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ABSTRACT 

 
 
The U.S. Nuclear Regulatory Commission (NRC) is addressing issues related to the quality of 
Probabilistic Risk Assessment (PRA), including issues related to human reliability analysis 
(HRA) performed as part of PRA.  Among the issues of concern is an inadequate use of human 
performance data in the estimation of human error probabilities (HEPs), as well as in testing or 
otherwise validating underlying models used in HRA to predict human performance under 
cognitively demanding conditions.  In order to address issues related to the use of human 
performance data in HRA, the NRC is developing the Human Event Repository and Analysis 
(HERA) database (NUREG/CR-6903).  In addition, in August 2005, the NRC hosted an expert 
workshop on the use of Bayesian and other quantitative formalisms in conjunction with empirical 
data, such as that available in HERA, to improve both the estimation of human error 
probabilities and the underlying assumptions and quantitative algorithms employed by different 
HRA methods.  
 
This report contains a collection of papers that were produced as a result of the workshop. It 
also summarizes the peer review comments of a draft version of this report, includes 
conclusions about the feasibility of using empirical data and quantitative methods for HRA, and 
provides suggestions on how to proceed to address the issues under consideration.  
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FOREWORD 
 

This report documents a collection of papers that were produced as a result of a workshop 
conducted by the U.S. Nuclear Regulatory Commission (NRC) on August 10-11, 2005. The 
objective of the workshop was to explore the possibility of developing quantitative approaches, 
including Bayesian-type approaches, that would allow the use of readily available human 
performance data for informing human reliability analysis (HRA).  To date, readily available 
human performance data have not been used extensively in HRA because probabilistic risk 
assessments (PRAs) of human events are rare, and databases contain only a few events of 
interest.  In the absence of objective data, considerable judgment is used in the estimation of 
the likelihood of human failure events in PRA. Similarly, the models of human performance that 
form the underlying technical basis of many HRA methods may benefit from data obtained from 
representative HRA contexts. However, with the increased use of HRA results in regulatory 
decisions, the need to limit the use of subjective judgment by utilizing existing experience has 
become a focus of NRC’s PRA Quality Program.  

The workshop participants were recognized experts in the areas of PRA, HRA, data analysis, 
and statistics. Technical presentations addressed incorporating empirical data in HRA, and 
participating experts provided feedback on the proposed approaches. Experts were focused on 
examining the degree to which proposed methods provide a theoretically valid framework for 
HRA, if the examples provided demonstrated a method’s applicability and usefulness, and what 
needs to be done to further develop such methods to address HRA needs. The results of the 
workshop were documented in a draft report which was peer reviewed by nationally and 
internationally recognized experts.  

This report summarizes the technical approaches proposed, as well as the peer review results. 
It also includes a discussion of the technical work needed to further demonstrate the usefulness 
of such techniques in HRA. The work supports addressing outstanding technical issues 
identified in “Plan for the implementation of the commission’s phased approach to probabilistic 
risk assessment quality” [SECY-04-0118 and SECY-07-0042].  

 

 
______________________________________________  

      Christiana Lui, Director 
       Division of Risk Analysis 
      Office of Nuclear Regulatory Research 
      U.S. Nuclear Regulatory Commission  
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1. MOTIVATION FOR THIS REPORT 
Prepared by Bruce Hallbert and Alan Kolaczkowski 

1.1 Introduction 

In accordance with its policy statement on the use of probabilistic risk assessment (PRA) [60 FR 
42622, 1995], the U.S. Nuclear Regulatory Commission (NRC) has been increasingly using 
PRA technology in “all regulatory matters to the extent supported by the state of the art in PRA 
methods and data.” Therefore, it is crucial that decision makers have confidence in the results 
produced by PRAs in order to make appropriate risk-informed decisions. 

To address PRA quality issues, the NRC has developed an “Action Plan–Stabilizing the PRA 
Quality Expectation and Requirements,” [SECY-04-0118, 2004 and SECY-07-0042]. Among the 
issues of concern is the fact that predicting operator performance as reflected in human 
reliability analysis (HRA) results continues to be a source of uncertainty when decision makers 
attempt to use the findings of PRAs and similar risk-related studies (e.g., risks involving nuclear 
material usage in medical and other applications). In particular, the plan includes data collection 
for improving both the estimation of human error probabilities (HEPs) as well as for testing or 
otherwise validating underlying models used in HRA to predict human performance under 
accident conditions.  

In order to address the need for using data from operational experience or other sources in 
HRA, the NRC is sponsoring the Human Event Repository and Analysis (HERA) project. The 
objective of HERA is to analyze and code human events reported in licensee event reports, 
inspection reports, and other sources, in a format and structure appropriate for HRA. The main 
objective of HERA is to provide empirical evidence about human performance so that HRA 
analysts can derive qualitative information regarding human failure under various conditions. 
Analysts can use qualitative information for understanding and questioning the assumptions 
used in HRAs as well as for directly testing the assumptions employed by the methods 
themselves by, for example, applying a method to evaluate historical events. The use of 
empirical data to directly support the estimation of HEPs is also an incentive for collecting 
empirical human performance data.  

The NRC, in addition to funding Idaho National Laboratory (INL) to perform HERA [Hallbert, et. 
al., 2006], is also supporting international efforts to obtain and organize human performance 
data relevant to NPP operations. In particular, the NRC supports the Halden Reactor Project in 
Norway where state-of-the-art nuclear power plant (NPP) simulators are used to design 
experiments to collect operator performance data in simulated conditions similar to those 
modeled in PRAs and the Organization for Economic Cooperation and Development Nuclear 
Energy Agency (OECD/NEA) efforts to develop a framework for collecting and sharing NPP 
events among member countries.  

Analysts have historically avoided the use of observed data in HRA for many reasons, primarily 
because events modeled in a PRA are rare events, and hence the conditions under which 
humans must accomplish mitigation tasks are also rare. As a result, analysts have eschewed or 
limited their use of information gathered in Licensee Event Reports (LERs) and other 
observation-based sources because of inherent difficulties in employing such evidence as well 
as concerns related to it’s direct relevance to events modeled in PRAs. However, although there 
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are few events in the NPP history that can be applied in PRA/HRA, there is a significant number 
of “risk-significant” events in NPP or other industries. If systematically mined, these events can 
be an important source of data for human performance under challenging conditions. 
Furthermore, operational experience related to less risk-significant events can also provide 
useful information with regards to how or why events occur and, more importantly, how events 
are recovered and do not become more risk-significant. Both types of information, the 
occurrence of human error and underlying causes and recovery from the errors, are modeled in 
a HRA and are very important aspects of HRA quality. In addition, mathematical frameworks, 
specifically the Bayesian framework, allows the use of “evidence” from various sources to allow 
estimation of probabilities in areas dealing with rare events. Other engineering areas (e.g., 
seismic) that also are dealing with rare events are using Bayesian techniques to estimate 
likelihood of events. The purpose of this workshop was to discuss the potential use of Bayesian 
techniques in HRA.  

Before directly addressing the feasibility of using quantitative methods and empirical data for 
HRA, the role of HRA in today’s risk-informed regulatory environment is discussed. 

1.2 The PRA – HRA Relationship 

To support the probabilistic models and calculations of PRA, HRA provides a means to identify, 
and estimate the probabilities of human failure events (HFEs) modeled in a PRA. The discipline 
of HRA, and particularly its use in NPP PRAs, includes formalized analytical techniques for 
examining the potential for operators to perform unsafe actions, to commit inadvertent errors, 
and the failure to act and estimate their likelihood. These techniques embody the use of task 
analysis, models, data, and considerable judgment to assess operator performance and its 
impact on the overall risk. This is done by assessing the potential for unsafe acts and errors 
during both routine operations (e.g., failures while performing equipment surveillances) and 
potential accidents including operator unsafe acts and errors or their failure to act when needed 
that may contribute to those accidents (e.g., failure to properly initiate safety system operations). 

HRA technology has evolved over the past thirty years, in response to our needs to better 
model human performance in a PRA, better reflect design and operational features of a 
continually evolving industry, and improved understanding of human performance in the 
behavioral sciences. Simple modeling and quantitative techniques developed over twenty-five 
years ago continue to be used today. For instance, human failure events that are typically 
classified as pre-initiator events, involving failure to properly restore equipment after test or 
maintenance and miscalibrations during routine operation of the plant, are typically analyzed 
using early HRA methods that appear to remain adequate even for today’s uses. However, 
methods have been developed to model and quantify post-initiator human events, i.e., human 
failure events that may occur during operator response to a plant upset. Newer methods try to 
depict those influencing factors that may be particularly relevant to the conditions under which 
human actions could be performed, e.g., the nature and speed of changing plant conditions and 
the availability and clarity of cues about the plant state.  

As we have improved human-machine interfaces in NPPs, thus making operator implementation 
errors less likely, it has become increasingly important to understand and better model the 
cognitive aspects of human performance within the context of situations that operators may 
experience. This, along with the increasing use of PRA and HRA results to make risk-informed 
decisions, has required more complex and higher fidelity modeling as well as greater reliance 
on improved quantitative techniques. Thus to support the uses of this more sophisticated 
modeling, data is also needed to better support the resulting HEP estimates using these more 
complex models.  
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1.3 The Availability and Usability of Human Performance Data 

Current human performance models and quantitative estimates provide useful and reasonable 
results. Nevertheless, HRA practitioners are still working to obtain and use sufficient real world 
experience to (a) gauge the appropriateness of models and the qualitative insights they provide 
as well as (b) gauge and improve the accuracy of our HEPs that are currently based on 
considerable judgment without a comparable level of supporting empirical evidence. The use of 
considerable judgment, along with inherent stochastic characteristics associated with human 
performance, contribute significantly to the uncertainties in HRA results. This is especially the 
case for the post-initiators, since serious challenges to operator performance in the form of plant 
upsets tend to be rare, such experience is slow in coming. Thus it is desirable in NPP 
applications to use that data that is available to validate and improve HRA methods, their 
associated predictive models, and quantification techniques.  

The “recording” of human performance as well as the influencing factors important to human 
behavior can be found in licensee event reports (LERs), other incident reports, inspection 
reports, licensee operator qualification examinations, simulator training experiences, special 
design and validation studies (e.g., control room design reviews), behavioral science 
experiments and other controlled studies, similar international sources of data, and other (non-
nuclear) experience. Much of this data could be used, to support the development and 
improvement of human performance models needed in HRA, and in fact such information has 
been used to develop HRA models (e.g., ATHEANA). However, such data have not been 
traditionally used to directly derive HEPs of interest in PRAs. As stated above, serious 
challenges to operator performance tend to be rare, and hence such data are not used to create 
probabilities in the classical form (i.e., x failures ÷ n opportunities).  

Furthermore, experience strongly suggests that human failure types and rates change 
depending on the situation encountered. As a result, no human performance data has been 
created in a form useful to the frequentist approach. Because of the inherent difficulties to 
create databases for direct HEP estimation, HRA has relied on developing models for human 
performance using theories and understanding of human behavior at the time of their 
development in conjunction with some empirical data. The result is that all HRA models involve 
considerable judgment to predict HEPs and the factors that cause humans to fail in various 
situations.  

So the question arises “what can we do with all these various and often incomplete data (i.e., 
empirical evidence) to validate or improve our HRA models and techniques, and the qualitative 
and quantitative results they produce so as to have greater confidence in those results?” To 
answer this question, it is recognized that HRA is not the only PRA area that is dealing with 
“sparse data” or data not easily useable for our methods and models, and that many other areas 
and applications (e.g., seismic risks) are dealing with this same issue. Their solution has been 
to utilize a variety of quantitative techniques, including Bayesian approaches. It is reasonable to 
look to other PRA areas and the approaches they have taken and to consider whether they 
provide an avenue that may be followed to address similar needs in HRA, as well as to consider 
other approaches that may not yet have been tried.  

1.4 Workshop and Subsequent Activities 

To this end, a workshop was held in Rockville, MD, August 10-11, 2005, in which meeting 
participants were invited to present and discuss quantitative approaches suitable for using 
human performance data from various sources in HRA. Meeting attendees were national and 
international experts in the areas of PRA/HRA, Bayesian, and classical statistics.  Five of the 
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experts presented or proposed approaches for utilizing “evidence,” like that contained in the 
NRC’s Human Event Repository and Analysis (HERA) system, in HRA.  The focus of the 
meeting was the identification of (new or old) “promising” approaches for using available 
information to better identify the factors that influence human behavior in PRA-relevant contexts 
and the kinds of human failure events these factors could result in, and then to estimate the 
likelihood of their occurrence.     

The results of the workshop were documented in a draft report that was submitted for peer 
review.  The draft report was reviewed by those workshop participants whose role was to 
provide feedback to the presenters as well as by additional recognized experts in PRA, data 
analysis, and statistics.  As a result, technical papers were produced that documented four 
technical quantitative approaches on the use of empirical data in support of HRA.  Each 
technical paper addresses some aspect(s) of the workshop questions that are presented in 
Section 1.5. In preparing this report, two workshop proposals were structurally consolidated 
(those from Drs. Mosleh and Smith in Section 2.1). This consolidated paper and the remaining 
papers are included in Section 2 of this report.  

1.5 Purpose of This Report 

The purpose of this document is to summarize presentations and discussions led by individual 
workshop participants addressing the feasibility as well as the associated issues relevant to 
using quantitative methods and formal frameworks to employ evidence for improving our human 
performance models and gaining more confidence in the qualitative and quantitative results 
produced by HRA methods. This includes the potential for using such methods to validate 
aspects of the HRA methods to the degree that may be supported with such methods. In 
particular, these specific questions were discussed in the workshop and are addressed in this 
report in order to be responsive to the overall purpose: 

1. Do quantitative techniques offer a theoretically valid framework for using empirical 
evidence to inform our current HRA methods? 

2. What are some examples of ways we could inform current HRA methods (i.e., provide 
illustrations)? 

3. What more needs to be done to demonstrate the feasibility of using these methods and 
empirical evidence to inform current HRA methods? 

Section 2 consists of four technical proposals for employing empirical information with 
quantitative methods. Each paper provides a discussion of the theoretical bases for its suitability 
in HRA in general, and in particular to the specific application proposed, practical issues 
associated with its development and use, the potential of its applicability in the particular area, 
expected results, and thoughts and recommendations for future work. Section 3 summarizes the 
results of a peer review of the draft workshop summary report. Section 4 provides a summary 
and preliminary conclusions relative to the overall purpose of this report, including specific 
observations about the three questions above. 
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2. THE FEASIBILITY OF EMPLOYING BAYESIAN 
TECHNIQUES AND OTHER MATHEMATICAL 

FORMALISMS IN HUMAN RELIABILITY ANALYSIS 

2.1 Methodological Foundations and Applications of Bayesian 
Methods in HRA  

Prepared by Ali Mosleh and Curtis Smith 

2.1.1 Foundations  

People have long recognized that some events are imperfectly predictable (e.g., human 
failures). Probability theory arose, in part, to deal with these types of problems. In the twentieth 
century, probability theory provided a good model for treating a broad class of physical, social, 
and other problems. Using a well-known nuclear example, while we may not be able to precisely 
predict which neutron will hit a U-235 nucleus during the nuclear fission process in a way that 
extends the chain reaction, our ability to estimate the probability of such an occurrence, on 
average, allows us to design and operate nuclear reactors in a way that is safe and predictable. 

When interpreting probabilities, a frequentist believes probability is an objective property in the 
real world and applies only to events generated by a random process. A subjectivist believes 
probability is an expression of a rational person’s degree of belief about an uncertain 
proposition, and, with feedback, assessed probabilities will, in the limit, converge to observed 
frequencies. 

Using the subjectivist approach, in the Bayesian setting, probability is a measure of uncertainty, 
a quantification of degree of belief. It treats “degree of belief” in a logical and rational way, not 
merely as personal opinion. In this methodology, each unknown parameter is assigned an initial 
prior probability and distribution modeling our belief concerning the true value of the parameter. 
Then based on evidence, our prior belief about the parameter is updated, using Bayes 
Theorem, to produce a posterior belief. The final inference, that is the posterior belief, makes 
use of and is, in fact, conditional on the evidence, as this statement illustrates: 

For billions of years, the sun has risen after it has set. The sun has set 
tonight. With very high probability (or I strongly believe that, or it is true 
that) the sun will rise tomorrow. With very low probability (or I do not at all 
believe that, or it is false that) the sun will not rise tomorrow. 

In human performance issues, for instance, the initial belief may be the extent that increasing 
complexity leads to a greater human error rate, or it may, for instance, be an initial HEP 
estimate. The evidence may be both qualitative and quantitative human performance data 
collected from observed events. The posterior or updated belief could be a more confident 
prediction as to how increasing complexity leads to a greater human error rate, or an updated 
value for the HEP. The theory and implementation of Bayesian techniques, as well as the use of 
empirical evidence, are covered extensively in the Handbook of Parameter Estimation for 
Probabilistic Risk Assessment [Atwood, et al., 2003]. However, as stated in the Handbook’s 
foreword, the information provided does not specifically apply to human error probabilities, but 
instead, to other modeled events, such as component failures. Nevertheless, many of the same 
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principles, theory, and illustrations seem relevant, which suggests there may be ways to use 
available empirical evidence specifically for HRA. 

Bayesian techniques have been successfully used in many disciplines, and their use continues 
to grow. The recovery of the USS Scorpion illustrates the Bayesian potential. In May 1968, the 
US nuclear submarine USS Scorpion failed to arrive as expected at her home port of Norfolk, 
Virginia. The US Navy was convinced that the vessel had been lost off the Eastern seaboard, 
but an extensive search failed to discover the wreck. A US Navy deep water expert believed 
that it was elsewhere, and he organized a search south-west of the Azores based on a 
controversial approximate triangulation by hydrophones. He was allocated only a single ship to 
perform the search, and he took advice from a firm of consultant mathematicians in order to 
maximize his resources.  

A Bayesian search methodology was adopted. Experienced submarine commanders were 
interviewed to construct hypotheses about what could have caused the loss of the Scorpion. 
The sea area was divided up into grid squares and a probability assigned to each square, under 
each of the hypotheses, to give a number of probability grids, one for each hypothesis. These 
were then added together to produce an overall probability grid. The probability attached to 
each square was then the probability that the wreck was in that square. A second grid was 
constructed with probabilities that represented the probability of successfully finding the wreck if 
that square were to be searched and the wreck were to be actually there. This was a known 
function of water depth. The result of combining this grid with the previous grid is a grid which 
gives the probability of finding the wreck in each grid square of the sea if it were to be searched.  

This sea grid was systematically searched in a manner which started with the high probability 
regions first and worked down to the low probability regions last. Each time a grid square was 
searched and found to be empty its probability was reassessed using Bayes Theorem. This 
then forced the probabilities of all the other grid squares to be reassessed (upwards), also by 
Bayes Theorem. The use of this approach was a major computational challenge for the time, 
but it was successful, and the Scorpion was found in October of that year. 

Recently, Bayes filtering has become a popular mechanism to distinguish illegitimate spam e-
mail from legitimate e-mail. Many modern mail programs implement Bayesian spam filtering. 
Further, some server email filters make use of Bayesian spam filtering techniques, and the 
functionality is sometimes embedded within mail server software itself. 

More relevant to nuclear power plant applications, seismic risks are typically estimated based 
on information about the level of robustness believed to exist for various types of hardware 
found in nuclear plants (e.g., motor control center cabinets, individual relays, cable trays). 
Based on evidence gained during walkdowns of actual installations of such equipment in a 
plant, estimates are made about how seismically robust a particular equipment item is in a 
particular plant. Each estimate provides a so-called HCLPF (High Confidence that there is a 
Low Probability of Failure) for that equipment given a seismic event. 

