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Hydrogeology and Aquifer Storage and Recovery
Performance in the Upper Floridan Aquifer,

Southern Florida

By Ronald S. Reese and Carlos A. Alvarez-Zarikian

Abstract

Well construction, hydraulic well test, ambient water-quality,
and cycle test data were inventoried and compiled for 30
aquifer storage and recovery facilities constructed in the
Floridan aquifer system in southern Florida. Most of the
facilities are operated by local municipalities or counties in
coastal areas, but five sites are currently being evaluated as
part of the Comprehensive Everglades Restoration Plan. The
relative performance of all sites with adequate cycle test data
was determined, and compared with four hydrogeologic and
design factors that may affect recovery efficiency.

Testing or operational cycles include recharge, storage,
and recovery periods that each last days or months. Cycle
test data calculations were made including the potable water
(chloride concentration of less than 250 milligrams per liter)
recovery efficiency per cycle, total recovery efficiency per
cycle, and cumulative potable water recovery efficiencies
for all of the cycles at each site. The potable water recovery
efficiency is the percentage of the total amount of potable
water recharged for each cycle that is recovered; potable
water recovery efficiency calculations (per cycle and cumula-
tive) were the primary measures used to evaluate site perfor-
mance in this study. Total recovery efficiency, which is the
percent recovery at the end of each cycle, however, can be
substantially higher and is the performance measure normally
used in the operation of water-treatment plants.

The Upper Floridan aquifer of the Floridan aquifer
system currently is being used, or planned for use, at 29 of the
aquifer storage and recovery sites. The Upper Floridan aquifer
is continuous throughout southern Florida, and its overlying
confinement is generally good; however, the aquifer contains
brackish to saline ground water that can greatly affect fresh-
water storage and recovery due to dispersive mixing within
the aquifer. The hydrogeology of the Upper Floridan varies in
southern Florida; confinement between flow zones is better
in southwestern Florida than in southeastern Florida. Vertical
hydraulic conductivity in the upper part of the aquifer also
may be higher in southeastern Florida because of unconformi-
ties present at formation contacts within the aquifer that may
be better developed in this area.

Recovery efficiencies per cycle varied widely. Eight sites
had recovery efficiencies of less than about 10 percent for the
first cycle, and three of these sites had not yet achieved recov-
eries exceeding 10 percent, even after three to five cycles. The
highest recovery efficiency achieved per cycle was 94 percent.
Three southeastern coastal sites and two southwestern coastal
sites have achieved potable water recoveries per cycle exceed-
ing 60 percent. One of the southeastern coastal sites and both
of the southwestern coastal sites achieved good recoveries,
even with long storage periods (from 174 to 191 days). The
high recovery efficiencies for some cycles apparently resulted
from water banking—an operational approach whereby an
initial cycle with a large recharge volume of water is followed
by cycles with much smaller recharge volume. This practice
flushes out the aquifer around the well and builds up a buffer
zone that can maintain high recovery efficiency in the subse-
quent cycles.

The relative performance of all sites with adequate cycle
test data was determined. Performance was arbitrarily grouped
into “high” (greater than 40 percent), “medium” (between 20
and 40 percent), and “low” (less than 20 percent) categories
based primarily on their cumulative recovery efficiency for
the first seven cycles, or projected to seven cycles if fewer
cycles were conducted. The ratings of three sites, considered
to be borderline, were modified using the overall recharge rate
derived from the cumulative recharge volumes. A higher over-
all recharge rate (greater than 300 million gallons per year)
can improve recovery efficiency because of the water-banking
effect. Of the 30 sites in this study, a rating was determined for
17 sites, of which 7 sites were rated high, 5 sites were rated
medium, and 5 sites were rated low.

Four hydrogeologic and design factors that may affect
recovery were compared with the relative performance ratings.
These factors are the thickness, transmissivity, and ambient
chloride concentration (correlated with salinity) of the storage
zone, and the thickness of the portion of the aquifer above the
top of the storage zone. Threshold values for these factors of
150 feet, 30,000 square feet per day, 2,500 milligrams per liter,
and 50 feet were chosen, respectively; each represents a value
above which recovery efficiency could be adversely affected.
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Some general correlation of the performance ratings with the
number of factors above the threshold value was found. The
best correlation was found with the transmissivity and ambient
chloride concentration factors, but some correlation also was
indicated with the thickness of the storage zone.

Long intercycle or storage periods can adversely affect
recovery efficiency. This adverse effect appears to be more
likely for Upper Floridan aquifer sites in southeastern Florida
than in southwestern Florida; southeastern Florida has higher
ambient salinity, higher apparent vertical hydraulic conductiv-
ity, and more storage zones located greater than 50 feet below
the top of the aquifer. This effect could be caused by upward
migration of the recharged freshwater “bubble” during these
periods as a result of buoyancy. Some evidence for this was
found in the performance ratings for sites and in the analyses
of certain cycles with long inactive periods.

Introduction

Interest and activity in aquifer storage and recovery
(ASR) in southern Florida have greatly increased during the
past 10 to 15 years, and many utility-operated ASR facilities
now have wells completed in deep confined aquifers for this
purpose. In southern Florida, ASR has been used to store
excess freshwater during the wet season and subsequently
recover it during the dry season for use as an alternative drink-
ing-water supply source. Water is injected down an ASR well,
stored in an aquifer, and withdrawn using the same well.

The principal aquifer used for ASR in southern Florida is
the carbonate Upper Floridan aquifer of the Floridan aqui-
fer system. There are 30 sites with wells completed in the
Floridan aquifer system in this area; the ASR storage zone is
located (or is planned to be) within the Upper Floridan aqui-
fer at 29 sites and within the middle Floridan aquifer at the
remaining site. Another storage zone being utilized at several
other sites in southwestern Florida is the mid-Hawthorn aqui-
fer, which overlies the Upper Floridan aquifer.

Most ASR sites described herein are owned by local
municipalities or county water authorities in coastal areas
(fig. 1) and are presently (end of 2004) at different stages
of completion and operation. Of the 30 sites, 3 have at least
one operating well, 11 are undergoing “operational testing,”
11 require further infrastructure development or regula-
tory approval prior to “operational testing,” and 5 have been
discontinued (abandoned) after experimental testing was
completed. Operational (cycle) testing is conducted during the
first phase of operation and involves a multi-year period of
regulatory review. During this time, the ASR well system is
tested prior to receiving a full operating permit by the Florida
Department of Environmental Protection (FDEP).

The expanded use of ASR on an unprecedented scale
in southern Florida has been proposed as a cost-effective
water-supply alternative to help meet the needs of agricul-
tural, municipal, and recreational users, and for Everglades

ecosystem restoration (U.S. Army Corps of Engineers and
South Florida Water Management District, 1999). Under the
Comprehensive Everglades Restoration Plan (CERP), con-
struction of about 330 ASR wells is proposed for southern
Florida. To be economically viable, each well must have an
operational capacity of 5 Mgal/d during recharge (injection) or
recovery. Wells were drilled at five sites as part of the CERP
pilot study program (fig. 1), and large-diameter test injec-

tion wells (exploratory wells) were constructed with storage
zones in the Upper Floridan aquifer at four of the sites for the
purpose of cycle testing. A test well was drilled at the fifth site
(site 9), but has not been completed.

Several current or potential problems with ASR have
been identified in southern Florida. These problems include:
(1) reduced recovery due to mixing of recharged water with
brackish to saline ground water in the Upper Floridan aquifer
(Reese, 2002); (2) stringent water-quality requirements for
recharge into the aquifer (Federal Regulations Code, 2002a;
Florida Administrative Code, 2002); and (3) the release, or
potential for release, of water-quality constituents of concern
(such as arsenic and radionuclides) into the stored water as a
result of the interaction between injected freshwater and the
aquifer matrix (Mirecki, 2004). The present study focuses only
on the issue of recovery.

The Upper Floridan is continuous and well confined
throughout southern Florida. The depth to the top of the aqui-
fer ranges from 500 to 1,200 ft below land surface. In southern
Florida, however, the Upper Floridan aquifer contains brackish
to saline water, which can affect the recovery of the freshwater
because of mixing within the aquifer during injection, storage,
and withdrawal.

ASR wells are evaluated and operated through a cyclical
process. Each cycle includes periods of injection (recharge) of
water into the ASR well, storage in the aquifer, and with-
drawal (recovery) from the same well; each period can last
days or months. During operational testing, the recovery
period often begins immediately after recharge is completed,
with no period of storage. The volume of water recharged
for each cycle and the duration of cycles and storage periods
usually increase as part of the testing process. The recov-
ery efficiency for each cycle is the total volume of water
recovered, expressed as a percentage of the volume of water
recharged into the storage zone. The salinity of water dur-
ing the recovery period of each cycle typically increases over
time; recovery is terminated when salinity reaches a level
predetermined by operational or regulatory considerations.
This limiting salinity constraint is usually the potable water
limit of 250 mg/L chloride (Federal Regulations Code, 2002b),
or slightly higher if the recovered water is mixed with potable
water at a water-treatment plant (WTP). Chloride concentra-
tion and salinity (dissolved-solids concentration) are well cor-
related as shown by linear regression in the Floridan aquifer
system in southern Florida (Reese, 1994; 2000; 2004; and
Reese and Memberg, 2000), and chloride concentration is used
in this report to define salinity in this aquifer system.
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Figure 1. Study area and location and status of aquifer storage and recovery sites in the Floridan aquifer system.

Regional Floridan aquifer system hydrogeologic studies in
southern Florida have not focused on ASR issues. Conversely,
little effort has been made to link ASR site information into
a regional hydrogeologic analysis. Additionally, ASR sites
have been selected primarily on factors such as land availabil-
ity, source-water proximity (preexisting surface-water canal
systems or surficial aquifer system well fields), or proximity
to a WTP. New tools, data, and synthesis are needed to make
informed decisions that incorporate constraining hydrogeologic
factors in the placement and construction of ASR sites.

The U.S. Geological Survey (USGS), as part of its
Greater Everglades Priority Ecosystems Science Initiative,
conducted a study to assimilate and compile data on exist-
ing ASR sites in southern Florida, and identify and evaluate
various hydrogeologic, design, and management factors that
control the recovery of freshwater recharged into ASR wells.
Phases 1 and 2 of this study have been completed. Phase 1
involved preliminary data inventory, review, and analysis
(Reese, 2002). Phase 2 (this report) involved a more com-
prehensive evaluation of ASR data, including additional data
made available since the completion of phase 1.
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Purpose and Scope

This report documents phase 2 of the study and presents
additional ASR data made available since phase 1, which was
covered in an earlier report (Reese, 2002). The purposes of the
present (2006) report are to: (1) provide a site-specific hydro-
geologic framework analysis at existing ASR sites; (2) provide a
performance evaluation of each site and comparative analysis
of the performance at all sites; and (3) further evaluate the
effect of hydrogeologic, design, and management factors
on performance. Recovery efficiency on a per-cycle basis,
as previously defined, is used to evaluate site performance.
The limiting salinity level during the recovery period for this
evaluation is the potable water limit of 250 mg/L chloride
concentration. Data for all wells at the 30 Floridan aquifer
system sites are compiled into four main categories: (1) well
identification, location, and construction; (2) hydraulic testing;
(3) ambient formation water quality; and (4) cycle testing.
Cycle test data include calculations of recovery efficiency
for each cycle and the cumulative recovery efficiency for all
cycles.

The study area includes Charlotte, Glades, Lee, Hendry,
Collier, Monroe, Miami-Dade, Broward, Palm Beach, and
Martin Counties, and parts of Okeechobee and St. Lucie Coun-
ties in southern Florida (fig. 1). The northern boundary of the
study area approximately coincides with the southern limit of
ground water with less than 500 mg/L chloride concentration
in the Upper Floridan aquifer in peninsular Florida (Sprinkle,
1989, pl. 6). The hydrogeology of each site is illustrated using
geophysical logs and lithologic descriptions. These illustra-
tions also include the location of the constructed storage zone.
Principal hydrogeologic and well construction attributes deter-
mined for each ASR site are spatially illustrated to provide a
comparative analysis. Well construction histories and results of
cycle testing at seven sites are presented and discussed; analy-
sis of the cycle testing data for these sites is made through
graphical illustrations. Plots of both per cycle and cumulative
recovery efficiency and cumulative recharge volume are made
showing all sites with adequate data together. The relative
performance of all sites with cycle test data is determined, and
performance ratings are compared to several hydrogeologic
and design factors that could affect recovery efficiency.

Previous Studies

Prior to the present study, the most recent overview and
status reports on ASR well testing in southern Florida were by
Merritt and others (1983) and Meyer (1989a), who presented
data from four experimental ASR sites that also are included
in this report. Additionally, experimental ASR test data were
obtained from reports or written communications for the
Jupiter facility, site 27 (J.J. Plappert, Florida Department of
Environmental Protection, written commun., 1977), St. Lucie
County facility, site 30 (Wedderburn and Knapp, 1983), the
Lee County facility, site 11 (Fitzpatrick, 1986), the Hialeah
facility, site 17 (Merritt, 1997), and the Taylor Creek/Nubbin

Slough—Lake Okeechobee facility, site 22 (Quifiones-Aponte
and others, 1996). Khanal (1980) and Merritt (1985) con-
ducted theoretical studies regarding the feasibility of cyclic
freshwater injection in southern Florida. Merritt (1997) also
simulated the salinity of recovered water in a study at the
Hialeah facility. As part of the CERP regional ASR program,
Mirecki (2004) studied water-quality changes that occurred
during storage of ASR systems in southern Florida, includ-
ing increases in concentrations of constituents of concern for
drinking water.

Some regional or local hydrogeologic studies of the
Upper Floridan aquifer that encompass or include part of
southern Florida are Miller (1986), Bush and Johnston (1988),
Meyer (1989b), Reese (1994; 2000; 2004), and Reese and
Memberg (2000). All but the first two reports are specific to
southern Florida.

Hydrogeology of the Upper Floridan
Aquifer

The three principal hydrogeologic units in southern
Florida are the surficial, intermediate, and Floridan aquifer
systems of Holocene to Paleocene age. These aquifer systems,
the aquifers contained within them, their relation to geologic
units, and their lithology in southern Florida are described
in figure 2. Water-bearing rocks in the intermediate aquifer
system grade by facies change or pinch out to the east, and this
system becomes the intermediate confining unit in southeast-
ern Florida. The Floridan aquifer system consists of the Upper
Floridan aquifer, middle confining unit, and Lower Floridan
aquifer (Miller, 1986). The two aquifers most commonly used
for ASR in southern Florida are the mid-Hawthorn aquifer of
the intermediate aquifer system (southwestern Florida) and the
Upper Floridan aquifer (fig. 2).

