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Abstract

The 2005 Forest and Rangeland Condition Indicator Model is a set of classification trees for forest and rangeland con-
dition indicators at the national scale. This report documents the development of the database and the nonparametric 
statistical estimation for this analytical structure, with emphasis on three special characteristics of condition indicator 
production processes: (1) the inability of humans to completely control ecological systems; (2) the lack of a theoretical 
basis for specific relational functional forms, suggesting the need for a highly flexible model structure; and (3) the broad-
scale spatial nature of the problem (and data). The resolution of data deficiencies is also examined. Finally, the model 
projections themselves are presented and discussed using national-scale maps.
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Background_____________

The Forest and Rangeland Renewable Resources 
Planning Act of 1974 (RPA) as amended by the National 
Forest Management Act of 1976 (NFMA) and the six 
national renewable resource assessments that have been 
completed as mandated by that legislation have all em-
phasized the importance of quantitative information on 
renewable resource interactions. The interactions analy-
sis for the 1989 RPA Assessment (Hof and Baltic 1988) 
focused on the National Forest System lands. That report 
analyzed the capability of the National Forest System 
to maintain a constant share of total national resource 
production, as indicated by the demand (consumption) 
projections developed for individual resources in other 
recent assessment analyses and the impacts on costs 
and environmental conditions. The analysis was not 
completely successful in determining the environmental 
impacts of increasing output levels, but it did indicate 
previously unrecognized limits to the production capa-
bilities of the National Forest System. These results were 
used in the development of the Recommended 1990 RPA 
Program (USDA Forest Service 1990). In the “Implica-
tions” chapter, the Program also emphasized the critical 
importance of interactions research:

Without improved information [about resource 
interactions], there could be misjudgments about 
the resource output capability of the Nation’s 
forests and rangelands. This could

•  Lead to errors in management decisions that 
could stress the resource base or, conversely, 
underutilize the resource capability.

•  Misdirect public and private programs that 
target just one renewable resource, without 
giving adequate attention to effects on other 
resources.

Since that assessment and program development, 
the Forest Service has undergone a significant change 
in the way it considers and manages natural resources. 
The 1989 interactions analysis focused on harvest-
able resource outputs and the 1990 Program endorsed 
this approach to interactions analyses when it stated 
that the objective of research in resource interactions 
“is to determine which management systems and 
practices are most suitable for the production and use 
of natural resources.” In 1992, however, the Forest 
Service officially committed to using an approach to 
management called “ecosystem management” defined 
as “an ecological approach to achieve the multiple-use 

management of the National Forests and Grasslands by 
blending the needs of people and environmental values 
in such a way that the National Forests and Grasslands 
represent diverse, healthy, productive, and sustainable 
ecosystems” (Robertson 1992). The subsequent 1993 
RPA Assessment Update (USDA Forest Service 1994) 
stated in the section on “Ecosystems Management and 
Resource Interactions,” that “an emphasis on ecosystem 
management may change the nature of production pos-
sibilities and feasibilities.” This section concluded that 
future resource interactions analyses needed to involve 
“assessments of [ecosystem] function, process, and 
condition.” Both the 1993 Update and the Draft 1995 
RPA Program (USDA Forest Service 1995) continued 
to emphasize the importance of resource interactions 
research, but within this new context.

Based on this new direction for management and 
research, the 2000 resource interactions model and sup-
porting database (Hof and others 1999a, b) was oriented 
toward analysis of the interactions between resource use 
and condition indicators, as opposed to the emphasis 
on production possibilities and feasibilities in the 1989 
interactions analysis. The focus on condition indicators 
is a direct result of a shift in natural resource manage-
ment that is now focusing on long-term sustainability 
of ecosystems as the measure of responsible steward-
ship (Nobel and Dirzo 1997; Heinz Center 2002). This 
shift is attributable to a growing recognition that the 
human economy is very much dependent upon goods 
and services derived directly from ecosystems (Dailey 
1997) and that intensive use of natural resources may 
be stressing ecosystems to a point where their ability to 
provide these benefits is compromised (Vitousek and 
others 1997; Loreau and others 2001). The 2000 analysis 
used econometric methods to project “hotspots” of stress 
as suggested by a set of forest and rangeland condition 
indicators. Now, for the 2005 Update of the 2000 Assess-
ment, a new model has been built that has an improved 
set of indicators, a more tenable set of driving variable 
projections, and a more flexible, nonparametric method-
ology. Although the indicators of forest and rangeland 
condition chosen were limited by data availability, they 
were chosen to reflect (as much as possible) the scope 
and intent of ongoing efforts to define appropriate sets 
of ecosystem condition indicators (Rapport and oth-
ers 1985; Coulombe 1995; National Research Council 
2000). This report describes the rationale and structure 
of this new model, the development of its supporting 
database, the implementation of the model in projecting 
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hotspots for resource condition indicators, and the results 
of our analysis as displayed with national-level maps.

Structure of the Model____

The purpose of this analysis is to identify broad-scale 
(national) relationships between natural characteristics, 
land use/land cover/land ownership variables, human 
population, and indicators of the forest and rangeland 
condition. Many studies have quantified these types of 
relationships at the local scale (see Hof and Baltic [1988] 
for a survey). Far less is known about these relationships 
at the national scale, other than the econometric results 
of our previous study (Hof and others 1998). This study 
does not analyze biological processes or capture detailed 
impacts. Rather, its intent is to analyze coarse effects at 
a very broad spatial scale. This study certainly misses 
many fine-scale relationships, but it may capture broad-
scale effects that are missed with a tightly focused view. 
We are, so to speak, trying to see the forest, not the trees. 
We begin with a brief discussion of the theory behind this 
analysis and then focus on the suggested empirics.

The production processes for the indicators of forest 
and rangeland condition are obviously different from 
those for traditional economic outputs. The ecosystems 
that “produce” environmental outputs on forests and 
rangelands are far more complex and far less control-
lable by human management than a traditional economic 
production unit such as a factory or a farm. In addition, 
the production unit for forest and rangeland ecosystems 
covers very large landscapes rather than the spatially 
limited traditional economic production units. Thus, in 
this paper, we will focus on three special characteristics 
of the environmental output production process: (1) the 
inability of humans to completely control ecological 
systems; (2) the lack of a theoretical basis for specific 
relational functional forms, suggesting the need for a 
highly flexible model structure; and (3) the broad-scale 
spatial nature of the problem (and data). Each of these 
will be discussed in more detail before proceeding.

Ecosystem Independence

First, we define three vectors of variables:  %X  is a 
vector of inputs that include human-generated inputs 
embodied in management actions as well as “natural” 
inputs such as climate and landscape characteristics;  %Y
is a vector of harvested outputs such as timber, livestock 
grazing, recreation use, and mining activity; and  %Z  is a 

vector of forest and rangeland condition indicators. The 
traditional economic analysis would treat the  %Y  vector 
as the outputs, produced from the  %X  vector, with the 
 %Z  vector left largely unaccounted for. Our focus here 
is the  %Z  vector, so we will treat it as the output vector 
with the  %X  and  %Y  vectors as inputs. It might be more 
appealing in this context to regard the  %Y  vector as  
harvest-related management intensity variables that are 
inputs (positive or negative) to the production of the 
condition indicators.

The textbook treatment of joint production would use 
an implicit-form production function as:
	

 
0 = f %X , %Y , %Z( ) 	 (1)

to relate these three variable vectors. Mittelhammer and 
others (1981) show, however, that this approach is quite 
limiting because it does not allow any of the variables 
(and  %Z  in our case) to be unrelated. In a traditional eco-
nomic production unit, we expect to be able to fix inputs 
and then define a locus of output combinations—the 
product transformation curve. Because our outputs are 
the  %Z  forest and rangeland condition indicators, this 
expectation may not be appropriate. In ecological sys-
tems theory, management actions are viewed as altering 
the structure and function of the ecosystem, which then 
results in a particular system response (see Barrett and 
others 1976; Hall and Day 1977; Allen and Hoekstra 
1992). Viewed deterministically, any combination of 
 %X  and  %Y  is associated with a particular set of environ-
mental outputs  %Z , and the product transformation curve 
would be a single point. For example, once a certain 
fire suppression and harvesting schedule is applied, 
a set of environmental outputs such as sedimentation 
and wildlife habitat are determined by the resulting 
ecosystem structure and function. This would suggest 
that an appropriate production structure should have 
the property that:

	 ∂Z
i
/ ∂Z

j
= 0 	 i ≠ j 	 (2)

with all  %X  and  %Y  held constant. Mittelhammer and oth-
ers show that such a property is not obtainable with (1). A 
production structure that has this property would be:

	  
Z

i
= g

i
%X , %Y( )∀i. 	 (3)

Note that (3) is not a simultaneous system, but is 
potentially a set of seemingly unrelated regressions. 
Equation (3) is still a joint production structure, because 
the  %Z  simultaneously utilize the  %X  and  %Y  inputs. If 
the  %X  and  %Y  vectors are fixed, however, only a single 
 %Z  results, reflecting the autonomy of the ecosystem, as 
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desired. In a complex ecosystem, interactions between 
any of the  %X  and  %Y  variables in affecting the  %Z  vari-
ables are potentially important, suggesting the flexible, 
interactive approach referred to as “Classification Trees” 
(discussed next).