Illustrations of using Bayesian techniques in current PRAs are also covered in the PRA 
Parameter Estimation Handbook [Atwood, et al., 2003].  

Ideally, human error probabilities should be estimated with direct evidence (e.g., NE, the number 
of error of a specific type, and NO, the number of similar opportunities to make such errors). 
Currently however, in the vast majority of cases, such direct evidence is not available. With 
some exceptions, all HEPs are estimated judgmentally or based on models, with parameters 
that are also estimated subjectively or with soft evidence (e.g., assessment of performance 
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shaping factors, (PSFs). Bayesian methods are particularly appealing since HEP estimation 
requires use of a variety of sources and types of evidence. This presentation reviews some of 
the methodological foundations for proper use of Bayesian methods and, through a 
characterization of the nature of the evidence in HRA, explores the various advanced Bayesian 
inference methods that can use such evidence to estimate HEPs.  

In discussing the need for and feasibility of using Bayesian inference methods in HRA, we must 
first clearly define the relevant unknowns of interest. In their most general forms, these are 
defined as follows: 

• AO ≡ Human Action Outcome (e.g., Failure, Success) 

•  P ≡ Probability that AO = Failure  

• π(p) ≡ Probability Distribution of p (which could be aleatory or epistemic in nature). 

Two questions arise: 

1. Why are we uncertain about AO? (this uncertainty is captured by p) 

2. Why are we uncertain about p?  

The answer is not independent of the quantitative model one uses. Examples of HEP estimation 
frameworks include the following: 

• Model A (Direct Estimation, maximum likelihood estimate (MLE)):  

p = NE/NO 

where  NE = Number of errors observed 

  NO = Number of observations or opportunities 

• Model B (e.g., A Technique for Human Event ANAlysis (ATHEANA)) 

( ) ( )iconditionPiconditionresponsePp
i

  ∑=  

• Model C (e.g., Success Likelihood Index Methodology / Multi-Attribute Utility 
Decomposition (SLIM-MAUD)) [Embrey, et al., 1984] 

( )PIFfp =  

where PIF are performance influencing factors (i.e., PSFs). 

Some examples of the “function” f are 
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− Tables 
− Mathematical Function 
− Expert Judgment. 

One possible interpretation of “p” that fits all of the above models is that, given a very specific 
condition (external and internal), the operator response would be predictable as either success 
or failure. However, in reality we can only specify a class of similar but not identical conditions, a 
fraction of which lead to failure, and the rest result in success. That fraction is “p;” therefore, “p” 
is the product of our grouping of a spectrum of conditions (external and internal) as one context. 
Uncertainty about the first assumption (a part of model uncertainty) is also a source of “p.” This 
is sometimes referred to as residual randomness of human response. 

A possible interpretation of π(p) is that it represents one or more of the following sources of 
variability and uncertainty: 

• Variability of p from one subclass of context to another, all within a “context super class” 
(e.g., generic context). Some examples are 

− Crew characteristics variability  
− Stochastic (aleatory) variability in factors (e.g., PSFs) that characterize the context 

(e.g., variability in “time pressure” due to variability in time and sequence of events) 

• Uncertainty about the assessed values or states of PSFs for the specific context of 
interest 

• Model Uncertainty, arising, for example, from incompleteness of PSFs (or factors used to 
characterize the condition or context) to represent the condition class.  

When estimating p and π(p), it is essential to be clear about what sources and types of 
uncertainty each represents.  

Introducing how Bayesian principles can be applied to estimation of these parameters, it is 
appropriate to introduce Bayesian inference, which is based on the following elements:  

• The unknown of interest (UOI) 

• What we know about the UOI (Prior) 

• Other evidence (e.g., data or observations) 

• Model of the process generating the evidence (Likelihood) 

• Combined state of knowledge about the UOI (Posterior) 

The mathematical expression of the Bayesian engine of inference is  

( ) ( ) ( )
( ) ( )∫

=
dpppEL

ppEL
Ep

0

0

π
π

π

 (Eq. 1) 
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where p is the UOI, and E is the evidence. This mathematical expression provides a mechanism 
for updating the prior state of knowledge π0(p) based on the likelihood of the evidence L(E | p) 
to arrive at the posterior (updated) distribution π(p | E) of p given E. 

The key element of this process is the model of the evidence, such as the likelihood function, 
L(E | p). The form of the likelihood function is directly tied to the nature of the evidence. For 
instance, for direct evidence, such as E= {NE errors in NO opportunities}, a binomial likelihood 
function would be appropriate, assuming that “p” does not change from trial to trial. 

In order to use this Bayesian engine of influence, it is important to explore the types of evidence 
we encounter in relation to estimating human error probabilities. Some of the characteristics of 
the available information are: 

• Different forms and types of information 

− Expert Estimates  
− HEPs generated by applying HRA Models 
− Actual counts of failure and success  

• Non-homogenous evidence (different pieces of information from multiple sources)  

• Incomplete, indirect, or partially relevant observations. Examples include: 

− HEP estimates based on data from situations other than the error of interest, for 
example, a different plant state, a different set of performance shaping factors, or 
different system and technology altogether 

− Human performance data from simulator experiments 
− Incomplete information on “success counts” (NO) or exposure space 
− Uncertainty and ambiguity in the classification of observed events, their contexts, 

and their causes. 

For the simplest case among these (when we have the actual counts of failure and success), 
the Bayesian formulation will take the conventional form (Eq.1). Even in this simplest form, the 
Bayesian approach provides significant advantages. For example, considering the number of 
human failure events observed in the database, even when the number of trials (success data) 
is small, the impact of the data on the resulting posterior distribution might be visible. The actual 
effect is a function of the additional piece of information embodied in the prior distribution. To 
illustrate this point, we utilized Halden research data from one of several activities that operators 
were asked to perform during a series of experiments in 2002. The 2002 Halden experiment 
involved eight crews and eight scenarios (hence 64 trials), with no failures. The posterior 
probability of action failure is plotted in the following figure. This data was selected for several 
reasons, including demonstrating that Bayesian methods and limited data can make strong 
statements for even low-probability events (less than 1E-2 per activity). This low-probability 
application contradicts assertions that operator actions cannot be simulated if they are at the 
1E-2 or lower probability level. It should be noted that using just half of the information from a 
single series of experiments (2002) of Halden data could improve our knowledge of events that 
are postulated to occur in this low frequency and probability (i.e., 1E-2) range. 
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Figure 1  Example Operator Response Reliability from a Limited Data Sample. 

For other types and grades of data listed above, the Bayesian formulation needs to go beyond 
the conventional approaches. Fortunately, while it is clear that the specific solutions would have 
to be formulated for HEP estimation, when dealing with similar situations, some of the 
techniques used in estimating hardware failure probabilities can serve as a good starting point. 
We summarize some these techniques in Section 2.1.2.  

2.1.2 Advanced Bayesian Methods for Use in HRA  

This section discusses a few examples of the more advanced Bayesian inference models that 
correspond to some of the characteristics of the HRA data mentioned earlier. The key element 
in all such inference models is the form of the likelihood function, which should be constructed 
from the following factors: 

• Number and types of information 

• Dependence (of information sources) 

• Credibility (of data from experts and models) 

• Applicability (to the HEP of interest) 

• Homogeneity (of data points) 

• Uncertainty (of evidence). 

The methods described in the following are examples of how one or more of the above features 
of the evidence can be accommodated. 
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2.1.2.1 HEP Estimation with Multiple Types or Sources of Information 

The formulation in case of multiple sources of information E = {I1, I2, …, In} is standard and 
straightforward: 

( ) ( ) ( )
( ) ( )∫

=
dpppEL

ppEL
Ep

0

0

π
π

π

 (Eq. 2) 

The second equation applies when sources of information are independent. Examples of I are: 

• I1 = Actual Event Counts 

• I2 = Expert Estimates 

• I3 = Estimates Based on HRA Models 

The specific mathematical form of the individual likelihood functions varies again. depending on 
the specific type of information. These include the binomial distribution for Type I1, and 
lognormal (multiplicative error model) [Mosleh, 1992] for I2 and perhaps I3.  

For further reading see Mosleh and Apostolakis, 1985; Mosleh, 1992; Mosleh and Apostolakis, 
1984. 

2.1.2.2 Estimating Aleatory Uncertainty of “p”  

In this case, the unknown of interest is an entire distribution, f(p), representing “inherent” 
variability of p due to any reason. One can assume a parametric form for f(p | θ), with a set of 
parameters θ to be estimated based on the available evidence: 
 

( ) ( ) ( )
( ) ( )∫=

θθπθ

θπθ
θπ

dE
E

E
0

0

L
L

 (Eq. 3) 

We then use π(θ | E) to estimate f(p) 

( ) ( ) ( ) θθπθ
θ

dEpfpf ∫=  (Eq. 4) 

An example application is the case where the evidence is HEP estimates from different sources 
that reflect different context or conditions) [Mosleh, 1992] 

E = {p1, p2, p3, …, pn} 

We can assume that the aleatory distribution of p is a beta distribution with parameters α and β 
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( ) ( )
( ) ( ) ( ) 11 1, −− −

ΓΓ
+Γ

= βα

βα
βα

βα pppf
 (Eq. 5) 

and then use E to estimate the epistemic distribution of α and β: 

( ) ( ) ( )
( ) ( )∫ ∫=

α β

βαβαπβα

βαπβα
βαπ

ddE
E

E
,,

,,
,

0

0

L
L

 (Eq. 6) 

Finally we estimate f(p) with: 

∫ ∫=
β α

βαβαπβα dd)E|,(),|p(f)p(f  (Eq. 7) 

This approach has been used in PRAs to develop “generic distributions” for component failure 
probabilities from various plants, thereby preserving the plant-to-plant aleatory variability. 

As an example, consider the case where six estimates are available for the failure rate of 
pressure transmitters. These estimates, along with the assigned measure of confidence 
expressed as the range factor used in modifying the likelihood function, are listed below. Note, 
for example, a range factor of 3 implies that the estimated failures per hour could range from 3 
times higher to 3 times lower than the specific value shown. 

Expert  Estimates in failure per hour Assigned range factor 

1 3.0E-6 3 

2 2.5E-5 3 

3 1.0E-5 5 

4 6.8E-6 5 

5 2.0E-6 5 

6 8.8E-7 10 
 
By applying the above set of steps, the following aleatory distribution of the failure rate is 
obtained (Figure 2). The aleatory distribution was assumed to be lognormal, and the likelihood 
functions were based on the logarithmic error model of (Mosleh, 1992). The Bayesian 
computations were performed using R-DAT software [Reliability Data Analysis Tool, Prediction 
Technologies, Inc.]). 
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Figure 2  Aleatory distribution of failure rate. 

2.1.2.3 Dealing with Evidence Uncertainty 

The evidence E may be uncertain in nature due to the following factors: 
• Uncertainty in event interpretation  

• Partial Failures (quickly recovered error)  

• Uncertainty about the success data (error opportunities)  rror opportunities)  

• Uncertainty in cause classification (e.g., PSFs involved and their values and states). • Uncertainty in cause classification (e.g., PSFs involved and their values and states). 

In these cases, the content of E itself has an associated uncertainty which needs to be factored 
into the estimation of p. Assume that the uncertainty in E is expressed in the form of a 
probability distribution f(E). Three approaches have been suggested and used in the past 
(mostly in dealing with similar situations for hardware failure probabilities): 

In these cases, the content of E itself has an associated uncertainty which needs to be factored 
into the estimation of p. Assume that the uncertainty in E is expressed in the form of a 
probability distribution f(E). Three approaches have been suggested and used in the past 
(mostly in dealing with similar situations for hardware failure probabilities): 

• Weighted Posterior Method: In this approach, each interpretation of the evidence is first 
used to obtain a posterior distribution for p. The final posterior distribution of p is obtained 
by averaging the individual posterior distributions (UE stands for Uncertain Evidence): 

• Weighted Posterior Method: In this approach, each interpretation of the evidence is first 
used to obtain a posterior distribution for p. The final posterior distribution of p is obtained 
by averaging the individual posterior distributions (UE stands for Uncertain Evidence): 

( ) ( ) ( )∫= dpEfEpπUEpπ
 (Eq. 8) 

• Weighted Likelihood Method: In this approach, each interpretation of the evidence is 
first used in a corresponding likelihood function, and the total likelihood function is then 
obtained by averaging the individual likelihoods: 

( )
( ) ( )[ ] ( )

( ) ( )[ ] ( )dppEfpEL

pEfpEL
UEp

0

0

π

π
π

∫ ∫
∫=

 (Eq. 9) 

• Evidence Averaging: In this approach, the expected value of the evidence is used to 
construct the likelihood function: 
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( ) ( )
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∫
=

=

EfEE

dpppE
ppE

UEp
0

0

π

π
π

L
L

 (Eq. 10) 

One form of evidence uncertainty can be due to the fact that only partial evidence is available. 
To illustrate how partial information can be incorporated into Bayesian applications, we define a 
case where coin toss data are collected but filtered. In reality, the number of coin tosses may be 
known, but if we were provided with only the number of heads, we can still make an inference. 
(In the nuclear industry, Licensee Event Reports [LERs] are examples of missing data because 
we do not know how many trials [the “n” in the binomial likelihood model] were realized to 
provide the recorded failures). First, let us estimate the probability of tossing heads using the full 
data set so that we have a “known” condition to compare. To perform this analysis, a Bayesian 
analysis tool called WinBUGS [Open Source Software, 2003] was used. 

Assuming that we use a uniform prior uncertainty distribution on the probability of heads, we find 
the results from a known case involving 10 tosses with 5 heads and 5 tails in the resulting 
probability density plot in Figure 3. Using partial information (we only know the number of heads 
and do not know the total number of tosses), we see the result shown in Figure 4, whereby it is 
assumed that there may have been as many as 30 tosses (there were actually only 10). When 
comparing the “all information” case, where the number of heads and number of tails are 
known, to the “partial information” case, where only the number of heads is known, one should 
note that the effect on the estimated probability of heads is noticeable but not dramatic. Even 
though a significant amount of information has been lost, the expected value decreases slightly 
from 0.501 to 0.454. The net result of having missing data was that the probabilistic information 
changed, but only slightly, even though we were somewhat uninformed on the missing 
information. However, this diffuse state of knowledge only leads to an 11% decrease in the 
mean estimate for the probability of tossing heads. For further reading see Mosleh, 1986 and 
Groen, 2005. 

 
Figure 3  Tossing a coin using all information         Figure 4 Tossing a coin using partial information 

 
2.1.2.4 Dealing with Evidence Relevance 

Methods suggested for situations where the evidence is partially relevant to estimation of p are 
simple extensions of the case where the evidence is totally applicable and relevant (Eq.1). More 
specifically, when E is believed to be partially relevant, the analyst can assign a relevance factor 
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of 0≤ω≤1 as a subjective measure of the degree of relevance of the data for the HEP of interest. 
One of a number of options to use such partially relevant data is to modify the likelihood function 
as follows: 

( ) ( )[ ] ( )
( )[ ] ( )

1    0         ,
0

 
0

 

≤≤=
∫

ω
π

π
π ω

ω

dpppE

ppE
Ep

L

L

 (Eq. 11) 

When ω=1 (i.e., when the evidence is fully relevant), the evidence that is used is full strength, 
as in the conventional form of Bayes theorem. The other extreme is when ω= 0 (when the 
evidence is totally irrelevant), and the likelihood function will become a constant (L=1) and will 
have no influence in forming the posterior distribution. For values of ω<1, the likelihood function 
will be wider than the case for ω =1, reducing the influence of data on the posterior distribution. 

This formulation can be used, for example, to “discount” simulator data when used in estimation 
of HEPs for real accident conditions.  

For further reading see Groen and Mosleh, 2005 and WINBUG, 2003. 

2.1.3 Concluding Remarks 

This discussion has highlighted many of the inherent flexibilities of Bayesian methods in dealing 
with the sparse, diverse, and uncertain data with which HEPs have to be estimated. An equally 
important message in presenting the range of available Bayesian techniques is that our view of 
what constitutes useful information in HRA data gathering and database development also 
needs to be broadened. This has implications for how we design databases and data 
classification schemes. For instance, the data classification could include assignment of 
applicability of causes (or PSFs) of a given human failure event when analyzing the data for 
another application. This enables some degree of generic data specialization for the application 
of interest. As another example, the success data, though only partially known, could be 
specified with an uncertainty range.  

We also note that the methods discussed here are all sufficiently mature for near-term 
implementation. In fact, as stated above, many of them have already been applied for the 
hardware failure data assigned to PRAs. Advances in computing and numerical methods have 
made solving multi-dimensional and hierarchical Bayes formulations quite practical. The most 
immediate need or step is the identification of the sources of information, and mapping the 
identified types to the mathematical frameworks described above.  
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2.2 Modeling Causal Mechanisms and Context in HRA 

Prepared by Bruce Hallbert 

2.2.1 Background 

Issues related to the quality of human reliability data and models date, at least, to the 
Probabilistic Safety Assessment and Management (PSAM) 3 conference in 1996. At that 
meeting, a vigorous discussion initiated in one of the HRA sessions between proponents for 
better human reliability data production and proponents for better human reliability methods or 
models. Those holding the view that what was most urgently needed at that time was more and 
better human reliability data argued that the uncertainties in error identification, modeling, and 
quantification could best be reduced through sources of evidence. Proponents for improved 
models cited the fact that many methods in use at that time (a.k.a., first generation methods) 
overlooked important cognitive abilities of the human operator and only implicitly treated such 
issues. As a consequence, data production efforts without the appropriate model(s) informing its 
generation or capture would be likely to replicate the inadequate treatment of cognitive and 
contextual factors prevalent at the time. 

Since 1996, a number of advances have been made in HRA, particularly with respect to 
modeling and accounting for cognitive and contextual influences. However, less progress has 
been made in developing sources of information or data that can be used to assist analysts in 
identifying the appropriate human failure events to be included in their PRAs, how to best 
represent such failures, and how to better estimate the likelihood of their occurrence. Recently, 
several efforts have begun and are now underway to generate data specifically aimed at 
informing HRA activities [Hallbert, et al. 2004; Kirwan, et al., 2004; Hallbert, et al., 2006]. 
Concurrent with the development of sources of information, methods must also be developed 
and demonstrated to permit their use in risk-informed applications and, most specifically, PRAs. 
An advantage of Bayesian methods for using such information is that they are capable of using 
all available information. They can also be used to make predictions directly about the quantity 
or behavior of interest, and if employed properly, can account for the causal and conditional 
nature of context and performance.  

In cases where we may have access to a source of human performance information that is 
complete in the sense that it provides information about outcomes of interest (i.e., success or 
failure of human actions) and the total number of opportunities or demands, classical statistical 
methods may be used to estimate the human reliability parameter of interest, which is typically 
assumed to be unknown or uncertain. For example, the number of correct responses to a given 
stimulus, the latency in response to the stimulus, and other characteristics may be estimated 
from simple response data. However, behavior is not only random and variable from time to 
time (i.e., random and uncertain), but is also causally linked to characteristics of the human as 
an organism as well as to the context in which behavior is elicited. Unless explicitly directed for 
by models, the analysis of response data is likely to overlook subtle and important determinants 
of behavior. Consequently, a classical statistical treatment of such response data may not 
reflect the response reliability of human action in contexts that were not represented in the 
environment that produced the source data. 

