Host computer and OS: VAX 8650 under VNS

o LOC completed: 10-15,000 LOT

o LOC projected: 20-30,000 LOT

o Team: 5 full time.

o Project description: The F8 oblique wing program
first application of the AIPS system.

No detail was available on this on-going avionics

software application at the time of this writing.

is the

flight

W

W

= =

m

L z

g

m

J

D

g

3.3 FEDERAL AVIATION ADMINISTRATION NATIONAL AIRSPACE SYSTEM

A recent FAA paper study identifies the functional and performance

requirements for Ada runtime systems in the Advanced Automated System

(AAS) era [Becker-87].

I. The Ada scheduler should run on a selectable set of

conditions such as:

- Completion of I/0 processing

- Completion of external interrupt processing

- Task completion

- CPU idle

- Task suspension due to lack of required resources

NOTE

The RM does not specify the conditions under

which the scheduler is run nor which

scheduling algorithm must be provided. Those

implementation dependent details can be taken

care of by a host dependent package at the

expense of portability.

m

I

u

w

u

I

m

U

M

I

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERS Page 3-5
FEDERALAVIATIONADMINISTRATIONNATIONALAIRSPACE... 22 February 1988

w

2. Future air traffic control systems will need at least 13

priority levels.

NOTE

The study seems to be content with static

priorities.

r_

= :

.

4.

A DELAY UNTIL (Some absolute time) procedure is needed for

this class of real-time applTcations to avoid the time jitter

allowed by the delay statement.

NOTE

What is meant here is that task resumption

should be considered by the scheduler at the

required absolute time. Resource contention,

starting with CPU, can prevent the task from

physically executing at the required time.

A SCHEDULE AT function must be available to schedule tasks or

cancel pre_ious such requests.

NOTE

This function is underspecified in the study.

o

.

A lock manager task should be provided to make shared data
access control more efficient.

Because a large number of current AAS functions would be

implemented using the rendezvous, it is important that the

runtime system provides an efficient implementation. The

study quantifies this requirement to be 1,000 instructions on
a 3 MIPS machine.

=

_: ::::

3.4 JET PROPULSION LABORATORY

Of several Ada projects at JPL, only the trajectory shaping Rendezvous

guidance system and associated packages is considered in this report.

o Project name: Trajectory shaping RV guidance

o Compiler(s) used: DEC ACS VI.2

o Host computer and OS: VA×]i-780 under VMS 4.5

_iiiiiii_i1!

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERS Page 3-6
JET PROPULSIONLABORATORY 22 February 1988

o LOCcompleted: About 20,000 LOT

o LOC projected: About I00,000 LOT

o Team: 3 persons, 1 full time.

o Project description: A relatively recent trajectory shaping

RV guidance algorithm (Battin/Vaughan) and its simulation

support software are being translated from HAL/S to Ada.

In the process, all of HAL/S built-in avionics functions and

other necessary mathematical entities are being implemented
in Ada. These include:

- Math and conversion constants

- Math functions as defined in HAL/S

Array functions as defined

dimensional arrays with

precision components

in HAL/S for one and two

integer, single and double

- Character and string functions (from HAL/S and PL/I)

- Namelist package modeled after FORTRAN

read/write capabilities.

namelist

- Text I/O packages to force desired defaults for get and

put procedures and format text input output

Linear algebra packages modeled after HAL/S that include

all the vector-matrix-quaternion functions used by
Shuttle and Galileo software written in HAL/S as well as

other, less common subprograms

Astrodynamics package solving Lambert's problem

(Battin/Vaughan algorithm), Kepler's problem (from

Battin's book), and Clohessy-Wiltshire equations.

- Numerical algorithms to support the above packages

including a Runge/Kutta integrator

- Miscellaneous services such as date-tlme, messages, etc.

The packages and their documentation are in various stages of

completion and will be used operationally at JPL and JSC.

Already, the linear algebra package has been d_strlbuted

internationally to many members of the U.S. and European Ada

Numerics Working Groups and is available from COSMIC

[Klumpp-86].

No runtime issues per se were raised in connection with this project

but several interesting language issues are documented in [Klumpp-87]

L__

m

i

i

M

i

u

J

J

m

mJ

m

t

Fu

I

I

ADADEVELOPMENTEFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-7

JET PROPULSION LABORATORY 22 February 1988

=

dealing with:

- The derivation of subprograms using mixed parameters and
result types

- The mutual hiding of subprograms overloaded for derived types

- Exceptions declared within a generic package specification

- The overriding of TEXT IO default parameters.

This activity exemplifies the extensibility of Ada and represents the

first effort to extend HAL/S functionality to Ada. Most importantly,

this project ushers in the era of truly re-usable software components
at NASA.

3.5 JOHNSON SPACE CENTER

Numerous studies are being performed at JSC and several small pilot

projects have been completed (FR4's AI and Ada study [Shuler-87], code

EE7's TDRSS measurements data generator). Furthermore, three

significant development projects are currently active at JSC: The Ada

production rule system, the Ada benchmarking suite, and the DMS test
bed program.

3.5.1 Ada Production Rule System

o Project name: Ada Production Rule System (APRS)

o Compiler(s) used: DEC ACS, Alsys PC VI.3

o Host computer and OS: VAX 11/780 under VMS, PC/AT under
MS-DOS

o LOC completed: About 2,000 "'"

o LOC projected: 3,500 to 5,000 ";"

o Team: 1 senior engineer, 3/4 time

Project description: A system is developed for specifying

rule based expert systems directly in Ada. This involves

finding convenient ways of representing rules, facts,

embedded procedures, lists, etc. in Ada, as well as

implementing the inference engine. An earlier version is now

being reworked to use a more object oriented approach in its

implementation, and to make more Ada-like structuring
available to the user of the system.

k

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-8

JOHNSON SPACE CENTER 22 February 1988
m

The developer indicates that a real-tlme garbage collector is

necessary for productlon deployment of this or any similar system. In

the view of the engineer in charge, it is not even theoretically

possible to manage one's own storage, because no user-provided Ada

program has access to all the access types globally, especially those
temporarily hidden on stacks, etc.

Therefore, an efficient, automatic garbage collector is needed.

W

qRm

R

3.5.2 Ada Benchmarking Suite

o Project name: Ada benchmarking suite

o Compiler(s) used: DEC ACS, DG ADE

o Host computer and OS: MicroVax II under VAXELN, DG Rolm
u-n-_r OPSi_2

o LOC completed: About 4,000 LOT

o LOC projected: About 8,000 LOT

o Team: NA

o Project description: The benchmarking suite borrows from
several prototypes from the public domain and concentrates on

testing features that are important to flight embedded
applications.

Macroscopic tests such as DHRYSTONE and WHETSTONE, will also

include a synthetic dynamic benchmark built out of parts of
STS fllght software translated from HAL/S code.

m

r_

m

•l

R

I

3.5.3 DMS Test Bed i

o Project name: Data Management System (DMS) Test bed

o Compiler(s) used: DEC ACS

o Host computer and OS: MicroVa× II under MicroVMS

o LOC completed: About 2,500 LOT

o LOC projected: About 6,000 LOT

D

I

m

i

I

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERS Page 3-9
JOHNSONSPACECENTER 22 February 1988

L_

w

m

w

m

o Team: 6 part-time

o Project description: The Data Management System Test bed is
an heterogeneous network of JSC test beds with DMS

interfaces. Apollo/Domain, Suns, Symbollcs, INTEL, IMI, DGs

and VAXes are part of the net.

The use of the DMS test bed currently include:

- DMS test bed Network Operating System (NOS) development

- Subsystem/DMS familiarization

- Subsystem/subsystem data interchange

- Space Station Information System (SSIS)/DMS functional

testing

- Contractor's investigations

The software will be extended to STAR BUS Gateway (to GSFC),

OSI protocol development, On-board Management System concept

development, Space Station Subsystems integrated simulation,

SSIS end to end testing and DMS service development and

testing.

The problems encountered by the development team are similar to those

already described and include:

I. Need for a true Ada GKS binding; Pragma INTERFACE to FORTRAN

GKS is currently used.

2. Need for representation clauses to handle file format

differences during data transfer between heterogeneous nodes.

w

3.6 KENNEDY SPACE CENTER

3.6.1 Clear Air Wind Sensing Doppler Radar

o Project name: Clear Air Wind Sensing Doppler Radar

o Compiler(s) used: DEC ACS 1.3, Alsys Compaq 386 compiler.

o Host computer and OS: VAX 785 under VMS, Compaq 386
MS-DOS.

o LOC completed: About 5,000 LOT

under

tiiiii2_

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERSPage 3-10
KENNEDYSPACECENTER 22 February 1988

0

0

0

L0C projected: About I0,000 LOT

Team: 2 to 6 persons, 3 or 4 full time.

Project description: This project consists in the

development of workstation software for the analysis of clear

air Doppler radar data.

The experiment should help determine if Doppler radar data
can be used to forecast thunderstorms under otherwise

quiescent conditions.

The emphasis will be on building portable software. Upon

successful completion of the prototype, the software could be

ported to other real-time systems.

m

m

m

m

3.6.2 Space Station Operations Language

0

0

0

Project name: Space Station Operations Language (SSOL),

Compiler(s) used: DEC ACS 1.0, DEC Pascal, DEC FORTRAN, DEC
C

Host computer and OS: VAX 780 under VMS 4.x

LOC completed: About 1,400 ";" of Ada, 20,000 LOC of other

-_guages.

L0C projected: NA

Team: I0 full time. Ada programming: 1 part time.

Project description: The Space Station Operations Language

(SSOL) prototype system is a testbed for demonstrating and

evaluating a real-time command and control operations

language and related user environment concepts for all phases

of test and checkout operations at KSC.

Major features of the SSOL prototype system included

interactive demonstrations of the following capabilities:

- Development of graphical displays using a "graphics
workbench"

- Migration of such displays between computer systems

- Development, execution, and maintenance of test

procedures utilizing object oriented programming concepts

M

m

__=
I

m

m

m

m

m

m

B

U

m z

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-11

KENNEDY SPACE CENTER 22 February 1988

= :

w

= :

u

w

- Development and maintenance of test system databases

Several different methods of user interaction with the syste],

have been demonstrated including voice control, digitizer

tablet interface, and remote diagnosis of system faults by an

expert system.

Ada was used primarily as an exercise to gain familiarity with the

language and its capabilities.

Follow-on development has moved to the larger Core Data System (CDS)

Testbed, a multi-processor, distributed environment of AT&T's 3B2 and
3B15 under UNIX V.

Larger scale use of Ada on this project hinges on the availability of

quality compilers for the above systems.

3.6.3 Ada Evaluation Using A CDS Remote Interface Module

o Project name: Ada Evaluation using a Core Data System Remote
Interface M---0-_ule(RIM)

o Compiler(s) used: Systems Designers Ada cross compiler

o H__oostcomputer and 0S: VAX 780 under VMS 4.x

o _ computer and OS: Motorola 68010 bare board computer

o LOC completed: About 340 ";"

o LOC projected: About 540 ";"

o Team: 1 part time.

o Project description: The Core Data System (CDS) prototype is

a testbed for designing and developing a common set of

concepts and applications to support the various Shuttle and

Space Station test and integration operations performed at
KSC.

The immediate goals of this project are:

i. The development of real-time message handling

the Remote Interface Module (RIM) prototype.

code for

The RIM is

a subsystem based on a VME chassis with special interface

cards. The RIM provide the CDS interface to the hardware

being controlled.

2. Evaluate the RIM design concept.

L_3

_iiiiiiiiii!ii

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-12

KENNEDY SPACE CENTER 22 February 1988

3. Compare Ada and C.

A parallel effort is underway to implement this system in C.

The information gathered from both implementations will

provide quantitative data on the performance and resource

requirements of Ada as compared to C. This data will be

incorporated into an Ada language evaluation study currently
in progress.

R

3.6.4 Ground Data Management System

o Project name: Ground Data Management System (GDMS)

o Compiler(s) used: NA

o Host computer and OS: NA

o LOC completed: NA

o LOC projected: NA

o Team: NA

o Project description: The Ground Data Management System

(GDMS) is a test and checkout system for use _n the

pre-launch element and integration testing of Space Station
modules, components, and experiments.

The GDMS is designed to be a highly distributed operating

environment, offering a maximum amount of flexibility for

reconfiguration to support varying test requirements.
Another key design goal is to minimize the system
dependencies on a specific vendor's hardware.

Early prototyping activities have identified several potentially
significant concerns:

I. Ada support for distributed runtime environments.

2. Real-time response of Ada programs running under a UNIX

operating system

m

m

m

= :=

m

I

m

W

N

M

m

3.6.5 User Interface Development Support System
m

i

m

U

r :

I

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-13

KENNEDY SPACE CENTER 22 February 1988

Project name: User Interface Development Support System

Compiler(s) used: DEC ACS 1.3,

Host computer and 0S: VAX 780 under VMS 4.x

LOC completed: About 1,800 ";"

LOC pro_ected: About 4,500 ";"

Team: 1 part time

Pro_ect description: The User Interface Development Support
System is a set of packages built upon DEC's Screen

Management Guidelines (SMG) runtime library functions.

These packages, primarily intended as a set of utilities for

developing menus and transaction processing applications,

provide a number of useful functions for developing "window

oriented" applications targeted at character based, "VTxxx"

type terminals.

This system provides a number of generic packages for

developing "pull down" menus and other concepts which provide
a "Macintosh-like" environment on a character based terminal.

Also provided are several procedures for entry and editing of
textual and numeric data.

_r i:.

E ::::::_

3.7 LABORATORY FOR ATMOSPHERIC AND SPACE PHYSICS

o Prolect name: Operations And Science Instrument Support
(OASIS)

o Compiler(s) used: DEC ACS VI.O to 1.3

o Host computer and OS: MicroVax I to VAX 11-780 under VMS.

o LOC completed: About 26,000 ";"

o LOC projected: About 26,000 ";"

o Team: 5 to 8 full time.

o Project description: The OASIS system is an outgrowth of the

experience gained by LASP (University of Colorado at Boulder)

from operating the Solar Mesosphere Explorer (SME).

In 1984, NASA asked LASP to generalize SME's mission

operations System (MOS) and develop a prototype of key

elements. OASIS, a software package for monitoring and

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERSPage 3-14
LABORATORYFORATMOSPHERICANDSPACEPHYSICS 22 February 1988

controlling a wide variety of spacecraft or space science
instruments, resulted from that request [Jouchoux-87].

Since delivery, the user interface has been upgraded to
support the GKSstandard, a CSTOLparser is been re-written
in Ada, and OASIS is being used on a variety of space
projects:

- Ground testing of an instrument for UARS

- Teleoperation testbed for STS' Payload of Opportunity
Carrier

- Remoteinstrument control center for SME

The development team's experience with Ada has been most
positive.

LASP's researchers mentioned the following problems:

. Performance problems due to intolerable RV overhead with DEC

ACS I.I on the MicroVax I were somewhat corrected by reducing
the number of tasks.

NOTE

The PAMELA methodology [Cherry-86] provides

guidelines in the judicious use of tasks.

The development team measured the following RV overhead:

Computer OS Compiler #entries RV

per task overhead

uVAX I _VMS 4.1 ACS i.i 1 7.20

_VAX I _VMS 4.1 ACS i.I 15 15.00

VAX 780 VMS 4.2 ACS I.I 1 2.45

VAX 780 VMS 4.2 ACS I.I 15 5.00

All times are in milliseconds.

NOTE

See section 4.2.4 for the PlUG numbers that

reflect compiler progress since version I.I.

. A boolean variable was tested before having been initialized.

This bug did not produce either a compiler or a runtime
error.

I

M

m

I

b

I

m

i

R

l

m ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-15

LABORATORY FOR ATMOSPHERIC AND SPACE PHYSICS 22 February 1988

w

w

"iii_ii_iiii]
u

iiiiiiiiiiii

NOTE

"The execution of a program is erroneous if

it attempts to evaluate a scalar variable

with an undefined value" (RM 3.2.1-18).

Preferably, the compiler should generate an

error message (a warning is insufficient) or

the runtime system should raise

CONSTRAINT ERROR in such cases.

. Minor bugs were encountered.

generated when assigning

lengths.

In particular, no error was

or comparing strings of incorrect

NOTE

The assignment should raise CONSTRAINT ERROR

(fixed in ACS 1.3), but the comparison should

not: "No exception is ever raised by a

predefined relational operator ..." (RM

4.5.2-12). However, LASP's code fragment is

interesting (Style issues are irrelevant

here):

ERROR CODE : STRING (1..8);

begin

if ERROR CODE = "123456" then -- not 8 char

FALSE is always returned in this case. Note

that the predefined equality is defined for

type STRING, which is an unconstrained array

type, and therefore, valid for strings of

differing lengths. Nevertheless, a warning

would be welcome in the LASP example and it

is probable that a compiler component such as

a clever semantic analyser or Alsys's

"lattice algebra" optimizer, would complain
in the above case.

3.8 LANGLEY RESEARCH CENTER

! --ii_

o Project name: Advanced Transport Operating System (ATOPS)

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERSPage 3-16
LANGLEYRESEARCHCENTER 22 February 1988

J

Compiler(s) used: NA

Host computer and OS:

LOC completed: NA

LOC projected: NA

Team: NA

NA

Project description: ATOPS is an experimental Boeing 737

navigation and control system capable of performing

automatically all flight tasks from take-off through landing

[Knight-87].

The operational software is written mostly in HAL/S and this

project is a theoretical analysis based on rewriting part of

the software in Ada. The Ada code is not expected to become

operational.

However, the issues of fault-tolerance and distributivity

raised by the research team are of the highest importance for

NASA applications in the space station era.

The following issues were raised by the researchers:

II Ada ignores the issues of distributivity and fault-tolerance,
the Ada definition assumes that the machine cannot fail

[Knight-84]. For instance, if 2 tasks residing on separate

nodes are engaged in a rendezvous when a failure occurs

(during the RV), the caller could be permanently suspended if
the server was lost since the RV would never end and the

caller could not distinguish this situation from slow

service.

. Even though an approach to fault tolerance transparent to the

Ada program has been described [Cornhill-83], non-transparent

recovery has been proven to be possible and has therefore
some theoretical basis.

, A distributed testbed containing a runtime system providing

the necessary facilities for non-transparent recovery has

been built and tested with various failure scenarios.

4. Distribution and failure semantics have been defined that

only require a pragma:

pragma DISTRIBUTE (Task on processor_X)

In short, the failure semantics are equivalent

[Knight-84].

to abort

I

m

u

--7_

i

W_

_ I
L_

I

J

J

g

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-17

LANGLEY RESEARCH CENTER 22 February 1988

. Failure recovery for several control functions must be

provided in a few milliseconds, imposing severe real-time

requirements on the fault-tolerant runtime system. The

non-transparent approach used on this experiment has been

shown to be practical.

3.9 LEWIS RESARCH CENTER

NASA Lewis is responsible for building the power system for the Space

Station. Two interesting embedded applications are being developed in

Ada at this time:

=

"_-iiiiiiiiii_ii_

3.9.1 Ada Control And Simulation Software

O

8086 Cross-compiier.

Project name: Ada Control and Simulation Software

Compiler(s) used: DEC ACS, ALS 8086 Cross-compiler,

o Host computer and OS: VAX 11-785 under VMS.

Softech

o Target Computer __and OS:
microprocessor board target).

o LOC completed: 500 ";"

o LOC projected: About 1,500 ";"

o Team: 2 persons full time.

Intel iSBC 86/30 (Bare

Project description: This project involves writing Ada code

for both the embedded control system and the hosted

simulation software for the LeRC power system test bed.