Classification Tree Structure

The ultimate purpose of this study is to project “hot-
spots” of environmental stress. We will use indicators 
of forest and rangeland condition stress (environmental 
outputs) to accomplish this purpose, and the current 
hotspots for each indicator will be defined as the areas 
in the country with the highest 10 percent of the values 
for that indicator. When we project these hotspots, this 
definition will be retained—we will project areas that, in 
the future, would be considered hotspots by our current 
standard just defined. Thus, analytically, we have a clas-
sification problem and we need a flexible classification 
tool that can be used for projection purposes. Let us look 
at the need for flexibility a bit closer.

The production functions in (3) are written in closed 
form for the purposes of discussion, but it is actually 
quite difficult to determine what sort of specific func-
tional form would be theoretically tenable for such a 
relationship. In Hof and others (1999a, b), we used a 
translog functional form to be as flexible as possible in 
a (parametric) econometric estimation. However, the re-
lationships between variables and environmental outputs 
may be strongly nonlinear and involve complex interac-
tion terms that remain undetectable by traditional statisti-
cal modeling approaches (De’ ath and Fabricius 2000). 
An alternative modeling approach that can represent 
complex variable interactions and is robust to violation 
of assumptions that typically constrain parametric mod-
eling techniques is called “classification and regression 
trees” (CART; see Breiman and others 1984). A CART 
model can be built for either a categorical (generating 
a classification tree) or continuous (generating a regres-
sion tree) response variable. Because our interest lies in 
projecting whether a given geographic unit qualifies as a 
hotspot of environmental stress (a categorical response), 
we will generate a set of classification trees.

A classification tree amounts to a set of binary dif-
ferentiations (“splits”), each based on a threshold value 
of a particular explanatory variable. The explanatory 
variable and its associated threshold value (split point) 
are selected in the CART algorithm so as to minimize 
a “misclassification function.” At each split observa-
tions are partitioned into two groups, with the set of 

observations in each partition being more homogeneous 
with respect to membership in the response variable’s 
categorical classes than the set of observations prior to 
the split. The CART classification algorithm continues 
to construct additional splitting rules until all observa-
tions are assigned to class categories in a way that mini-
mizes misclassification. This initial classification tree is 
then “pruned” in a search for the simplest tree without 
significantly eroding classification accuracy (Breiman 
and others 1984:59-81). The CART software uses “10-
fold” cross-validation of the tree estimation process to 
compute an unbiased estimate of misclassification rate 
(Steinberg and Colla 2000). In this fashion CART essen-
tially specifies a dichotomous key that is used to assign 
new observations to the response variable categories. 
Flexibility is achieved because no pre-specifications on 
the structure or content of the trees are necessary.

In this paper, the coterminous United States is divided 
into a grid of uniform-sized cells, which we call “analysis 
grid cells.” The objective is to classify all analysis grid 
cells as a “hotspot” or a “non-hotspot” with regard to each 
of a set of indicators. The discussion above suggests that 
each indicator should be analyzed separately, so a classi-
fication tree will be estimated for each indicator. Figure 1 
presents a very simple example. Each node in the inverted 
tree represents the separation of analysis grid cells into 
two groups. For example, the first node separates the cells 
into two groups depending on each cell’s value for the 
variable “Agr.” Those cells that have more than 85 per-
cent of their land in agricultural land use are then further 
split according to the variable Urb reflecting the percent 
of the cell in urban land. The cells that have less than 85 
percent of their land in agricultural land use are further 
split according to their density of human population (pop/
acre). The binary splits continue until all of the cells are 
classified into sets that are labeled as either “hotspot” or 
“non-hotspot.” These final sets are referred to as terminal 
nodes and together they represent a mutually exclusive 
and exhaustive partitioning of all analysis grid cells. Once 
a classification tree has been constructed, projections of 
hotspot and non-hotspot sets can be obtained by substi-
tuting the projected values of the explanatory variables 
associated with each analysis grid cell and allowing the 
tree to re-classify these “new” cells.

Spatial considerations are critical both in the process 
of estimating classification trees and in the process of 
using them for projection purposes. These spatial factors 
are discussed next.
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Spatial Considerations

Because the problem defined for this paper has a 
large spatial extent and because the process of produc-
ing environmental outputs takes place over very large 
landscapes, the estimation of the desired functions 
requires consideration of spatial issues that are not 
normally a concern in traditional economic models of 
production. Our desired sampling scheme for environ-
mental output production analyses would yield obser-
vations that: (1) provide a representative sample of all 
ecological systems in the study area; and (2) provide 
a reasonable representation of the system’s boundary 
when aggregated by ecosystem. Unfortunately, broad-
scale data are often not available on this basis. At our 
scale, data are available in many different formats, from 
micro data with many sample points to county-level 
numbers that are relatively reliable but are also highly 
aggregated. This was problematic since we needed to 
have our response and explanatory variables on a com-
mon spatial frame.

In Hof and others (1999a, b), we tested two ap-
proaches to this problem. The “COUNTY” approach 
simply aggregated all micro data into county averages 
and treated the county as the observation unit. This 
approach is typical in broad scale statistical model-
ing (see Cressie 1991:383), but differential county 
size results in inequitable sampling of landscapes 
across the coterminous United States. In our “GRID” 
approach, we started with the data in its most disag-
gregated (and nonhomogeneously defined) format, and 
then we used kriging (Robertson 2000) to spatially 

interpolate observations onto a uniform grid 
across the country (the reader is referred to 
Cressie [1991], Ripley [1981], and Haining 
[1990] for a detailed discussion of kriging 
and geostatistical techniques in general). This 
approximated the more equitable sampling 
scheme that would have been desirable in 
the first place. Using this intermediate step 
increases the possibility of information loss 
from smoothing or averaging in the inter-
polation process but creates a much more 
homogenous spatial density of observation 
units than counties.

The results of the test in Hof and others 
(1999a, b) suggested statistical advantages 

in the GRID approach, and it has two particular ad-
vantages in this study. First, in the classification tree 
method, goodness of fit is largely based on counts of 
misclassified observations. If the observations are of 
heterogeneous size then these goodness of fit measures 
are more difficult to interpret and are less reliable. 
Second, the interpretation of the classification tree and 
the definition of the hotspots projected with it are much 
more straightforward if the observations are of uniform 
size. We did experiment with the COUNTY approach 
in CART and found that the indicated performance was 
greatly superior with the GRID approach.

In Hof and others (1999a,b), we maintained ap-
proximately the same number of observations in the 
GRID approach as there were in the COUNTY ap-
proach, because we did not want to inflate the statistical 
hypothesis tests by artificially increasing sample size. 
In this case, however, the nonparametric model is not 
influenced by sample size, and we wanted to retain as 
much detail as possible (especially in the parts of the 
country with small counties). Thus, the analysis grid 
that we implemented contained 17,000 cells, which 
resulted in a cell size (21,376.5 meters square or 
45,695.5 ha) that approximated the 5 percent quantile 
level of county sizes (only 5 percent of the counties 
in the coterminous United States are smaller than our 
cell size).

Database Development____
The theoretical production structure discussed 

above suggests that indicators of forest and rangeland 
condition should be related to measures (including sur-
rogate measures) of land use, land ownership, climate  

Yes No

No

NoNo

No Yes

Yes

Yes

Yes

Hotspot Urb>5%

Hotspot Non-hotspot Hotspot Non-hotspot

Non-hotspot

Pop/acre>.06?

Elev Var<50%?

Urb>10%?

Agr>85%?

Figure 1. An Example Classification Tree.
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variables, topography variables, human population 
levels, economic activity levels, and commodity harvest 
levels. For purposes of projecting hotspots, however, 
projections of these explanatory variables are needed, 
and geographically specific projections are only avail-
able for land use/land cover variables (Alig and others 
2003) and for human population (Woods and Poole 
Economics, Inc. 2003). In addition, we assumed that 
climate, topography, and land ownership variables are 
constant during the projection period (to 2025). We 
limited the variables in the projection model to these, so 
as to maximize the explanatory power of the variables 
that we have projections for. Including explanatory vari-
ables that cannot be tenably projected has the potential 
to compromise the power of the explanatory variables 
that we do have projections for and also to create a 
scenario among the explanatory variable projections 
that is internally inconsistent. This points up the most 
critical weakness of projection models—the projection 
of the response variable is only as good as the projec-
tions of the explanatory variables that are available. 
Of course, the question remains: are these explanatory 
variables sufficient for the classification tree to be able 
to generate tenable hotspot projections? Basically, the 
hypothesis is that population, land ownership, and the 
land use/land cover variables capture the basic pattern 
of human activity and that the climate and topography 
variables capture the environmental context. Our CART 
estimations will provide a test of this hypothesis below. 
We should note that the available projections of the 
explanatory variables are defined on a county basis, so 
they needed to be translated onto our uniform grid by 
spatially interpolating (kriging) from county centroids 
to grid centroids.