This presents a quandary for human reliability modeling; classical statistical treatment of human 
performance data in a manner similar to the treatment of equipment performance data for 
purposes of estimating reliability parameters may not be appropriate, yet models that dictate 
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how to incorporate and analyze human performance data are approximations with uncertainty. 
So, even though Bayesian methods are capable of employing all of the available data, this is 
only true if the likelihood function employed in the particular form of the Bayesian formalism is 
structured to accept all of the available data. This is not trivial and may be as important as 
having good quality data available for use. 

As an illustration of the issue, consider the manner in which information on context or 
performance shaping factors (PSFs) are typically accounted for in current HRA methods. In the 
Technique for Human Error Rate Prediction (THERP), for example, static multipliers are used to 
treat the effects of such important factors as stress and experience. Doubling or tripling the rate 
of error is recommended for some actions where stress is high and experience of performing an 
action is low. For a given action such treatment may be warranted, or even for some contexts, 
yet such treatment may be unwarranted for many others. The HEP cum PSF approach is 
prevalent in many HRA methods, and thus the accuracy of the resulting risk metrics that are 
derived from our analyses and the uncertainty in those results are dependent on knowing the 
relationships between the PSFs we model and the resulting human performance for different 
situations, or contexts.  

What is needed is the ability to relate elements of the environment to performance using formal 
models that can express the relationships in terms of the quantities of interest to reliability 
analyses. This involves a number of related activities. First, data are needed that will allow us to 
test assumptions about the relationships between PSFs and operator performance, and to 
develop models of the relationship(s). This includes distinguishing important factors from 
irrelevant factors in contexts of interest. It also includes estimating the magnitude of effects of 
the relationships, and the degree to which these relationships vary in different contexts of 
interest to PRA. HRA methods currently treat the effects of PSFs on performance reliability 
through either individual assessments or by aggregating their effects. That is, an important 
underlying hypothesis of many HRA methods currently in use is that contextual factors can be 
addressed by modifying a nominal HEP by a multiplication factor that represents the effect of a 
particular PSF (or set of PSFs) on the nominal HEP. This approach overlooks potentially 
important interactions among PSFs and the way(s) they may affect performance. Thus, an 
additional application for PSF data concerns the study of their systematic interaction and 
associated implications for improving the manner of accounting for their influence in human 
reliability models and methods.  

2.2.2 Purpose 

This section presents research that demonstrates an approach to address PSF representation 
in human performance modeling by obtaining empirical information related to performance 
shaping and contextual factors. The approach employed here involved collecting information 
related to PSFs and objective operator performance across several studies of operator 
performance, and then relating the PSFs to performance through a linear mathematical model. 
This was done to ( 1) assess whether PSFs are predictive of important aspects of operator 
performance, (2) distinguish between more important and less important PSFs, (3) demonstrate 
a method to relate their influence to a general model of operator performance, and (4) 
demonstrate methods that may be used to illustrate the systematic interactions of PSFs in PRA-
relevant scenarios.  

The data and analyses reported here are the products of empirical research, and they are 
intended to motivate discussion and consideration of approaches to advance the use of data to 
support improvements in modeling human performance in PRA-relevant contexts. Because of 
the small sample sizes involved that were the result of opportunistically collecting these data 
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(i.e., as ancillary to the purposes for which the main studies were sponsored), these results 
should be viewed as preliminary and illustrative.  

2.2.3 Method 

Licensed commercial nuclear power plant operators who participated in several studies 
involving simulated accident (i.e., PRA-relevant) conditions were presented with scenarios in 
which their performance was measured. The objectives of these studies differed, as did some of 
the conditions in the studies. In one study, for example, crews performed simulated control room 
activities to mitigate design basis events in order to support resolution of regulatory issues 
associated with the operational safety of nuclear power plants [Hanson et al., 1987]. In another 
study, operating crews performed in either a minimum or normal staffing complement per 10 
CFR 50.54(m) in order to evaluate the effects of staffing changes on crew performance [Hallbert 
et al., 2000]. Crews in the latter study also performed their activities in either a conventional 
control room or an advanced control room setting. Operators who participated in all of these 
studies performed as crews with others they were assigned to work with at the time. Although 
the data presented here were generated from the two referenced studies above, the data are 
not presented or discussed in the referenced reports as they are ancillary to the purposes for 
which the studies were commissioned.  

In these studies, crews were from pressurized water reactors (PWRs). Several scenarios were 
replicated, including a sustained total loss of feed water, a steam generator overfill scenario, 
and a loss of coolant scenario (a steam generator tube rupture transient in two simulator 
settings; a 0.5 in.2 small break LOCA in the other). The scenarios thus represented a range of 
thermal-hydraulic challenges, including overheating, overcooling, and loss of coolant. In this 
way, scenarios were qualitatively matched across studies. Crews were free to interact with the 
plant simulation to effect control and stabilization as they were trained, and were further 
expected to perform activities as they normally would, were such events to actually occur. Role-
play of external on-site personnel (e.g., auxiliary operators) and off-site personnel (e.g., 
regulatory and municipal authorities) was used to simulate important command, control, and 
communication activities that would also be present in events such as those simulated. 

Each scenario included one or more critical mitigation activities, which, if performed correctly 
and in a timely manner, would help restore plant functions and prevent further degradation of 
simulated plant thermal-hydraulic conditions. In the case of the sustained loss of feed water 
(LOFW) transient, crews had to initiate feed and bleed actions – a sequence of actions that 
involved producing a lineup for high-pressure safety injection, opening a relief path through the 
pressurizer, and sustaining flow to achieve core cooling. In the case of the steam generator over 
fill (SGOF) transient, crews had to respond to an uncontrolled feed flow to the affected steam 
generator(s) and act to control flow by controlling valve positions and feed water pump 
operations manually to prevent water from reaching the main steam lines and producing a 
potentially more damaging event on a relatively short time scale. All of the critical mitigation 
actions involved planning, carefully sequencing a set of actions, and coordinating them within 
the crew in order for the actions to be timed correctly and to be complete. In all cases, crews 
could rely on their previous experience, training, and procedural guidance to assist in decision 
making, action plan formulation, and carrying out mitigating actions. However, all scenarios 
were designed to be challenging and required crews to carefully time and carry out their actions 
with precision in order to achieve their goals. The scenarios include PRA- and HRA- relevant 
human actions, both from the standpoint of the actions needed to mitigate the transient(s) and 
secure systems as well as the degree of challenge and realism involved. 
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Following each scenario, operating crew members were asked to evaluate a set of PSFs in 
terms of the effects these PSFs had on their performance in mitigating the transient(s). A 
questionnaire-style instrument was used to collect this information from crew members 
individually. Each questionnaire asked the operator to rate the influence that a set of PSFs had 
on their performance of the critical mitigation action in the scenario that they had just completed 
in their training simulator. Thus, each administration of the questionnaire was scenario-specific, 
as well as focused on a critical mitigation action from the scenario. Prior to data collection, 
researchers and simulator staff familiarized crews with the method for rating PSFs and the 
general format of the questionnaire by evaluating a sample task collectively. Following each 
scenario, crew members filled out a questionnaire. In the case of the first conventional plant 
setting, 28 crew members provided data on three scenarios. In the second conventional plant 
setting, 19 crew members provided data. In the advanced plant setting, 10 crew members 
participated in the study. In all, 57 crew members filled out questionnaires.  

Seven PSFs were evaluated and are included here with the definitions as they were presented 
to the operating crews. 

Procedures refers to how easy the procedure is to follow, and how clearly it directs the operator 
to take action in the task being considered. 

Instrumentation (shown as Human-Machine Interface or HMI in subsequent analyses) refers to 
how easy the displays and controls located on consoles and back panels are to locate, read, 
and or operate.  

Training refers to how well-schooled the operations staffs are in terms of classroom theory and 
simulator training, and what bearing this has on the task being reviewed. 

Information available refers to the extent to which information presented to the operator is 
accurate and easy to understand. 

System Feedback refers to how the operator knows s/he has taken the appropriate control 
action or how s/he is made aware of the general plant state, i.e., through annunciator systems 
or plant automatics. 

Workload refers to how busy the operator is while performing tasks and how difficult these tasks 
are to perform. 

Stress refers to the pressure experienced. The stress could come from a number of sources, 
such as being unsure there was enough time to complete the task, having a lack of experience 
in that particular situation scenario, or bearing the burden of responsibility that unsuccessful 
completion of the task would have negative consequences for the plant. 

2.2.4 Data Collected 

A scale for rating the PSFs was provided next to each PSF on the questionnaire. The scale was 
arranged from 1 to 5, with 1 meaning that the PSF hinders performance, 3 meaning that the 
PSF has no effect on performance, and a 5 meaning that the PSF helps performance on the 
task being evaluated.  

In addition to the PSF data, performance data related to transient mitigation were obtained in 
each scenario. A key mitigation activity was identified during the design of each of the 
scenarios. Training and licensing personnel from the utilities identified operator activities that, if 
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performed, would materially contribute to the mitigation of the transient and, if not performed, 
would contribute to plant condition degradation. These are similar to or are the same as human 
actions represented in PRAs. Performance of each key mitigation activity was obtained from the 
operator input logs of the simulator following completion of the scenarios.  

2.2.5 Analyses Conducted 

A number of analyses were conducted on the data collected in this research. These analyses 
represent different, but related areas of interest important to HRA modeling of human 
performance. Each analysis is presented below. 

2.2.5.1 Question 1: Are PSFs predictive of important aspects of operator performance? 

The data were analyzed using multiple regression and correlation techniques to determine the 
extent to which the PSFs correlate with and are predictive of crew performance on measures of 
objective performance. In these analyses, the independent measures were the operators’ 
ratings of PSFs, and the dependent measure was the amount of time each crew used to 
mitigate the simulated transient. The time measure reflects the window from the initiation of the 
transient to the time at which crews performed the mitigation activity. The linear multiple 
regression model used to assess the effects of PSFs on transient mitigation can be summarized 
as: 

nnxbxbxbaY ++++= L2211  (Eq. 12) 

where Y represents the time taken by a crew to mitigate the transient, a is the constant of the 
linear model (i.e., the intercept), x1 through xn  refer to the discrete value of a particular PSF,  
through b  represent the weight or contribution a particular PSF makes in predicting the time 
taken to mitigate the transient. n, in this case, is represented by the seventh PSF. Three 
analyses were made of the PSF regression model data. The first analyses are of the strength of 
model predictions as a function of whether the models assessed between PSFs and 
performance are made at an aggregated level (i.e., pooling data from several scenarios or plant 
settings) or at an non-aggregated level (i.e., at the level of the individual scenario or plant 
setting). For these model evaluations, data were used from all plant settings and from all the 
scenarios that were employed in those settings.  

b1

n

Table 1 shows the values of multiple regression models constructed using data collected in the 
different plants for all scenarios. At the highest level of aggregation (i.e., two plants, all 
scenarios), the multiple regression of PSFs on operator and crew performance is 0.41, showing 
that a relationship exists between the PSFs and operator performance. Note, however, that 
multiple regressions at the individual plant level reveal consistently higher results than when 
aggregated across plants or even across scenarios in general.  

In both conventional plants, the predictive strength of the PSF models (measured through the 
magnitude of the multiple regression coefficient) becomes progressively stronger as they 
approach the individual scenario level. This shows that PSFs become more predictive of 
performance when analyzed in a specific context. It also suggests that the strength of 
generalizations about PSFs beyond the original contexts in which they were collected may not 
be robust. Returning to the question posed at the outset of this section, we may conclude that 
PSFs are predictive of aspects of operator performance. A couple of notable points attend this 
conclusion: (1) Inferences appear to be stronger when made about the specific contexts that are 
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present during data collection and (2) Generalizations beyond these contexts may not be 
warranted. 

These conclusions are intended to be illustrative of the methodology for analyzing the PSF data 
suggested here. Any conclusions are not yet robust, especially owing to the limited sample 
sizes used in constructing these models. Green [1991] discusses issues associated with the 
ratio of the number of cases to independent variables included in linear regression models. A 
general rule of thumb of N≥50 + 8k (where k is the number of independent variables used in the 
linear regression model) is recommended for testing multiple correlation models. In these 
studies, limited access to operational staff precluded collecting data sufficient to support the full 
use of inferential statistics, or generalizations of these results beyond the purposes of 
demonstrating trends in the strength of relationships among PSFs and performance described 
here. Yet, some important trends are noted in the results of these model applications, and the 
general methodology may hold some promise for developing human reliability models that are 
contextually anchored. 

Table 1 Table of Multiple Regression Results Using Data Collected From Different Plants and 
Scenarios. 

Regression Model Multiple R Degrees of Freedom 
(k, n-k-1) 

Two Plants, All Scenarios* 0.41 7, 65 
Conventional Plant 1   

All Scenarios 0.66 7, 33 
LOFW 0.94 7, 6 
SGOF 0.51 7, 5 
SGTR 0.86 7, 6 

Conventional Plant 2   
All Scenarios 0.40 7, 48 

LOFW 0.71 7, 16 
SGOF 0.84 7, 16 
LOCA 0.60 7, 16 

Advanced Plant   
All Scenarios 0.34 7, 24 

LOFW 0.40 7, 4 
SGOF **  
SGTR 0.75 7, 3 

*k=number of PSFs in the model (7 in all cases); n=sample size 

**Statistics for this model could not be computed owing to missing data from one crew 
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2.2.5.2 Question 2: Can these data be used to distinguish important PSFs from less 
important factors in contexts of interest?  

The second set of analyses compare the model Beta weights of PSFs between plant settings 
and scenarios to assess the similarities and differences in model coefficients and contributions 
of these variables in predicting performance. Table 2 shows the Beta weights of the regression 
model using the PSFs as predictors of operator and crew performance. Referring back to 
Equation 12, the model weights (i.e., the b1…bn in the equation) are standardized with a mean 
of 0 and range. Since the model weights are standardized, values will fall in the range 
−1.00 ≤ βweight ≤1.00. The absolute value of the weight of the model coefficient, |βweight |, 
indicates the relative strength of the weight of the coefficient. Values closer to 1.00 represent a 
stronger contribution of the PSF than values closer to 0. The Beta weights in the scenario-
specific models range from nearly 0 (a PSF having a negligible effect on performance) to 0.92 
(a PSF exerting a strong effect on performance). 

Table 2  Beta Weights of PSFs from Regression Models. 
 SGTR LOFW SGOF 
PSF Advanced 

Plant 
Plant 1 Advanced 

Plant 
Plant 1 Advanced 

Plant* 
Plant 1 

Procedures 0.1420 0.4658 0.1708 0.7689  
-

0.1052

HMI -0.4274 -0.2785 -0.2498 0.9211  
-

0.2798

Training 0.4792 -0.1295 -0.1126 -0.5869  
-

0.2705
Information Available -0.2488 -0.2826 0.4553 0.2540  0.2300
System Feedback -0.0949 -0.4303 0.0038 -0.6758  0.7597
Workload 0.0887 0.2472 -0.3057 -0.1038  0.1522

Stress 0.2207 -0.3268 0.1225 0.4005  
-

0.1186
*Statistics for this model could not be computed owing to missing data from one crew 

 
The sign of the βweight , whether positive or negative, indicates the kind of effect the PSF has on 
performance. Since these models were used to predict the time at which a critical mitigation 
task was performed during a scenario, values of coefficients that are positive indicate that the 
PSFs exerted an effect that would result in the crew taking longer to perform the mitigation 
action. Conversely, a negative βweight  indicates that the PSF tends to reduce the amount of time 
taken to perform the important mitigation action. This is because the variable predicted by the 
multiple regression (with the βweight ) is time to perform the critical mitigation action. Positive 
values of a βweight  indicate a PSF that adds to the time to complete the action – a negative 
βweight  sign indicates that the PSF leads to reduced time to perform the action. The magnitude of 
the multiple correlation coefficient, together with information about βweight  can in this way be 
used to draw insights about the strength and nature of the relationship between PSFs and crew 
performance. In the case of the βweight  analyses, these results show a method for discriminating 
the magnitude and direction (i.e, whether positive or negative) of a set of PSFs effects on 
operator and crew performance. 
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Figure 5 provides a graphical summary of some of the data in Table 2. Data in Figure 5 are 
taken from two reference case scenarios (the steam generator tube rupture and total loss of 
feedwater scenarios), from one conventional, and from one advanced plant setting. Figure 5 
reveals several insights about the nature of the relationships between the PSFs and 
performance. Procedures added to crew response time in both scenarios and plants. This is 
observable as positive βweight  loadings in Table 2. This could be reflective of the time burden 
that accompanies systematic use of procedures by crews through process and function 
monitoring, immediate action verification, and subsequent step-by-step activities, even for very 
well-known events with clear event signatures – a potentially time-consuming process. It could 
also be indicative of crew interaction activities necessitated by procedure, such as 
communication, coordination, prioritization, goal setting, and others that, while not directly 
contributing to mitigation, are needed to develop goals, situational awareness, and workload 
management in order to balance the many competing demands that are required during 
mitigation and stabilization activities. Group processes are an integral part of control room 
activities, especially those involving task execution and coordination among control room 
personnel, though they may add to the time burden crews experience.  

In contrast, information from control room systems and other plant sources was available and 
easily understood by operators and, as a result, this PSF had a positive influence on crew 
performance in the steam generator tube rupture scenarios. This is likely due to the saliency 
and obviousness of cues and symptoms that are available to operating crews in a SGTR event: 
the event signatures, as run in these studies, were apparent and unambiguous, as were the 
indications of which steam generator was faulted. Control actions were fairly straightforward in 
the early stages of response, though they became more complex during the progression of the 
event. In contrast, the initiating event leading up to the sustained loss of feedwater was perhaps 
more cognitively complex, owing to a simulated common-cause failure of the lubricating oil 
pumps, which supply main feedwater pumps with lubricating oil, due to a small leakage (20 
kg/s) in the feedwater system. Out-of-service backup equipment and intermittent electrical 
failures due to the water leakage created an ambiguous picture of the availability and status of 
feedwater and auxiliary feedwater pumps to crews during transient mitigation. Furthermore, 
crews faced a situation near the end of the transient (as it was run in the simulator studies) in 
which they had to re-commission a dry steam generator with little procedural guidance. This 
may be one reason for the positive βweight  loadings for the Information Available PSF in the loss-
of-feed-water scenario in Figure 1 – the positive βweight  loading reflecting a negative impact of 
the PSF (i.e., one that added to their time to complete the mitigation action).  
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Figure 5  Beta Weights of PSFs in Conventional and Advanced Plant Settings. 

The HMI in the loss-of-feed-water scenario in the conventional plant exhibited the greatest 
negative impact on operator performance of any PSF shown here. This is shown in Figure 5 as 
a positive loading of the βweight  for this PSF. In the view of the crews and as borne out through 
these analyses, the HMI aspects of the control room during this scenario detracted from their 
timely completion of control room mitigation activities. As discussed, the complications that 
stemmed from the ambiguity of the initiating event, equipment response, and vagueness 
regarding placing a steam generator back into service may have contributed to this,  

These findings may account for the emergence of stress as a negative PSF in the loss-of-feed-
water scenarios (as shown by the positive βweight  loading for the Stress PSF in the loss-of-feed-
water scenario). When considered together, procedures, the human-machine interface, and 
information available interfered with crew mitigation in some ways. Collectively, such impacts 
may have led to conditions of stress that began to interfere with work and task completion.  