The test bed consists of a solar array field, battery

load banks, and a DC distribution bus.

banks,

The simulation software provides the test bed environment for
the control software. The control software monitors the

simulation software to react to various test scenarios.

The development team had the following runtime requirements for the

host:

I. Need a "standard" math library

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERSPage 3-18
LEWISRESARCHCENTER 22 February 1988

2. Ada real-time capabilities should be expanded to match those
of real-time languages

NOTE

A consensuson such extensions is extremely
unlikely to emerge in the life span of the
Station. Specific needs can easily be met by
packages.

, The RM should include more explicit support for distributed

multi-processing

NOTE

One of the (few) consensus points at the

Workshop on Ada real-time issues held in

Moretonhampstead May 13-15, 1987, was that

Ada does not currently address the semantics

and problems of distributed applications

[Brosgol-87]. No language does nor can with

this fast evolving technology.

The following runtime requirements were expressed for the target:

I. LOW LEVEL I0 is needed

2. Interrupt handling is needed, with representation

pragma

clause or

3. Inter-process communication between different processors is
needed

4. Dynamic memory allocation and automatic garbage collection
are needed

5. Representation clauses for addresses and data structure

layout are needed

The development team also voiced their frustration with the Softech

Ada Language System (ALS) 8086 cross-compiler. Another Softech 8086

cross-compiler had been ordered on a 30-day trial basis at the time of

this writing.

w

w

m

I

U

I

m

W

u

I

i

m

3.9.2 Space Station Power System Software

o Project name: Space Station Power System Software

I

m

I

L
w

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-19

LEWIS RESARCH CENTER 22 February 1988

w

o Compiler(s) used: DEC ACS, ALS 8086 Cross-compiler, Softech

8086 Cross-compiler.

o Host computer and OS: VAX 11-780 under VMS and Intel MDS 310
under ISIS II.

o Target Computer and OS: Intel MDS 310 under iRMX-86.

o LOC completed: About 2,200 LOT, 1,250 ";"

o LOC projected: Same

o Team: 2 persons full time.

o Project description: A test bed similar but not identical to
LeRC's is located at a contractor's location in California.

The software was independently developed by the contractor,

who raised issues similar to those above.

3.10 MARSHALL SPACE FLIGHT CENTER

3.10.1 Space Station OS Study

o Project name: Space Station Operating System Study

o Compiler(s) used: DEC ACS 1.3, Alsys Sun and PC/AT compilers

o Host computer and OS: MicroVax II under MlcroVMS, Sun 3/260
under UNIX 4.2 BSD, PC/AT under MS-DOS.

o LOC completed: 800 ";"

o LOC proOected: 2,600 ";"

o Team: 2 persons full time

Project description: This project is a multi-facetted effort

started to evaluate and compare software development

workstations to be used as testbeds for the Space Station

project.

Matrix computation, tasking, disk-IO, etc. are part of the

benchmarking suite. For some of the tests, equivalent code

was also written in other languages such as C, Pascal and
FORTRAN.

Preliminary results seem to indicate excellent performance with the

Ada compilers tested.

L

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-20

MARSHALL SPACE FLIGHT CENTER 22 February 1988

For instance, with DEC ACS, the FORTRAN matrix benchmark program ran

in 9.7 sec. compared to i0 sec. for Ada. Using pragma SUPPRESS ALL

however, Ada code ran in 7.4 sec. High level optimizers such- as

Alsys's "lattice algebra" optimizer that suppress all unnecessary

checks, can be expected to significantly improve performances.

Another interesting preliminary result shows that in July 1987,

tasking on DEC ACS was already faster than equivalent solutions using

system services. This was also observed at GSFC [Brlnker-86].

Incidentally, the same team demonstrated an Ada interface to NASA's

Transportable Application Executive (TAE) via a package specification

using pragma INTERFACE to C.

3.10.2 Downlink Data High Speed Processing

o Project name: Downlink Data High Speed Processing

o Compiler(s) used: C3 Ada RO0-OI

o Host computer and OS: Concurrent Computers Corporation
(formerly Perkin---_me?) 3260 under OS-32.

o LOC completed:

o LOC projected:

0

About I0,000 ";"

o Team: NA

Project description: Software to strip classified data from

telemetry stream for DoD's payloads was completed in 1984 and

used operationally for 2 STS missions.

Three downlink streams have to be handled at rates of up to

192 Kilobits per second each.

The current I0,000 lines of code FORTRAN implementation runs

on a VAX 11-785 under VMS. It was decided to replace the

current system with an Ada redesigned version to run on

Concurrent's 3260s under the 0S-32 real-tlme operating

system.

The re-implementation in Ada was decided in order to:

o Gain real-time experience with Ada

o Take advantage of "lessons learned" with the FORTRAN system

o Utilize Ada's superior maintainability features

W

m

m

r _

W

W

U

W

I

I

W

H

M

m

g

= _

M

ADADEVELOPMENTEFFORTSIN OTHERSPACEANDRESEARCHCENTERSPage 3-21
MARSHALLSPACEFLIGHTCENTER 22 February 1988

o Benchmarkperformance and productivity with Ada

The team has already decided to use a combination of rendezvous and
semaphore techniques. Interface to FORTRANwill also be possible if
C3 Ada optimization is judged insufficient.

w

3.11 NATIONAL SPACE TECHNOLOGY LABORATORY

o Project name: Space Station Payload Simulator

o Compiler(s) used: DEC ACS VI.2, DG ADE, VADS

o Host computer and OS: VAX 11-785 and 8600 under VMS 4.5,
MV-2000, 4000 and _-000 under AOS/VS, Intellimac 1-7000 under

UNIX.

o LOC completed: NA

o LOC projected: NA

o Team: 3 persons full time.

o Project description: The NSTL payload simulator

Station DMS is a menu-driven software package

entirely in Ada [Holladay-87].

The purpose of the simulator is to [Woolley-87]:

for the

written

Provide variable data loads for testing network
communications on the Station DMS testbed.

Establish requirements for designing DMS services such as

Operations Management System interactions

• End-to-end test capability interactions

• Subsystem interactions

Core data acquisition

Resource management

Support the implementation of the telescience concept in

Space Station payload development and operations.

Be used as a training tool for payload design and/or

operation

H

ADA DEVELOPMENT EFFORTS IN OTHER SPACE AND RESEARCH CENTERS Page 3-22

NATIONAL SPACE TECHNOLOGY LABORATORY 22 February 1988

Provide NASA with

development of

applications.

information and experience in the

software in Ada for real-time

The software has been operational at JSC since August 1986

and was installed at GSFC in September 86.

W

m

3.12 SOFTWARE ENGINEERING INSTITUTE

o Project name: Ada Embedded Systems Testbed (AEST)

Compiler(s) used:

cross), VADS 5.4

(68020 cross).

DEC ACS V1.3, SDS

(68020 cross),

Ada Plus 2B01 (68020

Telesoft Telegen II 3.13

o Host computer and OS: MicroVax II under MicroVMS 4.5

o LOC completed: About 5,000 ";"

o LOC projected: About 20,000 ";"

o Team: 8 persons full time.

Project description: The purpose of the AEST project is to
investigate some of the critical issues in using Ada for

real-time embedded applications, particularly the extent and

quality of the runtime support facility provided by Ada

implementations.

Details on the specific projects using AEST were

available at the time of this writing.

not

A report describing embedded systems' requirements, runtime issues,

development environments characteristics and compiler selection

heuristics is available from SEI [Weiderman-87].

3.13 UNIVERSITY OF HOUSTON AT CLEAR LAKE

Under a cooperative agreement contract with JSC, the University of
Houston at Clear Lake has coordinated over 20 investigations by local

area aerospace companies and has been spearheading the Ada effort at

NASA since 1983 [Humphrey-87].

More data on UHCL's projects was not made available in time for this

report.

g

g

J

W

m

mm

u

=_

I

m

g

g

I

= =

= =

SECTION 4

RUNTIME ISSUES AND RECOMMENDATIONS

In this Section, we take a very pragmatic and short term view of the

runtime issues raised by the practitioners. We concentrate on the

immediate needs and common requirements for Ada runtime systems, and

recommend alternate solutions conducive to the immediate adoption of
Ada for the largest possible range of projects within NASA.

NOTE

The design of Ada involved an international team of

world class computer scientists. The design team's

compromises were arrived at after long and arduous
discussions of very difficult and subtle issues. The

12 year, unprecedented effort was subjected all along

to public scrutiny and competitive pressure.

The following recommendations come from several

unrelated sources, were often subjected to little

scrutiny, can be inconsistent or mutually exclusive,

and do not always consider all the implications of a

particular proposal on the language as a whole.

However, the ideas proposed have merit and should be

carefully evaluated (see Section 6 of this document).

Therefore, the following remarks should be seen as

statements of need and possible solutions to issues

raised by practitioners hoping to contribute to the
advancement of Ada.

Because of the nature of the projects described in the previous

Sections, the emphasis is put on hosted implementations; the difficult

issues of safety, interoperability, fault tolerance and distributivity

are not covered in depth. These issues are addressed in a major

research project at the University of Houston at Clear Lake (UHCL);

see [McKay-6-87] and [McKay-7-87] for details. Ada embedded systems

issues and questions are addressed in depth in a recent SEI study
[Weiderman-87] that features excellent reference and annotated

bilbiography Sections.

"-iiii_ii!i!iii_

= :
=_

RUNTIME ISSUES AND RECOMMENDATIONS

DEFINITIONS
Page 4-2

22 February 1988

4.1 DEFINITIONS

In [ARTEWG-5], the SIGAda runtime environment working group defines a

runtime environment as "The predefined routines and common programming

conventions for data and code structures." In practice, a runtime

system, or runtime environment, is a library of routines called by the

compiled code that provide basic services at execution time.

Actually, [ARTEWG-5] notes that "The job of provld_ng the runtlme

environment generally has been split between executives and the

programming language's translators."

Figure 4-1, adapted from the same document, shows a model of an Ada

runtime environment. The compiler's Ada runtime system, the host

operating system (or executive) and the computer hardware form a

"virtual machine" for Ada application programs. The predefined

routines and common programming conventions mentioned in the

definition refer to the generated code, calling conventions enforced

by the compiler, and "hooks" to the virtual machine.

Note that, in this model, the runtime system is generated by the

compiler from a runtime library; only the routines necessary at
runtime are included.

Since Ada was designed for embedded applications, an Ada compiler

might have to generate a runtime system without the support of an

underlying executive or operating system. In fact, the delay

statement, Ada tasking, representation clauses, dynamic objects

allocation, and other such features, blur the separation between the

compiler generated runtime system and facilities usually provided by

the underlying executive or operating system.

However, since embedded applications will be developed in a host

environment by using specific "back ends" (code generators), or a

different compiler, it is important to make a clear distinction
between:

I. Hosted runtime environments where a full-fledged operating

system such as UNIX, VM/MVS, VAX/VMS, etc., is expected to

support and interact with the compiler's runtime system.

2. Embedded runtime environments where the compiler's runtime

library must provide all or most of the necessary runtime

environment. Note that "lean and mean" executives such as

Hunter and Ready's VRTX, INTEL's iRMX-86 and the like, fall

in the embedded category because of the limited facilities

provided. Actually, these "executives on a chip" can be seen

as the Silicon portion of the runtime library.

It is to the credit of Ada that both hosted and embedded modes are

supported by the same language, but the runtime systems' differences

are significant.

m

m

m

l

m

I

I

I

M

I

m

U

RUNTIME ISSUES AND RECOMMENDATIONS

DEFINITIONS
Page 4-3

22 February 1988

NOTE

The above simplistic distinction between hosted and
embedded environments is insufficient to address the

broad range of issues raised by the entire Space

Station project. In a recent study of System

Interface Sets (SIS), researchers of the Software

Engineering Research Center (SERC) introduce a third

category of environment that requires specific runtime

support: the integration environment. "This

environment is responsible for the test and

integration plans used to interactively advance the

target environment baseline with approved changes in

software emanating from the host environments. This

environment is also responsible for controlling

interactions with the target environment to maximize

safety during emergencies." [McKay-7-87].

;iiiiiiii

=

F

e=._!lye2

4.2 RUNTIME ISSUES

The distinction between hosted and embedded runtime systems is

important because most Ada applications (practically ALL of them,

today) will run in a hosted environment notwithstanding the embedded

heritage of Ada. The significant differences between the two

environments impose very different requirements on the runtime system.

In particular, the hosted RTE must feature a close integration with
the host environment:

o Interfacing to libraries written in other languages (not only

assembler) must be possible. This is particularly important
now in the absence of standardized Ada math libraries and

while waiting for a full-fledged industry of reusable

components. For instance, it could still be important in the

future to delegate advanced AI functions to an AI language.

o Calling Ada from another language could also be useful at the

expense of reliability. For AI applications, it seems

logical that a frame-based system might activate an Ada

daemon. Also, Ada is probably the best language for building

"virtual machines", the layer of software that provides

programs with a unique and consistent interface set of

services, independent of the underlying hardware and

operating system. The VMS Toolpack virtual machine

[Iles-87], for example, is currently written in Pascal and

would be much simpler in Ada.

NOTE

Calling Ada from another language raises a

range of runtime issues and is bound to lower

the reliability of the entire system to that

RUNTIMEISSUESANDRECOMMENDATIONS w
RUNTIMEISSUES

Page 4-4
22 February 1988

of the calling language. DECACSoffers such
an interface, see DECRRMSection 4.4.1).

O Interfacing to the host's standard packages such as file and

record management systems, networking, etc., must be provided

in the form of Ada package specifications.

O Interfacing to the operating system services should be

provided by encapsulating packages. Idiosyncrasies between

tasking and ASTs for VMS, or signals under UNIX, must be

documented in the runtime user's guide.

o A hosted environment must provide ways for processes to

communicate and share data, sometimes across different

address spaces. These processes may or may not be all
written in Ada.

Note that the above requirements can lead to portability, safety,

interoperability and other problems in the long term. These problems
will not be solved before a full Portable Common Execution Environment

(PCEE), as mentioned in [McKay-7-87], is developed, standardized, and
mandated.

To examine the runtime issues raised by the Ada projects described in

Sections 2 and 3, we will use the taxonomy proposed in [ARTEWG-5].

4.2.1 Storage Management

The storage management function is responsible for the allocation

deallocation of storage at runtime.

and

Certainly, in a hosted environment, there must be a way to deallocate

storaget A short-llved missile guidance system might spend some

productive minutes without it, but a ground system cannot.

A compiler for embedded applications may provide the minimum

functionality (barely C0nform_ng to the RM3 because of the target's

limited address space. On the other hand, a compiler for hosted

applications should provide maximum functionality.

Obviously, there is no need to include the entire runtime library if

it is not entirely needed, and a compiler for embedded application

would not. But on a hosted environment, it may be advantageous to

share the entire RTL between several executing processes. That is the

case with VAX VMS, where installing the Ada RTL as a sharable image

library is advised.

The following issues were raised by the development teams:

W

i

m

w

i

=_ _-

U

i

i

i

m

I

M

i

= iL

ii̧=

±=±

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-5

22 February 1988

4.2.1.1 Garbage Collection:

"Automatic garbage collection is needed"

Automatic storage reclamation of dynamically allocated objects can be

an extremely time-consuming activity that may occur at an

unpredictable time. For this reason, the RM does not require that

garbage collection be provided, but it allows it. Ada offers the user

several options to manage memory space (4.8-9..12):

- Storage for a collection may be allocated from the heap by a

representation clause:

Buf size in SU : constant -- in storage units

:= (Buffer'SIZE -- in bits

/ SYSTEM.storage unit);

Type Buf_ptr is access Buffe_;

for Buf ptr'STORAGE_SIZE -- for collection

use i_000 * (Buf_size in SU + i);

- Pragma CONTROLLED defers garbage collection until scope exit.

pragma CONTROLLED (Buf_ptr);

UNCHECKED DEALLOCATION reclaims storage for a particular

object.

Cur bur ptr : Buf_ptr;
ProCedure Reclaim Bur is new -- Object specific

UNCHECKED_DEALLOCATION (Buffer, Bufptr);

Jiig

--* Dequeue and use buffer

Reclaim_bur (Cur_buf_ptr); -- Gone (may be)

Note that storage may or may not be immediatel_ reclaimed.
Concurrent's C3Ada for instance, requires that all objects of

the entire collection be deallocated before returning storage

to the heap.

Other languages such as C and Pascal use predefined functions (malloc

and free, new and dispose) that convey less warning by their name than

UNCHECKED DEALLOCATION. Incidentally, since they are weakly typed, C

pointers are particularly dangerous (assignment of pointers to INTEGER

and back and between pointers to objects of different length are

allowed).

A simple solution to the storage reclamation problem, used in some

versions of Pascal, consists in saving and restoring the heap pointer:

.... -- Code

--* Save heap pointer

MARK STORAGE;
.... -- More code

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-6
22 February 1988

W

--* Get heap pointer back to where it was

RELEASE STORAGE;

This solution, however is dangerous (global unchecked deallocation)

and the same result can often be achieved safely, in legal Ada, by

declaring a block.

Note that although it is easy to determine when storage may be

reclaimed for a static object (the type of which is not an access

type), this may be impossible for dynamic objects. Static objects
have a lifetime determined by their scope; "pointers" may be copied to

variable of an outer scope.

Recommendations: All implementations should support some form of

storage reclamation.

Embedded implementations must feature the generic

(UN)CHECKED_DEALLOCATION (See Section 4.2.1.2 below).

unit

For AI applications in particular, hosted implementations should offer

a "GARBAGE COLLECTION" option, via a compiler switch or configuration

file to provide full garbage collection, or some more efficient but

more limited form of memory management such as in Alsys's iAPX86 cross

compiler (generalized pragma CONTROLLED).

NOTE

Compilation units produced with and without garbage

collection may or may not be mixed. In our opinion,

they should not (for RTE and compiler simplicity

reasons).

m

w

w

W

J

W

W

4.2.1.2 UNCHECKED DEALLOCATION

"UNCHECKED DEALLOCATION can be misused".

As the RM clearly indicates, UNCHECKED_DEALLOCATION must be used

great care.

Current practice is to build a package to handle memory management
Ada:

generic

type Info Type is private;
Max Allocated : Natural;

package User_node_manager is

--I Author: James P. Alstad, Hughes Aircraft Co.

type Pointer is private;
Nul : constant Pointer;

with

in

M

W

M

M

m

l

"-'- 7

L ,

L_

E

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-7

22 February 1988

type Node is
record

Info : Info_type;
Link : Pointer;

end record;

Overflow, Illegal Nul Reference : exception;

Operation On UnalToca_ed : exception;

procedure Allocate (New_Node : in out Pointer);
--I Raise: Overflow

procedure Deallocate (Old Node : in out Pointer);

--I Raise: Operation On Unallocated

function Node Of (The Pointer : Pointer) return Node;

--I Raise: IITegal_NuI_Reference

procedure Assign Info (New_Info : in Info_Type;
To : in Pointe?);

--I Raise: lllegal_Nul_Reference, Operation On Unallocated

procedure Assign Link (New Link : in Pointer;

To : in Pointe_);

--I Raise: Illegal_Nul_Reference, Operation On Unallocated

end User Node_Manager;

On hosted implementations, a function "CHECKED DEALLOCATION" could be

provided that would raise an exception "UNSAFE DEALLOCATION" when an

attempt is made to deallocate storage and the _ccess type object's

reference count is greater than one (or equivalent technique).

The designers of Ada systematically rejected language features that

would increase the overhead of common constructs. Clearly the

reference count technique would raise the overhead of the assignment

statement for objects of an access type. Nevertheless, some experts

claim that reference counts (and other such techniques) would feature

a tolerable overhead in nearly all cases.