The geologic and hydrogeologic characteristics at each of
the 30 Floridan aquifer system ASR sites in southern Florida
are presented in appendix 1. An illustration for a well at each
site includes geophysical log traces, a lithologic column, delin-
eation of flow zones, geologic and hydrogeologic units, the
completed open-hole interval(s), and vertical changes in salin-
ity as indicated by the chloride concentration of water samples
collected from known intervals. The geologic and hydrogeo-
logic unit boundaries and flow zones (app. 1) were determined
in this study or previous investigations, or were derived from
other sources, such as consulting reports. These boundaries
and the sources of determination also are listed in appendix 1;
in this study, the determinations were made using geophysical
logs and lithologic descriptions.

The Upper Floridan aquifer is 100 to 700 ft thick in
southern Florida (fig. 2) and is well confined above by thick
(tens to hundreds of feet) units in the Hawthorn Group com-
posed of clay, marl, silt, clayey sand, or clayey or carbonate
mud-rich limestone; the hydraulic head in the aquifer is above
land surface. The middle confining unit of the Floridan aquifer
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Figure 2. Generalized geology and hydrogeology of southern Florida. The middle Floridan aquifer is an informal unit.

system underlies the Upper Floridan aquifer and provides less

effective to leaky confinement. This confining unit consists
of fine-grained micritic limestone, dolomitic limestone, and
dolomite or dolostone. Geologic units in the Upper Floridan
aquifer in ascending order are the upper part of the Avon
Park Formation, Ocala Limestone, Suwannee Limestone,
and a basal unit of the Hawthorn Group (fig. 2)—some or
all of these units above the Avon Park Formation are miss-
ing in some areas. The basal Hawthorn unit is defined by
an overlying marker unit composed of micritic limestone or
marl (Reese, 2000; 2004; Reese and Memberg, 2000). This
marker unit, referred to as the lower Hawthorn marker unit
(fig. 2), was correlated throughout most of southern Florida
using gamma-ray logs; this unit provides part of the good
confinement above the Upper Floridan aquifer.

The Upper Floridan aquifer generally consists of several
thin water-bearing zones of high permeability (flow zones)
interlayered with thicker zones of substantially lower perme-
ability. Commonly, one or two major flow zones provide the
bulk of the productive capacity. These flow zones are often
less than 20 ft thick each and generally are present within the
upper part of the Upper Floridan aquifer, within the lower

Hawthorn producing zone and at or near the top of deeper
formations (for example, see System 3 Palm Beach monitoring
well shown in fig. 3). Unconformities are present at the top

of the Suwannee Limestone, Ocala Limestone, or Avon Park
Formation (Miller, 1986), and zones of dissolution occur in
association with these unconformities in southern Florida
(Meyer, 1989b). Flow zones are marked by abrupt and, in
some cases, large changes in borehole flow and are determined
primarily using borehole fluid logs, such as flowmeter and
temperature logs; however, other geophysical logs, such as the
caliper, formation resistivity, and porosity logs, can provide
supporting data.

Because of good confinement above the Upper Floridan
aquifer and artesian pressure within it, the top of the Upper
Floridan aquifer is marked by artesian flow or a large increase
in hydraulic head in the study area. Drilling characteristics,
such as a lost-circulation zone or drilling break (a sudden
increase in the rate of penetration), also may help to define the
top of this hydrogeologic unit. Geophysical log characteristics
include a decrease in gamma-ray log activity, increased electri-
cal formation resistivity and porosity, anomalous caliper log
readings indicating abrupt borehole enlargements (spikes), or
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logs, geologic units, flow zones, and hydrogeologic units. Line of section shown in figure 1. See appendix 1
for additional borehole geophysical log curves and lithologic data on these two wells.



thin zones of in-gage borehole where well cemented but perme-
able limestone or dolostone is present. Additionally, a large
flow zone commonly marks the top of the Upper Floridan aqui-
fer. Small flow zones can be present above the large flow zone
near the top of the aquifer. These may or may not, however,

be included in the Upper Floridan aquifer, depending on their
head, permeability, and the degree of confinement provided by
the unit(s) separating them from the main flow zone.

The hydrogeology of the Upper Floridan aquifer varies
between southwestern and southeastern Florida. In southwest-
ern Florida, the Upper Floridan aquifer commonly includes a
basal unit of the Hawthorn Group (lower Hawthorn producing
zone, fig. 2) and the Suwannee Limestone, which are thick and
well developed (fig. 3). Additionally, the aquifer can extend
down into the upper part of the Ocala Limestone, which also is
thick; however, most of the Ocala Limestone usually has low
permeability. As for southeastern Florida, the Upper Floridan
aquifer is often interpreted to include only a relatively thin
Suwannee Limestone and the upper part of the Avon Park
Formation as shown at site 28 in Palm Beach County (fig. 3,
Palm Beach County Water Utilities Department, 2003b) and
site 4 (app. 1; Montgomery Watson, 1998a). An alternate
interpretation is that the Suwannee Limestone is absent in
parts of southeastern Florida (Miller, 1986; Reese and Mem-
berg, 2000; Florida Geological Survey, 2004) or equivalent to
the lower part of the basal Hawthorn unit (Reese, 2004), and
that the Upper Floridan aquifer begins in the basal Hawthorn
unit in these areas. The Suwannee Limestone is interpreted to
be absent at site 2 in Broward County (app. 1; Florida Geo-
logical Survey, 2004). Additionally, in southeastern Florida,
the Ocala Limestone is absent in some areas (Miller, 1986) or
indistinguishable from the Avon Park Formation (Reese and
Memberg, 2000).

In southwestern Florida, the principal flow zones tend to
be associated with the lower Hawthorn producing zone and
at the top of or within the Suwannee Limestone, whereas in
southeastern Florida, an important flow zone is present at or
near the top of the Avon Park Formation, or if present, at the
top of the Ocala Limestone. Confinement is typically better
between flow zones in southwestern Florida than in south-
eastern Florida, and some zones in southwestern Florida are
referred to as separate aquifers or subaquifers; for example,
Lower Hawthorn Zones I and II, Suwannee Zones I and II, and
Ocala Zones I and II (Water Resources Solutions, Inc., 2000a).

The geologic structure near the top of the Upper Flori-
dan aquifer in southern Florida has recently been described in
detail through the mapping of geologic units, specifically, the
altitude of the bottom of the basal Hawthorn unit in southwest-
ern Florida (Reese, 2000) and the bottom of the Suwannee
Limestone or an equivalent boundary in southeastern Florida
(Reese, 1994, 2004; Reese and Memberg, 2000). The depth
of these contacts was determined primarily by lithology and
gamma-ray geophysical log patterns. The most important
flow zone(s) in the upper part of the Upper Floridan aquifer is
commonly present near these contacts. The altitude of these
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contacts varies considerably, ranging from less than 400 ft to
greater than 1,200 ft below NGVD 29, and local relief can be
as much as several hundred feet, particularly in southwestern
Florida. Charlotte and Glades Counties, located within the
study area (fig. 1), were not mapped in these earlier studies.

The top of the Upper Floridan aquifer has been inter-
preted in previous reports as being 200 to 300 ft above the top
of the Suwannee Limestone (as defined in this study; app. 1
and table A2) at three sites (18, 19, and 20) in Miami-Dade
County in southeastern Florida (CH2M HILL, 2003; 2001a;
and 1998b, respectively). In the present (2006) study, however,
the top of the aquifer at these sites is interpreted to be at the
top of, or within, the Suwannee Limestone (app. 1 and table
A3). In the consulting reports, the Upper Floridan aquifer at
two of these sites (app. 1 and table A3, sites 18 and 20) was
interpreted to include one or two flow zones in the lower part
of the Hawthorn Group; however, evidence for a hydrologic
connection between these flow zones and the Upper Floridan
aquifer was not given. These flow zones are interpreted to lie
above the basal Hawthorn unit as previously defined (fig. 2),
which is based on gamma-ray log correlations. The uppermost
flow zone even overlies the confining lower Hawthorn marker
unit above the basal Hawthorn unit.

Some evidence exists for enhanced vertical hydraulic
conductivity at the top of the Avon Park Formation and in
the Suwannee Limestone in southeastern Florida. An aquifer
performance test of the upper part of the Avon Park Formation
was conducted in well BF-3 at the C-13 Canal site in northeast-
ern Broward County (fig. 1, between sites 2 and 3) in which
large quantities of phosphatic silt and fine quartz sand were
produced, causing pump failure (Lukasiewicz, 2003a). This silt
and sand production may have been caused by sinkhole devel-
opment or karstification in the Avon Park Formation (Lukasie-
wicz, 2003a). Based on sample descriptions, abundant phos-
phatic sand is present only in an interval from 20 to 55 ft above
the top of the production interval, in what is usually interpreted
to be the upper part of the Suwannee Limestone or lower part
of the Hawthorn Group, and this phosphatic zone (Reese, 1994,
fig. 3) appears to have been the source of the sand that caused
pump failure. Karstification in the Suwannee Limestone and
Avon Park Formations, if present, could be related to regional
unconformities present at the top of these formations.

An informally named water-bearing zone, the “middle
Floridan aquifer,” is contained within the middle confining
unit that underlies the Upper Floridan aquifer (figs. 2 and
3), and was first identified in a well located in northeastern
Palm Beach County near site 27 (ViroGroup, Inc., 1994).

This zone has since been observed at several South Florida
Water Management District (SFWMD) test well sites farther
south in southeastern Florida (Lukasiewicz and others, 2003a;
2003b). The middle Floridan aquifer typically consists of
fractured dolostone and is well developed in part of south-
eastern Florida (St. Lucie, Martin, and Palm Beach Coun-
ties); the aquifer was mapped as being continuous and present
in most of central and southern Florida (R.S. Reese, U.S.
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Geological Survey, and E. Richardson, South Florida Water
Management District, written commun., 2005). The zone had
previously been identified as the upper part of the Lower Flori-
dan aquifer in Okeechobee, St. Lucie, and Martin Counties
(Lukasiewicz,1992; Miller, 1986) or as the lower part of the
Upper Floridan aquifer in Palm Beach, Broward, and Miami-
Dade Counties (Reese, 1994; Reese and Memberg, 2000).

Inventory and Compilation of Well and
Test Data

Well data were inventoried and compiled for all wells at
existing and historical ASR sites in the Floridan aquifer sys-
tem in southern Florida, and all available cycle test data were
also compiled. Consulting reports describing the construc-
tion and testing of wells and cycle testing provided much of
these data. The consulting reports used to compile these data
are listed in the references section and listed by site number
in appendix 2. Historical and current ASR sites are listed
in table 1 along with the utility or operator of the site, stor-
age zone aquifer, site status, recharge source water type, and
number of wells drilled at each site. The number of injection
(storage) wells at each site ranges from zero to four, and 22 of
the 30 sites have at least one monitoring well completed in the
storage zone.

The type of recharge source water used in southern
Florida has included treated drinking water, partially treated
surface water, raw ground or surface water, and reclaimed
water (table 1). Treated drinking water is the most common
source-water type and has been used at 10 sites; however, raw
ground water also has been used, or is proposed for use, at
9 sites in southeastern Florida. Partially treated surface water
is planned for use in the CERP-ASR program. Special permits,
obtained through the FDEP Underground Injection Control
Program and the U.S. Environmental Protection Agency, are
required to inject raw surface or ground water because these
waters sometimes exceed maximum contaminant levels for
primary or secondary drinking-water standards for some
constituents.

Construction and Testing Data

Construction and testing data were compiled into three
main categories: well-construction data, hydraulic well-test
data, and ambient formation water-quality data. The well-
construction data include well design, identification, and loca-
tion. Data from two of the five CERP-ASR sites were obtained
from Bennett and others (2001; 2004). Data for the other three
CERRP pilot sites were obtained from weekly drilling reports,
permit applications, and responses to requests for information
submitted to the FDEP Underground Injection Control Pro-
gram and the Technical Advisory Committee for this program
in southern Florida. The USGS serves as a member on this
committee.

Well Identification and Construction Data

Well identification, location, and construction data for all
ASR storage and associated monitoring wells are presented in
table 2. All wells were assigned a USGS identification num-
ber, and data from these wells have been archived in the USGS
Ground-Water Site Inventory (GWSI) database. The construc-
tion information compiled includes total hole depth, ending
date of construction, casing depth and diameter, type of each
casing string set in the well, and the completed (constructed)
open interval and its diameter. All depths in this report are
below land surface. In most instances, the completed interval
is open hole, but a gravel-packed screen was installed in a
few monitoring wells. At many sites, the first well drilled was
plugged back to the selected storage zone after being drilled
deeper to test other potential zones or to determine water-
quality changes with depth.

The thickness and diameter of the open-hole storage
intervals vary (fig. 4 and table 2). The thickness for most inter-
vals typically ranges from about 100 to 200 ft; extremes range
from 45 ft at the Marco Lakes facility (site 7, well C-1206)
to 452 ft at the West Well Field (site 20). At sites 8 and 18, a
test-monitoring well is shown in figure 4 because storage wells
have yet to be constructed. The storage zone in future ASR
wells at these sites may not be the same as the open interval
in the test-monitoring well. Except for sites 8, 18, and 22, the
average storage zone thickness for 26 of the sites (fig. 4) is
183 ft. The diameter of the open-hole storage intervals ranges
from 5.125 in. at the St. Lucie County facility (site 30) to
29 in. at the Southwest and West Well Fields in Miami-Dade
County (sites 19 and 20, respectively). Nine sites have ASR
wells with a casing diameter of 20 in. or greater (fig. 4); these
large-diameter open intervals were constructed to achieve a
high pumping rate (5 Mgal/d or greater) during recharge and
recovery. ASR wells with a storage zone diameter ranging
from 10 to less than 20 in. have been constructed at 14 sites,
and the permitted capacity for these wells typically ranges
from 1 to 4 Mgal/d (R. Deuerling, Florida Department of
Environmental Protection, written commun., 2003).

Hydraulic Well-Test Data

A wide variety of hydraulic tests have been used to
determine the hydraulic properties of storage zones or poten-
tial storage zones, and hydraulic test data were compiled for
all ASR well systems. The data include the reported results of
packer tests conducted during drilling, step-drawdown tests,
single-well constant-rate tests, and multiwell constant-rate
tests (table 3). Tests of other permeable intervals at a site that
are shallower or deeper than the interval selected to be the
storage zone also are included in table 3.
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Continued

Table 2. Well identification, location, and construction data for aquifer storage and recovery well systems in southern Florida.

Diameter

Completed

Casing

Total Date at

Altitude

Latitude

USGS

local

well
number

Depth to
top and

of open
interval

open
interval

Type of

diam-

of land hole end of
construc-

surface

and
Longitude

Land-net or
relative location

Other well

Site name
(and number)

bottom of

casing

eter
(inches)

depth
(feet)

identifier

(inches)

(feet)

casing
(feet)

tion

(feet)

(ddmmss)

St. Lucie County

5.125

0-130 12 PVC 600-775
0-600
0-130

0-600
0-560

1,000 02-82

SE S14, 36S, 39E 272017 31.75

ASR-1

STL-356

PVC

802953

SLF-50

5.125

PVC 600-775

12

25.56 775 02-82

272019

MW-1 148 feet northeast of
ASR-1

SLF-51

STL-357

St. Lucie County

(30)

PVC

802053

NR 560-893 NR

NR

893

272020 25.09

802954

MW-2 420 feet northwest of
ASR-1

SLF-49

STL-355

'Top and bottom depth of screen.