Workload had a minor effect on crew performance across scenarios and plant settings, as 
shown by the relatively small βweight  loadings of this PSF. Clear differences in the direction of the 
βweight  of this PSF is observed: in the SGTR scenario, workload added to the mitigation time of 
crews, whereas in the LOFW scenario, it tended to reduce mitigation time. Workload, thus, had 
a slightly negative effect in the SGTR scenarios and a slightly positive effect in the LOFW event. 
Performance by the reactor operator (RO) and balance of plant (BOP) operator in the SGTR 
scenario are more tightly coupled and require greater coordination and interaction than in the 
LOFW scenarios which may have contributed, to the slightly negative workload effect. Perhaps 
more important than a perception of differences on workload between the two events is the 
observation that workload appears to have exhibited a relatively small influence on crew 
performance overall. This is not to say that workload was not relatively high, or that crews did 
not work under conditions of sustained workload during transient mitigation; rather, this 
indicates that the effects of workload would not appear, from these analyses, to have unduly 
influenced performance in a negative manner. Crews were successful in mitigating these 
transients, and so it is apparent that workload did not exceed crew capabilities or capacities.  

Figure 6 shows the variation of Beta weights of the same PSFs across three scenarios from a 
different plant than those of Figure 5. These weights were produced from the analyses of plant 
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data from a single U.S. plant. The PSFs demonstrated predictive strength with regard to 
operator performance (i.e., transient mitigation time) and, similar to the results illustrated in 
Figure 5, demonstrate marked variability and individual predictive strength across contexts (i.e., 
scenarios) 

Inspection of Figure 6 reveals several insights about the relationships between the PSFs and 
performance. In this plant setting, procedures also tended to add to crew response time in the 
same two scenarios as in Figure 5. Similarly, the HMI was perceived as mostly hindering 
performance in the total loss of feed water scenario in this conventional plant setting – similar to 
the same perception in the same scenario in the other referent conventional plant setting. 
Conversely, feedback from the system was perceived in both plant settings as mostly aiding 
control room activities. 

 

 
Figure 6  Beta Weights of Performance Shaping Factors. 

Based upon these analyses, it seems possible to distinguish important performance-shaping 
factors from less important factors in contexts of interest to PRA and HRA. As the preceding 
discussion illustrates, the PSFs showed meaningful variation in simulated accident contexts, as 
evidenced by differences in both magnitude and direction (i.e., either positive or negative) of the 
βweight  of the PSFs that were included in these assessments. However, we have not attempted 
to define or suggest a criterion for what constitutes “important” as regards a PSF. Ultimately, a 
measure of sensitivity in the dependent variable and the variation produced in it by the individual 
PSF could be advanced to establish a context-specific measure of PSF importance. The βweight  
of all PSFs provide a suitable starting point for comparing and contrasting differences in 
contributions from the PSFs. 

2.2.5.3 Question 3: Can these data be used to relate the PSF influence to a general 
model of operator performance? 

The analysis of Beta weights permits a general comparison of the effects of model parameters – 
PSFs – on performance. Through standardization, they are no longer in the same units as the 
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dependent measure when originally collected. To make predictions of performance under 
different hypothesized conditions (i.e., sensitivity analyses) requires non-standardized 
regression models. The b-weights of these models (as distinct from the Beta weights of the 
standardized regression model) are in the same units of measure as the original dependent 
measure and can be used to estimate predicted values of performance, using different input for 
model parameters. In the case of Human Reliability Analysis, it may be reasonable to question 
how response time (the measure employed in this study) could differ where conditions of the 
PSFs also differ. For example, just how much of a difference in performance may the quality of 
procedures create? Many HRAs employ a nominal value for most PSFs that represents the 
expected condition of PSFs in a specific plant. In most cases, the nominal value represents an 
assumption that procedures are well-prepared, that personnel are well-trained to employ them, 
and that they are technically well-suited for conditions to which they may be applied. As the 
results from the previous section show, operating crews may experience procedures differently 
than as assumed by the HRA. The resulting implication is that procedures, for example, do not 
facilitate performance in the manner or to the degree that we believe in all instances.  

Previous research on the risk sensitivity to human error has employed an approach involving 
sensitivity analysis [Wong et al., 1990]. In these studies, the PSFs were set to nominal, optimal, 
and worst-case conditions allowed by the HRA method employed in the PRA. The effect of 
variations in PSFs on HEPs and the resulting risk metric showed a clear functional response 
and sensitivity to PSFs as HRA model parameters. A difference between the sensitivity 
analyses performed here and those in the reported studies relates to the use of empirical rather 
than analytical model data.  

Multiple regressions were performed on data from one of the conventional plants (i.e., the U.S. 
plant) using PSF data as independent variables and time to complete critical mitigation tasks as 
the dependent measure. The b-weights of the multiple regression models for three scenarios 
using the PSFs are presented in Table 3.  

Table 3 b-weights of PSFs from a U.S. plant. 
 LOCA LOFW SGOF 

Procedures 0.74 1.0 1.27 
HMI 0.64 0.56 -2.85 
Training -6.13 -1.1 -2.32 
Available Information 1.47 -0.51 4.29 
System Feedback 0.68 0.47 -2.42 
Workload 1.52 -0.56 -1.96 
Stress -2.66 1.65 1.71 

 
Using the b-weights from Table 3, three sets of sensitivity calculations were performed using the 
PSFs and the time used to mitigate each transient. The purpose of the sensitivity calculations is 
to demonstrate incremental changes in the predicted time taken to mitigate the operational 
transients that might occur were the quality of the PSFs to change. Here, the quality of the PSF 
is represented by the numeric value of the scale used to assess their perceived influence. Since 
the correlations between the multiple regression model and crew performance (and, hence 
predictive ability) between the PSFs and the time taken to mitigate the transients are greatest at 
the scenario-specific level, the sensitivity calculations were conducted on a scenario-specific 
basis. Two sensitivity calculations were performed for each scenario. The first includes the case 
where PSFs are set to their most optimal (a value of 5 on the original scale); the second 
represents the case in which PSFs are assumed at their worst (i.e., a value of 1 on the scale). 
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The output from the regression model is a prediction of the expected time taken to mitigate the 
transient. The results of these calculations are presented in Table 4. 

Table 4 Sensitivity Calculations of Transient Mitigation time Using Scenario-Specific Model 
Parameters. 
Sensitivity Scenario Predicted Time ( ) ˆ Y 
PSFs =5 LOCA 1.8 minutes 
PSFs=1 LOCA 16.8 minutes 
PSFs =5 LOFW < 1 minutes 
PSFs=1 LOFW 16.5 minutes 
PSFs =5 SGOF 1.6 minutes 
PSFs=1 SGOF 10.8 minutes 

 
For the loss of feed water scenario, the regression equation predicts that, given optimal PSFs, 
the time taken to mitigate the transient may be less than one minute. For the same transient, 
assuming the worst-case conditions addressed by the model, the predicted time taken to 
mitigate the transient may be 16.5 minutes. This reflects an increase in the expected time taken 
to mitigate the transient by at least a factor of 16.  

Several important observations are motivated by these results. The b-weight regression model 
illustrates the effect size of the PSFs in the individual scenarios studied. One result of this model 
development is a scenario-specific set of PSF weights that can be used to estimate sensitivity of 
an HRA parameter of interest (i.e., transient mitigation time). Moreover, the regression approach 
provides a model by which the individual PSFs can be aggregated that accounts for their 
individual influences and avoids the problem of ‘double counting’ (i.e., treating each PSF’s 
influence as independent and equal to those of other PSFs in the estimation of human 
performance reliability). In the case of the particular plant from which data were collected, the 
sensitivity analysis predicts an operator response range or ‘time window’ that is within the time 
allowed for operator performance to prevent further system degradation. 

Similarly, for the small break loss of coolant accident, the predicted time to mitigate the transient 
under optimal conditions is less than 2 minutes. Assuming worst-case PSF model conditions, 
the time to mitigate the same transient is predicted at nearly 17 minutes. This reflects an 
increase in the expected mitigation time by a factor of 9. The sensitivity calculation for the steam 
generator overfill scenario indicates that the predicted time to mitigate the transient assuming 
optimal PSFs is approximately 1.6 minutes. The corresponding time to mitigate the transient 
under poor performance conditions is approximately 10.8 minutes, an increase in the expected 
mitigation time by a factor of 6. This still provides operators with sufficient time to prevent water 
from entering the steam lines given that the performances of crews who participated in these 
studies are representative of other crews.  

Referring to the original question of this section, it is possible to relate PSFs through a general 
model of operator performance (i.e., a quantitative model) to predict operator performance. This 
model is limited to the purpose for which it was originally designed – to illustrate numerical 
sensitivity of operator performance to PSF parameters. Many types of models could be desired. 
For example, some HRA methods include causal models of operator behavior that account for 
such factors as short-term memory, attention, biases in judgment and decision making, etc. The 
model demonstrated here is not “causal” in nature and is reflective of performance in the limited 
environment from which data were obtained. Nevertheless, predictive validity of the model for 
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specific applications (i.e., predicting response time) may be good and support specific 
applications. 

2.2.5.4  Question 4: Can these data be used to identify and characterize systematic 
interactions of PSFs in PRA-relevant scenarios? 

A further question addressed in this research concerns whether systematic relationships exist 
among the PSFs that may also reflect underlying processes. Identification of underlying 
processes and characterizing them would represent an advance in our ability to treat PSFs as 
interdependent and dynamic – not static or deterministic model parameters. Factor analysis is a 
statistical analysis procedure that has been used by researchers to analyze patterns of 
relationships among individual variables to produce a smaller set of ‘factors’ that summarize the 
unique relationships among the variables and are capable of serving as composite measures of 
the variables. In the case of the analysis performed using PSF data, the goal was to ascertain 
whether relationships among factors exist and are reducible to a stable set of factors through 
which their effects can be uniquely expressed on operator and crew performance. Thus, rather 
than assessing the seven PSFs separately and treating their influences as independent of one 
another (an approach that is already contentious), factor analysis may be used to identify a 
factor structure employing fewer PSFs that are tractable, predictive, and easier or more efficient 
to assess during analysis than the original factor set.  

A further goal of these analyses concerned the extent to which factor structures may replicate 
across plant settings. Replication is an important aspect of scientific research, and its value in 
the present study concerns the stability of factor structures across scenarios and plants. In 
performing these analyses, a distinction is drawn between these analyses and those previously 
reported in this paper. The goal of analyses using PSFs as model parameters is to evaluate 
their suitability in predicting operator performance, the sensitivity of performance to a predictor 
set of PSFs, and for assessing the relative contributions of these PSFs to operator and crew 
performance. The goal of these factor analyses is to identify systematic relationships that exist 
among PSFs, to evaluate the extent to which the variability in PSFs can be explained through 
an emergent factor structure, and to assess the stability of these relationships across settings.  

Factor analysis is typically conducted to either test theory or to identify relationships. In the case 
of theory testing, an expected factor solution would typically be hypothesized prior to factor 
extraction, and analyses would be conducted to confirm or inform us about the suitability of the 
hypotheses. The analyses performed here, like those previously employing regression models 
to predict performance, are exploratory in nature and are intended to illustrate a candidate 
methodology to identify relationships among PSFs. Similar concerns exist relating to the size of 
the sample and the reliability of correlation results. This extends to procedures, such as factor 
analysis, that are based on correlations among variables. Comrey and Lee [1992] recommend 
having 300 cases or more for factor analysis. This is especially important when the results of 
analyses are intended for use in measuring psychological attributes and for making decisions 
about clinical placement or medical treatment (e.g., selecting candidates for employment in 
sensitive positions, treatment for a medical or psychological condition, etc.). The current 
analyses were performed and are reported for purposes of demonstrating approaches to 
improving the prediction of operator performance to support human reliability analysis. While 
they may exhibit less potential to affect decisions of a personal or medical nature, the guidance 
of Comrey and Lee should be considered and the results of these analyses interpreted with 
caution. 
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The PSF ratings obtained from crews were analyzed using factor analysis.1 A goal of factor 
analysis is to obtain variables that load on (i.e., correlate with) a single factor and that make 
sense (i.e., assist in explaining causal relationships among variables). Factor analysis aims to 
reproduce the original correlation matrix among variables with a smaller set of orthogonal 
factors, based on analyses of covariance between variables (i.e., their communality). A factor is 
interpreted from the variables that have high loadings on it. In this way, factors are emergent 
from the correlation structure (i.e., in exploratory types of analysis such as this). Table 5 shows 
the results of factor analyses of the PSF ratings. The first column of the table lists the PSFs that 
were analyzed. The second column of the table (i.e., under Plant 1, Factor 1 heading) displays 
the correlations (loadings) between each PSF in turn and the first factor extracted by factor 
analysis. The third column (i.e., Plant 1, Factor 2) shows loadings of individual PSFs in turn and 
the second factor that was extracted, etc. Significant factor loadings are bolded in Table 5. 

Table 5 Factors and Factor Loadings of PSFs. 
 Plant 1 Plant 2  (Advanced) Plant 3 

PSF 
Factor 
1 

Factor 
2 

Factor 
1 

Factor 
2 

Factor 
3 

Factor 
1 

Factor 
2 

Factor 
3 

Procedures 0.5685 0.2175 0.7885 -0.342 
-
0.0496 0.8799 0.1639 0.0972 

HMI 0.7096 0.1187 -0.266 
-
0.0538 0.7785 0.6079 

-
0.3686 0.1341 

Training 0.6662 0.3189 0.8545 0.1299 0.0936 0.5922 
-
0.3378 

-
0.4733 

Information 
Available 0.6793 

-
0.1164 0.4109 

-
0.0192 0.6583 

-
0.2828 0.8521 

-
0.1972 

System 
Feedback 0.7642 0.1193 0.3772 0.216 0.4431 0.0586 0.9109 

-
0.0177 

Workload 
-
0.1484 

-
0.7816 

-
0.2737 0.8733 

-
0.0508 0.1005 0.0064 0.8089 

Stress 
-
0.1703 

-
0.8385 0.3339 0.7865 -0.193 0.0165 

-
0.4188 0.7336 

Variance 
Explained 0.34 0.22 *0.61 0.30 0.21 0.21 

* This value represents the total variance accounted for by all three factors extracted. 

Figure 7 shows the factor loadings of the PSFs on the two factors extracted in plant 1 ( a 
conventional U.S. plant). The figure shows two distinct factors. The first factor relates to the 
systems and work processes in the workplace that have been designed to assist operating 
crews in accomplishing their work. These include procedures, the human-machine interface, 
training, the information available to operating crews, and system feedback. A second factor 
that is comprised of workload and stress was also extracted. This factor may represent the 
perceived demand that the scenarios placed on crew members. The directional relationship 

                                                 
1 This involves analysis of the inter-PSF correlations to extract factors.  Following extraction of the factors, additional procedures 
were performed to maximize the variance accounted for by each factor, to reduce shared variance among factors, and to 
maximize the individual correlations between the variables in the analysis (the PSFs) and the resulting factors.  Factor rotation 
was performed to maximize high correlations or factor loadings between individual items and each factor, and to minimize low 
correlations.  This factor rotation technique, varimax rotation, also maximizes variance accounted for by individual factors, and 
produces factors, after rotation, that are orthogonal to one another [see Tabichnick and Fidell, 2001]. This aids in interpretation 
since the variance that each factor accounts for in the variable set is unique, and shared variance is avoided.  It also means that the 
unique solution of factors that is obtained in each factor analysis is additive in its explanation of the total variance accounted for 
in the variable set.  A factor loading of each variable on each factor (a correlation actually) is produced that assists in explaining 
the factors that emerge from the variable structure.  
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between these factors is also apparent from the factor loadings. In both factor structures, 
operators’ higher ratings of PSFs that support performance (e.g., Procedures, HMI, etc.) are 
accompanied by lower ratings of PSFs that load on the demand factor, and vice versa. 

The factors extracted and factor loadings from Plant 2 are shown graphically in Figure 8. 
Factors in Plant 2 (a conventional non-U.S. plant) show greater specificity in the factor loadings 
than in Plant 1. Differentiation of a third factor in Plant 2 shows a slightly different, though 
conceptually compatible, factor structure than extracted from the PSF data from Plant 1. The 
first factor extracted is composed of procedures and training. This factor probably represents 
preparedness – that is, how well-suited procedures and training were to the demands of the 
scenarios in enabling operators to effectively mitigate the event. A second factor was extracted 
that probably represents the human-system interfaces and elements – that is how well the 
instrumentation, control, layout, information available, and system feedback to the operating 
crew supported their mitigation and control activities. A third factor was extracted that 
represents the demand of the transients on crew performance. This factor is identical to that 
extracted in Plant 1.  

Figure 9 shows the factors and factor loadings of PSFs in Plant 3. Similar to plant 2, three 
factors were extracted in this plant. Two differences are observed between the factor structures 
in plant 3 and the others. The first factor extracted relates to procedures and training. This factor 
includes not only how well-prepared the crews were to manage the event through the design of 
procedures and its training program, but also the quality of instrumentation and control-room 
layout that supported their efforts in achieving and executing control activities. The second 
factor is comprised of the information available and the quality of system feedback. Together 
these represent the systems that provide support to cognitive information processing activities, 
such as detection, information gathering, monitoring, diagnosis, etc. A third factor, similar to the 
demand factor noted in the other plant settings, was also extracted from this data.  

 
Figure 7  Factors and Factor Loadings of PSFs from Plant 1. 
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Figure 8  Factors and Factor Loadings of PSFs from Plant 2. 

 
Figure 9  Factors and Factor Loadings from Plant 3. 

Some similarities in factors and factor loadings are observed in these results, as well as some 
differences. In all plants, workload and stress were extracted as a single factor termed demand 
for the mental and physical loads they place on operating crew members. This demand factor 
always had the same unique solution; these two variables loaded on this factor and not on other 
factors. The implication of this factor is clear; crews experience workload and stress as a 
collective influence on their capacities and abilities that typically functions as a complement set 
to the other PSFs which are designed to support operator performance. As discussed, operating 
crews in these studies were exposed to long duration (i.e., 1-2 hrs.) design-basis events that 
included realistic role-playing of ex-control room and off-site personnel activities. They 
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performed during conditions of high workload transition following the initiating event, and 
sustained workload thereafter as they restored and stabilized plant conditions. Workload and 
stress were experienced by operating crews in a similar manner that is evidenced by PSF 
correlations and relatively stable factor extractions across different plants.  

Differences were observed in the other factors extracted across plants. In the case of the first 
plant, the remaining five PSFs (after accounting for workload and stress) comprised a single 
factor, with similarly high factor loadings. In the second plant, operators discriminated between 
the effects of PSFs in supporting their preparedness to manage the challenges of the scenario, 
and the instrumentation and ergonomics aspects of process control. In the third plant setting, 
procedures, training, and the HMI were viewed as more related to one another in how they 
supported crew activities. The more information-related aspects of the human-system interface 
were perceived distinctly and separately from these other two factors. Some of the differences 
observed in factors that were extracted may relate to subtle plant differences – especially in the 
case of differences observed between plants 1 and 3, which involved operating crews from the 
same plant performing in their own simulated control room and in an advanced control room 
simulator, which had greater automation and passive system functions. The differences may 
also relate to subtle variances in the way that the scenarios played out in different settings, 
given the small differences that were present in the timing and thermal-hydraulic response of 
the simulated plants. Given the relatively small sample sizes employed and the limited number 
of scenarios that were involved in the studies, too much significance should not be attached to 
small variations in factor composition, especially given the similarities, overall, in factor 
structures across plant settings.  

