
2_!i : •

=.,

v_

2111

SOFTWARE ENGINEERING LABORATORY SERIES

G3 1

SEL-83-00"

Unclas

1907_

SOFTWARE ENGINEERING LABORATORY SERIES SEL-83-001

AN APPROACH TO
SOFTWARE COST ESTIMATION

FEBRUARY 1984

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administration/

Goddard Space Flight Center (NASA/GSFC) and created for the

purpose of investigating the effectiveness of software engi-

neering technologies when applied to the development of ap-

plications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC (Systems Development and Analysis Branch)

The University of Maryland (Computer Sciences Department)

Computer Sciences Corporation (Flight Systems Operation)

The goals of the SEL are (i) to understand the software de-

velopment process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software En-

gineering Laboratory Series, a continuing series of reports

that includes this document. A version of this document was

also issued as Computer Sciences Corporation document

CSC/TM-83/6076.

The contributors to this document include

Frank McGarry

Jerry Page

David Card

Michael Rohleder

Victor Church

(Goddard Space Flight Center)

(Computer Sciences Corporation)

(Computer Sciences Corporation)

(Computer Sciences Corporation)

(Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Frank E. McGarry

Code 582

NASA/GSFC

Greenbelt, Md. 20771

9295

ii

ABSTRACT

This document outlines a general procedure for software cost

estimation in any environment. The basic concepts of work

and effort estimation are explained, some popular resource

estimation models are reviewed, and the accuracy of resource

estimates is discussed. A software cost prediction proce-

dure based on the experiences of the Software Engineering

Laboratory in the flight dynamics area and incorporating

management expertise, cost models, and historical data is

described. The sources of information and relevant param-

eters available during each phase of the software life cycle

are identified. The methodology suggested incorporates

these elements into a customized management tool for soft-

ware cost prediction. Detailed guidelines for estimation in

the flight dynamics environment developed using this method-

ology are presented.

iii

9295

TABLE OF CONTENTS

Section 1 - Introduction i-i

i.i Document Organization 1-2

1.2 Software Engineering Laboratory 1-3

1.3 Software Life Cycle 1-4

Section 2 - Concepts of Software Cost Estimation . . . 2-1

2.1 Estimating Software Work 2-2

2.2 Estimating Development Effort 2-4

2.3 Projecting Development Schedules 2-5

2.4 Defining Estimate Accuracy 2-6

2.5 Resource Estimation Models 2-11

2.5.1

2.5.2

2.5.3

2.5.4

Meta-Model 2-12

COCOMO 2-13

SLIM 2-14

PRICE S 2-14

Section 3 - Software Cost Estimation Guidelines 3-1

3.1 Basic Cost of Software Development 3-2

Initial Estimate 3-2

Periodic Reestimation 3-6

3.2 Other Software Development Costs 3-9

3.2.1
3.2.2

3.2.3

3.2.4

Computer Utilization 3-9

System Documentation 3-11

Independent Test Team 3-13

Analysis Support 3-13

3.3 Other Software Activities 3-14

3.3.1

3.3.2

3.3.3

Software Rehosting 3-15

Software Maintenance 3-16

Software Reuse 3-16

Section 4 - A Comprehensive Software Cost
Estimation Procedure_ . 4-1

4.1 Software Size 4-3

4.2 Development Effort 4-4

4.3 Development Schedule 4-6

4.4 Project Staffing 4-8

9295

iv

TABLE OF CONTENTS (Cont'd)

Section 5 - Summary and Recommendations

Appendix - SEL Software Cost Estimation Experience

References

Biblioqraphy of SEL Literature

5-1

9295

v

LIST OF ILLUSTRATIONS

Figure

I-i

1-2

2-1

2-2

3-1

3-2

Software Development Model I-5

Activities by Percentage of Total

Development Staff Effort 1-7

Rayleigh Curve Defined Schedule 2-7

Alternative Models of Estimation Error 2-9

Cost Estimation Schedule 3-3

Typical Computer Utilization Profile[.... 3-10

LIST OF TABLES

Table

2-1

3-1

3-2

3-3

3-4

3-5

3-6

3-7

4-1

4-2

4-3

4-4

4-5

4-6

4-7
4-8

4-9

Accuracy of Resource Estimation by Life

Cycle Phase 2-11

Software Life Cycle Summary 3-3
Basic Cost Estimation Parameters 3-6

Composition of System Documentation 3-12

Cost of User Documents 3-12

Cost of Analysis Support 3-14

Cost of Rehosting FORTRAN Software 3-15

Cost of Reusing Software 3-17

Effort Estimators and Uncertainty

Limits by Phase 4-2

Complexity Guideline 4-5
Development Team Experience Gu£deline 4-5

Schedule Guideline 4-6

Determination of Schedule Type From Work
Rate 4-7

Distribution of Development Effort 4-8

Team Size Guideline 4-9

Staffing Pattern Guiaeiine[......... 4-9

Development Team Staffing Guideline 4-10

9295

vi

Equa t ion

2-i

2-2

2-3

2-4

2-5

2-6

2-7

2-8

3-1

3-2

3-3

4-1

4-2

4-3

LIST OF EQUATIONS

Rayleigh Curve Applied to Software

Development

Upper Bound of Estimate Uncertainty

Lower Bound of Estimate Uncertainty

General Resource Estimation Model

Initial Estimate From SEL Meta-Model

Final Estimate From SEL Meta-Model

Resource Estimate From COCOMO

Schedule Estimate From COCOMO

Developed Lines of Source Code

Computer Utilization Estimate

Documentation Size Estimate

Developed Lines of Executable Code

Flight Dynamics Resource Estimation Model. . .

Work Rate Calculation

2-6

2-10

2-10

2-11

2-12

2-12

2-13

2-13

3-8

3-9

3-11

4-3

4-4

4-7

9295

vii

SECTION 1 - INTRODUCTION

This document presents an approach to software cost predic-

tion that is based on the experience of the Software

Engineering Laboratory (SEL) in the flight dynamics environ-

ment. This procedure, which produces relatively reliable

software cost estimates throughout the software life cycle,

consists of the following components:

• Management expertise

• Historical data

• Resource models

Management expertise is fundamental to developing effective

software cost estimates. The factors affecting resource

expenditures are not all easily quantifiable and may vary in

importance from environment to environment. Historical data

ranges from personal recollections to corporate data bases.

The manager must extrapolate from this data to the estima-

tion task at hand. Prior management experience and careful

judgment provide an extra margin of accuracy.

Software resource models are a sometimes useful formalism

for developing cost estimates. A number of models are

available, but each must be calibrated to the specific de-

velopment environment in which it is used. Historical data

provides the essential reference for the calibration of re-

source models and for making comparisons.

The process of software cost estimation must be examined in

the context of each phase of the development life cycle.

Reestimation is performed throughout the changing develop-

ment effort, not just in the beginning where uncertainty is

especially high. The accuracy of each estimate may be im-

proved by awareness and understanding of the steps and proc-

esses involved in software development. As the life cycle

progresses, more information becomes available about the

I-i

-- 9295

size and complexity of the system, and the resources already
expended are known. This additional information can be used

to improve the estimates. Thus, the estimates become more

accurate each time they are updated.

This document presents an approach to software cost estima-
tion that can serve as a model for technical managers and

others concerned with estimation. Although the recommenda-

tion is based on the experiences of the SEL in a specific

environment, its applicability is not restricted to that

environment. Its specific numerical parameters must, how-

ever, be verified or redefined for each new environment.

This procedure produces a management tool customized to the
user's environment.

i.i DOCUMENT ORGANIZATION

This document is divided into five major sections and an

appendix. Section 1 describes the purpose and scope of the

document, presents summaries of the SEL and the flight dy-

namics software development environment, and examines the

software development life cycle.

Section 2 describes the basic concepts of software cost es-

timation. Common approaches to estimating software work and

development effort are discussed, and some comprehensive

resource estimation models are reviewed. The reader famil-

iar with these topics may want to skim (or skip) this

section.

Section 3 outlines a general software cost estimation proce-

dure. The sources of information and relevant parameters

available during each phase of the life cycle are discussed,

and their roles are defined.

Section 4 provides detailed guidelines for the application

of the general procedure in the flight dynamics environment.

1-2

_ 9295

With appropriate modifications, these guidelines are appli-
cable in any similar environment.

Section 5 summarizes the major points made in Sections 3

and 4. Some important cost estimation considerations and

general recommendations are reemphasized.

The appendix provides additional details of the SEL software

cost experiences. Tables summarize the type of software de-

veloped and the basic estimation relationships derived from

its study.

1.2 SOFTWARE ENGINEERING LABORATORY

This document is based on the practical and analytical ex-

perience of the SEL (Reference i). The SEL monitors and

studies all software developed by the Systems Development

Section at the National Aeronautics and Space Administration/

Goddard Space Flight Center (NASA/GSFC). This section is

responsible for producing flight dynamics support software

for GSFC-supported space missions. Nearly 50 projects

developed by both GSFC and contractor employees were studied

through 1983. Much of the data is collected on a series of

forms completed by project personnel throughout the develop-

ment effort. Data is also collected through computer

accounting monitoring, personal interviews, automated tools,

and summary management reviews.

Most flight dynamics projects are developed on a group of

IBM mainframe computers using FORTRAN and assembly lan-

guage. The specific software applications include attitude

determination, attitude control, maneuver planning, orbit

adjustment, and general mission analysis. Project sizes

range from 1500 to ii0,000 lines of source code. Project

schedules range from 12 to 21 months. The typical technical

staff member has about 4 years of experience developing

flight dynamics applications.

1-3

_ 9295

The initial-goal of the SEL was to understand the flight dy-

namics software development process and its environment.

This understanding provides a baseline for measuring the

effects of attempted improvements. Currently, the SEL is

trying to improve the process and environment to produce

high-quality software with fewer errors at a lower cost. To

achieve these goals, the SEL must identify the development

techniques available, evaluate these techniques to determine

the most effective ones, adapt the "best" techniques for

optimal performance, and apply the customized techniques to

the software development process.

The software cost estimation procedure presented in this

document is based on more than 7 years of software develop-

ment experience and detailed analysis of projects developed

in the flight dynamics environment. Reference 1 examines

the SEL and the flight dynamics environment in more detail.