Therefore, a more radical (and more logical solution) would be to make

CHECKED DEALLOCATION the default and use a pragma to achieve the
effect _f UNCHECKED DEALLOCATION.

Recommendations: Evaluate the replacement of procedure

UNCHECKED DEALLOCATION by CHECKED DEALLOCATION. Consider adding a

pragma to-suppress the checks in the rare cases when the overhead was

demonstrably intolerable.

pragma SUPPRESS (DEALLOCATION_CHECK, access_type_name);

For compatibility reasons, in the absence

procedure UNCHECKED DEALLOCATION would

CHECKED_DEALLOCATION and a warning issued.

of pragma SUPPRESS,

be mapped to

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-8

22 February 1988

4.2.1.3 Storage Reclamation For Terminated Tasks

"Storage space for task control blocks might not be reclaimed".

The issue arises for agent tasks dynamically activated by the

execution of an allocator with the access type declared in the

outer-most scope or in a library unit.

In that case, it might be difficult and even impossible for the RTE to

deallocate the task control block (TCB) after task termination. This

is because the access value might have been copied and an object might
still be referencing the terminated task's TCB [Burns-85].

NOTE

This is not as bad as it looks. On DEC ACS 1.0, a

typical TCB occupied less than 3 kilobytes;

Concurrent's TCB takes about 1 kbyte. Theoretically,

after termination, this could be reduced to a trap (4

bytes or so) to raise TASKING ERROR.

Recommendations: Since UNCHECKED DEALLOCATION has no effect on task

objects (13.10.1-8), CHECKED_DEALLOCATION with a reference count (or

similar technique) looks like an attractive solution, here again, to
avoid dangling references. May be then, the deallocatlon function

could apply to task objects.

Alternate solutions, besides declaring such tasks and their type in

inner scopes such as blocks or subprograms (DEC RRM 7.2.1), include

the use of a pool of reusable agents. See [Burns-85] Chapter I0.

4.2.1.4 Bit Manipulation

"There is a need to extend Boolean operators to integer objects of 8,
16, 32 bits, etc."

By allowing the Boolean operators (or, and, xor, not) to work on

linear arrays of Boolean, the Ada designers were not only consistent,

they signaled that this was the correct abstraction for handling

groups of bits; binary fields nicely map to arraY slices.

However, only representation clauses (direct binary representations)

or pragma PACK for arrays of Boolean, if bit packing is supported can
ensure that these operators deal with co-nse-cutive blts-Tn memory or on

the hardware (control registers for instance). Incidentally, some

implementations pack on a byte or word boundary only. Therefore,

pragma PACK by itself does not guarantee bit packing.

Currently, packed arrays of Boolean and separate packages can be found

on some implementations. The package solution is probably the easiest

to implement since no pragma PACK (which applies to all record and

array types) is required.

w

W

m

W

k_

u

m

J

U

m

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-9
22 February 1988

Recommendations: The ACVCshould check for the availability of bit
packing via pragma PACK for arrays of Boolean. In the meantime,

negotiate with the vendor for pragma PACK and bit packing to be

provided. The sooner we can move away from the wrong abstractions

encouraged by languages like FORTRAN, that only offer integer for bit

arrays or enumeration types, the better. But at the same time, the
overhead should be measured and compared to that of the corresponding

assembler operation.

At the very least, the vendor should supply the aforementioned

package, above all if pragma INTERFACE to assembler is not provided.

i

m!

4.2.1.5 Bit Manipulations From Tasks

A major runtime problem arises from the access to bit or groups of

bits from separate tasks [Dewar-87]. Consider the following:

Taskl:

packed_array of Boolean(n) := true;

Task2:

packed_array of Boolean(n+l) := false;

In accordance with RM 9.11:

i. If a task reads a shared variable, no other task must update

it

2. If a task updates a shared variable, no other task must read

or update it.

Local copies of the shared variables are made identical at

"synchronization points" such as at the start and at the completion of

the rendezvous (RV).

Pragma SHARED (9.11-9) directs the RTE to perform updates of the

shared variable copies each time they are updated, but the overhead

may be significant. Simplicity and efficiency considerations probably
dictated the limitation that pragma SHARED applied only to scalar and

access type variables, but even if this changed, the above case would

still pose problems.

On large instruction set machines such as VAX, the problem might be
tolerable because the bit manipulation instructions are atomic

(assuming the compiler uses them, that the packed array fits on one

word, etc.). But consider the same problem:

- With a RISC machine for which several distinct instructions

might be necessary.

E___

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-10

22 February 1988

With multi-processors: In what order would the updates be
made?

With cache memory: Should the main memory and the individual

caches be updated every time on all processors?

If tasking is implemented as separate processes on a mono-CPU

machine with multiple register sets. Chances are that each

stack pointer in each set points to an individual copy of the

shared variable. Updating them all at once is problematic.

The problem of sharing bit arrays between multl-processors was

examined by the Ada Language Maintenance Committee (LMC) and declared
unsolvable.

NOTE

The LMC (now renamed the Language Maintenance Panel)

is a group of Ada experts who examine the issues

raised by the user community and decide on appropriate
ACVC modifications. RM clarifications or

modifications are also proposed to the Ada board.

Such maintenance operations are scheduled to take

place every 5 years. Since the RM is dated January

1983, a revised RM is due in 1988 but this will

probably not occur before 1990.

There in no easy solution to the "tasking with shared variables"

problem. With the advent of distributed hardware, it might become

necessary to either forbid shared variables between tasks or to

provide the user with explicit control over the update. In fact,

preliminary Ada featured a specific procedure to do just that.

Recommendations: Have a second look at Ada-80's update procedure:

generic

type SHARED is limited private;

procedure SHARED_VARIABLE UPDATE (X : in out SHARED);

W

W

N

J

U

J

W

u

U

W

w

m

I

4.2.1.6 Constants Stored In ROM

An interesting issue for embedded

management, was raised during

issues:

applications, related to storage

the May 87 workshop on Ada real-time

"It should be possible to specify that data structures such as

constant binary trees be placed in ROM" [Brosgol-87].

Constants of an access type are legal in Ada, and tree initialization

could be done in the sequence of statements that may be part of a

package body.

J

U

U

m

m

_z

M

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-11
22 February 1988

w

Since ROM space is always associated with a specific range of physical

addresses, using address representation clauses is a solution to this

problem. The RM specifically allows this (13.5-5) for variables and

constants, subprograms, packages, task unit, and entry. An

implementation-specific pragma would make such mapping more concise,

(Tartan Lab's LINKAGE NAME pragma already does this) but since memory

partitioning is more a-linker/loader function than a language issue, a

configuration file with a tool to build it seem more appropriate.

Recommendations: For embedded applications, means to control the

allocation of code from library units to the target memory must be

provided, preferably outside of the Ada code.

4.2.2 Exception Management

The exception management function is invoked whenever an exception

raised by the Ada program or the virtual machine.

The following issues were raised by the development teams:

is

u

:i!iii

4.2.2.1 Constraint And Numeric Exceptions

"Different implementations can raise NUMERIC ERROR or CONSTRAINT ERROR
under the same test conditions".

As correctly observed at GSFC, different implementations may raise

NUMERIC ERROR or CONSTRAINT ERROR under identical test conditions. It

is a recognized language issue that the two exceptions can sometimes

be indistinguishable. Consider the following:

INTEGER'SUCC (INTEGER'LAST)
INTEGER'LAST + 1

-- constraint error

-- numeric error

NOTE

In fact, the CONSTRAINT ERROR exception can be raised

under any one of 18 different error conditions.

Recommendation: To be on the safe side, users should not distinguish

between constraint and numeric exceptions. Both choices should be

part of the same alternative in the exception handler:

exception

when CONSTRAINT ERROR I NUMERIC ERROR =>

A warning should be added in the RH sbout the danger of relying on one

or the other exception. Both definitions should remain however,

because the two exceptions address logically distinct classes of

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-12
22 February 1988

problems.

4.2.2.2 Exceptions And Debugging

On hosted environments, unhandled exceptions should generate a
traceback showing the call stack contents in terms of fully qualified
unit and exception names. Thls is particularly important for tasks.

DEC ACS, Alsys, Rational, Concurrent, etc., are compliant here,

whereas some implementations are not.

For embedded applications, the traceback feature will often be judged
as irrelevant (Who needs a traceback for a missile guidance system

during flight, for instance?), or too costly in memory space. In this

case, the debugger in the development environment should feature

traceback runtime support.

Recommendations: On a hosted environment, including embedded

application development systems, unhandled exceptions must be

propagated to the RTE and produce a traceback. In particular, this

applies to exceptions raised, or propagated in tasks.

Furthermore, when traceback is available, the runtime system should be

very specific about the kind of error condition that resulted in the

raising of the exception.

4.2.2.3 Asynchronous Task Interruption

An interesting issue was raised during the May 87 workshop on Ada

real-time issues [Brosgol-87].

The FAILURE exception as defined in GREEN [Ichbiah-79] should be

considered for implementation in Ada.

The issue arises because of "the lack of a feature for interrupting a

task asynchronously and 'immediately' causing it to resume execution

at a given control point" [Brosgol-87].

The idea behind FAILURE was to provide a facility for a task to raise

an exception in another. The target task is either interrupted or put

on the scheduler's ready queue. Of course, RVs for the target tasks

have to be cancelled, if pending, or would result in TASKING ERROR if

RV had started.

In the words of the designers of GREEN, "raising FAILURE for another

task is a drastic measure that should only be used when normal means

of communication have failed... It should be used only in extreme

situations, for example, to protect a task against a possible

malfunction in another task or to terminate an erroneous task"

[Ichbiah-79].

w

U

_J

W

w

I

w

H

U

g

m

W

U

m

N

U

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-13

22 February 1988

NOTE

FAILURE, seems to threaten runtime systems with the

"abort syndrome", adding runtime code and complicating

the lives of both the compiler writer (sometimes) and

the programmer (always) for a rather modest increase

in functionality.

Recommendations: Recommend to AJPO that alternatives to FAILURE (more

appropriately renamed "ASYNCHRONOUS") be researched such as those

described at the end of Section 4.2.4 (RV management).

w

E --

ii

4.2.2.4 A Note On Optimization

Exception semantics, so critical to reliability, complicate

optimization [Ryer-86]. The tension between exception management and

optimization techniques that could cause exceptions to be raised at

unexpected places in the code (in violation of RM 11.6) must be

carefully studied for all compilers procured for critical
applications.

Progress in optimization techniques have been steady [Kamrad-83],
[Kirch-83]. Already, with the best Ada compilers, no instruction is

executed for exception handling if no exception is raised. This is in

accordance with the goal of runtime efficiency for exceptions set in
the rationale [Ichbiah-79] in Section 12.5.4.

i

4.2.3 Processor Management

The processor management function is responsible for the scheduling of
Ada tasks.

The following issues were raised by the development teams:

4.2.3.1 Tasking Behavior

"Tasking behavior seems difficult to predict and hard to reproduce".

The task scheduler is purposely underspecified in the RM. Dependence

on the implementation details of a particular scheduler is a breach of

portability, even to the next version of the same scheduler. If a

particular timing relationship is desired, it must be, and can be,
expressed in Ada.

Recommendations: Train the staff, and identify one or more senior

"Ada gurus". Tasking issues are new to most application programmers

and a combination of software engineering indoctrination, training,

tools and methodology is needed to use tasking right.

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-14
22 February 1988

W

Vendors should provide full documentation of the characteristics and
behavior of the scheduler. A symbolic multi-task debugger that allows

full control of tasks at runtime is essential for testing multi-task

programs.

Embedded implementations must feature an even more sophisticated

toolset allowing real-time execution of the target code under the

control of a debugger residing in the host [Weiderman-87].

4.2.3.2 Time Slicing

The RM (9.8-4) seems to call for preemptive scheduling even though

interpretations vary [Maule-86], but fairness might be better served

for tasks of the same priority by a time slicing or other scheduler.

If real-time applications are contemplated, it must be possible to

disable time slicing in order to reduce overhead.

NOTE

Some implementations such as the ALS do not provide

for preemptive scheduling and a low priority task can

keep the CPU indefinitely. The RM should more clearly
disallow this interpretation.

i

i

U

i

= =

i

J

i

= =-

i

W
Recommendations: At least preemptive and time slicing schedulers

should be made available via pragmas or linker option.

NOTE

An ARTEWG proposal for dynamic

specification is discussed later.

time slice

On hosted implementations, tools to adjust the scheduler (tune the

RTE) such as those provided with some operating systems would be very

useful.

For embedded applications, some users might find a need to directly

tailor and even totally re-write the scheduler, preferably, but not

necessarily, in Ada. Of course, the implications of such an endeavor

on reliability, transportability and life cycle costs should be

carefully assessed first.

i

i

i

i

i

4.2.3.3 Static Task Priorities

The RM requirement that task priorities be static is rather

surprising. Actually, the priority of a caller can be raised during
an RV if the called task happens to have a higher priority. The

runtime cost for dynamic priorities does not appear to be that
I

i

M

l

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-15

22 February 1988

= :

-_': r:=

significant (all real-time OS do this). Such functionality is likely

to be offered by implementation dependent calls or packages anyway,

hampering portability.

In fact, DDC's compilers for the 80x86 family already provide an RTE

procedure to address this problem:

with system;

package RTS_EntryPoints is

procedure RTS SetPriority (tv : System.TaskValue;

p : System.priority);

Type TaskValue is derived from integer in package system and a

function is supplied to obtain task unit's IDs from the RTE:

with system;

function GetTaskValue (taddr : System.address)

return System.TaskValue;

Recommendations: Reconsider whether the RM should continue requiring

that tasks be of static priorities. A standard package to dynamically

control priorities should be defined and evaluated. ARTEWG has

proposed such a package:

with TASK IDS; -- See Section 4.2.10 of this document

package D_'NAMIC PRIORITIES is

type PRIORITY is <implementation-defined>;

procedure SET_PRIORITY (OF_TASK : in TASK_IDS.TASK_ID;
TO : in PRIORITY);

end DYNAMIC_PRIORITIES;

It must be noted however, that ARTEWG does not recommend that the

semantics of priority be changed in the RM. The above package, would

"... provide finer-grained distinctions between tasks of equal or

undefined Ada priority. It is recommended that if this package is

supported, the standard type SYSTEM.PRIORITY be defined to have a null

range to avoid confusion" [ARTEWG-2].

Please refer to [ARTEWG-2] for the rationale, an alternate proposal,

examples, and other detailed considerations.

NOTE

Dynamic priorities may add significant overhead to the

scheduler and could make some optimizations

impossible.

L _

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-16

22 February 1988

4.2.3.4 Pragma PRIORITY

A related problem with static priorities is that whenever the pragma

parameter value is modified, a lot of code often has to be recompiled

since pragma PRIORITY must be specified in the task specification.

A more logical solution could be to specify a table of tasks and their

priorities either to the linker or to the runtime system in the form

of a configuration file. A tool could be used to create and maintain
such a file.

Recommendations: A way to change the base priorities of tasks without

having to recompile a lot of code would be welcome. The APPL solution

mentioned below also seems attractive for setting task priorities, and

its application to this problem should be studied.

An alternate solution: Should ARTEWG's DYNAMIC PRIORITIES package be

standardized, default task priorities could- be set up, using the

relevant subprograms, in the initialization part of a user-written

package body. This in itself would drastically limit the amour of

recompilation needed when priorities are changed.

NOTE

Other related issues such as FIFO service on entry

queues, undefined choice of open alternative and

priority inversion are treated in 4.2.4 (RV

management).

m

m

u

i

U

u

J

4.2.3.5 Synchronous And Asynchronous Task Scheduling

Another interesting ARTEWG proposal concerns cyclic

scheduling.

and asynchronous

A cyclic scheduler has been requested for some time by the aerospace

community in spite of an eloquent opposition. For instance, John

Barnes mentioned that cyclic scheduling is obsolete [Barnes-87] and

several papers and reports have shown the limitations of this

approach, finding it inefficient [Hood-86].

However, the HAL/S process scheduling paradigm includes a cyclic

scheduler. A package featuring HAL/S scheduling functionality would

be welcomed by the aerospace community, and would reduce some of the
resistance to the introduction of Ada in the field.

Recommendations: For embedded applications, evaluate the

implementation of a scheduling package to implement synchronous and

asynchronous scheduling capabilities.

-- Make use of other ARTEWG packages

with TASK_IDS, DYNAMICPRIORITIES, CALENDAR;

U

u

m

I

u

m

M

m

W

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-17

22 February 1988

r ,

E_

package SCHEDULER is

type EVENT is private;

type TASK INTIATIONS is (IMMEDIATELY, AT TIME,
AFTER_DELAY, ON_EVENT);

type TASK REPETITIONS is (NONE, REPEATEVERY,
REPEAT_AFTER);

type TASK COMPLETIONS is (NONE, UNTIL TIME,

WHILE_EVENT, UNTIL_EVENT);

type INTIATION INFO (INTIATION : TASK INITIATIONS

.-'-IMMEDIATELY) is
record

case INITIATION is

when IMMEDIATELY => null;

when AT TIME => T : CALENDAR.TIME;

when AFTER DELAY => D : DURATION;

when ON EVENT => E : EVENT;

end case;

end record;

type REPETITION INFO (REPETITION : TASK REPETITIONS

:= NONE) is
record

case REPETITION is

when NONE => null;

when REPEAT_EVERY I REPEAT AFTER => D : DURATION;
end case;

end record;

-- The fo]lowing type, missing in [ARTEWG-2], was inferred.
type COMPLETION INFO (COMPLETION : TASK COMPLETIONS

:= NONE) is
record

case COMPLETION is

when NONE => null;

when UNTIL TIME => T : CALENDAR.TIME;

when VHILE_EVENT I UNTIL_EVENT => E : EVENT;
end case;

end record;

procedure SCHEDULE (SCHEDULED TASK : in TASK IDS.TASK ID;

PRIORITY - in DYNAMIC PRIORITIES.PRIORITY;

INITIATION : in INITIATION_INFO;

REPETITION : in REPETITION INF0;

COMPLETION : in COMPLETION-INFO;

REPORT OVERRUN : in BOOLEAN := FALSE);

procedure WAIT FOR SCHEDULE;

procedure DESCHEDULE (SCHEDULED_TASK : in TASK_IDS.TASK_ID);

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-18

22 February 1988

procedure TOGGLE (TARGET_EVENT : EVENT);

procedure SET (TARGET_EVENT : EVENT);

procedure RESET (TARGET EVENT : EVENT);

function "or" (LEFT, RIGHT : EVENT) return EVENT;

function "and" (LEFT, RIGHT : EVENT) return EVENT;

private

type EVENT is <implementation-defined>;

end SCHEDULER;

Please refer to [ARTEWG-2] for rationale, example of use (shuttle

second stage guidance program), and other detailed considerations.

4.2.3.6 CMU Rate Monotonic Scheduler

At the May 87 workshop

proposed an exciting

[Cornhill-87].

on Ada real-time issues, CMU researchers

alternative to the classical cyclic scheduler

In the stabilized rate monotonic (cyclic) scheduler, tasks are

assigned priorities inversely to their CPU usage in such a way that

the highest priority goes to the less demanding task. Ada FIFO

selection order on entry queues would have to be replaced and a

solution would have to be found to the priority inversion problem (in

fact, these two issues are related). Both requirements are consistent

with recommendations made in Sections 4.2.4.3 .. 4.2.4.5 of this

document.

Analysis shows that all cyclic deadlines can be met as long as CPU

usage remains under 65 %. For tasks using variable CPU time, the
worst case is assumed.

This proposal would have a significant impact on the tasking features

of the language and would very probably raise the RV overhead.

However, a proof of concept is needed since the proposal addresses a

range of issues that have been raised for some time in the Ada

community.