The database includes 10 response variables rep-
resenting forest and rangeland conditions. Based on 
the previous discussion, we included 21 explanatory 
variables including seven measures of human activity 
(including six land use/land cover types and human 
population), two variables that relate to federal/non-
federal ownership, a categorical variable to account for 
ecoregional differences, and 11 measures of climate and 
topographic variation. All of these were included in 
model estimation, and then the ownership, ecoregional 
strata, and climate and topographic variables were as-
sumed constant in the projection of the hotspots.

All of these variables are defined, with sourc-
es, in Appendix A. Again, only the coterminous 
United States is included. Data were obtained from  

numerous sources in formats ranging from digital spatial  
databases to highly aggregated county data and micro 
data with many sample points. Most of the source data-
bases included many variables and individual variables 
were often reported in multiple temporal and spatial 
dimensions. Thus, extraction was a significant under-
taking. The digital data required geospatial analysis 
using a Geographic Information System (GIS) and 
other data had to be reformatted or otherwise processed 
and synthesized to be consistent with the data structure 
requirements of the analytical approach. This process-
ing was not trivial because of the spatial scope of the 
analysis, the wide range of the variables of interest, 
and the sheer magnitude and complexity of many of 
the source databases. Data gaps were particularly prob-
lematic because the threshold for rejecting variables 
on the grounds of insufficient coverage is not clear. 
Interpolations and other estimations were necessary 
to ensure data completeness of the variables included. 
As indicated earlier, kriging was used to extrapolate 
micro level data to the grid structure and to interpolate 
county level data to the grid structure.

Standardization involved four kinds of process-
ing. First, for county data, there were some data with 
observations for different parts of a given county that 
had to be averaged or apportioned to obtain a single 
county observation. Second, spatial standardization to 
a common land area (acres) was often required because 
counties and other spatial reporting areas (for example, 
watersheds) vary greatly in size. Third, temporal stan-
dardization was also necessary for data that varied over 
time (climate data for example). Fourth, much of the data 
had to be standardized to analysis grid cells in a GIS 
geospatial analysis involving the calculation of “zonal 
means” (where the analysis grid cells were defined as 
the zones).

Georeferencing, the geographic location of data, was 
another necessary processing step. An identifier was 
assigned as a unique variable for each data observation 
representing either a land area or specific point on the 
ground. For example, FIPS codes identify the county 
data and each observation in the grid data is identified 
by a geographic coordinate (point of latitude and lon-
gitude) for the cell centroid. These centroids represent 
the observation units in the grid model structure.

The sources and processing procedures are unique 
to each variable and, again, are summarized in Appen-
dix A for each variable included in the analysis. All  
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database files and documentation are stored at the Rocky 
Mountain Research Station, Fort Collins, Colorado.

Model Estimation and  
Results_________________

Classification trees were estimated for each of the 
10 forest and rangeland condition indicators using the 
procedures in Breiman and others (1984). These trees 
attempt to correctly classify the current hotspots from the 
database just described. Table 1 presents the basic mea-
sures of goodness of fit for this nonparametric estimation 
procedure. Overall, the results are fairly encouraging. 
The total classification errors in the estimation of the 
trees (the LEARNING data errors) are typically less than 
10 percent, and the TEST data errors typically total less 
than 12 percent. The TEST data errors are based on a 
10-fold cross-validation test, as mentioned earlier (see 
Breiman and others 1984; Steinberg and Colla 2000). 
In terms of model error, our main concern is the false 
hotspot errors, because of the possibility that they would 
influence the hotspot projections. In a later section, we 
will plot the false hotspot cells from the CART estima-
tion and compare them to the actual current hotspots. 
Overall, there is typically a spatial association between 
the actual hotspots and the false hotspot errors. This sug-
gests that when the classification trees make systematic 
errors, it is on the margin of the hotspot areas (which is 
what one might hope for).

The results in table 1 suggest that the variables in-
cluded in the model (for projection purposes) do appear 
to be adequate to provide a fairly accurate classification 
of current hotspots with the CART algorithm. Thus, for 

our purposes here, we will tentatively accept the hypoth-
esis that these explanatory variables adequately provide 
for a classification of analysis grid cells into hotspot and 
non-hotspot groups for the indicator variables included. 
Caveats regarding our projections based on this model 
will be emphasized in the Conclusion.

Projection of Explanatory 
Variables________________

Using the classification trees to project changes in 
forest and rangeland condition indicators over time re-
quired the projection of selected explanatory variables. 
FED and PAD were assumed to be constant because 
RPA assessments in the past have concluded that owner-
ship patterns for forest and rangeland are expected to 
change little over the projection period (USDA Forest 
Service 1989). The climate and topography variables 
were assumed to be constant (recognizing that we 
are ignoring the possibility of global climate change 
within the projection time period). Projections to the 
year 2025 were developed for the land use/land cover 
and human population variables: RNG, CRO, FOR, 
DEV, PAS, CRP, and POP (described in Appendix A). 
Projections for the land use/cover variables were based 
on projections from Alig and others (2003). These 
projections were county-based and only applied to non-
federal land. Land uses on federal land were assumed 
to be constant throughout the projection period based 
on the findings of recent RPA assessments of land use 
and land cover changes (USDA Forest Service 1989; 
2001). County-level projections for population (POP) 
were obtained from Woods & Poole Economics, Inc. 

Table 1. Goodness of fit statistics for classification trees.

	 Test data % error	 Learning data % error

	 No. of	 False	 False		  False	 False
Indicator	 terminal nodes	 Non-hotspot	 Hotspot	 Total	 Non-hotspot	 Hotspot	 Total

EDG	 97	 14.29	 13.42	 13.51	 5.24	 11.96	 11.29
PCH	 70	 13.47	 10.25	 10.57	 5.88	 9.47	 9.11
EXT	 75	 4.47	 2.45	 2.65	 0.12	 1.90	 1.72
MOR	 101	 7.71	 3.73	 4.13	 0.70	 2.74	 2.54
GRO	 78	 7.20	 6.13	 6.24	 0.91	 5.37	 4.92
STR	 149	 15.82	 11.29	 11.75	 2.59	 10.56	 9.76
NTG	 213	 17.12	 7.35	 8.32	 1.47	 5.88	 5.44
PHO	 188	 19.00	 9.27	 10.25	 2.47	 8.74	 8.11
PHL	 81	 3.18	 2.82	 2.86	 0.12	 2.62	 2.19
TRI	 68	 6.06	 10.00	 9.61	 1.18	 7.55	 6.91



USDA Forest Service RMRS-GTR-166. 2006.	�

(2003) an independent corporation that specializes in 
long-term county economic and demographic projec-
tions. All of the explanatory variable projections (that 
change) are mapped in Appendix B.

Projection of Forest and 
Rangeland Condition  
Indicators_______________

The classification tree is used to project hotspots for 
each indicator by inserting the projected values of the 
explanatory variables and then reclassifying all cells 
accordingly, as previously discussed. For each indi-
cator, we report three maps: (a) the current condition 
hotspots, (b) the false hotspot errors from the estimation 
of the CART model, and (c) the CART model hotspot 
projections for the year 2025. The false hotspot errors 
are areas where the CART model classified cells as cur-
rent hotspots, but they are actually non-hotspots (these 
errors were tabulated in table 1). These errors may be 
pure model errors, or they could reflect areas that are 
“very nearly” hotspots.

The false hotspot error maps are important to con-
sider when viewing the CART projections, because 
the projections inevitably include model error (and the 
only indication we have of those are the false hotspot 
errors for the current time period). It is impossible to 
determine if any false hotspot errors that appear in the 
projections occur because of pure model error or because 
they are currently trending toward being hotspots. An 
area that is erroneously predicted by CART to be a cur-
rent hotspot might be correctly projected to be a future 
hotspot by the same model, and vice-versa. Such is the 
nature of statistical projection modeling. Clearly, the 
hotspots discussed should be regarded as candidates for 
further study—our analysis is suggestive, not definitive 
in projecting trends.

Individual Indicator Hotspot 
Projections______________

Edge (EDG)

As the amount of native habitat is reduced, there 
comes a point when the arrangement of that habitat 
becomes critically important to maintaining ecosystems 

(Saunders and others 1991; Muradian 2001). Edge ef-
fects are thought to be a predominant factor affecting 
the structure and function of ecological systems (Har-
rison and Bruna 1999). Although most of the empirical 
literature has focused on documenting edge effects 
at local scales, there is accumulating evidence that 
the influence of edges can be wide-ranging, affecting 
ecosystem properties over broad geographic regions 
(Laurance 2000).