2Screened interval.

3Latitude-longitude determined in the field using a hand-held global positioning system accurate to + 0.2 seconds. The location for most of the other wells came from Florida Department of Environmental

Protection construction permits.

“Datum is NAD 83; all other datums for location are NAD 27.

“Depths referenced to 4 feet above land surface.
°Replacement well to PBF-12, upper zone.
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The hydraulic properties given in table 3 include trans-
missivity, storativity, leakance, and specific capacity; they
are reported estimates and were not independently verified in
this study. Transmissivity is a measure of the volume of water
per unit of time that can be transmitted horizontally through
a unit width and the full saturated thickness of the aquifer
under a unit hydraulic gradient. Transmissivity also is equal
to the thickness of the aquifer times its horizontal hydraulic
conductivity. Hydraulic conductivity, which can be derived
from transmissivity and aquifer thickness, is a measure of
permeability and is defined as the volume of water per unit
of time that will move through a unit area of an aquifer under
a unit hydraulic gradient. Storativity, or the storage coef-
ficient, is the volume of water that an aquifer releases from
or takes into storage per unit surface area of the aquifer per
unit change in head. Leakance is a measure of the degree of
aquifer confinement and is defined as the vertical hydraulic
conductivity of either a confining unit above or below an aqui-
fer or both, divided by the thickness of the confining unit(s).
Specific capacity is the yield (pumping or flowing rate) of
a well divided by the drawdown in the well and can be used
to estimate transmissivity (Brown, 1963; Heath, 1989). This
property also can be used to make relative comparisons of the
permeability of intervals tested, provided the thickness of the
tested interval, length of the pumping period, pumping rate,
storativity, and effective radius of the well are similar.

Packer tests are tests of open-hole intervals conducted
during drilling using inflatable packers set on a string of drill
pipe for the purpose of isolating the interval to be tested.
Often, only specific capacity data are reported for packer tests
(table 3). Transmissivity can be estimated either from packer
test specific capacity results or from analysis of water-level
recovery after a period of constant rate pumping during a
packer test. This latter method, known as the Theis (1935)
residual drawdown or recovery analysis, gives a more reliable
estimate than the specific capacity method. Packer test results,
however, can be unreliable because of partial penetration,

a low pumping rate, a short pumping period, or incomplete
isolation of the interval tested (leaky packers).

Many of the tests reported in table 3 are single-well step-
drawdown tests, which are run under variable discharge rate
conditions; they are used to: (1) determine the specific capacity
of a well; (2) provide insight into the productive capacity and
permeability of the interval tested in a well; and (3) determine
the size and depth of the pump to be used in the well for a multi-
well test or for long-term operation. At some sites, the transmis-
sivity of a storage zone was estimated from a step-drawdown
test (table 3). Transmissivity of a confined aquifer can be
estimated from a step-drawdown test using the Eden-Hazel’s
method (Kruseman and de Ridder, 1990). Only the initial and
final pumping rates (first and last steps of the test) are given
in table 3 together with the corresponding specific capacity
values. Specific capacity determined from step-drawdown tests
of storage zones in the Upper Floridan aquifer range from 7.0
(gal/min)/ft of drawdown at the North Reservoir (site 12) to 390
(gal/min)/ft at the West Palm Beach WTP (site 29), as noted in
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Figure 4. Thickness and diameter of open-hole interval in storage wells at aquifer storage and recovery sites in
southern Florida. All wells shown are the first storage well at each site, except for site 8 and 18 (see table 2).

table 3. Specific capacity is reported to be 1,600 (gal/min)/ft on
the basis of a multiwell test at Taylor Creek/Nubbin Slough—
Lake Okeechobee (site 22) site in the middle Floridan aquifer.
Generally, specific capacity increases as the diameter of the
open-hole interval increases and after well acidization because
of dissolution of the rock matrix.

Hydraulic properties (transmissivity, storativity, and
leakance) determined from a multiwell, constant rate (aquifer)
test are considered the most reliable and representative data

presented in table 3. Analytical solutions commonly used to
analyze water-level data from this type of test include Theis
(1935) and Cooper and Jacob (1946) for confined aquifers and
Hantush and Jacob (1955) and Walton (1962) for semicon-
fined, leaky aquifers. Single-well constant rate tests provide
only an estimate of transmissivity; usually only recovery
water-level data from these tests are analyzed using the Theis
(1935) solution for residual drawdown and the Cooper and
Jacob (1946) solution.
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Drawdown data for aquifer tests should be corrected
for background factors including tides, barometric pressure,
and regional pumping. Corrections are made by collecting
pre-pumping background water-level data and determining
if there are any trends, such as tidal fluctuations. If present,
these trends are removed from the drawdown data of the test
so that the change in water level analyzed for the aquifer test
is caused only by the withdrawal from the on-site production
well. Background measurements were made for tests at nine
sites in table 3; however, corrections made using these data
were reported to have been done for only the test at site 22.

Because of increased permeability in the rock formation
around the borehole, constant-rate test transmissivity results
are probably affected by pretest borehole acidization methods
designed to increase specific capacity. Acidization of ASR
wells prior to multiwell, constant rate tests, were performed at
the: Springtree WTP (site 4) by Montgomery Watson (1998a),
Southwest Well Field (site 19) by CH2M HILL (2001a),

West Well Field (site 20) by CH2M HILL (1998b), Hillsboro
Canal, east (site 25) by the Palm Beach County Water Utilities
Department (2003a); and Hillsboro Canal west (site 26) by
Bennett and others (2001).

The transmissivity and hydraulic conductivity of an aqui-
fer are commonly incorrectly estimated because of partially
penetrating wells or inclusion of nonproductive zones of the
aquifer in the estimate of transmissivity. Hydraulic properties
determined from tests of storage zones may apply only to the
storage zone or to a thicker interval, if the aquifer containing
the storage zone is thicker than the storage zone. Of 28 sites
with the storage zone in the Upper Floridan aquifer, the base
of the aquifer was as least 50 ft below the base of the storage
zone at 14 sites, at least 100 ft at 11 sites, and at least 340 ft
at one site (site 23) as noted in appendix 1. If the aquifer is
thicker than the storage zone, the hydraulic conductivity of
a storage zone will be less than that obtained by dividing the
transmissivity determined from a test by the thickness of the
storage zone. In the Upper Floridan aquifer, however, most of
the response for partial penetration tests may come from the
interval tested because of thick zones of relatively low perme-
ability that separate flow zones. Thus, the value of transmis-
sivity obtained is less than the total transmissivity of the entire
aquifer (Wedderburn and Knapp, 1983). Corrections can be
made for partial penetration, assuming that horizontal and ver-
tical hydraulic conductivity in the aquifer are uniform (Kruse-
man and de Ridder, 1990). Corrections for partial penetration
were not made for any of the tests in table 3.

Storage zone transmissivity estimates were selected and
plotted on a map of southern Florida (fig. 5), with most values
being derived from drawdown analysis of multiwell aquifer
tests. If performed, the leaky aquifer solution for these multi-
well tests was used. The values for some sites were obtained
from single-well constant rate and step-drawdown tests, as
shown in figure 5. The storage zone is in the Upper Floridan
aquifer in all instances, except at the J.R. Dean WTP (site 18),
West Well Field (site 20), and Taylor Creek/Nubbin Slough—
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Lake Okeechobee (site 22). At site 22, the storage zone is in
the middle Floridan aquifer. At sites 18 and 20 in Miami-Dade
County, the storage zone (or in the case of site 18, the open-
hole interval in the test-monitoring well) is interpreted, as
discussed previously, to include the upper part of the Upper
Floridan aquifer and some flow zones well above the aquifer
in the lower part of the Hawthorn Group.

The highest storage zone transmissivity in the Upper Flori-
dan aquifer is 110,000 ft*/d at the West Palm Beach WTP (fig.
3, site 29), and the lowest transmissivity is 800 ft?/d at the Lee
County WTP (fig. 5, site 11). Transmissivity at most sites ranges
from about 5,000 to 30,000 ft*/d. The low transmissivity at site
11 is due to the placement of its open interval, which includes
only the lower Hawthorn producing zone of the basal Hawthorn
unit (app. 1, site 13; Reese, 2000). The Olga WTP (site 13) was
later constructed at the same location as the Lee County WTP;
its storage zone is deeper in the Upper Floridan aquifer and is
contained within the lower part of the Suwannee Limestone
(app. 1, site 13). The estimated transmissivity for the Olga
storage zone is 9,400 ft*/d (fig. 5, site 13). The transmissivity
value shown in figure 5 for the Shell Creek WTP (site 6, 6,000
ft*/d) was determined from a multiwell test using ASR-3 as the
production well. The open interval for ASR-3 extended from a
depth of 810 to 1,000 ft; however, this well was back plugged to
a depth of 912 ft after the test was completed (table 2).

Storativity values determined from storage zones test in the
Upper Floridan aquifer at 14 sites ranged from 1.33x10° at site
2 to 8.00x10* at site 29 (table 3). The value for site 14 was higher
than this range but was not included in this analysis because,
as noted in table 3, the solution giving this value is suspect.
Storativity ranged from 5x1073 to 5x10* at 11 of the 14 sites.

Leakance was estimated at nine sites with Upper Floridan
aquifer storage zones by multiwell aquifer tests, and values
are somewhat higher than expected (table 3). Two of these
sites (sites 11 and 13) are at approximately the same loca-
tion, but the storage zones are in different parts of the aquifer.
Leakance determined from an aquifer test applies to both the
upper and lower confining units of the aquifer, unless one of
the confining units is known to be nonleaky. Reported leak-
ance estimates ranged from as low as 3.9x107 1/d at the West
Well Field (site 20) to as much as 6.3x102 1/d at the Deerfield
Beach West WTP (site 2). Leakance estimates less than
1x1073 1/d were used to indicate confining conditions within
the surficial aquifer system in southern Florida (Reese and
Cunningham, 2000). Of the nine sites where leakance values
were reported (table 3), five had values that exceeded this con-
fining threshold of 1x103 1/d. These higher leakance estimates
at Upper Floridan aquifer storage zones are probably best
attributed to leakage from below the tested interval rather than
from above, because of the good confinement that exists above
the aquifer in southern Florida (Bush and Johnston, 1988).
This upward leakage probably either originated from intervals
deeper in the Upper Floridan aquifer or from the middle con-
fining unit of the Floridan aquifer system.
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Figure 5. Transmissivity determined for storage zones in the Floridan aquifer system at aquifer storage and recovery
sites in southern Florida. Values are rounded to two siginificant figures. The storage zone is in the Upper Floridan
aquifer at all sites, except site 22, which is in the middle Floridan aquifer.

Quality of Ambient Ground Water

Ambient ground-water samples were collected from stor-
age and monitoring wells at the ASR sites in the study area
to design and implement ASR operations and satisfy FDEP
regulatory requirements. Selected analyses of these samples
were inventoried and are presented in table 4. Data in this
table include the sampled interval, sample date, specific con-
ductance, dissolved chloride concentration, dissolved-solids
concentration, temperature, and dissolved sulfate concentra-
tion. The type of interval sampled and method of data collec-
tion used are listed in order of increasing reliability as follows:
(1) sample collected during reverse-air rotary drilling with top
of interval being the base of casing; (2) packer test interval,
(3) pump-out test of open interval below casing during drill-

ing; and (4) constructed (completed) open interval (table 4).
The intervals sampled include the storage zone, intervals
deeper or shallower than the storage zone, or both. In addi-
tion to samples from the Upper Floridan aquifer, at ASR sites
in southwestern Florida samples usually were collected from
shallow permeable zones of the intermediate aquifer system.
The chloride concentration of the ambient water in
ASR storage zones in the Floridan aquifer system generally
indicates salinity is greatest in wells in southeastern Florida
(fig. 6). The samples selected were based on the most reliable
sampling method available. Storage zone chloride concen-
trations ranged from as low as 500 mg/L at the Lee County
WTP (site 11) to as high as 11,000 mg/L at the Englewood
South Regional Wastewater Treatment Plant (WWTP) (site 5).
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Figure 6. Ambient water salinity, expressed as chloride concentration, of storage zones in the Floridan
aquifer system at aquifer storage and recovery sites in southern Florida. Values are rounded to two

significant figures.

The highest value found in southeastern Florida was 3,600
mg/L at the Springtree WTP (site 4). At most sites, however,
the chloride concentration ranged from about 1,000 to 3,000
mg/L.

The vertical distribution of ambient salinity at each site is
indicated on the lithologic and geophysical log plots in appen-
dix 1 by chloride concentration values of water samples from
known intervals and resistivity geophysical logs that approxi-
mate formation resistivity. These data indicate that ambient
salinity increases with depth below the storage zone at some
of the sites (app. 1), which include site 3 (Fiveash WTP), site
5 (Englewood South Regional WWTP), site 8 (Pelican Bay
Well Field), site 18 (J.R. Dean WTP), site 19 (Southwest Well
Field), and site 20 (West Well Field, see sample from lower
monitoring zone in MW-1). Salinity may increase below
storage zones at other sites, such as site 7 (Marco Lakes);

however, data from greater depths were not collected because
of the limited penetration of the wells drilled.

Cycle Test Data

ASR cycle test information was obtained from consulting
reports, published reports, monthly operating reports (required
by the FDEP as part of the permitting process during opera-
tional testing), and in several instances, daily records pro-
vided by a WTP (table 5). Cycle testing has been conducted
at only 20 of the 30 ASR sites listed in table 1. Eight of the
remaining 10 sites (including sites 2, 8, 9, 10, 16, 18, 21, and
26) require additional wells or infrastructure, and the final
two (sites 25 and 28) have had testing delayed by regulatory
issues or mechanical problems such as well pump failure.
Seven of the ten sites with wells constructed during the 1990s
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Inventory and Compilation of Well and Test Data
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Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida
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Inventory and Compilation of Well and Test Data
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Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida
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have conducted only three or fewer cycles. Sites with wells
constructed during the 1990s experiencing delays are listed in
the following table.

SR Il L w.e" Number of cycles completed
and name construction
(1) Broward County 2A 1996 3 (none since 1999)
(2) Deerfield Bch W WTP 1992 No cycle testing
(12) North Reservoir early 1999 4 (cycle testing began in 2000)
(13) Olga WTP early 1999 3 (cycle testing began in 2001)
(15) Winkler Ave 1999 1
(19) Southwest Well Field 1999 1
(20) West Well Field 1997 3 (none since 2000)
(24) Delray Bch No. Stor Res 1996 7 (none prior to 2000; none after 2001)
(28) System 3 Palm Bch Co. 1999 No cycle testing
(29) West Palm Beh WTP 1997 5 test cycles (none since 1998)

Besides regulatory issues and mechanical problems,
delays in cycle testing have been caused by an insufficient
supply of source water; for example, cycle testing was delayed
by 1 to 2 years at sites 12 and 13 because of reduced WTP-
drinking water production. In contrast, 21 cycles have been
conducted at the Boynton Beach East WTP (site 23) since the
well was constructed in 1992.