Recommendations: CMU's recently introduced "rate monotonic scheduler"

should be implemented and carefully evaluated by NASA as soon as

possible.

m

m

m

n

W

l

m

U

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-19
22 February 1988

4.2.3.7 User Tailored RTE

At the May87 workshop on Ada real-time issues, someexperts proposed
that user defined or tailored schedulers be madeavailable as well as
a package LOWLEVELTASKINGto control the suspension and resumption
o£ tasks [BTosgol_87]. There does not seemto be any consensus on
these proposals, however.

L J

F

H

4.2.3.8 A Note On APPL

Researchers at Honeywell Systems and Research Center have developed an

interesting paradigm for processor management that addresses the

issues of distributivity, fault tolerance, performance, dynamic

binding, etc.

The Ada Program Partitioning Language (APPL) describes the

distribution of Ada entities (not only tasks but subprograms, packages

and objects as well [RogersP-86]), and the replication of these

entities.

Being remarkably consistent with Ada, an APPL configuration

specification specifies the fragmentation of the Ada program into
entities, while the configuration body specifies the mapping of these

program fragments onto processors or nodes on a network

[Eisenhauer-86].

This partition and mapping are distinct and totally separate from the

Ada program itself. This separation of concern can be compared to

Ada's concept of representation clauses that map the logical Ada data

structures onto the underlying physical hardware.

E

m

w

=

4.2.3.9 Nonpreemptible Sections

"Certain time-critical sections of code must be guaranteed to be

executed to completion without preemption" [ARTEWG-2].

This important requirement is in violation of RM 9.8-4. It also

conflicts with the needs to limit interrupt latency and reduce the

timing incertitude on the delay statement. The compromise that the

user must make is part of the art of real-time programming.

9.8-4 might be accommodated by reserving a special super-high priority

level for tasks that cannot be preempted, or a set of static priority

levels such as VMS' real-time priorities, or by limiting the proposal

to tasks of the same priority, etc.

Recommendations:

PREEMPTION CONTROL:

Evaluate ARTEUG's implementation-defined package

package PREEMPTION CONTROL is

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-20
22 February 1988

procedure DISABLEPREEMPTION;
--[Purpose: Processor cannot be preempted from task
--[until ENABLEPREEMPTIONis called.
pragma INLINE (DISABLEPREEMPTION);

procedure ENABLEPREEMPTION;
pragma INLINE (ENABLE_PREEMPTION);

function PREEMPTIBLEreturn BOOLEAN;
pragmaINLINE (PREEMPTIBLE);

end PREEMPTIONCONTROL;

NOTE

The interaction of PREEMPTIONCONTROL and
INTERRUPTMANAGEMENTdescribed in 4?2.7 (interrupt
management)should be carefully studied and clarified.

Please refer to [ARTEWG-2] for rationale and other detailed
considerations.

4.2.3.10 DynamicTime Slicing

Someimplementations provide pragmaor binder options to statically
define the time slice duration. DDC compiler for the 80x86 family

offers the following interface:

with system;

package RTS_EntryPoints is

procedure RTS SetTimeSlice (tv : System.TaskValue;
ts : Duration);

This solution is fairly close to the one proposed by ARTEWG.

Recommendations:
scheduler:

Evaluate ARTEWG's package interface tO the

with TASK IDS;use TASK IDS;

package TIME SLICING is

subtype SLICE is DURATION <implementation-defined>;

procedure SET TIME SLICE (OF TASK : in TASK ID;
- - TO- : in SLICE);

end TIME SLICING;

This package requires package TASK_IDS described in 4.2.10 of this

m

J

J

w

U

u

W

J

I

M

W

J

M

__=__

g

J

I

k_

= = ,
| I_

j"

1 i

=:::=

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-21

22 February 1988

document.

Please refer to [ARTEWG-2] for rationale, alternate implementation,

and other detailed considerations.

NOTE

It might be useful to add

this package:

a function TIME SLICE to

function TIME_SLICE (OF_TASK : TASK IDS.TASK_ID) return SLICE;

The function could be used to smoothly tune the time

sliced scheduling as follows:

if (DATA OVERRUN

and (TIME SLICE (NEMESIS) > BASE SLICE)) then

SET TIME SLICE (OF_TASK => TASK IDS.SELF,
- - TO => TIME-SLICE (TASK IDS.SELF)

+-TIME SLICE_DELTA);

SET_TIME SLICE (OF_TASK => NEMESIS,
TO => TIME SLICE (NEMESIS)

--TIMESLICEDELTA);

It seems that some implementations

functionality with minimum overhead.

could provide the above

w

4.2.4 Rendezvous Management

"The Rendezvous (RV) management function implements the semantics of

the Ada RV concept" [ARTEWG-5].

The following issues were raised by the development teams:

i. RV overhead "RV overhead is too high".

This is not always true. In fact, on some widely used systems, it is

no longer the case. The following numbers were obtained from SIGAda's

Performance Issues Working Group (PIWG):

Key Trace PO00002 TO00002 TO00005 TO00006

Rlk 43 2.6 Too low 14.3 177

8600 45a 9.9 313 327 537

3280 - 4.86 151 203 -

9750 27 3.26 320 319 1357

MVIOk 40 7.45 2859 2975 5449

MuVax X5.3 41.7 12_a 1225 1976

286 - 11.5 785 770 3410

68020 - 7.4 156 214 661

RUNTIMEISSUESANDRECOMMENDATIONS
RI_INE ISSUES

Page 4-22
22 February 1988

All times are in microseconds.

Symbolsdefinition

The key and trace (PIWG key) values mean the

following:

- Rlk (43) : Rational R-IO00 using G 5 15 0 at
Rational

- 8600 (45a) : DEC VAX 8600 under VMS 4.2 using ACS

1.2-15 at Lear Siegler

- 3280 : Concurrent 3280 under

Concurrent R00-00 at Concurrent
0S-32 using

- 9750 (27) : Gould 9750 under UTX 1.2 using

Telesoft (Telegen II?) at Gould

- MVI0k (40) : DG MVIO000 under AOS/VS 6.02 using

ADE 2.30 at Ford Aerospace & Comm.

- _Vax (X5.3) : DEC MicroVax II under Micro VMS

T4.3 using ACS 1.2-15 at DEC

286 : INTEL iSBP 286-12 bare board at 6 Mhz using

Alsys V3 PC/AT hosted cross-compiler to 80x86 Bare

Machine at Alsys.

68020 : 68020 Bare Board at 20 Mhz, one wait

state, using Alsys V3 VAX hosted cross-compiler to

68020 and Alsys's RTE at Alsys.

The tests symbols mean the following:

PO00002 : Procedure

Procedure is local,
inlinable.

call and return time.

has no parameter and is not

T000002 : Task entry call and return time. One

task active, one entry, task is declared in a
separate package, no parameter in RV, no select.

T000005 : Task entry call and return time. Ten

tasks active, one entry, tasks are declared in a

separate package, no parameter in RV, no select.

- TO00006 : Task entry call and return time. One
task with ten entries in a select statement, tasks

are declared in a separate package, no parameter
in RV.

Consult]PIUG-87] for a complete report covering over

40 configurations and dozens of tests.

j

r--

J

g

==

g

,m

U

Z YZ

.,..--

k

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-23

22 February 1988

With the exception of DG MV i0000, these numbers already show quite

acceptable performance, but it will take some time before a

combination of compiler techniques and hardware improvements reduce

tasking overhead to 5 or 10 procedure calls (Rational has it now).

In the mean time, the cost of tasking should be compared to the cost

of equivalent, non Ada, alternatives. Under VMS for instance,

replacing tasks with VMS processes communicating via 0IOs to mailboxes

(a common way of "doing tasking" from FORTRAN or C) would turn out

much less efficient than the Ada equivalent solution, even in C. This
wa--s- d-emonstrated a[GSF-Can--6-at Marshall. The follo--_gsummarizes

the results of the experiment at GSFC:

Program type Overhead

Ada tasks and 0 pack 0.42
Ada tasks and RVs 0.70

Ada tasks call Ada Mbx 1.4

C call C Mbx 1.62

Ada task call C Mbx 3.0

All times are in milliseconds, for a VAX 8600 under VMS, with normal

time sharing use.

Explanations

The program types benchmarked were the following:

- Ada tasks and Q package : Two Ada tasks exchange

messages by calling procedures in a queue package.

Ada tasks and RVs : Two Ada tasks exchange

messages via rendezvous. Strings are copied, no

access type is used.

Ada tasks call Ada Mbx : Two Ada tasks exchange

messages by calling Ada procedures that issue a
010 to a mailbox.

C call C Mbx : Two separate VMS processes, source

written in C, exchange messages by calling C
functions that issue a OIO to a mailbox.

Ada tasks call C Mbx : Two Ada tasks exchange

messages by calling C functions that issue a 010

to a mailbox. The C functions are called by using

an Ada package specification and pragma interface
to C.

By using access types, the performance of the

rendezvous would have probably been even better.

Consult [Brinker-86] for details.

The above results show that using OlOs to mailboxes from Ada is twice

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-24
22 February 1988

as slow as the RV. Calling C mailboxes from C is even slower and
calling C mailboxes from Ada is more than 4 times slower than the RV.

NOTE

Note that the better performance of the Ada Mbx

version over the C Mbx program is due to the use of

package TASKING SERVICES that make more efficient use

of the CPU (DEC-RRM 7.5 and A-20).

Recommendations: Nothing in the RM mandates anyone to use tasking.

Use the rules given in Chapter 9 of the GSFC Ada Style Guide [GSFC-I]
for the conditions under which tasks should be considered.

Objectively benchmark and compare alternatives to tasking.

Flying RV

The flight control system for the Airbus A340 will be

implemented in Ada. Simulation shows that total RV

overhead remains below 10% of the 150 ms cycle time

[Kamrad-87]. [_

4.2.4.1 Avoiding The Rendezvous

Several legal Ada alternatives to the RV have been proposed. All have

severe problems stemming from busy wait and the shared variable

problem.

Since Ada tasks "...may be implemented on multi-computers,

multi-processors, or with interleaved execution on a single physical

processor" (RM 9-5), the sharing of variables across different address

space is legal. Of course, this poses severe implementatlon problems.

The use of shared variables between tasks in the same virtual space is

not trivial either and is strongly discouraged in all style guides.

An early non-RV solution to the mutual exclusion problem, the Dekker's

algorithm, can be found in [Burns-85]:

procedure Dekker is

task TI;

task T2;

type flag is (up, down);

flagl : flag := down;

-- Set by T1 to indicate it intends to enter
-- the critical Section

flag2 : flag := down;

-- Set by T2 to indicate it intends to enter
-- the critical Section

W

m

W

I

m

Q

w

t

m

w

__I

J

mm

F

w

=

7

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-25

22 February 1988

turn : integer range 1..2 := I;
-- Used to arbitrate between the two tasks when
-- both wish to enter the critical Section

-- concurrently

task body T1 is
begin

loop
flagl := up; -- Entering CS
while flag2 = up loop

if turn = 2 then

-- Back off, it is T2's turn.
flagl := down;
while turn = 2 loop

null; -- Could be delay 0.0
end loop;
flagl := up; -- try again

end if;
end loop;
-- Critical Section
turn := 2; -- Gives T2 a chance
flagl := down; -- Release entry right

end loop;
end T1;

task body T2 is
begin

loop
flag2 := up; -- Entering CS
while flagl = up loop

if turn = 1 then
-- Back off, it is Tl's turn.
flag2 := down;
while turn = 1 loop

null; -- Could be delay 0.0
end loop;
flag2 := up; -- try again

end if;
end loop;
-- Critical Section

turn := 1; -- Gives T1 a chance
flag2 := down; -- Release entry right

end loop;
- end T2;

begin -- Dekker
null;

end Dekker;

A microcoded variant of this algorithm was used in National
Semiconductor's SCMP microprocessor for multi-processor bus access

control. However, this rather bulky solution cannot be easily

extended to more than two tasks, is plagued (as written) by busy wait

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-26

22 February 1988

unacceptable on a mono-CPU,

complex protocol. It is

advantage is uncertain.

and depends on stict adherence to a

therefore unreliable and its efficiency

The most classic "solution" to interprocess synchronization via shared

variables for multi-processors is the spin lock:

Taskl:

Task 2 go := true;

Task2:

Busy wait:

loop -- The one microsecond RV

exit when task 2 go;

end loop busywait;

In this simpler case, shared variables like task_2_go cannot be safely

used by tasks without pragma SHARED.

Recommendations: Pragma SHARED must be enforced by the ACVC.

The user community including NASA, FAA, etc., and AJPO should

the vendors to produce efficient runtime implementations
rendezvous semantics.

entice

of the

l

J

I

u

J

U

i

glB

I

u

m

U

i

J

4.2.4.2 Other Semantics

The controversial rendezvous semantics strike a reasonably good

balance between ease of use and functionality. It is possible to code

semaphores and monitors with Ada tasks for instance. Efficiency can

be an issue, however and GREEN proposed the concept of "generic tasks"

of which SIGNAL and SEMAPHORE were predefined instances for efficiency

reasons [Ichbiah-79].

The remote procedure call (RPC) semantics can be handled directly by

the RV using a straight entry call and placing the procedure inside

the accept statement. For distributed applications, today, packages
must be built to handle RPC.

The send-receive semantics require intermediary tasks as agents to

immediately buffer the incoming message and perform the selective

entry call to the sender task. For distributed applications, today,

packages must be built to provide send-receive £unctionality.

Pragmas could be standardized to help the compiler generate efficient

RV code. For instance, pragma SEMAPHORE, SIGNAL, and MONITOR could be

used in a task to convey a more restricted RV semantics to the

compiler. For instance, Burns has proposed to extend pragma INLINE to

task objects to request that the task be implemented as a monitor

[Burns-85]. However, this kind of "solution" is on the verge of legal

u

i

U

m _

h_

E

r_
w

Ld

w

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-27

22 February 1988

Ada and would complicate tasking semantics. Immediate needs for the

efficient implementation of such mechanisms are probably handled best

with packages.

It must be understood however, that low level primitives of well known

limitations are no substitute for the much superior process

abstraction of tasking. The use of the following packages should be
limited to cases for which in llne machine code insertion or interface

to assembler would be the only possible alternative.

Recommendations: The SEMAPHORE functionality could be provided by a

package:

W--

w--

w--

w--

Ww

m_

ww

--D

package SEMAPHORE is

Description: Semantics can be expressed in Ada

(from [Ichbiah-79] p. 11-8)

task SEMAPHORE is

entry WAIT; -- P

entry SEND; -- V

end SEMAPHORE;

task body SEMAPHORE is

begin

loop

accept WAIT;

accept SEND;

end loop;

end SEMAPHORE;

-- Enter critical Section

-- Leave

--I Warning: Semaphores are low-level unstructured primitives.

--I Their use can result in deadlocks and other corruptions.

type SEMAPHORE TYPE is limited private;

procedure WAIT (S : in out SEMAPHORE_TYPE);

procedure SEND (S : in out SEMAPHORE_TYPE);

private

type SEMAPHORE TYPE is
record

SEM : NATURAL := I;

end record;

end SEMAPHORE;

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-28
22 February 1988

m

I

I

m

i

NOTE

DDC provides an intersting variation of this idea

their 80x86 compilers:

with system;

package RTS EntryPoints is

procedure RTS P (sem : System. Semaphore);

procedure RTS V (sem : System. Semaphore);

Pragma interface to assembler are used. The

semaphore is implemented as a public record type:

package system is

type Semaphore is
record

counter : UnsignedWord;

first, last : TaskValue;

end record;

for

type

Recommendations: The SIGNAL functionality for both intra

inter-process synchronization could be provided by packages:

generic -- Allows separate classes of signals

type SIGNAL TYPE is (<>);

-- Discrete, preferably enumeration.

package LOCAL SIGNALS is -- Intra-process sync.

--[

--[Purpose: Provides synchronization services to

--[processes within the same address space

--[

--[Warming: Signals are subject to race conditions.

--[Their use can result in deadlocks and other program

--[corruption.

--[

Max nr signals : constant := <implementation-defined>;

type STGNAL RANGE is range 1 .. Max nr signals;

type SIGNAL LIST is array (SIGNAL RANGE range <>)

of SIGNAL_TYPE;

procedure SET (S : in SIGNAL TYPE);

procedure CLEAR (S : in SIGNAL_TYPE);

function IS SET (S : SIGNAL TYPE) return BOOLEAN;

function IS ANY SET (S : SIGNAL LIST) return BOOLEAN;

function ARE ALL SET (S : SIGNAL LIST) return BOOLEAN;

and

_ I

I

m

M

I

!

m

m

m

m

U

m

m

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-29
22 February 1988

w

procedure WAIT_FOR (S : in SIGNAL_TYPE);

procedure WAlT FOR ANY (S : in SIGNAL LIST);

-- Wait on logical OR of signals

procedure WAIT FOR ALL (S : in SIGNAL LIST);

-- Wait on logical AND of signais

end LOCAL SIGNALS;

package GLOBAL SIGNALS is -- Inter-process sync.

Purpose: Provides synchronization services to

processes across different address spaces

Warning: Signals are subject to race conditions. Their use

can result in deadlocks and other program corruption.

type SIGNAL TYPE is <implementation-defined>;

-- Discrete, preferably enumeration.

Max nr signals : constant := <implementation-defined>;

type SIGNAL RANGE is range I .. Max nr signals;

type SIGNAL LIST is array (SIGNAL_RANGE range <>)
of SIGNAL-TYPE;

procedure SET (S : in SIGNAL TYPE);

procedure CLEAR (S : in SIGNAL_TYPE);

function IS_SET (S : SIGNAL_TYPE) return BOOLEAN;

function IS_ANY_SET (S : SIGNAL_LIST) return BOOLEAN;

function ARE_ALL_SET (S : SIGNAL_LIST) return BOOLEAN;

procedure WAIT_FOR (S : in SIGNAL_TYPE);

procedure WAIT FOR ANY (S : in SIGNAL LIST);

-- Wait on logical OR of signals

procedure WAIT FOR ALL (S : in SIGNAL LIST);

-- Wait _n Iggical AND of signais

end GLOBAL_SIGNALS;

Recommendations: The MONITOR functionality could be

package:

generic -- Adapted from [Burns-86] p. 39..42

provided by a

D

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-30

22 February 1988

m

type RESOURCE_RANGE is range <>;

package MONITOR is

--I

--I Warning: Monitors' procedures must be called in the right

--I order. If not, deadlocks can occur.

procedure ACQUIRE (AMOUNT : in RESOURCE RANGE);
-- Atomic action. Caller is blocEed until

-- all resources are granted

procedure RELEASE (AMOUNT : in RESOURCE RANGE);

end MONITOR;

At the same time, variations on

considered such as:

the RV theme should be carefully

Pragma SOFTWARE INTERRUPT for task entries. This pragma

would give top priority to an RV on this entry. Minimum
disturbance to the normal RV semantics should be achieved.

The main thrust here would be to provide asynchronous,

ultra-fast, task to task signaling. This is an alternative

to the FAILURE exception mentioned in Section 4.2.2.3 of this

document.

Pragma ASYNCHRONOUS RTS TRAP for task entries. This pragma
would allow a close-interaction between RTE specific packages

(see Processor management below) and tasks. It could be

modeled on DEC's pragma AST ENTRY.

This idea dovetails nicely with the current ARTEWG's work

toward standard Ada interface to the runtime system. See

4.2.7 (interrupt management) for ARTEWG's "fast interrupt"

proposal.

The main thrust here would be to handle some of the elaborate

distributivity and fault tolerant issues raised in the

literature [Knight-84].

The RV semantics is recognized as an elegant construct.

implementation currently suffers from [Dewar-87]:

However, its

I. The deficiencies of the validation process that puts all the

emphasis on the syntax and semantics of Ada

2. Inappropriate primitives; usually those of the underlying OS

which are grossly inefficient.