1.3 SOFTWARE LIFE CYCLE

The SEL uses a conceptual model of software development that

includes four components and defines a software life cycle

(see Figure i-I). The components of the model are as

follows:

• Problem (software requirement)

• Environment (in which development takes place)

• Process (divided into phases)

• Product (software solution to the problem)

The parameters available for estimating resource utilization

are derived from measures of these components. The rate at

which the software development process uses resources (espe-

cially human and computer) from the environment is related

to the current activity (or phase) of the process. Thus,

any effective resource estimation procedure must be phase

dependent.

1-4

9295

/
/

/
/

/

//

//

Pa,.

Z_
O0
a=ul

_,,..

\

\
\

/
/

/
/

\
\

\
\

\
\

\

j#

/
/

/
/

/

u,J

=

Q..

l/i
ILl

0

\
\

\
\

\

I,Ii
U
Z
<
Z
uJ

_z

w

Z_
_Z

r_LU

t.U_-

f Ill

mN

Z
wZ
_o

mZ

we_
e_

.. ,,.._

o,.

I--
Z_

m_

--...

el..

,--4

_)

0

o
i--t
©
>

r_

0

I

t_
-,-t

1-5

The process component of the model is divided into the fol-

lowing sequential phases (see Figure i-i), referred to as

the software development life cycle:

• Requirements analysis

• Preliminary design

• Detailed design

• Implementation

• System integration and testing

• Acceptance testing

• Maintenance and operation

These seven life cycle phases divide the software develop-

ment effort into sequential, nonoverlapping periods of

time. In addition, prior to the start of development, there

is a problem definition phase referred to as "requirements

definition and functional specification." This phase is

not, however, an important consideration of this document.

Each calendar phase of the software development life cycle

is characterized by specific activities and the products

generated by those activities. Reference 2 presents an in-

depth discussion of the activities occurring during each

life cycle phase. Activities that are characteristic of one

calendar phase, may, however, be performed in other phases.

For instance, the activity of analyzing requirements, which

makes up the bulk of effort during the requirements analysis

phase, continues at a lower level throughout the software

development life cycle as further understanding of the re-

quirements is obtained and as changes to the requirements

are made. Changes to the requirements after the require-

ments analysis phase may necessitate additional activity

from all earlier life cycle phases. Figure 1-2 identifies

the activities performed during each calendar life cycle

phase as a percentage of the total staff effort.

1-6

- 9295

I

[
I
f
I

I

.--J

0 I

OF P(_:--"},'QL_,k,L!TY

Z
ILl
--a

Z>.

ua_--

>X
ZO

-.to
__. ee-

Q_

>'z_

--_,-W
Xz_-

mO

O_ __

zx _

U. _.i I--

ZT--

erm

o
Z

0
4-I

r_

0
,.-I

>

r_

0

0

r_

_J

,D

4-1

.;--I
>

-,-I
4J

I

-,-I

1-7

The life cycle is simplified for some discussions in this

document. Three phases are used in these cases: design

(consisting of requirements analysis, preliminary design,

and detailed design), implementation, and testing (consist-

ing of system and acceptance testing).

1-8

-- 9295

SECTION 2 - CONCEPTS OF SOFTWARE COST ESTIMATION

Cost estimation is an essential function of software devel-

opment management. As the range of computer applications

has expanded and the complexity of tasks increased, the cost

of software development has multiplied until software is now

the largest component of total system cost. Accurate pre-

diction of resource requirements and schedules is a prereq-

uisite for effective management. Reliable estimates are

especially critical to the planning of large projects.

This section discusses the basic concepts and relationships

underlying any software cost estimation procedure. Although

Section 2.5 reviews some comprehensive cost models, no

specific recommendations are made about them. Instead, Sec-

tion 3 proposes a more general procedure incorporating the

concepts introduced here. This section simply identifies

some widely accepted ideas and techniques.

The estimation process consists of two discrete steps that

are, however, often combined into a single computational

formula: (i) estimating the amount of work to be done and

(2) estimating the amount of effort needed to do the work.

After these quantities have been estimated, a schedule must

be developed. However, the schedule selected may also af-

fect the cost (see Section 2.3). The following output is

desired from the estimation process:

• Size of product upon completion

• Effort to complete product

• Development schedule

• Uncertainty of the estimates

Although these quantities should be reestimated periodically,

that is not commonly done. Usually, a single estimate is

made prior to the start of a software development project.

2-1

9295

A common practice used to develop initial estimates is to

divide the project into subsystems, multiply by the approxi-
mate lines of code needed to implement each subsystem,

divide this result by a nominal productivity rate, and then

distribute the estimated effort over the life cycle accord-
ing to some rule. The accuracy of this process can be

improved by regularly collecting and reviewing relevant his-

torical data such as subsystem size, productivity rate, and
effort distribution.

The following sections discuss some common approaches to

estimating work and effort, developing schedules, and defin-
ing estimate accuracy. In addition, Section 2.5 describes
some formal resource estimation models that have been used

in the flight dynamics environment.

2.1 ESTIMATING SOFTWARE WORK

The first step in producing a cost estimate for a software

development project is to estimate the amount of work re-

quired. This step relies heavily on management expertise,

because to some extent, every project is unique. Important

parameters to consider when estimating software work are as

follows:

• Number of functions

• Number of subsystems

• Number of programs

• Number of requirements

• Number of interfaces

• Number of modules

The estimator usually divides a project into elements whose

cost can be estimated separately, and then combines the

estimates for the individual elements into an estimate for

the total project. These elements are referred to as "work

units." The more detailed the work units, the more accurate

9295

2-2

the resulting cost estimate will be, when the more detailed

work units are accurately known (Reference 3).

Lines of source code is the most widely accepted work unit.

Most comprehensive resource models (see Section 2.5) expect
as input an estimate of size in terms of lines of code. It

is difficult, however, to do more than guess at the number

of lines of code that will compose a system without first
decomposing it in some manner. The usual approach is to

hierarchically decompose the software system into intermedi-
ate work units from which an estimate of lines of code can

be made. Many organizations employ the "work breakdown

structure" formalism, but that technique is not discussed in
this document.

Decomposition is a continuous process that gradually refines

the system definition throughout the software life cycle.
Estimates during any phase are based on the structures and

functions defined thus far. Decomposition consists of first

dividing a system into subsystems, then dividing the subsys-
tems into modules. Historical data can be used to estimate

the size, in lines of code, of each module. This decomposi-

tion cannot, however, be completed until the preliminary

design is completed. Section 3.1 provides some guidelines
for performing the decomposition.

Other approaches to work estimation are possible. For ex-

ample, Albrecht (Reference 4) proposed a cost estimation

relationship employing "function points" as the work units.

The number of function points in a system is a weighted sum
of the number of data items, transaction types, and inter-

faces. This technique does not require that the number of

lines of code be estimated. It has been shown to give good

results in some data processing applications (primarily
COBOL and PLI programs).

2-3

-- 9295

Although other work units have been employed in cost estima-
tion, lines of code has proven to be the most durable• A

line of code is an 80-byte record that can be processed by
an assembler or compiler. A FORTRANline of code can con-
tain one or part of one statement or comment.

Several variations of this basic measure are in use,
including

• Delivered lines of code

• Developed lines of code
• Executable lines of code

• Non-comment lines of code

The best measure for a specific environment can only be de-
termined through experimentation with historical data. How-

ever, consistent use of the same measure preserves the

comparability of data collected. Reference 5 defines a num-
ber of variations of the lines of code measure.

2.2 ESTIMATING DEVELOPMENT EFFORT

The second step in producing a cost estimate for a software

development project is to estimate the amount of effort re-

quired. This basically consists of dividing the estimate of

work, usually lines of code, by a nominal or historical pro-

ductivity rate. Many other factors may, however, affect the

actual productivity rate of a project, including:

Methodologies applied

Staff experience

Schedule

Number and severity of requirements changes

Clarity and completeness of requirements

Complexity of software application

Environmental constraints

Documentation to be produced

Reliability required

2-4

9295

The manager must rely on his/her accumulated experience to
adjust the initial cost estimate (based on historical data)

to account for the effects of these factors. Section 3.1

provides some guidelines for making this adjustment. Cost

estimates are usually made in terms of staff-hours. This

makes them resistant to inflation and salary variations.

2.3 PROJECTING DEVELOPMENT SCHEDULES

After developing an estimate of the amount of effort re-

quired to complete a software project, a schedule for

software production must be defined. This requires the de-

termination of the optimum distribution of effort and the

total development time. Generally, a longer development

time and smaller staff are preferred. In practice, the

total development time is usually fixed by a deadline for

software delivery.

The task of developing a schedule is then reduced to opti-

mizing resource expenditures Within the fixed development

time. However, as Brooks (Reference 6) pointed out, time

and effort are not freely interchangeable. A shorter sched-

ule reduces productivity, although the magnitude of this

effect is not clear. Tausworthe (Reference 7) suggested

that it is very costly to shorten a schedule by more than

one-half from the time that it would take a single indi-

vidual to do the work.

Two concepts are widely used in projecting phase transition

dates and staffing levels once a target completion date has

been selected. Wolverton (Reference 8) proposed that soft-

ware development effort should be apportioned as follows:

design, 40 percent; implementation, 20 percent; and testing,

40 percent. This is referred to as the 40-20-40 rule. The

manager may vary this rule to account for specific features

of a project or an environment. For example, a software

rehosting project will require less design and more testing

effort than developing a new project of comparable size.

2-5

-- 9295

Putnam (Reference 9) suggested that the optimum level of

effort during the life of a software development project

followed a Rayleigh curve. This curve has been successfully

applied to many other time-dependent processes. Manipula-
tion of its equation produces values for the maximum

staffing level and staffing levels throughout the project
life cycle. Equation (2-1) defines the Rayleigh curve:

y = 2Kate -at2 (2-1)

where K = total development effort

t = time elapsed since start

t = time of maximum effort
m

a = tI_/2

Y = effort level at time t

Figure 2-1 shows the effort profile of a hypothetical proj-

ect. Combining Rayleigh curves for each of the three activ-

ities according to the 40-20-40 rule produces a graph (also

a Rayleigh curve) of the level of effort through develop-

ment. The area under the curve represents the estimate of

total development effort to complete the project. The time

from start to completion is the total development time.

The maximum level of effort (or staffing level) occurs when

40 percent of the effort has been expended, usually near the

time of the critical design review (CDR). Testing falls off

gradually until project completion.