Cycle testing has been conducted using more than one
ASR well at some sites in southern Florida. Multiwell sites
include Shell Creek WTP (site 6) with three wells, Marco
Lakes (site 7) with three wells, Southwest Well Field (site 19)
with two wells, and West Well Field (site 20) with three wells.
For multiwell cycles, which are conducted using the wells
simultaneously or nearly so, data are reported in table 5 for
each well used in the cycle and for all wells combined.

For this study, two types of recovery efficiency
performance measures were determined on a per-cycle basis
(table 5). The first measure is total recovery efficiency per
cycle, which is the percent recovery at the end of a cycle.

The chloride concentration of the recovered water at the end of
the cycle also is given in table 5 and typically ranges from 250
to 400 mg/L, depending on operational considerations. The
second measure is the potable water recovery efficiency per
cycle, which is the percent recovery when the chloride con-
centration of the recovered water during a cycle reaches 250
mg/L. In several instances, however, the chloride concentra-
tion at the completion of a withdrawal period is less than 250
mg/L, and the potable recovery efficiency is reported in table 5
as being greater than the total recovery efficiency. In a few of
these cases, the potable water recovery efficiency is estimated
by extrapolating the cycle recovery curve on a plot of chloride
concentration against percent recovery (for example, site 4,
cycles 1-6, table 5). At some sites, such as Fiveash WTP and
Springtree WTP (sites 3 and 4), a regulatory limit for chloride
concentration in recovered water of 225 mg/L has been in
place for some or all of the cycles. The reported or estimated
volume of recovered water when recovered water chloride
concentration reaches 250 mg/L also is given in table 5.
Finally, cumulative recharge volume, cumulative potable water
recovery volume, and cumulative recovery efficiencies for

each cycle were calculated, and the results are presented in
table 6. Both the per-cycle and cumulative potable recovery
efficiency numbers were used to compare ASR sites.

Total recovery efficiency can be substantially higher than
potable water recovery efficiency (table 5), and it is the per-
formance measure commonly used in the operation of WTPs.
The recovery period is extended past the potable water salinity
limit. The additional recovered water is blended with low
salinity water at the WTP without substantially increasing the
salinity of the finished product.

Potable recovery efficiency numbers could not be
determined at two sites because of operational procedures
(table 5). At the Englewood South Regional WWTP (site 5)
only four short recovery events were conducted during a long
and ongoing recharge period. Recovery was discontinued
prior to reaching a salinity limit because of low demand for
reclaimed water (CH2M HILL, 2004a). At the Southwest
Well Field (site 19), 228 Mgal were used to recharge two ASR
wells starting in January and February 2002. Recovery was
not initiated until about 1 year later (February 2003). At the
beginning of the recovery period, chloride concentration was
well above the potable water limit (1,300 mg/L in well ASR-1
and 910 mg/L in well ASR-2, Miami-Dade Water and Sewer
Department, 2003). The source water for the recharge at site

19 was the Biscayne aquifer.

As will be discussed later, the number of cycles com-
pleted or in progress at a site is important in determining site
performance (table 5). The number of cycles completed or
in progress at the 20 sites that have conducted cycle testing
(including test cycles) are listed in the following table.

Site number and name

Number of cycles completed
or in progress

(1) Broward County 2A

(3) Fiveash WTP

(4) Springtree WTP

(5) Englewood South Regional WTP

(6) Shell Creek WTP

(7) Marco Lakes

(11) Lee County WTP

(12) North Reservoir

(13) Olga WTP

(14) San Carlos Estates

(15) Winkler Ave.

(17) Hialeah

(19) Southwest Well Field

(20) West Well Field

(22) Taylor Creek/Nubbin Slough
(23) Boynton Beach East WTP
(24) Delray Beach No. Storage Res
(27) Jupiter

(29) West Palm Beach WTP

(30) St. Lucie County

3
7 (seventh cycle in progress)
8

4 (short recovery periods with ongoing
recharge)

8 (includes 2 multiwell cycles)
9 (includes 3 multiwell cycles)
3

4 (includes 1 test cycle)

3

3 (includes 1 test cycle)

1

3

1

3 (includes 2 multiwell cycles)
7

21

7

4

5 (test cycles)

1




Inventory and Compilation of Well and Test Data

Table 6. Calculated cumulative volumes and cumulative potable water recovery
efficiencies at selected aquifer storage and recovery sites.

[Based on data from table 5. no., number; Mgal, million gallons; mg/L, milligrams per liter;

NR, not reported; WTP, water treatment plant]

Potable water
(chloride

Cycle X
. concentration of
Sl 250 mg/L or less)
recharge
. pelims Cumulative  Cumulative
Begin- End (Mgal)
Cycle no. T n recovery recovery
date date volume efficiency
(Mgal) (percent)
Broward County — Site 1, Broward County WTP 2A
1 07-09-98 07-21-98 22.13 1.5 6.8
2 07-27-98 11-12-99 217.97 38.15 17.5
3 11-13-98 03-11-99 399.91 94.78 23.7
Broward County — Site 3, Fiveash WTP
1 10-12-99 10-23-99 19.5 1 5.1
2 10-25-99 12-06-99 94.5 5.7 6.0
3(a+b) 12-07-99 03-21-02 732.5 59.9 8.2
4 06-19-02 10-02-02 788.6 94.2 11.9
5 10-04-02 01-02-03 850.4 129.8 15.3
6 05-28-03 12-29-03 1,090.5 179.8 16.5
7 01-20-04 08-02-04 1,283.6 247.7 19.3
Broward County — Site 4, Springtree WTP
1 07-29-99  08-21-99 20 4 20.0
2 08-22-99  10-12-99 60 15 25.0
3 10-13-99 12-09-99 101 30 29.7
4 12-10-99 03-27-00 141 45 31.9
5 03-28-00 11-23-00 262 77 294
6 11-24-00 10-31-01 449 100 22.3
7 02-01-03 08-26-03 569.3 174.3 30.6
8 09-03-03  In progress 709.84
Broward County — Site 6, Shell Creek WTP
1 07-01-99 08-07-99 4.9 1.47 30.0
2 08-16-99 09-08-99 6.5 2.06 31.7
3 01-10-00 02-08-00 26.8 3.86 14.4
OP-1 (ASR-1) 2000 NR 49.8. 6.16 12.4
OP-2 (ASR-1) 2001 NR 85.98 6.59 7.7
OP-3 (ASR-1) 05-01-02 NR 284.95 17.05 6.0
OP-4 (ASR-1, 07-31-02 04-16-03 506.31 77.35 15.3
3, & 4R
combined)
OP-5 (ASR-3 & 06-16-03 06-23-04 704.24 167.75 23.8
4 combined)
Collier County — Site 7, Marco Lakes
1 06-26-97 08-19-97 19.4 6 30.9
2 08-21-97 02-25-98 106.1 9.5 9.0
3 03-05-98 04-29-98 127.15 16.5 13.0
4 09-01-98 06-30-99 239.65 55.3 23.1
5 08-19-99 07-02-00 371.95 102.4 27.5
6 07-19-00 06-14-01 496.95 157.4 31.7
1E (ASR-1,2, & 09-01-01 06-24-02 822.95 280.5 34.1
3 combined)
2E (ASR-1,2, & 07-22-02 08-13-03 1,493.25 427.1 28.6
3 combined)
3E (ASR-1,2, & 09-18-03 07-14-04 1,739.35 594 342

3 combined)
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Table 6. Calculated cumulative volumes and cumulative potable water recovery
efficiencies at selected aquifer storage and recovery sites.—Continued

Potable water
(chloride

SCe Cumulati concentration of
e 250 mg/L or less)
recharge
. el Cumulative = Cumulative
Begin- (Mgal)
h End recovery recovery
Cycle no. ning . .
date date volume efficiency
(Mgal) (percent)
Lee County, Site 11, Lee County WTP
1 10-14-80 NR 0.6 0.22 36.7
2 03-26-81 NR 7.43 .88 11.8
3 08-18-81 NR 36.46 9.7 26.6
Lee County, Site 12, North Reservoir
Test 02-26-00 03-18-00 6.179 0.61 9.9
1 07-11-01 05-15-02 66.579 7.21 10.8
2 06-24-02 07-31-03 193.379 30.91 16.0
3 08-01-03 07-20-04 297.589 48.75 16.4
Lee County, Site 13, Olga WTP
1 07-17-01 06-12-02 79.7 18.9 23.7
2 06-24-02 07-28-03 208.7 53.9 25.8
3 08-19-03 09-16-04 265.64 96.12 36.2
Lee County, Site 14, San Carlos Estates
Test 10-25-99 11-15-99 28 0.6 2.1
1 11-30-99 06-28-00 166 5.2 3.1
2 09-14-00  05-09-01 325.5 9.7 3.0
Miami-Dade County — Site 17, Hialeah
1 07-17-75 12-17-75 41.9 13.8 329
2 01-05-76 07-21-76 126.9 54.5 429
3 07-23-76 01-30-80 334.9 134.6 40.2
Miami-Dade County — Site 20, West Well Field
1 (ASR-1) 02-18-99 07-21-99 359.7 27.8 7.7
2 (ASR-1 &2 07-31-99 02-15-00 848 142.8 16.8
combined)
3 (ASR-1,2, &3  02-15-00 03-23-01 1,562.33 432.1 27.7
combined)

Okeechobee County — Site 22, Taylor Creek/Nubbin Slough—Lake Okeechobee

1 04-17-91 05-29-91 181.35 5.6 3.1
2 06-24-91 09-20-91 523.45 14.8 2.8
3 09-23-91 12-02-91 878.45 40.4 4.6
Palm Beach County — Site 23, Boynton Beach East WTP
1 10-21-92 11-10-92 12.52 5.9 47.1
2 11-10-92 01-22-93 69.84 23.1 33.1
3 01-25-93 04-06-93 124.15 49.7 40.0
4 04-20-93 05-28-93 142.02 65.8 46.3
5 06-02-93 12-06-93 202.18 98.1 48.5
6 02-24-94 07-25-94 263.42 137.3 52.1
7 07-25-94 02-13-95 323.48 153.3 47.4
8 04-20-95 07-03-95 366.39 170.5 46.5
9 09-27-95 12-20-95 406.48 195.8 48.2
10 01-18-96 05-22-96 448.24 227.1 50.7
11 06-04-96 12-31-96 489.46 260.9 53.3
12 01-03-97 06-16-97 530.05 287.7 54.3
13 06-19-97 02-23-98 572.55 317.4 55.4
14 02-24-98 08-20-98 605.91 344.4 56.8
15 11-13-98 06-03-99 716.74 381.96 53.3
16 06-15-99 01-28-00 806.72 458.06 56.8
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Table 6. Calculated cumulative volumes and cumulative potable water recovery
efficiencies at selected aquifer storage and recovery sites.—Continued

Potable water
(chloride

Cycle .
Cumulati concentration of
umulative 250 mg/L or less)
recharge
. pelums Cumulative  Cumulative
Begin- (Mgal)
. End recovery recovery
Cycle no. ning ..
date date volume efficiency
(Mgal) (percent)
Palm Beach County — Site 23, Boynton Beach East WTP—Continued

17 02-17-00 07-13-00 845.58 495.36 58.6

18 07-12-00 04-08-01 922.38 542.56 58.8

19 06-01-01 08-26-02  1,123.64 669.66 59.6

20 09-10-02 05-23-03  1,227.33 753.61 61.4

21 05-22-03 07-28-04  1,346.58 844.78 62.7

Palm Beach County — Site 24, Delray Beach North Storage Reservoir
1 05-23-00 01-29-01 313 50 16.0
2 01-30-01 03-11-01 363 97 26.7
3 03-13-01 04-16-01 411 135 32.8
4 04-18-01 06-19-01 513 189 36.8
5 06-19-01 08-15-01 582 241 41.4
6 08-22-01 10-15-01 652.57 296.36 454
7 10-16-01 11-30-01 725.635 316.992 43.7
Palm Beach County — Site 27, Jupiter
1 NR NR 20.5 0.0 0.0
2 NR NR 120.5 4.7 3.9
3 NR NR 426.5 60.2 14.1
4 NR NR 528.5 96.3 18.2
Palm Beach County — Site 29, West Palm Beach WTP

1 10-03-97 11-15-97 114.1 4 3.5
2 11-18-97 01-22-98 246.4 8 3.2
3 01-23-98 03-27-98 357.1 15.2 4.3
4 04-01-98 06-08-98 459.7 21.4 4.7
5 08-10-98 11-10-98 605.5 25.8 4.3

Aquifer Storage and Recovery
Performance in the Upper Floridan
Aquifer

Many factors affect the performance and freshwater
recovery at ASR sites in southern Florida and can be grouped
into three categories: hydrogeologic, design, and management
factors. Following a discussion of these factors is a detailed
analysis of cycle testing for the seven ASR sites in southern
Florida having the greatest number of cycles completed or
attempted. The relative performance of all sites with cycle test
recovery efficiency data is then determined, and finally, recov-
ery performance for each site is compared with four hydrogeo-
logic and design factors to determine their importance.

Factors Affecting Freshwater Recovery

Recovery of stored freshwater in the brackish- to saline-
water carbonate Floridan aquifer system of southern Florida
is controlled by a wide variety of casual factors that pertain
to hydrogeology, well or well-field design, and operational
management. Hydrogeologic factors of a storage zone that
can affect recoverability include: (1) ambient ground-water
salinity, (2) magnitude of permeability and its distribution,
(3) aquifer thickness, (4) confinement, (5) ambient hydrau-
lic gradient, and (6) structural setting. Important design and
management factors to consider are: (1) thickness and location
of the storage zone within the aquifer, (2) volume of water
injected for a cycle, (3) rate of recharge and recovery, (4) cycle
frequency and time between cycles, (5) storage period length,
(6) borehole performance problems such as plugging, and
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(7) multiple-well configurations. A detailed discussion of most

of these factors is provided in Reese (2002). The four factors
that have been identified as being important, or potentially
important, in southern Florida (Reese, 2002) are storage
zone salinity, the distribution and magnitude of permeability,
and the thickness and position of the storage zone within the
aquifer.

During freshwater recharge in an ASR well, a radial or
spherical mixing zone forms around the well in the aquifer.
This zone, referred to as the transition zone (Merritt, 1985),
separates ambient ground water from an inner flushed zone
mostly containing injected water (fig. 7). The flushed zone is
commonly described as a freshwater “bubble” or buffer zone,
but its shape can be irregular. The degree of mixing between
injected and native water and the width of the transition zone
are primarily controlled by hydrodynamic dispersion (or dis-
persive mixing), which refers to the effects of molecular diffu-
sion and mechanical dispersion. Mechanical dispersion results
from uneven flow through porous media, and is predominant
over diffusion at flow velocities that typically occur during
ASR recharge and recovery.