Current condition hotspots for the amount of edge 
between native habitats and human-dominated land uses 
are generally scattered across the country, with some 
concentrations in the eastern half of the country (figure 
2a). The false hotspot errors from the CART model 
(figure 2b) are also more concentrated in the east and do 
tend to be located on the fringes of the current hotspot 
concentrations. The CART model projects significant 
increases in the hotspot areas by 2025, with new hotspot 
areas being very much concentrated in the eastern half 
of the country (figure 2c).

Patch Size (PCH)

Another attribute of habitat arrangement that affects 
ecosystem structure and function is the size of patches 
on a landscape. One of the most obvious, and nearly 
ever-present, effects of habitat destruction is a reduc-
tion in average patch size (Bender and others 1998). 
Reductions in the average size of patches can compound 
the effects associated with a loss of habitat (Flather 
and Bevers 2002) stemming from a reduced capacity 
to support biological diversity, altered disturbance re-
gimes, and subtle changes to microclimate (Saunders 
and others 1991).

Current concentrations of low average patch size for 
native habitats are fairly clustered in the upper Midwest 
and Great Lake states (figure 3a). Peninsular Florida, the 
Gulf coast, and the entire West also exhibit some smaller 
current condition hotspot areas. The false hotspot errors 
from the CART model (figure 3b) are quite scattered but 
still appear to be associated spatially with the current 
hotspots. The CART model projects increases in the 
PCH hotspots by 2025, located similarly to the current 
condition hotspots (figure 3c). The increases seem par-
ticularly noticeable in Florida, California, Arizona, New 
Mexico, and the Midwest from Texas north to North 
Dakota and east to Ohio.



�	 USDA Forest Service RMRS-GTR-166. 2006.

Upper 10 percent by area

Figure 2. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Hotspots to 2025 
for EDG. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the EDG values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

False hotspot errors

Projected hotspots
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Figure 3. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Hotspots to 2025 
for PCH. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the PCH values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Figure 4. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Hotspots to 2025 
for EXT. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the EXT values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Figure 5. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Hotspots to 2025 
for MOR. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the MOR values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Figure 6. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Hotspots to 2025 
for GRO. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the GRO values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Figure 7. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Projected Hotspots to 
2025 for STR. The Current Condi-
tion Hotspots are the grid cells with 
the worst 10 percent of the STR val-
ues in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Figure 8. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Hotspots to 2025 
for NTG. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the NTG values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Figure 9. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Hotspots to 2025 
for PHO. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the PHO values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Figure 10. (a) Current Condition Hot-
spots, (b) False Hotspot Errors from 
the CART Model, and (c) Projected 
CART Model Hotspots to 2025 
for PHL. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the PHL values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Figure 11. (a) Current Condition 
Hotspots, (b) False Hotspot Er-
rors from the CART Model, and (c) 
Projected CART Model Hotspots to 
2025 for TRI. The Current Condition 
Hotspots are the grid cells with the 
worst 10 percent of the TRI values 
in the current data set, the False 
Hotspot Errors are the grid cells 
that the CART model incorrectly 
classified as hotspots based on 
the current values for the indepen-
dent variables, and the Projected 
Hotspots are the grid cells that the 
CART model classified as hotspots 
based on the projected values of the 
independent variables.

Upper 10 percent by area

False hotspot errors

Projected hotspots
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Exotic Breeding Birds (EXT)

A common observation in the ecosystem stress 
literature is that as resource development intensifies 
there is typically an increase in the abundance of ex-
otic (non-native) species that tolerate human activity 
(Rapport and others 1985; Pimentel and others 2000). 
The number of exotic individuals compared to the total 
number of individuals within some taxonomic group 
has been proposed as a useful indicator of ecosystem 
health (National Research Council 2000) and has been 
used recently with bird monitoring data as a broad-scale 
indicator of ecosystem condition (Hof and others 1999a; 
Sieg and others 1999).

The proportion of exotic species currently comprising 
the bird community is especially prominent throughout 
the upper Midwest (figure 4a). There are some smaller, 
isolated current condition hotspots in the mid-Atlantic 
region, Texas, Idaho, southern California, and the Pacific 
Northwest. The false hotspot errors from the CART 
model (figure 4b) closely surround the current EXT hot-
spots. The CART model projections (figure 4c) indicate 
stability in the large Midwestern hotspot, a reduction 
in the hotspot area in the mid-Atlantic region, and new 
hotspots in Colorado, Kansas, Oklahoma, and Texas.

Timber Mortality (MOR)

A less well-studied aspect of ecosystem condition 
indicators involves the effect of various stressors on 
disease incidence (Rapport and others 1985). One group 
of host organisms where there has been a number of 
studies examining the relationship between stress and 
disease is trees (Manion 1981). The ultimate stress that 
predisposes a tree to death may be quite different from 
the proximate mortality factor. For example, Dahlsten 
and Rowney (1980) found that air pollution rendered 
ponderosa pine (Pinus ponderosa) more vulnerable to 
insect infestation. Our interest here is not to attribute 
cause to increasing tree mortality, but to simply use the 
mortality rate as an indicator of some undefined stress 
or set of stresses. Because the data for this indicator are 
limited to timberland, we excluded those counties that 
had no timberland (light gray areas in figures 5a-c). 
Timberland is defined as “Forest land that is producing 
or capable of producing in excess of 20 cubic feet per 
acre per year of wood at culmination of mean annual 
increment…” and is not withdrawn from timber utiliza-
tion by statute or administrative regulation (Bechtold 
and Patterson 2005:84).

High mortality rates for timberland currently occur 
in four distinct areas throughout the country (figure 5a). 
Notable areas of clustering occur in the Great Plains, 
the coastal plain and piedmont regions of South Caro-
lina and North Carolina (and a bit in Georgia), New 
Mexico, and the interior West. The ultimate cause of 
the increased mortality is likely very different in each of 
these hotspots. The false hotspot errors from the CART 
model (figure 5b) are closely associated with the cur-
rent hotspots. The CART model projections (figure 5c) 
indicate a strong reduction in the New Mexico hotspot, 
a diffusion of the Interior West hotspot, a concentration 
of the Great Plains hotspot, and some diffusion of the 
Southeastern hotspot. Small new hotspots are projected 
in the Gulf Coast region of Texas, Arizona, California, 
and Florida

Timber Growth (GRO)

When under stress, trees alter their normal pattern of 
carbon allocation by decreasing stem growth (Waring 
1987). Consequently, reductions in tree growth will often 
precede a detectable change in tree mortality. Although 
timber growth and mortality rates are expected to be 
correlated, reductions in timber growth may actually 
serve as an early warning sign, relative to timber mor-
tality, of ecosystem stress. Again, because the data for 
this indicator are limited to timberland, we excluded 
those counties that had no timberland (light gray areas 
in figures 6a-c).

The results for GRO (in figures 6a-c) are quite 
similar to those discussed for MOR (note that GRO is 
defined as 1 minus the ratio of actual growth to potential 
growth). The current condition hotspots (figure 6a) are, 
if anything, slightly more diffuse than timber mortality 
with additional hotpots in the Northeast, Northwest, 
and California. The false hotspot errors from the CART 
model (figure 6b) are generally associated with the cur-
rent hotspots but the errors are scattered across the East 
Coast and the West. The CART projections (figure 6c) 
indicate a scattering of the hotspots across the West, 
some expansion of the Great Plains and the Northeast 
hotspots, and essentially a disappearance of the hotspot 
in South Carolina.

Negative Deviations From  
Mean Streamflows (STR)

Human alteration of land cover has obvious direct 
effects on terrestrial systems. Those alterations coupled 
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with increasing human populations also affect aquatic 
systems through their influence on the hydrologic cycle. 
Clearing of land for agriculture or urban development 
can increase the amount of water reaching water courses 
by reducing transpiration, interception, and infiltration 
(Arnold and Gibbons 1996; Goudie 2000; Weng 2001); 
however, we assume that the effects of concern from ag-
ricultural development and human population growth are 
the reductions in stream flows that result from increased 
water withdrawals (Brown 2000).

The current condition hotspots for STR (figure 7a) are 
spread across the western half of the country, with a few 
areas in the Southeast. The false hotspot errors from the 
CART model (figure 7b) are generally associated with 
the current hotspots but the errors are rather extensive 
in some areas. The projections from the CART model 
(figure 7c) indicate some expansion of the hotspots in 
the West, as well as new hotspots in the Great Lakes 
states and the far Northeast. The projected hotspots 
in the Southeast shift somewhat relative to the current 
condition hotspots, and the hotspots in Texas all but 
disappear.

Total Nitrogen in  
Surface Waters (NTG)

In disturbed systems there is often a loss of nutrients 
through leaching and soil erosion (Likens and others 
1978). Chemical cycles become leaky causing elevated 
nutrient delivery and accumulation in aquatic systems 
(Rapport and others 1985; Magdoff and others 1997; 
National Research Council 2000). Furthermore, nutrient 
loads in aquatic systems can become elevated due to 
direct input from sewage, animal waste, and synthetic 
fertilizer application (Goudie 2000). Nitrogen is an 
important element in plant and animal nutrition, but el-
evated levels can have detrimental effects on ecosystem 
function and human health (National Research Council 
2000). We use a measure of total nitrogen in surface 
waters (also called total Kjeldahl nitrogen) as described 
in Mueller and others (1995:7).