3. Lack of basic research. This could be changing. EUREKA, the

European high technology initiative, is spending $i Million

with Alsy s Inc. alone to address these issues.

In spite of its current implementation limitations, the RV is hard to

m

N

L_

I

m

m

a

N

m

m

m

I

l

m

m

m

w

w

w

w

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-31

22 February 1988

replace. Already, as it was shown above (Section 4.2.4.1), the RV

performs better than the closest equivalent solution used in the past

for interprocess synchronization and communication: the mailbox.

A small number of Ada experts had predicted that the typical RV
overhead could be lowered to 50 microseconds on 2 MIPS machines before

the end of the decade [Dewar-87]. These experts were right. Already,

in August 87, the Tartan Laboratories validated Ada compiler for 1750A

took only IOO microseconds for a parameterless RV [Hengemihle-87] and

the DDC T--compiler for -_x_6- generated 5___ instructions_ for a

paremeterless, no select, 75 microsecond RV.

4.2.4.3 FIFO Service On Entry 0ueues

This issue was raised at the May 87 workshop on Ada real-time issues

[Brosgol-87].

Calls are currently specified by the RM to be serviced in a strict

FIFO order. Therefore, high priority callers may be served after

lower priority callers in contradiction of the Steelman requirement

that task service be FIFO within the same priority.

Recommendations:

higher priority
same priority.

Consider an amendment to the RM specifying that

tasks' call be serviced first with FIFO ordering for

4.2.4.4 Undefined Choice Of Open Alternative

This issue was raised at the May 87 workshop on Ada real-time issues

[Brosgol-87].

In the same vein, the order of service of multiple open alternative is

currently unspecified.

Recommendations: Consider an amendment to the RM specifying that

calls to open alternative entries be serviced in an order consistent

with caller's priorities.

4.2.4.5 Priority Inversion

This issue was raised at the May 87 workshop on Ada real-time issues

[Brosgol-87].

With the current RV semantics, a high priority task can be blocked,

waiting for a low priority server, while another task of same or

higher priority is executing.

Recommendations: Consider an amendment to the RM specifying that the

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-32
22 February 1988

called task immediately inherit the caller's priority if it is higher.

NOTE

Currently this occurs only after RV has started (RM
9.8-5).

To complicate matters a bit, the process would have to be transitive,
i.e. should the server itself be waiting for a low priority task,
this task would in its turn inherit the higher priority, and so on.

M

i

M

I

m

m

4.2.5 Task Activation

The following issues were raised by the development teams:

4.2.5.1 control Over Task Activation

Task activation occurs either at elaboration time or as the

consequence of the execution of an allocator. A more efficient
control is needed over task activation: GREEN featured independent

activation of tasks via the "initiate" reserved word.

Recommendations: A similar effect can be achieved by declaring a

"start" entry for the task.

NOTE

This solution was used for the GRODY project.

U!

U

4.2.5.2 Activation Bottleneck

Activation may be a serial bottleneck for multi-processors: Creation,

activation, termination and synchronization ar_all difficult runtime

problems for distributed Ada. A recent research project at NYU

(Flynn) is showing promising progress toward eliminating some of these

bottlenecks on specialized hardware (IBM RP3 multi-processor)

[Dewar-87].

U

U

4.2.5.3 Pre-elaboration Of Program Units

Even though it is not strictly nor exclusively a task activation

issue, the following ARTEWG propossl is more relevant here than in any

other runtime issue Section.

_ I

m

D

m

i

RI_TIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-33

22 February 1988

w

w

n

J

w

r

"Runtime elaboration of constants and a priori

consistent with many embedded systems'
requirements" [ARTEWG-2].

known tasks is not

power-up and restart

The RM indicates that a task specification is elaborated only once,

during the parent unit's elaboration, whereas the delarative part of

its body is elaborated for each activation (9.3-1).

"Real-time systems have a very limited amount of time available

between power-up and first required functionality... A warm restart

is a frequent recovery technique for embedded systems" [ARTEWG-2].

A recent SEI study summarizes the issue in the following way:

"The consequences of missing a real-time deadline can vary from

reduction of throughput, to numerical inaccuracy, to partial loss of

system functionality, or even to total system collapse. Therefore,

the time taken to perform system functions such as process initiation,

process termination, and context switching is crucial in a real-time

multi-processing system. System start-up time is also important, as

is the time taken to change operating modes, to reconfigure the system

after a partial failure, or to restart the system after a total

failure" [Weiderman-87].

NOTE

There are several ways to make elaboration more
efficient:

- Declaring as constant all constant entities allows

the compiler to perform static initializations.

Using library package initialization for complex

entities, such as tables and trees, can reduce the
overhead at activation time.

For example, an embedded application may feature a

constant data base loaded in Read-Only Memory (ROM).
It could be argued that the rules of Ada do not

prevent a compiler from considering such data as

"pre-elaborated" by the compiler. In fact, embedded

implementations often provide utilities, pragmas, and

configuration files to handle that problem.

Recommendations: Consider the following pragma for addition to the
list in appendix B of the RM.

pragma PRE ELABORATE (<identifler-list>);

"The pragma is proposed to allow the compilation system
(compiler/linker) to initialize the indicated list of data structures

and a priori program units. If the list is omitted, all possible

entities will be pre-elaborated, and a list of those entities that

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-34
22 February 1988

cannot be pre-elaborated will be produced" [ARTEWG-21.

Please refer to [ARTEWG-2]for rationale and other
considerations.

NOTE

This proposal raises a number of issues such as
resource allocation, access to Ada entities before
elaboration, etc. For this reason, there may be
restrictions on the contents of pre-elaborated units.

detailed

l

W

m

M

4.2.6 Task Termination

The following issues were raised by the development teams:

4.2.6.1 Problems With Abort

"Abort semantics must be clarified by the vendor".

When a task is aborted, its dependents are killed, all delays are

cancelled, and callers are sent TASKING ERROR. Abort is extremely

dangerous and should be reserved for anomalous termination.

Recommendatlons: Since the RM does not specify whether task

completion must be synchronous or asynchronous, the vendor's

documentation should indicate his choice as well as the possible side

effects on the runtime system.

4.2.6.2 Abortion Via Task Identifiers

The following issue was raised by ARTEWG:

"It is sometimes necessary to abort a task that is not visible...

This capability partially addresses the problem of writing reusable

executives and failure-recovery tasks. If such a component is

reusable, it cannot have visibility of those other tasks which it

manages, since these are different for each application" [ARTEWG-2].

An application could consist in a generic unit providing a watchdog

task. "Each watched task could provide its ID to the watchdog at

start-up time. The watched tasks would be given an access value to a

variable to be updated periodically. If the watched task failed to

update the variable between checks, the watchdog would abort it"

[ARTEWG-2].

R

M

u

i

m

u
m

I

D

zz

B

m

I

l

U

m

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Recommendations: Evaluate ARTEWG's abort procedure:

with TASKS IDS; use TASKS IDS;

procedure ABORT_TASK (I :-TASK_ID);

Page 4-35

22 February 1988

w

L

u

NOTE

This procedure, as well as many others mentioned

before, could be provided in the "LOW LEVEL TASKING"

package mentioned at the May 87 workshop- on Ada

real-time issues [Brosgol-87].

Please refer to [ARTEWG-2] for rationale, program example, and

detailed considerations.

other

4.2.6.3 An RTE Without Abort?

Abort is responsible in part for current inefficiencies in most

rendezvous implementations, since the runtime system must guard

against abort at each step in the RV (at all synchronization points);
this seems to be traceable to a military requirement for secure

systems.

At the May 87 workshop on Ada real-time issues, the suggestion was

made that a simplified RTE with no abort support be provided for

applications that do not need it [Brosgol-87].

w

w

4.2.6.4 Termination Of Tasks In Library Units

The RM does not require that tasks declared in library units terminate

(9.4-13).

Recommendations: The conditions under which such tasks terminate

should be clarified in the RM.

Pending RM modification, these conditions must be clearly documented

by the vendor.

___I

m

4.2.7 Interrupt Management

The interrupt management function is responsible for the handling of

several classes of events:

o Software interrupts such as UNIX signals and VMS' ASTs

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-36
22 February 1988

m

o Asynchronous hardware interrupts (real-time clock,

devices)

o Synchronous hardware interrupts (arithmetic exceptions)

The following issues were raised by the development teams:

I/O

4.2.7.1 Interrupt Latency

"Interrupt latency must be minimized."

Consider the RM way to write a device driver ISR: •

task UART ISR is

entry Transmitbufferempty;

for Transmitbuffer_empty use at 16#40#;

entry Data received;
for Data received use at 16#42#;

end UART ISR;

It is important that the minimum of overhead be associated with an

interrupt entry. Under VMS, for instance, a device driver's ISR is

executed at device IPL before being dismissed.

The RM encourages such an implementation (13.5.1-5..6) but does not

require it.

Recommendations: Consider an amendment to the RM requiring that the

corresponding entry call and task (not only the accept statement) be

executed at hardware priority, l-na special, low latency manner, and

without invoking the tasking scheduler.

For hosted environments, this class of representation clauses may not

be needed.

NOTE

See below for an alternate proposal by ARTEWG.

I

w

M

I

m

m

m

m

i

m

I

4.2.7.2 Fast Interrupt Pragmas

The following issue was raised by ARTEUG:

The RM allows direct calls to an interrupt entry (13.5.1-7). This

facility is often described as an advantage when debugging the driver

since the software can call the interrupt entry, to simulate a

u

R

m
E

E

L .

W

L

w

_..:===,

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-37

22 February 1988

hardware interrupt.

performance penalty.

However, such implementation can have a severe

Recommendations: To alleviate the resulting inefficiencies that could

prohibit the use of Ada for real-time applications, ARTEUG proposes

three pragmas that should be evaluated:

pragma INTERRUPT TASK (KIND : <interrupt task kind>); This

pragma establishes stringent restrictions on _he task code.

This is a common practice for device drivers anyway but might

be found overly restrictive.

Basically, an interrupt task has only one entry that cannot

be called by the software. The task body obeys a long list
of restrictions about the kind of statements used.

"The parameter KIND indicates the exact set of restrictions

that are satisfied. The possible values include SIMPLE and

SIGNALLING. A particular implementation may support

additional values for KIND."

- pragma TRIVIAL ENTRY; indicates that there is no statement in

the accept block.

pragma MEDIUM FAST INTERRUPT ENTRY; "indicates that the entry
at hand satisfies all those restrictions that are satisfied

by an interrupt task of kind SIGNALLING, except for the

restriction concerning references to non-local types and

objects."

Please refer to [ARTEWG-2] for rationale and other detailed
considerations.

NOTE

The evaluation process might determine that one of

these pragma is sufficient in practice.

w

4.2.7.3 Controlling Interrupts

The following issue was raised by ARTEWG:

Unavoidably, interrupt management is highly implementation dependent.

"A common format for controlling and interrogating either

Individually-named or level-oriented interrupts is thus desirable"

[ARTEWG-2].

However, it may be argued that such functionality is below the

portability level.

Recommendations: Evaluate the following generic package (to be

L _

rw

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

instantiated by the implementation; not by the user):

Page 4-38

22 February 1988

W

m_

L J

.g

D

g

m

mm

M

i

m _
m

m

R

I

m

J

L_

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-39

22 February 1988

generic

type INTERRUPT ID is (<>);

-- since type is discrete, level (integer) and

-- named (enumeration) interrupt format are

-- supported.

package INTERRUPT MANAGEMENT is

type INTERRUPT LIST is array (INTERRUPT_ID) of BOOLEAN;

procedure ENABLE (INTERRUPT : in INTERRUPT ID);

procedure DISABLE (INTERRUPT : in INTERRUPT_ID);

function ENABLED return INTERRUPT LIST;

end INTERRUPT_MANAGEMENT;

4

W

W

NOTE

Some implementations might overload procedures ENABLE

and DISABLE for type INTERRUPT LIST to handle groups

of interrupts at once since saving and restoring

interrupt masks is a common activity with real-time

applications.

Please refer to [ARTEWG-2] for rationale and other

considerations.

4.2.8 I/0 Management

The I/O management supports I/O directly or by calling on

underlying OS.

The following issues were raised by the development teams:

detailed

the

4.2.8.1 Put-get Problem

"When a Put is immediately followed by a get, some implementations

not flush the buffer before executing the get."

Even though this is not specifically required by the RM, the

example (RM 14.7), clearly indicates the designer's preference.

Recommendations: Ask the vendor to provide this functionality.

do

I/O

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-40
22 February 1988

M

4.2.8.2 I/0 From Tasks

Blocking all tasks that could otherwise proceed because one task in

the main unit is suspended by an I/O operation is contrary to the

spirit of the RM and totally defeats tasking on a mono-CPU machine.

Recommendations:

system, or at

mono-CPU systems.

Apply pressure on the vendor to produce a runtime

least provide packages, that do not defeat tasking on

4.2.8.3 Packet I/0 For Objects Of Variable Format

Please refer to issue 1 in Section 2.5 for a complete description of

the problem.

Ideally, the first field of a packet data structure should be the

discriminant of a variant record type. In practice, we will have to

handle in Ada "assembler level" packet design that put variant

indicators, or even pieces of it, wherever they seemed to fit.

Recommendations: A package should insulate the Ada code

variable format I/O. The package body could consist in

from the

Representation clauses for the discriminated type, including

discriminant and the appropriate sequential IO or other

package instantiation. This is the cleanest Ada solution,

but it requires that the discriminant always be at the same

place in the incoming stream.

- The buffering of a packet of bytes,

representation clauses and / or

discriminant, followed by explicit

unchecked conversion (if a record

buffer to the array or variant record.

the extraction using
functions of the

type conversion or

is involved) from the

- The use of assign to address functions such as the one used

on the NCP project at GSFC.

If all the above solutions are demonstrated to be too slow

for the application; C, assembler or direct code insertion
will have to be used.

n

W

m

U

m

m

m

g

m

I

4.2.8.4 I/O Of Mixed Type Objects

As an extension of the strong typing rules, I/O in Ada deals with

fixed types and, in practice, fixed size quantities. In fact, the RM

allows I/O for unconstrained types but this requirement has been

systematically waived by the Ada Validation Office (AVO).

M

U

L

L

=: =

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-41

22 February 1988

It is therefore necessary to build specific packages from scratch

every time that variable size and type objects have to be handled, a

bad case of non-reusability and non-portability.

Recommendations: A package MIXED IO similar to the one provided by

DEC might be considered for inclusion in chapter 14.

The ACVC should check that I/0 for objects of unconstrained types is

supported.

4.2.8.5 Direct I/0

"Direct I/O such as DMA must be possible".

This is traditionally the realm of device drivers for embedded

applications. Writing in Ada a device driver for a virtual operating

system such as VMS would be dealing with the wrong level of

abstraction and a dangerous exercise.

Recommendations: Vendors should provide examples of use

LOW LEVEL IO for the purpose o£ handling DMA type I/O.

of package

For hosted environments, where device drivers loosely coupled with the

underlying OS are usually reserved for such application, the

idiosyncrasies with the OS should be signalled.

= ,

w

b_

r
r

4.2.9 Time Management

The time management functions support package CALENDAR and

statement (including selective waits and timed entry calls).

The following issues were raised by the development teams:

the delay

4.2.9.1 Timer Resolution

"Timer resolution must remain in acceptable limits".

First of all, it is important to distinguish:

I.

2.

.

The RM does put an

recommends that,

The timer clock's period (SYSTEM.TICK)

The smallest possible non-null value for objects of type

duration (DURATION'SMALL)

The accuracy for fixed point type DURATION (DURATION'DELTA)

upper limit o£ 20 ms on DURATION'SMALL and

whenever possible, less than 50 microseconds

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-42

22 February 1988

U

resolution be provided (9.6-4). But, the same paragraph states that

"DURATION'SMALL need not correspond t___ooSYSTEM.TICK".

In practice, SYSTEM.TICK can reach one second. Host operating

system's "real-time clock" resolutions may be responsible for such

unacceptable value, but implementations should make the most honest

effort to work around it. Alsys PC/AT compiler, for instance, offers

a binder option that provides access to the hardware's timer. The

resulting Ims resolution is much more useful than MS-DOS' 1/18 second.

In a recent embedded system study, SEI recommends that DURATION'SMALL

do not exceed I00 microseconds and that SYSTEM.TICK be less or equal

to 1 millisecond [Weiderman-87].

Recommendations: Consider an amendment to the RM requiring that an

upper limit of 20 ms for SYSTEM.TICK be specified. Make this a

procurement requirement for all Ada compilers.

NOTE

That poses problems for UNIX implementations since

some of the UNIX Kernel functions such as Alarm have a

1 second resolution. However, Ualarm has a 1

microsecond resolution, and the hardware timer is

accessible to the RTS.

Embedded implementations should provide a SYSTEM.TICK less or equal to

1 ms.

Furthermore, on implementations that truncate hardware timer

resolution, a host dependent function should be provided that "reads

the clock" with a resolution better than 50 microseconds:

function HI RES CLOCK return DURATION;

This function seems to belong to the ARTEWG's

described later.

IDLE DELAYS package

On embedded systems where hardware varies greatly, the above function

or even CALENDAR.CLOCK might be implemented as a stub. In that case,

extensive documentation on how to write the body and link the object

code with the RTE is needed. A more acceptable solution is to be

given the choice between high and low CLOCK resolution with a binder

option (Alsys PC/AT compiler).

4.2.9.2 Clock Jitter

"Clock jitter is unspecified in the RM".

The delay statement semantics only specifies the lower bound of the

actual delay. No upper bound is guaranteed. This incertitude makes

some application code, such as synchronous communications, difficult

I

c,t

m

I

m

m

m

m

M

u

m:
4

L

W

L

H

_7

L

=

W

m

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES

Page 4-43

22 February 1988

to directly express in Ada.

This is not a problem specific to Ada, no language does better, as

users of JOVIAL and CMS-2 know [Kamrad-87]. Obviously, if preemption

is allowed, an upper bound could only be guaranteed for the task of

highest priority, or a worst case upper bound computed for a group of
such tasks.

A pragma SYNCHRONOUS could be introduced to be used as follow:

pragma SYNCHRONOUS

delay 200*ms; -- THIS delay Guaranteed to be 200 ms.

For consistency, the same semantics should hold for the other uses of

the delay statement such as timed entry calls and selective waits with

delay alternative. A simpler solution that fits better in the bigger

picture of Ada RTEs is for a standard RTE package to provide a

procedure that will directly call the scheduler.

Recommendations: Evaluate the following procedure:

SUSPEND_FOR (Someabsolute_time);

If the interaction of this routine with the RTE is clearly documented

by the vendor, an upper bound on the delay can be computed by the user

or by a tool.

4.2.9.3 Special Delays

The ARTEUG proposes an interesting alternative for small delays:

"There is a need for an alternate Implementation of the delay

statement because:

i. A delay may be required that is less than the execution-time

overhead of the Ada delay implementation

2. The semantics of the standard Ada delay, which is a task

synchronization point, may not be appropriate for some

applications [such as nonpreemptible Sections described in

4.2.3 (processor management)].

3. A [small] delay may be required that has a known upper bound

(as well as lower bound) on duration" [ARTEWG-2].

Recommendations: Evaluate the following package, proposed by ARTEUG,

that would feature a procedure to implement a special delay by busy

wait.

package IDLE DELAYS is

type DURATION is

RUNTIMEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-44
22 February 1988

N

delta <implementation defined>

range <implementation defined>;

procedure IDLE DELAY (D : in DURATION);

pragma INLINE (IDLE_DELAY);

end IDLE_DELAYS;

Please refer to [ARTEWG-2] for rationale and other detailed

considerations.