Hydrogeologic Factors

The ambient salinity of ground water in the storage
zone is a primary factor controlling the recovery of injected
freshwater because of mixing between these waters during
an ASR cycle and because of potential buoyancy stratifica-
tion. Buoyancy stratification occurs during ASR in aquifers
when the ambient salinity and the vertical hydraulic conduc-
tivity of the aquifer are both high (Merritt, 1985). Because
of a substantial density contrast, the injected freshwater can
move upward in the aquifer and flow out over the native saline
ground water (fig. 7). During the recovery period, such strati-
fication increases mixing. Buoyancy stratification is possible
when the ambient dissolved-solids concentration of ground
water is greater than 5,000 mg/L (Pyne, 1995), which equates
to about 2,500 mg/L chloride concentration in the Floridan
aquifer system of southern Florida (Reese, 1994).

The magnitude and distribution (heterogeneity) of
permeability (or hydraulic conductivity) in the storage zone
can greatly affect recovery efficiency because of its effect on
mechanical dispersion. Increased permeability in a limestone
aquifer typically translates to greater dispersive mixing, which
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tends to decrease recovery efficiency. Recovery efficiency in a
sand aquifer of uniform permeability is good because disper-
sion results primarily from flow through intergranular pore
spaces. In contrast, recovery efficiency in a limestone aquifer
that has both conduit and diffuse flow components can be poor
because dispersion results from preferential flow through a few
thin horizontal zones of high permeability (flow zones) that

are interlayered with thick zones having relatively low perme-
ability. High transmissivity in a limestone aquifer commonly
results from the high permeability associated with zones of
secondary porosity development or karstification, including
fracturing and dissolution along fractures or bedding planes.
Because of localized development of high vertical hydraulic
conductivity encountered by injected water as it flows outward
along flow zones in carbonate aquifers of Florida, greater
vertical mixing can occur, and bodies of injected freshwater can
become isolated and “essentially nonrecoverable” (Missimer
and others, 2002). For a storage zone in the Upper Floridan
aquifer, a transmissivity of 30,000 ft*/d has been identified as
an approximate minimum level at which this factor could affect
recovery efficiency (Reese, 2002). In another study, a maxi-
mum acceptable transmissivity in carbonate aquifers of Florida
of about 47,000 ft?/d was identified for a maximum well
capacity of 5 Mgal/d (Missimer and others, 2002).

Design and Management Factors

Recovery efficiency is typically greater in a thin storage
zone compared to a thick one because of the lower verti-
cal extent of the transition zone along which mixing occurs.
Minimizing the thickness of the storage zone within a thick
aquifer when designing the construction of an ASR well can
be beneficial, but this depends on the distribution of horizontal
and vertical hydraulic conductivity within the aquifer and the
desired rate of recharge and recovery.

The thickness and position of a storage zone within an
aquifer can affect recovery efficiency. Merritt (1985) simu-
lated hypothetical recovery efficiency where the open interval
extended only over the lower part of the actual storage zone
and an important flow zone near the top of the Upper Floridan
aquifer at the Hialeah facility (site 17). Recovery efficiency
is virtually unaffected when compared to a well open to the
full thickness of the flow and storage zone. The low ambient
salinity (1,200 to 1,300 mg/L chloride concentration) and the
low to moderate vertical hydraulic conductivity values (0.01 to
40 ft/d) used in the simulation, however, may have prevented
the occurrence of any appreciable buoyancy effects that could
increase vertical flow and mixing. Placement of a storage zone
below the top of an aquifer could have a negative effect, depend-
ing on the vertical hydraulic conductivity and ambient salinity.
The buoyancy of the injected freshwater could cause part of the
bubble to migrate above the level of the open-hole interval (base
of casing), where it may be more difficult to recover.

The final casing depth, which is the top of the storage
zone, is commonly set well below the interpreted top of the
Upper Floridan aquifer. This practice is common in eastern
Broward and Palm Beach Counties, with 10 of 11 sites in
this area having the casing set below the top of the aquifer,
and 8 of these 10 sites having a casing depth of 50 ft or more
below the top of the aquifer (app. 1). The storage zones at
Shell Creek WTP (site 6) and Olga WTP (site 13) on the west
coast of Florida are located in the lower part of the Suwan-
nee Limestone at 160 and 344 ft below the top of the aquifer,
respectively (app. 1). A step-drawdown test of the upper part
of the Suwannee in MW-3 at the Olga site indicated relatively
low transmissivity; the upper part of the Suwannee Limestone
was not used for storage at this site because this zone was
considered to be too thick and hydraulically heterogeneous
and to have a potential sand inflow problem (Water Resources
Solutions, Inc., 2000a).

The practice of placing the final casing below the top of
the Upper Floridan aquifer is often the result of two concerns.
The first concern is having rock of adequate competency for
a good cement seal (or “casing seat”) between the casing and
borehole wall at the bottom of the casing. Limestone in the
upper Suwannee Limestone and lower Hawthorn Group can
have high silt and sand content and be soft, friable, and poorly
cemented. The second concern is the release, or potential for
release, of water-quality constituents of concern into the stored
water, such as arsenic, gross alpha radioactivity, and radium
isotope activity (Ra**¢ + Ra?®) caused by the interaction
between injected freshwater and the aquifer matrix (Mirecki,
2004). Minerals that release these water-quality constituents
can be more common in the lower Hawthorn Group and
Suwannee Limestone (Mirecki, 2004) and tend to be associ-
ated with the phosphate sand present in these geologic units.

The bottom of the final casing was set at a depth of about
300 ft (from 270 to 310 ft) above the top of the Upper Floridan
aquifer, as interpreted in this study (previously discussed), at
three sites in Miami-Dade County (app. 1, sites 18, 19, and
20). The purpose of setting the casing much higher in the
section at these sites was to include several flow zones in the
lower part of the Hawthorn Group in the storage zone (CH2M
HILL, 1998b, 2001a, 2003).

The volume of water recharged per cycle and the rate
of injection or recovery also may affect recovery efficiency.
Recharge volumes per cycle varied widely, ranging from as low
as 0.6 Mgal in the first cycle at the Lee County WTP (site 11)
to as much as 714 Mgal in multiwell cycle 3 at the West Well
Field (site 20). On a per-cycle basis, simulated recovery effi-
ciency generally increases as the total volume of injected water
increases (Merritt, 1985). High volumes recharged because
of a high injection rate, however, may not improve recovery
efficiency because injected water in a flow zone can travel faster
and farther away from the well and create a greater potential
for vertical mixing in the aquifer (Missimer and others, 2002).
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A high pumping rate during recovery may lower recovery
efficiency because it results in high water velocities and mixing
within the borehole and can cause the upconing of more saline
native water (Hazen and Sawyer, P.C., 2003). The reduction in
recovery efficiency caused by upconing depends on the verti-
cal hydraulic conductivity in the storage zone and the ambient
ground-water salinity and confinement below the storage zone.

Recovery efficiency increases with repeated cycles
(Merritt, 1985) because part of the water that was recharged
from a previous cycle remains in the aquifer, and during the
next cycle, recharged water mixes with aquifer water of salin-
ity lower than ambient water. To improve recovery efficiency
during repeated cycles, Pyne (1995) has recommended ini-
tially recharging a large volume of water to flush out ambient
ground water near a well and to create a buffer zone. With this
approach, a target storage volume (TSV) is recharged prior to
beginning cycle testing. The TSV is defined by CH2M HILL
(2002a) as:

“The sum of the stored water volume required to
meet a predetermined recovery volume goal, plus
the volume of water in a freshwater buffer zone sur-
rounding the stored water volume. At such time as
this TSV may be achieved in each well, it should be
possible to achieve 100 percent recovery efficiency
for all subsequent water stored and recovered in that
well to meet the targeted recovery volume.”

Accordingly, recovery efficiency should be greater for a cycle
with a low recharge volume immediately preceded by a cycle
with a large recharge volume, than for the second cycle when
the two cycles have equal recharge volumes. In the present
(2006) study, a large initial volume designated as a TSV is
included with the recharge volume for the following cycle

to calculate recovery efficiency, and the TSV approach or a
similar practice is referred to as “water banking.”

The length of time between cycles is a factor because
water left in the aquifer from previous cycles tends to disperse
and migrate downgradient with the ambient ground-water
flow, or migrate upward or updip depending on buoyancy,
confinement, and local geologic structure. The storage period
duration within a cycle also can affect recovery efficiency.

A bubble tends to disperse or may migrate upward or laterally
during storage. A 4- to 6-month storage period (about 120 to
180 days) may be optimal under the ideal wet-season/dry sea-
son strategy for an ASR cycle in southern Florida. The longest
planned storage period was 191 days for cycle 3 at the Olga
WTP (site 13, table 5). During long storage periods (4 months
or greater), loss of recharge water as a result of buoyancy and
vertical mixing can occur if vertical zones of high hydraulic
conductivity are encountered as recharge water travels outward
through flow zones (Missimer and others, 2002).

Well plugging can occur during recharge in the Upper
Floridan aquifer and reduce the recharge rate and freshwater
recovery. This plugging occurs at the wellbore face or in the
aquifer and is usually caused by: (1) deposition of particulate
matter present in the injected water, or (2) by the forma-

tion of precipitates or sludge through geochemical reactions
between the injected water, aquifer water, and aquifer matrix.
Well plugging may preferentially affect one flow zone in an
open-hole interval more than another, reducing overall recov-
ery. During recovery, the less-affected zone contributes more
of the flow, and the salinity of water from this zone can exceed
the limiting salinity level before all the recoverable water from
the plugged zone is obtained.

To optimize recovery efficiency, it is necessary to use
recharge water with low salinity. The chloride concentra-
tion of recharged water used for most sites ranged from 40
to 100 mg/L (table 5). Recharge water with higher chloride
concentration (greater than 100 mg/L) can adversely affect
recovery efficiency; cycles with higher recharge chloride
concentration are mostly on the west coast of Florida and are
listed in the following table:

Chloride concentration
of recharged water
(milligrams per liter)

Site number and name Cycle number

(5) Engelwood So RegWTP 1-4 about 170
3 180-230
(6) Shell Crk WTP
OP-4 107
2-6 115-136
(7) Marco Lakes
1E 105
(11) Lee County WTP 2 150-350
. initial test
(12) North Reservoir 155
cycle
(15) Winkler Avenue 1 164
(22) Taylor Crk/Nubbin Slough 1 150
(30) St. Lucie County 1 200

Analysis of Cycle Test Data at Selected Sites

Well-construction histories and results of cycle tests at
the seven ASR sites with the greatest number of cycles are
discussed in the subsequent sections. For each site, recharge
and recovery volumes and recovery efficiencies for each cycle
are plotted and compared. Storage period length and the chlo-
ride concentration at the end of each recovery period also are
considered.

Fiveash Water Treatment Plant (Site 3)

Three wells were constructed at the Fiveash WTP in east-
central Broward County (site 3) by March 1998 (table 2), and
seven test cycles were conducted between October 1999 and
August 2004 (fig. 8). Storage period lengths were short (0 to 3
days) for all cycles except subcycle 3a, which had an unin-
tended 433-day storage period because of well pump failure
(table 7). Potable water recovery efficiency per cycle ranged
from about 5 to 61 percent for the seven cycles, with an aver-
age value of 28 percent. Cumulative recovery efficiency was
about 19 percent.
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Table 7. Cycle test data from the Fiveash Water Treatment Plant (site 3).

[Potable water chloride concentration limit of 250 mg/L (milligrams per liter). Cumulative recovery efficiency extracted from table 6; all other data extracted
from table 5. Values have been rounded off. Mgal, million gallons; >, greater than; --, no data]

Chloride concentration

Recovery Potable water

L Cumulative
Storage Recharge Recovery efficiency recover

Cycle period volume volume Recharge Recovered at end of Recovery Re_cl_wery effici v

(days) (Mgal) (Mgal) water water cycle volume eff y y

(mg/L) (mg/L) (percent) (Mgal) (percent) (percent)
1 0 20 1 60 212 5 -- >5 5
2 0 75 5 55 160 6 - >6 6
3 (a+b) 433 638 54 55 244 9 -- >9 8
4 0 56 34 60 260 61 34 61 12
5 62 37 54 268 60 36 58 15
6 0 240 50 58 252 21 50 21 17
7 0 193 68 63 240 35 68 35 19

Relatively small volumes were recharged during cycles
1 and 2 (fig. 8 and table 7). Large volumes were recharged
during subcycles 3a and 3b (totaling 638 Mgal); however,
because the pump failed during subcycle 3a, recovery was not
attempted until subcycle 3b. Recovery efficiency at the end
of the entire third cycle was about 9 percent (table 7), and for
subcycle 3b it was only about 13 percent. Shortly after cycle 3
(with its large recharge volume), however, in what appears to
be a water-banking approach, smaller volumes were recharged
for cycles 4 and 5, and recovery efficiency increased to about
60 percent.

For cycles 4 and 5, the recovery rate was reduced to 0.45
and 0.63 Mgal/d, respectively, as opposed to the greater than
1-Mgal/d rate used previously (Hazen and Sawyer P.C., 2003),
and the increased recovery efficiency for these cycles may be
due, in part, to reduced velocity of water entering the well and
mixing within the borehole. “This allowed the stored water to
remain more intact and minimized upconing of native water
during recovery” (Hazen and Sawyer, P.C., 2003). Ambient
water salinity is indicated to increase with depth below the
storage zone at this site based on water samples collected
from known intervals (app. 1). An alternate explanation for
the improvement in cycles 4 and 5 is the flushing of ambi-
ent ground water caused by the very large recharge volume
in cycle 3. Although the lower recovery rate was used with a
much larger recharge volume in cycle 6 (240 Mgal compared
to about 60 Mgal for each of the two previous cycles), recov-
ery efficiency fell to about 21 percent (table 7). This reduction
in recovery efficiency may have been caused by the almost
5-month period of inactivity between cycles 5 and 6, and the
total time (14 months) between cycle 3 with its large recharge
volume and cycle 6. Recovery efficiency for cycle 7 increased

to about 35 percent, even with an increase in the recovery rate
to almost 1 Mgal/d. The decrease in the volume recharged
from cycle 6 to 7 and short intercycle and storage period times
could have accounted for this increase in recovery efficiency.

Springtree Water Treatment Plant (Site 4)

Construction of well ASR-1 at the Springtree WTP in
east-central Broward County was completed by July 1997, and
seven cycles were conducted between July 1999 and August
2003 (fig. 9). Cycle 8 began on October 1, 2003, but the recov-
ery phase has not yet been conducted. Storage period lengths
for the seven cycles ranged from 0 to 131 days (table 8).
Potable water recovery efficiency per cycle ranged from about
19 to 62 percent, with an average value of 36 percent. Cumula-
tive recovery efficiency was about 31 percent.