Current areas of high total nitrogen levels (figure 8a) 
appear diffusely across the country with some spatial 
clustering in the Interior West, the Midwest, and the 
arid Southwest. The false hotspot errors from the CART 
model (figure 8b) are generally associated with the 
current hotspots but the errors are also rather scattered 
in some areas. The CART model projections (figure 
8c) indicate intensification of stress in the Midwest, 
the Pacific Northwest, the Southwest, and the far East. 

Texas and Nebraska exhibit particularly large hotspot 
expansions.

Total Phosphorous in  
Surface Waters (PHO)

Phosphorous concentrations are another common 
indicator of water quality (O’Neill and others 1997) that 
can alter ecosystem condition through their accelerat-
ing effect on eutrophication (Goudie 2000). Elevated 
phosphorous levels are caused by many of the same 
agents as nitrogen—namely sewage, animal waste, fer-
tilizers, and detergents. Because of the shared origins, 
phosphorous levels are expected to be correlated with 
nitrogen levels. However, there are reasons why these 
two nutrients are not necessarily redundant indictors of 
water quality. Phosphorous is less mobile than nitrogen, 
adhering strongly to soil constituents. Consequently, 
phosphorous levels in surface waters are affected by 
the type, texture, and level of organic matter in the soil 
(National Research Council 2000). We use a measure of 
total phosphorous (mg of P/L) as described in Mueller 
and others (1995:7).

Areas of high total phosphorous currently appear 
diffusely across the country (figure 9a). There is some 
geographic similarity with nitrogen—namely concen-
tration of analysis grid cells supporting high levels of 
phosphorous in the upper Midwest, the Southwest, the 
Interior West, and the Gulf Coast. The false hotspot 
errors from the CART model (figure 9b) are generally 
associated with the current hotspots but the errors show 
some general scattering as well. The projections from 
the CART model (figure 9c) indicate a dramatic increase 
in stress in the Midwest from Texas to the Dakotas. 
Increases are also evident in the Southeast and Utah, 
with decreases in hotspot area in the arid Southwest. 
The hotspot in Maine also disappears.

Ph in Precipitation (PHL)

Chemical compounds can also impact ecosystem 
condition through the process of atmospheric deposi-
tion. Increased acidification of precipitation (higher 
loads of H+) is prominent among these concerns (Lik-
ens and Bormann 1974). Sulphur oxides and nitrogen 
oxides from fossil-fuel combustion are the primary 
compounds causing increased acidity in precipitation, 
and its effects on the structure and function of ecosys-
tems are potentially widespread—causing, among other 
things, accelerated leaching of soil nutrients, increased  
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solubility of toxic heavy metals, reductions in fish and 
algae diversity, slower growth in forests, and reduced 
seed germination (Goudie 2000).

The current condition hotspots for PHL (figure 10a) 
are essentially restricted to the Northeast. The false 
hotspot errors from the CART model (figure 10b) are 
on the margin of the current hotspot cluster but are 
quite noticeable in Maine, Illinois, and the Great Lakes 
States. The projections from the CART model (figure 
10c) indicate a continuance of this area of stress in the 
Northeast, with some expansion into the areas identi-
fied as false hotspot errors in figure 10b. Whether this is 
model error or a tenable projection is difficult to assess 
(as discussed previously).

Total Toxic Chemical Releases  
to the Environment (TRI)

Chemical pollutants can take many forms. Previous 
indicators have been targeted to a restricted set of com-
pounds. This indicator attempts to capture changes in 
ecosystem condition caused by a much broader suite of 
contaminants. The Toxics Release Inventory contains 
information on the releases of nearly 650 chemical 
categories to the air, water, and land. Because of the 

diversity of contaminants and their widely varying tox-
icities, it is difficult to outline generally the ecosystem 
effects stemming from these pollutants.

The current condition hotspots for TRI (figure 11a) 
are spread throughout the eastern half of the country 
(with notable exceptions in the far Northeast and South-
east). There is also a large current hotspot in Utah. The 
false hotspot errors from the CART model (figure 11b) 
are generally associated with the current hotspots but the 
errors also appear in a few areas quite separated from the 
current condition hotspots. The CART model projections 
(figure 11c) indicate a significant intensification of the 
hotspots in the East, as well as many new (and smaller) 
hotspot areas in the West.

Overlays of the Projected 
Hotspots________________

Figure 12 presents an “overlay” of the individual in-
dicator projected hotspots. By this, we mean that figure 
12 shows the number of hotspots that were projected to 
occur in each grid cell across the country. Moving from 
east to west, the first noteworthy area of projected hotspot 

Figure 12. Overlay of 
Projected CART Model 
Hotspots to 2025.
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concentration is on the Atlantic seaboard, running from 
South Carolina, through the North Carolina piedmont, 
to Massachusetts. The most expansive concentration 
of projected hotspots includes a broad area through the 
Midwest extending from Ohio in the east, to the till plains 
of Iowa and western Nebraska in the west, south into Kan-
sas, and north into Minnesota and South Dakota. Three 
much smaller concentrations appear in Texas, around the 
Houston area, the Dallas-Fort Worth area, and in western 
Texas around Lubbock and Amarillo. Additional areas 
with high concentrations of projected hotspots include 
the Front Range of Colorado, the Wasatch Range of Utah, 
the area around Las Vegas, and southern California. Ad-
ditional areas with two or three projected hotspots are 
located throughout the West, the Northeast, Florida, and 
the large area south of the Great Lakes states.

The overall picture in figure 12 is very different from 
that depicted in Hof and others (1999a, b). We attribute 
this to at least three factors. First, the hotspots in Hof 
and others (1999a, b) were defined as those grid cells 
that had the greatest degree of change in an indicator 
over the projection period. Here, the hotspots are de-
fined according to the actual magnitude of the projected 
condition as it compares to the definition of the current 
condition hotspots. Second, the hotspots in Hof and oth-
ers (1999a, b) were based on the worst 5 percent whereas 
a 10 percent threshold is used here. Thus, the hotspots 
were defined in a totally different way in the two stud-
ies. Third, the indicators in this study are quite differ-
ent than those in the previous study. In Hof and others 
(1999a, b), the indicators were dominated by threatened 
and endangered (T and E) species indicators, while the 
indicators here include a broader emphasis, including 
such factors as water and air pollution, forest growth and 
mortality, and more general measures of wildlife habi-
tat and community structure. In this sense, the current 
indicators better represent those indicators suggested in 
ongoing efforts to evaluate ecosystem conditions (see for 
example Rapport and others 1985; Coulombe 1995; Na-
tional Research Council 2000). Clearly, we cannot draw 
any conclusions from comparing the results of the two 
studies. Looking only at the 10 indicators in this GTR, 
however, it is clear that different indicators paint a dif-
ferent picture of environmental stress. In the individual 
indicator results section, we discuss why each indicator 
might be of some use in assessing environmental stress. 
We would interpret all of our results in light of those 
more specific descriptions. The overlay in figure 12 is 
just intended to provide a summary of the indicators 

analyzed in this study, not as a comprehensive picture 
of environmental stress in general.

Conclusion______________

The RPA directs the Forest Service to prepare broad-
scaled evaluations of the current status and condition 
of natural resources, and to anticipate future resource 
conditions based on trend projections. One concern in 
meeting this mandate is that evaluation of each resource 
area independently (for example, timber, forage, wildlife, 
and recreation) runs the risk of developing conflicting 
resource management policy—benefiting one resource to 
the detriment of others. This report represents an attempt 
to consider many indicators of resource condition simul-
taneously for the purpose of identifying those areas of the 
country where ecosystem condition appears problematic. 
We delineated those problem areas based on the coinci-
dent occurrence of indicator values defined to represent 
the worst condition and defined these as hotspots.

Classification tree analysis was shown to be poten-
tially useful as a hotspot classification tool. Even when 
limiting the model to explanatory variables that are 
projected at a geographically specific level, the ability 
of CART models to identify areas of relative poor eco-
system condition was still fairly good.