2.4 DEFINING ESTIMATE ACCURACY

Reliance on any software cost estimation procedure must be

tempered by knowledge of its expected accuracy. Underesti-

mation is the most common error. There are a number of

reasons why managers and developers tend to underestimate

software development costs. They may vary from project to

2-6

-- 9295

p-

u.
w

.J
ill
>
w
.J

t o

IMPLE- "\

M ENTATION _. .

t m

DEVELOPMENT TIME

t o = START TIME

t m = TIME OF MAXIMUM EFFORT

t c = TIME AT PROJECT COMPLETION

tC

Figure 2-i. Rayleigh Curve Defined Schedule

2-?

project and from environment to environment, but include the

following:

• Full scope of work not known

• Lack of adequate hfstory and experience

• Management pressure to maintain original cost and

schedule

• Tendency of human nature to be optimistic

Because these causes are due to errors of subjective judg-

ment, they cannot be compensated for by a simple bias in the

estimation procedure. However, keeping alert for these

problems can minimize their impact.

Potential estimation errors are usually represented as

ranges. An error range is a probabilistic statement. That

is, a probability (confidence) of the actual value occurring

within a specified range can be associated with that range.

A larger error range has a larger probability associated

with it. Error ranges are selected to be large enough that

the confidence in them is great, typically 95 or 99 percent.

Appropriate error ranges and corresponding probabilities can

be determined by regression analysis when reliable data are

available. Figure 2-2(A) illustrates the results of this

type of analysis. Adequate data are not, however, always

available for this procedure. Furthermore, the results are

not fully consistent with SEL software cost experience. As

mentioned earlier, the SEL has observed that the error dis-

tribution is skewed; overestimates (actual cost less than

estimated cost) are much less likely than underestimates

(actual cost greater than estimated cost). Also, larger

projects often exhibit significantly larger estimation

errors than small projects.

The SEL has developed an alternate model of estimation error

that conforms more closely to observed error behavior.

2-8

-- 9295

F-

0
LJ.
LJ.
gJ

h-
Z
LM

o
.J
I,u

Q

o" / •

•°" / ,,"

o°° _ • °°

oOO ° •
• / • °

• / • °°

°'°'°///. "_0_._o_?0. _"'"

_.. ,%,/ _ ... ""'"

o_." _-_/ _o_..
.." _ ^o%.

.." / _%."

...'" / o._.•"
,.. / _..
• / •

o • o °

• / o °

oooO

/
OOO0 0

SOFTWARE SIZE

(A) REGRESSION MODEL OF ERROR

F-
J,v.-

o
LL.
12.
I.LI

I'--
Z
I.LI

0.

O

IJ.I

>
g.I
Q

o °

o°

o o° / oo go

o oe / aP°

0 ° / oo °°

o o

gl g

.." / .._,_
".." o/ .._"

,._ .- _,7 ..%o
_ • _ • _

o e _ o •

,,- /,-
: /."

SOFTWARE SIZE

(B) SEL MODEL OF ERROR

Figure 2-2. Alternative Models of Estimation Error

2-9

Figure 2-2(B) illustrates the properties of this model. It

incorporates a higher probability for underestimation. The

equations used to define error bounds are as follows:

X 1 = E(I + X) (2-2)

X 2 = E/(I + X) (2-3)

where X = error magnitude (proportion)

X 1 = upper error bound

X 2 = lower error bound

E = estimate

The error magnitude corresponding to an error range is the

size of the greatest deviation (from the estimate) possible

within the error range. Error magnitudes are usually deter-

mined to provide a nominal level of confidence of 95 per-

cent. The notation used in this documeat to provide error

ranges is A ± X, where A is the estimated cost and X is

the error magnitude as previously defined. One useful prop-

erty of this model is that it precludes error ranges that

include zero effort. Table 2-1 gives the approximate uncer-

tainty for estimates made in each life cycle phase based on

SEL experience. For example, an estimate made at the end of

requirements definition (start of requirements analysis)

could deviate by a factor of two, from twice to one-half of

the actual cost.

2-10

9295

Table 2-1. Accuracy of Resource Estimation by
Life Cycle Phase

Life Cycle Phase

Requirements Definition

Requirements Analysis

Preliminary Design

Detailed Design

Implementation

System Testing

Estimate Uncertainty
at End of Phase

(Proportion)

1.00

0.75

0.50

0.30

0.12

0.05

2.5 RESOURCE ESTIMATION MODELS

Resource estimation models are rigorous formulations of the

estimation process. Most of these models are equations of

the form

E = AW B + C (2-4)

where E = measure of effort expended (usually hours)

A = constant (or index of local conditions)

B = constant (usually specific to each environment)

C = constant (or index of local conditions)

W = measure of work required (usually lines of code)

Models differ as to the measures of work and effort used.

Some derive values for A, B, and C by regression with his-

torical data. Others substitute indexes (measures) of local

conditions and development practices for A and/or C.

The SEL has reviewed and tested many resource estimation

models over the past years (Reference 10). The following

appear to be useful in the SEL environment:

• Meta-Model (SEL, Reference ii)

• COCOMO (TRW, Reference 12)

2-11

_ 9295

• SLIM (QSM, Reference 13)
• PRICE S (RCA, Reference 14)

Although these models are discussed briefly in the following

sections, they are not presented as recommendations but

rather as examples of the ways in which models can be

implemented.

2.5.1 META-MODEL

A set of relationship equations was developed by the SEL to
define an environment-specific model. The relationship (base
equation) established between effort and size is as follows:

1.16
E. = 0.73L + 3.5 (2-5)1

where Ei = initial estimate of effort (staff-months)
L = developed lines (thousands, see Section 2.1.1)

The next step was to collect data about the programming en-
vironment to determine why some projects took more effort
and consumed more resources than others when normalized for

size. Attribute indices were constructed to account for the

variation due to such factors as problem complexity, pro-
grammer experience, and development techniques. Each attri-

bute for each project was rated on a scale from 0 to 5. A
sum was then calculated for each class of attributes. These

sums are the indices used to adjust the initial estimate of

effort based on delivered lines of code. The final equation
used, which includes two such indices, is as follows:

Ef = Ei (-0.036 M + 0.009 C + 0.86) (2-6)

where Ef = final estimate of effort (staff-months)
E. = initial estimate of effort (see Equation (2-5))1
M = sum of methodology ratings

C = sum of complexity ratings

2-12

-- 9295

The resulting adjusted estimator is the best predictor of

development effort (in thisenvironment) of those estimators
examined thus far by the SEL. A full treatment of the deri-

vation of the model is given in Reference ii.

2.5.2 COCOMO

The Constructive Cost Model (COCOMO)exists as a hierarchy

of increasingly detailed and accurate forms. The basic

equation for estimating the number of staff-months required

to develop software in terms of the number of thousands of
delivered source instructions in the software product is as
follows:

M = 2.4 I I'05 (2-7)

where M = staff-months of effort
I = thousands of delivered source instructions

An equation for estimating the optimum development time is
also provided:

T = 2.5 M0"38 (2-8)

where T = months of development time

M = staff-months of effort (see Equation (2-7))

This basic model is good for quick order-of-magnitude esti-

mates of software costs. A more detailed presentation of

the COCOMO model is provided in Reference 12, which dis-

cusses the effects of hardware constraints, personnel quality

and experience, use of modern programming tools and tech-

niques, and other project attributes assumed to have a sig-

nificant influence on software costs.

9295

2-13

2.5.3 SLIM

The Software Life-Cycle Management (SLIM) model is a propri-

etary software package available through a timesharing net-
work (Reference 13). Based on data collected from past

software projects from a user's own organization as well as
the type and size of a proposed new project, the user can

obtain manpower, cost, and schedule estimates for the new
project. Cash flow over the life cycle can be projected.

In addition, SLIM will identify limiting constraints on man-
power and schedule, find the trade-off between cost and de-

velopment time, and adjust for requirements changes to give

new cost, manpower, and schedule estimates. A key parameter

used in SLIM is called the technology factor. It is de-

scribed as an indicator of the state of technology that a

particular organization applies to a software development

project. It is based on data supplied by the user from past
projects.

SLIM produces a primary estimate of the development cost at

the system level. It provides an optional "front-end" esti-

mate that includes the analysis and design phases. Factors

such as operation and support cost can be obtained as

another option. Estimates of computer hours and documenta-

tion are also available. The life cycle phases are overlap-
ping but fixed in relative size. Milestone events describe

the beginnings and ends of phases.

2.5.4 PRICE S

The Programmed Review of Information for Costing and

Evaluation - Software (PRICE S) model is another proprietary

software package available through a timesharing network

(Reference 14). The model computes the projected costs and

manpower required for each of three overlapping development

phases: engineering design, implementation, and test and
integration. The model also computes typical schedules

2-14

_ 9295

appropriate for the size, type, and difficulty of the pro-
posed project. Alternative scheduling may be specified by
the user.

PRICE S is unique in that it allows subsystem-level defini-

tions to be explicitly stated for all of its life cycle and

activity elements. Adjustments to account for the addi-

tional effort needed to integrate each subsystem into the

system may be specified Dy the user.

PRICE S supports two alternative modes of operation. One
allows the model to run in "reverse" to calculate empirical

factors from historical costs. Another uses specified costs

to compute typical program sizes and project schedules.

2-15

9295

SECTION 3 - SOFTWARE COST ESTIMATION GUIDELINES

This section provides an outline of the procedures and

guidelines recommended by the SEL for estimating the re-

source requirements of software development projects. These

recommendations are based on experiences with the develop-

ment of medium-scale (up to 150K lines of code) scientific

software from relatively good and complete specifications in

a reasonably stable (i.e., hardware interfaces and support

software) environment (see Appendix). However, these recom-

mendations are, to some extent, also appropriate to larger

systems.

Some potentially important factors, such as special hardware

configurations, personnel capabilities, and unusual software

constraints, are not discussed in this document. Although

these factors, if applicable, can invalidate any estimate,

the purpose of this discussion is to explain a general

procedure rather than to attempt to account for all the ex-

ceptional situations. Boehm's comprehensive text (Refer-

ence 12) deals with many of these possibly critical factors.