Recharge volume for cycles 1 to 4 ranged from 20 to
41 Mgal, and was increased to 121 and 187 Mgal, respectively,
for cycles 5 and 6 (table 8). Recovery efficiency decreased
from about 40 percent for cycles 3 and 4, to about 31 and
19 percent for cycles 5 and 6, respectively. The decreased
recovery efficiency for cycle 6 may partly be due to its lengthy
storage period (131 days) when compared to previous cycles
(about 30 days or less). The per-cycle recovery efficiency
increased to over 62 percent for cycle 7; however, this cycle
did not have a storage period, and the large volume recharged
in cycle 6 may have flushed out some of the ambient ground
water near the well. Cycle 8 began in September 2003 and
recharge ended in February 2004; however, by the end of
2004, recovery for this cycle had not yet begun.
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Table 8. Cycle test data from the Springtree Water Treatment Plant (site 4).

[Potable water chloride concentration limit of 250 mg/L (milligrams per liter). Cumulative recovery efficiency extracted from table 6; all other data extracted
from table 5. Values have been rounded off. Mgal, million gallons; >, greater than; --, no data]

Chloride concentration Recovery Potable water Cumulative
Storage Recharge Recovery efficiency
Cycle period volume volume Recharge Recovered at end of Recovery Recovery recovery
(days) (Mgal) (Mgal) water water cycle volume efficiency efficiency
(mg/L) (mg/L) (percent) (Mgal) (percent) (percent)
1 0 20 4 70 61 20 -- 30 20
2 1 40 11 65 213 28 - 30 25
3 0 41 15 60 220 37 -- 41 30
4 31 40 15 60 222 38 - 42 32
5 29 121 32 65 218 26 -- 31 29
6 131 187 23 65 171 12 - 19 22
7 0 120 74 69 224 62 -- >62 31
8 141 -- 65

Shell Creek Water Treatment Plant (Site 6)

Well ASR-1 was constructed at the Shell Creek WTP
in northeastern Charlotte County in 1997, and was originally
completed in the upper part of the Suwannee Limestone.
However, results from a single-well constant-rate pump test
(table 3) and subsequent cycle testing indicated that the trans-
missivity was unacceptably low in this zone for ASR opera-
tional considerations. The well was recompleted in April 1999
to its deeper, present open interval (764 to 933 ft below land
surface) in the lower part of the Suwannee Limestone (app. 1;
Montgomery Watson, 2000a). Three additional ASR wells
(wells ASR-2, ASR-3, and ASR-4R) were constructed in late
2001 and early 2002. Later in 2002 (prior to their initial use),
ASR-3 and ASR-4R were back plugged to depths of 912 and
915 ft below land surface, respectively, to improve recov-
ery efficiency potential by “reducing the dispersivity in the
open-hole section of the wells” (Water Resources Solutions,
Inc., 2002e; 2003d). The storage zone thickness in both wells
was reduced from about 200 to 100 ft (table 2). Well ASR-2
(app. 1, CH-316) was not modified and has not been used
because of unconsolidated sand entering the well bore during
production (Water Resources Solutions, Inc., 2003d).

Reported transmissivity (6,000 ft?/d) for the Shell Creek
WTP (fig. 5) was determined from a multiwell test that used
ASR-3 as the production well prior to being back plugged
(table 3). The open interval for ASR-3 during this test
extended from a depth of 810 to 1,000 ft.

Three test cycles were performed at the site between
July 1999 and February 2000, and five operational cycles
were completed between some time in 2000 and June 2004
(fig. 10). OnlyASR-1 was utilized during the first six cycles;
the last two cycles were multiwell cycles. The first multiwell
cycle (OP-4) used wells ASR-1, ASR-3, and ASR-4R, and
the second cycle (OP-5) used ASR-3 and ASR-4R. Storage
period lengths ranged from 0 to 166 days for cycles 1, 2, 3,
OP-4, and OP-5, with no storage period for cycles 1 and 2
(table 9). Potable water recovery efficiency per cycle ranged
from greater than 1 to about 47 percent, with an average value
of about 21 percent. Cumulative recovery efficiency was about
24 percent.

Potable water recovery efficiency generally was low for
the first six cycles (greater than 1 to about 37 percent), even
though a large recharge volume of 199 Mgal was used on
the sixth cycle (OP-3); however, the recharge water chloride
concentration for cycle 3 was high (180-230 mg/L) and unre-
ported for cycles OP-1, OP-2 and OP-3 (table 9). For the first
multiwell cycle (OP-4), potable recovery efficiencies for wells
ASR-3 and ASR-4R were about 51 and 65 percent, respec-
tively. Recovery efficiency for ASR-1 remained low (about
15 percent) for this cycle; however, although more than 70
percent of the recharge water was injected into this well during
the cycle (158 Mgal as opposed to about 30 and 33 Mgal for
ASR-3 and ASR-4R, respectively). Well ASR-1 was not used
for cycle OP-5, and the combined recovery efficiency at the
end of the cycle for ASR-3 and ASR-4R was about 49 percent,
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Table 9. Cycle test data from the Shell Creek Water Treatment Plant (site 6).

[Potable water chloride concentration limit of 250 mg/L (milligrams per liter). Cumulative recovery efficiency extracted from table 6; all other data extracted
from table 5. Values have been rounded off. Mgal, million gallons; < less than; >, greater than; --, no data]

Chloride concentration

Recovery Potable water

. . Cumulative
Storage Recharge Recovery efficiency recove

Cycle period volume volume Recharge Recovered atend of Re ¥ Recovery S

(days) (Mgal) (Mgal) water water cycle volume effi effi y

(mg/L) (mg/L) (percent) (Mgal) (percent) (percent)
1 0 5 >1 100 250 30 >1 30 30
2 0 2 <1 75 250 37 >1 37 32
3 1 20 <2 180-230 250 9 <2 9 14
OP-1 - 23 >2 10 12
OP-2 -- 36 <1 >1 8
OP-3 -- 199 10 5 6
OP-4 26-29 221 61 94-107 242-252 28 60 27 15
OP-5 166 198 97 94-95 250-270 49 93 47 24

even with the long storage period used (166 days). The poor
recovery for ASR-1 is believed to be caused, at least in part,
by the presence of an area of fractured dolomites overlying the
storage zone to the south of ASR-1 (Water Resources Solu-
tions, Inc., 2003d). Some of the recharged water in ASR-1
may be moving above the storage zone through the fractured
dolomite because of buoyancy effects, even though the ambi-
ent chloride concentration at the site is not high (900 mg/L).

Marco Lakes (Site 7)

Construction of three ASR wells began at the Marco
Lakes site in western Collier County during 1996. Well ASR-1
was completed in July 1996, and wells ASR-2 and ASR-3
were completed in November 1999. Six single-well cycles
(ASR-1) were conducted between June 1997 and June 2001,
and three multiwell cycles (1E, 2E, and 3E) using all three
ASR wells were conducted between October 2001 and July
2004 (fig. 11). Cycles have been conducted on an annual basis
since the start of the fourth cycle in 1998, and the recharge
period for these cycles has been initiated between July and
September every year. Storage period ranged from 3 to 181
days (table 10). Potable water recovery efficiency per cycle
ranged from about 4 to 68 percent, with an average value of 33
percent. Cumulative recovery efficiency was about 34 percent.

With the exception of cycle 2, potable-water recovery
efficiency increased from about 22 to 44 percent during cycles
1 to 6 (table 10). Recharge water chloride concentration was
comparatively high relative to other sites, ranging from 98
to 136 mg/L for the first six cycles. On the basis of numeri-
cal simulation, the erratic recovery curve and poor recovery
efficiency for cycle 2 (about
4 percent) has been attributed to preferential well plugging
during recharge of one of two receiving intervals in the storage
zone (Water Resources Solutions, Inc., 1999c). Precipitate for-
mation probably caused this plugging, and acidification of the
recharge water prior to injection has minimized or eliminated
the problem in later cycles.

Beginning with cycle 2E, operation at this site may have
followed a water-banking approach. A large recharge volume
(about 670 Mgal) was injected during cycle 2E (table 10),
and recovery was stopped when chloride concentrations in
the wells were low (110-150 mg/L). This buildup of a buf-
fer zone in the aquifer, followed by a much smaller recharge
volume for cycle 3E (about 246 Mgal), apparently resulted in
a high combined recovery efficiency (greater than 68 percent)
in cycle 3E, even though a long storage period (181 days) was
used and recovery ended when chloride concentrations ranged
from only 130 to 200 mg/L (fig. 11 and table 10).
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Table 10. Cycle test data from the Marco Lakes facility (site 7).

[Potable water chloride concentration limit of 250 mg/L (milligrams per liter). Cumulative recovery efficiency extracted from table 6; all other data extracted
from table 5. Values have been rounded off. Mgal, million gallons; <, less than; >, greater than; --, no data]

Chloride concentration Recovery Potable water .
L. Cumulative
Storage Recharge Recovery efficiency recove
Cycle period volume volume Recharge Recovered atend of Recovery Recovery e v
(days) (Mgal) (Mgal) water water cycle volume eff y y
(mg/L) (mg/L) (percent) (Mgal) (percent) (percent)
1 3 19 6 98 384 31 >4 22 31
2 63 87 32 115 398 37 <4 4 9
3 2 21 17 13 370 82 7 33 13
4 85 113 65 130 420 58 39 34 23
5 108 132 75 118 395 57 47 36 28
6 125 125 80 136 360 64 55 44 32
1IE 112 326 145 105 250-350 44 123 38 34
2E 121 670 147 88 110-150 22 >22 29
3E 181 246 167 56 130-200 68 >68 34

Boynton Beach East Water Treatment Plant
(Site 23)

Construction of well ASR-1 was completed at the
Boynton Beach WTP in southeastern Palm Beach County by
April 1992, and 21 cycles were completed between October
1992 and July 2004 using ASR-1. Cycles 1 to 4 were con-
ducted over a 7-month period, cycles 5 to 18 were conducted
at a rate of almost two per year, and subsequent cycles have
been conducted on an annual basis (fig. 12). Storage period
lengths ranged from O to 174 days; data were unavailable for
cycle 17 (table 11). Potable water recovery efficiency per cycle
ranged from about 27 to 96 percent, with an average value of
about 64 percent. Cumulative recovery efficiency was about
63 percent.

Potable recovery efficiency increased rapidly during the
first four cycles to about 90 percent (fig. 12 and table 11), but
the high frequency and short storage periods of these cycles
may have contributed to the rapid rise. Compared to the
preceding two cycles, the low volume of recharge for cycle 4
(about 18 Mgal) also probably contributed to the high recovery
for this cycle.

Potable water recovery efficiency decreased to about
27 percent during cycles 5 to 7, probably because of more
extended storage periods; for example, the storage period for
cycle 7 was 124 days (table 11). Most subsequent storage
periods were shorter. Except for cycle 15, recovery efficiency

for cycles 8 tol8 ranged from about 40 to 96 percent. Cycle
14 recovery continued until chloride concentration increased
to about 1,000 mg/L, which probably contributed to a lower
projected recovery efficiency for cycle 15. Presumably, to
replenish the system, the recovery for cycle 15 ceased at about
34 percent recovery efficiency and a chloride concentration of
only about 146 mg/L. On a plot of percent recovery and recov-
ered water chloride concentration during each cycle, the data
points for cycle 15 are shifted to substantially lower recovery
percentages at the same chloride concentration than for cycles
9 to14 (Reese, 2002, fig. 13).

At about 85 percent, the potable water recovery efficiency
for cycle 16 is one of the best obtained for site 23 (table 11).
The storage period for cycle 16, however, was only 4 days,
and the recovery efficiency for this cycle probably benefited
from the incomplete recovery for cycle 15. At least 73 Mgal
of water injected during cycle 15 was not recovered. For cycle
19, the first annual cycle, recharge volume was increased to
about 201 Mgal (about 4 times the amount for most previ-
ous cycles) and the storage period was increased to 86 days,
yet the recovery efficiency for this cycle remained relatively
high (about 63 percent). Recovery efficiencies for cycles 20
and 21 were about 81 and 77 percent, respectively, with lower
recharge volumes (about 104 and 119 Mgal, respectively) than
for cycle 19.
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Table 11. Cycle test data from the Boynton Beach East Water Treatment Plant (site 23).

[Potable water chloride concentration limit of 250 mg/L (milligrams per liter). Cumulative recovery efficiency extracted from table 6; all other data extracted
from table 5. Values have been rounded off. Mgal, million gallons; >, greater than; --, no data]

Chloride concentration Recovery Potable water Cumulative
Storage Recharge Recovery efficiency
Cycle period volume volume Recharge Recovered at end of Re y Re y recovery
(days) (Mgal) (Mgal) water water cycle volume efficiency efficiency
(mg/L) (mg/L) (percent) (Mgal) (percent) (percent)
1 0 13 10 60 760 77 6 47 47
2 0 57 26 50 420 46 17 30 33
3 8 54 32 47 300 59 27 49 40
4 8 18 17 51 274 97 16 90 46
5 98 60 39 46 300 65 32 54 49
6 57 61 48 47 307 78 39 64 52
7 124 60 20 48 302 33 16 27 47
8 2 43 21 52 321 48 17 40 47
9 22 40 32 52 301 79 25 63 48
10 52 42 35 48 307 83 31 75 51
11 149 41 37 41 314 91 34 82 53
12 81 41 32 49 302 79 27 66 54
13 174 43 37 48 318 87 30 70 55
14 1 33 96 62 1,004 287 27 81 57
15 57 111 38 46 146 34 -- >34 53
16 4 90 89 -- 310 99 76 85 57
17 -- 39 47 -- 348 121 37 96 59
18 8 77 57 -- 319 74 47 61 59
19 86 201 149 -- 308 74 127 63 60
20 56 104 109 -- 337 105 84 81 61
21 113 119 156 -- 508 131 91 77 63

Delray Beach North Storage Reservoir (Site 24)

Construction of well ASR-1 at the Delray Beach North
Storage Reservoir in southeastern Palm Beach County was
completed by August 1996. Six test cycles were completed
between May 2000 and November 2001; a seventh cycle failed
to be completed due to pump failure during recovery (fig. 13).
Storage period lengths ranged from O to 118 days (table 12).
Potable water recovery efficiency per cycle ranged from about
16 to 94 percent, with an average value of about 61 percent
(including cycle 7). Cumulative recovery efficiency was about
44 percent.

A TSV of about 250 Mgal was estimated for ASR-1
to support a 50-Mgal recovery volume, and this TSV was
recharged at the beginning of cycle testing (CH2M HILL,
2002a). This recharge volume is included in cycle 1, and

recharge continued without interruption until the total recharge
volume for cycle 1 was 313 Mgal (table 12). Recovery
efficiency for cycle 1 was likely adversely affected by a 118-
day storage period caused by recovery pump failure; recovery
efficiency for cycle 1 was 16 percent at a chloride concentra-
tion of 225 mg/L at the end of the cycle. About 50 Mgal per
cycle were recharged during cycles 2 and 3, and recovery
efficiencies were high (about 94 and 79 percent, respectively).
Recovery efficiency decreased to about 53 percent for cycle 4,
but recovery was stopped at a chloride concentration of only
185 mg/L. Recovery efficiency improved to almost 80 percent
for cycles 5 and 6. With the exception of the first cycle,
recovery efficiencies at site 24 were high; however, the stor-
age period length for cycles 2 to 7 averaged only about 1 day,
intercycle time was short (usually 2 days or less), and cycles
were short (about 2 months or less each).
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Table 12. Cycle test data from the Delray Beach North Storage Reservoir (site 24).