NOTE

For the delay to be accurate, preemption must be

disabled for the duration of the busy wait.

4.2.10 Others

These are issues that could not be classified anywhere else

important and related to runtime environments.

The following issues were raised by the development teams:

but are

4.2.10.1 Floating Point Representation

"There may be floating point representation incompatibilities between

different languages from the same vendor, on the same machine".

Please refer to issue 1 in Section 2.1 of this document for a complete

description of this problem.

Note that implementation dependent pragmas, such as DEC's pragma

LONG FLOAT (D FLOAT), must not be trusted. Another representation may

be selected by the compiler if the range of precision required does

not match the representation indicated.

Recommendations: Vendors must document the various representations

used and the means at the user's disposal to accommodate them.

It is good practice for users to check the Ada program against the

suite of regression tests that should come with the foreign package.

M

m

W

m

= =

W

m

H
J

m

m

4.2.10.2 Fixed Point Types

The subtleties of real types such as the "true" value of the number,

the hole around O, the relational operators trap, etc., are poorly

explained in the literature. Barnes probably does the "least bad" job

w

RUNTIME ISSUES AND RECOMMENDATIONS

RUNTIME ISSUES
Page 4-45

22 February 1988

here. The following example from Gerald Fisher via Doug Bryan

[Bryan-87] deals with the elementary properties of fixed type numbers:

Type Pennies is delta 0.01 range 0.0 .. 1.0; --$

P : Pennies;

One_penny : Pennies := 0.01;
.ooo

P := One_penny * i00; -- One buck?

P will have a value anywhere between 78 cents and $1.56 because the

compiler will approximate our delta of 0.01 with a "better" 1/128.

Therefore, the value of One penny will lie between 1/128 (0.007812)

and 2"i/128 (0.015625). Not only is the value inconsistent with our

naive expectation, but it could very well raise CONSTRAINT ERROR,

since 1.56 is clearly out of range!

Ada provides a portable way to alleviate some of the problems of this

kind by using a representation clause:

for pennies'Small use 0.01;

But currently, the ACVC does not enforce any of the representation

clauses and such a statement could be ignored by one compiler, such as

DEC ACS 1.2 which requires a power of 2, and accepted by another.

w

4.2.10.3 Task Identifiers

The following issue was raised by ARTEUG:

"Several RTE extensions described in the ARTEWG catalog of runtime

features and options for the Ada RTE, require a means of specifying

tasks as parameters to RTE subprograms" [ARTEWG-2].

NOTE

The RM recommends the use of access types for this

purpose (9.2-7). This approach was judged inadequate

in practice.

Recommendations: Evaluate the following

package proposed by ARTEWG:

implementation defined

package TASK IDS is

type TASK ID is private;

NULL TASKS : constant TASK ID;

generic

type TASK TYPE is limited private;

function ID_OF (T : TASK TYPE) return TASK ID;

function SELF return TASK_ID;

RUNTIHEISSUESANDRECOMMENDATIONS
RUNTIMEISSUES

Page 4-46
22 February 1988

function ENCLOSINGTASK(LEVELSOUT: NATURAL)
return TASKID;

function PARENT(I : TASKID) return TASK_ID;

function CALLERreturn TASK_ID;

function TRANSLATE(
SUBJECT: TASKID;
RECIPIENT: TASKID)

return TASKID;

-- ID conversion
-- Local copy
-- For other task

funetionCALLABLE (I : TASK_iD) return BOOLEAN;

function TERMINATED(I : TASK_ID)return BOOLEAN;

private

type TASK_IDis <implementation-defined>;

NULLTASK: constant TASKID
:=-<implementation-defined>;

end TASKIDS;

NOTE

One of the applications for such a package would be a
multi-tasking debugger written in Ada, since the tool
would have to have convenient access to all tasks.

Since all functions are simply querying a state and

not changing it, the proposal seems quite safe.

However, function CALLER seems to be controversial.

Languages like CSP require caller and called tasks to
know each other. Ada selected the dissymetric

approach in which the called task has no way of

knowing who is calling it [Ichbiah-79]

Please refer to [ARTEWG-2] for rationale and other detailed

considerations.

I

_ I

I

W

= --

I

z

m

I

4.2.10.4 Device Allocation

There is a requirement for the non-stop
other critical embedded applications

de-allocatlon of some I/O devices.

Space Station systems and

for dynamic allocation and

Intermediary (queuing) tasks have been proposed

built to provide this functionality [Auty-85].

and RTE have been

I

m

_J

I

I

g

L __

W

w

SECTION 5

MODIFICATIONS TO THE RM

One feels rather humble when tasked to propose modifications to the

Ada RM, a document produced by the best minds in computer science and

scrutinized all along by hundreds of experts in dozens of countries.

A major difficulty when proposing changes to the RM is the

interdependency of the Ada features. This is not a criticism. Ada's

syntax is consistent and harmonious because of this; but a seemingly

innocent change can have unforeseen consequences for other language
constructs.

A mechanism has been put in place to accommodate real and perceived

needs to change the Ada language. Users make their request to the Ada

Language Maintenance Panel, which makes recommendations to the Ada
board which makes recommendations to the AJPO.

Therefore, the following "proposed changes" should be seen as a loose

collection of issues and thoughts from practitioners to be considered

for review by the experts of the Language Maintenance Panel.

RH 3.1-8 - Elaboration: See also RM 6.1-10 for static allocation.

Issue: Elaboration must occur at runtime. That poses efficiency

problems as well as some practical concerns with code in read-only

storage. See Section 4.2.1 of this document.

i

Proposed Change: Specifically address read-only storage, and

optimization issues.

RM 3.2.1-18 - Object's undefined values: See also all references to

erroneous programs.

Issue: The execution of a program is erroneous if it attempts to
evaluate a scalar variable with an undefined value.

Proposed Change: Implementers should be encouraged to provide set-use

analysis at user's request. At least, all non-initialized variables

should be set to a value such that an exception would be raised at

run-time if an attempt was made to evaluate the variable before

z

MODIFICATIONS TO THE RM uPage 5-2

22 February 1988

assigning a value to it.

NOTE

Some high level optimizers already perform set use

analysis. Most implementations raise CONSTRAINTERROR
when a non-initialized variable is evaluated.

RM 4.5-7 - NUMERIC ERROR: See RM 11.1-13..14 for impact elsewhere in

the RM.

Issue: Implementations may raise NUMERIC ERROR or CONSTRAINT ERROR
under identical test conditions. See SectTon 4.2.2 of this document.

Proposed Change: A warning should be added in the RM about the danger

of relying on one or the other exception. Examples of handlers such

as RM 11.4.1-11 should be modified accordingly.

RM 4.8-7 - Storage reclamation:

Issue: "An implementation may (but need not) reclaim storage occupied

by an object created by an allocator, once this object has become
inaccessible." See Section 4.2.1 of this document.

Proposed Change: A way must always be provided to reclaim storage for

dynamic objects.

RM 6.3.2-4 - pragma INLINE:

Issue: An implementation is free to ignore pragma INLINE under a wide

range of circumstances.

Proposed Change: Pragma INLINE should be obeyed unless

reason, such as a recursive subprogram, prevents it.

case, a diagnostic should be provided.

a compelling

In this latter

RM 9.4-1_____33Z Termination of tasks in library units:

Issue: The RM does not require that tasks declared in library units

terminate.

Proposed Change: The conditions under which such tasks terminate

should be clarified in the RM.

m

N

I

J

N

N

U

r _

m

I

U

I

U

RM 9.5-15 - Entry calls FIF0 order:

Issue: Entry calls are processed in FIF0 order regardless of calling

task's priority.

Proposed Change: Higher priority task calls should be serviced first,

u

I

g

m

MODIFICATIONS TO THE RM Page 5-3
22 February 1988

with FIFO ordering for tasks of the same priority.

RM 9.6-1 - DURATION upper limit:

Issue: The upper limit for time intervals produced by the delay
statement is not defined.

Proposed Change: Specifically indicate that the expiration of a delay

statement is a scheduling event. Standardize an RTE procedure

SUSPEND, such as the one described in Section 4.2.9 of this document.

w

v

I

! E:-_

I

am_==a

RM 9.6-3 - Dela_ statement:

Issue: On some implementations, "delay 0.0;" results in a call to the

scheduler. This convenient semantics should be standardized.

Proposed Change: Specify that the "delay 0.0;" semantics include the

scheduling of the next executable task.

RM 9.6-4 - Type DURATION:

Issue: "DURATION'SMALL need not correspond to SYSTEM.TICK".

Proposed Change: The RM should recommend an upper limit of 20 ms
SYSTEM.TICK and a timer resolution better than 50 microseconds.

Section 4.2.9 of this document.

for

See

RH 9.8-_____/1: Sta____ti___£cpriorities:

Issue: The RM does not allow dynamic priorities. See Section 4.2.3
of this document.

Proposed Change: Remove the restriction that task priorities must be

static and provide an example of a package LOW LEVEL TASKING featuring

operations on type priority.

RM 9.8-___./1 2 Default priority:

Issue: No default priority is specified.

Proposed Change: Specify that PRIORITY'FIRST is the default priority.

w

R__MH9.8-4 - Preemptive scheduling:

Issue: The RM seems to call for preemptive scheduling, but the

wording, purposely vague is subject to misunderstanding. See Section
4.2.3 of this document.

MODIFICATIONSTOTHERM Page 5-4
22 February 1988

Proposed Change: More clearly disallow CPU hogging by low priority

tasks. Specifically recognize the importance of predictable
execution.

I_9.8-5 - Priority during RV:

Issue: There are possible priority inversion situations

priority inheritance occurs afte_.___£RV has started.

because the

Proposed Change: The called task should transitively inherit the

caller's priority if it was higher at the time of call.

RM 13.1-11 - Bit packing for arrays of BOOLEAN:

Issue: When bit packing for arrays of BOOLEAN is not supported,

separate packages or interface to assembler have to be used to perform

bit manipulations. See Section 4.2.1 of this document.

Proposed Change: Clearly indicate in RM that bit packing for arrays

of BOOLEAN is the official solution for bit manipulation operations.

I

I

g

U

m

I

w

U

RM 13.5.1-5..6 - Interrupt entries:

Issue: Interrupt entries may be treated like any other entries.

Proposed Change: The RM should require that a task with Interrupt

entries be executed at hardware priority without invoking the tasking
scheduler.

1_ 13.5.1-7 - Calls to interrupt entries:

Issue: The RM allows calls to interrupt entries. See Section 4.2.7
of this document.

Proposed Change: The RM should no longer require that such calls be

allowed. Also note that the accept statement of the interrupt task

and the enclosing loop statement usually enclosing it must be executed
h-T-hat-_ware priority.

NOTE

Some implementations already do it this way.

Z A

U

m

m

i

u

N

RM 13.10.1 - Procedure UNCBECKED DEALLOCATION:

Issue: UNCHECKED DEALLOCATION, as the RM clearly indicates, can be

misused with grave consequences. See Section 4.2.1 of this document.

I

N

W

MODIFICATIONS TO THE RM Page 5-5

22 February 1988

..===.a

Proposed Change: Replace procedure UNCHECKED DEALLOCATiON by

CHECKED DEALLOCATION. Add a pragma to suppress the checks in the

cases w_en the overhead was demonstrably intolerable.

pragma SUPPRESS (DEALLOCATION_CHECK, access_type_name);

W

ILq B-I - pragma PRE ELABORATE:

Issue: "Runtime elaboration of constants and a priori known tasks is

not consistent with many embedded systems' power-up and restart

requirements" [ARTEWG-2].

Proposed Change: A new predefined pragma:

pragma PRE ELABORATE (<identlfler-list>);

"The pragma is proposed to allow the compilation system

(compiler/linker) to initialize the indicated list of data structures

and a priori program units. If the list is omitted, all possible

entities will be pre-elaborated, and a list of those entities that

cannot be pre-elaborated will be produced" [ARTEUG-2].

U

not_____eabou_____tChapter 13

If adopted after evaluation, ARTEWG proposed RTE

packages should be standardized by including their

specification in either Chapter 13 (preferably) or

appendix F.

A note about RTE packages

An interesting suggestion proposed by ARTEUG's current

president is to remove Chapter 13 from the RM and make

a separate document of all the implementation

dependent features and packages [Kamrad-87].

E

giw

Im

u

lib

r _

mm

w

Iii

m
umm

im

II

u

I

I

IWI

U

U

U

=

W

SECTION 6

RECOMMENDED ADA PROJECTS

Following Dr. HcKay's classification of research and development

activities [McKay-85], we distinguish three categories of projects

that will accelerate the transition to Ada within NASA and among the

Space Station contractors:

I. Studies and proof of concept for technologies that will be

needed in the next decades (the "edge of the art").

2. Pilot projects and limited scale developments to gradually

introduce the new technology (the state of the art).

3. Full production development making use of

technologies (the state of the practice).

the proven

zt :

= =

6.1 PROOF OF CONCEPT

Even though several validated compilers are available for

multiprocessor systems (Flex-32, Alliant, Sequent), research and proof

of concept are sorely needed for fully distributed runtime systems,

fault tolerance, and multi-level security applications [ARTEWG-6].

Testbeds such as Johnson's DMS, Lewis' ACSS, Kennedy's CDS and CSDL's

AIPS should be multiplied. Host importantly, definition studies and
testbeds should be funded for a Portable Common Executive Environment

(PCEE) [HcKay-7-87].

"Hard" real-time applications, that can fail when the timeline is not

met, require that compiler generated RTEs compare in efficiency with

traditionally hand coded special executives. Technologies to specify

and (semi)automatically tailor runtime systems are needed [ARTEVG-6]

and their proof of concept must be funded.

But even before proof of concept projects can be started, detailed

studies are needed to identify and prioritize NASA's common Ada

runtlme environment requirements and compare them to what _s available

from the vendors [ARTEUG-6]. Proposals for RM changes, procurement

issues, workaround, and proposed support packages will logically

W

L

RECOMMENDED ADA PROJECTS

PROOF OF CONCEPT

Page 6-2

22 February 1988

follow. We hope that this study will be one of the first steps in

that direction.

It is probable that three lists will emerge:

o Short term requirements for hosted applications

o Short term requirements for embedded and "hard"

applications

real-time

o Long term requirements for all applications (distributed,
fault tolerant, and multi-level security runtime systems).

When the prloritized lists of common requirements are agreed upon,

consultation (perhaps in the form of a workshop) should be organized

with compiler implementers to define and more precisely assess the

needed work.

NOTE

Senior representatives of two major compiler vendors

were informally contacted recently and both agreed in

principle with the idea of a workshop.

After negotiation, proof

functionality should be

vendors.

of concept projects to test the RTE

funded in cooperation with the compiler

One important step would be the prioritization of the issues raised in

this document, a selection of some of them for implementation, and a

proof of concept of some of the packages recommended. A workshop

involving main contributors to this study might be a good format for

deriving such a list.

6.2 PILOT PROJECTS

Probably the best way to transition an organization to Ada is to

the staff go through the following sequence:

have

I. Re-implementation of an existing small program (2k to lOk

moc)

2. Design and implementation of a meaningful pilot project (5k

to 20k LOC)

3. First production project

The same gradual approach can be used

projects or new technologies such

applications.

to tackle "hard" real-time

as Artificial Intelligence

Most of the projects described in Sections 2 and 3 of this document

m

B

J

I

J

W

=

N

g

m

m

z

m

g

W

E

W

I

m

!

L

_- _

= =

I

J

w

RECOMMENDED ADA PROJECTS

PILOT PROJECTS
Page 6-3

22 February 1988

belong to the first two categories. The staff of the GRODY project at

GSFC started directly from category 2.

By browsing through Sections 2 and 3 of this document, it should be

relatively easy for any organization to identify pilot and first
production projects.

Another meaningful pilot project could consist in the identification,

design and coding of package specifications for a set of application

specific software components.

6.3 PRODUCTION SOFTWARE

In spite of the extensive list of runtime issues given in this

document, a large number of software projects can and should be

implemented in Ada today. In fact, all but the most demanding "hard"

real-time and system programming tasks can be handled with most Ada

compilers, including a great variety of "soft" real-time projects.

For instance, it is possible to:

o Build reusable Ada software components for a specific
application:

- NASCOM interface

- Decommutation

- STOL processing

- Communication protocols and ISDN

- User interface

- Trajectory computation (see JPL's projects in Section 3)

- Simulation

- Etc.

;r

o Build packages making use of the above components to provide
standard interfaces at a higher level of abstraction such as:

- ISO model

- X-_indow

- Etc.

RECOMMENDEDADAPROJECTS .-
PRODUCTION SOFTWARE

Page 6-4

22 February 1988

o Start using Ada now on non-real-time OCC functions such as

OBC dump verification, STOL processing, pass initialization

and "slow" display processing.

o Start experimenting with Ada for real-tlme applications such

as

- Re-implementing in Ada some existing time critical

FORTRAN code (decommutation comes to mind)

Off-loadlng old CPUs

workstation such as

Compaq 386, etc.

with Ada code running on a

MicroVax II, Sun, Apollo, PC AT,

o Use Ada now to design and implement a new generation OCC.

o Use Ada now for embedded flight software.

o Use Ada now for OBC simulation and test support software.

o Use Ada for robotics applications.

Also, an excellent first step in the transition is to use Ada

PDL, no matter what language is selected for implementation.

as a

m

m

M

I

g

u

u

I

6.4 CONCLUSION

The Ada technology has evolved from the first inefficient compilers to

production environments, methodologies, tools and products that are

quite impressive, only four years after the adoption of ANSI-MIL
standard 1815A.

By August 1987, over I00 compilers had been validated worldwide. For

VAXes, there were already more Ada compilers (50 of them validated, 40

under VMS) than for any other language on any machine.

For embedded applications, truly efficient runtime systems are already

available. Several occupy less than 2 kbytes. For instance, Tartan

Lab's 1750A RTE requires less than i kbyte without tasking or access

types; its full blown RTE occupies less than 10 kbytes.

RendezVous overhead significantly decreases with every release of most

compilers. Already several RTEs for embedded applications feature an

RV overhead under i00 instructions. For instance, DDC's compiler

synchronization RV overhead for the 80186 is about 50 instructions, 70
microseconds for an 8 Mhz 80186 with 0 wait state.

Alsys' "lattice algebra" high level optimizer that eliminates nearly

all unnecessary runtime checks and borders on a static debugging tool,

demonstrates the great strides in practical compiler technology

motivated by the Ada effort.

M

-- =

g

I

I

m

m

k

m

m

RECOMMENDED ADA PROJECTS

CONCLUSION

Page 6-5

22 February 1988

These are achievements the critics had said would never be seen.

Standardization such as CAIS, research such as UHCL's System Interface

Set, user's group contributions such as SIGAda's, and technology

transfer activities such as SEI's constitute a healthy, comprehensive

and unprecedented effort.

But clearly, the current Ada Compiler Validation Capability (ACVC) is

insufficient to guarantee that a validated compiler is really useful.

The ACVC must be extended to enforce the entire RM, including Chapter

13 and all predefined pragmas. The current effort toward building an

Ada Compiler Evaluation Capability must be accelerated and involve as

large a segment of the Ada user community as is practically feasible.

The AJP0 must now shift its emphasis from simple validation to

compiler quality assurance. The quality of the implementation

including compile speed, support packages, error messages, and runtime

efficiency is of great importance to the user community.

In mid-August 1987 only a few hosted Ada runtime systems were as

efficient (within I0 or 20% in execution time) as their C or FORTRAN

counterpart. Only one, Rational R-IO00, was truly efficient across

the board, but required specialized hardware. The performance of Ada

tasking, already better than non-portable alternatives on some

implementations, was showing signs of a breakthrough.