Software development costs include a wide range of human and

material resources. For the purposes of exposition, these

costs are grouped into three classes:

• Basic cost of software development--Staff resources

(programmer, manager, and support) required to de-

velop a new software system

• Additional software development costs--Other re-

sources (computers, documentation, test team, anal-

ysis) needed to support the development team

• Other software development activities--Staff re-

sources required in situations other than the de-

velopment of a new system (rehosting, maintenance,

and reuse)

9295

3-1

The following subsections describe the steps of the general

estimation process, explain the sources of information for

each cost type, and identify the key cost estimation param-

eters. There are, however, two prerequisites for effective
cost estimation:

• Defining the software life cycle and the products
associated with costs

• Determining nominal values for the basic cost pa-

rameters (e.g., productivity and module size)

The life cycle and products defined need not correspond to a

work breakdown structure, although this is a good way to

proceed. The nominal parameter values may be based on man-

agement experience or historical data. The values reported
in this document are based on SEL data, except where other-

wise specified.

3.1 BASIC COST OF SOFTWARE DEVELOPMENT

This section describes a general procedure for estimating

the staff resources required for the development of a new

software system (not a modification or extension of an ex-

isting system). The procedure is based on the life cycle

and products defined by the SEL for the flight dynamics en-

vironment at GSFC. Figure 3-1 shows the life cycle and the

points at which estimates are recommended. Table 3-1 lists

the products associated with each life cycle phase. The

estimation process consists of the development of initial

estimates of both software size and cost as well as its

periodic refinement as additional information becomes avail-

able throughout the software life cycle.

3.1.1 INITIAL ESTIMATE

The initial estimate must be made prior to the start of de-

velopment, during the requirements definition and specifica-

tion phase. This estimate is based largely on the previous

3-2

9295

LIFE CYCLE REQUIREMENTS

PHASES DEFINITION AND
SPECIFICATION

ESTIMATES

REQUIREMENTS

ANALYSIS +NA YLoE+A EoI iY++l++lIMPLEMENTATION S S E
T T ANCE MAINTENANCE

DESIGN DESIGN ES TEST

T T T l
2 3 4 5 6

UNCERTAINTY

IPROPORTION)

1.GO 0.75 0.50 0.30 0.12 0.(75

Figure 3-1. Cost Estimation Schedule

Table 3-1. Software Life Cycle Summary

Phase

Requirements Analysis

Preliminary Design

Detailed Design

Implementation

System Testing

Acceptance Testing

Products

Requirements Summary

Implementation Plan

High-level Design

"Code-to" Specification

System Code

System Documentation

Verified Code

Reverified Code

and Documentation

Percent of

Schedule I

i0

15

40

20

i0

ipercent of total development schedule (calendar time) spent

in each phase.

9295

3-3

experience of the manager/estimator with similar projects.

However, following a general procedure provides a formal

mechanism for incorporating this experience in the software

cost estimate. These four steps are recommended:

i. Decompose the problem and products as far as

possible.

2. Relate the elements defined in the decomposition to

functions in previously developed systems.

3. Identify special capabilities and considerations

unique to this system.

4. Select a probable rate of work and other parameters

appropriate to this system.

The first step is to decompose the information supplied by

the requirements specifications to the deepest level of de-

tail possible (e.g., system, subsystem, module). All major

system functions must be identified. Although decomposing

the requirements to the "line of code" level is desirable,

it is not usually possible. A decomposition to the subsys-

tem level is usually adequate for an initial estimate.

The second step is to associate the elements defined in the

decomposition with similar functional units (e.g., telemetry

processing, data base management, input/output processing)

in previously developed software systems. The key to a suc-

cessful initial estimate is to identify as many similarities

as possible. Such prior experience is the best guide to

estimating the size and cost required to develop that func-

tion or capability. Ideally, numerical data will be avail-

able from several similar systems. In the absence of

historical data and personal experience, cost estimation is

largely guesswork.

3-4

9295

The third step is to identify those functional capabilities

and system characteristics that are special or unique to the
system to be developed. A list of these features should be
prepared to ensure that their effects are reconsidered at

each subsequent reestimation. Features to be alert for in-

clude the following:

• Graphic versus nongraphic
• Real-time versus non-real-time

• Interactive versus noninteractive

• Unusual hardware interfaces

The inclusion of any of these features can substantially

affect software cost; the manager must rely on his/her per-
sonal expertise to estimate the magnitude of these effects.

The fourth and last step is to select estimation parameters

appropriate to the level of detail of the functional decom-

position. For example, if the software specification has

been decomposed to the module level, the parameters needed

are lines of code per module, weeks per module per person,

and hours per module. Appropriate parameter values may be

suggested by the comparison with similar systems in step 2.

Simple arithmetic calculations using these parameters gen-
erate the desired estimates as follows:

Size = Lines of code per module x Estimated modules

Cost = Hours per module x Estimated modules

Time = Weeks per module per person x Estimated modules
÷ Estimated staff

These estimates must be adjusted to account for any of the

special or unique factors identified in step 3. The depth
of decomposition increases throughout the software life

cycle (see Table 3-2). Because the decomposition only

achieves the subsystem level during requirements definition

and specification, subsequent reestimation is necessary.

3-5

9295

Table 3-2. Basic Cost Estimation Parameters a

Requirements Analysis b

Size: Lines of code per subsystem

Cost: Hours per subsystem

Schedule: Weeks per subsystem per person

b
Preliminary Design

Size: Lines of code per module

Cost: Hours per module

Schedule: Weeks per module per person

b
Detailed Design

Size: Relative weight of reused d code

Cost: Hours per developed line of code

Schedule: Weeks per developed module per

person

Implementation

Size: Percent growth during testing

Cost: Testing percent of total effort

Schedule: Testing percent of total schedule

System Testing

Cost: Acceptance testing percent of

total effort

Schedule: Acceptance testing percent of

total schedule

Nominal Value c

7500

1850

45

125

30

0.75

0.2

0.3

1.0

10

25

30

i0

aAt end of each phase.

bEstimates of total cost, size, and schedule; not required

to complete.

CBased on data collected in the flight dynamics environment

(see appendix).

dDoes not include extensively modified reused modules.

3-6

9295

3.1.2 PERIODIC REESTIMATION

Subsequent reestimates follow the same four steps as the
initial cost estimate, but make use of the most detailed de-

composition to date and other information that becomes

available. Table 3-2 lists the principal cost estimation

parameters by the life cycle phase in which they are ex-

pected to be used. The nominal values for the parameters

reported in the table are examples of how historical data

can be used to define cost estimation relationships for a

specific environment. The accuracy of estimates increases

as more detailed information becomes available during the

development process.

During requirements analysis, the nature of the software

development task becomes clearer. Although the system de-

composition may not advance beyond the subsystem level, the

scope of subsystems, complexity of functions, and special

requirements are better understood. Estimates made at the

end of requirements analysis should fall within 75 percent

of the actual size and effort.

The system decomposition is refined during the design proc-

ess. At the end of preliminary design, the total number of

modules will be known. There may also be some indication of

the development team's productivity. Any special factors

identified during the initial estimate must be reevaluated.

Estimates made with the additional information available at

this time should fall within 50 percent of the actual size

and effort.

During detailed design, those modules that can be adapted

from existing software are identified. The amount of new

and reused code can be determined by multiplying the nominal

module size by the number of modules of each type. Reused

modules cost only about 20 percent as much as new modules.

3-7

9295

Equation (3-1) produces a weighted measure of software size

(developed lines of code) incorporating this cost difference.

L = N + 0.2R (3-1)

where L = developed lines of code

N = new and extensively modified lines of code

R = slightly modified and unchanged lines of code

This additional information permits a further refinement of

the estimates. Estimates made at the end of detailed design

should fall within 30 percent of the actual size and effort.

By the end of implementation, a system will reach nearly

full size, and most of the development effort will have been

expended. Estimates of the amount and cost of testing must

be based on the size and perceived quality of the software.

Estimates made at this time should fall within 12 percent of
the actual size and effort.

Although some system growth may occur during system testing,

the software should stabilize by the end of this phase.

Estimates made at this time should fall within 5 percent of

the actual size and effort. Unless unusual problems are

encountered, subsequent acceptance testing should require

only a small expenditure of time and effort.

Development normally ends with the completion of system and

acceptance testing. However, some subsequent cleanup and

delivery effort may be required. This includes generating

tapes, compiling reports, and finalizing documentation. No

more than 3 percent of the development effort should be re-

quired for this activity.

9295

3-8

3.2 OTHER SOFTWARE DEVELOPMENT COSTS

Several other costs and quantities, in addition to the basic

cost of software production, should be estimated by the

software development manager. These include the following:

• Computer utilization

• System documentation

• Independent test team

• Analysis support

Computer use and documentation are important considerations

for any software development project. However, the costs of

an independent test team or analysis support are not

applicable to all.

Sections 3.2.1 through 3.2.4 provide guidelines for estimat-

ing these costs and quantities based on SEL experience. The

costs described in these sections are incurred in addition

•to the development costs described in Section 3.1.

3.2.1 COMPUTER UTILIZATION

A lack of computer resources is one of the most commonly

cited reasons for software development delay. However,

little attention is usually given to ensuring adequate com-

puter support until a bottleneck is encountered. Accurate

forecasting and effective scheduling can minimize delays

from this source. The demand for computer time depends on

the following factors:

• Life cycle phase (see Figure 3-2)

• Type of software developed

• Development environment

Equation (3-2) estimates the total computer resources re-

quired for a flight dynamics project:

H = 0.009L (3-2)

3-9

9295

q3S_ A7_33M3DV_3AV _O IN3D_3dl]SN _31Nd_O3

D

_J

(1)
,--I
-,-I
4..4
o

0
-,-I

r_
N

-,.4
,-.I
.,-4

©
-l.J

o
U

,-4

L)
.,4

E_

I

(1)

-,.4

-- 3-10

where H = CPU hours of computer time

L = developed lines of code (see Equation (3-1))

Some types of projects (e.g., rehosting and real-time soft-

ware) will require more computer resources. Online develop-
ment also encourages computer use. Figure 3-2 shows the

level of computer use during the life cycle of a typical

flight dynamics project. The maximum rate of computer use

is attained during system testing and should not exceed

three times the average weekly rate.

3.2.2 SYSTEMDOCUMENTATION

Although often regarded as an expendable item, effective

system documentation has been proven to promote software

quality (Reference 15). Cost and schedule overruns

elsewhere should not be made up by skipping essential

documentation. However, the amount and types of documenta-

tion appropriate to a system depend on its planned lifetime

and user needs. Equation (3-3) provides an approximation of

system documentation size:

P = 0.04L (3-3)

where P = pages of documentation
L = developed lines of code (see Equation (3-1))

This system documentation includes the design description,

test plans, user documents, component prologs, and the

development/management plan. Although some organizations

produce separate development and management plans, in the

flight dynamics environment these are combined into a single
document. Table 3-3 shows the relative proportions of these

document types.