A final purpose of the factor analyses was to ascertain whether the factors extracted account for 
an appreciable amount of covariance among the PSFs – that is, their correlations. The last row 
of Table 5 displays the amount of variance accounted for in the PSFs by the individual factors. 
In the case of the first plant, 56% of variability in the data is accounted for by the two factors, the 
rest being residual or unexplained variance. In the second plant, the factor structures accounted 
for 61% of variability, and in the third plant, 72% of the variability is accounted for by the factor 
structures. Collectively, we can say that the majority of covariance among PSFs is accounted 
for by the emergent factors that we have discussed here. The factor analysis results thus 
illustrate meaningful interactions among PSFs, some stability and predictability in the kinds of 
factors that emerge, and a potentially more tractable and systematic way of combining individual 
PSFs to account for their influence on operator performance.  

2.2.6 Summary 

This study demonstrates a methodology for collection and application of human performance 
data from simulator settings and has discussed some of its potential uses to support human 
performance modeling and HRA method development or improvement. The data from such 
studies are potentially valuable but require careful treatment to advance their use in HRA. 
Attempts to fit data to broad classes of reliability model-type curves without regard to the 
performance determinants (i.e., PSFs and context) was a factor that eventually led to the disuse 
of some time-reliability HRA methods. The data from this study were employed to better 
understand the factors that influence operator behavior in PRA-relevant contexts and to relate 
them to meaningful, objective measures of operator performance. Results from this study 
indicate that PSFs and context are inter-dependent; the extent to which a particular PSF or 
latent factor influences operator behavior is dependent on and conditional upon the particular 
context. These results also argue for the use of formalisms that account for the multivariate 
nature of context when using data from such complex performance domains for estimating the 
reliability of specific human actions.  
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The study also identified a means of addressing specific questions that are important to 
understanding and predicting human performance and its determinants in contexts of interest to 
PRA. Recasting the questions posed earlier in light of the findings, we summarize some of the 
important insights. 

1. Performance-Shaping Factors appear to be predictive of some important aspects of operator 
performance. 

The high multiple correlation coefficients obtained by using the PSF data as a predictor of crew 
response time to take important mitigation actions showed a consistently high degree of 
explanatory power. In most behavioral science studies, to be able to account for 25% of human 
performance variability in dependent measures is considered strong evidentiary support for a 
predictive relationship between the independent and dependent measures. In these studies, the 
majority of crew variability was accounted for by the predicted relationships between PSFs and 
operator performance in most of the scenarios. This means that the majority of crew variability 
in mitigating the transients was accounted for by the combination of PSFs measured in these 
studies. Given the many other sources of individual and crew variability that one can imagine, 
this is significant and seems to confirm what human reliability analysts have hypothesized for 
some time, that PSFs are predictive of human performance and, thus, human reliability in PRA 
contexts.  

2. The importance of individual PSFs varies across contexts. 

Considering the Beta weights of individual PSFs, a good deal of variability in the importance of 
individual PSFs was observed across scenarios and across plants. This was evidenced in the 
value and sign of the Beta weight of PSFs. Some PSFs seemed to add to the time crews took to 
mitigate transients, while the same PSFs appear to have facilitated the timely completion of 
mitigation actions in others. In addition, there was marked variability in both the sign and value 
of individuals across and within individual scenarios. Post-scenario analyses and crew 
debriefings seem to bear out this point and provide specific reasons for the finding. However, 
this would seem to argue for the need to conduct scenario-specific assessments of performance 
shaping factors and the need to ascertain realistic information from subject matter experts about 
the effects of PSFs rather than using static look-up tables and expert judgment without the 
benefit of operational insight. This issue has been much debated within the HRA community, 
and data from this study would argue for context-sensitive assessments of PSFs, as well as for 
a thorough description of the many variations of PRA scenarios as they produce differing 
performance contexts for operating crews. That is to say that steam generator tube rupture and 
other PRA-relevant event sequences can have different initiating events, vary in terms of their 
severity, complexity, and other factors known to produce stress and affect the way crews use 
human and plant resources. Such differences may provide evidence as PSFs and contextual 
factors, and their characterization in PRA should be thorough and accurately reflect the nature 
of their influence on crews. 

3. A general model of operator performance can be derived that accounts for the influence of PSFs 
and operator performance. 

The analysis of individual PSF impact on operator performance was able to account for 
important aspects of crew variability in performing critical mitigation actions. Moreover, the linear 
model employed showed sensitivity to differences in PSF strength and magnitude (i.e., 
facilitating or impeding performance) across transients. As a consequence, we can say that the 
general model was able to distinguish between the relative importance of PSFs and the kinds of 
effects they have on performance, in general. The results prompt an investigation of what 
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specific features influenced operator performance and why. In some scenarios, for example, 
procedures were viewed by crews as facilitating their mitigation of the event. But we don’t know, 
from this data, which aspects of procedures and their use were important to crews. Similarly, the 
data do not provide insights into what conditions lead procedures, in the view of crews, to 
impede performance in performing a specific mitigation activity. Such data would not be difficult 
to obtain in studies such as these, but they were not a part of the scope of this research. 
Nonetheless, the human reliability and PRA communities have debated the utility of employing 
the “HEP cum PSF” approach to human reliability estimation – either because empirical 
evidence is lacking about the influence of PSFs in PRA-relevant contexts, or because of 
observed variability in HRA outcomes using such approaches. The present research is intended 
to provide an illustration of methods that may be helpful in reducing uncertainty about employing 
PSFs and how to gather data on their influence on operator behavior in PRA relevant contexts. 

4. The data obtained in these studies do show that some systematic interactions occur among PSFs in 
the simulated PRA contexts.  

An important aspect of model development and model validation is to understand the 
relationships between model parameters – especially systematic interactions. These analyses 
showed a number of systematic interactions among the PSFs across operational contexts. 
Firstly, stress and workload demonstrated strong inter-PSF correlation and common factor 
loadings across all of the simulated contexts. This degree of predictability and replication of the 
underlying construct demonstrates stability of the measurement and some generalizability of the 
methodology to assess PSF interactions. Beyond that, some of the PSFs tended to load 
together on factors across operational contexts. Procedures and training, for example, loaded 
on the same factor across contexts, as did information available (through the human system 
interface) and system feedback. Such predictability is desirable as it shows that the operators’ 
views of them are consistent, and provides some additional insight into patterns of emergent 
interactions among PSFs. This information may be valuable for ascertaining a minimum set of 
PSFs that may be operant in certain PRA-relevant contexts, as well as point out ways of 
reducing unnecessary factors for inclusion in HRA models. 

Most HRA methods in use today direct analysts to account for the effects of context, plant 
conditions, and performance-shaping factors that may influence the likelihood of human 
performance errors and unsafe acts. These methods each provide differing guidance on how to 
assess the influence of these factors and how to incorporate their influence in the final 
estimate(s) of human reliability. The uncertainties accompanying estimates of human reliability 
produced exert an effect on the overall uncertainty of results in PRAs. Better models of human 
performance and data are needed that are capable of predicting qualitatively accurate results 
(i.e., the kinds of human errors that should be included in PRAs, etc.) and producing quantitative 
estimates of human reliability that are sufficiently accurate while reducing or better 
characterizing their uncertainty.  

This study demonstrated a methodology for characterizing the relationship among a candidate 
set of PSFs and operator performance. Results of the research (considering the limited amount 
of data) show that the predictive strength of PSFs is best at the individual plant and scenario 
level. This demonstrates plant- as well as scenario-specific relationships between PSFs and 
operator performance. HRA practitioners routinely address the question of generalizing HEP 
estimates from one context to another (i.e., whether or not to use the results of analyses of 
human performance from one event sequence in another event sequence that is in some ways 
different). At the very least, these results would support a thorough reassessment of PSFs 
under qualitatively different performance conditions, especially when applying estimates from 
methods that do not distinguish between nominal failure rates and context.  
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The results also motivate a reconsideration of the way to best assess the influence of PSFs. As 
discussed earlier, the current prevailing hypothesis underlying some HRA methods is that fixed 
multipliers can account for the effects of a PSF in a range of situations. While this may be 
acceptable for purposes of screening some human actions, it is not reflective of these data nor 
of more recent advances in human reliability assessment (see Barriere et al., 2000 for a more 
thorough treatment of this issue). Although preliminary, these data argue against generalizing 
PSF effects across scenarios, plant settings, or plants.  

Several limitations in this study warrant recognition. Firstly, as previously discussed, the ratio of 
cases to independent variables in regression analyses and factor analyses did not meet the 
minimum that has been recommended in psychometric research. No intent is intended to imply 
a general model of performance for use as a PRA tool in these results. As importantly, all of the 
analyses have been performed using similar dependent performance measures – that of 
transient mitigation time. The time measure was selected as a single, objective outcome 
variable that is reflective of crew decision making, progress through the mitigation plan, etc. 
Time, as a measure, is also important from a thermal hydraulic standpoint because in all of 
these scenarios, plant conditions tend to worsen as time progresses, without operator action. 
While this is a useful measure and has good face validity for purposes of demonstrating a 
relationship between performance and PSFs, we must recognize that other aspects of 
performance may be at least equally important.  

The methods and results presented here are intended to demonstrate a means for better 
assessing the effects of PSFs for use in PRA, and for developing improvements in model 
parameters to reduce the uncertainty in HRA. They demonstrate the systematic variability in 
performance that can be accounted for through explicitly modeling the effects of contextual 
factors on performance, and indicate the types of systematic variation in model parameters that 
occur during simulated accident conditions. Approaches such as this, when included as a part of 
data collection for event sequence modeling in PRA, may be used to improve the identification 
of relevant contextual factors, assessing their effects and improving the accuracy of model 
parameters employed in HRA methods. Together with quantitative methods that can make use 
of different forms of evidence, such sources of empirical information can be used to improve the 
accuracy of estimated human failure events and the uncertainty associated with such events. 

To refine the methodology and results presented here, systematic efforts are needed to extend 
the amount of available data in hopes of determining whether these results and trends hold up 
under different conditions. For example, the NRC participates in the Halden Reactor Project 
research program and collaborates on research in human reliability already. Some attention 
may be given within that collaboration to continue this line of research to (1) determine to what 
extent PSFs are predictive of operator performance in different contexts; (2) extend and refine 
the methodologies for data collection, analysis, and human reliability model development; (3) 
explore modeling techniques such as structural equation modeling, latent variable methods (i.e., 
factor analysis) and others to gain insights into subtle and systematic interactions between 
contextual elements; and (4) increase the potential sources of data that can be included within 
HERA, thereby increasing its usefulness as a tool to support and improve human reliability 
analysis activities. Furthermore, additional attention needs to be given to how to use the 
quantitative results of such analysis to modify and improve existing HRA methods and 
quantification efforts. For example, can some sources of analyst judgment be reduced by 
benchmarking PSFs in different contexts to determine which may be most relevant and how 
much of an impact on performance reliability they have? How can these kinds of studies simplify 
approaches to human reliability assessment? Ultimately, the utility of this approach rests with 
the goals of improving the accuracy of predictions based upon more systematic use of 
information related to PSFs and context, reducing the uncertainty currently associated with 
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human reliability analysis, and providing a simplified process for assessing a relevant set of 
performance shaping factors that are predictive of human reliability in the performance 
domain(s) of interest. 

2.3 Bayesian Updating of PSF Effects and HRA Estimates 

Prepared by Sankaran Mahadevan 

2.3.1 Introduction 

This presentation develops the application of the Bayesian methodology to update HEP 
estimates and PSF statistics based on empirical data. The SPAR-H model [Gertman, et al., 
2005] is used for illustration, and sample information from the HERA database is used. The 
Bayesian analysis makes use of prior estimates on HEPs, human performance data, and PSF 
occurrence data to compute updated HEPs, and updated probability mass functions (PMFs) for 
the performance shaping factors. The methodology includes cases when data is available on 
PSF occurrences, as well as human error rates, the output state is either binomial or 
multinomial, correlation exists between trials, and correlations exist between PSFs. A numerical 
example is presented in which the eight PSFs in the SPAR-H model were updated using sample 
data from the HERA database, based on typical nuclear power plant incident reports.  

The Standardized Plant Analysis Risk – Human Reliability Analysis (SPAR-H) method 
developed by Idaho National Laboratory (INL) makes use of eight performance shaping factors 
(PSFs). These are treated as discrete variables, each having several possible multiplier values 
corresponding to different conditions. Thus, under normal conditions, the multiplier value for a 
given PSF will be equal to one, and under aggravating conditions, the multiplier will be greater 
than one. The HEP is computed as the product of a baseline HEP, p0, and the multiplier values 
for each PSF. 

Thus, the probability of human error is expressed as 

∏
=

=
8

1
0

i
iFpp
, (Eq.13) 

where p is the probability of a human error occurring given the performance conditions 
described by the eight PSFs, and the multiplier value of the ith PSF is represented by the 
variable Fi. Each of the multipliers Fi is a discrete variable with possible values {fi1, fi2,...fij} and 
corresponding probability mass function (PMF) pFi(fi). Limited knowledge of the actual shape of 
the PSF distributions has been combined with expert judgment to estimate the prior PMFs for 
each of the PSFs. The factors are listed in Table 6, along with the possible multiplier values for 
each, and the corresponding assumed prior PMFs.  
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Table 6  PSF multipliers and assumed prior probabilities. 
PSF Description Multiplier Prior PMF 

10 0.159 
1 0.683 

0.1 0.136 
F1 

Available Time 
Time available 

to complete task 
0.01 0.023 

1 0.841 
2 0.136 F2 

 Stress 
Stress level of 

operator 
5 0.023 
1 0.500 
2 0.341 F3 

Complexity 
Complexity of 

task 
5 0.159 

0.5 0.333 
1 0.333 F4 

Experience/Training 
Operator’s 

experience level 
3 0.333 
1 0.450 
5 0.300 
20 0.200 

F5 
Procedures 

Existence and 
clarity of 

documented 
procedures 50 0.050 

0.5 0.159 
1 0.683 
10 0.136 

F6 
Ergonomics 

Interaction 
between 

operator and 
equipment 50 0.023 

1 0.841 F7 
Fitness for Duty 

Mental and 
physical state 5 0.159 

0.5 0.159 
1 0.819 F8 

Work Processes 
Organizational 

factors 
5 0.023 

 
In Table 6, “available time” describes the extent to which the operator has ample time to perform 
the task. “Stress” is broadly defined to account for negative motivating forces influencing the 
worker, such as mental stress, excessive workload, or physical stress. “Complexity” refers to the 
relative difficulty of the task at hand. “Experience/Training” accounts for years of experience, 
whether or not the operator has been trained for the specific task, and the amount of time since 
training. “Procedures” describes whether or not appropriate documentation exists outlining the 
proposed task, and whether or not such documentation is clear and correct. “Ergonomics” refers 
to the quality and ease of use of the instrumentation as well as the interaction between the 
operator and the necessary equipment. “Fitness for Duty” can be both mental and physical, and 
it includes factors such as fatigue, sickness, drug use, and other personal problems. “Work 
Processes” refers to organizational factors such as the safety culture, communication, and 
management policies. For a more detailed description of the performance shaping factors, refer 
to [Swain and Guttmann, 1983]. 

Since the SPAR-H human error probability model is multiplicative, it is possible for certain 
combinations of PSFs to result in probabilities that are greater than one. Thus, the model makes 
use of a correction factor which is applied as follows: 

∏
∏

+−
=
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, (Eq. 14) 
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whenever three or more PSFs have multiplier values greater than one. Although not outlined in 
the SPAR-H model, it has been observed by the authors that the conditions for applying the 
correction factor did not cover all cases where probabilities greater than one could occur. For 
example, only two PSFs, F5 = 50 and F6 = 50 could result in a probability greater than one if all 
other PSFs take a value of 1 (with p0 = 0.001). Thus, for the analysis that follows, the correction 
factor will be applied whenever probabilities greater than one would result, or when three or 
more multipliers are greater than one. 

2.3.2 Proposed Methodology 

This subsection outlines the methodology for using Bayes’ theorem to update the PSF 
distributions (and hence the probability distribution for the HEPs predicted by the SPAR-H 
model) when human reliability data is available. Four cases are considered, and a numerical 
example for each case is provided for illustrating purposes, after presenting the methods. 

1. Empirical data gives the number of errors observed along with the number of 
opportunities. 

2. Data is also available on the frequency of occurrence of the performance shaping factors. 

3. Correlation is believed to exist between trial outcomes. 

4. Correlation is believed to exist among the occurrences of certain performance shaping 
factors. 

Case 1: Data Available on Binomial Outcome 

Consider that data is available which tells us that k errors were observed out of n trials. We can 
use Bayes’ theorem to obtain the posterior PMF of each performance factor as 

( ) ( ) ( )
( ) ( )∑∑ ∑

=

i j p
pjir fffPpnkP

fffPpnkP
nkfffP

,,,,|
,,,,|

,|,,, 821
821

KL

K
K

, (Eq. 15) 

where f1, f2, …, f8 are the particular multiplier values being updated; p is calculated from (Eq. 13) 
using the values f1, f2, …, f8; and pr is calculated from (Eq. 13) using the values fi, fj, …, fp.. The 
summation in the denominator is taken over all possible multiplier values for each of the eight 
PSFs. The first term in the numerator on the right hand side is the likelihood function, and the 
second is the prior PMF. Since the denominator term is a constant and the posterior PMFs can 
be normalized so that their sum is one (Eq. 15) can be reduced to 

( ) ( ) ( 821821 ,,,,|,|,,, fffPpnkPnkfffP KK ∝ ) . (Eq. 16) 

The marginal distributions for each factor can be computed by summing over all possible values 
for the other factors. 

If we assume that the trials are independent with constant error probability, then the number of 
human errors is a binomial random variable. The likelihood term is thus given by 

( ) ( ) knk pp
k
n
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= 1,| . (Eq. 17) 
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We can drop the  term when using (Eq. 16) since it becomes part of the normalizing 

constant in future calculations. In addition, if we assume that the PSFs are independent of each 
other, then we can use the product rule to write  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k
n

( ) ( )∏
=

=
8

1
821 ,,,

i
ifPfffP K

. (Eq. 18) 

With these simplifications, the posterior PMFs of the PSFs can be obtained as 

( ) ( ) ∏
=
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8
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knk fPppnkfffP K ( ) . (Eq. 19) 

Case 2: Data on both Input and Output 

Consider the case where, in addition to the human error data, we have data on the occurrences 
of the various performance conditions, or PSFs, such as in nuclear power plant incident reports. 
In that case, the HRA model can be updated in a two-step procedure, first using the data on the 
PSF occurrences, and then using the human error data, k and n.  

Let a particular factor (say stress, or available time) have l possible states with respective PMF 

values p1, p2, …, pl such that . Consider that under n opportunities, each state i 

occurred ki times, with . The probability of obtaining any ith state ki times is 

1
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i
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p
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ip  and the 

number of ways in which (k1 + k2 +...+ kl) opportunities can be divided into k1, k2,…, kl groups is 
( )1 2

1 2
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l
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. The logic behind this is that whenever we choose k1 groups out of n 

opportunities, there will be (n-k1) opportunities left to choose k2 from, (n - k1 - k2) opportunities 
left to choose k3 from, and so on. Thus the likelihood of observing the data, or the joint 
distribution of k1, k2,…, kl can be derived as 
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. (Eq. 20) 

The above expression is also the well-known multinomial distribution [see, for example, 
Johnson, et al., 1997]. If the subjective prior joint PDF of probability masses f(p1, p2, …, pl) is 
known, one can use the likelihood function to obtain the posterior joint PDF, f(p1, p2, …, pl

 | k1, 
k2,…, kl).  