With the projection model, we identified poten-
tial hotspots in 10 condition indicators for forests 
and rangelands based on projected changes in land 
use/cover variables as well as human population. We 
avoided any interpretations that suggest actual causa-
tion because the methods used identify only patterns 
of association between response and explanatory 
variables, not cause-effect relationships. Thus, these 
potential hotspots should be viewed only as candidates 
for areas of significant change. One policy implication 
that does seem to be fairly tenable is that the projected 
hotspot areas for the indicators included in this study 
do not coincide extensively with National Forest Sys-
tem lands. Thus, addressing the areas of ecosystem 
stress identified in figure 12 will most likely require 
cooperation with state and private land owners. This 
analysis is clearly exploratory in nature, however, and 
all results reported are tentative. Hopefully, the results 
will serve to focus additional study in potentially high 
priority areas, both in terms of research and plan-
ning analysis effort. Focused, indicator-by-indicator 
analyses are expected to lead to better understanding 
of the potential causes of these broad-scale patterns of 
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ecosystem condition. Further research is clearly needed 
in developing the methods for studies such as this one, 
which can serve the purpose of the triage in large scale 
planning efforts.
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The database includes 10 response variables representing forest and rangeland conditions. Based 
on the previous discussion, we included 21 explanatory variables including seven measures of human 
activity (including six land use/land cover types and human population), two variables that relate to 
federal/non-federal ownership, a categorical variable to account for ecoregional differences, and 11 
measures of climate and topographic variation. Because of data availability, only the coterminous 
United States is included. The database contains observations on each variable by uniform grid 
cell. There are 17,000 cells in the database, and each cell is approximately 21,376.5 meters square 
(45,695.5 ha) in size. The size of the grid cells was based on a univariate analysis of the range in 
county sizes, such that our grid cell size corresponds to the 5 percent quantile level of county sizes 
(only 5 percent of the counties in the coterminous United States are smaller than our cell size). Our 
17,000-cell grid will be referred to here as the “analysis grid.”

The indicators of forest and rangeland condition were chosen because of their likelihood of being 
affected by human activity, their availability, and their consistency (as possible) with the Montréal 
Process indicators (for a description of Montréal Process indicators see Coulombe [1995]). Data 
were obtained from numerous sources in formats ranging from digital spatial databases to highly 
aggregated county data and micro data with many sample points. Most of the data had to be refor-
matted or otherwise processed and synthesized to be consistent with the data structure requirements 
of the analytical approach. In the case of micro data with many sampling points, analysis grid cell 
observations were obtained by “kriging” to the cell centroid (see Ripley [1981]; Haining [1990]; 
Cressie [1991] for a detailed discussion of kriging and geostatistical techniques in general).

The data for this analysis is described, with sources, below:
Variable	 Description	 Source
Condition
Indicators:
EDG	 A measure of total linear edge between 	 Edge-based measure of fragmentation, 2002: 
	 natural land cover (forest, shrub, grass) 	 Data made available on CD-ROM in ASCII 
	 and anthropogenic land use (developed, 	 and SAS format / prepared by USDA Forest 
	 disturbed, agriculture) within a 7.5 km x 	 Service, Research Triangle Park, NC: Forestry 
	 7.5 km square analysis unit gridded at 	 Sciences Lab, Forest Health Monitoring (SRS- 
	 30 m resolution. In a GIS procedure, the 	 4803), 2002. 
	 analysis grid cells were defined as “zones”  
	 and zonal means of total linear edge were 	 Fragmentation databases will be available at  
	 calculated based on the 30 m resolution 	 http://www.srs.fs.usda.gov/4803/landscapes/in 
	 cells that fell in each zone. The broad land 	 dex.html. 
	 cover classes are defined as follows: forest  
	 includes deciduous, evergreen, mixed, and 	 See also Riitters (2004). 
	 woody wetland; shrub includes shrubland;  
	 grass includes grasslands/herbaceous and  
	 herbaceous wetland; developed includes  
	 low intensity residential, high intensity  
	 residential, commercial/industrial/ 
	 transportation, and urban/recreational  

Appendix A: Variable Descriptions and Data 
Sources
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	 grasses; disturbed includes bare rock/sand/ 
	 clay, quarries/strip mines/gravel pits, and  
	 transitional; agriculture includes row crops,  
	 small grains, pasture/hay, fallow, and  
	 orchards/vineyards/other.

PCH	 A measure of average patch size (area 	 Patch-based measure of fragmentation, 2002:  
	 weighted average) within a 7.5 km x 7.5 km 	 Data made available on CD-ROM in ASCII 
	 square analysis unit gridded at 30 m resolution. 	 and SAS format, prepared by USDA Forest  
	 These analysis units were overlaid on land-	 Service, Research Triangle Park, NC: Forestry  
	 cover maps for the lower 48 states from the 	 Sciences Lab, Forest Health Monitoring (SRS- 
	 National Land Cover Data (NLCD) database. 	 4803), 2002. 
	 A patch was defined as a block of contiguous 	  
	 (in the 4 cardinal directions) natural land 	 Fragmentation databases will be available at  
	 cover (forest, shrub, grass). The average 	 http://www.srs.fs.usda.gov/4803/landscapes/in 
	 patch size for each analysis unit was estimated 	  dex.html. 
	 for the land cover type that was expected to 	  
	 be the potential natural vegetation within the 	 See also Riitters (2004) and Küchler (1993). 
	 analysis unit based on an overlay of the analysis 	  
	 unit grid with a Küchler PNV coverage 	  
	 (Küchler 1964). In a GIS procedure, the 	  
	 analysis grid cells were defined as “zones” 	  
	 and zonal means of average patch size were  
	 calculated based on the 30 m resolution cells  
	 that fell in each zone. The actual measure used  
	 in the analysis is 1 minus the ratio of average  
	 patch size to the maximum possible patch size.  
	 The broad land cover classes (forest, shrub,  
	 and grass) are as defined in EDG except that  
	 grass patches do not include herbaceous wetlands.

EXT	 Exotic breeding birds. Proportion of total exotic 	 North American Breeding Bird Survey (BBS),  
	 individuals to total individuals (exotic + native) 	 USGS Patuxent Wildlife Research Center, 
	 for each BBS route averaged over the years the 	 Laurel, MD. 2001.  
	 route was run between 1990 – 1998, then kriged 	  http://www.pwrc.usgs.gov/bbs/retrieval/menu 
	 to analysis grid cell centroids.	 .cfm.

MOR	 Mortality of growing stock on timberlands in 	 National RPA Forest Data Base, 1997: Data  
	 1000 cu. ft./acre/yr standardized to volume of 	 made available in ASCII file format, prepared 
	 growing stock on timberlands in 1000 cu. ft./	 by USDA Forest Service, Asheville, NC: Forest 
	 acre/yr by county, then kriged to analysis grid 	 Inventory and Monitoring (SRS-4801), 1999. 
	 cell centroids.
		  USDA Forest Service. Forest Inventory and  
		  Analysis (FIA). 1997 National RPA Forest Data  
		  Base (Eastwide /Westwide format). http://srs 
		  fia2.fs.fed.us/html/tables.htm.

		  See also Hansen and others (1992) and  
		  Woudenberg and Farrenkopf (1995).
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GRO	 Measure of actual productivity on timberlands 	 National RPA Forest Data Base, 1997: Data  
	 (growth in cu. ft./acre/yr) divided by potential 	 made available in ASCII file format, prepared  
	 productivity on timberlands. Potential 	 by USDA Forest Service, Asheville, NC: Forest 
	 productivity is also in cu. ft./acre/yr and is 	 Inventory and Monitoring (SRS-4801), 1999. 
	 calculated based on site productivity class.  
	 The actual measure used in the analysis is 	 USDA Forest Service. Forest Inventory and  
	 1 minus this proportion. This data is recorded 	 Analysis (FIA). 1997 National RPA Forest Data 
	 by county and was kriged to analysis grid cell 	 Base (Eastwide /Westwide format). http://srs 
	 centroids.	 fia2.fs.fed.us/html/tables.htm.

		  See also Hansen and others (1992) and  
		  Woudenberg and Farrenkopf (1995).

STR	 The mean yearly streamflows (in cfs) in the 	 USGS daily and peak values data compiled on 
	 1990’s and the 30-year period 1960 to 1989 	 CD-ROM by Hydrosphere Data Products, Inc.  
	 were standardized to drainage areas in sq. 	 Boulder, CO. 1999. http://www.hydrosphere. 
	 mi. with 6826 and 1240 sample points, 	 com/hdp/. 
	 respectively. Both of these values were  
	 kriged to analysis grid cell centroids. Then, 	 USGS Fact Sheet FS-027-98. National Water  
	 the 30-year averages were divided into the 	 Information System (NWIS). http://pubs.usgs. 
	 streamflows from the 1990s. The actual 	 gov/fs/FS-027-98/. 
	 measure used in the analysis is 1 minus this  
	 proportion.	 See also Yorke and Williams (1991).

NTG	 Total nitrogen measured as mg/L in surface 	 STORET (mainframe) Water Quality File (now 
	 waters. Kriged to analysis grid cell centroids 	 STORET Legacy Data), 1998: Nutrient 
	 from 34,131 sample point locations.	 parameter files obtained from USEPA
		  anonymous ftp site, prepared by staff of the  
		  USEPA, Washington, DC: USEPA Data Storage  
		  and Retrieval System (STORET), 1999.
		  USEPA, Office of Water, STORET Legacy Data 
		  Center (USGS data removed), 1999. http:// 
		  www.epa.gov/storpubl/legacy/gateway.htm.
		  USEPA, STORET, About STORET, 2002.  
		  http://www.epa.gov/STORET/about.html.

		  USGS, National Water Information System  
		  (NWISWeb), Water-Quality Data for the Nation, 
		  1999. http://waterdata.usgs.gov/nwis/qw.