9295

3-11

Table 3-3. Composition of System Documentation

Document Type

Design Description
Test Plans
User Documents

Component Prologs

Development/Management Plan

Percent of Total Pages

33

7

41

16

3 a

ausually does not exceed i00 pages.

The development team must generate most of the materials

contained in these documents as an intrinsic part of the

software development process. However, the user documents

(user's guide and system description) are optional. The

cost of informal user documents includes the effort spent

organizing materials (baseline diagrams, data set de-

scriptions, etc.) and writing explanatory text. Formal

documents also require typing, editing, review, and graphics

production. Table 3-4 shows the cost of these documentation

alternatives.

Table 3-4. Cost of User Documents

Document Level

No User Documents

Informal User Documents

Formal User Documents

Additional Cost a

0

5

16

apercent of basic development cost.

3-12

9295

3.2.3 INDEPENDENTTEST TEAM

One technique employed to increase software quality is to

supplement the development team with an independent test and

verification team. This team participates in requirements

and design reviews, inspects code, and conducts tests. The

independent test team does not, however, replace any of the

functions of the development team. The purpose of such a

team is to discover errors and discrepancies, but not to fix

them. Problems are reported to the development team for
resolution.

Operating an independent test team in conjunction with a

development project adds approximately i0 to 20 percent to
the cost of the development project, based on SEL experience

(Reference 16). The staff level of the independent test

team usually remains constant throughout the development
effort. Because the additional cost associated with an in-

dependent test team is significant, its use is recommended

only for very large projects or projects with high reli-

ability requirements. For some projects with extreme reli-

ability requirements, the effort expended by the independent

test team may equal that of the development team.

3.2.4 ANALYSIS SUPPORT

The development team may require support from other groups

during software development, especially from analysts with a

clear understanding of the problem. This support includes

requirements analysis, functional specifications develop-

ment, acceptance testing, data simulation, and requirements
clarification (during design and implementation). Table 3-5

shows the approximate cost of analysis support activities as

a percentage of the basic software development cost.

3-13

9295

Table 3-5. Cost of Analysis Support

_ support Type

b
Requirements Specification

Data Simulation

Acceptance Testing

Requirements Clarification c

Cost a

25

5

5

i0

apercent of basic development cost.

bprior to start of requirements analysis.

CDuring development.

These are activities that ensure that the developers under-

stand the problem and obtain a correct solution. Require-

ments specification includes those analyst activities that

produce a definition of the problem prior to the start of

development. During the software development process, ques-

tions about the requirements may arise that result in re-

quirements clarification. Analysts may also be required to

produce simulated data for software testing by the devel-

opers. Finally, the analysts participate in the acceptance

testing and evaluate its results.

3.3 OTHER SOFTWARE ACTIVITIES

A substantial amount of effort goes into software activities

other than developing new systems (Sections 3.1 and 3.2).

These activities include modifying existing software systems

to operate on new hardware systems and maintaining existing

software systems after development is complete. A related

issue is the effect of reusing existing code in a new sys-

tem. These topics are discussed in the following sections.

9295

3-14

3.3.1 SOFTWAREREHOSTING

The cost of modifying existing software to operate on a new

computer system depends on the nature of the software and

differences between the computer systems. Software devel-

oped in a high-level language is more easily transported

than assembler programs (which may have to be completely
rewritten). Table 3-6 identifies the approximate cost of

rehosting a high-level language in several situations. The

cost is expressed as a percentage of the original develop-
ment cost in staff-hours.

Table 3-6. Cost of Rehosting FORTRANSoftware

System's
Relationship Relative Cost a Testin@ Effort b New Code c

Compatible d 15-21 67-70 0-3

Similar e 22-32 61-66 4-14

Dissimilar f 33-50 55-60 15-32

apercent of original development cost.

bpercent of total rehosting cost.

Cpercent of code that must be newly developed or extensively

modified.

dsystems designed to be compatible (i.e., plug compatible).

eBasic architectural similarities (e.g., same word size and

instruction set).

fBasic architectural differences (e.g., differing word

sizes and instruction sets).

The table also shows that the percentage of development

effort spent in testing is substantially greater for rehost-

ing projects than the 30 percent spent in new development

3-15

9295

projects. The "new code" column in Table 3-6 lists the per-
centage of new and extensively modified code expected to be
produced. The number of new and old lines can be combined

to determine the number of "developed" lines of code (see

Equation (3-1)). This work measure can be converted into a

cost estimate via the procedure discussed in Section 3.1.

3.3.2 SOFTWARE MAINTENANCE

Software maintenance includes all programming occurring after

acceptance testing. It consists of two different activities.

First, errors that were not detected during development must

be corrected as they are exposed during operation. Second,

capabilities may be added and enhancements made to satisfy new

or newly recognized needs. The cost of each of these software

maintenance activities can be estimated separately.

Estimates of the cost of error correction must be based on

an estimate of the reliability of the delivered software.

Estimates of additional development costs depend on the ex-

pected length of the software's operational life and the

importance of the system to the user organization.

Limited SEL experience indicates that the annual cost of

error corrections and essential modifications ranges from i0

to 35 percent of the original development cost (in staff-

hours). This includes retesting, regenerating, and recer-

tifying the software. New documentation is usually not

produced. Little additional development (expansion of capa-

bilities) is done with software maintained in the SEL

environment.

3.3.3 SOFTWARE REUSE

An effective way to reduce the cost of software development

is to reuse appropriate software components previously de-

veloped for other systems. Rehosting (Section 3.3.1) is an

3-16

9295

example of software reuse in which almost all the code is
reused.

A careful review of available software during the design

phase of a project often identifies reusable modules.

Mathematical procedures are especially easy to reuse• Input

and output procedures are usually idiosyncratic. However,

applying the principles of modularity and structure during

the initial development of a module facilitates its later

reuse (Reference 17). Table 3-7 shows the relationship
between the amount of code modified and the cost to reuse

that module.

A significant saving can also be realized by reusinq parts

of a system's design. Effort and time can be reduced during

design by adapting a similar and already proven design from

a previous system.

Table 3-7. Cost of Reusing Software

Module
Classification a

Percent of Code ,

Modified or Added D Relative Cost c

New i00 i00

Extensively Modified >25 I00

Slightly Modified 1-25 20

Old 0 20

aNames used in Sections 3 and 4.

bpercent of module's code.

Ccost as a percent of the cost of developing a new module.

9295

3-17

SECTION 4 - A COMPREHENSIVE SOFTWARE COST

ESTIMATION PROCEDURE

This section describes the application in the flight dy-

namics environment (see Appendix) of the software cost esti-

mation principles and guidelines presented previously. It

assigns numerical values to some of the factors described in

Section 3.1 that affect the basic cost of software develop-

ment. It also shows how these estimates are used to develop

schedules and staffing plans.

A series of tables condense the relevant historical data

into a form useful to the experienced manager. The numer-

ical quantities employed are specific to the flight dynamics

environment. Although this procedure is generally applica-

ble, appropriate values for all table entries must be rede-

rived for each new environment to which the procedure is

adapted.

The procedure presented in this section can be used through-

out the development cycle of new software. However, the

number and detail of estimators available varies from phase

to phase (Table 4-1). Initial estimates are made as de-

scribed in Section 3.1.1. Subsequent reestimates incorpo-

rate the most detailed information available at the time

(see Section 3.1.2).

There are four steps in the estimation and planning of soft-

ware development:

• Estimating the size of the software product

• Converting that estimate to an estimate of develop-

ment effort

• Defining a feasible development schedule

• Determining the development staff required to com-

plete the project on schedule

4-1

-- 9295

Table 4-1. Effort Estimators and
by Phase

Uncertainty Limits

End of Phase

Requirements
Definition

Requirements
Analysis

Preliminary Design

Detailed Design

Implementation

System Testing

aupper limit = (Effort
Lower limit = (Effort

Effort Estimators

Similar projects,
general subsystems

General subsystems,
special capabilities

Specific subsystems,
expenditures to date

Actual subsystems,
modules, code, docu-
mentation, expendi-
tures to date

Modules, code,

tests, documenta-

tion, expenditures
to date

Code, tests, documen-

tation, expenditures

to date

estimate)*(l. + uncertainty)

estimate)/(l. + uncertainty)

Estimate

Uncertainty a

(Proportion)

1.00

0.75

0.50

0.30

0.12

0.05

4-2

9295

The following sections describe these four steps as they are

applied in the SEL environment. The development organiza-
tion produces software systems for a broad application of

related scientific, data base, and data support systems.
New applications (project types) and computing facilities

(environment types) are introduced every few years. The
development organization develops systems for both the old

and new computing facilities and for the same and different,

but usually related, applications. Therefore, in general, a

moderate amount of code is reused from project to project.

4.1 SOFTWARE SIZE

At each phase of the development life cycle, the development

organization extracts essential parameters and combines them

with archived information (see Table 3-2) to produce an

estimate of the system's size as described in Section 3.1.

The work unit used in this estimation procedure is lines of

executable code. Executable code makes up about 40 percent

of total lines of code. Usually, a substantial amount of

software is adapted from previous projects. The proportion

of reused code should be estimated as part of the software

size estimation step. Equation (4-1) determines the de-

veloped lines of executable code (L), a weighted measure of

system size:

L = N + 0.2R (4-1)

where N is the amount of new and extensively modified code

(in thousands of lines), and R is the amount of code reused

with little or no change (in thousands of lines). This is

the estimate of work upon which subsequent estimation steps

are based.

4-3

9295

4.2 DEVELOPMENT EFFORT

The next step after estimating size is to convert this into

an estimate of development effort. Equation (4-2) predicts

the effort required for complete development:

. L I'05
E = 8.45 flf2f3 . "fk (4-2)

where E is effort in staff-months (156 staff-hours per staff-

month), L is thousands of developed lines of executable code

(see Equation (4-1)), and the fi's are project-specific

factors that increase or decrease required effort. Sec-

tions 2.2 and 3.1 identified many such factors. This

section assigns numerical values to the most important of

them. (The constants 8.45 and 1.05 are empirical values

derived from SEL data.)

The manager needs, as a minimum, to consider the complexity

of the problem, the development team's experience, and the

schedule. As the development organization becomes more

knowledgeable about itself, other factors (such as method-

ology usage) can be added to fine-tune the estimation

process.