Further, the choice of a suitable conjugate prior will yield a posterior density of the same form as 
the prior. This eliminates the computation of complicated integrations needed during Bayesian 
updating [Jeffreys, 1961]. When the likelihood is multinomial, a Dirichlet prior will result in a 
Dirichlet posterior, and thus has been the undisputed choice throughout the Bayesian statistics 
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literature [see Jeffreys, 1961; and Leonard and Hsu, 1999] for a more theoretical analysis. Thus, 
the probability masses p1, p2, ... , pl are assumed to follow the Dirichlet distribution with 
parameters iα 1, iα 2, … , iα l, where the joint PDF is given by  
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The mean and variance of the distribution are given by 
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From (Eq. 22) iα  is given by the prior estimate of the probability of state i. 

By combining the data and prior using the Bayes theorem, we find that the posterior density of 
each of the PMF values also follows a Dirichlet distribution with parameters ii k+α  (see, for 
example, [Johnson, et al., 1997 and Leonard and Hsu 1999]. Again, from Eq. (10), we find that 
the expected value for the posterior PMF of the ith performance factor will be given by 
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 (Eq. 24) 

We then update the PMFs a second time using (Eq. 19) with the human error data. The updated 
PMF values obtained from (Eq. 24) become the prior for this second step. 

Case 3: Correlation between Trials 

For this case, assume that the probability of error on a given trial can be influenced by whether 
or not errors occurred at previous opportunities. This is to say that, within some set of trials, 
correlation exists among the trial outcomes. For example, multiple errors could be related to the 
same incident or occur on the same day. This would be an example of a positive correlation 
between trials. Negative correlation is also possible, as in cases where operators could learn 
from previous incidents, or where errors could result in increased awareness or caution. In 
these cases the correlation would be negative because the occurrence of an error would make it 
less likely for an error to occur again in future opportunities. 
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For this case we still consider binomial outcome (failure or success); however, we will allow that 
the usual assumptions associated with the binomial distribution may be violated. These 
assumptions are as follows: 

1. The trials are independent 

2. The probability of success is constant for all trials. 

Thus, a generalized binomial distribution is needed. Several such distributions have been 
developed. Drezner and Farnum [1993] explored a generalized binomial which uses a recursive 
relationship to discard the assumption of independence between trials. Altham [1978] proposed 
two binomial generalizations which were based on “multiplicative” and “additive” definitions of 
interaction between the discrete variables. A chi-square test was used to compare the three 
distributions using data showing a strong negative correlation. The multiplicative generalized 
binomial distribution was found to give the best fit for the available human reliability data, and it 
is applied for this case.  

For the multiplicative generalized binomial, the PMF of the distribution of the number of 
successes, X, is given by 
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where n is the number of trials, p and θ are the distribution parameters, and 

( ) ( ) ( )∑
=

−−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

n

j

jnjjnj pp
j
n

npf
0

1,, θθ . (Eq. 26) 

As in the case of the binomial distribution, the parameter p is related to the probability of 
success for a given trial. The parameter θ must be greater than zero and describes the amount 
of correlation among trials. Note that (Eq. 25) reduces to the binomial distribution when the 
correlation factor, θ, is equal to 1. Otherwise, θ < 1 corresponds to positive correlation between 
trials and θ > 1 corresponds to negative correlation. In effect, for positive correlation between 
trials, the variance of X will be greater than that predicted by the binomial distribution, and vice 
versa. 

Because this is a two-parameter distribution, estimating the parameters will require that data be 
available up to the second moment. Whereas the probability of failure for the binomial 
distribution can be estimated with only one set of data (number of trials n and number of failures 
k), estimating both a probability and a correlation parameter will require multiple sets of data, in 
which the number of trials, n, must be the same for each set of data. The method of maximum 
likelihood can be used to estimate the parameters p and θ. The likelihood equations are derived 
below: 
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Altham [1978] gives slightly different expressions for (Eq. 27 – 30)). Note that to determine p 
and θ, (Eq. 27 and 28) must be solved iteratively. 

Consider that z experiments were conducted, each having n trials, so that the number of 
successes for each experiment are given by k1, k2, …, kz. In the context of human reliability 
analysis, each experiment may correspond to a certain operational facility or time period, and k1, 
k2, …, kz represent the number of human errors that occurred. (Eq. 16)_can be rewritten as 

( ) ( ) ( )8212121821 ,,,,,|,,,,,,,,|,,, fffPpnkkkPnkkkfffP zz KKKK θθ ∝ . (Eq. 31) 

If we can assume that the experiments themselves are independent of each other, then the 
likelihood term in (Eq. 31) can be rewritten as 

( ) ( ) ( ) ( )θθθθ ,,|,,|,,|,,,,|,,,, 2182121 pnkPpnkPpnkPfffnkkkP zz LKK = . (Eq. 32) 

Thus, the PSF distributions can be updated as 

( ) ( ) ( ) ( ) ( )8212121821 ,,,,,|,,|,,|,,,,,|,,, fffPpnkPpnkPpnkPnkkkfffP zz KLKK θθθθ ∝ , (Eq. 33) 

where p is calculated from (Eq. 13). 

Case 4: Correlation between PSFs 

As shown in Table 6, the PSFs are discrete random variables that multiply a baseline 
probability, p0, to compute the overall HEP. Thus, under favorable conditions, the multipliers will 
take values less than 1, and under unfavorable conditions they will take values greater than 1. It 
may be the case that one or more pairs of PSF multipliers tend to take favorable or unfavorable 
values under the same overall operating conditions. If so, these factors can be said to be 
correlated. Consider two PSFs; one accounting for the stress level of the operator and one 
accounting for the time available to complete the task. If when the time available is favorable 
then the stress level also tends to be favorable, and vice versa, then these two factors may be 
said to have some degree of positive correlation. 

If this is the case, then the PSFs are not independent, and (Eq. 18) does not hold. It is 
necessary to modify (Eq. 18) by substituting joint PMFs for the correlated factors; however, the 
joint PMFs are rarely known. It may be possible, though, to simulate the necessary joint PMFs if 
data is available on the occurrence of the factor values, or with expert opinion. It will first be 
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necessary to estimate the correlation coefficient between the factors under question. This could 
be done using available data or expert opinion. 

The correlated discrete variables, (f1, f2) say, can then be simulated by first generating 
correlated standard normal variables, (V1, V2), and transforming them using 

( )[ ]1
1

11 VFf Φ= −
 (Eq. 34a) 

( )[ ]2
1

22 VFf Φ= − , (Eq. 34b) 

where F1 and F2 are the discrete CDFs for the PSFs f1 and f2. Alternatively, we may also 
generate correlated uniform variables instead. In general, the correlation coefficient between f1 
and f2 and that between V1 and V2 will not be the same. That is, we know

21 ffρ  from the data or 

expert opinion, but we do not know
21VVρ . Using the definition of covariance, the following 

relation can be derived [see, for example, Haldar and Mahadevan, 2000]: 
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where 2φ  is the standard binormal PDF. 

The solution to (Eq. 35) can be found using a non-derivative numerical method such as the 
bisection method, where the double integral is evaluated numerically, such as with Gaussian 
quadrature. It was found by the authors that depending on the discrete PMFs of F1 and F2, the 
transformation of (Eqs. 34) may not always be capable of achieving the desired value of

21 ffρ . 
This result was also observed by [Van Ophem, 1999], who proposed a method for estimating 
the joint probability distribution for correlated discrete variables when the marginal distributions 
are known by relating the discrete variables to the bivariate normal distribution. 

Once a large set of correlated variables (f1, f2) has been generated, their joint PMF can be 
constructed. The updating process can then proceed by simply using the appropriate pair-wise 
joint probabilities in the calculation of ( )821 ,, fffP K  in (Eq. 16). 

2.3.3 Numerical Example 

The objective of this numerical example is to illustrate the methodologies for the four cases 
discussed above. Typical nuclear power plant incident data reports are used in this numerical 
example to update the SPAR-H model. The SPAR-H model is specified for two modes: “action” 
and “diagnosis.” Here we deal only with the “action” portion of the model, for illustration. The 
PSF multipliers for action and diagnosis are identical in the SPAR-H model. The prior PMF 
estimates for each of the performance factors are given in Table 6, and the nominal HEP, p0, is 
assumed equal to 0.001. The necessary details for the application of each case in the proposed 
methodology are presented first. Then, plots of the updated PSF distributions are given.  
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Case 1: Data Available on Binomial Outcome 

As described earlier, the necessary data for this case are the number of errors, k, and the 
number of trials (or opportunities), n. From the available data, we have k = 52 and n = 80. These 
values will also be used in Cases 2, 3, and 4. 

Case 2: Data on both Input and Output 

For this case we use the same human error data, k = 52 and n = 80. However, we will now use 
empirical data on the model inputs as well as on the model outcome. The data on the model 
inputs give reported frequencies for the PSFs, and are given in Table 7. Note that the total 
number of reports for each performance factor does not add up to 80. This is because each 
performance condition does not get reported for every trial, but the Bayesian approach allows 
for the use of whatever data is available. 

The updating process is split into two steps. First, the PSF distributions are updated using the 
input data given in Table 7 by applying (Eq. 24), where iα  is given by the prior estimated 
probability of observing the ith state for that particular factor. For the second step, these updated 
distributions become the prior distributions and the model is updated as in (Eq. 19) using the 
human error (outcome) data. 
 

Table 7  Reported PSF frequency data. 
PSF Multiplier Frequency Total 

10 0 
1 11 
0.1 58 

F1 
Time 

0.01 4 

73 

1 0 
2 26 

F2 
Stress 

5 47 

73 

1 0 
2 14 

F3 
Complexity 

5 58 

72 

0.5 19 
1 44 

F4 
Experience/Training 

3 6 

69 

1 0 
5 4 
20 9 

F5 
Procedures 

50 56 

69 

0.5 0 
1 8 
10 60 

F6 
Ergonomics 

50 0 

68 

1 0 F7 
Fitness for Duty 5 5 

5 

0.5 31 
1 46 

F8 
Work Processes 

5 1 

78 
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Case 3: Correlation between Trials 

Recall that correlation between trials means that the probability of human error for a given trial is 
not only dependent on some probability, p, but also on whether or not errors occurred at 
previous trials. To account for this, we use a generalized binomial distribution to calculate the 
likelihood of observing the data. Altham’s multiplicative generalized binomial distribution is used 
here, and is given by (Eqs. 25 and 26). 

The first step is to use the available data to estimate the distribution parameters, specifically the 
correlation factor θ, since p in (Eq. 33) will be replaced by the value calculated from (Eq. 13). In 
order to estimate the correlation parameter, it is necessary to have data available for multiple 
records, ideally with each having the same number of trials. For this example, there are eighty 
data points indicating whether or not a human error occurred. Thus, the data must be artificially 
divided to give multiple sets. The data is grouped so that trials occurring on the same day are 
part of the same set. This introduces another problem, since each set does not contain the 
same number of trials. This is overcome by calculating the average number of trials per record, 
and then normalizing each record to contain this number of trials. This will introduce error in the 
computation, but it is necessary to allow for the estimation of the distribution parameters.  

The modified data now contain 20 sets of 4 trials each, and the average probability of error is 
0.606. The sample variance of the number of human errors is 0.30, which is less than the 
expected binomial variance of 0.96, suggesting a negative correlation between trials within each 
set. Using the maximum likelihood formulas given by (Eqs. 27 and 28), the parameters for the 
multiplicative generalization of the binomial distribution were estimated to be:  and 

. Recall that for the multiplicative generalized binomial, θ = 1 corresponds to no 
correlation, and θ > 1 corresponds to negative correlation. We can now update the model by 
applying Eq. (21). 

72.0ˆ =p
68.2ˆ =θ

Case 4: Correlation between PSFs 

The nature of the PSFs used in the SPAR-H model suggests that several of the PSFs may be 
correlated. For this example, the method described for case 4 can be used to simulate the joint 
PMF between two PSFs. The available PSF occurrence data is used to estimate the correlation 
coefficients between pairs of PSFs. This is done by first transforming the occurrence data into 
multiplier values, then calculating the sample correlation coefficient between the factors. 

From the available data, one of the strongest correlations between PSFs is found to be between 
F5, procedures, and F6, ergonomics. The sample correlation coefficient from the data is found to 
be 0.68. Using the CDFs for the two factors, it is found that this value fell within the range 
for

65ffρ  that could be simulated, which is (-0.21, 0.75). This range is easily found by generating 
perfectly correlated normal deviates and performing the transformation of (Eqs. 34). Using the 
sample correlation coefficient, 68.0

65
=ffρ , the numerical solution to (Eq. 35) is found to be 

957.0
21
=VVρ . Upon simulating samples of F5 and F6, the authors found by trial and error that 

adjusting 
21VVρ  to 0.93 gave simulation results that more closely matched the desired correlation 

between F5 and F6. This discrepancy could possibly be due to the inaccuracies associated with 
solving (Eq. 35) numerically.  

Thus, 93.0
21
=VVρ  is chosen and forty-thousand pairs for F5 and F6 are then simulated and 

used to construct the joint PMF. It is assumed for the sake of illustration that the remaining 
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factors occurred independently, and the prior PMF in (Eq. 16) is calculated 
as ( ) ( ) ( )∏

≠
=

6,5
6582,1 ,,,

i
ifPffPfffP K , where ( )65,ffP  is calculated using the simulated frequencies 

for F5 and F6. A comprehensive analysis could consider the significant correlations among all 
the PSFs. 

Numerical Results 

The results achieved using each of the updating processes described above are presented in 
Figures 10 – 17. The figures show both the prior and updated PMFs for each of the eight PSFs 
for the four cases. Note that for the majority of cases and factors, the updating process shifted 
the PMFs to show higher probabilities for larger multiplier values. This was expected since the 
data gave such a large proportion of failures. Also note that as expected, the results for Case 2 
agree with the PSF frequency data given in Table 2. For each factor, the PMF updated by Case 
2 shows that the multiplier with the largest probability corresponds to the multiplier that was 
reported with the highest frequency. 

A significant difficulty that is present when working with HRA is the lack of reliable empirical data 
sources. Although efforts are being made to improve the quantification of and availability of 
human reliability data, it is necessary to be aware of the issues associated with using these 
data. One major problem is that when human error figures are reported in a format such as “k 
failures out of n opportunities,” it is very difficult to know the correct value for the total number of 
opportunities for failure, n. For example, the data used in this paper are based on 80 incident 
reports. This does not necessarily mean 52 human errors out of 80 opportunities, since there 
are no incident reports when the plant is functioning normally. Also, this figure is grossly 
inconsistent with the estimated nominal failure probability of 0.001, and it is most likely the case 
that these samples are failure-biased. If this is indeed the case, then using these data to update 
HEPs, as in the above example, will introduce error. To actually implement this process, better 
estimates of the number of opportunities would be required. 

The purpose of this presentation was to present a methodology for the application of Bayesian 
updating to refine quantitative human reliability models with empirical data. The SPAR-H model 
for human error probability was employed for the purpose of illustrating the theory for several 
cases of Bayesian updating. The Bayesian analysis made use of prior estimates on HEPs, 
human performance data, and performance factor occurrence data to compute updated HEPs 
and updated PMFs for the performance shaping factors. Methods for analyzing correlation 
between event trials as well as correlation between PSFs were outlined as well. Also note that 
any or all of the cases described above could be combined, given that the appropriate data are 
available. 

A case of interest for future study is the case where the outcome of each trial is allowed to have 
more than two states, as opposed to only failure or success. The additional outcomes might 
correspond to some intermediate state such as a malfunction or degraded performance. The 
analysis would remain the same, except that the likelihood term would be calculated using the 
multinomial distribution as opposed to the binomial. Since the current SPAR-H model does not 
provide multipliers for any outcome other than failure, it would need to be modified to allow for 
the calculation of more than two outcome probabilities. This would involve expanding (Eq. 13); 
the PSF multipliers, and PMFs would need to be modified as well. 
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Figure 10 Prior and updated PMF for factor 1 Figure 11 Prior and updated PMF for factor 2 

  

Figure 12 Prior and updated PMF for factor 3 Figure 13 Prior and updated PMF for factor 4

  

Figure 14 Prior and updated PMF for factor 5 Figure 15 Prior and updated PMF for factor 6 

  

Figure 16 Prior and updated PMF for factor 7 Figure 17 Prior and updated PMF for factor 8



 

2.4 The Use of HERA and Bayesian Analysis to Support 
Quantification in Context-Based HRA Methods  

Prepared by Dennis Bley 

2.4.1 Introduction 

Could Bayesian approaches be helpful in second-generation HRA methods that emphasize the 
importance of context in evaluating the likelihood of human response? We begin by outlining 
why consideration of context, the conjunction of plant conditions and human performance 
conditions, is essential in analyzing and quantifying human performance. Next is an example of 
how context is used in ATHEANA and how its current quantification process is organized. This 
sets the stage to discuss two ways in which Bayesian approaches could enhance and, perhaps, 
simplify the quantification of such context-based models. Finally, we discuss the quantification 
of an HRA model.  

Why do we focus on context? Because serious accidents in nuclear plants and many other 
industries almost invariably involve significantly difficult context, sometimes called cognitively 
complex situations or error-forcing context (EFC) [Bley, et al., 1987]. The problem is that under 
strong EFC, operators can mentally lock onto their first assessments and fail to update their 
evaluation as the situation evolves. Often, they even fail to recognize incoming evidence as 
related to the situation. Multiple cues are no longer independent signals. Strong EFC involves 
adverse plant and human conditions, and the most severe cases are typically driven by 
deviation from expected plant response (i.e., mismatch between operator mental models and 
the actual situation) or significant mismatch between PSFs and the actual situation. 

In this regard, the following characteristics have been identified in many serious accidents: 

1. Deviation—operations outside expectations 

2. Resulting physical regime not understood 

3. Operators “refuse to believe” evidence coming to them. 

It is not that this list is a proved requirement for situations where unsafe actions (UAs) are likely 
to occur and to persist. Rather, it is an observation that in many accidents in many industries, 
similar sets of occurrences are observed. Plausible arguments about why this is so can be 
offered, but none are yet proved. When deviations from expectations are minor or within the 
realm of training and mental models held by operators, their procedures, experience, and the 
operators’ own situation assessments are all likely to align and all but assure success in time to 
prevent severe damage. Likewise, if plant conditions are awry but human conditions are 
favorable, operators are likely to salvage the situation.  

This type of situation (i.e., the way operators can miss multiple strong cues and fail to correct 
dangerous situations when faced with strong EFC), makes us suspect that a simple model using 
a base failure rate, λ, and a multiplier based on simple descriptions of context (Figure 18, left 
side) cannot be an appropriate model. At a minimum, it would seem that such a multiplier 
function is not well-behaved. 
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Figure 18 Possible Models for Human “Error” Rate Variability. 

Perhaps it is reasonable that, in some conditions where λ is well-known, slight changes in 
conditions can be modeled or represented using a simple multiplier. However, at some point, as 
the EFC becomes more and more severe, there is a jump to a different regime, where failure is 
very likely, say approaching p=0.5, as shown in the right side of Figure 18. This is similar to the 
control regimes of Hollnagel [1998], in which the failure causes are much different than during 
the nominal condition. 