		  USGS Fact Sheet FS-027-98. National Water  
		  Information System (NWIS). http://pubs.usgs. 
		  gov/fs/FS-027-98/.

		  See also Yorke and Williams (1991).

PHO	 Total phosphorus measured as mg/L in surface 	 STORET (mainframe) Water Quality File (now 
	 waters. Kriged to analysis grid cell centroids 	 STORET Legacy Data), 1998: Nutrient  
	 from 45,283 sample point locations.	 parameter files obtained from USEPA anony 
		  mous ftp site, prepared by staff of the USEPA,  
		  Washington, DC: USEPA Data Storage and  
		  Retrieval System (STORET), 1999.
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		  USEPA, Office of Water, STORET Legacy Data  
		  Center (USGS data removed), 1999. http:// 
		  www.epa.gov/storpubl/legacy/gateway.htm.

		  USEPA, STORET, About STORET, 2002.  
		  http://www.epa.gov/STORET/about.html.

		  USGS, National Water Information System  
		  (NWISWeb), Water-Quality Data for the Nation, 
		  1999. http://waterdata.usgs.gov/nwis/qw.

		  USGS Fact Sheet FS-027-98. National Water  
		  Information System (NWIS). http://pubs.usgs. 
		  gov/fs/FS-027-98/.

		  See also Yorke and Williams (1991).

PHL	 Lab pH. Calculated using a 2500 m grid of 	 National Atmospheric Deposition Program  
	 hydrogen ion concentrations in precipitation 	 (NADP) Maps, 1998: ARC/INFO grids of lab  
	 collected at field locations and measured in the 	 pH obtained from NADP anonymous ftp site,  
	 lab. In a GIS procedure, the analysis grid cells 	 prepared by NADP Program Office,  
	 were defined as “zones” and zonal means of 	 Champaign, IL: Illinois State Water Survey.  
	 hydrogen ion concentrations were calculated 	 2000. 
	 based on the 2500 m resolution cells that fell 	  
	 in each zone. The hydrogen ion concentrations 	 National Atmospheric Deposition Program  
	 were then converted to pH. The actual measure 	 (NRSP-3) National Trends Network. 1998.  
	 used in the analysis was the observed average 	 NADP Program Office, Illinois State Water 
	 pH subtracted from the value 7 (all observations 	  Survey, 2204 Griffith Dr., Champaign, IL  
	 were less than 7).	 61820. http://nadp.sws.uiuc.edu/.

TRI	 Total toxic chemical releases to the environment 	 USEPA, Toxics Release Inventory (TRI), EZ  
	 for each county (air, water, and land). Measured 	 Query, 1997. http://www.epa.gov/enviro/html/ 
	 in pounds per acre. These data were kriged to 	 tris/ez.html. 
	 analysis grid cell centroids. 
		  USEPA, Toxics Release Inventory (TRI)  
		  Program, What is the Toxics Release Inventory  
		  (TRI) Program, 2002. http://www.epa.gov/tri/ 
		  whatis.htm.

Human
Activity
Variables:

FED	 Federal land areas as a proportion of total area 	 USGS, Federal Lands and Indian Reservations 
	 by analysis grid cell. In a GIS procedure, a 	 of the United States, 2003. http://nationalatlas. 
	 geographic intersection of a polygon coverage 	 gov/atlasftp.html. 
	 of federal land areas and a polygon coverage 	  
	 of the analysis grid enabled the calculation of 	  
	 this proportion. The data included only federal 	  
	 areas greater than 640 acres. It also did not 	  
	 include “linear” areas such as federally 	  
	 administered parkways.
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PAD	 Protected areas of the U.S. as a proportion of 	 CBI/WWF Protected Areas Database (PAD),  
	 total area by analysis grid cell. In a GIS 	 Second Edition. 2001. http://www.consbio. 
	 procedure, a geographic intersection of a 	 org/cbi/applied_research/pad_2005/pad2005. 
	 polygon coverage of protected areas and a 	 htm. 
	 polygon coverage of the analysis grid enabled  
	 the calculation of this proportion. Protected 	 See also DellaSala and others (2001). 
	 areas are defined as parcels with a Gap Analysis  
	 Program (GAP) code of 1 or 2. The actual  
	 measure used in the analysis is 1 minus this  
	 proportion.

RNG	 Proportion of counties in rangeland. A land 	 Summary Report, 1997 National Resources  
	 cover/use category on which the climax or 	 Inventory (NRI). See Appendix 3, Glossary of 
	 potential plant cover is composed principally 	 Selected Terms, revised December 2000. 
	 of native grasses, grasslike plants, forbs or 	  
	 shrubs suitable for grazing and browsing, and	  
	 introduced forage species that are managed like  
	 rangeland. This would include areas where  
	 introduced hardy and persistent grasses, such  
	 as crested wheatgrass, are planted and such  
	 practices as deferred grazing, burning, chaining,  
	 and rotational grazing are used, with little or  
	 no chemicals or fertilizer being applied.  
	 Grasslands, savannas, many wetlands, some  
	 deserts, and tundra are considered to be  
	 rangeland. Certain communities of low forbs  
	 and shrubs, such as mesquite, chaparral,  
	 mountain shrub, and pinyon-juniper, are also  
	 considered as rangeland. These data were  
	 kriged to analysis grid cell centroids.

CRO	 Proportion of counties in crops. A land cover/	 Same as RNG. 
	 use category that includes areas used for the  
	 production of adapted crops for harvest.  
	 Cropland includes cultivated and noncultivated  
	 lands. Cultivated cropland includes row crops,  
	 close-grown crops, and other cultivated  
	 cropland such as hayland or pastureland that is  
	 in a rotation with row or close-grown crops.  
	 Noncultivated cropland includes permanent  
	 hayland and horticultural cropland. These data  
	 were kriged to analysis grid cell centroids.

FOR	 Proportion of counties in forest land. A land 	 Same as RNG. 
	 cover/use category that is at least 10 percent  
	 stocked by single-stemmed woody species of  
	 any size that will be at least 4 meters tall at  
	 maturity. Land bearing evidence of natural  
	 regeneration of tree cover (cut over forest or  
	 abandoned farmland) and not currently  
	 developed for nonforest use is also included.  
	 Ten percent stocking, when viewed from a  
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	 vertical direction, equates to an areal canopy  
	 cover of leaves and branches of 25 percent or  
	 greater. The minimum area for classification  
	 as forest land is 1 acre, and the area must be  
	 at least 100 feet wide. These data were kriged  
	 to analysis grid cell centroids.

DEV	 Proportion of counties in developed land. A 	 Same as RNG. 
	 land cover/use category that includes “large”  
	 (>10 acres) and “small” (.25-10 acres) urban  
	 and built-up areas. These include residential,  
	 industrial, commercial, and institutional land;  
	 construction sites; public administrative sites;  
	 railroad yards; cemeteries; airports; golf  
	 courses; sanitary landfills; sewage treatment  
	 plants; water control structures and spillways;  
	 other land used for such purposes; small parks  
	 within urban and built-up areas; and highways,  
	 railroads, and other transportation facilities if  
	 they are surrounded by urban areas. Also  
	 included are tracts of less than 10 acres that do  
	 not meet the above definition but are completely  
	 surrounded by urban and built-up land. These  
	 data were kriged to analysis grid centroids.

PAS	 Proportion of counties in pastureland. A land 	 Same as RNG. 
	 cover/use category of land managed primarily  
	 for the production of introduced forage plants  
	 for livestock grazing. Pastureland may consist  
	 of a single species in a pure stand, a grass  
	 mixture, or a grass-legume mixture.  
	 Management usually consists of cultural  
	 treatments: fertilization, weed control,  
	 reseeding or renovation, and control of grazing.  
	 For the NRI, includes land that has a vegetative  
	 cover of grasses, legumes, and/or forbs,  
	 regardless of whether or not it is being grazed  
	 by livestock. These data were kriged to analysis  
	 grid cell centroids.

CRP	 Proportion of counties in the Conservation 	 Same as RNG. 
	 Reserve Program (CRP), a federal program  
	 established under the Food Security Act of 1985  
	 to assist private landowners to convert highly  
	 erodible cropland to vegetative cover for 10  
	 years. These data were kriged to analysis grid  
	 centroids.
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POP	 Human population density within each county. 	 Census 2000 Summary File 1 United States. 
	 These data were kriged to analysis grid cell 	 Prepared by the U.S. Census Bureau, 2001. 
	 centroids.

Stratification:
DIV	 A categorical variable that stratifies the 	 Bailey, R. G. 1995. Description of the 
	 coterminous U.S. into 3 ecoregional 	 ecoregions of the United States, 2nd ed.  
	 classifications based on “divisional” boundaries 	 Revised and expanded (1st ed. 1980). Misc. 
	 from Bailey’s Ecoregions of the United States. 	 Publ. No. 1391 (rev.), USDA Forest Service, 
	 Each analysis grid cell was assigned to an 	 Washington, DC. 108p. with separate map. 
	 ecoregion category with a GIS procedure (using 	  
	 a geographic intersection of polygon coverages).