Table 4-2 provides the development organization with a

simple guideline for adjusting effort with a complexity

factor. This table defines four complexity classes based on

the development team's familiarity with the application and

environment. Table 4-3 provides a simple guideline for ad-

justing effort with a team experience factor. This factor

is measured in terms of years of applicable experience.

Table 4-4 provides a simple guideline for adjusting effort

with a schedule factor. This table identifies three sched-

ule types; Section 4.3 explains how schedule type is

determined.

4-4

9295

Table 4-2. Complexity Guideline

Project Environment Effort

Type a Type b Factor(f I)

Old Old 0.45

Old New 0.65

New Old 0.65

New New 1.00

aApplication, e.g., orbit determination, data base. The

project type is old when the development team has more than

2 years of experience with it.

bcomputing environment, e.g., IBM 370, VAX-II/780, Intel.

The environment type is old when the development team has

more than 2 years of experience with it.

Table 4-3. Development Team Experience Guideline

Team Years of Effort

Applicable Experience a Factor(f2)

10 0.5

8 0.6

6 0.8

4 1.0

2 1.4

1 2.5

asum of products of fraction of team member participation

with his/her years of applicable experience (requirements/

specification definition, development, operations, and

maintenance).

9295

4-5

Table 4-4. Schedule Guideline

Schedule
Characterization

Effort

Factor(f 3)

Fast 1.15

Average 1.00

Slow 0.85

As an illustration, assume that the development organization

must develop a system estimated at 25,000 executable LOC.

It is similar to ones developed before (old project type),

but it is being developed for a new computing facility (new

environment type) (fl = 0.65). Fifty percent of the code

can be reused without modification (Equation (4-1), N = R =

12.5). The development organization has a team in mind

whose weighted applicable experience is 6 years (f2 = 0.8)

and the luxury of a slow schedule (f3 = 0.85). Then,

assuming that all other factors are normal (f. = i, for
1

i = 4 to k), the estimated effort is 64.1 staff-months.

This includes the cost of developing informal user

documentation (as defined in Section 3.3.2).

Since it is the beginning of the project, there is an

uncertainty limit of ±I00 percent in the size estimate.

Therefore, project cost will range between 32.0 and

128.2 staff-months. (See Section 2.4 for a detailed discus-

sion of estimate accuracy and ranges of uncertainty.)

4.3 DEVELOPMENT SCHEDULE

The time required to complete a software project depends on

the staff and software sizes. To some extent, a larger

staff can be used to shorten development time. Table 4-4,

however, shows that a faster schedule is more costly. The

development time is usually fixed by a specified delivery

4-6

- 9295

date for the software. The tightness of a schedule can be

determined by calculating the work rate as shown in Equa-
tion (4-3).

W = L/T (4-3)

where W = work rate

L = thousands of developed lines of executable code (see
Equation (4-1))

T = development time (duration in weeks)

Table 4-5 presents a classification of schedule difficulty

based on work rate. The schedule type of a project is

incorporated in the effort estimation step described in Sec-

tion 4.2. Once the total schedule length has been deter-

mined, phase transition dates must be defined. Table 4-6
gives the distributions of time and effort for planning the

life cycle for flight dynamics projects.

Table 4-5. Determination of Schedule Type From Work Rate a

Complexity Schedule Type
b

Class Fast Average Slow

Old/Old >0.24 0.24-0.16 <0.16

Old/New >0.17 0.17-0.10 <0.i0

New/Old >0.17 0.17-0.10 <0.i0

New/New >0.ii 0.11-0.07 <0.07

aThousands of developed lines of executable code per week

as defined in Equation (4-3).

bproject/environment pairs defined in Table 4-2.

4-7

9295

Table 4-6.

Phase

Requirements Analysis

Preliminary Design

Detailed Design

Implementation

System Testing

Acceptance Testing

Distribution of Development Effort

Percent
of Schedule

Percent

of Effort

5 6

l0 8

15 16

40 45

20 20

10 " 5

4.4 PROJECT STAFFING

Once the effort for each phase is known, the development

manager must determine how fast the development team can be

staffed, how large it can get, and how soon team members can

be released without disturbing discipline and order. This

determination has to be made based on the project leader's

experience level. In this example, Table 4-7 provides the

development organization with a simple guideline for deter-

mining team size in terms of the experience of the team

leaders. Table 4-8 provides a simple guideline for planning

changes in staffing level.

Using these guidelines, the manager will find that team size

peaks at the beginning of implementation. When the team is

too large for a less senior project leader, the development

manager can replace the project leader with a more senior

project leader or extend the schedule. When the team size

is too large for a senior project leader, the manager must

extend the schedule or partition the development effort into

several smaller projects. Forming smaller projects, of

course, will present the manager with software integration

problems and additional management and support charges

4-8

9295

Table 4-7. Team Size Guideline

Years of Experience a MaximumMinimum
Team Size

Project Manager Project Leader Excluding
App. Org. Leader App. Org. Leader Team Leaders

8 6 5 6 4 3 7 ±2

7 5 3 5 3 1 4.5 ±1.5

6 4 2 4 2 0 2±1

a
App.

Org.

Leader

= Applicable experience, i.e., requirements/

specification definition, development, maintenance,

and operation.

= Experience with organization.

= Experience as team leader or manager.

Table 4-8. Staffing Pattern Guideline

PROJECT LEADER

LEAD
TYPE TIME

(WEEKS) a

SENIOR

INTERMEDIATE

JUNIOR

5

6

.7

SCHEDULE
TYPE

FAST

OPTIMUM

SLOW

FAST

OPTIMUM

SLOW

FAST

OPTIMUM

SLOW

DEVELOPMENT TEAM MEMBERS

PHASE-IN PHASE-OUT MINIMUM LENGTH
INCREMENT INCREMENT OF PARTICIPATION

(WEEKS)b (WEEKS)C (WEEKS)

aTIME THAT THE PROJECT MANAGER AND LEADER NEED TO ORGANIZE AND PLAN PROJECTS BEFORE OTHER
TEAM MEMBERS JOIN THE PROJECT.

bMINIMUM INTERVAL BETWEEN ADDITIONS OF TEAM MEMBERS TO ALLOW THE PROJECT LEADER TO

MAINTAIN ORDER.

CMINIMUM INTERVAL BETWEEN DEPARTURES OF TEAM MEMBERS TO ALLOW ASSIGNMENTS TO BE
ABSORBED BY THE TEAM AND MINIMIZE CALLBACK.

4-9

9295

because each smaller project will have a project leader and

its own reporting and support requirements.

In this environment, Table 4-9 provides the development

organization with a simple guideline for determining the

type and experience level of technical personnel needed in
terms of the complexity of the problem. Other personnel

types must also be considered. Management charges usually

amount to i0 percent of development charges. Administrative

and publications support usually amounts to 6 percent of de-

velopment charges.

Table 4-9. Development Team Staffing Guideline

Project Environment

Type a Type a

Old Old

Old New

New Old

New New

Percentage of
Senior Personnel b

Percentage

of Analysts c

25-33 25-33

33-50 25-33

33-50 33-50

50-67 33-50

aThe project and environment types are old when the develop-

ment team has more than 2 years of experience with them.

bsenior personnel are those with more than 5 years of ex-

perience in development-related activities.

CAnalysts are those personnel who have training and an educa-

tional background in problem definition and solution with

the application (project type) or the computers (environment

type) depending on the problem.

4 -i0

9295

SECTION 5 - SUMMARY AND RECOMMENDATIONS

The preceding sections reviewed the state of the art and

described a general procedure for software cost estimation.

Accurate estimates are the result of careful evaluation and

planning. The following points are especially important to

bear in mind:

• A regular program of data collection is necessary

to supply the historical data essential to software

cost estimation. Reference 18 describes the com-

prehensive program of data collection employed by

the SEL.

• A software life cycle must be defined at the start

of a project. Reestimation must be performed

throughout the life cycle to incorporate the addi-

tional information that becomes available.

• A software development plan is essential to effec-

tive software cost estimation. This plan should

contain the schedule and staffing details needed to

measure the progress of the development effort.

Estimates must be updated as the schedule and

staffing assumptions on which they are based change.

• An early understandin 9 of the size and complexity

of a software development problem is essential to

effective planning and estimation.

• The basic prerequisites for estimate accuracy are a

detailed decomposition, careful analysis, and good

historical data.

The procedure explained in this document provides the soft-

ware development manager with an effective tool for cost

estimation. Careful attention to the points made above will

maximize the accuracy and information obtained from this

estimation procedure.

5-1

9295

APPENDIX - SEL SOFTWARE COST ESTIMATION EXPERIENCE

This appendix describes the nature of the software applica-

tions and environment (flight dynamics) that is the basis of

SEL software cost estimation experience. The numerical

values and relationships reported in this document were de-

rived from data collected by the SEL from flight dynamics

projects at GSFC.

. Most flight dynamics projects are developed on a group of

IBM mainframe computers using FORTRAN and assembly program-

ming languages. Table A-I summarizes the important charac-

teristics of the flight dynamics environment. Specific

software applications include attitude determination, atti-

tude control, maneuver planning, orbit adjustment, and

general mission analysis. The attitude systems, in partic-

ular, form a large and homogeneous group of software that

has been studied extensively.

The attitude determination and control systems are designed

similarly for each mission using a standard executive sup-

port package, the Graphic Executive Support System (GESS),

as the controlling system. All of these systems arede-

signed to run in batch and/or interactive graphic mode.

Depending on mission characteristics, the size of the sys-

tems may range from approximately 30,000 to 120,000 lines of

code (LOC). Some existing software can be reused in new

systems when the new system is similar to previous systems.

The percentage of reused code ranges from i0 percent to

nearly 70 percent, with most systems reusing about

30 percent.

The applications developed in the flight dynamics environ-

ment are largely scientific and mathematical in nature, with

moderate reliability requirements. Severe development time

constraints are imposed by the fixed spacecraft launch date.