In mid-August 1987 over 20 compilers for embedded systems had been

validated, most of them with RTEs of good performance but insufficient

functionality. For instance, when Boeing compared Ada with Pascal

compilers currently used for avionics software, most Ada compilers

were found to produce more efficient code (2.5 times faster than

Pascal) for the same memory usage [Pflug-87]. However, for embedded

applications, DoD seems to emphasize the 1750A, a 16-bit limited

architecture made obsolete nearly I0 years ago. The embedded systems

technology still has a long way to go and needs a better direction.

After 12 years of effort (HOLWG:I975, GREEN: 1979, Ada: 1983), Ada

can be credited for significantly advancing the field of practical

software engineering. But in spite of thousands of comments from 15

countries and hundreds of studies and pilot projects world-wide, there

is still some risk (and much-enjoyed foot-dragging) in using Ada on

some systems. On most, the risk is manageable [Basili-87]. On

VAX/VMS, for instance, the Ada risk is small when compared to the

entire system risk. Clearly, risks are present with any software

system, using any language. A significant part of these risks stem

from insufficient software engineering education, an issue that is not

specific to Ada.

Most importantly, the fear of change is no substitute for technical

risk assessment. For nearly all non-time-critical, long lived

a_plications, developed on _ood compilers, Ada is the least risky

alternative today.

For time-critical applications, the Ada compilers must be tested and

their runtime systems must be benchmarked and carefully compared.

RECOMMENDEDADAPROJECTS
CONCLUSION

Page 6-6
22 February 1988

Other languages' runtime systems should be benchmarked and compared in

the same way to rationally assess and compare the risks. When this is

done, Ada could be found to present the lowest risk [Pflug-87].

The far-sighted, consistent Ada efforts that were started at Goddard

three years ago have borne fruit. In spite of shaky first compilers,

experimental methodologies and insufficient expertise, several teams

have rapidly demonstrated adequate proficiency in a language known for

its complexity.

We conclude that, at worst, the development teams using a "sequential

subset" of Ada today on good implementations, such as DEC's ACS for

VAX/VMS, Alsys' for PC/AT, Apollo, and Sun, Rational for R-IO00, etc.,

would quickly achieve productivity and runtime efficiency results

comparable to those obtained by teams using FORTRAN or C. After all,

FORTRAN never had tasking or memory allocation, and many difficult to

maintain real-time systems have been and are still being built, behind

schedule and over budget, in that 30 year old language.

R

m

m
I

m

m

L
m

Nearly two years after Ada was adopted for the Space Station only a

few projects, involving production of operational Ada code are active
within NASA, most of them at the Goddard Space Flight Center.

This slow progress, in spite of a clear mandate [Hall-87], points to

an urgent need for a unified commitment to Ada by all NASA managers

involved in Space Station development.

If NASA personnel are to control the quality and timeliness of the Ada

software that will be delivered for the Space Station project, they

will have to be proficient in Ada. Since it can take years to gather

significant Ada expertise, more Ad___aaactivities are necessary within

NASA immediately.

Ada user's group meetings, mini-conferences, and other technical

gatherings such as those organized at UHCL/JSC and GSFC should be set

up in other Centers as well. Presentation material should be archlved

and a small abstract with keyword information kept on-line to foster

the sharing of experience. UHCL's data base of Ada projects, and

SEL's growing library of Ada reports are steps in that direction. SSE

and TMIS should provide this capability as early as possible.

Ada software must be cataloged, publicized, and its re-use

systematically encouraged. The recent creation of JSC's Ada software

repository is a welcome development. A separate organization partly

modeled on SEI and COSMIC might be necessary to introduce and foster
the use of Ada within NASA.

The Air Force has put in place Ada Insertion Offices [Klucas-87]. SEI

has issued a document that details the steps necessary to introduce

Ada in an organization [Foreman-87]. SEL has been gathering valuable

data on meaningful projects [Godfrey-87]. All this experience is

directly applicable to the Space Station Program.

l

N

M

I

R

m

m

I

m

m

m

I

RECOMMENDED ADA PROJECTS

CONCLUSION

Page 6-7

22 February 1988

w

In any case, Ada education and technical support should be provided to

more aggressively promote the Ada technology within all NASA Centers.

In particular, it is imperative that motivated and knowledgeable

managers be identified in all. Space Centers as "Ada focal points" to
clearly show the Agency's commitment to the Ada technology and to
foster progress in its introduction.

Most of the above recommendations have already been implemented at the

Goddard Space Flight Center where the introduction of Ada has been

very successful on a number of projects.

w

h
M

Im

R

W

!m

mm

m

m

Ill

gl

II

B

B

rm

Im

mm i

mm

m

APPENDIX A

BIBLIOGRAPHY

H

i

L J

[Alger-86] Linda S. Alger and Gregory L. Greeley, "A Highly-Reliable

Architecture for Executing N-Version Programming", proceedings of the

18th Joint Services Data Exchange for Inertial Systems, San Diego,

California, October 30, 1986.

[Archer-86] James E. Archer et. al, "Rational's Experience Using Ada

for Very Large Systems", Proceedings of the First International

Conference on Ada for the Space Station, University of Houston at

Clear Lake, June 2-5, 1986.

[Armitage-85] James W. Armitage and James V. Chelinl, "Ada Software on
Distributed Targets: A Survey of Approaches", Ada Letters, Vol. IV,

Nr. 4, January-February 1985.

[ARTEWG-I] "Catalogue of Ada Runtime Implementation Dependencies",
Association for Computing Machinery, Special Interest Group on Ada,

Ada Runtime Environment Working Group, November 5, 1986.

[ARTEWG-2] "A Catalog of Interface Features and Options for the Ada
Runtime Environment" Association for Computing Machinery, Special7

Interest Group on Ada, Ada Runtime Environment Working Group, October

1986.

[ARTEWG-3| "First Annual Survey of Mission Critical Application

requirements", Association for Computing Machinery, Special Interest

Group on Ada, Ada Runtime Environment Working Group.

[ARTEWG-4] "Guidelines for Effectively Using Ada Runtime

Environments", Association for Computing Machinery, Special Interest

Group on Ada, Ada Runtime Environment Working Group.

[ARTEWG-5] "A Framework For Describing Ada Runtime Environments",
Association for Computing Machinery, Special Interest Group on Ada,

Ada Runtime Environment Working Group, November 13, 1986.

[ARTEWG-6] "The Challenge of Ada Runtime Environments, a White Paper

by the ARTEWG", Association for Computing Machinery, Special Interest

Group on Ada, Ada Runtime Environment Working Group, August 1987.

BIBLIOGRAPHY ""Page A-2
22 February 1988

[Auty-85] David P. Auty, Abby Greenbaum, "Ada/M(44) Design Issues:
Interrupts and I/O", AIAA / ACM / NASA / IEEE Computers in Aerospace V

Conference, October 21-23, 1985.

[Auty-87] David P. Auty, "Establishing an Ada Runtime Benchmarking

Capability for NASA Johnson Space Center", Softech Inc., W0-086 Vol. I

to III., February 1987.

[Barnes-87] J. G. P. Barnes, "International Workshop on Real-Time Ada

Issues " Internal memorandum, Alsys Inc , July 1987.

[Basili-87] Victor Basili, et al., "Use of Ada for FAA's Advanced

Automation System (AAS)", MITRE Document MTR-87W77, April 1987.

[Bass-84] Mich Bassman, "Reusable Software, Transportability and the

Ada Runtime Environment", presentation at the 23rd Annual Technical

Symposium of DC Chapter of the ACM, June 28, 1984.

[Becker-87] Jeffrey Becker and Robert Goettge, "Ada Performance Issues

for Real-time systems", Proceedings of the Joint Ada Conference

(Fourth Washington Ada Symposium), Arlington, Va., March 16-19, 1987.

[Beser-85] Eric L. Beser, "The Westinghouse Ada Experience",

Presentation at the GSFC Ada User's Group, December 1985.

[Blumberg-86] F. C. Blumberg, et. al, "Transportability,

Distrlbutability, and Rehostlng Experience With a Kernel Operating

System Interface Set", Proceedings of the First International
Conference on Ada for the Space Station, University of Houston at

Clear Lake, June 2-5, 1986.

[Boeing-87] Robert L. Dryden (President, Boeing Computer Services),

Wecoming Address at the SIGAda summer meeting, Seattle, August 26,
1987.

[Bray-83] Gary Bray, "Implementation Implications of Ada Generics",

Ada Letters, Vol. III, Nr. 2, September-October 1983.

[Brennan-86] Peter Brennan, et. al, "A Distributed Environment for

Ada", Proceedings of the First International Conference on Ada for the

Space Station, University of Houston at Clear Lake, June 2-5, 1986.

[Brlnker-85] Elisabeth Brinker, "Comparison of Output From Source Code

Compiled on Six Different Ada Compilers", NASA GSFC, Code 522,

Internal Memo, May 23 1985.

[Brinker-86] Elisabeth Brinker, Curtis Emerson, Peter Hughes,

"Preliminary Report On Ada Real-time Evaluation", NASA GSFC, Code 522,

Internal Memo, August 28, 1986.

[Brosgol-87] Benjamin Brosgol, "International Workshop on Real-Time

Ada Issues. Summary report.", Internal memorandum, Alsys Inc., June

1987.

i ±

i

N

m

I

I

I

B

M

I

I

-- =

I

FI

l

i

=

I

m

w

=

r

w

w

BIBLIOGRAPHY Page A-3

22 February 1988

[Bryan-87| Doug Bryan, "Dear Ada", Ada Letters, Vol. VII, Nr. 3,

May-June 1987.

[Burger-87] Thomas M. Burger and Kjell W. Nielsen, "An Assessment of

the Overhead Associated Uith Tasking Facilities and Task Paradigms in

Ada", Ada Letters, Vol. VII, Nr. i, January-February 1987.

[Burns-85| A. Burns, "Efficient Initialisations Routines for

Multiprocessor Systems Programmed in Ada", Ada Letters, Vol. V, Nr. l,

July-August 1985.

[Burns-86| A. Burns, "Concurrent Programming in Ada", Cambridge

University Press, 1986.

[Carlson-86| Arne Carlson, "Interesting Viewpoints to Those Who Will

Put Ada Into Practice", Proceedings of the First International

Conference on Ada for the Space Station, University of Houston at

Clear Lake, June 2-5, 1986.

[Cart-87| P. Carr et al., "Implementation of a Prototypr CAIS

Environment" Ada Letters, Vol VII, Nr 2, March-April 1987

[Cherry-86] George W. Cherry, "Process Abstraction Methodology for

Embedded Large Applications (PAMELA) Handbook", Thought**Tools, Inc.,

Reston, Va. 1986.

[Cohen-86] Sandy Cohen, Dan McNicol, "Reusable Software Parts on a

Semi-Abstract Data Type", Proceedings of the First International

Conference on Ada for the Space Station, University of Houston at

Clear Lake, June 2-5, 1986.

[Conti-87] Robert A. Conti, "Critical Runtime Design Tradeoffs in an

Ada Implementation", Proceedings of the Joint Ada Conference (Fourth

Washington Ada Symposium), Arlington, Va., March 16-19, 1987.

[Cornhill-83| Dennis Cornhill, "A Survivable Distributed Computing

System For Embedded Application Programs Written in Ada", Ada Letters,

Vol. III, Nr. 3, November-December 1983.

[Cornhill-87] Dennis Cornhill, "The Rate Monotonic Scheduler",

Presented at the International Workshop on Real-Time Ada Issues, June

1987. To be published in a special issue of Ada Letters.

[CSDL-86] "Completion of the Advanced Information Processing System",

The Charles Stark Draper Laboratory, Inc., November 12, 1986.

[Dapra-84] A. Dapra et al., "Using Ada and APSE to Support Distributed

Multimicroprocessor Targets", Ada Letters, Vol. III, Nr. 6, May-June

1984.

• "A User-Friendly I/0 System for Ada" Ada[Debest-83] X Debest,

Letters, Vol. II, Nr. 4, January-February 1983.

[Dewar-87| Robert Dewar, Presentation to the Baltimore SIGAda, May 6,

BIBLIOGRAPHY i.Page A-4
22 February 1988

1987, Baltimore, Md.

[Dewolf-84] J. Barton Dewolf, Nancy M. Sodano, and Roy S. Whittredge,
"Using Ada for a Distributed, Fault Tolerant System", Proceedings of
the AIAA/IEEE 6th Digital Avionics Conference, Baltimore, Md.,
December3-6, 1984.

[Eisenhauer-86] Greg Eisenhauer et. al, "Distributed Ada:
Methodology, Notation, and Tools", Proceedings of the First
International Conference on Ada for the Space Station, University of
Houston at Clear Lake, June 2-5, 1986.

[Emerson-87] Curtis Emerson, "Ada Features List", NASAGSFCCode 522,
Internal Memo,March 1987.

[Fantechi-84] A. Fantechi, "Interfacing With Real Environments From
Ada", Ada Letters, Vol. III, Nr. 6, May-June 1984.

[Feinberg-86] David A. Feinberg, "Using Ada - The Deeper Challenge",
Proceedings of the First International Conference on Ada for the Space
Station, University of Houston at Clear Lake, June 2-5, 1986.

[Fisher-84] Gerry Fisher, "Universal Arithmetic
Letters, Vol. IV, Nr. 2, September-October 1984.

Packages", Ada

[Foreman-87] John Foreman, et al., "Ada Adoption Handbook", Software
Engineering Institute, 1987.

[Godfrey-87] Sara Godfrey, et al., "Assessing the Ada Design Process
and its Implications: A Case Study", Software Engineering Laboratory,
SEL-87-004, GSFC,July 1987.

[Goforth-87] AndyGoforth, "Experiments in Parallel Processing using C
and Ada on a Multi-Processor", AmesResearch Center, October 1987.

[Greeley-86] Gregory L. Greeley, "An Ada Implementation for Fault
Detection, Isolation and Reconfiguration Using a Fault Tolerant
Processor", Proceedings of the First International Conference on Ada
for the Space Station, University of Houston at Clear Lake, June 2-5,
1986.

[GSFC-I] GSFCAda User's Group, "Ada Style Guide (Version i.I)", GSFC
DocumentSEL-87-002, May 1987.

[Hall-87] DanaHall, "Space Station Project
Proceedings of the Joint Ada Conference
Symposium), Arlington, Va., March 16-19, 1987.

- Plans and Status",
(Fourth Washington Ada

[Helmbold-85] D. Helmbold and D.C. Luckham, "Runtime Detection and
Description of DeadnessErrors in Ada Tasking", Ada Letters, Vol. IV,
Nr. 6, May-June 1985.

[Holladay] WendyHolladay, "NSTL/ERLSpace station Payload Simulator",
internal memorandum,NSTL, 29 May1987.

D

M

U

z

I

M

I

N

u

M

n

I

u

m

z

U !

M_

U

mm

M

- 4

. °

3'r_l._._

rm==_

a

r-- -,_g
i

w

BIBLIOGRAPHY Page A-5

22 February 1988

[Hood-l-86] Philip Hood and Vinod Grover, "Designing Real-time Systems

in Ada", Final Report, Softech Inc., 8 January 1986.

[Hood-6-86] Philip Hood, "Ada and the Cyclic Runtime Scheduling",

Proceedings of the First International Conference on Ada for the Space

Station, University of Houston at Clear Lake, June 2-5, 1986.

[Humphrey-87] Terry Humphrey, "Space Station Advanced Development:

Current Tasks in Applying Ada to Space Station at NASA - JSC",

Presentation at headquarters, June 1987.

[IBM-85] O. Lui, "Asessment Of Ada for Space Station Applications
Software", IBM-FSD, Houston, Tx, July 1985.

[Ichbiah-79] Jean Ichbiah et al., "Rationale for the Design of the Ada

Programming Language", ACM SIGPLAN notices, Vol. 14, Nr. 6, June 1979.

[Iles-87] lles R., "TIE Routine Definitions", Toolpack/l, Release 2.1,

NAG publication: NP1285, 1987.

[Intermetrics-85] "Justification for Selection of a Standard Language

for Space Station Applications", Final Report, 28 June 1985.

|Invevardi-83] P. Invevardi et al., "A Distributed KAPSE

Architecture", Ada Letters, Vol. III, Nr. 2, September-October 1983.

[Johnson-86] Charles S. Johnson, "Some Design constraints Required for

the use of Generic Software in Embedded Systems: Packages which

Manage Abstract Dynamic Structures Without the Need for Garbage

Collection.", Proceedings of the First International Conference on Ada

for the Space Station, University of Houston at Clear Lake, June 2-59
1986.

[Jouchoux-87] A. Jouchoux et al., "Developing a Spacecraft Monitor and

Control System in Ada", Proceedings of the Joint Ada Conference

(Fourth Washington Ada Symposium), Arlington, Va., March 16-19, 1987.

[Kamrad-83] J. Michael Kamrad II, "Runtime Organization for the Ada

Language System Programs", Ada Letters, Vol. III, Nr. 3,
November-December 1983.

[Kamrad-87] J. Michael Kamrad II, "Trip Report on Ada Real Time Issues

Workshop and Ada in Sweden", Honeywell Interoffice memorandum, 18 June
1987.

[Kirch-83] Walter Kirchgassner, et al., "Optimization in Ada", Ada

Letters, Vol. III, Nr. 3, November-December 1983.

[Klucas-87] Col. Casper H. Klucas, "Policy Committee Session II

presentation", SIGAda summer meeting, Seattle, August 25-28, 1987.

[Klumpp-86] Allan R. Klumpp, "Ada Problems and solutions", Letter to

Dr. Robert Mathis, JPL, Revised June 30, 1987.

w

BIBLIOGRAPHY Page A-6

22 February 1988

[Klumpp-87] Allan R. Klumpp, "A Collection of General-Purpose Ada

Packages", JPL, Interoffice Memorandum, 314.1-0172-ARK, Revised 5 May,
1987.

[Knight-84] John C. Knight and John I. A. Urquhart, "On the

Implementation and Use of Ada on Fault-Tolerant Distributed Systems",

Ada Letters, Vol. IV, Nr. 3, November-DeCember 1984.

[Knight-87] John C. Knight and Marc E. Rouleau, "Analysis of Ada for a

Crucial Distributed Application", Proceedings of the Joint Ada

Conference (Fourth Uashington Ada Symposium), Arlington, Va., March

16-19, 1987.

[Kok-84] J. Kok and G. T. Symm, "A Proposal for Standard Basic

Functions in Ada", Ada Letters, Vol. IV, Nr. 3, November-December

1984.

[Kurbel-86] Karl Kurbel and Wolfram Pietsch, "A Portable Ada

Implementation of Index Sequential Input-Output", Part I: Ada

Letters, Vol. VI, Nr. 2, March-April 1986. Part 2: Ada Letters, Vol.

VI, Nr. 3, May-June 1986.

[Laird-86] James D. Laird, et. al, "Implemenation of an Ada Real-time

Executive - A Case Study", Proceedings of the First International

Conference on Ada for the Space Station, University of Houston at

Clear Lake, June 2-5, 1986.

[Lekkos-86] Anthony Lekkos, "DEC Ada Interface to Screen Management

Guidelines (SMG)", Proceedings of the First International Conference

on Ada for the Space Station, University of Houston at Clear Lake,

June 2-5, 1986.

[Lyons-86] T. G. Lyons, J. C. D. Nissen, "Selecting

Environment", Cambridge University Press, 1986.

an Ada

[McDonnel-85] "Space Station Data Systems Analysis / Architecture

Study: Task 2 - Options Development", DR-5, Vol. I - Technology

Options. McDonnel Douglas Astronautics Co., MDC H1940, May 1985.