Climate and 
Topographic
Variables:
TMP	 Mean annual temperature. In a GIS Procedure, 	 Oregon State University, Spatial Climate  
	 analysis grid cells were defined as zones and 	 Analysis Service (SCAS) and Oregon Climate 
	 zonal means of gridded mean annual 	 Service (OCS), PRISM digital climate data, 
	 temperature (30-year normals, 1961-1990) 	 1996. http://www.ocs.orst.edu/prism/. 
	 were calculated. Measured in Fº . 10. Original 	  
	 data was on a 4 km grid such that the zonal 	 Oregon State University, Spatial Climate  
	 mean was based on ~25 observations. 	 Analysis Service (SCAS) and Oregon Climate 
		   Service (OCS), Climate Mapping with PRISM, 
		  Reports and Papers. 1993-1998. http://www. 
		  ocs.orst.edu/prism/docs/index.phtml.
TMS	 Spatial variation in temperature. In a GIS 	 Oregon State University, Spatial Climate  
	 procedure, analysis grid cells were defined as 	 Analysis Service (SCAS) and Oregon Climate 
	 zones and zonal standard deviations of gridded 	 Service (OCS), PRISM digital climate data, 
	 mean annual temperature (30-year normals, 	 1996. http://www.ocs.orst.edu/prism/. 
	 1961-1990) were calculated. Original data was 	  
	 on a 4 km grid such that the zonal mean was 	 Oregon State University, Spatial Climate  
	 based on ~25 observations.	 Analysis Service (SCAS) and Oregon Climate  
		  Service (OCS), Climate Mapping with PRISM,  
		  Reports and Papers. 1993-1998. http://www. 
		  ocs.orst.edu/prism/docs/index.phtml.

SST	 Seasonal variation in temperature. In a GIS 	 Oregon State University, Spatial Climate  
	 procedure, analysis grid cells were defined as 	 Analysis Service (SCAS) and Oregon Climate 
	 zones and zonal means of gridded mean monthly 	 Service (OCS), PRISM digital climate data,  
	 temperatures (30-year normals, 1961-1990) 	 1996. http://www.ocs.orst.edu/prism/. 
	 were calculated. The standard deviation across 	  
	 mean monthly temperatures then was used as 	 Oregon State University, Spatial Climate  
	 a measure of seasonal variation in temperature. 	 Analysis Service (SCAS) and Oregon Climate  
	 Original data was on a 4 km grid such that the 	 Service (OCS), Climate Mapping with PRISM, 
	 zonal mean was based on ~25 observations.	 Reports and Papers. 1993-1998. http://www. 
		  ocs.orst.edu/prism/docs/index.phtml.
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AVT	 Temporal variation in temperature. VEMAP 	 National Center for Atmospheric Research  
	 data (historical data, 1895 to 1993) on a 0.5ºX 	 (NCAR), Ecosystem Dynamics and the  
	 0.5º degree grid of latitude and longitude were 	 Atmosphere Section, VEMAP 2 Transient  
	 used to calculate the standard deviation of 99 	 Climate Datasets (TCLIMATE), Monthly Files,  
	 years of mean annual temperature observations 	 Historical Climate (1895-1993). 1998. http:// 
	 at each of 3261 lat/lon locations, then kriged 	 www.cgd.ucar.edu:80/vemap/ve298.html. 
	 to analysis grid cell centroids.	 See also Kittel and others (1997).

PRC	 Mean annual precipitation. Calculated using 	 Oregon State University, Spatial Climate  
	 same method as for TMP. Measured in mm. 	 Analysis Service (SCAS) and Oregon Climate  
	 Original data was on a 4 km grid such that the 	 Service (OCS), PRISM digital climate data,  
	 zonal mean was based on ~25 observations.	 1996. http://www.ocs.orst.edu/prism/.
	
		  Oregon State University, Spatial Climate  
		  Analysis Service (SCAS) and Oregon Climate  
		  Service (OCS), Climate Mapping with PRISM,  
		  Reports and Papers. 1993-1998. http://www. 
		  ocs.orst.edu/prism/docs/index.phtml.

PRS	 Spatial variation in precipitation. Calculated 	 Oregon State University, Spatial Climate  
	 using same method as for TMS. Original data 	 Analysis Service (SCAS) and Oregon Climate  
	 was on a 4 km grid such that the zonal mean 	 Service (OCS), PRISM digital climate data,  
	 was based on ~25 observations.	 1996. http://www.ocs.orst.edu/prism/.
		  Oregon State University, Spatial Climate  
		  Analysis Service (SCAS) and Oregon Climate  
		  Service (OCS), Climate Mapping with PRISM,  
		  Reports and Papers. 1993-1998. http://www. 
		  ocs.orst.edu/prism/docs/index.phtml.

SSP	 Seasonal variation in precipitation. Calculated 	 Oregon State University, Spatial Climate  
	 using same method as for SST. Original data 	 Analysis Service (SCAS) and Oregon Climate 
	 was on a 4 km grid such that the zonal mean 	 Service (OCS), PRISM digital climate data,  
	 was based on ~25 observations.	  1996. http://www.ocs.orst.edu/prism/.
		  Oregon State University, Spatial Climate  
		  Analysis Service (SCAS) and Oregon Climate  
		  Service (OCS), Climate Mapping with PRISM,  
		  Reports and Papers. 1993-1998. http://www.ocs. 
		  orst.edu/prism/docs/index.phtml.

AVP	 Temporal variation in precipitation. Calculated 	 National Center for Atmospheric Research  
	 using same method as for AVT.	 (NCAR), Ecosystem Dynamics and the  
		  Atmosphere Section, VEMAP 2 Transient  
		  Climate Datasets (TCLIMATE), Monthly Files,  
		  Historical Climate (1895-1993). 1998. http:// 
		  www.cgd.ucar.edu:80/vemap/ve298.html.

		  See also Kittel and others (1997).
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VEG	 Total vegetation carbon (potential – no land 	 National Center for Atmospheric Research  
	 use effects). Thirty-year annual average 	 (NCAR), Ecosystem Dynamics and the  
	 (1961-1990) gC/m2 at 3168 lat/lon locations 	 Atmosphere Section, VEMAP2 Transient  
	 representing the center of a 0.5ºX 0.5º grid, 	 Dynamics Data, distributed by the University of  
	 then kriged to analysis grid cell centroids. 	 New Hampshire, EOS-WEBSTER Earth  
		  Science Information Partner (ESIP), dataset  
		  TResults-CGCM1-Increasing CO2. 2000. http:// 
		  eos-webster.sr.unh.edu/data_guides/vemap_ 
		  trans_dg.jsp.

		  See also Schimel and others (2000).
DEM	 Mean elevation. In a GIS procedure, analysis 	 Oregon State University, Oregon Climate  
	 grid cells were defined as zones and zonal 	 Service FTP Archive, Conterminous U.S.  
	 means of gridded elevation data were 	 2.5-minute Digital Elevation Model (DEM),  
	 calculated. Measured in meters.	 1995. ftp://www.ocs.orst.edu/pub/maps/Other/ 
		  U.S./.
		  See also Barnes (1964)

DMS	 Elevation variance. In a GIS procedure, 	 Oregon State University, Oregon Climate  
	 analysis grid cells were defined as zones and 	 Service FTP Archive, Conterminous U.S.  
	 zonal standard deviations of gridded	 2.5-minute Digital Elevation Model (DEM),  
	 elevation data were calculated.	 1995. ftp://www.ocs.orst.edu/pub/maps/Other/ 
		  U.S./.
		  See also Barnes (1964).



USDA Forest Service RMRS-GTR-166. 2006.	 33

Appendix B: Mapped Current and Projected 
Explanatory Variables

Figure 13. (a) Current Conditions and 
(b) Projections to 2025 for RNG. 
Classes depicted in the projection 
map (b) have maintained the class 
cutpoints used to define the current 
condition (a).
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Figure 14. (a) Current Conditions and (b) Projections to 2025 for CRO. Classes depicted in the projection map (b) have main-
tained the class cutpoints used to define the current condition (a).
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Figure 15. (a) Current Conditions and (b) Projections to 2025 for FOR. Classes depicted in the projection map (b) have maintained 
the class cutpoints used to define the current condition (a).
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Figure 16. (a) Current Conditions and (b) Projections to 2025 for DEV. Classes depicted in the projection map (b) have maintained 
the class cutpoints used to define the current condition (a).
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Figure 17. (a) Current Conditions and (b) Projections to 2025 for PAS. Classes depicted in the projection map (b) have maintained 
the class cutpoints used to define the current condition (a).
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Figure 18. (a) Current Conditions and (b) Projections to 2025 for CRP. Classes depicted in the projection map (b) have maintained 
the class cutpoints used to define the current condition (a).
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Figure 19. (a) Current Conditions and (b) Projections to 2025 for POP. Classes depicted in the projection map (b) have maintained 
the class cutpoints used to define the current condition (a).
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