A-I

9295

Table A-I. Flight Dynamics Environment

Type of Software:

Languages:
Machines:

Scientific, grouna-based, interactive
graphic with moderate reliability and re-
sponse requirements

85 percent FORTRAN, 15 percent assembler macros

Primarily IBM (S/360 and 4341) and DEC
(PDP-II and VAX-II)

Project
Characteristics Average High Low

Duration (months) 15.6

Effort (staff years) 8.0

Size (i000 LOC)

Developed 57.0

Delivered 62.0

Staff (full-time equivalent)

Average 5.4

Peak i0.0

Individuals 14

Application Experience (years)

Managers 5.8

Technical Staff 4.0

Overall Experience (years)

Managers I0.0

Technical Staff 8.5

20.5 12.9

11.5 2.4

111.3 21.5

112.0 32.8

6.0 1.9

13.9 3.8

17 7

6.5 5.0

5.0 2.9

14.0 8.4

ii.0 7.0

A-2

9295

The development process normally begins approximately 12 to
24 months before a scheduled launch. The software must be

completed (through acceptance testing) 90 days before the
scheduled launch.

The SEL has monitored the development of more than 45 such

flight dynamics projects during the past 7 years. Table A-2
reports the nominal values of some software cost estimation

parameters extracted from SEL historical data. Most of

these were discussed in detail in Sections 3 and 4. The SEL
is described in more detail in Reference i.

9295

A-3

Table A-2. Summary of Cost Estimation Parameters

Nominal
Parameter Value

Lines of code per subsystem 7500

Staff hours to develop a subsystem 1850
Lines of code per module 125

Staff hours to develop a module 30

Staff hours to develop a line of code 0.3

Computer hours per line of code 0.009

Pages of documentation per line of 0.04
code

Cost of independent test team 15b

Cost of analysis support 45b

Cost to rehost software to compatible 18b
computer

Cost to rehost software to similar 27b
computer

Cost to rehost software to dissimilar 42b
computer

bAnnual cost of maintenance 20

Percent of code reused 30

Relative cost of reusing software 20

Executable lines as a percent of 40
total source lines

Percent of effort by programmers 84

Percent of effort by managers i0
Percent of effort by support staff 6

Discussion a

3.1

3.1

3.1

3.1

3.1

3.2.1

3.2.2

3.2.3

3.2.4

3.3.1

3.3.1

3.3.1

3.3.2

3.3.3

3.3.3

4.1

4.4

4.4

4.4

a

Section of this document where discussed.

bpercent of basic software development cost.

A-4

9295

REFERENCES

io

o

a

•

•

•

o

u

go

i0.

ii.

12.

13.

Software Engineering Laboratory, SEL-81-104, The Soft-

ware Engineerin 9 Laboratory, D. N. Card, F. E. McGarry,

G. Page, et al., February 1982

--, SEL-81-205, Recommended Approach to Software Devel-

opment, F. E. McGarry, G. Page, S. Eslinger, et al.,

March 1983

Computer Sciences Corporation, "Early Estimation of
" D. N Card,Resource Expenditures and Program Size,

Technical Memorandum, June 1982

A. J. Albrecht and J. E. Gaffney, "Software Function,

Source Lines of Code, and Development Effort Predic-

tion: A Software Science Validation," IEEE Transac-

tions on Software Engineering, November 1983

Software Engineering Laboratory, SEL-81-105, Glossary

of Software Engineering Laboratory Terms, T. A. Babst,
M. G. Rohleder, and F. E. McGarry, October 1983

F. B. Brooks, The Mythical Man-Month. Reading,
Massachusetts: Addison-Wesley Publishing Co., 1975

R. C. Tausworthe, "Staffing Implications of Software

Productivity Models," Proceedings of the Seventh Annual

Software Engineering Workshop, December 1982

R. W. Wolverton, "The Cost of Developing Large Scale

Software," IEEE Transaction on Computers, June 1974

L. H. Putnam, "A General Empirical Solution to the

Macro Software Sizing and Estimating Problem," IEEE

Transactions on Software Engineering, July 1978

Software Engineering Laboratory, SEL-80-007, A__nn

Appraisal of Selected Cost/Resource Estimation Models

_or Software Systems, J. F. Cook and F. E. McGarry,

December 1980

J. W. Bailey and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceeding of

the Fifth International Conference on Software Engi-

neering. New York: Computer Societies Press, 1981

B. Boehm, Software En@ineering Economics.

Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1981

Quantitative Software Management, Inc., SLIM, 1979

R-I

- 9295

16.

17.

18.

Radio Corporation of America, PRICE S, 1979

D. N. Card, F. E. McGarry, and G. Page, "Evaluating
Software Engineering Technologies in the SEL," Pro-

ceedin_s of the Eighth Annual Software En@ineer_ng
Workshop, November 1983

Software Engineering Laboratory, SEL-81-110, Evaluation

of an Independent Verification and Validation (IV&V)

Methodolo@y for Flight D[namics, G. Page and
F. E. McGarry, December 1983

B. Meyer, "Principles of Package Design," ACM Commu-
nications, vol. 25, no. 7, July 1982

Software Engineering Laboratory, SEL-81-101, Guide to
Data Collection, V. E. Church, D. N. Card,

F. E. McGarry, et al., August 1982

9295

R-2

BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in

this bibliography are organized into two groups. The first

group is composed of documents issued by the Software Engi-

neering Laboratory (SEL) during its research and development

activities. The second group includes materials that were

published elsewhere but pertain to SEL activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software En@i-
neering Workshop, August 1976

SEL-77-001, The Software Engineering Laboratory,

V. R. Basili, M. V. Zelkowitz, F. E. McGarry, et al., May
1977

SEL-77-002, Proceedings From the Second Summer Software En-

gineering Workshop, September 1977

SEL-77-003, Structured FORTRAN Preprocessor (SFORT), B. Chu

and D. S. Wilson, September 1977

SEL-77-004, GSFC NAVPAK Design Specifications Languages

Stud_, p. A. Scheffer and C. E. Velez, October 1977

SEL-78-001, FORTRAN Static Source Code Analyzer (SAP) Design

and Module Descriptions, E. M. O'Neill, S. R. Waligora, and

C. E. Goorevich, February 1978

ISEL-78-002, FORTRAN Static Source Code Anal[zer

User's Guide, E. M. O'Neill, S. R. Waligora, and

C. E. Goorevich, February 1978

(SAP)

SEL-78-I02, FORTRAN Static Source Code Anal[zer Pro@ram
(SAP) User's Guide (Revision i), W. J. Decker and

W. A. Taylor, September 1982

SEL-78-003, Evaluation of Draper NAVPAK Software Design,
K. Tasaki and F. E. McGarry, June 1978

SEL-78-004, Structured FORTRAN Preprocessor (SFORT)

PDP-II/70 User's Guide, D. S. Wilson and B. Chu, September
1978

B-I

9295

SEL-78-005, Proceedings From the Third Summer Software Engi-
neering Workshop, September 1978

SEL-78-006, GSFC Software En_ineerin@ Research Requirements

Analysis Study, p. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL
Environment, T. E. Mapp, December 1978

SEL-79-001, SIMPL-D Data Base Reference Manual,

M. V. Zelkowitz, July 1979

SEL-79-002, The Software Engineering Laboratory: Relation-

ship Equations, K. Freburger and V. R. Basili, May 1979

SEL-79-003, Common Software Module Repository (CSMR) System

Description and User's Guide, C. E. Goorevich, A. L. Green,

and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber, and Gordon Pro-

gram Design Language (PDL) in the Goddard Space Flight Cen-

ter (GSFC) Code 580 Software Design Environment,

C. E. Goorevich, A. L. Green, and W. J. Decker, September
1979

SEL-79-005, Proceedings From the Fourth Summer Software En-

gineerin_ Workshop, November 1979

SEL-80-001, Functional Requirements/Specifications for

Code 580 Configuration Analysis Tool (CAT), F. K. Banks,

A. L. Green, and C. E. Goorevich, February 1980

SEL-80-002, Multi-Level Expression Design Langua@e-

Requirement Level (MEDL-R) System Evaluation, W. J. Decker

and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support

Software System (MMS/GSSS) State-of-the-Art Computer Systems/
Compatibility Study, T. Welden, M. McClellan, and

P. Liebertz, May 1980

ISEL-80-004, System Description and User's Guide for Code

580 Configuration Analysis Tool (CAT), F. K. Banks,
W. J. Decker, J. G. Garrahan, et al., October 1980

SEL-80-104, Configuration Analysis Tool (CAT) System De-

scription and User's Guide (Revision i), W. Decker and

W. Taylor, December 1982

SEL-80-005, A Study of the Musa Reliability Model,
A. M. Miller, November 1980

B-2

9295

SEL-80-006, Proceedings From the Fifth Annual Software Engi-

neering Workshop, November 1980

SEL-80-007, An Appraisal of Selected Cost/Resource Estima-

tion Models for Software Systems, J. F. Cook and

F. E. McGarry, December 1980

ISEL-81-001, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., September 1981

SEL-81-101, Guide to Data Collection, V. E. Church,

D. N. Card, F. E. McGarry, et al., August 1982

ISEL-81-002, Software Engineering Laboratory (SEL) Data

Base Organization and User's Guide, D. C. Wyckoff, G. Page,
and F. E. McGarry, September 1981

SEL-81-102, Software Engineering Laboratory (SEL) Data Base
Organization and User's Guide Revision i, P. Lo and

D. Wyckoff, July 1983

ISEL-81-003, Data Base Maintenance System (DBAM) User's

Guide and System Description, D. N. Card, D. C. Wyckoff, and

G. Page, September 1981

SEL-81-103, Software En@ineerin@ Laboratory (SEL) Data Base

Maintenance System (DBAM) User's Guide and System Descrip-

tion, P. Lo and D. Card, July 1983

ISEL-81-004, The Software Engineering Laboratory,

D. N. Card, F. E. McGarry, G. Page, et al., September 1981

SEL-81-104, The Software En@ineerin_ Laboratory, D. N. Card,

F. E. McGarry, G. Page, et al., February 1982

ISEL-81-005, Standard Approach to Software Development,

V. E. Church, F. E. McGarry, G. Page, et al., September 1981

ISEL-81-105, Recommended Approach to Software Development,

S. Eslinger, F. E. McGarry, and G. Page, May 1982

SEL-81-205, Recommended Approach to Software Development,

F. E. McGarry, G. Page, S. Eslinger, et al., April 1983

SEL-81-006, Software En@ineerin@ Laboratory (SEL) Document

Library (DOCLIB) System Description and User's Guide,

W. Taylor and W. J. Decker, December 1981

ISEL-81-007, Software Engineering Laboratory (SEL) Com-

pendium of Tools, W. J. Decker, E. J. Smith, A. L. Green,

et al., February 1981

B-3

9295

SEL-81-107, Software Engineering Laboratory (SEL) Compendium

of Tools, W. J. Decker, W. A. Taylor, and E. J. Smith,

February 1982

SEL-81-008, Cost and Reliability Estimation Models (CAREM)