2.4.2 Bayesian Approaches to Improve Quantification in ATHEANA: Description and 
Examples 

The approach for defining and modeling context in ATHEANA is based on the multidisciplinary 
ATHEANA Framework sketched in Figure 19 [Barriere, et al., 2000]. Here we see that the PRA 
models human failure events (HFEs) and includes a simplified model of reality, i.e., plant states. 
However, the EFC is driven by the real world, where “plant conditions” include equipment that 
operators interact with directly and that may not be modeled in the PRA. Together, plant 
conditions and performance shaping factors (PSFs) trigger human error mechanisms that lead 
to unsafe acts. Unsafe acts or combinations of unsafe acts are the events modeled in the PRA 
as HFEs. Thus, the likelihood of an HFE is driven by context (plant conditions and PSFs), rather 
than by the simplified plant states of the PRA. 

Currently, ATHEANA quantifies P(HFE) by breaking the problem into its constituent parts. For a 
simple HFE relating to a single UA, this can be expressed as: 

(HFE) = P(EFC) x P(UA|EFC) 

The probability of the context, P(EFC), is a systems analysis problem and is calculated by the 
same systems analysis methods as used in the PRA. The probability of the unsafe act, given 
the context P(UA|EFC), is currently evaluated using a consensus expert elicitation approach.  
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Figure 19 The Multidisciplinary ATHEANA Framework. 

This has been found to be a reasonable means to translate the impact of the EFC into an 
uncertainty distribution on the likelihood of the UA. The approach requires care to control bias, 
ensure full consideration of all available information, and fully question and check the 
consistency of estimates [Barriere, et al., 2000]. The approach strives to facilitate the derivation 
of realistic quantitative estimates. It encourages the analyst to consider all sources of 
information, including partially relevant data. However, there are always potential limitations in 
any approach that relies on individuals to directly transform qualitative, or even semi-
quantitative information, into probability distributions. There is also a stringent requirement to 
have experienced and capable team members representing the multiple disciplines outlined 
implied in the framework of Figure 19 – behavioral scientists, engineers, operators, PRA/HRA 
experts. Therefore, alternatives to simplify the process and to create as objective an approach 
as possible are worthy of attention. Several of these can be Bayesian approaches, either 
philosophically Bayesian or actual Bayesian inverse probability calculations. 

Simplified approaches might be possible, once a catalogue of detailed contexts has been 
identified, examined, and organized, as part of the HERA database2. To clarify this point, 
consider two distinct types of methods: 

                                                 
2 HERA has the capability and structure to include qualitative descriptions of context and human performance 
including details of the plant conditions, PSFs, mismatches, and deviations. It includes the kinds of information that 
the ATHEANA team found helpful in performing analyses.  This encompasses the following kinds of qualitative 
information: 
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1. Methods for uncovering the mental mechanisms that are associated with “human error” for 
the purpose of determining P(UA|EFC)  

2. Calculational methods that could incorporate collected data and results from many 
ATHEANA-style analyses into a simple-to-apply high-level tool. 

An example of the first is the current ATHEANA method. It requires an experienced and broadly 
multi-disciplinary team to perform a competent analysis. The team generates detailed 
descriptions of context and unsafe acts and develops consensus probability distributions for 
P(UA|EFC). Results of many such analyses could be used to build a catalogue of EFCs and 
P(UA|EFC). 

The second type of method would try to use the results of many expert-generated ATHEANA-
type analyses to provide a basis for quantifying new events with somewhat similar context. Two 
possible Bayesian approaches to improve, simplify, or extend the current quantification method 
are described below–one based on “interpolating” among similar contexts and one introducing a 
Bayesian updating scheme based on updating more general data on human error with context-
specific error-of-commission data. Note that, even if these never become simple to apply, they 
could systematize context-based HRA, helping ensure consistency and providing more 
convincing anchor values to support quantification. There is some hope that less broadly-based 
expertise would be required to use these methods. 

2.4.3 Developing Generalized Contexts for Interpolation 

2.4.3.1 Description 

Recall that, in an application of ATHEANA as described above to a particular UA-EFC pair, the 
analysis team develops a consensus probability distribution for the likelihood of the UA under 
that particular EFC, P(UA|EFC). Let us call the results generated in each application of the 
ATHEANA quantification process a “context anchored probability” (CAP). Note that each CAP 
includes a detailed description of the error-forcing context and a probability distribution 
quantifying P(UA|that specific context).  

The next step would be to build a library of contexts and associated P(UA|EFC) distributions. 
The source of CAPs in the library could include results from:  
• ATHEANA proactive analyses 
• ATHEANA quantification of real operating event descriptions 

                                                                                                                                                                           
Event Summary 

Event data 

Event description 

Event surprises 

Key mismatches (between training and unusual 
plant conditions, supervision and plant conditions, 
procedures and the specific scenario, etc.) 

Key parameter status; key facility/process status 
(initial and during the accident) 

Action summary 

Corrective actions 

ATHEANA Summary 

Deviations from the “expected” scenario 

Event timeline 

UAs, equipment failures, human actions, recovery actions 

Dependencies linking actions on timeline 

Accident diagnosis log, a table with three columns 

Time 

Accident progression and observed symptoms 

Human response to symptoms 
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• Experimental results for certain actions under a limited range of contexts  
• Results extracted from existing experimental data 
Exactly how each of these sources is developed needs to be carefully defined and illustrated. 
While we can imagine the process, it has yet to be demonstrated. However, once a substantial 
library is assembled, we propose to use it as the basis for quantifying new events. The basic 
idea is that the analysis team will define the context of new events by using the ATHEANA 
process. Then a search of the catalogue will identify previously quantified events with somewhat 
similar contexts; the new event will be quantified based on using some measure of closeness to 
the existing contexts. As the catalogue grows, we expect that the analysis will have a more 
sound underpinning. 

2.4.3.2 Example 

A large catalogue of specific CAPs is likely to be difficult to use. How could it be organized to 
permit identification of the most relevant CAPs for current purposes? One approach that 
appears promising is to sort CAPs into families of similar contexts. Each family could be 
considered to be a generalized CAP – a Generalized Context Anchored Probability (GCAP) – 
that represents all the members of the family.  

As an example of the process for developing GCAPs, suppose we take five CAP distributions 
from the library as shown in Figure 20. Each distribution, θ1 through θ5, corresponds to a single 
CAP context. Note that the distributions θ1nd θ2 are very similar, as are curves θ3 and θ4. The 
descriptions of context for the members of each pair are also similar, but not given here.

 Each of these two pairs of CAPs can be 
represented by single GCAP curves as 
shown in Figure 21, where our five CAP 
curves have been replaced by three GCAP 
curves. GCAPS, then, can be thought of as 
descriptions of classes of events that have 
been characterized according to the factors 
driving their occurrence and that have a 
probability distribution associated with them 
that is also strongly affected by those 
factors. The next question is, how can we 
use these GCAPs?  

Figure 20  Five CAP Distributions

GCAPs are an unproved concept that 
appears to offer potential for: 

 

• Standardizing or normalizing the 
judgments that are applied in assessing 
the probabilities of different unsafe 
actions 

• Using operational experience from other 
events as reference cases in assessing 
the probabilities of the different unsafe 
actions 

• Explaining the assessments to peers 
and outside reviewers. Figure 21 The Five CAPs of Figure 3, Grouped as 

GCAPs



 

Use of GCAPs for expert quantification and 
analysis would begin following the usual 
ATHEANA search process, including the 
identification of the full context of interest. 
The analyst would use the new approach to 
simplify quantification, drawing on the library 
of existing results. We might be able to use 
them to place a newly analyzed event within 
groups of event signatures.  

Then, using some as yet undefined 
measures of “distance” between a UA-EFC 
set being analyzed and related GCAPs, we 
could generate a probability distribution for 
the new event through an interpolation 
process. Early on, this interpolation could be 
accomplished using the structured expert 
elicitation process described in recent 
ATHEANA papers and reports [e.g., 
Forester, et al., 2004].  

For some simple but powerful types of 
context, those with strong EFC, GCAP 
probability distributions can be directly 
assessed. Figure 22 shows how judgment 
concerning the relative strength, when 
compared to very strong context, would shift 
such a probability distribution curve. 

 

Figure 22 Shifting Strong-EFC Curve vs EFC 
 
2.4.3.3 Information Needs 

The primary information needed to test and use this approach is a viable catalog of GCAPS. For 
GCAPS from proactive ATHEANA analyses, we need reports of ATHEANA applications. For 
GCAPS based on ATHEANA quantification of real operating event descriptions, the collection of 
retrospective analyses of events with significant context in the HERA database needs to be 
expanded, followed by an ATHEANA expert evaluation of P(UA|EFC) for each UA in the 
database. For GCAPS based on experimental results for actions under a limited range of 
contexts, results from Halden or other simulator experiments are needed. 

2.4.3.4 Future Activities 

No activities to develop and test this approach are currently planned. The following activities can 
be performed as the HERA database is expanded: 

• Develop estimates of P(UA|EFC) for events in the HERA database 
• Build an associated catalog of GCAPS 
• Attempt to quantify newly analyzed events from PRA applications using the GCAPS and 

expert elicitation to interpolate new P(UA|EFC) from the catalog 
• Develop a Bayesian update model to permit evaluation of P(UA|EFC) from the GCAP 

catalog, rather than the expert process 
 
2.4.4 Quantification Method Based on Data for Errors of Commission 

2.4.4.1 Description 

A Bayesian approach to quantifying P(UA|context) for EOCs has been proposed that could 
directly support quantification in ATHEANA [Barriere, M., et al.]. The underlying idea is based on 
an observation that a set of documented errors of commission fell into a limited number of 
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groups, based on characteristics of the context that existed at the time of the events. Prior 
human failure rates obtained from a large “human error” database can then be updated, based 
on elements of their context, using a likelihood function from the more limited EOC database. 

2.4.4.2 Example 

The published work [Reer, 2004] identified 180 events that involved EOCs; however, the 
number of opportunities was unknown. Therefore, these data are only helpful in estimating the 
fraction of EOCs with similar context. Used qualitative findings on context to define sub samples 
specific to context types; i.e., from random to various degrees of EFC; examples of this data are 
show in Table 7. 

With this kind of information, it becomes possible to identify context types. Then, for each 
context type, an analyst can update “generic” failure rates to the specific general type of context 
through the use of Bayes theorem. The approach updates a general failure rate with context-
specific likelihood functions. Results are context-specific failure rates. 

2.4.4.3 Information Needs 

For such an approach to be useful, a database that includes a large number of EOCs that 
occurred in a wide variety of contexts is needed. Useful context types must be defined and 
supported. 

Table 8 Examples of Data Including EOCs.  
# Plant Date LER title EOC identified? 

1  
 

North Anna 2 820101 Reactor shutdown due to high 
RCS leakage 

No 

9  
 

Ginna 820125 Reactor shutdown due to SGTR Yes, EOC1: isolation of steam 
relief control 

99  
 

Trojan 830122 SGs reach lo-lo level after AFW 
pumps fail to restart [LMFW] 

Yes, EOC2: shutdown of AFW 
pumps 

125  
 

Hatch 2 830714 Rods inserted out of sequence 
[Loss of condenser vacuum] 

Yes, EOC3: bypass of Rod 
Sequence Control System 

157  
 

San Onofre 2 831007 CEAC failure causes scrams No 

158 (2nd count) 
 

    

180  
 

Browns Ferry 1 831231 RCS has high chloride 
concentration 

No 

 
 

 
2.4.5 A Caveat on Context: Plant-to-Plant Crew Variability 

Only a limited number of accident reports provide information about how crew members interact 
and what administrative procedures they operate under. Nevertheless, there is evidence that 
these practices form an important part of the context and, under specific alignments of 
conditions, can have great impact on success or failure of the crew to prevent or control 
damage. Any approach using Bayesian reasoning needs to account for the observed effects of 
crew characterization, if the results are to give an accurate portrayal of risk. 

Experience has clearly demonstrated the importance of crew operating characteristics to plant-
specific HRA. That experience included visits and training exercises at four US PWRs in 
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gathering data for the NRC-industry PTS study [Kirk, M.E, 2005] and an ATHEANA 
development effort at another US PWR. When we observed simulator drills, our purposes 
included: 

• Observing timing 
• Observing use of procedures and “informal rules” 
• Determining if scenarios were cognitively challenging.  

 
During these visits and observations we found some surprises that emphasize the importance of 
crew characterization. We found dramatic plant-to-plant differences in how crews behaved with 
respect to the following attributes, differences that have strong influence on the likelihood of 
success, under specific contexts. 
 
Do crews act in concert or independently?  
We saw cases with nearly opposite approaches. At some plants the crews acted as tightly 
coupled teams led by the Shift Supervisor, who follows the procedures step-by-step and each 
member informed the others step-by-step, throughout the entire exercise. There is something of 
a mythology that this approach is universal. We found several alternative, formalized 
approaches among the plants we visited, where crewmembers carried out independent actions 
followed by reports to the Shift Supervisor. Several of these approaches, sanctioned by plant 
administrative procedures were observed: 
1. Crew members followed independent “Initial Action Cards,” then report. 
2. Individual crew members carry out long verification lists and report when done. 
3. “Rules” (quick action cards on fast-response-needed situations) are carried out 

independently, followed by verbal reports to the Shift Supervisor. 
4. The Shift Supervisor keeps his head out of the procedures; ROs have spiral-bound 

EOPs. 
 
Generally, these alternatives evolved from the recognition that, in some designs, specific 
accidents can progress very quickly, and executing prearranged sets of activities can provide 
operators with improved performance and flexibility. Since these plans are prearranged, the 
Shift Supervisor can truly perform a supervisory role, following the overall progress of the event 
and focusing on higher level diagnostics. 
 
Different plants use very different “key indicator screens” 
In many plants, a set of “first out” indicators lock-in lit tiles to show which specific signals first 
initiated key response systems (i.e., reactor SCRAM in the event of a reactor trip). Such key 
indicator screens are helpful in diagnosing the sequence of events that lead to plant upset. The 
particular key indicator screens vary plant-to-plant. In our plant visits, four distinct types were 
used:  
1. First out panel (some plants do not have these) 
2. “Strip chart” displays of multiple parameters – some were standard displays with pre-

selected parameters, others were custom made as they were needed 
3. Computer alarm screens 
4. Reactor pressure-temperature (P-T) plot. 
 
The first simply provides confirmation of the specific signal that initiated the reactor trip. This is 
helpful in supporting the operators’ situation assessment and moving them to or through their 
emergency procedures. Crews having the strip chart displays use them to confirm that progress 
of the event matches their expectations and the flow of the emergency procedures. They are 
sometimes helpful in identifying situations that diverge from expectations, hastening necessary 
corrections in response. Properly organized computer alarm screens can provide a very helpful 
history of the event, yielding the information of the first out panel and some of the advantages of 
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the strip chart displays. Poorly organized computer alarm screens can lead to information 
overload and confusion. The P-T plot approach was very interesting and only works if the Shift 
Supervisor is not buried in the step-by-step activities of the emergency procedures. When the 
Shift Supervisor is overseeing operations and is conversant in using the P-T plot, it can be a 
powerful tool for tracking the trajectory of an accident. It can help break the mindset sometimes 
created by strong context. 
 
Formality of communications  
Communications is an essential part of crew response to plant upset. Miscommunications, 
especially unfulfilled assumptions, about the intentions and actions of other crew members has 
been at the heart of many events (including simulator drills) that get out of control The industry 
has developed formal communications strategies that can minimize the chance of 
miscommunications and unfulfilled expectations (assumptions). Best practice has settled on 
“three-way communications,” where, when a command is given, it is repeated back by the 
person receiving the command, and then the originator confirms, repeating the full command. 
Names (or position titles) of the individual who is to receive the communication are explicitly 
stated. Although this is most common, it is not yet universal and sometimes is not carried out in 
the spirit of cooperation and positive control. 
 
When the spirit is awry, lip service is given to the process, but the crew is not carefully listening 
to the responses. Communications can go as far wrong, as when less formal modes of 
communication are used. 
 
Briefing strategies of many types were observed 
During the sequence of events, briefings can help detect when the crew’s responses (and 
likewise the steps of the procedures) are not effectively resolving the upset conditions. Briefing 
practice runs the gamut from simply informing the full crew of the situation (when it seems 
convenient to do so) to a formal process performed at regular intervals (when deemed useful by 
any crew member uncomfortable with the current situation) to confirm the situation assessment 
and uncover any divergence from expectations. The practices we have observed include: 
1. Occasional briefs by Shift Engineer 
2. EOP-driven briefs 
3. Structured briefs (e.g., “BAG” or Before-At-Going), when the Shift Supervisor can break 

action or when called by another crewmember. The Shift Supervisor asks all members of 
the control room team to agree on what has just happened (Before), where the plant is 
currently (At), and what is expected to happen next (Going); this questioning process 
and drive for consensus can uncover misperceptions, and the agreement on where it is 
going ensures early detection of a plant behaving in unexpected ways. This process may 
be the most effective means of breaking the effects of error-forcing-context. 
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Approach to verbatim compliance  
Finally, the idea of verbatim compliance with procedures has evolved into multiple 
interpretations, most of which give crews an improved chance of success, when the actual 
situation is not well-matched to their training and emergency procedures. The range of flexibility 
we found covers the following range: 
1. Absolute verbatim compliance, unless a public safety hazard is imminent. 
2. Use of a structured agreement process to deviate from the current procedure. In one 

plant, the Shift Supervisor offers or entertains a proposal to deviate, based on 
observations that the current approach is not working. If a deviation is to be carried out, 
each member of the crew must state their opinion and all must agree. 

3. The Shift Supervisor (or Shift Supervisor and Shift Engineer) orders a deviation. 
4. The plant has a formal deviation procedure. In one case, the plant has a separate 

procedure that is essentially a template for constructing tailored EOP on the fly. 
5. The plant has defined certain conditions that allow “parallel actions” (simultaneous use 

of multiple procedures) or define a set of “continuous steps” that can be carried out in 
the middle of the current procedure. 

6. Certain defined procedure jumps are permitted under specific, well-defined conditions. 
7. The Shift Supervisor can pull any step forward (conduct it earlier than called for), if he 

has “evaluated” it. 
 
Essentially, all these deviations from verbatim compliance have been designed to cover unusual 
situations that are not well-covered in the printed procedures or specific situations that analysis 
has shown to require more rapid action. 
 
It seems reasonable to believe that the range of characteristics observed at these five plants is 
representative of PWR plants. Importantly, the differences observed change the way crews 
interact and move through their emergency procedures, and this means that the crews from 
different plants have very different vulnerabilities when operating under strong, unusual context.  
 
The net effect of these variations in plant practice can have significant impact on operator 
actions in complex event sequences. The ensemble of these practices at a specific plant is what 
we call “crew characterization.” 

 57



 

 

 

 

 

 

This page intentionally left blank. 

 58



 

 

3. SUMMARY OF PEER REVIEW 
Prepared by Alan Kolaczkowski and Bruce Hallbert 

3.1 Peer Review Team and Purpose  

This section documents the peer review that was conducted on the draft version of this 
document. Seven peer reviewers were selected on the basis of their involvement in PRA and 
HRA in particular, as well as having first-hand knowledge in the use of Bayesian and other 
quantitative techniques and how such techniques might be useful to HRA. A questionnaire was 
provided to the reviewers as a means to establish the purpose and expectations for the review 
and to specifically guide the reviewers in focusing their reviews. While most reviewers provided 
explicit responses to each question on the questionnaire, not all did so nor was that required. 
But all did, in one form or another, generally address the considerations outlined in the 
questions that were provided. The questionnaire that was used to obtain peer review comments 
contained questions designed to evaluate the following:  

1. Whether the draft report established Bayesian and other techniques as theoretically valid 
frameworks for using empirical evidence and supports their use in Human Reliability 
Analysis  

2. Whether the examples of methods provide adequate illustration of their stated purpose(s), 
are clear, may potentially advance HRA in specific ways, and meet or have the potential 
to meet stated workshop objectives  

3. Whether the methods appear to be feasible and may help with some of the current needs 
in HRA discussed in the workshop. 