[Potable water chloride concentration limit of 250 mg/L (milligrams per liter). Cumulative recovery efficiency extracted from table 6; all other data extracted
from table 5. Values have been rounded off. Mgal, million gallons; >, greater than; --, no data]

Chloride concentration

Recovery Potable water

L. Cumulative
Storage Recharge Recovery efficiency recove

Cycle period volume volume Recharge Recovered at end of R ¥ Recovery S

(days) (Mgal) (Mgal) water water cycle volume effi effi y

(mg/L) (mg/L) (percent) (Mgal) (percent) (percent)
1 118 313 50 40 225 16 -- >16 16
2 4 50 47 40 250 94 47 94 27
3 1 48 38 40 230 79 -- >79 33
4 0 102 54 40 185 53 -- >53 37
5 0 69 52 40 180 75 -- >75 41
6 2 71 55 225 78 -- >78 45
7 0 73 21 62 28 - >28 44

West Palm Beach Water Treatment Plant
(Site 29)

Construction of well ASR-1 at the West Palm Beach
Water Treatment Plant in northeastern Palm Beach County
was completed by January 1997, and five ASR test cycles
were completed between October 1997 and November 1998
(fig. 14). Storage period lengths ranged from 0 to 3 days
(table 13). Recharge volumes per cycle ranged from about 103
to 146 Mgal. Potable water recovery efficiency per cycle was
low, ranging from about 3 to 7 percent (table 5). Cumulative
recovery efficiency was about 4 percent.

Recovery for cycle 1 was stopped at a chloride con-
centration of only 133 mg/L (about 4 percent recovery), and
recovery efficiency would have been higher if recovery had
continued to the potable water level (table 13). Cycle 2 fol-
lowed immediately and recovery went well beyond the potable
water level; however, potable water recovery efficiency was
only about 3 percent. Recovery efficiency increased to about 6
to 7 percent for cycles 3 and 4. Recovery efficiency for cycle
5 decreased to only about 3 percent, even though the recharge
volume was similar to those used during the previous four
cycles. This decrease may have been caused by the 2-month
period of inactivity between cycles 4 and 5 (fig. 14). Recovery
for cycles 2 to 5 continued until chloride concentrations of
about 800 mg/L were reached, thereby eliminating some of
the fresher water buffer zone around the well that could have
improved recovery efficiency for cycles 3 to 5.

Evaluation of Site Performance

Potable water recovery performance at all ASR sites in
southern Florida is discussed in the subsequent sections. First,
analysis of recovery efficiencies is made and relative performance
of sites is determined. This relative recovery performance is then
compared to four hydrogeologic and design factors.

Recovery Efficiency and Relative Performance

A comparison of potable water recovery efficiencies for
each cycle at all of the ASR sites with three or more cycles
(including test cycles) was made (fig. 15). Much of the
recovery efficiency variability between sites and cycles may
be attributed to factors not shown, such as recharge volume
per cycle, duration of storage and intercycle periods, and the
extent of recovery for each cycle. Eight of the 15 sites had
recovery efficiencies of less than about 10 percent for the
first cycle (sites 1, 3, 12, 14, 20, 22, 27, and 29). Of these
eight sites, three have not yet achieved recoveries exceeding
10 percent, and three failed to achieve a recovery exceed-
ing 30 percent by the third cycle. Conversely, the other seven
sites had an initial recovery of about 20 percent or greater and
attained more than 30 percent recovery by the second cycle,
except for site 7, which had a well-plugging problem during
cycle 2 as previously discussed. Recovery efficiencies for the
most recent cycles at all sites with data are shown in figure 16.
Three sites on the east coast and two on the west coast of
Florida achieved recoveries of greater than 60 percent for their
most recent cycles.
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Table 13. Cycle test data from the West Palm Beach Water Treatment Plant (site 29).

[Potable water chloride concentration limit of 250 mg/L (milligrams per liter). Cumulative recovery efficiency extracted from table 6; all other data extracted
from table 5. Values have been rounded off. Mgal, million gallons; >, greater than; --, no data]

Chloride concentration Recovery Potable water .
. . Cumulative
Storage Recharge Recovery efficiency recove
Cycle period volume volume Recharge Recovered at end of Recovery Recovery fHici v
(days) (Mgal) (Mgal) water water cycle volume effi y et y
(mg/L) (mg/L) (percent) (Mgal) (percent) (percent)
1 0 114 4 65 133 4 - >4 4
2 3 132 36 54 766 27 4 3 3
3 1 111 46 50 850 42 7 7 4
4 3 103 58 42 820 57 6 6 5
5 3 146 74 80 790 50 4 3 4

Comparisons of site performance were made using the
cumulative recovery efficiencies and cumulative recharge
volumes calculated at the end of each cycle in table 6, and
these comparisons were used to group sites by performance.
The cumulative potable water recovery efficiencies at the end
of each cycle for all sites with at least three cycles (fig. 17)
display substantially less variability than the per-cycle recov-
ery efficiencies (fig. 15). Much of the variability in per-cycle
recovery efficiency apparently caused by water banking, such
as at sites 3 (fig. 8), 4 (fig. 9), 7 (fig. 11), and 24 (fig. 13), is
eliminated on the cumulative recovery efficiency plot. A com-
parison of cumulative recharge volume and time at the end of
each cycle since the beginning of cycle testing for sites with
at least three cycles illustrates large differences in the overall
rate of recharge (fig. 18). Sites on this plot can be divided into
two groups based on the overall recharge rate. The group with
the higher recharge rate includes sites 1, 3, 20, 22, 24, and
29; this group has an overall recharge rate of about 300 Mgal/
yr or higher, which is the same as 2 Mgal/d for a 5-month
recharge period each year. Three sites in the other group (sites
4, 14, and 23) also had close to this higher rate of recharge, but
only for the first few cycles during their first year of opera-
tion. A higher overall recharge rate could improve recovery
efficiency because of the water-banking effect as previously
discussed.

The relative performance of all sites was grouped into
“high,” “medium,” and “low” categories based primarily on
their cumulative potable water recovery efficiency during
the first seven cycles (fig. 17 and table 14). The cumulative
recovery efficiencies were arbitrarily chosen to be 0 to 20
percent for low performance, 20 to 40 percent for medium
performance, and greater than 40 percent for high perfor-
mance. Seven cycles were used because six sites had this num-
ber of cycles or greater. For sites with less than seven cycles,
the trend of points for the site in figure 17 was projected up to
seven cycles. The ratings of three sites, considered borderline,

were modified using the overall recharge rate (fig. 18). Site 1
(Broward County WTP 2A) was rated medium instead of high
because of a high recharge rate, site 6 (Shell Creek WTP) was
rated medium instead of low because of a low recharge rate,
and site 7 (Marco Lakes) was rated high instead of medium
because of a low recharge rate. Also as previously discussed,
the recharge water used at site 7 for cycles 2 to 6 had a sub-
stantially higher chloride concentration than the concentra-
tion typically used at most other sites, and preferential well
plugging occurred during cycle 2. Two sites (sites 11 and 15),
not shown in figure 17, also were rated (table 14). Site 11
(Lee County WTP) was rated high based on three cycles with
a cumulative recovery efficiency for the third cycle of about
27 percent (table 6) and a low overall recharge rate, and site
15 (Winkler Avenue) was rated low based on one cycle with

a recovery efficiency of only 0.5 percent (table 5). Of the 30
sites in this study (table 1), a rating was determined for 17
sites. Seven sites were rated high, five were rated medium,
and five were rated low. The remaining 13 sites have not been
tested or inadequately tested, and therefore, could not be rated.

Hydrogeologic, Design and Management Factors

Performance at all sites was compared against four of the
hydrogeologic and design factors, including thickness, trans-
missivity, and ambient chloride concentration of the storage
zone, and the thickness of the aquifer above the top of the stor-
age zone (table 14). A threshold was chosen for each factor to
represent a value above which the factor could adversely affect
recovery efficiency. The approximate threshold values chosen
for transmissivity and ambient chloride concentration, which
were previously identified, are 30,000 ft*/d and 2,500 mg/L,
respectively.



63

Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer

18ybiy uaaq
aney pinom Aauaiaiys Alanoaal os ‘(1831 1ad swelbijjiw Gz JO UORIIUSIUOD BpPLIOJYI) Hwi| Jarem ajqelod ayl yaeal jou pip sa]9Ad awos Joj Alanooaay jue|d Juawalealy Jajem
SI d1M "(s8]9Aa 1881 Buipnjoul) s8joAo alow o 881y} yum saus Alanodas pue abelols Jajinbe 1e 8j9Ad yoea o} salaualoiya Alanooal Jalem ajqelod jo uosuedwo?) ‘G| ainbi4

d 1M yoeag wied 188\ ‘62 8

Jaydnp ‘1z 8uS PIald 18N 1S3 0C 81S S9)e7 00JR |\ ‘L BUSG —m—
110M18S3Y yea|elH ‘L1 8US —m— d1M 8817 [13YS ‘9 8HS
abelolg yHoN yoeag Aesjaq ‘vz aUS —e—
$91e1S] SO|Je) UeS ‘p| 8US —e— d1M @a1buuds 'y aug —w—
d1M1se3 yoeag uojuhog ‘sz auS
6600429830 SYeT-UBNOIS dLM eB|Q ‘EL aUS d LM Ysesnld ‘g aUg —e—
uIganNieal] JojAe] ‘7z 8uS —m— 110AI8S8Y YHON ‘7L 8YS —e— V2 d1M Awunog piemoig ‘| 8ys —m—
NOILLYNV1dX3
439INNN JTIAD
1z 0z 6l 8l Ll 9l Gl vl el z I 0L 6 8

LN3243d NI'AIN3IIJI443 AHIA0IIY HILVM F18V10d




64

27°30°

27°00

26°30°

26°00

25°30°

25°00

24°30°

82°30°

Hydrogeology and Aquifer Storage and Recovery Performance in the Upper Floridan Aquifer, Southern Florida

81°00°

HARDEE
MANATEE

DE SOTO

I

! €

[ OKEECHOBEE
| ’ =

HIGHLANDS

22

46%/0P-5
6 6/23/04
3wells

GLADES
CHARLOTTE Oct 1976 \‘
''''''' (R A 3%/5 23 1i
>74% ! |
% 9/16/04 ! 11038 )
I
15 ' ! o /o1 23|
0.5%/1 LEE | HENDRY | i
— 2/04/01 b=-mm - 1 | —
\é\ ! | ! >78%/6 24
\ 543%/2 i AN N 101501 g
-7 5/9/01 ; | >31%/3 —ll 1
_______ - ‘i 3/11/99
! H: W
[ 7 >68%E } 562%1 ’
« B 71404 COLLIER | 8/2603 35577 |
I 1:‘ (3 We”S) ;—'—'L SLZ/_Oi Y J—
[ N -4
i 39%/3
—-; 1/30/80 17 7
g | 41%/3 g 90
? %, ! 3/23/01 =
EXPLANATION %, ! (3 wells)
— Location, site number, and site status <« ! MIAMI-DADE d |
[RE OPERATIONAL TESTING ! : /
OR OPERATING . 4
17 EXPERIMENTAL AND
INACTIVE
35%/4  Percent recovery for last
cycle / last cycle number,
— for 250 milligrams per liter |
chloride concentration limit
during recovery; >, greater than
6/18/02  Ending date for cycle

)

M 0 10 20 30MILES

e
0 10 20 30KILOMETERS

_|.

Base from U.S. Geological Survey digital data
Universal Transverse Mercator projection, Zone 17, Datum NAD 27

Figure 16. Potable water recovery efficiencies for the most recent cycle at aquifer storage and recovery sites
in southern Florida. Three sites (indicated) use three wells simultaneously; all other sites use one recharge

well.
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Table 14. Comparison of hydrogeologic and design factors that may affect recovery
efficiency with aquifer storage and recovery site performance.

[Values for transmissivity and ambient chloride concentration are rounded to two significant figures
based on values in tables 3 and 4. Threshold values are shown in brackets in table headings. Values
that exceed thresholds are shown in italics. Recovery performance rating based on cumulative recov-
ery efficiency for first seven cycles, or projected to seven cycles if less cycles have been completed.
Low is 0 to 20 percent recovery efficiency, medium is 20 to 40 percent recovery efficiency, high is
greater than 40 percent recovery efficiency. UFA, Upper Floridan aquifer; MFA, middle Floridan
aquifer; ft*/d, square feet per day; mg/L, milligrams per liter; ND, not determined; ?, recovery perfor-
mance rating is less certain because of the low number or type of cycles or other reasons]

Factors that may affect recovery efficiency e D

indicated by

Site  Storage zone Tra_m_smis- I_\mbient Thickness of cycle testing
number  thickness sivity of dlssol_ved UFA above top (number of cycles
(ft) storage zone  chloride of storage zone completed, including
[150] [ ;ﬂg:;] [(;1%:;)] [(;2] test cycles)
1 205 29,000 1,900 145 Medium? (3)
2 168 24,000 2,000 50 No testing
3 145 20,000 3,500 85 Low (7)
4 160 5,700 3,600 70 Medium (7)
5 188 4,700 11,000 2 No complete cycles
6 169 6,000 900 160 Medium (8)
7 45 9,100 2,600 0 High? (9)
8 61 ND 2,100 162 No testing
10 260 ND 900 0 No testing
11 155 800 500 0 High (3)
12 100 8,300 750 0 Medium (4)
13 61 9,400 1,000 344 High (3)
14 51 70,000 1,100 0 Low (3)
15 98 27,000 1,300 0 Low? (1)
16 240 13,000 700 35 No testing
17 150 11,000 1,200 0 High (3)
18 470 11,000 2,200 0 No testing
19 404 12,000 1,600 0 Inadequate testing (1)
20 452 15,000 2,400 0 High (3)
21 313 40,000 600 0 No testing
22 442 590,000 3,000 0 for MFA Low (7)
23 105 9,400 1,900 4 High (21)
24 104 ND 2,300 86 High (7)
25 215 19,000 2,100 60 No testing
26 210 8,100 1,800-2,500 30 No testing
27 290 ND 1,800 30 Medium (4)
28 90 8,800 2,100 95 No testing
29 215 110,000 2,800 60 Low (5 test cycles only)

30 175 5,900 1,000 0 Inadequate testing (1)
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Design factors that concern the thickness and position of
the storage zone also were used for comparison. The threshold
values that were chosen for these factors, however, are some-
what arbitrary. A value of 150 ft was chosen for the thickness
of the storage zone. This value is less than the average storage
zone thickness of 183 ft (for all sites with the storage zone in
the Upper Floridan aquifer), but is about halfway between the
original and reduced storage zone thicknesses for two ASR
wells at the Shell Creek WTP (site 6). Both wells had improved
recovery efficiency in comparison to the original ASR well at
the site, which has a storage zone thickness of 169 ft. Addition-
ally, the average thickness of 183 ft is upwardly biased by sites
19 and 20 in Miami-Dade County with storage zone thick-
nesses of greater than 400 ft (fig. 4), of which about 300 ft is
interpreted to be above the Upper Floridan aquifer. A threshold
value of 50 ft for the thickness of the portion of the aquifer
above the top of the storage zone was chosen. This value is
approximately the average of this thickness determined for all
sites with the storage zone in the Upper Floridan aquifer (table
14) using the plots in appendix 1. An aquifer thickness above
the top of the storage zone of 50 ft or less could still result in
a loss of recharged water due to the buoyancy effect, depend-
ing on the vertical hydraulic conductivity of the aquifer and
ambient salinity. The four factors were determined for all sites,
and the sites exceeding the threshold values were identified for
the purpose of comparison with the relative recovery efficiency
performance ratings (table 14).