User's Guide, J. F. Cook and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Work-

bench Phase 1 Evaluation, W. J. Decker and F. E. McGarry,
March 1981

ISEL-81-010, Performance and Evaluation of an Independent

Software Verification and Integration Process, G. Page and
F. E. McGarry, May 1981

SEL-81-110, Evaluation of an Independent Verification and

Validation (IV&V) Methodology for Flight Dynamics, G. Page

and F. McGarry, December 1983

SEL-81-011, Evaluating Software Development by Analysis of

Change Data, D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve As a Model for Effort Distri-

bution Over the Life of Medium Scale Software Systems, G. O.
Picasso, December 1981

SEL-81-013, Proceedings From the Sixth Annual Software Engi-

neering Workshop, December 1981

SEL-81-014, Automated Collection of Software Engineering

Data in the Software Engineering Laboratory (SEL),

A. L. Green, W. J. Decker, and F. E. McGarry, September 1981

SEL-82-001, Evaluation of Management Measures of Software

Development, G. Page, D. N. Card, and F. E. McGarry,

September 1982, vols. 1 and 2

SEL-82-002, FORTRAN Static Source Code Analyzer Program

(SAP) System Description, W. A. Taylor and W. J. Decker,

August 1982

SEL-82-003, Software En@ineering Laboratory (SEL) Data Base

Reporting Software User's Guide and System Description,
P. Lo, September 1982

SEL-82-004, Collected Software Engineering Papers: Vol-
ume I, July 1982

lSEL-82-005, Glossary of Software Engineering Laboratory
Terms, M. G. Rohleder, December 1982

B-4

9295

SEL-82-105, Glossary of Software Engineering Laboratory

Terms, T. A. Babst, F. E. McGarry, and M. G. Rohleder,
October 1983

ISEL-82-006, Annotated Bibliography of Software Engineer
ing Laboratory (SEL) Literature, D. N. Card, November 1982

SEL-82-I06, Annotated Bibliography of Software Engineering

Laboratory Literature, D. N. Card, T. A. Babst, and

F. E. McGarry, November 1983

SEL-82-007, Proceeaings From the Seventh Annual Software

Engineering Workshop, December 1982

SEL-82-008, Evaluating Software Development by Analysis of

Changes: The Data From the Software Engineerin@ Laboratory,

V. R. Basili and D. M. Weiss, December 1982

SEL-83-001, An Approach to Software Cost Estimation,

F. E. McGarry, G. Page, D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development,

D. N. Card, F. E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software En@ineering Papers_ Vol-

ume II, November 1983

SEL-83-004, SEL Data Base Retrieval System (DARES) User's

Guide, T. A. Babst and W. J. Decker, November 1983

SEL-83-005, SEL Data Base Retrieval System (DARES) System

Description, P. Lo and W. J. Decker, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic

Variables, C. W. Doerflinger, November 1983

SEL-83-007, Proceedings From the Eighth Annual Software En-

gineering Workshop, November 1983

SEL-RELATED LITERATURE

2Agresti, W. W., F. E. McGarry, D. N. Card, et al., "Meas-

uring Software Technology," Program Transformation and Pro-

@ramming Environments. New York: Springer-Verlag, 1984

3Bailey, J. W., and V. R. Basili, "A Meta-Model for Soft-

ware Development Resource Expenditures," Proceedings of the

Fifth International Conference on Software Engineering.

New York: Computer Societies Press, 1981

B-5

9295

Banks, F. K., "Configuration Analysis Tool (CAT) Design,"
Computer Sciences Corporation, Technical Memorandum, March
1980

3Basili, V. R., "Models and Metrics for Software Manage-
ment and Engineering," ASME Advances in Computer Technology,

January 1980, vol. 1

Basili, V. R., "SEL Relationships for Programming Measure-

ment and Estimation," University of Maryland, Technical Mem-
orandum, October 1979

Basili, V. R., Tutorial on Models and Metrics for Software

Management and Engineering.. New York: Computer Societies

Press, 1980 (also designated SEL-80-008)

3Basili, V. R., and J. Beane, "Can the Parr Curve Help

With Manpower Distribution and Resource Estimation Prob-

lems?", Journal of S[stems and Software, February 1981,
vol. 2, no. 1

3Basili, V. R., and K. Freburger, "Programming Measurement

and Estimation in the Software Engineering Laboratory,"

Journal of Systems and Software, February 1981, vol. 2, no. 1

2Basili, V. R., and B. T. Perricone, Software Errors and

Complexit[: An Empirical Investigation, University of

Maryland, Technical Report TR-II95, August 1982

3Basili, V. R., and T. Phillips, "Evaluating and Com-

paring Software Metrics in the Software Engineering Labora-

tory," Proceedings of the ACM SIGMETRICS Symposium/

Workshop: Quality Metrics, March 1981

2Basili, V. R., R. W. Selby, and T. Phillips, "Metric

Analysis and Data Validation Across FORTRAN Projects," IEEE

Transactions on Software Engineering, November 1983

Basili, V. R., and R. Reiter, "Evaluating Automatable Meas-

ures for Software Development," Proceedings of the Workshop

on Quantitative Software Models for Reliability, Complexity

and Cost, October 1979

2Basili, V.R., and D. M. Weiss, A Methodology for Col-

lectin_ Valid Software Engineering Data, Universlty o_
Maryland, Technical Report TR-1235, December 1982

Basili, V. R., and M. V. Zelkowitz, "Designing a Software

Measurement Experiment," Proceedings of the Software Life

Cycle Management Workshop, September 1977

B-6

9295

3Basili, V. R., and M. V. Zelkowitz, "Operation of the
Software Engineering Laboratory," Proceedings of the Second

Software Life Cycle Management Workshop, August 1978

3Basili, V. R., and M. V. Zelkowitz, "Measuring Software

Development Characteristics in the Local Environment,"

Computers and Structures, August 1978, vol. i0

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale

Software Development," Proceedings of the Third Interna-

tional Conference on Software En_ineerin@. New York: Com-

puter Societies Press, 1978

3Basili, V. R., and M. V. Zelkowitz, "The Software Engi-

neering Laboratory: Objectives," Proceedings of the

Fifteenth Annual Conference on Computer Personnel Research,

August 1977

2Card, D. N., "Early Estimation of Resource Expenditures

and Program Size," Computer Sciences Corporation, Tech-

nical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Tech-

niques for Resource Estimation," Computer Sciences Cor-

poration, Technical Memorandum, November 1982

Card, D. N., and V. E. Church, "Analysis Software Require-

ments for the Data Retrieval System," Computer Sciences

Corporation Technical Memorandum, March 1983

Card, D. N., and V. E. Church, "A Plan of Analysis for

Software Engineering Laboratory Data," Computer Sciences

Corporation Technical Memorandum, March 1983

Card, D. N., and M. G. Rohleder, "Report of Data Expansion

Efforts," Computer Sciences Corporation, Technical Memoran-

dum, September 1982

3Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis

To Evaluate Software Engineering Methodologies," Proceed-

ings of the Fifth International Conference on Software

Engineering. New York: Computer Societies Press, 1981

2Doerflinger, C. W., and V. R. Basili, "Monitoring Soft-

ware Development Through Dynamic Variables," Proceedings of

the Seventh International Com_uter Software and Applications

Conference. New York: Computer Societies Press, 1983

Freburger, K., "A Model of the Software Life Cycle" (paper

prepared for the University of Maryland, December 1978)

B-7

9295

Higher Order Software, Inc., TR-9, A Demonstration of AXES

for NAVPAK, M. Hamilton and S. Zeldin, September 1977 (also

deslgnatea SEL-77-005)

Hislop, G., "Some Tests of Halstead Measures" (paper pre-

pared for the University of Marylana, December 1978)

Lange, S. F., "A Child's Garden of Complexity Measures"

(paper prepared for the University of Marylana, December

1978)

McGarry, F. E., G. Page, and R. D. Werking, Software Devel-

opment History of the Dynamics Explorer (DE) Attitude Ground

Support System (AGSS), June 1983

Miller, A. M., "A Survey of Several Reliability Models"

(paper prepared for the University of Maryland, December

1978)

National Aeronautics and Space Administration (NASA), NASA

Software Research Technology Workshop (proceedings), Mar--_

1980

Page, G., "Software Engineering Course Evaluation," Computer

Sciences Corporation, Technical Memorandum, December 1977

Parr, F., and D. Weiss, "Concepts Used in the Change Report

Form," NASA, Goddard Space Flight Center, Technical Memoran-

dum, May 1978

Reiter, R. W., "The Nature, Organization, Measurement, and

Management of Software Complexity" (paper prepared for the

University of Maryland, December 1976)

Scheffer, P. A., and C. E. Velez, "GSFC NAVPAK Design Higher

Order Languages Study: Addendum," Martin Marietta Corpora-

tion, Technical Memorandum, September 1977

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL

Software Development Data, Data and Analysis Center for

Software, Special Publication, May 1981

Turner, C., G. Caron, and G. Brement, NASA/SEL Data Compen-

dium, Data and Analysis Center for Software, Special Publi-

c--_on, April 1981

Weiss, D. M., "Error and Change Analysis," Naval Research

Laboratory, Technical Memorandum, December 1977

Williamson, I. M., "Resource Model Testing and Information,"

Naval Research Laboratory, Technical Memorandum, July 1979

B-8

9295

3Zelkowitz, M. V., "Resource Estimation for Medium Scale
Software Projects," Proceedin@s of the Twelfth Conference on

the Interface of Statistics and Computer Science.

New York: Computer Societies Press, 1979

2Zelkowitz, M. V., "Data Collection and Evaluation "for Ex-

perimental Computer Science Research," Empirical Foundations

fomr Co purer and Information Science (proceedings),

November 1982

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of

a Software Measurement Facility," Proceedings of the Soft-

ware Life Cycle Mana@ement Workshop, September 1977

iThis document superseded by revised document.

2This article also appears in SEL-83-003, Collected Soft-

ware En@ineerin@ Papers: Volume II, November i_3.

3This article also appears in SEL-82-004, Collected Soft-

ware En@ineerin@ Papers: Volume I, July ±982.

B-9

9295