3.2 Summary of Peer Review Comments 

The reviewers provided numerous written responses, ranging from general comments on the 
overall objective of the report and approach taken to accomplish it  to very detailed technical 
comments on each of the proposed approaches and recommendations on the technical quality 
or the usability of these methods. The reviewers also provided comments to otherwise improve 
the document. 

A primary theme of the comments was that the document successfully addressed the goals of 
the workshop, though the examples and methods require greater maturity and testing to achieve 
their objectives. Generally, based on the comments, it can be concluded that while the 
document provided reasons and illustrations to be positive about the feasibility of using 
Bayesian and other quantitative techniques to improve HRA, the document is considered to be 
too general in its content to be of use for specific HRA applications at this time. Reviewers 
agreed that another major step is needed before the more formalized use of Bayesian and other 
techniques for improving HRA can be practically implemented. This next step needs to address 
general and specific issues confronting the field of HRA, how specific techniques can be applied 
to address these issues, and expectations regarding the results of applying such techniques.  
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3.3 Addressing the Peer Review Comments 

Following the peer review, some comments were addressed through modification of the draft 
report. Such changes included revising the presentation of the information, the style, and the 
reference materials and references, and consolidating or relocating information in the section 
and subsection to which reviewers thought it best applied. In addition, some reviewers 
expressed the concern that the draft report emphasized Bayesian concepts over the other 
quantitative techniques that were also included in the draft report. To address this comment, 
pertinent sections were rewritten to better reflect the concepts proposed that involve Bayesian 
techniques and accommodate the discussions and information pertaining to the other 
quantitative techniques described in the workshop summary. 

The reviewers provided constructive suggestions for improving the usability of the quantitative 
techniques that were introduced or discussed in this workshop. To some, especially those in the 
HRA community, these techniques are new. To others in the PRA community, such techniques 
have been employed successfully and have had a positive impact in formal risk assessment. 
However, these techniques have been applied much less in the HRA field. In future activities 
that may involve development of or application of quantitative techniques, the reviewers 
suggested several concrete activities that we also recognize including: 

• Focus initial efforts to a limited number of problems that may be well-described already in 
the HRA field. This could include, for example, how to combine several sources of 
relevant information to better estimate the reliability of a human action; using human 
performance data obtained from plant simulators to estimate HRA model parameters of 
interest, etc.  

• Develop the quantitative examples and applications as though applying them to a 
particular problem of interest, documenting the steps involved. 

• Describe important assumptions that must be made to use the quantitative technique that 
analysts may not be familiar with already. For example, Bayesian methods in particular 
rely upon a likelihood function to describe the process that governs the predicted posterior 
probability. The particular form of the likelihood function is important and should be 
chosen on the basis of how to best describe the uncertainty in the underlying 
psychological mechanism being modeled. Little attention has been paid this issue to date 
and due consideration will need to be paid this issue if Bayesian methods are employed 
with human performance data.   

• The types of information and sources of information for the types of analyses discussed in 
the workshop must be considered in order to make use of the quantitative techniques. 
Sources of information for HRA are notoriously scarce and recommendations for 
improvements in estimating HRA quantities of interest should bear in mind the availability 
and suitability of data to support their implementation and use.  In other words, the nature 
of the evidence that can be obtained from different sources needs to be understood to 
determine whether it can be used in a quantitative framework. 
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4. SUMMARY AND CONCLUSIONS 
Prepared by Bruce Hallbert and Alan Kolaczkowski 

4.1 Introduction 

Reiterating the statement provided in Section 1, the overall purpose of this document is to 
summarize discussions and proposals offered by invited workshop presenters to address the 
feasibility as well as the associated issues relevant to using quantitative methods to employ 
evidence for improving our human performance models and gaining more confidence in the 
qualitative and quantitative results produced by HRA methods (perhaps even to the point of 
validating the methods to some degree). In particular, these specific questions were raised in 
Section 1 that should be addressed in order to be responsive to the overall purpose: 

1. Do quantitative techniques offer a theoretically valid framework for using empirical 
evidence to inform our current HRA methods? 

2. What are some examples of ways we could inform current HRA methods (i.e., provide 
illustrations)? 

3. What more needs to be done to demonstrate the feasibility of using these methods and 
empirical evidence to inform current HRA methods? 

The following subsections provide our observations as to the progress made in answering the 
above questions. These observations are based on the information provided in this report and 
particularly the contents of Section 2 that reflect the discussions held at the workshop in 
Washington, D.C. on August 10-11, 2005 to discuss approaches to the use of data and forms of 
evidence to support the prediction of human performance in PRA applications. 

4.2 The Validity of Using Quantitative Techniques and Empirical 
Evidence for HRA Use 

To address the use of empirical evidence for HRA quantitative techniques, it is first important to 
understand the parameters of interest that analysts are typically required to estimate for PRA 
purposes. In its simplest form, this involves estimating the probability of success or failure in 
performing some action along with understanding the most influential factors affecting the 
probability, whether that action is physical or cognitive in nature. 

The information provided in Section 2.1 addresses this subject from a theoretical perspective. In 
that section, we explain that the quantity of interest in PRAs is the probability of a failed 
outcome regarding a human action of interest, which is labeled as “p” in the discussion. Further, 
because decision makers need to be aware of the analyst’s level of confidence and hence the 
robustness associated with the estimation of “p”, we are also interested in “π(p)”, the probability 
distribution for “p” that represents the sources of variability and uncertainty in “p”. 

The estimate of “p” for human performance is not like predicting an equipment failure rate 
because typically for equipment, it is often assumed that the context or environment for the 
operation of the equipment is generally uniform. That is, the environment in which equipment 
performs can be largely disregarded for most conditions once specified, unless the nature of the 
event sequence creates changes that are important to the functioning of the equipment. With 
regard to human failures, we need to be concerned with how the personnel perceive the 
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conditions under which performance is demanded. These perceptions can include their 
interpretations of events, their use of plans and procedures, and the applicability of their 
training, among other influences that affect the actions that crews will take in ways that 
materially affect “p”. Most HRA methods typically model human performance by evaluating, in 
some way, the relevant influences for an action of interest (typically termed performance 
shaping factors [PSFs]) for a plant condition/sequence, so as to ultimately estimate “p” based on 
these influences. 

Ideally, direct evidence would provide us with a basis for estimating the rate of certain kinds of 
errors in specific contexts, but such data are not yet available. Bayesian methods are appealing 
since they afford the ability of combining our current evaluations of human performance with 
different types of evidence, via likelihood functions, to produce updated assessments (updated 
in that they are a reflection of the collected evidence) of human performance manifested as 
posterior probability distributions for “π(p),” as well as an updated best estimate for “p”. Further, 
as illustrated by the various topics addressed in this workshop, Bayesian methods can employ 
different amounts of evidence including sparse evidence. 

Together, the discussions presented in Section 2 introduce a variety of ways to characterize the 
relationship between evidence use and probability estimation. They also demonstrate the use of 
Bayesian techniques with sparse data, and that meaningful probability estimates can be made 
with less evidence than one might thought to be necessary using classical statistics as a frame 
of reference. The same is shown to be true even when data that we would like to have is 
missing or incomplete (such as the coin tossing example discussed in Section 2.1). These 
examples provide expectations that the use of Bayesian methods holds a promise of being able 
to utilize the types of empirical evidence regarding human performance that is potentially 
available despite being incomplete, sparse, anecdotal, and/or otherwise undesirable. 

Committing to Bayesian methods to assist in estimating probabilities for some human actions 
does not, in itself, provide an answer to the difficult questions of what information to use, how to 
structure such calculations, how to weight the many forms of evidence that are available, and 
how to best account for context in a way that most appropriately represents the spectrum of 
situations to which the results may be applied.  

It is critical to the use of Bayesian methods that all of the relevant evidence for estimating the 
quantity of interest be known and be made available, whether it is incomplete, partially relevant 
or not. There has been some debate among practitioners regarding how to identify HRA 
parameters of interest for a particular PRA application, how to measure them, and how to 
weight them in analyses. The theoretical and practical illustration in Section 2.2 uses actual data 
from simulator studies involving licensed NPP operators and addresses some of methodological 
issues in attempting to address these questions. The methodology is flexible and easy-to-use 
and may help address some of the more fundamental questions in HRA such as: (1) What PSFs 
are most important to model in a PRA accident sequence? (2) How much do the PSFs 
themselves contribute to crew performance and how much is explained by other factors? (3) 
Relative to one another, how much weight should be attached to individual PSFs in predicting 
crew performance? (4) As they are perceived by crews, are these PSFs more systematically 
related to one another on a higher level that can be accounted for by emergent, situationally 
dependent factors? Having the ability to better answer these questions will provide the HRA 
community with better information about which parameters to incorporate in HRA methods and 
how to account for their influence in PRA contexts of interest.  

These are issues suggested by many of the proposals offered in Section 2. Nevertheless, via 
the theoretical discussion in Section 2.1, and some of the practical examples provided in the 
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other portions of Section 2, we have illustrated how Bayesian mathematics and other formal 
methods such as regression analysis can explicitly deal with different evidence to estimate the 
quantities of interest and/or provide a better qualitative basis for understanding, modeling, or 
predicting human performance. 

These observations are coupled with the knowledge that Bayesian methods and the use of 
empirical evidence have been, and continue to be, employed in many applications. This 
suggests a high confidence that the use of a combination of methods and empirical evidence 
can be used to inform HRA and improve the current methods used to better understand and 
predict the most influential factors and the resulting human failure probabilities in contexts of 
interest to PRA. Hence, we see no significant obstacles that would invalidate or otherwise 
prevent the use of these methods and empirical evidence for HRA. Further, the use of 
quantitative methods with empirical evidence seems to hold the promise of improving the 
following aspects of HEP estimates and the identification of their significant contributors: 

• Credibility, because the estimates would be based, in part, on actual experience  

• Accuracy, by reducing their associated uncertainties (or at least improve understanding of 
their uncertainties) 

• Validity, by the inclusion of relevant evidence 

• Scrutability given the formality of the mathematical constructs. 

4.3 Examples of Informing Our Human Performance Assessments 

Section 2 provides a number of proposals concerning how the use of evidence and various 
analytical techniques including Bayesian methods and other treatments (e.g., regression 
analysis) could be employed. For instance, the research covered in Section 2.2, illustrates a 
method and approach to collect data that can enable the development of insights into the 
conditions that give rise to behavior and dependencies in human actions. This research 
proposes the study of behavioral prediction through formal study of situational factors or PSFs 
and the contexts that produce systematic variation in them. From this research, we can surmise 
that behavior is dependent on the situation and systematically influenced by the kinds of PSFs 
that we attempt to account for in HRA. The manner in which they influence behavior was shown, 
considering the limited data collected, to be dependent upon the specific accident context, and 
may be predicated upon the influence of other PSFs. Such interactions appear important in 
accounting for variability in performance and may also be a key to reducing some of the 
uncertainty in estimates of reliability if it can be employed in formal models of human reliability. 
This may argue against more simplistic likelihood models used in Bayesian approaches in favor 
of more explicit and parametrically elaborate likelihood models. For example, the multiple 
regression models that were employed to explain variation in performance may also be suitable 
for use as a likelihood model in a Bayesian formalism.  

Section 2.3 describes an approach for using evidence from data such as that available from 
HERA to improve upon our knowledge of some of the parameters typically employed in HRA 
methods, using one HRA method for illustration. This approach employs data about PSFs that 
are associated with human actions that are stored in HERA to develop posterior probability 
mass functions of the PSFs. With this information, analysts and model developers can assess 
the extent to which PSFs are associated with human actions in specific contexts. This is a 
slightly different use of the Bayesian framework for developing posterior probability distributions. 
Whereas other examples in this report use evidence to estimate the probability of a human 
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action, Section 2.3 demonstrates how to use evidence to provide information about 
characteristics of model parameters of an HRA method. Both illustrate the use and value of 
evidence employed in the Bayesian framework but from different perspectives. 

These considerations are mirrored in discussions about the specific types and form of the 
likelihood functions employed in the Bayesian model. For example, accounting for the 
hypothesis that an individual’s awareness, goals, and activities are constantly changing with 
regard to specific tasks and factors based in part on what previous successes and failures have 
occurred, suggests that behaviors may often be correlated. Workers often behave in a certain 
way in certain environments, or they may exhibit mindset in other cognitive phenomena that 
result in behavior that is highly dependent on individual, situational, and organizational factors. 
Such dependencies result in a powerful source of correlation among individual observations that 
challenges the way we must treat certain forms of human performance data. Section 2.3 
demonstrates a general method for addressing the issue of correlated data in a generalized 
form. 

Section 2.4 illustrates ways for conceptualizing human performance in accident contexts and for 
employing the kinds of data described in other sections. It seems likely that in order to be of the 
greatest use for PRA, the results of human performance observations, whether from operating 
experience, simulator studies, or other sources, will require development of bona fide probability 
density functions that relate the human action to a probability scale. The suggestions in Section 
2.4 on quantitative treatment of human performance data match well to some sources of data 
that may be available. They also tie to probability estimation through the suggested 
development of context anchored probabilities (CAPs) and their generalized form (GCAPs) for 
describing classes of distributions from similar or related contexts. Interpolation from such 
contexts to the application at hand may be facilitated through direct estimation, when such 
distributions become available, or through Bayesian updating using data from similar contexts 
as forms of partial evidence. 

Whether or not the specific proposals in Section 2 are eventually implemented, they do provide 
pragmatic illustrations of how we might use available human performance evidence along with 
mathematical formalisms, including Bayesian methods, to improve HRA. These illustrations 
provide yet further confidence that we can use quantitative methods and empirical evidence.  

4.4 Demonstrating the Feasibility of Using Empirical Evidence and 
Quantitative Techniques for HRA 

While we believe the information in the Sections 4.2 and 4.3 provides considerable optimism, if 
the use of empirical evidence and quantitative techniques is to be employed in HRA, it is 
necessary to demonstrate the successful implementation of these concepts. With such 
demonstrations, and hopefully with very usable products from these demonstrations, the HRA 
community will be more inclined, as a whole, to investigate other ways these concepts can be 
used to advance our human performance modeling and failure probability predictions. 

Hence, while the illustrations in Section 2 suggest ways human performance evidence and 
quantitative methods might be used, there needs to be a specifically focused attempt to define 
and implement at least a few meaningful pilot projects whose results would be directly useful in 
improving one or more of current HRA methods. To do so will require the collection, 
interpretation, and analysis of relevant human performance information from such sources as 
actual events, simulator studies, inspections and investigations, and special experiments. Pilot 
projects can then be established to investigate ways to use this data to inform our HRA models 
and the human error probabilities they produce. Hence, progress needs to be made on several 
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fronts to demonstrate the value of applying quantitative techniques to use real data in a more 
prevalent manner in HRA.  

First, and as an ongoing effort, data collection efforts such as the HERA project and nuclear 
plant simulator experiments at the Halden Research Facility need to continue. While some 
analysis and interpretation of these data for HRA use is expected and encouraged, the raw data 
should also be maintained since we cannot know, at this time, how the data might be used and 
further analyzed or interpreted using quantitative techniques to address issues of interest to 
HRA modeling and probability estimation. Further, advantage should be taken of data from the 
international community to complement and add to our available information about human 
performance in nuclear power plant settings. Given the ability to make use of various forms of 
data using Bayesian methods, these and other sources of human performance data potentially 
can all be used.  

Second, and closely following the initial phases of the above projects, once a reasonable 
representation of the possible data have been collected and organized, small proof-of-principle 
pilot projects need to be defined and implemented to demonstrate how we can use the data in 
ways similar to the illustrations in this report. It appears that qualitatively informing our HRA 
models and particularly the structures that they use (typically using PSFs), may hold the best 
initial promise for uses of the data. Even so, questions, such as how to weigh the different 
evidence that will be made available by various data collection programs, need to be answered 
by these pilot projects. Later, as even more data is collected, attempts for more directly 
estimating human error probabilities can be made. An effort to pull together interested parties 
with the task of defining and implementing such pilot projects is highly encouraged. 

Third, demonstration activities should be organized around accepted issues within the field of 
practice. The peer review of the workshop discussions indicates that most reviewers believed 
that the examples chosen and the illustrations that were developed were too academic and 
were lacking in practical merit. While some of this may be understood in view of the nascence of 
these methods within the HRA field, the need to better illustrate the information, steps involved 
in performing analyses, and assumptions that are made must be clear to the practitioner 
community. 

4.5 Possible Steps for Implementing Suggestions to Improve the Use 
of Empirical Evidence and Quantitative Techniques in HRA 

The previous section has indicated several initial steps toward making the use of empirical 
evidence and quantitative techniques eventually more commonplace in HRA. These are the 
continuation of existing data collection programs and the need to define and implement some 
useful proof-of-principle pilot projects using that data.  

Assuming successful performance of these steps, we then need to communicate the results of 
these efforts to the HRA community. In doing so, the value to HRA must be clearly delineated 
and suggestions for further uses of available data sources should be indicated. One vision of 
how to communicate this information is to develop a document similar in nature to the 
Handbook of Parameter Estimation for PRA (Atwood et al., 2003). Just as that handbook 
provides an excellent reference for using data and appropriately selecting formalisms to 
estimate the reliability of systems and to characterize the uncertainty in analyses, HRA needs a 
complementing guide or handbook if HRA is to achieve a level of maturity similar to that 
currently encountered in other aspects of PRA. Such a HRA handbook would conceptually 
provide, for instance: 
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• Background information on the use of empirical evidence and quantitative methods for 
HRA 

• Sources and the nature of empirical evidence about human performance 

• Ways to use this information in HRA, including the descriptions and results of the pilot 
projects 

• General procedures for using data and quantitative techniques in HRA.  

On the basis of the peer review of this workshop summary, several concrete suggestions have 
been made regarding future efforts to achieve a common working approach to employing 
empirical data and quantitative formalisms in HRA. These include: 

• Identifying the information and sources of information for these kinds of analyses. 

• Focusing initial efforts to a limited number of problems that may be well described already 
in the HRA field  

• Developing the quantitative examples and applications as though applying them to a 
particular problem of interest, and documenting the steps involved 

• Describing important assumptions that must be made to use the quantitative technique 
that analysts may not be familiar with already  

In yet the longer term, other steps are proposed. Assuming the pilot projects are successful in 
demonstrating the beneficial use of quantitative techniques together with empirical data to 
improve HRA, programs should be developed to specifically validate or otherwise modify, in 
formal ways, existing HRA methods. Validation, at some level, is a general concern for all HRA 
methods and it is an issue that needs to be performed if HRA is to be seen as providing credible 
and most importantly, experience-informed results. It may eventually be possible to supplant 
existing HRA models with more direct ways to improve our estimation of human error 
probabilities. Further, with the publication of the aforementioned HRA handbook along with any 
applicable training, the HRA community could actively use these concepts in future HRA 
assessments for risk-informed applications. 
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