Relative ASR performance, determined at 17 sites, was
grouped by rating and compared with the four hydrogeo-
logic and design factors that may affect recovery efficiency
(table 15). Some correlation of the ratings with the number
of factors exceeding their respective threshold value was
found. As the ratings decrease from high to low, the number
of sites with two or more factors that exceed threshold values
increases. Of the five sites rated low, three sites had two to four
factors that exceeded their threshold values, whereas for the
sites rated high, none had more than one factor. Three of the
sites rated low have storage zone transmissivities above the
threshold value of 30,000 ft*/d, and three have ambient chloride
concentrations above the threshold value of 2,500 mg/L. All
of the sites that have transmissivities above the threshold value
were rated low. Of the eight sites with a storage zone thickness
greater than 150 ft, only two had a high rating. A correlation
with the factor for the thickness of the Upper Floridan aquifer
above the top of the storage zone, however, was not indicated.
Sites that exceeded the 50-ft value were relatively evenly dis-
tributed among the three performance ratings.

Although not included in the preceding comparison,
storage period length or time between cycles also may affect
recovery efficiency. This appears to be more likely for sites in
southeastern Florida than in southwestern Florida; southeastern
Florida has higher ambient salinity, higher apparent vertical
hydraulic conductivity in the aquifer, and more storage zones
located more than 50 ft below the top of the Upper Floridan
aquifer. Ten of the 16 east coast sites have chloride concentra-
tions of at least of 2,000 mg/L, but concentrations at only 2 of

Table 15. Aquifer storage and recovery site performance,
grouped by rating, and compared with factors that could
affect recovery efficiency.

[“X” indicates factor equals or exceeds threshold value. Threshold
values are given in table 14. Site ratings are described in the text and
in table 14. Sites with insufficient data for ratings are not shown. no.,
number; --, no exceedence for factor]

Storage Aquifer
Site LR SR zom!zl thi::lkness
No. zone zone chloride above
thickness transmissivity .
concentration storage zone
High
7 - - X -
11 X - - -
13 - - - X
17 -- -- -- --
20 X - - -
23 -
24 - X
Medium

1 X X

4 X X X

6 X X
11 X - - -
12 - - - -
27 X -

Low

3 - - X X
14 - X - -
15 -- -- -- --
22 X X X -
29 X X X X

the 9 west coast sites exceed this value. Because of the pos-
sibility of enhanced vertical hydraulic conductivity in the upper
part of the Upper Floridan aquifer in the southeastern coastal
area, upward migration of recharged freshwater during long
storage or intercycle periods may cause substantial decreases in
recovery efficiency. This reasoning tends to be supported by the
cycle test data. Seven of the 16 east coast sites have a thick-
ness of the aquifer above the top of the storage zone of greater
than 50 ft (table 14). Of these seven sites, four sites—Broward
County WTP 2A (site 1), Fiveash WTP (site 3), Springtree
WTP (site 4), and West Palm Beach WTP (site 29)—have a
low or medium performance rating; one sitte—Delray Beach
North Storage Reservoir (site 24)—has a high rating; and

two sites—Hillsboro Canal East (site 25), and System 3 Palm
Beach County (site 28)—have had no cycle testing.

Some evidence seems to indicate poor recovery perfor-
mance can occur in southeastern Florida because of long inac-
tive periods. For example, no potable water was recovered at the
Southwest Well Field (site 19) after recharge of 228 Mgal into
two wells and storage for 360 days. Additionally, a large reduc-
tion in recovery efficiency at the Fiveash WTP (site 3) occurred
between cycles 5 and 6 (fig. 8), mostly perhaps because of 8
months of inactivity since cycle 3 with its large recharge volume
and the low volumes recharged for cycles 4 and 5.




Summary

This report completes the second phase of an ongoing
investigation to compile and synthesize data on existing
aquifer storage and recovery (ASR) sites in southern Florida
and to identify specific hydrogeologic, design, and manage-
ment factors that control the recovery of freshwater recharged
into ASR wells. The first report completed in 2002 provided
preliminary data inventory, review, and analysis. The current
study: (1) compiled new ASR data that have been made
available, (2) determined the hydrogeologic framework at
each ASR site, and (3) further evaluated performance at each
site including a more complete comparative analysis of ASR
sites. The focus of the current study is on the Upper Floridan
aquifer, which is continuous throughout southern Florida, and
generally has good overlying confinement; however, this aqui-
fer contains brackish to saline ground water, which can greatly
affect the recovery of the freshwater recharged and stored
because of dispersive mixing.

Well data were inventoried and compiled for all wells at
existing and historical ASR sites in southern Florida. All of
the ASR wells at the 30 sites have been drilled to the carbon-
ate Floridan aquifer system, mostly under the direction of
local municipalities or counties in coastal areas. The Upper
Floridan aquifer of the Floridan aquifer system is either being
used, or is planned for use, at 29 of the sites. Three of the 30
sites are currently operational, 11 are undergoing “operational
(cycle) testing,” 11 require additional infrastructure develop-
ment or regulatory approval prior to “operational testing,” and
5 are no longer active or abandoned after experimental testing
was completed. Five of the more recent sites are pilot or test
well sites drilled as part of the Comprehensive Everglades
Restoration Plan (CERP), for which ASR has been proposed
on a large, unprecedented scale; cycle testing at these five sites
has not yet begun.

Many utility-operated, nonexperimental ASR facili-
ties with constructed wells have experienced cycle testing or
operational delays because of unresolved regulatory issues;
mechanical problems, such as well pump failure; inadequate
source-water supply, or other reasons. Out of ten sites with
wells constructed in the 1990s, five have conducted only three
cycles or less, and cycle testing has not begun at two others.

The hydrogeology of the Upper Floridan aquifer in south-
western Florida differs from southeastern Florida. Confine-
ment between flow zones within the Upper Floridan aquifer in
southwestern Florida is generally better than in southeastern
Florida, and some zones in southwestern Florida are referred
to as separate aquifers or subaquifers. Unconformities are
present at formation contacts in the Upper Floridan aquifer,
and zones of dissolution can be associated with these uncon-
formities. Because of these unconformities and associated
karstification, the vertical hydraulic conductivity in the upper
part of the Upper Floridan aquifer may be higher in south-
eastern Florida than in southwestern Florida. The hydrogeo-
logic framework at each of the 30 ASR sites is delineated in
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this report; geophysical log traces, lithologic columns, flow
zones, geologic and hydrogeologic units, completed open-hole
intervals, and ambient water-quality data are illustrated for
each site.

Storage zone factors that can affect the efficiency of ASR
operation vary widely between sites. The thickness of the
open-hole storage zone ranges from 45 to 470 ft, and borehole
diameter ranges from 5.125 to 29 in. Twenty-inch or greater
diameter ASR wells are required to obtain an injection or
withdrawal rate of 5 Mgal/d or greater. Transmissivity of the
Upper Floridan aquifer storage zones is reported to range from
800 to 110,000 ft*/d, but at most sites, transmissivity ranges
from about 5,000 to 30,000 ft*/d. Chloride concentration of
ambient ground water in Upper Floridan aquifer storage zones
ranges from 500 to 11,000 mg/L, but at most sites, the chloride
concentration ranges from about 1,000 to 3,000 mg/L. A high
degree of correlation between chloride concentration and
salinity (dissolved-solids concentration) in the Floridan aquifer
system in southern Florida has been demonstrated in previ-
ous studies. Water-quality data obtained from known sampled
intervals and inferred from resistivity geophysical logs indi-
cate that ambient salinity and chloride concentration increase
with depth below the storage zone at six sites.

Potable water recovery efficiency on a per cycle basis
was the primary measure used to evaluate site performance
and is defined as the percentage of the volume of freshwater
recharged that has been recovered before the chloride concen-
tration of recovered water reaches 250 mg/L. Cycle test data
were compiled for 20 ASR sites, and potable water recovery
efficiencies were calculated for 18 of these sites. Cumulative
recharge volumes and cumulative potable water recovery effi-
ciencies were calculated for each cycle and also were used to
evaluate performance. Additionally, total recovery efficiencies
or the percent recoveries at the end of each cycle were deter-
mined. They can be substantially higher than the potable water
recovery efficiencies because of blending of the higher salinity
water recovered from the aquifer with low salinity water at the
WTP. Total recovery efficiency is the performance measure
used in the operation of WTPs.

Potable water recovery efficiencies per cycle vary widely.
Eight sites had recovery efficiencies of less than about 10
percent for the first cycle, and three of these sites have not yet
achieved recoveries exceeding 10 percent. The highest recov-
ery efficiency achieved for a cycle was 94 percent for cycle 2
at the Delray Beach North Storage Reservoir. Three sites on
the east coast of southern Florida and two sites on the west
coast have achieved per cycle potable water recovery efficien-
cies exceeding 60 percent, and three of these sites (two on
the west coast and one on the east coast) have achieved good
(greater than 60 percent) recovery efficiencies, even with long
storage periods (from 174 to 191 days).

Results of cycle testing at several sites appear to sup-
port the target storage volume or water-banking approach.

For example, at the Delray Beach North Storage Reservoir
site, six times more recharge water (313 Mgal) was used dur-
ing the preceding cycle 1 than in cycle 2 with its high recovery
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efficiency (94 percent). This method involves recharging a
large volume of water in an initial cycle, which flushes out

the aquifer around the well and builds up a buffer zone that
can maintain high recovery efficiency in the following cycles
with much lower recharge volume. Recovery efficiencies at
the Delray Beach North Storage Reservoir site remained high
for the next five short cycles (about 2 months or less per cycle)
conducted, however, except for the first cycle, there were no
substantial storage periods and little or no idle time between
cycles.

Comparisons of the performance of sites were made
using the cumulative potable water recovery efficiencies and
cumulative recharge volumes calculated at the end of each
cycle. The cumulative potable recovery efficiencies at the end
of each cycle display substantially less variability than the per-
cycle recovery efficiencies. The per-cycle recovery efficiency
variability is caused, in large part, by the practice of water
banking in some cycles. A comparison of cumulative recharge
volume and time at the end of each cycle since the beginning
of cycle testing for all sites illustrates large differences in the
overall rate of recharge. A higher overall recharge rate (greater
than 300 Mgal/yr) can improve recovery efficiency because of
the water-banking effect.

The relative performance of all sites with adequate cycle
test data was determined. Performance was grouped into
“low,” “medium,” and “high,” categories based primarily on
their cumulative recovery efficiency for the first seven cycles,
or projected to seven cycles if fewer cycles have been con-
ducted. The cumulative percent recoveries for these categories
were arbitrarily chosen to be 0 to 20 percent for low, 20 to
40 percent for medium, and greater than 40 percent for high.
The ratings of three sites considered borderline were modi-
fied using the overall recharge rate. Of the 30 ASR sites in
this study, a rating was determined for 17 sites. The remaining
13 sites have not been tested (or were inadequately tested),
and therefore, could not be rated. Of the 17 rated sites, 7 were
rated high, 5 were rated medium, and 5 were rated low.

The relative performance of all sites rated was compared
with four hydrogeologic and design factors: thickness, trans-
missivity, and ambient chloride concentration of the storage
zone, and the thickness of the portion of the aquifer above
the top of the storage zone. Respective threshold values of
150 ft, 30,000 ft¥/d, 2,500 mg/L, and 50 ft, respectively, were
chosen for these factors to represent the approximate values
above which recovery efficiency could be adversely affected.
The values chosen for transmissivity and ambient chloride
concentration were identified in previous studies, Increased
permeability in a carbonate aquifer, such as the Upper Flori-
dan aquifer, corresponding to increased transmissivity of a
storage zone, typically translates to greater dispersive mixing
with high salinity ambient ground water. For the other two

factors, which are design factors concerning the thickness and
position of the storage zone, the threshold values chosen are
somewhat arbitrary; however, they are based, at least in part,
on their average value for all sites with the storage zone in the
Upper Floridan aquifer. High values for storage zone thickness
could result in decreased recovery efficiency because of the
greater vertical extent of the transition zone along which mix-
ing occurs and because of increased potential for dispersive
mixing. An aquifer thickness above the top of the storage zone
of more than 50 ft could lower recovery efficiency, depend-
ing on the vertical hydraulic conductivity of the aquifer and
ambient salinity. The buoyancy of the injected freshwater in
saline ambient ground water could cause part of the bubble to
migrate above the level of the top of the storage zone (base of
casing), where it may be more difficult to recover. The four
factors were determined for all sites, and the sites exceeding
the threshold values were identified.

Correlation of the performance ratings with the number
of factors exceeding their respective threshold value is indi-
cated. As the ratings decrease from high to low, the number
of sites with two or more factors that exceed threshold values
increases. The best correlation is found with the transmis-
sivity and ambient chloride concentration factors, but some
correlation also is indicated with the thickness of the storage
zone. The storage zone transmissivity and ambient chloride
concentration each exceeded the threshold value at three sites
rated low. All of the sites that have transmissivities above
the threshold value were rated low. Of the eight sites with a
storage zone thickness greater than 150 ft, only two sites were
rated high. A correlation with the factor for the thickness of
the Upper Floridan aquifer above the top of the storage zone,
however, was not indicated.

Long intercycle or storage periods also may affect recov-

ery efficiency. This adverse effect appears to be more likely
for Upper Floridan aquifer sites in southeastern Florida than in
southwestern Florida; southeastern Florida has higher ambient
salinity, higher apparent vertical hydraulic conductivity, and
more storage zones located greater than 50 ft below the top
of the aquifer. Because of the possibility of enhanced vertical
hydraulic conductivity in the upper part of the Upper Floridan
aquifer in the southeastern coastal area, upward migration of
recharged freshwater during long storage or intercycle periods
may cause substantial decreases in recovery efficiency. This
reasoning tends to be supported by the cycle test data. Seven
of the 16 east coast sites have a thickness of the aquifer above
the top of the storage zone of greater than 50 ft; of these
7 sites, 4 sites have a low or medium performance rating,
1 site has a high rating, and 2 sites have had no cycle testing.
Additionally, some evidence seems to indicate poor recovery
performance has occurred in southeastern Florida for certain
cycles because of long storage and intercycle periods.
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