[McKay-85] Dr. Charles %/. McKay, Presentation to the Ada User's Group,

Goddard Space Flight Center, March 1985.

[McKay-6-87] Dr. Charles %/. McKay, "Lifecycle Support For 'Computer

Systems' and Software Safety in the Target and Integration

Environments of the Space Station Program", Software Engineering

Research Center, University of Houston at Clear Lake, June 1987.

[McKay-7-87] Dr. Charles %/. McKay, "Final Report on a Study of System
Interface Sets For the Host, Target, and Integration Environments of

the Space Station Program", Software Engineering Research Center,

University of Houston at Clear Lake, July 1987.

[Maresca-86] Paul Maresca, "OASIS IBM PC/AT Rehosting Feasibility

Study", Adasoft Inc., October 30, 1986.

n

Z
m

= =

W

w

_ I

m

i

L _

m

I

I

H

U

I

w
l

w

E

w

m

BIBLIOGRAPHY Page A-7

22 February 1988

[Martin-86] Donald G. Martin, "Non-Ada to Ada Conversion", Ada

Letters, Vol. VI, Nr. I, January-February 1986.

[Maule-86] Ruth Maule, "Runtime Implementation Issues for Real-time

Embedded Ada", Proceedings of the First International Conference on

Ada for the Space Station, University of Houston at Clear Lake, June

2-5, 1986.

[Monteiro-86] Edward J. Monteiro, "Space Station Ada Runtime Support

for Nested Atomic Actions", Proceedings of the First International

Conference on Ada for the Space Station, University of Houston at

Clear Lake, June 2-5, 1986.

[Naedel-86] Dick Naedel, "Real-time Ada in a MC68XXX System",

Proceedings of the First International Conference on Ada for the Space

Station, University of Houston at Clear Lake, June 2-5, 1986.

[Nagle-86] Gall A. Nagle, "An Ada Implementation of the Network

Manager for the Advanced Information Processing System", Proceedings

of the First International Conference on Ada for the Space Station,

University of Houston at Clear Lake, June 2-5, 1986.

[Naeini-86] Ray Naeini, "A Multicomputer and Real-time Ada

Environment", Proceedings of the First International Conference on Ada

for the Space Station, University of Houston at Clear Lake, June 2-5,
1986.

[Nelson-85] Robert W. Nelson, "Introduction and Use of Ada at Goddard

Space Flight Center", Code 522.1, MODS directorate presentation,

October 29, 1985.

[Nelson-86] Robert W. Nelson, "NASA Ada Experiment -- Attitude Dynamic

Simulator", Washington Ada Symposium, March 1986.

[Nissen-83] J. C. D. Nissen and B. A. Wichmann, "Ada-Europe Guidelines

for Ada Compiler Specification and Selection", Ada Letters, Vol. III,

Nr. 5, March-April 1984.

[Nissen-86] J. C. D. Nissen and T. G. L. Lyons, "Selecting an Ada

Environment", Cambridge University Press, December 1986.

[Paulk-86] Mark C. Paulk, "Comparing Host and Target Environments for

Distributed Ada Programs", Proceedings of the First International

Conference on Ada for the Space Station, University of Houston at

Clear Lake, June 2-5, 1986.

[Pflug-87] Bryan Pflug, "Ada, Airplanes and

Commercial Airplane Company, presentation at

meeting, Seattle, August 25-28, 1987.

Attitudes", Boeing
the SIGAda summer

[Phillips-84] Stephen P. Phillips and Peter R. Stevenson, "The Role of

Ada in Real-Time Embedded Applications", Ada Letters, Vol. III, Nr. 4,

January-February 1984.

BIBLIOGRAPHY _m,Page A-8
22 February 1988

[PI_G-87] Jon S. Squire, "Ada Faster
Measurementman", PlUG presentation,
August 25-28, 1987.

Than a Speeding Bullet, by
SIGAdasummermeeting, Seattle,

[Engemihle-87] Jerry Engemihle, "Explorer Platform Coprocessor Flight

Software Ada Evaluation Study", Fairchild Space Company Technical

Report, June 3, 1987.

[Raclne-86] Roger Racine, "Transparent Rendezvous in a Fault Tolerant

Distributed System", Proceedings of the First International Conference

on Ada for the Space Station, University of Houston at Clear Lake,

June 2-5, 1986.

[Rockwell-83] Jody Stelnbacher, Patrick Rogers, "High Order Language

Study for Rockwell International Space Station Support", May 1983.

[Rogers-86] M. U. Rogers, "Ada: Language,

Bibliography", Cambridge University Press, 1986.

Compilers and

[RogersP-86] Patrick Rogers, Charles U. McKay, "Distributing Program
Entities in Ada", Proceedings of the First International Conference on

Ada for the Space Station, University of Houston at Clear Lake, June

2-5, 1986.

[RogersP-86-2] Patrick Rogers, "Real-time Ada", Proceedings of the

First International Conference on Ada for the Space Station,

University of Houston at Clear Lake, June 2-5, 1986.

[Rudisln-87] Jerry Rudisln,

presentation at the SIGAda

1987.

"A High-Level Optimizer for Ada",

summer meeting, Seattle, August 25-28,

[Ryer-86] Mike Ryer, "Optimization in Ada: Why it is hard",

Presentation to the Washington DC SIGAda, 25 June 1986.

[Shuler-87] Robert Shuler, "Integrating Artificial Intelligence

Programming Techniques with an Ada Environment", Presentation to code

FR4, Kennedy Space Center.

[Spiegel-87] James R. Spiegel, "Interactive Discrete Event Simulation

in Ada", Proceedings of the Joint Ada Conference (Fourth Washington

Ada Symposium), Arlington, Va., March 16-19, 1987.

[Squire-87] Jon Squire (for Gil Myers), "Numerics Working Group Status

Report", SIGAda summer meeting, Seattle, August 25-28, 1987.

[Taft-86] S. Tucker Taft, "A Distributed APSE", Proceedings
First International Conference on Ada for the Space

University of Houston at Clear Lake, June 2-5, 1986.

of the

Station,

[Tasaki-87] Keiji Tasaki, J. Page, and Frank McGarry, "A Second

Experiment Uith Ada - The COES-I Dynamics Simulator", GSFC, SEL

Project plan, May 1987.

m

m

I

J

w

u

m

m

= _

I

B

J

I

J

Im

I

5

g

H

g

L

E

w

BIBLIOGRAPHY Page A-9

22 February 1988

[Tedd-84] Mike Tedd, Stefano Crespi-Reghizzi, Antonio Natali, "Ada For

Multi-microprocessors", Cambridge University Press, 1986.

[Tomayko-86] James E. Tomayko, "Lessons Learned in Creating Spacecraft

Computer Systems: Implications for Using Ada for the Space Station",

Proceedings of the First International Conference on Ada for the Space

Station, University of Houston at Clear Lake, June 2-5, 1986.

[Vidale-86] R. F. Vidale, et. al, "Visualization, Design, and

Verification of Ada Tasking Using Timing Diagrams", Proceedings of the

First International Conference on Ada for the Space Station,

University of Houston at Clear Lake, June 2-5, 1986.

[Wallace-86] Robert J. Wallace, "Constructing a Working Taxonomy of

Functional Ada Software Components for Real-time Embedded

Applications", Proceedings of the First International Conference on

Ada for the Space Station, University of Houston at Clear Lake, June

2-5, 1986.

[Weiderman-87] Nelson H. Weiderman, et al., "Ada Embedded Systems:

Issues and 0uestions", Software Engineering Institute, SEI-87-MR-2,

January 1987.

[Wellings-84] A. J. Wellings et. al, "A Problem With Ada and Resource

Allocation", Ada Letters, Vol. III, Nr. 4, January-February 1984.

[Whitredge-87] Roy Whitredge, "GPC Real-Time Operating System",

presentation at the Charles Stark Draper Laboratory, January 21, 1987.

[Whoolley-87] Stanley Woolley, "NSTL's Ada Lessons Learned", Internal

memorandum, NSTL, 19 March 1987.

[Wichmann-86] B A Wichmann, "Ackermann's Function in Ada", Ada

Letters, Vol. VI, Nr. 3, May-June 1986.

[Wilder-83] William, L. Wilder, "Minimal Host for the KAPSE", Ada

Letters, Vol. III, Nr. 2, September-October 1983.

[Wilder-85] William, L. Wilder, "KAPSE Implementation Strategies", Ada

Letters, Vol. V, Nr. i, July-August 1985.

[Wilke-86] Randy Wilke and Daniel Roy, "A Small Evaluation Suite For

Ada Compilers", Proceedings of the First International Conference on

Ada for the Space Station, University of Houston at Clear Lake, June

2-5, 1986.

= =

i

m

nlm

L _

11n

u

qU

g

gn

L--

li

uB _

qiIL4

a_

u

J

U _

m

=

F

APPENDIX B

PROCUREMENT ISSUES

Ada has already been used in the most varied situations from embedded

microprocessors to large mainframe hosts and from MIS to real-time

applications. Because of this ubiquity and the designers' concern to

avoid built-in obsolescence, the RM leaves some freedom to

implementers for accommodating very different needs as well as new

technologies.

This appendix deals with such implementation dependencies by going

through the issues raised in section 4 and making compiler procurement
recommendations that address them.

B.I COMPILER SELECTION

The following documents are relevant for the selection of Ada

compilers and runtime systems:

o ARTEWG has produced a list of implementation dependencies

that feature many more issues [ARTEUG-I].

SEI has published a study for embedded

[Weiderman-87]. Procurement issues are

addressed in Section 4.

applications

specifically

o Some procurement issues for distributed implementations can

be found in [Tedd-84].

An industry standard and a more inclusive list of procurement

issues can be found in [Nissen-83]. Section 5.2 and Section

6 are particularly relevant to RTE. Every vendor should

provide answers to the entire |Nissen-83] questionnaire.

0nly a few of all these issues, judged most important and relevant to

RTEs, have been added to the list in section 4 of this document.

Benchmarking suites are invaluable for comparing compilers in the same

environment. Suites that assess the quality of the error messages and

other static features are rare [Wilke-86]. At the time of this

writing, the best suite for dynamic RTE evaluation is the PIWG suite

PROCUREMENTISSUES
COMPILERSELECTION

Page B-2
22 February 1988

[PIWG-87] that can be procured free of charge from SIGAda. Consult
the latest issue of ACM's Ada Letters for PIVG's point of contact.

B.2 RUNTIME FEATURES AND PROCUREMENT ISSUES

The structure of this section closely parallels that of Section 4 of

this document. When a feature is mandatory, "must" is used in the

procurement recommendation. "Should" is used to indicate a strong

preference or to state a definite need.

D

i

m

z

U

B.2.1 Storage Management

Any implementation that allows the user to select between static and

dynamic local object allocation for non-recursive subprograms deserves
extra credit. An embedded application must provide for the allocation

of code from library units to the target memory.

For embedded applications, subprogram CHECKED DEALLOCATION and the

associated pragma SUPPRESS should be provide_ (See issue 13.10.1 in

section 5). For hosted implementations, and particularly for AI

applications, some form of automatic memory management should be

provided. An implementation that provides such functionality deserves

extra credit.

Pragma INLINE must be obeyed unless a compelling reason, such as a

recursive subprogram, prevents it. In this latter case, a diagnostic

must be provided. Any implementation must be compliant.

An implementation must have some way to manipulate bits and groups of

bits. Any implementation that provides bit packing for arrays of

BOOLEAN deserves extra credit.

For embedded applications, means to control the allocation of code

from library units to the target memory must be provided, preferably

outside of the Ada code.

m

W

I

U

B.2.2 Exception Management

The CONSTRAINT ERROR exception can be raised under any one of 18

different error conditions. An implementation, the RTE of which

produce accurate and precise messages to help distinguish between

these conditions, deserves extra credit.

On a hosted environment, including embedded application

systems, unhandled exceptions must be propagated to

produce a traceback. In particular, this applies to

raised, or propagated in tasks.

development
the RTE and

exceptions

a

u

I

m

f

=

PROCUREMENT ISSUES

RUNTIME FEATURES AND PROCUREMENT ISSUES
Page B-3

22 February 1988

B.2.3 Processor Management

An implementation must provide a default priority and clearly document
its value.

A hosted implementation should feature real preemptive scheduling and

time slicing option for tasks o£ same priority. The functionality of

ARTEWG's package TIME SLICING could be offered in a package
LOW LEVEL TASKING. See section 4.2.3 of this document. Embedded

applications could offer a cyclic scheduler as specified in

[ARTEWG-2], or CMU's rate monotonic scheduler. Furthermore, embedded

implementations could offer the functionality of ARTEWG's package

PREEMPTION CONTROL in a package LOW LEVEL TASKING. See section 4.2.3

of this document. An implementation-that provides such functionality

deserves extra credit.

An embedded implementation that provides the functionality of ARTEWG's

package DYNAMIC PRIORITIES deserves extra credit.

Vendors must provide full documentation of the characteristics and

behavior of the scheduler(s).

All implementations should provide pragma SHARED.

B.2.4 Rendezvous Management

A symbolic multi-task debugger that allows full control of tasks at

runtime is very important for testing multi-task programs. Embedded

implementations must feature an even more sophisticated toolset

allowing real-time execution of the target code under the control of a

debugger residing in the host [Weiderman-87].

An implementation that provides SEMAPHORE, SIGNAL, and

functionality deserves extra credit.

MONITOR

B.2.5 Task Activation

An implementation that provides pragma
credit.

PRE ELABORATE deserves extra

7

B.2.6 Task Termination

The conditions under which tasks declared in library units terminate

must be be documented by the vendor.

Since the RM does not specify _hether task completion must be

synchronous or asynchronous, the vendor's documentation must indicate

his choice as well as the possible side effects on the runtime system.

PROCUREMENTISSUES
RUNTIMEFEATURESANDPROCUREMENTISSUES

Page B-4

22 February 1988

B.2.7 Interrupt Management

An embedded implementation that connects to an interrupt (because of a

representation clause) and does not require a non-portable pragma,

deserves extra credit. Note that the accept statement and the

enclosing loop statement must be executed at hardware priority.

B.2.8 I/O Management

When a Put is immediately followed by a get, the output buffer must be

flushed before executing the get in accordance with RM I/O example (RM
14.7).

I

Do not procure a compiler the RTE of which suspends all tasks that

could otherwise proceed because one task is blocked on an I/O

operation. An implementation that provides non-portable constructs to

alleviate such deficiency is barely acceptable.

A hosted implementation should provide a package MIXED IO

the one provided by DEC.

similar to

For embedded implementations, vendors should provide examples of use

of package LOW_LEVEL_IO for the purpose of handling DMA type I/O.

I

m

=

I

U

m

m

I

B.2.9 Time Management

An implementation that provides an RTE procedure SUSPEND, such as the

one described in section 4.2.9 of this document, deserves extra
credit.

Specify that all delay statements (including "delay 0.0;") must be

implemented as scheduling events.

SYSTEM.TICK should be less than or equal to 20 ms and timer resolution

better than 50 microseconds. See section 4.2.9 of this document. A

hosted implementation should provide such functionality. An embedded

implementation must provide a SYSTEM.TICK smaller than 1 millisecond.

Furthermore, a host dependent function must be provided that "reads
the clock" with a resolution better than 50 microseconds. A hosted

implementation that provides such functionality deserves extra credit.

B.2.10 Others

Use of non-initialized variables should be so diagnosed by the

compiler or a tool. A MAPSE that provides such functionality deserves

extra credit. An implementation must raise CONSTRAINT ERROR at run

time when a variable of undefined value is evaluated.

ii_i!

J

m

m

u

m

F _

U

I

W

PROCUREMENT ISSUES

RUNTIME FEATURES AND PROCUREMENT ISSUES
Page B-5

22 February 1988

Ask the vendor to produce an annotated chapter 13 showing what

features are implemented and to what degree. Most of this chapter

must be implemented. Limitations are acceptable but total elimination

is not. For instance9 on hosted implementations, it might be

acceptable to not implement address representation clauses. This is

not acceptable for embedded applications. Extensive documentation of

the techniques and overhead associated with the representation clauses

must be provided by the vendor. An implementation that provides

guidelines on the use of representation clauses deserves extra credit.

w

=

lli

I

I

M

g

liO

J

g

m

II

Ul

m

l

MI

E_
H

g

H

i

m _
g

L_

ml-

II

!
k...-.-

L =

PROCUREMENT ISSUES

RUNTIME FEATURES AND PROCUREMENT ISSUES

INDEX

Page Index-i

22 February 1988

12

w

w

r --

1750A, 2-28 to 2-29, 4-31

Activation, 2-31, 4-32

AI, 2-29, 3-2, 3-7, 3-11, 4-3,
4-6

Benchmarks, 2-3, 2-15, 2-21, 2-27,

2-29, 3-2, 3-7 to 3-8, 3-14,

3-19, 3-21, 4-23 to 4-24,

4-31

Clock, 2-23, 4-36, 4-41 to 4-42

Compilers, 1-2, 2-3 to 2-5, 2-10

to 2-12, 2-15 to 2-16, 2-18

to 2-19, 2-26, 2-29, 3-15,

4-6, 4-8, 4-11 to 4-12, 4-15,

4-20, 4-28, 4-31, 4-41 to

4-42, 4-45

Debugger, 2-5, 2-10, 2-26, 2-31

Delay, 3-5, 4-41 to 4-43

Distributed, 2-14, 2-23, 3-2 to

3-3, 3-11 to 3-12, 3-16, 3-18,

4-19

Exceptions, 2-3, 2-13 to 2-14,

2-23, 2-26, 2-31, 4-11 to
4-13

Fault-tolerant, 2-23, 3-3, 3-16

to 3-17

Fixed point, 2-9, 4-44

Format, 2-1

Fortran, 2-2, 4-44

I/0, 2-8, 2-13, 2-23, 2-26, 2-31,

3-18, 4-39 tO 4-41

Interface, 2-2, 2-4, 2-9, 2-15,

2-23, 3-9, 3-20 to 3-21, 4-9,

4-23

Interrupts, 2-23, 2-25, 3-18,

4-19, 4-35 to 4-37

Math, 2-2, 2-4, 3-6, 3-19, 4-44

NASCOM, 2-17, 2-23, 2-25 to 2-26

Non-initialized variables, 3-15

Packages, 2-4, 2-10 to 2-11, 2-18

to 2-20, 2-23, 2-25, 2-27,

3-5 to 3-6, 3-13, 3-20

Pragma shared, 4-9

Priorities, 2-18, 2-31, 4-14 to

4-16, 4-18, 4-31 to 4-32,

4-36

Rep clauses, 2-3, 2-13 to 2-14,

3-18, 4-5, 4-8, 4-11, 4-36,

4-40, 4-44 to 4-45

Robotics, 2-11, 3-2

RV, 2-3, 2-8, 2-14 to 2-15, 2-18,

2-22 to 2-23, 2-29, 3-5, 3-14,

3-16, 3-20 to 3-21, 4-12,

4-14, 4-21, 4-24, 4-26, 4-30

to 4-31

Scheduler, 2-8, 2-19, 2-23, 2-31,

3-3 to 3-4, 4-13 to 4-14,

4-16, 4-18 to 4-20

Simulation, 2-18, 2-31, 3-2_ 3-6,

3-9, 3-17

Storage, 2-9, 2-14, 2-19, 2-23,

3-5, 3-18, 4-4 to 4-6, 4-8,

4-10

TAE, 3-20
Termination, 2-14 to 2-15, 4-34

to 4-35

Time, 2-18, 2-23, 3-5, 4-41

Traceback, 2-9, 4-12

Unchecked conversion, 2-16, 2-18,

4-8

m

m

g

w

II

I

II_41

m

U

Im

ND _

al

m

il

lIB

N

L__

mid

Im

m

